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Preface 

Mathematics is playing an increasingly important role in the physical, biological and 
engineering sciences, provoking a blurring of boundaries between scientific disciplines 
and a resurgence of interest in the modern as well as the classical techniques of applied 
mathematics. Remarkable progress has been made recently in both theory and applications 
of all important areas of control theory. 

Modern automatic control theory covers such topics as the algebraic theory of linear 
systems (including controllability, observability, feedback equivalence, minimality of real- 
ization, frequency domain analysis and synthesis etc.), Lyapunov stability theory, input- 
output method, optimal control (maximum principle and dynamic programing), observers 
and dynamic feedback, robust control (in Hardy and Lebesgue spaces), delay-systems con- 
trol, the control of infinite-dimensional systems (governed by models in partial differential 
equations), conflict and game situations, stochastic processes and effects, and many others. 
Some elegant applications of control theory are presently being implemented in aerospace, 
biomedical and industrial engineering, robotics, economics, power systems etc. 

The efficient implementation of the basic principles of control theory to different 
applications of special interest requires an interdisciplinary knowledge of advanced math- 
ematical tools and such a combined expertise is hard to find. What is needed, therefore, 
is a textbook making these tools accessible to a wide variety of engineers, researchers 
and students. 

Many suitable texts exist (practically there are no textbooks) that tackle some of the 
areas of investigation mentioned above. Each of these books includes one or several 
appendices containing the minimal mathematical background that is required of a reader 
to actively work with this material. Usually it is a working knowledge of some mathe- 
matical tools such as the elements of linear algebra, linear differential equations, Eourier 
analysis and, perhaps, some results from optimization theory, as well. In fact, there are no 
textbooks containing all (or almost all) of the mathematical knowledge required for suc- 
cessful studying and research within the control engineering community. It is important 
to emphasize that the mathematical tools for automatic control engineers are specific and 
significantly differ from those needed by people involved in fluid mechanics, electrical 
engineering etc. To our knowledge, no similar books or publications exist. The material 
in these books partially overlaps with several other books. However, the material covered 
in each book cannot be found in a single book (dealing with deterministic or stochas- 
tic systems). Nevertheless, some books may be considered as partially competitive. For 
example: 

Guillemin (1 949) The Mathematics of Circuit Analysis: Extensions to the Mathematical 
Training of Electrical Engineers, John Wiley and Sons, Inc., New York. In fact this 
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xviii Preface 

book is nicely written, but it is old, does not have anything on stochastic and is oriented 
only to electrical engineers. 
Modern Mathematics for the Engineer (1956), edited by E.F. Beckenbah, McGraw-Hill, 
New York. This is, in fact, a multi-author book containing chapters written by the best 
mathematicians of the second half of the last century such as N. Wiener, R. Bellman 
and others. There is no specific orientation to the automatic control community. 
Sys thes  Automatis& (in French) (2001), Hermes-Science, Paris, five volumes. These 
are multi-authored books where each chapter is written by a specific author or authors. 

0 Hinrichsen & Pritchard (2005) Mathematical Systems Theory I: Modelling, State Space 
Analysis, Stability and Robustness, Texts in Applied Mathematics, Springer. This excel- 
lent book is written by mathematicians for mathematicians working with mathematical 
aspects of control theory. 

The wide community of automatic control engineers requires a book like this. The primary 
reason is that there exist no similar books, and, secondly, the mathematical tools are 
spread over many mathematical books written by mathematicians and the majority of 
them are unsuitable for the automatic control engineering community. 

This book was conceived as a hybrid monographhextbook. I have attempted to make 
the development didactic. Most of the material comes from reasonably current periodic 
literature and a fair amount of the material (especially in Volume 2 )  is my own work. 

This book is practically self-contained since almost all lemmas and theorems within 
contain their detailed proofs. Here, it makes sense to remember the phrase of David 
Hilbert: “It is an error to believe that rigor in the proof is the enemy of simplicity. The 
very effort for rigor forces us to discover simpler methods of proof.. . .” 

Intended audience 

My teaching experience and developing research activities convinced me of the need 
for this sort of textbook. It should be useful for the average student yet also provide a 
depth and rigor challenging to the exceptional student and acceptable to the advanced 
scholar. It should comprise a basic course that is adequate for all students of automatic 
control engineering regardless of their ultimate speciality or research area. It is hoped that 
this book will provide enough incentive and motivation to new researchers, both from 
the “control community” and applied and computational mathematics, to work in the 
area. Generally speaking, this book is intended for students (undergraduate, postdoctoral, 
research) and practicing engineers as well as designers in different industries. It was 
written with two primary objectives in mind: 

to provide a list of references for researchers and engineers, helping them to find 

to serve as a text in an advanced undergraduate or graduate level course in mathematics 

The particular courses for which this book might be used as a text, supplementary text 
or reference book are as follows: 

information required for their current scientific work, and 

for automatic control engineering and related areas. 
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Preface 

Volume 1 

xix 

Introduction to automatic control theory, 
0 Linear and nonlinear control systems, 

Optimization, 
Control of robotic systems, 
Robust and adaptive control, 

0 Optimal control, 
0 Discrete-time and impulse systems, 

Sliding mode control, 
Theory of stability. 

Volume 2 

Probability and stochastic processes in control theory, 
Signal and systems, 
Identification and parameters estimation, 
Adaptive stochastic control, 
Markov processes, 

0 Game theory, 
Machine learning, 
Intelligent systems, 
Design of manufacturing systems and operational research, 
Reliability, 
Signal processing (diagnosis, pattern recognition etc.). 

This book can also be used in several departments: electrical engineering and electronics, 
systems engineering, electrical and computer engineering, computer science, information 
science and intelligent systems, electronics and communications engineering, control engi- 
neering, systems science and industrial engineering, cybernetics, aerospace engineering, 
econometrics, mathematical economics, finance, quality control, applied and computa- 
tional mathematics, and applied statistics and operational research, quality management, 
chemical engineering, mechanical engineering etc. 
The book is also ideal for self-study. 

It seems to be more or less evident that any book on advanced mathematical methods is 
predetermined to be incomplete. It will also be evident that I have selected for inclusion 
in the book a set of methods based on my own preferences, reflected by my own expe- 
rience, from among a wide spectrum of modern mathematical approaches. Nevertheless, 
my intention is to provide a solid package of materials, making the book valuable for 
postgraduate students in automatic control, mechanical and electrical engineering, as well 
as for all engineers dealing with advance mathematical tools in their daily practice. As 
I intended to write a textbook and not a handbook, the bibliography is by no means 
complete. It comprises only those publications which I actually used. 
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Determinants 

Contents 
1.1 Basic definitions . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . 3 
1.2 6 
1.3 16 

Properties of numerical determinants, minors and cofactors . . . . . . . . . 
Linear algebraic equations and the existence of solutions . , . . . . . . . . 

The material presented in this chapter as well as in the next chapters is based on 
the following classical books dealing with matrix theory and linear algebra: Lancaster 
(1969), Lankaster & Tismenetsky (1985), Marcus & Minc (1992), Bellman (1960) 
and Gantmacher (1990). The numerical methods of linear algebra can be found in 
Datta (2004). 

1.1 Basic definitions 

1.1.1 Rectangular matrix 

Definition 1.1. An ordered array of elements aij (i  = 1, . . . , m ;  j = 1, . . . , n )  taken 
from arbitrary field 5 (here 5 will always be the set of all real or all complex numbers, 
denoted by E% and @, respectively) written in the form of the table 

is said to be a rectangular m x n matrix where aij denotes the elements of this table 
lying on the intersection of the ith row and jth column. 

The set of all m x n matrices with real elements will be denoted by R""" and with 
complex elements by C""". 

1.1.2 Permutations, number of inversions and diagonals 

Definition 1.2. If  j , ,  j 2 , .  . . , j ,  are the numbers 1 , 2 , .  . . , n written in any order 
then ( j l ,  j 2 ,  . . . , j , )  is said to be a permutation of 1,2 ,  . . . , n. A certain number 
of inversions associated with a given permutation ( j ,  , j , ,  . . . , j,,) denoted briefly by 
t (j1, j 2 ,  . . . , j,). 

3 
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4 Advanced Mathematical Tools for  Automatic Control Engineers: Volume I 

Clearly, there exists exactly n! = 1 . 2 . . . n permutations. 

Example 1.1. ( I ,  3,2), (3, 1,2), (3,2, 11, (1,2,3), (2, 1,3), ( 2 , 3 ,  1) are the permu- 
tations of 1,2, 3. 

Example 1.2. t (2,4, 3, 1, 5 )  = 4. 

Definition 1.3. A diagonal of an arbitrary square matrix A E R""" is a sequence of 
elements of this matrix containing one and only one element from each row and one and 
only one element from each column. Any diagonal of A is always assumed to be ordered 
according to the row indices; therefore it can be written in the form 

Any matrix A E R""" has n! different diagonals. 

Example 1.3. If ( j ,  , jz, . . . , j , )  = (1,2, . . . , n )  we obtain the main diagonal 

I f  ( j ,  , j2, . . . , j,,) = (n ,  n - 1, . . . , 1) we obtain the secondary diagonal 

U l n ,  a2(n-1), . . . 1 a n 1  

I .  1.3 Determinants 

Definition 1.4. The determinant det A of a square matrix A E R""" is defined by 

In other words, det A is a sum of n! products involving n elements of A belonging to 
the same diagonal. This product is multiplied by (+1) or (-1) according to whether 
t ( j l  , j2, . . . , j,) is even or odd, respectively. 

Example 1.4. I f A  E RZx2 then 
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Deierminants 5 

Example 1.5. (Sarrius’s rule) I f  A E R3x3 (see Fig. 1.1) then 

Example 1.7. The determinant of a low triangular matrix is equal to the product of its 
diagonal elements, that is, 

det 

a31 I 
Fig. 1.1. Illustr ation of the Sarrius’s rule. 
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6 Advanced Mathematical Tools for Auromatic Control Engineers: Volume 1 

- - 
all a12 . * . a1Il 
0 a22 a23 ' . a2n  

0 0 a33 a34 . . 
. . o . . .  
0 ' 0 an-1," 

det 

- 0 ' ' O O a , ,  

n 

= a l l a 2 2 ~ ~ . u n n  = n u , ,  
L=l 

Example 1.9. For the square matrix A E W"" having only zero elements above 
(or below) the secondary diagonal 

Example 1.10. The determinant of any matrix A E IW""" containing a zero row 
(or column) is equal to zero. 

1.2 Properties of numerical determinants, minors and cofactors 

1.2.1 Basic properties of determinants 

Proposition 1.1. If A denotes a matrix obtained from a square matrix A by multiplying 
one of its rows (or columns) by a scalar k ,  then 

detA=kdetA (1.3) 

Corollary 1.1. The determinant of a square matrix is a homogeneous over field 8, 
that is, 

1 det (kA) = det [kaij]y,;"=l = k" det A 1 
Proposition 1.2. 

IdetA =detATl 

where A T  is the transpose of the matrix A obtained by interchanging the rows and 
columns of A, that is, 
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Determinants I 

Proof. It is not difficult to see that a diagonal a1 j , ,  azj2, . . . , anj,, ordered according to 
the row indices and corresponding to the permutation ( j1 ,  j , ,  . . . , j,,), is also a diag- 
onal of AT since the elements of A and AT are the same. Consider now pairs of 
indices 

corresponding to a term of det A and pairs 

obtained from the previous pairs collection by a reordering according to the second 
term and corresponding to the term of det A T  with the same elements. Observe that 
each interchange of pairs in (1.4) yields a simultaneous interchange of numbers in the 
permutations (1,2,  . . . , n), ( j 1 ,  j2 ,  . . . , j , )  and ( k l ,  kZ, . . . , k , ) .  Hence, 

This completes the proof. 0 

Proposition 1.3. If the matrix B E R""" is obtained by interchanging two rows (or 
columns) of A E R""" then 

det A = - det B (1.6) 

Proof. Observe that the terms of det A and det B consist of the same factors taking 
one and only one from each row and each column. It is sufficient to show that the 
signs of each elements are changed. Indeed, let the rows be in general position with 
rows r and s (for example, r < s). Then with (s - r)-interchanges of neighboring rows, 
the rows 

r, r + 1, . . . , s - 1, s 

are brought into positions 

r + l , r  +2 ,  ..., s , r  

A further (s - r - 1)-interchanges of neighboring rows produces the required order 

s , r +  1 , r + 2 ,  ..., s - 1 , r  

Thus, a total 2 (s - I )  - 1 interchanges is always odd that completes the proof. 0 

Corollary 1.2. Ifthe matrix A E R""" has two rows (or columns) alike, then 

de tA=O 
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8 Advanced Mathematical Tools for  Automatic Control Engineers: Volume 1 

Proof. It follows directly from the previous proposition that since making the interchang- 
ing of these two rows (or columns) we have 

det A = - det A 

which implies the result. 

Corollary 1.3. I f a  row (or column) is a multiple of another row (or column) of the same 
matrix A then 

detA=O 

Proof. It follows from the previous propositions that 

det 

The result is proven. 0 

Proposition 1.4. Let B be the matrix obtained from A by adding the elements of the 
ith row (or column) to the corresponding elements of its kth (k # i) row (or column) 
multiplied by a scalar a. Then 

det B = det A (1.7) 

Proof. Taking into account that in the determinant representation (1.2) each term contains 
only one element from each row and only one from each column of the given matrix, we 
have 
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Determinants 9 

The second determinant is equal to zero since it has two rows alike. This proves 
the result. 0 

Corollary 1.4. (Gauss's method of determinants evaluation) When the operation 
described above is applied several times, the evaluation of a determinant can be 
reduced to that of a triangular matrix. 

Example 1.11. 

0 - 4 0  1 
-1 1 -2 1 det I -2 I =de t  I -1 1 -2  1 

1 0 - 1  1 2 1  1 0 - 1  1 2 

1 2  1 - 1  1 3  1 - 1  

0 3 - 1 0  0 2 - 1 0  
1 =det  1 = det 

10-1 1 2 I l o o  1 2 1  

I 1 
0 0 -10.5 0 0 -10.5 

1 0 0  1 2 1  10 0 0 2.51 

Corollary 1.5. I f A  denotes the complex conjugate of A E CXn, then 

Proof. Transforming det A to the determinant of a triangular matrix [triang A] and 
applying the rule 

valid within the field C of complex values, we get 

n 

det = det (triang A) = n (triang A)i i  

= n (triang A)ii  = det (triang A) = det A 

i= l  
n 

i= l  

The result is proven. 
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10 Advanced Mathematical Tools for Automatic Control Engineers: Volume I 

0 0 1 0 . .  
O 0 1 0 .  l !  ! I  

Corollary 1.6. 
__ 

det ( A * )  = det A 

Proposition 1.5. Let us consider the, so-called, n x n companion matrix 

- - 
0 1 0 .  . o  
0 0 1 0 . .  
. .  0 .  . .  
. .  0 . o  
0 0 '  . 0 1  

-a0 -al . . -a,,-] 

c, := 

- - 

. .  0 .  

0 0 '  
-a0 -al . . -a,,-] 

. .  c, := 

associated with the vector a = (ao, . . . , a,- l )T.  Then 

1 det C, = (-1)" a0 1 

Proof. Multiplying the ith row ( i  = 1, . . . , n - 1) by ai, adding it to the last one and 
moving the first column to the last right-hand side position, we obtain 

det 

= (-l)n-' det 

The proposition is proven. 

1 0 0 .  
0 1 0 0  

' 1 '  

0 0 .  

= det 

* o  
. .  
. .  
a 0  
1 0  
. --L 

0 1 0 .  . o  
0 0 1 0 .  

' 0 .  
0 . 0  

0 0 .  . 0 1  
-a0 0 . . o  

= (-1)" a0 

0 

1.2.2 Minors and cofactors 

Definition 1.5. A minor Mij  of a matrix A E R""" is the determinant of a submatrix of 
A obtained by striking out the ith row and jth column. 

Example 1.12. 

A =  [" i], M 2 3 = d e t [ i  : ] = - 6  
7 8 9  
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Determinants 11 

Definition 1.6. The cofactor Aij  (or ij-algebraic complement) of the element aij  of the 
matrix A E R""" is defined as 

Example 1.13. 

[: A = 4 5 4 , Az3 = ( - 1 ) 2 + 3  det [: a z ]  
Lemma 1.1. (Cofactor expansion) For any matrix A E R""" and any indices i ,  j = 
1 ,  . . . ,  n 

I I 

I j = 1  i = l  I 
(1.10) 

Proof. Observing that each term in (1.2) contains an element of the i th row (or, analo- 
gously, of the j th column) and collecting together all terms containing aii we obtain 

To fulfill the proof it is sufficient to show that 

In view of the relation 

it follows that 

r 

which completes the proof. 
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12 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1 

Example 1.14. 

det [ i] = l ( - l ) '+ldet  [ i  z ]  
7 8 9  

+ 4(-l)"'det [ ;] +7(-1)3+i [ i] 
= -3 - 4 (-6) + 7 (-3) = 0 

Lemma 1.2. For any matrix A E R'"" and any indices i # r, j # s (i, j = 1 ,  . . . , n )  it 
follows that 

I n  n I 

j = l  i = l  

Proof. The result follows directly if we consider the matrix obtained from A by replacing 
the row i (column j )  by the row r (column s )  and then use the property of a determinant 

0 with two rows (or columns) alike that says that it is equal to zero. 

Lemma 1.3. Vandermonde determinant 

Proof. Adding the ith row multiplied by (-XI) to the ( i  + 1 )  row (i  = n - 1, 
n - 2, . . . , 1) and applying the iteration implies co
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Determinants 13 

1 1 . . .  
x2 . . .  XI? 
. . . .  . 

x;-2 . . . x,: -2 

= (x2 - x l )  . . . (x, - x r )  det 

n n n  n n 

= n ( X i  - X I )  v 2 , n  = . . . = n n.; - X j ) V n , n  = n n(x; - X i )  
i =2 j = l  i > j  j = l  i > j  

since V,,.n = 1. 

1.2.3 Laplace's theorem 

Definition 1.7. 

(a )  If A is an m x n matrix, then the determinant of a p x p (1 5 p 5 min (m,  n ) )  
submatrix of A,  obtained by striking out ( m  - p )  rows and (n - p )  columns, is called 
a minor of order p of A.  If rows and columns retained are given by subscripts 

respectively, then the corresponding minor is denoted by 

(1.12) 

(b) The minors for  which 

. i k = j k  ( k = 1 , 2  , . . . ,  p )  

are called the principal minors. 

(c)  The minors for which 

i k =  j k = k  ( k =  1,2, . . . , p )  

are called the leading principal minors. 

Definition 1.8. The determinant of a square matrix A resulting from the deletion of the 
rows and columns listed in (1.11) is called the complementary minor and is denoted by 

The complementary cofactor to (1 .12)  is defined by 

s = ( i l  + i2 + .  . . + ip) + ( j l  + j 2  + . . . + j,) 
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Example 1.15. For A = we have 

a21 a22 a24 2 3 5  
A ( 1 2 4 )  = [ a31 a32 a34 ] 

a51 a52 a54 

A (  2 3 5  J4(; ;) = [a13 a q  
a43 a45 

Theorem 1.1. (Laplace’s theorem) Let A be an arbitrary n x n matrix and let any p 
rows (or columns) of A be chosen. Then 

(1.13) 

n!  
p !  ( n  - p ) !  

where the summation extends over all C{ := distinct sets of column indices 

j1 ,  j 2 , . * . , j , ,  (1 5 j1 < j 2  < . . .  < j ,  F n )  

Or, equivalently, 

(1.14) 

Proof. It can be arranged similarly to that of the cofactor expansion formula (1.10). 0 

1.2.4 Binet-Cauchy formula 

Theorem 1.2. (Binet-Cauchy formula) Two matrices A E R p x n  and B E IWnxp are 
given, that is, 

. B =  
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Determinants 15 

Multiplying the rows of A by the columns of B let us construct p 2  numbers 

and consider the determinant D := I c , ~  i : j = I .  Then 

I .  i f p  5 n we have 

2. i f p  > n we have 

D = O  

Proof. It follows directly from Laplace's theorem. 

Example 1.16. Let us prove that 

Indec 

n n c akCk akdk 
k = l  k = l  

n n 

k= I k= 1 

I considering two matrices 

and applying (1.15) we have (1.16). 

Example 1.17. (Cauchy identity) The following identity holds 

(1.15) 

0 

(1.16) 

It is the direct result of (1.16). 
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1.3 Linear algebraic equations and the existence of solutions 

1.3.1 Gauss’s method 

Let us consider the set of m linear equations (a system of linear equations) 

(1.17) 

arnixi + ~ 2 x 2  +.  . . + arnnx, = b,, 

in n unknowns x l ,  x2 ,  . , . , x,  E E% and m x n coefficients a,, E R. An n-tuple 
(x:,  x;, . . . , x:) is said to be a solution of (1.17) if, upon substituting x: instead of 
x, .  ( i  = 1, . . . n )  in (1.17), equalities are obtained. A system of linear equations (1.17) 
may have 

a unique solution; 
infinitely many solutions; 
no solutions (to be inconsistent). 

Definition 1.9. A system of linear equations 

(1.18) 

is said to be equivalent to a system (1.17) if their sets of solutions coincide or they do 
not exist simultaneously. 

It is easy to see that the following elementary operations transform the given system 
of linear equations to an equivalent one: 

interchanging equations in the system; 
multiplying an equation in the given system by a nonzero constant; 
adding one equation, multiplied by a number, to another. 

Proposition 1.6. (Gauss’s rule) Any system of m linear equations in n unknowns has an 
equivalent system in which the augmented matrix has a reduced row-echelon form, for 
example, for m < n 

6llXl + 612x2 + . . . + iilnX, = bl 
- 

6aixi + 622x2 + . . . + 6 2 , ~ ~  = b2 

0.Xl + o . x 2 + . . . + o . x ,  = o  
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Example 1.18. 

17 

2x1 - x2 - x3 + 3x4 = 1 

6x1 - 32 - x3 - x4 = 9 

2x1 - x2 - x3 + 3x4 = 1 
0 . X l  + O ' X 2  +x3 - 5x4 = 3 

0 .  xl + 0 .  x2 + 2x3 - lox4 = 6 
,.., 4x1 - 22 - X3 + X4 = 5 

2x1 - X 2  + 2x3 - 12x4 = I0 0 .  X I  + 0 .  ~2 + 3x3 - 15x4 = 9 

Here the first elementary transform consists in multiplying the first row by 2, 3, 1 and 
adding (with minus) to the following rows, correspondingly. The second elementary 
transform consists in multiplying the second row by 2, 3 and adding (with minus) to the 
following rows, correspondingly. Finally, one gets 

2x1 - x2 - x3 + 3x4 = 1 
x3 - 5x4 = 3 

Taking x2 and x4 as free variables it follows that 

1 
XI = -x2 + x4 + 2 

2 
x3 = 5x4 + 3 

1.3.2 Kronecker-Capelli criterion 

Lemma 1.4. (Kronecker-Capelli) A system of linear equations given in the form 
(1.17) has 

a unique solution if m = n and 

infinitely many solutions if the minimal number of linearly independent rows of 
A (denoted by rank A) is equal to one of the extended matrices (denoted by rank [A I b]) ,  
that is, 

rank A = rank 
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no solutions (to be inconsistent) if 

rank A # rank [A I b] 

The proof of this fact will be clarified in the next chapter where the inverse matrix will 
be introduced. 

1.3.3 Cramer’s rule 

Proposition 1.7. (Cramer) If m = n and det A # 0 the unique solution of (1.17) is 
given by 

a2.t-1 b2 a2,r+1 x. (i = 1, ..., n )  - - 
- det A 

The proof of this fact will be also done in the next chapter. 

Example 1.19. 

XI -2x2 =’}, det A = 11 -2;  = 2 f 0  
3x1 - 4x2 = 7 3 -4 

x l = - I  1 1 - 2  I - -  10 1 1 1  4 
2 7 - 4  - 2 ’  x2=-1  2 3 7  1 = 2 = 2  
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2.5 Elementary transformations on matrices . . . . . . . . . . . . . . . . . . .  32 
2.6 Rankofamatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 
2.7 Trace of a quadratic matrix . . . . . . . . . . . . . . . . . . . . . . . . . .  38 

2.1 Basic definitions 

2.1.1 Basic operations over matrices 

The definition of a matrix has been done in (1.1). Here the basic properties of matrices 

Three basic operations over matrices are defined: summation, multiplication and 
and the operations with them will be considered. 

multiplication of a matrix by a scalar. 

Definition 2.1. 

1. The sum A + B of two matrices A = [a,,]:’:, and B = [b,,]:T=, of the same size is 
defined as 

2. The product C of two matrices A = [ai,];:=, and B = [bij]:;P_, may be of different 
sizes (but, as required, the number of columns of the first matrix coincides with the 
number of rows of the second one) and is defined as 

(I f  m = p = 1 this is the definition of the scalar product of two vectors). In general, 

A B  # B A  

19 
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20 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1 

3. The operation of multiplication of a matrix A E R""" by a scalar a E R is defined 
as follows 

l a A  = A a  := [ a a l J ] ~ ~ ,  1 
4. The dijference A - B of two matrices A = [u, , ]~~*=, and B = [b,,]yJ:, of the same 

size is called a matrix X satishing 

X + B = A  

Obviously, 

2.1.2 Special forms of square matrices 

Definition 2.2. 

1. A diagonal matrix is a particular case of a squared matrix ( m  = n )  for which all 
elements lying outside the main diagonal are equal to zero: 

I f  all = aZ2 = . . . = an,, = 1 the matrix A becomes the unit (or identity) matrix 

(usually, the subindex in the unit matrix definition is omitted). g a l l  = a22 = , . . = 
ann = 0 the matrix A becomes a zero-square matrix: 

2. The matrix AT E IW""" is said to be transposed to a matrix A E R""" if 
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Matrices and matrix operations 21 

3. The adjoint (or adjudged) of a square matrix A E RnXft ,  written adj A, is defined to 
be the transposed matrix of cofactors Aji (1.9) of A, that is, 

m adj A := [Aji]:,i=,) 

4. A square matrix A E R""" is said to be singular or nonsingular according to whether 

5. A square matrix B E is referred to as an inverse of the square matrix 
det A is zero or nonzero. 

A E R""" if 
R""" 

and when this is the case, we write B = A-'. 
6. A matrix A E Cnxn 

is normal if AA* = A*A and real normal i f A  E R""" and AAT = ATA; 
is Hermitian if A = A* and symmetric if A E R""" and A = AT; 
is skew-Hermitian if A* = -A and skew-symmetric if A E RnX" and AT = -A. 

7. A matrix A E R""" is said to be orthogonal if ATA = AAT = I , , , ,  or, equivalently, 
$AT = A-' and unitary i f A  E CC""" and A*A = AA* = I,,, ,  or, equivalently, if 
A* = A - ' .  

2.2 Some matrix properties 

The following matrix properties hold: 

1. Commutativity of the summing operation, that is, 

A + B = B + A  

2. Associativity of  the summing operation, that is, 

( A  + B )  f C = A + ( B  + C )  

3. Associativity o f  the multiplication operation, that is, 

( A B )  C = A ( B C )  

4. Distributivity o f  the multiplication operation with respect to the summation operation, 
that is, 

( A  + B ) C  = AC + B C , C ( A +  B )  = C A  + C B  

AZ = ZA = A 
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where 

6. For the power matrix AP ( p  is a nonnegative integer number) defined as 

the following exponent laws hold 

where p and q are any nonnegative integers. 
7. If two matrices commute, that is, 

A B  = B A  

then 

( A B ) p  = A p B p  

and the formula of Newton's binom holds: 

m !  
i !  ( m  - i ) ! '  

where Ch := 

8. A matrix U E @,'" is unitary if and only if for any x ,  y E @" 

( U X ,  U y )  := (UX)" uy = ( x ,  y )  

Indeed, if U*U = Z,,, then ( U x ,  U y )  = ( x ,  U * U y )  = ( x ,  y ) .  Conversely, if 
( U x ,  U y )  = ( x ,  y ) ,  then ( [U*U - Z n x n ] x ,  y )  = 0 for any x ,  y E @" that proves the 
result. 

9. If A and B are unitary, then A B  is unitary too. 
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10. If A and B are normal and AB = BA (they commute), then AB is normal too. 
11. If Ai are Hermitian (skew-Hermitian) and a, are any real numbers, then the matrix 

m 

ai Ai is Hermitian (skew-Hermitian) too. 

matrix A E Cnx" can be represented as 12. 

where 

are both Hermitian. If A E R"'", then 

I A = s + T I  

where 

A + A T  , T=-l A - A T  

2 

and S is symmetric and T is skew-symmetric. 
13. For any two square matrices A and B the following determinant rule holds: 

[det (AB) = det (A)det (B) I 
This fact directly follows from Binet-Cauchy formula (1.15). 

14. For any A E R""" and B E R n x p  

(AB)T = BTAT 

Indeed. 

15. For any A E R""" 

adj A T  = (adj A)T 
adjLxn = I,,,  

adj (aA) = a"-'adj A for any a E 5 

16. For any A E ex" 

adj A* = (adj A)* 
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17. For any A E R""" 

1 A (adj A )  = (adj A) A = (det A) I n x ,  I (2.4) 

This may be directly proven if we calculate the matrix product in the left-hand side 
using the row expansion formula (1.10) that leads to a matrix with the number det A 
in each position on its main diagonal and zeros elsewhere. 

18. If detA # 0, then 

A-' = -adj A 1 detA . 

This may be easily checked if we substitute (2.5) into (2.2) and verify its validity, 
using (2.4). As a consequence of (2.5) we get 

I det (adj A) = (det A)'-' 

As a consequence, we have 

I 
det A 

1 det ( A - ' )  = __ 1 
This follows from (2.5) and (2.4). 

19. If det A # 0, then 

Indeed, 

So, by definitions, (A-I)' = ( A T ) - ' .  

20. If A and B are invertible matrices of the same size, then 

As the result, the following fact holds: if det A = det B, then there exists a matrix C 
such that 

A = B C  
det C = 1 

Indeed, C = B-'A and 

det A 
det (B) 

det C = det (B-' A )  = det (B-') det A = ~ = 1 
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Matrices and matrix operations 25 

21. It is easy to see that for any unitary matrix A E Cnxn is always invertible and the 
following properties hold: 

Indeed, since A*A = AA* = I,,,, it follows that A-' = A*. Also in view of (1.8) 
we have 

det A*A = det I,,, = 1 
det A*A = (det A*) (det A )  = (det) (det A )  = ldet A1 = 1 

22. Let A E Rnxn,  B E R""', C E Rrxr  and D E R'"" 
(a) If A-' and (I,, ,  + DA-'BC)-'  exist, then 

( A  + BCD)- '  
- - A-I  - A-'BC (c  + CDA-'BC)- '  C D A - 1  

- - A-1 - A- ' B C  (I,,, + DA-' BC)-' DA-' 
(2.7) 

Indeed, the simple matrix multiplication implies 

[ A - 1  - A - ~ B C  (c + C D A - ~ B C ) - '  C D A - I ]  ( A  + B C D )  

= I,,, - A-'BC (c  + CDA-'BC)- '  C D  + A - ~ B C D  

-A-'BC ( C  + CDA- 'BC)- '  [-C + C + CDA- 'BC]  D 

= I,,, - A-IBC (C + CDA- 'BC)- '  C D  + A- 'BCD 

-A-'BC (c + C D A - ~ B C ) - '  C D  - A - I B C D  = I,,,~ 

Analogously. 

(b) In the partial case when r = 1, C = 1, B = u ,  D = U T  and uTA-'u # -1, we 
obtain the Sherman-Morrison formula: 
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I , , ,@A= 

The next statement seems to be important for understanding the internal relationship 
within different classes of matrices. 

- - 
A O . . O  
O A . . .  
. . . . . = diag [ A ,  A , .  . . , A] 
. . O A O  

- O . . O A  - 

Claim 2.1. 

1. Any complex unitary, Hermitian, skew-Hermitian and real orthogonal, symmetric 
and skew-symmetric matrix is normal, that is, it satisfies the condition 

AA" = A"A for complex matrices 

and 

AAT = AT A for real matrices 

2. A matrix A is normal if and only ifthe matrices A and A* have the same eigenvectors. 

Both of these properties can be easily checked directly. 

2.3 Kronecker product 

Definition 2.3. For two matrices A E R""", B E R P X q  the direct (tensor) Kronecker 
product, written A @ B, is defined to be the partitioned matrix 

Example 2.1. If 

(2.10) 

co
nt

ro
len

gin
ee

rs
.ir



Matrices and matrix operations 21 

(c) for any a! E 5 it follows that 

( a A )  @ B = A €4 ( a B )  = a! ( A  €4 B )  

(d) ( A  + C )  € 4 B  = A €4 B + C €4 B 

(e) A €4 ( B  + C )  = A  €4 B + A  €4 C 

(8) ( A  €4 B)T  = AT €4 BT 

and for complex matrices 

Next, very useful properties are less obvious. 

Proposition 2.1. I f A  E R""", B E Rpxq, C E Rnxk and D E RqXr then 

(2.1 1) 

Proof. It follows from the identity that 

Corollary 2.1. I f A  E R""", B E R""" then 
1. 

(to prove this it is sufficient to take C = I,,,  and D = Imxn,). 
2. 

for all matrices Ai E R""" and Bi E R""" ( i  = 1,. . . , p ) .  
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3. 

provided that both A-' and B-' exist. Indeed, 

Proposition 2.2. r f  A E R""", B E R""" then there exists a permutation P E IWnn'xn'n 
such that 

ProoJ: It is easy to check that there exists a permutation matrix such that 

(2.12) 

Then, since for any permutation matrix P P T  = by (2.1) it follows that 

Corollary 2.2. 

det ( A  @ B )  = (det A)" (det B)" 

Indeed, by (2 .1)  

In view of (2.12) and (2.10) one has 

det ( A  @ In,,) = det [P' ( I n , "  8 A )  PI 

= det [ P P T  ( I n x n  Q9 A ) ]  = det (I,," 8 A )  

= det (diag ( A ,  A ,  . . . , A ) )  = (det A)" 

Analogously, 

det ( Imxm 0 B )  = (det B)" 

which completes the prooJ 

(2.13) 
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2.4 Submatrices, partitioning of matrices and Schur’s formulas 

Given matrix A = [a,,]r(;”=l, if a number of complete rows or columns of A are deleted, 
or if some complete rows or complete columns are deleted, the new matrix that is obtained 
is called a submatrix of A. A division of matrices into submatrices is referred to as a 
partition of the matrix. 

Proposition 2.3. If  the matrices A and B are partitioned as follows 

where the corresponding submatrices Aij and Bij have the same size, then by direct 
computation we get 

(2.14) 

and 

(2.15) 

Proposition 2.4. If A l l  and A22 are square matrices then 

1. for 

it follows that 

det A = (det A l l )  (det A22) 

2. for 
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it follows that 

det A = (-l)("+')p (det A12) (det A21) 

Proposition 2.5. I f  A is block-diagonal, that is, 

A = diag [ A l l  Az2.  . . A,,] 

then 
1. 

2. 

n 

det A = det Aii 
i= l  

11 

rank diag [ A l l  A22 . . . A,,] = (rank Aii) 
i = l  

Lemma 2.1. (Schur's formulas) For block-matrix 

A B  
' = [ C  D] 

where A and D may be of different sizes, the following properties hold: 

detAdet(D-CA- 'B)  if de tA#O 
det ( A  - BD-IC) det D if det D # 0 

det (AD - CB) if A C = C A  
det (AD - BC) if C D = D C  

det = 

Proof. Notice that for the case when det A # 0, we have 

(2.16) 

which leads directly to the first formula. The second formula, when det D # 0, may be 
proven by the analogous way taking into account the decomposition 
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For proofs of formulas three and four see Gantmacher (1990). 

Lemma 2.2. (on the inversion of a block-matrix) r f '  

then 

provided b y  the condition that all inverse matrices exist. 

Proof. In view of the identity 

it is sufficient to check the equalities 

The second and third ones hold automatically. Then we have: 

and 

0 
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2.5 Elementary transformations on matrices 

The determinants' properties, mentioned above, indicate a very close relationship 
between the determinants of square matrix A and matrices obtained from A by the 
following elementary operations: 

Operation 1: interchanging two rows (or columns) in A ;  
Operation 2: multiplying all elements of a row (or column) of A by a nonzero constant; 
Operation 3: adding to any row (or column) of A any other row (or column), multiplied 
by a nonzero number. 

Proposition 2.6. Each of the elementary operations described above can be achieved by 
pre- and post-multiplications (respectively) of A by appropriate matrices containing only 
0 ,  1 elements and, for the 3rd operation, also one element equal to k ,  that is, 

Matrix form of operation 1: the elementary operation of i l  and i2 rows interchanging 
is equal to the following lefr-hand side multiplication E ( ' ) A  where 

0 . 0 1 .  
1 0 . 0 0 .  

. 0 1 . .  
. O ' O  

. 0 1  

Matrix form of operation 2: the elementary operation of multiplication of all elements 
of a row i of A by a nonzero constant a is equal to the following left-hand side 
multiplication Ej2' ( a )  A where 

Matrix form of operation 3: the elementary operation of adding to a row il of A any 
other row i2, multiplied by a nonzero number a, is equal to the following left-hand 
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I 0 1 0 -  

33 

side multiplication E!;,:.? (a)  A where 

10 . 
0 
1 

Similarly, the multiplication of A on the right-hand side by the appropriate matrices 
E;:li2, EY’ (a) or ES:ij, (a)  leads to analogous changes in columns. 

Example 2.2. 

(4 
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Proposition 2.7. For any subindices 

(2) det E”’. 1 I .12 = - 1, det E, (a)  = a, det E::.\, (a )  = 1 (2.17) 

and 

det E!,l,!.zA = det AEj:jj, = det A 

det E?’ ( a )  A = det A Ejz) (a)  = a det A 
det E;,”;, (a )  A = det AEj71/, ( a )  = det A 

Proof. The formulas above are the simple mathematical expressions of the determinants, 
0 properties (1.6), (1.3) and (1.7). 

Proposition 2.8. For any m x n matrix A there exists a finite sequence of elementary 
matrices E l ,  E2, . . . , Ek+s such that 

is one of the following matrices 

1. I,,,,, for rn = n  

(2.18) 

known as canonical ones. 

Proof. It follows directly from the elementary operations definition and its relation to the 
canonical matrix forms. 0 
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Example 2.3. For 

0 1  
A = [  -2 0 

4 -2 -4 -10 

we get 

0 1  2 

4 -2 -4 -10 
A ,  := Ef'(-1/2)A= 1 0 0 1; ~ 

0 1  2 - 1  

0 -2 -4 2 
(3) 

A2 :=E2,3(-4)A1 = 

1 0 0  

0 -2 -4 2 
0 1 2 1; 1 

1 0 0 - 3  
A4 := E$(2)A3 = [ 0 1 2 ;l 

0 0 0  

1 0 0  

[ o  0 0 

A5 : Z A ~ E ~ , ~ ( ~ )  (3) = 0 1 2 

12x2 0 = [  0 0 1  

Corollary 2.3. For any m x n matrix A there exist matrices P (det P # 0 )  and Q 
(det Q # 0 )  such that PA& is equal to one of the canonical matrices (2.18). 
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Proof. It follows from (2 .7)  and the fact that 
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det (i E l )  = i d e t  ( E ; )  # 0 
i=l  i = l  

Definition 2.4. Two matrices A and B are said to be equivalent (or belonging to the same 
equivalent class) if they may be transformed by the elementary operations application to 
the Same canonical matrix form. This is written as A - B 

Proposition 2.9. An n x n matrix A is nonsingular if and only if A 

Proof. Since 

det ( P A Q )  = (det A )  (det P) (det Q )  = det S 

where S is one of the canonical matrices (2.18), we have 

det S 
(det P) (det Q )  det A = f 0  

if and only if S = InX,,. 

Definition 2.5. A square n x n matrix A is said to be simple if it is equivalent to a 
diagonal matrix D. 

These definitions will be used frequently below. 

2.6 Rank of a matrix 

Definition 2.6. For a matrix A E R""" the size 

r (1 ( r  (min(rn,n)) 

of the identity matrix in the canonical form for A is referred to as the rank of A, written 
r = rank A. r f  A = Om,, then rank A = 0, otherwise rank A 1. 

For each four canonical forms in (2.18) we have 

rank I,,,, = n for m = n 

rank[I,,, Omx(n-m)] = m f o r m  < n 

rank[ In'' ] = n fo rm > n 
O ( m - n )  x n  

co
nt

ro
len

gin
ee

rs
.ir



Matrices and matrix operations 37 

Proposition 2.10. For a square matrix A E R""" rankA = n if and only if it is nonsin- 
gular. 

Proof. It follows straightforwardly from proposition (2.9). 0 

Corollary 2.4. The rank of a matrix A E B""" is equal to the order of its lurgest nonzero 
minor. 

Several important properties of rank are listed below. 

is well defined, then 
1 .  (Frobenius inequality) If A ,  B and C are rectangular matrices and the product ABC 

1 rank(AB) + rank(BC) 5 rank(A) + rank(ABC) I (2.19) 

I rank(AB) 5 min {rank(A), rank(B)) I (2.20) 

Indeed, taking in (2.19) first A and C to be appropriate size we obtain (2.20). 
2. For any complex matrix A 

I rank(A) = rank(AA*) = rank(A*A) I 
3.  If P and Q are nonsingular and A is square, then 

I rank(PAQ) = rank(A) I (2.21) 

Indeed, by (2.20) it follows 

rank(PAQ) 5 min {rank(P), rank(AQ)} 
= min {n ,  rank(AQ)) = rank(AQ) 

= rank(P-' [PAQ] Q-') 
5 min {rank(A), rank(Q)) = rank(A) 

5 min {rank ( P - '  , rank ([ P A  Q] Q-' ) } 

5 min {rank(PAQ), rank(Q-')} = rank(PAQ) 
= rank ([ P A  Q] Q-' I 

4. 

I rank(A) = rank(AT) = rank(A*) I 
5 .  For any A, B E R""" 

I r d ( A  + B )  5 rank(A) + rank(B) 1 

(2.22) 

(2.23) 

co
nt

ro
len

gin
ee

rs
.ir



38 Advanced Mathematical Tools for  Automatic Control Engineers: Volume I 

6. (Sylvester's rule) For any A E R""" and B E Rnxp  

rank(A) + rank(B) - n 5 rank(AB) 
5 min {rank(A), rank(B)} 

7. For any A E R""" and B E R""" 

(2.24) 

(2.25) 

This follows from (2.11). 

2.7 Trace of a quadratic matrix 

Definition 2.7. The trace of a matrix A E Cnxn (may be with complex elements), written 
@A, i s  defined as the sum of all elements lying on the main diagonal of A, that is, 

l k A  := i = l  I 
Some evident properties of trace follow. 

1. For any A, B E Cnxn and any a, j? E C 

(2.26) 

1 tr(aA + j?B) = a trA + j? trB I (2.27) 

2. For any A E Cmxn and any B E Cnx* 

I tr(AB) = tr(BA) I 

Indeed, 

I m n  m n  

I k = l  i = l  

3. For any A E C n X n  

n n  

tr(AA*) = tr(A*A) = laij I 
i = l  j = 1  

(2.28) 

(2.29) 

(this follows directly from property 2). 
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4. If S-' (S E Pxn)  exists then for any A E Cnxn 

I tr(S-'AS) = tr(SS-lA) = tr(A) 1 
5. For any A E CnXn and any B E Cpxp 

39 

(2.30) 

1 tr(A €3I B )  = tr(A) tr(B) I (2.31) 

Indeed. 

P 

tr(A €31 B ) : = k  (uii xbii) 
i = l  j = l  

= (2 uii )  (2 bii )  = tr(A) tr(B) 
i=l j=1 
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3.2 Eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . .  44 

3.4 The multiplicities and generalized eigenvectors . . . . . . . . . . . . . . .  54 

3.1 Vectors and linear subspaces . . . . . . . . . . . . . . . . . . . . . . . . .  41 

3.3 The Cayley-Hamilton theorem . . . . . . . . . . . . . . . . . . . . . . . .  53 

3.1 Vectors and linear subspaces 

Definition 3.1. The matrix A E a?"'' := @", written as 

is called a vector a E Cnxl.  

Definition 3.2. The matrix product (2.1), written for a E Cfx' and b E @ I x n ,  is called a 
scalar (inner) product of two vectors a and b and denoted by 

I n 1 ( a ,  b )  := a*b = xiiibi 1 
which ,for real vectors a ,  b E Iw" becomes 

I n 1 (a ,  6 )  := aTb  = x a , b i  I 
L- i=l 

Definition 3.3. For the set of vectors X I ,  x2, . . . .  xk E Cn and elements a l ,  a2, .... cxk E 

Q7 the jollowing notions may be introduced: 

1. Linear combinations ofxl . x2, .... Xk.,,, over @ are an element of the form 

2. The set of all h e a r  combinations of x1, x2, .... xk over is called a subspace or the 
span of x1, x2, .... xk, denoted by 

span { x l ,  x2, .... xk} := 
{X = ~ 1 x 1  + a2xz + ...  + akxk : ai E @, i = 1, .... k }  (3.3) 

41 

co
nt

ro
len

gin
ee

rs
.ir



42 Advanced Mathematical Tools for  Automatic Control Engineers: Volume 1 

3. Some vectors x l ,  x 2 ,  . . . , x k  E c are said to be linearly dependent over @ if there 

Otherwise, they are said to be linearly independent. 
4. If S is a subspace of @", then a set of vectors x1, x2, . . . , xk E is called a basis for 

S i f  

x l ,  x2, . . . , xk are linearly independent; 
S = span ( x , ,  x 2 ,  . . . , x k ) .  

Such basis for  a subspace S is not unique: all bases for  S have the same number of 
elements which is called the dimension of S ,  denoted by dim S .  

5. Vectors X I ,  x2, . . . , x k  E C" are mutually orthogonal if 

(x:, xi) = O for all i f j 

and are orthonormal if for all i ,  j = 1, . . . , n 

.J) = s L J  

1 i f  i = j  
0 i f  i f j  

is the Kronecker (delta-function) symbol. where x: = and 6,, = 

6. The orthogonal completion S' of a subspace S c @" is defined by 

where the vectors xk+j ( j  = 1, . . . , n - k )  are orthonormal. 

Any matrix A E CmX" may be considered as a linear transformation from CY' 
to @", i.e., 

Definition 3.4. 

(a )  The kernel (or null space) of the linear transformation A : @" - @" is defined by 

IKerA =N(A) := (x E @" : A x  = 0) I 
(b)  The image (or range) of the linear transformation A : @" w @" is 

(3.5) 

( c )  The dimension of the subspace Ker A = N (A) is referred to as the defect of the 
transformation A and is denoted by defA, that is, 

1 def A := dim KerA 1 (3.7) 
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By the definitions above, it is clear that both Ker A and ImA are subspaces in C" and 
R(A), respectively. Moreover, it can be easily seen that 

dim Ker A + dim ImA = n 
dim Im A = dim(Ker A)' 

rank A 5 dim ImA 
rank A = rank A* 

Proposition 3.1. If At, A2 : S1 5 @" t+ S2 C: C" then 

Im(AI + A?) c Im(A1) + Im(A2) 
rank A l  - rank A2 5 rank(Al + A*) 5 rank A ,  + rank A2  

It follows directly from the definitions above. 

Proposition 3.2. I f A  : S1 E @" t-+ S2 2 C" and B : S3 5 PC" ++ S4 C CP then 

Im(BA) = BIm(A) 
rank(BA) 5 min{rank A ,  rank B} 

This is the consequence of (3.8). 
It is not difficult to verify that for any A : SI 2 C" I---+ S2 5 C" and B : S3 C @" 

I--+ S4 s: @ p  one has 

1. 

I rank A + def A = dim(S,) I (3.9) 

2. for any S c S1 

1 dim A(S) = dim S - dim(S n Ker A) 1 

3. for any A ,  B : SI s: @" t-+ S2 C C" 

I Ker A f l  Ker B c Ker(A + B) I 
4. If S = S ,  then 

1 dim A(S) 2 dim S - def T 2 def AB I 
5.  

/def AB I def A +def B 1 
6. If A is left invertible (S c S,) if and only if 

I dim A ( S )  = dim S I 
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7. 

I def A = n - m I 
3.2 Eigenvalues and eigenvectors 

Definition 3.5. Let A E C""" be a squared n x n matrix (may be with complex elements). 
Then 

(a)  any nonzero vector x E C" is referred to as a right eigenvector of the matrix A if it 
satisfies the equation 

1 Ax = A(')x I (3.10) 

for some (may be zero) complex value 
which corresponds to this right eigenvector x; 

satisfies the equation 

E C called the eigenvalue of the matrix A 

(b) any nonzero vector x E C" is referred to as a left eigenvector of the matrix A if it 

1 x*A  = k(')x* I (3.1 1) 

for some (may be zero) complex value A(') E C called the eigenvalue of the matrix A 
which corresponds to this left eigenvector x .  

Remark 3.1. r f x  is an eigenvalue, then for any nonzero a E C the vector a x  is also 
the eigenvector. This means that for each A'') (the same for A(')) there exists a single 
dimensional subspace 

of the corresponding eigenvectors ax. 

Proposition 3.3. For any matrix A E @I,"" any eigenvalue A(') (as well as A(") satisfies 
the, so-called, characteristic equation 

pA(A) := det(AZ,,, - A) = 0 (3.12) 

Proof. By (3.10) (or (3.1 1)) it follows that 

(A(r )Znxn  - A)  x = 0, x* (A( ' )Znxn - A)  = 0 

Hence these equations have nonzero solutions if and only if (see Proposition 1.7) (3.12) 
holds. 

Evidently, the characteristic polynomial 

has exactly n roots Ai( i  = 1, . . . , n ) .  Some of these roots may coincide. 
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Definition 3.6. The set of all roots of p ~ ( h )  is called the spectrum of A and is denoted by 

where hj satisfies 

The maximum modulus of the eigenvalues is called the spectral radius of A, denoted by 

p ( A )  := max lhjl 
Isjsn 

(3.14) 

The following remark seems to be evident. 

Remark 3.2. The spectrum oJ A contains all right eigenvalues as well as all left eigen- 
values which implies that any A:) has an equal hy', that is, there exist lwo indices i and 
j such that 

Proposition 3.4. r f  x is a right (left) eigenvector of a real matrix A E R""" with the 
corresponding eigenvalue h, that is, A x  = Ax, then the complex conjugated vector X is 
also an eigenvector of A with the corresponding eigenvalue h. 

Proof. Let x = u + i v  and h = a + ip .  Then we have 

A x  = A(u + i v )  = Au + i ( A v )  
= Ax = (a + $>(u + i v )  = (au - pv) + i (pu  + W) 

This implies 

or, equivalently, 

which, after multiplication of the second equality by the complex unite i and summation 
of both equalities, leads to the following identity 

- 
A(u - i v )  = A2 = (a - iB)(u - i n )  = 1.i 

For the left eigenvalues the proof is similar. 
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Corollary 3.1. The following presentation of the characteristic polynomial p ( h )  (3.13) 
takes place 

(3.15) 
i = l  i = l  i= l  

where s is the number of pure real eigenvalues and 

Example 3.1. For 

by Sarrius's rule we have 

h - 1  1 
p ~ ( h )  = det(h& - A )  = det 

= (h  - l ) ( h  - 3)(h - 2) + 2 - 2(h - 1) + 2(h - 2) 

= (h  - l ) ( h  - 2)(h - 3) 

which implies 

hl = 1, h? = 2, h3 = 3 

One of the solutions of the equation Ax(') = hix(') ( i  = 1 , 2 ,  3 )  is 

In this example a nonsymmetric matrix has real eigenvalues and the corresponding 
eigenvectors. The next proposition shows when this occurs. 

Proposition 3.5. If a square n x n matrix A is Hermitian or real symmetric, that is, if 

A * = A  or A = A T  

then obligatory all eigenvalues hj are real. If A is real symmetric, then the corresponding 
eigenvectors x ( j )  ( j  = 1, . . . , n> are real too. 
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Proof. Suppose that h i  and x ( j )  are complex, i.e., 

Then 

and calculating the complex conjugation plus transposition from both sides by symmetric- 
ity we get 

(x(J)*Ax(J)  * X(J)*A*x(/)  = x(J)*Ax(J)x(J)* = x ( J  I =  1 I ) I Z  
which leads to the following relation 

This means that h, is real. Finally, by the Proposition 3.4 in the case of a real matrix we 
obtain that the solution of the linear uniform system Ax(.’) = h,x(J)) ,  containing only real 
elements, with respect to x ( J )  may give only a real solution. 

Proposition 3.6. Eigenvectors corresponding to distinct eigenvalues are linearly inde- 
pendent. 

Proof. Let h l ,  h 2 , .  , . , h,  (s 5 n )  be the distinct eigenvalues of a matrix A and x l .  
x2, . . . , x , ~  denote corresponding eigenvectors. Suppose that there exist numbers 
a l ,  a2,  . . . , as such that 

(3.16) 
i = l  i = l  

Show that this is impossible. To prove that a, = 0 ( i  = 1, . . . , s) we first multiply both 
sides of (3.16) on the left by 

and noting that ( A  - hklnxn).xk = 0,  we get 
co

nt
ro

len
gin

ee
rs

.ir



48 Advanced Mathematical 'fools for Automatic Control Engineers: Volume I 

which implies that a5 = 0. Analogously, we may prove that 

So, all ai = 0 which contradicts (3.16). 0 

Proposition 3.7. Eigenvectors of an Hermitian matrix (A = A*), corresponding to 
distinct eigenvalues, are orthogonal, that is, 

x ( I ) * x ( / )  = 0 (3.17) 

for  any indices i and j such that hi # h,. 

Since hi f h j  the result follows. 0 

Example 3.2. The matrix A = U U T  ( u ,  u E Rnx ' )  has one eigenvalue hl equal to vTu 
(with the corresponding eigenvector x(lJ = u )  and all other eigenvalues A,,, equal to 0 
(with the corresponding eigenvectors x('f') = w('#')_Lv). Indeed, 

Au = U ( Z I T U )  = ( u T u ) ~  

Av( '#] )  = u(UTw('#')) = Onxl  = 0 .  ~ ( ' f ' )  ( i  = 2 ,  . . . , n )  

Proposition 3.8. If B = T-'AT and p ~ ( h )  is the characteristic polynomial of A, then 

[ PA(h) = PB(h) I 
that is, equivalent matrices have the same characteristic polynomials. 

Proof. Indeed, 

p ~ ( h )  = det(hZ,.. - A) = det T . det(hZ,.. - A )  . det T-' 

= det(hTZ,,,T-' - TAT-')  = det(hZ,,, - B )  = p ~ ( h )  
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0 1 0 ’ .  0 -  
0 0 1 0 .  . 

. 0 . .  . 
0 .  0 

0 0 - . o  1 
-a, -an-2 . . . -al - 

Corollary 3.2. The eigenvector x ( J ) ( B )  of the matrix B = T-‘ A T ,  corresponding to the 
eigenvalue hi, is as follows 

where x ( J ) ( A )  is the eigenvector of the matrix A. 

Proof. We have 

A x ( J ) ( A )  = h,x(”((A) 

(T- ’AT)T-’x‘J) (A)  = Bx‘J) (B)  = A ,  T-’x(’)(A) = A,x(J) (B)  
0 

Proposition 3.9. For any A ,  B E Cxn, the matrices AB and B A  have the same char- 
acteristic polynomial and hence the same eigenvalues, that is, 

(3.18) 

Proof. Let us select p E C such that A - pZ,,,, is nonsingular ( [ A  - pZnxn]-I exists). 
Then we have 

det (J-znxrz - [ A  - p.lnxnl B )  

- 
= det ( [ A  - pZnxn])  det (A [ A  - p 1 n x n I - I  

= det h [ A  - pZnXn]-l - B )  det ( [ A  - pZnxn] )  ( 
= det ( J - z n x n  - B [ A  - ~ ~ n x n ] )  

which ir i := A + p implies 

P A B  @) = det @Znx,, - A B  

0 
Proposition 3.10. Let us show that the n x n companion matrix 

c, := 

has the characteristic polynomial pco ( A )  equal to 
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Proof. Indeed, 

- 
h -1 0 . '  0 
0 h - 1 0 .  

. . .  
0 

0 0 . . .  -1 
a n  an-1 . . ' h +a1 

. .  

- 

pc, (A) 0 = det 

h - 1  0 . .  
0 h - 1 0  : I I 
0 0  

h - 1 0 .  

. .  
h O  . .  

0 0  O - ? o  " - 1  0 1  

- a2 det 

Proposition 3.11. For any square n x n matrix A 
0 

n 

an = det A = hi 

= tr A = Chi 
i= l  
n 

1 = 1  

(3.19) 

n 
Proof. The first formula follows directly from (3.15) if h = 0. To prove that 

it is sufficient to open parentheses in 
= C hi 

i = l  

n 

(3.20) 
i = l  i= l  
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and to calculate the coefficient corresponding h in the right-hand side. The second identity 
tr A = C:=, hi may be easily proven using the so-called diagonal form transformation 
which can be done below. 0 

Corollary 3.3. 

tr A = - det(hI,,, - A) I :h 1 
Proof, It follows directly from (3.20). 

(3.21) 

0 

Proposition 3.12. The spectrum of a unitary matrix U lies on the unit circle. 

Proof. If U x  = hx  and x * x  = 1, then 

( U x ) * U x  = x * u * u x  = x * x  = 1 

On the other hand 

( U x ) * U x  = (hX)*(hX) = X*h*hX = Ihl2X*X = lh12 

The comparison yields lhI2 = 1. 0 

Proposition 3.13. I f x  is a complex nonzero vector in @", then the Householder matrix 
defined as 

x x *  
H = I,,, - 2- 

x*x 
is unitary. 

Proof. We should show that 

H H *  = H * H  = I n X ,  

One has 

(3.22) 

xx*  x ( x * x ) x *  
x*x  (x*x)2  

= I n x ,  - 4- + 4 = I n , ,  
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Proposition 3.14. For any square n x n matrix A with the eigenvectors x ( ' ) ( A )  corres- 
ponding to the eigenvalue h i ( A )  ( i  = 1, . . . n )  it follows 

1. 

x'"(A) = X ( ~ ) ( I , ~ , ,  - A )  
hi(Znxn - A )  = 1 - h j ( A )  

Indeed, 

(I,,, - A)x'"(A)  = x("(A)  - Ax"'(A) 

= x"'(A)  - hj(A)x("(A)  

= [ I  - A j ( A ) ] x ( ' ' ( A )  

2. 

x C i ' ( A p )  = x ( ~ ' ( A ) ,  p = 2 ,  3 ,  . . . 
hj(AP) = h r ( A )  

I I 

since 

A P ~ ( ' ) ( A )  = A ( P - ~ ) A ~ ( ' ) ( A )  = A, ( A ) A ( P - ~ ) ~ @ ) ( A )  

= ~ ; ( A ) A ( P - ~ ) ~ ( ~ ) ( A )  = . . . = A: ( A ) x ( ' )  ( A )  

3. r f ;  in addition, A is real orthogonal (AT = A - ' )  and (I,,,, + ) is nonsingular 
(A, (I,,,, + A )  # 0 for all i = 1, . . . , n), then A can be represented as (Cayley 
transformation) 

(3.23)  

where S is a real skew-matrix (2.6), i.e. S T  = -S. This result follows directly based 
on the construction of S: if(3.23) holds then 

A(Inxn + S) = ( I n x n  - S) 

A S  + S = I,,, - A 

S = (Inxn - A ) ( I n x n  + A)-' 

and 

ST = [(Inxn + A ) - ' ]  ( Inxn - A)T 

= (I,,, + A T ) - ' ( I n x ,  - AT) 

= (I,,, + A-')- ' (Z, , ,  - A-') 

= [ A - ' ( A  + znX, , ) ] - '  [A-'(A - znX, ) ]  
= [ ( A  + I n x n ) ] - '  [AA-'I ( A  - I,,,) = -S 

which means that S is a skew matrix. 
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3.3 The Cayley-Hamilton theorem 

The theorem discussed in this subsection plays a key role in matrix theory and has 
important applications to Classical Control Theory. 

Theorem 3.1. (Cayley-Hamilton theorem) I f  

1 pA(h) = + alhn-l + * . . + + a, = o 1 
is the characteristic polynomial of a squared matrix 

(3.24) 

A, then 

that is, the matrix A satisfies its characteristic equation. 

Proof. By (2.5) 

we have 

A adj A = (det A)Znxn 

which leads to the following identity 

It is clear that adj(hZ,., - A )  is matrix ,In-' as the maximal order, i.e., 

adj(hZnX, - A) = B,-,h"-' + B,,-zh"' + .  . . + Blh + BO 
Then (3.26) becomes 

Comparing coefficients, we obtain 

(3.25) 

(3.26) 
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Multiplying the first of these equalities by A", the second one by A"-', the j th by A"-j+l 
and adding them together yields 

0 = A" + alA"-l + .  . + an-lA + anznxn 

which is exactly (3.25). 0 

Corollary 3.4. If A-' exists ( A  is nonsingular), then 

Proof. Since A is nonsingular ( A  has no zero eigenvalues) we have that a,  f. 0. Then 
the result follows from the identity 

A - ' p A ( A )  = A-'(A" + alA"-l + .  . . + a n - I A  + anZnxn) = 0 

3.4 The multiplicities and generalized eigenvectors 

3.4.1 Algebraic and geometric multiplicities 

For any n x n matrix A it may happen that some of its eigenvalues are equal, that is, 
the corresponding characteristic polynomial PA (A) may have the following structure 

I i=l i=l I 
(3.27) 

where p i  is the number of times the factor (h  - h i )  appears in (3.27). 

Definition 3.7. 
( a )  the number p, is called the algebraic multiplicity of the eigenvalue h, of the 

matrix A; 
(b)  the number 

1 xi := dimKer(hiZnx, - A )  I (3.28) 

is called the geometric multiplicity of the eigenvalue h, of the matrix A. 

Example 3.3. For 
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we have 

55 

p A ( h )  = det [;; ;I] = A 2  

which implies 

and 

= dim Ker((hlZnxn - A)) = dim Ker(A) = 1 

Here we see that in this example ~1 4 PI.  

In general, the following property holds. 

Lemma 3.1. The geometric multiplicity of an eigenvalue does not exceed its algebraic 
multiplicity, that is, for any i = 1, . . . , K 

-1 (3.29) 

Proof. If r is the rank of (hcZnxn - A), then by (3.9) r = n - pi and all minors of 
( L i z n x n  - A )  greater than (n  - pi )  are equal to zero. Hence, in 

n n 

r = l  i = l  

for all i 5 F~ - 1 we have ai = 0, which leads to the following 

This means that the last polynomial has a zero of multiplicity greater than or equal to wui 
which implies the result. 0 

Corollary 3.5. 

(3.30) 

co
nt

ro
len

gin
ee

rs
.ir



56 Advanced Mathematical Tools for Automatic Control Engineers: Volume I 

3.4.2 Generalized eigenvectors 

Definition 3.8. Let an eigenvalue h, of a square n x n matrix A have the algebraic 
multiplicity p f .  Then the vectors X ( ' . ~ ) ( A )  satisfjing the equations 

are called the generalized eigenvectors of A. Evidently, 

is the corresponding eigenvector of A (by the definition xf'.Oi(A) = 0). The sequence of 
vectors x(' ' ) ( A ) ,  x ( ' " ( A ) ,  . . . , x ( I r ) ( A )  is called a Jordan chain of length Y 5 p,. 

If the eigenvector x ( ' . ' l ( A )  = x ( " ( A )  is selected, then the next vectors x(' * ) ( A ) ,  . . . , 
x("' i(A) are generated successively as far as the nonhomogeneous equation (3.31) has a 
solution. 

Proposition 3.15. xiL. ')(A) ( k  2 2 )  is a generalized eigenvector of A if and only if the 
vector [ A  - X I  InXnlk- '  x(' k ) ( A )  is the eigenvector of A,  or equivalently, if and only if 

[ A  - ktZnxn]' x'")(A) = 0 

Proof. 

(a) Necessity. Let us prove this fact by induction. For k = 2 we have 

and, hence, pre-multiplying by A implies 

A ( [ A  - hiZnxn]x( i .2)(A))  = Ax"." 

- - hix( ' . ' )  = h, ( [ A  - hjZ , lxn]~i ' ,2 ' (A) )  

This means that ( [ A  - A.LZ,,xn]xf'*2)(A)) is the eigenvector of A.  Notice that the last 
identity may be rewritten as 

So, for k = 2 the proposition is true. Suppose that it is valid for some k .  Show that 
it will be valid for k + 1 too. By this supposition we have 

[ A  - hrZflxn]k x ( " ~ ) ( A )  = 0 
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Then 

and pre-multiplying by [ A  - & Z n x n l k  implies 

or, equivalently, 

(b) Suficiency. It follows directly from the definition of a generalized vector. 

Proposition 3.16. Any Jordan chain consists of linearly independent elements. 

Proof. Suppose that there exist as (s = 1,  . . . , r )  such that 

r 

Applying the transformation [ A  - hi lnxnIr- '  to both sides, we get 

r 

0 = c a i  [ A  - hiZnxn]r- l -s  [ A  - h.Z I n x n  1" x " ~ " ' ( A )  = a,. 
5 = 1 

Then applying again the transformation [ A  - hiZnxn]r-2 ,  in view of the result before, we 
obtain that = 0. Repeating this procedure, we obtain the contradiction, and hence, 
the result is established. 0 
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4.1 Spectral theorem for Hermitian matrices 

4.1.1 Eigenvectors of a multiple eigenvalue for Hermitian matrices 

Proposition 4.1. Let x ( ~ , ' ) ,  x ( ~ , * ) ,  . . . .  x(iswi) be the eigenvectors of an n x n Hermitian 
matrix A E CnXn corresponding to the eigenvalue hi (which by (3.5) is always real) 
with the algebraic multiplicity pi. Then these vectors may be supposed to be linearly 
independent. 

Proof. Indeed, if rank(hiZnxn - A) = n - pi, then, selecting the last components 
T z ( i , 2 ) , -  (0 (0 .- x ~ , + ~ ,  . . . .  xf)] as free variables and solving the linear systems 

(hiZnxn - A) = 0 

or, equivalently, 
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Taking then the free components as 
the following linearly independent (in C"-"f) vectors 

= ti5,r ( s ,  r = p l  + 1, . . . , n ) ,  we may define 

, r = l ,  . . .  1 
Evidently, in spite of the fact that z('%'.') are linearly dependent on z(',*sr) by (4.1), the 

0 = x ( ' , ~ )  remain linearly independent. 

4.1.2 Gram-Schmidt orthogonalization 

Proposition 4.2. Eigenvectors of a Hermitian matrix are linearly independent; some of 
them even correspond to the same eigenvalues. 

Proof. This result immediately follows from the previous proposition and from (3.17). 

Let { x ( I ) ,  ~ ( ~ 1 ,  . . . , X I " ) }  be the set of linearly independent eigenvectors of an n x n 
Hermitian matrix A E CXn. 

Lemma 4.1. (Gram-Schmidt orthogonalization process) The set 
i I n ) }  of vectors obtained from {x('), x ( ~ ) ,  . . . , x(")} by the procedure 

{i( '), i(2) , . . . , 

is orthogonal, that is, 

Proof. Let us do it by induction. For r = 2 we have 
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Supposing that the vectors .?('I, .?(2), . . . , i("-') are orthogonal, we get 

0 

-} may be considered as an Remark 4.1. The set of the vectors 

orthonormal basis in C". 

4.1.3 Spectral theorem 

Theorem 4.1. (Spectral theorem) If { x " ) ,  x( ' ) ,  . . . , x ( " ) }  is the set of linearly independ- 
ent eigenvectors of an n x n Hermitian matrix A E C""" corresponding to the eigenvalues 
hl , . . . , h, (maybe multiple), then the following representation holds 

where A = diag {h l ,  . . . ,A,} and X := [ x ( ' )  
X-1. 

Proof. Notice that the relations 

. . .  x ( " ) ]  is  unitary matrix, i.e., x* = 

Ax'" = hix( ' ) ,  i = 1 , .  . . , n 

may be rewritten as 

A X  = X A  (4.5) 

Since x ( I ) ,  x ( ~ ) ,  , , . , x(")  are linearly independent it follows that X - '  exists and, hence, 

A = X A X - '  
A* = A  = ( X - ' ) *  A X *  

and 

A ( X - ' ) *  = ( X - ' ) *  A 

The comparison of (4.5) and (4.6) implies 

x = (x-')*, x* = x-1 
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and, hence, by (2.3) it follows that 

4.2 Matrix transformation to the Jordan form 

This subsection deals with the transformation of nonobligatory Hermitian matrices to 
triplet form analogous to one given before. 

4.2.1 The Jordan block 

Definition 4.1. The matrix 

is referred to as a Jordan block (or cell) of order ki corresponding to the eigenvalue hi. 

4.2.2 The Jordan matrix form 

Theorem 4.2. (The Jordan normal canonical representation) For any square com- 
plex matrix A E CnXn there exists a nonsingular matrix T such that 

where 

with 

and with hi ( i  = 1, . . . , K )  as the distinct eigenvalues of A with the multiplicity p i ,  The 
transformation T has the following form 
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where ~ ( ' 3 ' )  are the eigenvectors of A corresponding to the eigenvalue hi and 
( s  = 2,  . . . , pi )  are the generalized vectors of A generated by (3.31). 

Proof. Taking sufficiently large space, nevertheless it may be realized by the direct 
0 verification of the identity AT = T J .  

Example 4.1. 

A =  -2 2 0 [: : :] 
We have 

so, 

As the result we have 

4.3 Polar and singular-value decompositions 

4.3.1 Polar decomposition 

Proposition 4.3. (Polar factorization) For any square complex matrix A E @"xn there 
exist unique positive semidefinite (hi 2 0 for all i = 1, . . . , n )  Hermitian matrices H ,  K 
and unitary matrices u V all in CnXn such that 

[ A  = U H  = K V  I (4.10) 
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Proof. First, notice the matrix A*A is Hermitian and, hence, by (3.5) it has all eigenvalues 
real. Moreover, all of them are nonnegative, since by 

and, hence, for all i = 1, .  . . , n 

(4. I I )  

Define r: := h l ,  r; := h2, . . . , r," := A, such that 

ri > O f o r i = l ,  ..., k 

and 

ri =Ofor i  = k + l ,  . . . ,  n 

Then, for i,  j = 1, . . . , k and for the corresponding orthonormal eigenvectors x('), x ( j )  
( ( x ( ~ ) ,  x ( j ) )  = S i j ) ,  we have 

(4.12) 

are orthonormal. Define also two unitary matrices 

x := [x(1) . . . x(k) . . . d")] 
z := [z(l)  . . . Z ( k ) ]  

Then by (4.12) we have 

(4.13) 

or, with R := diag{rl,. , . , r,} ,  

A X  = Z R  
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U = Z X * ,  H = X R X *  

which, by post-multiplying by X * ,  implies 

(4.15) 

AXX* = A = ZRX* (4.14) 

Now, let 

Clearly, U is unitary since X and Z are unitary. H evidently is Hermitian and has 
all eigenvalues nonnegative, or in other words, it is positive semidefinite. Moreover, 
by (4.14) 

Applying the above result to A* we obtain A = K V .  0 

Corollary 4.1. If A E @,'" is nonsingular (or, equivalently all eigenvalues A,  = r,' of 
A*A are strictly positive ( k  = n)),  then 

H T  = H ,  KT = K ,  U T  = U - ' ,  V T  = V-' 

and 

A T A  = H 2 ,  AAT = V 2  

Example 4.2. For 

L J 

it follows that 

Notice that ( .?(I),  .i?(2)) = 0. The normalized eigenvectors are 

1 -a- 1 -0.92388 [ 1 ] = [ 0.382681 
x ( 2 )  = 
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According to (4.13), we construct 

1 
I 

0.38268 -0.92388 
0.92388 0.38268 X =  [ 

z= [ 0.92387 -0.38268 
-0.3827 -0.92388 

= [0.41421 0.0 ] 
0.0 2.4142 

Then by (4.15) we, finally, obtain 

1 0.70710 0.7071 
0.7071 -0.70712 u = ZXT = 

I 2.1213 -0.70710 
-0.707 10 0.707 10 H = XRXT = 

To check the calculation just made above, we compute 

1 0.70710 0.7071 
0.7071 -0.70712 A = U H =  

2.1213 -0.70710 1 0  [ -0.70710 0.70710 ] = [2 -11 

4.3.2 Singular-value decomposition 

Let us consider a matrix A E Cmxn. Evidently, all roots of the matrices A*A E @,“ and 
AA* E Cmxm are real and nonnegative. Indeed, if h, (A*A), h, (AA*) are some eigenvalues 
and x(’) (A*A) and x(’) (AA”) are the corresponding eigenvectors, then 

x(’)* (A*A) : A*Ax(’) (A*A) = h, (A*A)d”  (A*A) 
x(’)* (AA*) : AA*x(’ )  (AA”) = A, (AA*)x‘” (AA*) 

and, thus, 

x( i )*  (A*A) A * A ~ ( ’ )  (A*A) = IIAX(’) ( A * A ) / I *  
= L , ( A * A ) ~ ( ~ ) *  ( A * A ) ~ ( ”  (A*A) = ~ , ( A * A )  / / x ( i )  ( A * A ) I ~ *  

(4.16) 
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It also follows (if m = n this is the result of (3.18)) that the spectrums of A*A and AA* 
coincide, that is, 

o ( A * A )  = a ( A A * )  

and eigenvalues have the same algebraic multiplicity (the geometric multiplicity may be 
different because of zero eigenvalues if they exist). More exactly, 

Proposition 4.4. 

Proof. Indeed, if 

[A'A] x ( ~ )  (A*A)  = hi ( A * A )  x(;' ( A * A )  

then 

AA* [AX")  ( A * A ) ]  = A' ( A * A )  [AX'" ( A * A ) ]  

Thus, Ax(') ( A * A )  is the eigenvector of AA* which corresponds to the same eigenvalue 
A; ( A * A ) .  

In view of this property we may introduce the following definition. 

Definition 4.2. The number 

(4.17) 

is called the ith singular value of A E en'". 
Remark 4.2. I f a  square matrix A E C""" is normal, that is, satisfies the relation 

AA* = A*A 

Proposition 4.5. The singular values of a squared matrix are invariant under unitary 
transformation, that is, if U E C""" satisfies U*U = UU* = I,,',,, then for any A E C""" 
we have 

I ~i ( U A )  = ai ( A U )  = oi ( A )  I (4.18) 

for all i = 1 , .  . . , n. 
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Proof. Indeed, 

aj ( U A )  = Jhi (A*U*UA) = Jh,o = c ~ i  ( A )  

and 

c r j  ( A U )  = Jh;  (U*A*AU) = z / h i  (U*A*AU)* 

= Jhi  (AlJU*A*) = d m  = 8, ( A )  

The next theorem represents the main result of this subsection. 
0 

Theorem 4.3. (Singular-value decomposition) Let A E Cmxn and ai ( A )  ( i  = 1, . . . , 
r 5 min (m,  n ) )  be the nonzero singular values of A. Then A can be represented in the 
triplet form 

I A = U D V *  1 (4.19) 

where U E Cmxm and V E CXn are unitary (i.e. satisfy U*U = UU* = I,,,, and 
V*V = V V *  = I,,,,) and D E @,'" has oi ( A )  in the ( i ,  i)thposition (i = 1 , .  . . , r )  and 
zero elsewhere. 

Proof. Following (4.12) we have that 

Ax(')  = C T ~  ( A )  z ( ' ) ,  i = 1, . . . , r 
Ax'') = 0, i = r + 1 , .  . . , n (4.20) 

where x( ' )  are orthogonal eigenvectors of A*A and z(') are orthogonal eigenvectors of 
AA*. Constructing the matrices 

v = [ x ( ' )  x ( * )  . . . ,x(")] 
u = [p p . . . p ]  

we may note that in view of (4.15) they are unitary by the construction. Then (4.20) 
implies 

or, equivalently, 

A = UDV- '  = U D V *  

The result is established. 

Example 4.3. For 

A =  [i K] 
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we have 

A*A = [a y ] ,  AA* = 

and 

; ; :] 
1 0 1  

a2 ( A )  = 1, x(*) (A*A)  = [ :]. 

1 / 4 3  0 -l/z/z 

1 / J z  0 1 / 4 3  
A = [  0 1 0 f :] [; :] 

0 0  

Proposition 4.6. Two matrices A ,  B E @" x n  are unitary equivalent, that is, 

A = U B V *  (4.21) 

where U E @mxm and V E @""" are unitary, i fand only ifthey have the same singular 
values. 

Proof. Necessity. Assuming A = U B V*  one has 

Viewing the last relation as the singular-value decomposition for DA and noting that DB 
is uniquely defined, we conclude that DA = DB. 

Suflciency. If DA = D B ,  then 

A = UADAV; = UADBV,* = UA (UZ,U,D,V~*VV,) V i  

= UAU: (UBDBVg*) V B V ~  = (UAU;)B(VBVA) = U B V *  -- 
U V"  

0 
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4.4 Congruent matrices and the inertia of a matrix 

4.4. I Congruent matrices 

Definition 4.3. Two square matrices A ,  B E Cnxn are said to be congruent if there 
exists a nonsingular matrix P E C""" such that 

I A = P B P "  I (4.22) 

It is clear that for a unitary P the matrix A is unitary equivalent to B.  

Theorem 4.4. Any Hermitian matrix H E Cxn is congruent to the matrix 

(4.23) 

where r = rank H, and s is the number of positive eigenvalues of H counted according 
to multiplicity. 

Proof. By the spectral theorem (4.4) any H can be represented as 

H = X A X *  (4.24) 

where A is a diagonal matrix of eigenvalues of H and X is unitary. Ordering the 
eigenvalues so that the first s scalars h . . . , h, on the main diagonal of A are positive 
and the next ( r  - s) numbers . . . , L5 are negative, one may write 

A = UAlAoA,U* (4.25) 

where 120 is as in (4.23) and 

A1 = diag (A, - * * ,  Jh,, . . , da, 0 , .  . . , 

The matrix U is a permutation (and therefore a unitary) matrix. So, substituting (4.25) 
into (3.22) gives 

H = X A X *  = ( X U A 1 )  A0 ( A , U * X * )  = PAoP* 

with P = X U A 1 .  Theorem is proven. 0 

4.4.2 Inertia of a square matrix 

Definition 4.4. The inertia of a square matrix A E R""", written as In A, is the triple 
of integers 
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sigH := n ( H )  - u ( H )  

where 

(4.28) 

n (A)  denotes the number of eigenvalues of A,  counted with their algebraic multiplic- 
ities, lying in the open right ha2f-plane of C; 
u (A)  denotes the number of eigenvalues of A, counted with their algebraic multiplici- 
ties, lying in the open left half-plane of C; 
6 (A)  is the number of eigenvalues of A ,  counted with their algebraic multiplicities, 
lying on the imaginary axis. 
Notice that 

Remark 4.3. In the particular case of Hermitian matrices TC ( H )  and v ( H )  merely 
denote the number of positive and, negative eigenvalues of H respectively. Notice that 
for  Hermitian matrices 

n ( H )  f ( H )  = rank H 

The diTerence 

is referred to as the signature of H .  

Theorem 4.5. Let A ,  B E RnXn be Hermitian matrices of the same rank r and 

A = M B M *  

for  some matrix M (not obligatory nonsingular). Then 

In A = In B 

Proof. By Theorem 4.4 there exist nonsingular matrices P and Q such that 

P A P *  =diag[Zf,-Z,-,,0] : = A o ( A )  
Q - ' B ( Q - ' ) *  =diag[Z,,-Ir-,9,0] : = A o ( B )  
t = TC (A) ,  s = TC ( B )  

To prove the theorem it is sufficient to show that t = s. Suppose that s < t and let us 
seek a contradiction. Notice that since A = M B M *  we have 

A0 (A) = P A P *  = P M B M * P *  
= ( P M Q )  A0 ( B )  ( Q * M * P * )  = RAo ( B )  R* (4.29) 

R := P M Q  

Let x E f? as 

co
nt

ro
len

gin
ee

rs
.ir



12 Advanced Mathematical Tools,for Automatic Control Engineers: Volume 1 

Then 

(4.30) 

Partitioning of R in the form 

R * : =  [ R I I  R12 ] R 1 ,  € @ S X f  

R21 R22 ’ 

implies that X can be chosen such that 

keeping X # 0. Define now y = RzlX E which leads to the following identity 

R*x = “(1 
Then by (4.29) 

which contradicts (4.30). Similarly, interchanging the roles of A0 (A) and A. ( B ) ,  one 
U can find that t < s is impossible. Hence, s = t .  Theorem is proven. 

Corollary 4.2. (Sylvester’s law of inertia) Congruent Hermitian matrices have the 
same inertia characteristics. 

Proof. Since A = PBP* and P is nonsingular, then rank A = rank B and the result 
follows. U 

Example 4.4. Consider the quadratic form 

which corresponds to the following matrix 

A =  1 0  1 [: : .:] 
The transformation 

0 0  

1 -1 -1 
x = T z ,  T =  [* 1 : ]  
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implies 

1 3  

f A  (x) 2 (x, A X )  = ( Z  [, T T A T ]  Z )  

1 0 0  
= i;, [~ ;l p] z )  = z : - z : + z :  

so, 

r = 3 ,  n ( A ) = 2 ,  u ( A ) = l ,  s ( A ) = O  

4.5 Cholesky factorization 

In this subsection we follow Highan (1996). 

4.5.1 Upper triangular factorization 

Theorem 4.6. (Cholesky factorization) Let A = A T  E R""" be a real symmetric n x n 
matrix with positive definite eigenvalues hi ( A )  > 0 (i = 1, . . . , n). Then there is a unique 
upper triangular matrix R E R""" with positive diagonal elements such that 

p T G -  (4.31) 

Proof. It may be done by induction. For n = 1 the result is clear. Assume that it is true 
for (n  - 1). Let us consider A, = A,T E R""" which can be represented in the following 
block form 

(4.32) 

where A,_, = A:-, E RW(n-l)x(n-l) b y the assumption of the induction method has a 
unique Cholesky factorization A,-, = RJ-, R,-l. Then (4.32) may be rewritten as 

(4.33) 

if 

RJ-,r = c (4.34) 

rTr + p2 = ct (4.35) 
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Notice that (4.34) has a unique solution since R:-, is nonsingular. Then (4.35) gives 

It remains to check that there exists a unique real positive B satisfying this equation, that 
is, we need to show that 

One has 

0 < det A, = det(R,T R,) = det(R,T) det(R,) 

= [det(R,T_l)B] [det(R,-~)B] = [det(Rn-1)I2 B2 

which implies 

Hence there is a unique B > 0. So, (4.33) is valid. 

Corollary 4.3. Given the Cholesky factorization 

A T A  = R T R  

the system of linear equations 

AX = b 

or, equivalently, 

can be solved via the two triangular linear systems 

R T y  = 

R x = y  

which can be resolved by the simple Gaussian elimination procedure (1.6). 

Corollary 4.4. Let rij be the elements of R and D := diag ( r f l ,  . . . mi,) > 0. The Cholesky 
factorization A = RT R (4.31) may be represented as 

A = L D L T  
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where 

L = RTdiag ( r ; ' ,  . . . , r,;') 

- A  1 1  0 

- --m :m 
- -m 0 

= ( 3  3 1 1 
-8 15 

4.5.2 Numerical realization 

The following procedure is the direct algorithm for computation of matrix R: 

- 1 1 - 
0 - a -  - J 5 &  

1 1 
3 15 

0 -m ---2/-is 
1 
5 

- -m - 0  0 - 

f o r j = l : n  
for i = 1 : . j  - 1 

end 
I i - l  

u k = l  

end 

Example 4.5. 
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5.1 Projectors 

Definition 5.1. A Hermitian n x n matrix P is said to be a projector or an idempotent 
matrix if it satisfies the condition 

Proposition 5.1. r f  P E PXn is a projector, then 

(a)  the matrix 

Q := I,,,, - P 

is a projector too and named the complementary projector to P; 
(b) 

1m(Iax, - P )  = Ker P 

Ker(I,,,,* - P )  = ImP 

Proof. 

(a) To prove that Q is a projector too, note that 

( Inxn  - P>* = Inx, - P - P + P2 
= I,,, - P - P $- P = I,,,,, - P 

(b) If y E Im(Inxn - P ) ,  then y = (I,,,, - P ) x  for some x E @". Thus, 

P y  = P (I,,, - P ) x  = ( P  - P') x = 0 

It means that y E Ker P 
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(c) By a similar argument, if y E Im P ,  then y = P x  for some x E @" and, hence, 

(I,,, - P )  y = (Inxn - P )  P x  = ( P  - P2)  x = 0 

which exactly means (5.4). 

Corollary 5.1. r f  P E CnX" is a projector, then 

Ker P + Im P = @" 

Proof. Evidently, any x E @" may be represented as 

x = (I,*,* - P )  x + Px = x(') + x(2) 
._ .- (I,,,, - P ) x  E Ker P 

x(') := P x  E Ker(I,,,, - P )  = Im P 

Corollary 5.2. Any x( ' )  E Ker P and x(') E Im P are orthogonal, that is 

(x('), x ( 2 ) )  = 0 

Proof. By the previous corollary, we have 

X ( l ) * X ( ' )  = x* (I,,, - P ) *  P x  

= x* (I,,, - P )  P x  = x* ( P  - P') x = 0 

The property given above in (5.2) exactly justifies the name projector for P .  

Theorem 5.1. I f  P E Cnxn is a projector, then 

I .  its eigenvalues hi ( P )  are either equal to 1 or 0; 
2. it is a simple matrix, that is, it is equivalent to a diagonal matrix with the diagonal 

elements equal to 1 or 0; 
3. it may be represented as 

where r = rank P and {x('), . . . , x( ' ) }  is .the system of the eigenvectors of P corre- 
sponding to hi ( P )  = 1. 
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Proof. 

1 .  If x ( j )  ( P )  is an eigenvector of P corresponding to an eigenvalue hi ( P ) ,  then 

PXCi) ( P )  = hi ( P )  di) ( P )  

and pre-multiplication of this identity by (I,,, - P )  implies 

0 = ( I n x n  - P )  P d ' )  ( P )  = h, ( P )  (I,,, - P ) x ( ' )  ( P )  

= h, ( P )  [x(') ( P )  - Px(') ( P ) ]  = h, ( P )  [x") ( P )  - h, ( P ) x ' "  ( P ) ]  

= A, ( P )  [ I  - h, ( P ) ] x ( ' )  ( P )  

which proves the first assertion. 
( 2 )  and (3) result from ( 1 )  and the spectral theorem (4.4). 

5.2 Functions of a matrix 

5.2.1 Main definition 

Definition 5.2. Let A E Cnxn be any square complex matrix and T E Cnxn  is the 
nonsingular matrix T ,  defined by (4.9), transforming A to the Jordan canonical form, 
that is, 

A = T J T - '  
J = diag(J1, Jz ,  . . . , .IK) 

where Ji E W x M i  is the ith Jordan block defined by (4.7). Also let 

f (A) : c + c 
be a function which is ( I  - 1)-times differentiable in a neighborhood of each hi E 0 (A)  
where 

l := max pi,  
i = l  ..... K 

i=l  

(pi is the multiplicity of hi). Then 

I 
I. 

0 f (hi) . . .  

and f ( k )  (A) is the kth derivative o f f  ( h )  in the point h. 
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Example 5.1. Let 

A =  -2 2 0 [: ::i 
Then the eigenvalues, the corresponding eigenvectors and the generulized eigenvectors 
are as follows 

From equation (3.31) 

we obtain 

and, hence 

So, for example, 

In2  0 
l n ( A ) =  T [ In4 1;4] T-'  

0 ln4 

0 0  

0.88629 -0.5 -0.5 ] 
= [ ::) 1.8863 1.1931 

0.0 0.69315 
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0 

sin(2) 0 

0 0  0 

0.55048 1.3073 1.3073 

= [ 0.0 0.0 0.90930 1 -1.3073 -2.0641 -2.9734 

5.2.2 Matrix exponent 

There exist two definitions of the matrix exponent eA of an arbitrary square matrix 
A E PXn.  
1. Thefirst  definition may be done according to the general rule (5.6): 

I e A  := Tdiag(eJ1, e l2 ,  . . . , e l K )  T-'  
1 -& . . .  
l !  
eh, . . . 

0 . . .  
I = eAi JI  ( k j )  

~ ~~ 

1 1 
l! (k, - 

0 1 * * .  

. .  . 1 
l! 

0 . . .  0 1 

1 - . . .  

- . .  . . . .  

2. The second definition is as follows: 

1 
k !  

Notice that the series in (5.9) always converges since the series c,"=, - ( A k ) j j  always 
converges for any A E Cnxn and any i ,  j = 1, . . . , n. 
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Lemma 5.1. Definitions (5.8) and (5.9) coincide. 

Proof. For normal matrices this claim is evident since in this case the Jordan blocks 
are diagonal. In general cases this result can be checked by the simple evaluation (by 

0 induction) of Ak using both definitions (5.8) and (5.9). 

A rather surprising formula holds. 

Lemma 5.2. 

I det (e") = exp (trA) 1 (5.10) 

Proof. Using (5.8) and (3.19) one has 

det(eA) = det(Tdiag(eJ1, e Jz , .  . . , eJK) T I )  

= [det T ]  [det diag(eJ1, eJ2, . . . , eJK)] [det T-'1 

= [det diag(eJ1, eJ2, . . . , eJK)] = n det eJr 
K 

i = l  

K K / K  \ 

i= l  i = l  

= exp x h s  =exp(trA) CI ) 
Example 5.2. For the matrix A from the previous example (5.1) we have 

0 0  1 
0 1/2 1/2 
1 1  1 

-54.598 -109.20 -109.20 
109.20 163.79 156.41 

= [ 0.0 0.0 7.3891 

and by (5.10) 
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e A ( s + t )  = e A s e A t  

83 

(5.1 1) 

det [exp( [ -"2 0 0 2  :])I 
= exp(trA) = exp(l0) 

The next result is very important in various matrix applications and especially in the 
theory of ordinary differential equations. 

Proposition 5.2. The identity 

is valid for all t (including t = 1) if and only if the matrices A and B commute, that is, 
when 

A B  = B A  

Proof. This statement is sufficient for the class of normal matrices when the definition 
(5.9) is applied. Since 

t 2  e ( A + B ) t  = I 
n x n  + t ( A  + B )  + ( A  + B)' + . . . 

and 

t2 
= I n x ,  + t ( A  + B )  + 2 ( A 2  + B2 + 2 A B )  + .  . . 

which proves the proposition. 

Corollary 5.3. For any s, t E C 

0 

Corollary 5.4. The matrix exponent eAt is always nonsingular and its inverse matrix 
is e-". 
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Proof. Indeed, taking in (5.11) s = -t we get 

eA.O - - I,,,,, = e-A'eA' 

which implies the result. 

5.2.3 Square root of a positive semidefinite matrix 

In this subsection we will discuss the construction of the function which satisfies the 
condition 

The formal implementation of the definition (5.6) demands to consider only the matrices 
with nonnegative spectrum of eigenvalues, that is, when hi (A)  2 0 for all i = 1, . . . , n.  
But to fulfill (5.12) this is not sufficient. Indeed, if there exists at least one complete 
Jordan block this property never holds. Thus, we need to ask whether the Jordan block 
would not be presented which is true only for Hermitian (in the case of real matrices, 
symmetric) matrices. So, now we are ready to formulate the following proposition. 

Proposition 5.3. The matrix A'/' is well defined for a positive semidefinite Hermitian 
matrix and, moreover, it is positive semidefinite Hermitian itsev 

Proof. For Hermitian matrices the transforming matrix T is always unitary, that is, 
T-' = T* and all eigenvalues are real. Thus, 

A'/' = Tdiag((J1)'/2, (Jz)'/*, . . . , (JK)'/~) T-I 

and, hence, 

(Al l2)*  = ( T I ) *  diag ((J1)'/', ( & ) ' I 2 ,  . . . , ( J K ) " ~ )  T' 

= Tdiag ((JI)'/~, (&)'I2, . . . , (JK)"') T-' = A'/' 

Example 5.3. 

1 [: :I1;'=[ 1 1 
2 / 2 + 1  -&+1  

--& 1 $+, 1 1 
- 4  

1 1.6892 0.38268 

0.38268 0.92388 
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5.3 The resolvent for a matrix 

The complex function theory provides a third approach to the definition of f ( A )  
applicable when f (A) is an analytical function of a complex variable h. Sure, this approach 
is consistent with general definition (5.6) of f ( A )  valid for multiplying differentiable 
functions defined on the spectrum of A .  

Let us consider a matrix A (A) : CC -+ CmXn whose elements are functions of a complex 
variable A and define also 

the derivatives 

d' 
- A  (h )  = A"' (A), 
dAr 

r = 0, 1 , 2 , .  . . (5.13) 

of the matrix A (A) to be the matrix obtained by differentiating each element of A (A);  
the integral 

(5.14) 

of the matrix A (A) to be the matrix obtained by integrating each element of A (A) 
in the positive direction along a path L in a complex plane, which will be assumed 
to be a finite system of simple piecewise smooth closed contours without points of 
intersections. 

Example 5.4. For a normal matrix A E Cnxn using the series representation (5.9) the 
following properties may be proven: 

1. 

(5.15) 

2. 

Notice that in general 

d 
- ( A  ( t ) ) 2  # 2A 
dt  

3. if all derivatives exist and p = 1 , 2 ,  . . . then 

(5.16) 

P 

i = l  

(5.17) 
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1 $ ( A  ( t ) ) -P = -A-P [ A"' ( $ A  ( t ) )  A-4 
i = l  

This relation may be easily proven by simply diferentiating the identity 

A-"AP = I,,, 

which implies 

- ( A  (t))-" A" + A-" - ( A  (t))" = On,, [it ] [it ] 
and, thus, 

- ( A  (t))-" z= --ATP - ( A  ( t ) ) P  A-" [ i t  I [,", I 
Definition 5.3. The matrix 

(5.18) 

IRA ( A )  := (hInxn - A)-' I (5.19) 

defined for all h E CC which do not belong to the spectrum of A E CC""" is known as the 
resolvent of A. 

The following properties of Rh ( A )  seem to be important for the considerations below. 

Proposition 5.4. For all h 4 0 ( A )  

1. 

2. 

d 
- RA ( A )  = - R," ( A )  
d h  

3. 

d' 
-RL ( A )  = ( - l ) ' r !R;+'(A)  
dh' 

(5.20) 

(5.21) 

(5.22) 
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Proof. Formula (5.22) may be proven by induction taking into account (5.21). But (5.21) 
results from (5.20). To prove (5.20) notice that 

which implies (5.20). 0 

Theorem 5.2. The resolvent Rx ( A )  of A E @""" is a rational function of A. with poles 
at the points of the spectrum of A and R, ( A )  = 0. Moreover, each Ak E cr ( A )  is a pole 
of Rh ( A )  of order pk where pk is the multiplicity of the eigenvalue hk, that is, 

(5.23) 

K K 

where m (h)  = (h  - A,)", Cps = n. 
s = l  s= I 

Proof. Evidently 

for some numbers yij. Using the matrix polynomial definition (as in the Cayley-Hamilton 
theorem) for hk $ cr ( A )  the last relation (after formal substituting A for p) implies 

Since by the Cayley-Hamilton theorem m ( A )  = 0, we obtain (5.23). cl 

Thus, using the terminology of complex analysis, the spectrum of a matrix A can be 
described in terms of its resolvent. The next theorem establishes this relation exactly. 

Theorem 5.3. (Cauchy integral theorem for matrices) Let f (1) be a function of the 
complex variable h analytical in an open set D E @, that is, f (A) has a convergent 
Taylor series expansion about each point of D. If A E CXn has distinct eigenvalues 
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h , ,  . . . , hscn, the path L is a closed contour having hl ,  . . . , h, as its interior, and f (A) 
is continuous in and analytic within L, then 

(5.24) 

Proof. This result may be established using (5 .23 )  and the Cauchy theorem which 
asserts that 

f ( r )  (ho) = - 
L 

for any ho E D .  

Corollary 5.5. The following identities are valid for  any A E Cxn:  

(5.25) 

5.4 Matrix norms 

5.4.1 Norms in linear spaces and in @" 

Definition 5.4. A real-valued function llxll : C + R defined on all elements x of a 
linear space C of complex or real numbers, is called a norm (on C),  if it satisfies the 
following axioms: 

1. 

for all x E C and llxll = 0 ifand only i f x  = 0; 
2. 

for all x E C and all Q! E @; 
3. the triangle inequality holds, that is, 

I IIX +YIl F llxll + IIYII I 
for all x ,  y E 13. 
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A linear space C together with a norm defined on it is called a normed linear space. 

Consider the following examples of norms in @". 

Example 5.5. Let x = ( X I ,  x2, . . . , x , ) ~  be a typical vector in @" (or, in particular, 
in R"). Then the following functions 
@" (or Rn): 

1. Modul-sum norm 

2. Euclidean norm 

3. Holder norm 

4. Chebyshev norm 

5. Weighted norm 

are norms in a finite-dimensional space 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

where H is a Hermitian (or symmetric) matrix with all positive definite eigenvalues. 

It is not so difficult to check that functions (5.26)-(5.30) satisfy all three norm axioms. 

Definition 5.5. Two norms IIxIl' and Ilxll" are said to be equivalent in C, ifthere exist 
positive numbers r l ,  r2 E (0,m) such that for  any x E C 
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Proposition 5.5. Any two norms in a finite-dimensional linear space are equivalent. 

Proof. It is clear that a norm in a finite-dimensional linear space is a continuous function 
since the inequality 

leads to the following relations 

and 

IIYII - Ibl l  4 IIY - - X I 1  

IllYll - IIxIII I IIY --XI1 

if z = y - x. The last inequality corresponds exactly to the continuity definition. Let us 
consider two sets 

XI := x E c : 
= 1) 

x2 := {x E L : l(xl(i' = 1) 
{ 

By the continuity property there exist two elements xol E XI and xO2 E X 2  such that 

o < y1 := inf IIxIl' = J J X O I I J  

o < y2 := inf 11.x 11' = 1 ~ x 0 2  11' 
X € X ,  

X E X 2  

Thus, for any nonzero element x E L and the second norm axiom it follows that 

which for rl = y2 and r2 = y1 corresponds to the desired result. 

5.4.2 Matrix norms 

Here we will pay attention to norms on the linear space Cnxn, or in other words, to 
norms in a space of squared matrices. Sure, all properties of norms discussed before 
should be valid for the matrix case. However, some additional axiom (or axioms) are 
required because of the possibility of multiplying any two matrices that give rise to the 
question regarding the relation of 1) A B  I[ and 11 A 1 1 ,  11 B 11 for any two matrices A ,  B E en"". 
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Definition 5.6. (Axiom 4 for matrix norms) The function 11 A 11 defined for any A E Cnxn 
is said to be a matrix or submultiplicative norm (in contrast to a standard norm in C n x n )  
if the following axiom holds 

(5.31) 

Example 5.6. It is not difficult to check that the function 

where aij is an element of A E P"", is a norm on P"", but it is not a matrix norm. 

Proposition 5.6. The following finctions are the matrix norms for the matrix 
A = [ ~ ~ j l l ~ i . j s n ~  

1. Frobenius (Euclidean) norm 

(5.32) 

2. Holder norm 

is a matrix norm if and only if 

3. Weighted Chebyshev norm 

(5.33) 

(5.34) 

4. Trace norm 

(5.35) 
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5. Maximal singular-value norm 

6. S-norm 

(5.36) 

(5.37) 

where S is any nonsingular matrix and II.II is any matrix norm. 

We leave the proof of this proposition for readers as an exercise. The next statement also 
seems to be evident. 

Proposition 5.7. For any matrix norm 11.11 

There exists an estimate of any matrix norm related to the spectral radius (3.14). 

Lemma 5.3. For any matrix A E Cnxn with the spectral radius p ( A )  = max lhil and 
any matrix norm 1 1 . 1 1  the following estimate holds 

lsisn 

(5.38) 

Proof. Let h be the eigenvalue of A with the maximal module, i.e., p ( A )  = Ihl. Then 
there exists the corresponding eigenvector x f. 0 such that Ax = hx. Define an n x n 
matrix 

and observe that 

A B  = hB 
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Then by the second and fourth norm axioms we deduce that 

Since B f 0 it follows that 11 B 11 > 0 which proves the desired result (5.38). 

The following comments are very important for practical applications. 

Remark 5.1. 

1. The spectral radius p ( A )  itself cannot be considered as a matrix norm (and as any 
norm in general) since it does not satisfj the first norm axiom, that is, if p ( A )  = 0, 

we cannot conclude that A = On,, (one can consider the matrix A = [: i] as an 

example). 
2. The inequality (5.38) may be considered as an upper estimate for the spectral radius 

P ( A ) .  

5.4.3 Compatible norms 

Definition 5.7. The vector norm )I.II and matrix norm II.II are said to be compatible if 
the inequality 

I IIAxll, i IlAll IIXII ,  I (5.39) 

is valid for any x E @" and any A E @""". 

It is not difficult to check that 
the Frobenius matrix (5.32) and Euclidean vector (5.27) norm are compatible; 
the weighted Chebyshev norm (5.34) is compatible with Holder norms (5.28) in C" for 
p = 1,2,  00. 

5.4.4 Induced matrix norm 

Proposition 5.8. The quotient 

f ( A )  := SUP - 1  IIAXII, 
x€C",x#O IIX II" 

(5.40) 

can be considered as a matrix norm induced by the vector norm II.11,. In particular, 
the matrix norm induced by the Euclidean vector norm is known as the spectral matrix 
norm. For calculus purposes it may be calculated as 

f (A) := max llAxII, 
xcc":llxll"=l 

(5.41) 
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Proof. 

(a) First, let us prove (5.41). Notice that (5.40) can be represented as 

Since any vector norm is a continuous function, there exists a vector xo : IIxoll,, = 1 
such that f (A) = IIAxollv, which means that sup is reachable, or in other words 
(5.41) holds. Now we are ready to prove that f (A) defined by (5.41) is a vector 
norm. 

(b) To check axiom 1 notice that f (A) 2 0 and if A $ 0 it follows that Ax f 0 
(Ilxll, = 1) and, hence, IIAxll, > 0. So, the first axiom is established. The second 
axiom follows from the identity 

The third one results from triangle inequality for vectors, i.e., 
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Several properties of the induced norm given below turn out to be important in many 
practical implementations. 

Proposition 5.9. 

1. For any induced norm 

(5.42) 

2. I f A  is unitary 

3. Iff ( A )  is the spectral norm then 

4. I f U  is a unitary matrix then 

f ( A W  = f ( U A )  = f (A) 

5. For the vector norm (5.26) the corresponding induced rtorm is 

The proof of this proposition results in simple vector calculations and these therefore 
are omitted here. 

Example 5.7. 
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In this subsection we follow Albert (1972). 

6.1 Classical least squares problem 

Lemma 6.1. Let x be a vector and L is a linear manifold in R” (that is, i f x ,  y E L, then 
ax + By E Lfor any scalars a, B). Then if 

where 2 E L and 2 I L, then 2 is “nearest” to x, or, in other words, it is the projection 
of x to the manifold L. 

Proof. For any y E L we have 

0 2 with strict inequality holding unless IIy - 2 I /  = 0. 

Theorem 6.1. Let z be an n-dimensional real vector and H E R”””. 
1. There is always a vector, in fact a unique vector 2 of minimal (Euclidean) norm, which 

minimizes 

97 
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2. The vector i is the unique vector in the range 

R ( H T )  := {x : x = H T z ,  z E R") 

which satisfies the equation 

where 2 is the projection of z on R ( H ) .  

Proof. By (6.1) we can write 

where i is the projection of z on the kernel (the null space) 

N ( H T )  := { z  E R" : 0 = H T z }  

Since H x  E R ( H )  for any x E R", it follows that 

2 - H X  E R ( H )  

and, since Z E R' ( H ) ,  

i L i - H x  

Therefore, 

/ / z  - H x / / '  = / I  (i - Hx) + Z / l z  
2 2 

= / I ?  - H x ( ~ '  + / / Z / / *  2 / I Z / /  = I / z  - ill 
This low bound is attainable since 2, being the range of H, is the afterimage of some x*,  
that is, 2 = Hx* .  
1. Let us show that x* has a minimal norm. Since x* may be decomposed into two 

orthogonal vectors 

where .i* E R (H' )  and .?* E N ( H ) .  Thus Hx* = H i  we have 

2 2 / I z  - Hx*/ l  = I / z  - H i l l  

and 

2 
l /x*//z = / l i * j / 2  + //x*/12 s p*// 

with strict inequality unless x* = 2*. So, x* may be selected equal to i* 
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2.  Show now that x* = 2* is unique. Suppose that Hx* = Hx** = ?. Then 

(x* - X**) E R ( H )  

But H (x* - x**) = 0, which implies, 

(x* - x**) E N ( H )  = RL (H’) 

2 Thus (x* - x**) is orthogonal to itself, which means that /lx* - x**I/ = 0, or equiv- 
alently, x* = x**. 0 

2 Corollary 6.1. /Iz  - HxII is minimized by xo if and only i f  Hxo = i where ? is the 
projection of z on R (H) . 

Corollary 6.2. There is always an n-dimensional vector y such that 

2 / / z  - H H T ~ / /  = i;f j /z  - ~ x / j ’  

and if 

2 2 /Iz  - HxoI/ = inf llz - Hxll 
X 

then 

IIxol12 llHTyIl2 

with strict inequality unless xo = HT y. The vector y satisfies the equation 

H H T y  = 

Theorem 6.2. (on the system of normal equations) Among those vectors x, which 
minimize l / z  - Hxll , 2, the one having minimal norm, is the unique vector of the form 2 

satisbing 

Proof. By direct differentiation we have 

a 2 
- / I z  - HxII = 2HT ( Z  - Hx) = 0 
ax 

which gives (6.3). The representation (6.2) follows from the previous corollary. 
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6.2 Pseudoinverse characterization 

We are now in the position to exhibit an explicit representation for the minimum norm 
solution to a least square problem. 

Lemma 6.2. For any real symmetric matrix A E W"" the limit 

always exists. For any vector z E 8%" 

i = PAZ 

is  the projection of x on R ( A ) .  

Proof. By symmetricity of A for all 6 > 0 such that 0 -= 161 < 

(A + 6Znxn)-' exists. Any z E R" may be represented as 

min 
j : h , ( A ) # O  

[A, ( A )  I the matrix 

where 2 E R ( A ) ,  2 E N ( A )  and Az = A i .  There exists xo such that ? = Axo, so 

By the spectral theorem (4.4) for symmetric matrices it follows that 

A = T A T T  

where A = diag ( A l , .  . . , A,) and TT = T- ' .  Thus 

(A + 6ZnX,J1 Az = ( A  + J Z n x n ) - '  A2xo 

= (TATT + 6TTT)-'  TA2TTxo 

= ( T  [A + SZ,,,] TT)- I  T A 2 T T x o  

= T ( [A + 6ZnXn]- '  A') T T ~ o  

It is plain to see that 

6 
An + 6  

6 ,..., 1 -  -)]A = A  
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since 

6 0 if hi = 0 
+ I  if hi+O 

This implies 

lim ( A  + 6Znxn)-' A z  = TATTxo = Ax0 = i 
6+0 

Theorem 6.3. For any real (n  x m)-matrix H the limit 

always exists. For any vector z E R" 

2 = H'z 

is the vector of minimal norm among those which minimize 

2 
l lz - Hxll 

Proof. It is clear that the right sides in (6.5) are equal, if either exists, since 

H T H H T  + S2HT = ( H T H  + S 2 Z m x m )  HT 

= HT (HHT + 62Znxn)  

and the matrices ( H T H  + 8 * Z m x m )  and (HHT + 8*ZnXn) are inverse for any a2 > 0. By 
the composition 

where i E R ( H T ) ,  2 E N ( H T )  and HTz = HT?, there exists xo such that i = Hxo. So, 

1 ( H T H  + s 2zmx,)- H T Z  = ( H T H  + S ~ Z ~ ~ , ) - '  H T ~  

I 
= ( H T H  + S 2 Z m x m ) -  HTHxo 

By the previous Lemma there exists the limit 

1 
lim ( H T H  + 8 2 ~ m x m ) -  H T H  = p H T H  
6-0 

which gives 

1 
lim ( H T H  + 8 * Z m X m ) -  H T H x o  = ( P H T H ) x 0  := 20 
S+O 
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where 30 is the projection on R (HT H )  = R (HT) .  Thus we conclude that 

1 
io = lim ( H T H  + S 2 Z m x m ) -  HT? 

= lim ( H T H  + S2Zmx , ) -  HTz 
s+o 

1 

6 - t O  

always exists and is an element of R ( H T )  satisfying 2 = H i o .  0 

Definition 6.1. The matrix limit H +  (6.5) is called the pseudoinverse (the generalized 
inverse) of H in the Moore-Penrose sense. 

Remark 6.1. It follows that 
( H H ' z )  is the projection of z on R ( H ) ;  
( H + H x )  is the projection of x on R ( H T ) ;  
(I,,, - H H + ) z  is the projection of z on N ( H T ) ;  
(I, x n  - H+ H ) x  is  the projection of x on N ( H ) .  

The following properties can be proven by the direct application of (6.5). 

Corollary 6.3. For any real n x m matrix H 

1. 

2. 

3. 

4. 

if H is square and nonsingular. 

6.3 Criterion for pseudoinverse checking 

The next theorem represents the criterion for a matrix B ,  to be the pseudoinverse H+ 
of H .  
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Theorem 6.4. For any real n x m matrix H the matrix B = H +  if and only if 
1. 

1 H B  and B H  are symmetric I 
2. 

I H B H = H I  

3. 

-1 

(6.10) 

(6.1 1) 

(6.12) 

Proof. 

1. Necessity. Let B = H +  
(a) Since 

H H +  = lim H H T  ( H H T  + s 2 z n x n ) ~ '  
S+O 

+ - H lim (HT H + 6 2 Z m x m ) - 1  HT)T ( H H  ) - ( 6 + O  

and 

H'H lim HT ( H H T  + 62Znx,)-'] H)' 

the symmetricity (6.10) takes place. 

from R ( H )  coincides with the same vector, one has for any z E R" 
(b) Since by (6.1) H H +  is a projector on R ( H )  and the projection of any vector 

H H +  ( H z )  = H z  

which gives (6.1 1). By (6.6) 

H + H  = ( H T H ) + ( H T H )  
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which, in view of (6.1 1) and the symmetricity property (6.10) of H H + ,  implies 

H+ = ( H T H ) +  H T  = ( H T H ) +  (HH+H) '  

= ( H T H ) + H T  (HH')' = ( H T H ) + H T  ( H H ' )  

= ( H T H ) + ( H T H )  H+ = H'HH+ 

So, (6.12) is proven. 
2. Sufficiency. Suppose B satisfies (6.10), (6.11) and (6.12). Since 

B H  = (BH) ' ,  H = H B H  

then 

H = H B H  = H ( B H ) T  

Using this representation and since H H + H  = H ,  we derive 

H + H  = H'H (BH)' = [HH'H]'  BT = H T B T  = B H  (6.13) 

Analogously, since B = B H B  and H B  is symmetric, we have 

BT = HBB' 

Pre-multiplying this identity by H H+,  we obtain 

H H + B T  = HH'HBB'  = HBB' = BT 

Taking transposes and in view of (6.13) we get 

B = B (HH+)' = B ( H H + )  = B H H +  = H + H H +  = H +  

The theorem above is extremely useful as a method for proving identities. If one thinks 
that a certain expression coincides with the pseudoinverse of a certain matrix H ,  a good 
way to decide is to run the expressions through conditions (6.10), (6.11), (6.12) and 
observe whether or not they hold. 

6.4 Some identities for pseudoinverse matrices 

Lemma 6.3. b E R ( A )  := Im ( A )  G R" if and only if 

[ A A + b  = b I (6.14) 

Proof. 
(a) Necessity. If b E R ( A ) ,  then there exists a vector d E R" such that b = Ad,  and, 

therefore, 
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(b) Sufficiency. Suppose that (6.14) is true. Any vector b can be represented as 
b = Ad + bL with bL I Ad,  namely, b' = ( I  - A A f )  u.  Then 

AA+ (Ad + b') = Ad + b l  

which implies AA+bL = b', and, hence, 

AA' (I - AA') IJ = 0 = ( I  - AA') u = b I 

So, bL = 0,  and, hence, b = Ad,  or, equivalently, b E R ( A ) .  Lemma is proven. 0 

The following identities can be proven more easily by simple verification of (6.10), 
(6.1 l), (6.12). 

Claim 6.1. 
I. 

2. For any x E R" ( x  + 0) 

(6.15) 

(6.16) 

3. 

1 (H')' = H I (6.17) 

4. In general, 

The identity takes place if 

ATA = I  or 
BBT = I  or 

B=AT or 
B = A f  or 

both A and B are of full rank, or 
rank A = rank B 

The identity in (6.18) holds if and only if 

(6. I 8) 

I R ( B B T A T )  C R ( A T )  I (6.19) 
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and 

I I 

5. 

(6.20) 

(6.21) 

where 

6. 

1 (HT H ) +  = H +  ( H T ) + ,  ( H H T ) +  = (HT)+ H+ I (6.22) 

7. If A is symmetric and a > 0 ,  then 

A" (A")' = (A")' A" = AA' 
A+A" = A " A f  

8. I f  A = UAVT where U ,  V are orthogonal and A is a diagonal matrix, then 

9. Greville's formula (Greville 1960): ifCm+l = Cm:cm+l then " 1 

where 

10. If H is rectangular and S is symmetric and nonsingular then 

(6.23) 

(6.24) 

(6.25) 

(6.26) 
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where 

Q = I - H + H  

Example 6.1. Simple verification of (6.10), (6.11), (6.12) shows that 

I -1.333 -0.333 0.667 
1.8033 0.333 -0.4167 5 6  

6.5 Solution of least squares problem using pseudoinverse 

Theorem 6.5. 
(a)  The vector xg minimizes llz - Hx1I2 if and only if it is of the form 

(6.27) 

for some vector y .  
(b) Among all solutions xo (6.27) the vector 

I XO = H+z I 
has the minimal Euclidean norm. 

(6.28) 

Proof. By theorem (6.3) we know that H+z minimizes llz - HxI1* and by (6.1), any xo 
minimizes llz - Hx1I2 if and only if Hxo = 2 where ? is the projection of z on R ( H ) .  
In view of that 

Hxo = H (H ' z )  

This means that xo - H'z is a null vector of H that is true if and only if 

xo - H+Z = ( I  - H + H )  y 

for some y .  So, (a) (6.27) is proven. To prove (b) (6.28) it is sufficient to notice that co
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Corollary 6.4. (LS problem with constraints) Suppose the sei 

J = {X : G X  = U }  

2 is not empty. Then the vector xo minimizes llz - H x / l  over J ifand only if 

xo = G+u + H + z  + (Z - G+G) ( I  - H + H )  y 

H := H ( I  - G'G) 
(6.29) 

and among all solutions 

Ifo = G+u + Hfz I (6.30) 

has the minimal Euclidean norm. 

Proof. Notice that by the Lagrange multipliers method xo solves the problem if it mini- 
mizes the Lagrange function 

for some h. This h and xo satisfy the equation 

a 2 
- [ I l Z  - H X l l  + (h ,  Gx - u ) ]  = -2HT ( z  - H x o )  + GTh = 0 ax 

or, equivalently, 

which in view of (6.27) implies 

x o = ( H T H ) + Z +  [ Z - ( H T H ) ' ( H T H ) ] y  

+ [Z - ( H T H ) + ( H T H ) ]  y 

But this xo should satisfy Gxo = u which leads to the following equality 

+ [ I  - ( H T H ) + ( H T H ) ]  y = u 1 
or, equivalently, 

(6.31) co
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or 

1 
- G T h  = [G (HTH)+]+ [G (HTH)' H T z  
2 

+ G [ I  - (HTH)' ( H T H ) ]  y - U ]  

+ [ I  - [G (HTH)+]+ [G (HTH) ' ] ]  j ;  

(6.32) 

Substitution of (6.32) into (6.31) and using the properties of the pseudoinverse implies 
0 (6.29). The statement (6.30) is evident. 

6.6 Cline's formulas 

In fact, the direct verification leads to the following identities (see Cline (1964, 1965)). 

Claim 6.2. (Pseudoinverse of a partitioned matrix) 

[ U : V ]  = [ .....; . . . . .  ~ 

~ 

where 

J = C+ + ( I  - C'C) KVT (U')' U+ ( I  - V C + )  

K = (Z + [U'V ( I  - C'C)]' [U+V ( I  - C+C)])-' 

c= (z - uu+) v 

Claim 6.3. (Pseudoinverse of sums of matrices) 

(UUT + VVT)+ = (CCT)+ + [ I  - (VC')'] 

x [(UUT)+ - (?JUT)+  v ( I  - C+C) KVT (UUT)+] 

x [ I  - ( V C + ) T ]  

(6.33) 

(6.34) 

(6.35) 

where C and K are defined in (6.34). 

6.7 Pseudo-ellipsoids 

6.7. I Definition and basic properties 

Definition 6.2. We say that the set E (a, A) E R" is the pseudo-ellipsoid (or elliptic 
cylinder} in R" with the center at the point 2 E Rn and with the matrix 0 5 A = AT E 
R n x n  if it is defined by 

1 E (2, A) := { X  6 R" I I I x  -ill: = ( x  - 2 ,  A ( x  - 2 ) )  5 1} I (6.36) 
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I f  A > 0 the set E (a, A)  is an ordinary ellipsoid with the semi-axis equal to h;' (A) 
(i  = 1 , .  . . , n).  

Remark 6.2. If 
(a)  A > 0, then E (a, A) is a bounded set; 
(b)  A 2 0, then E (a, A)  is an unbounded set. 

Lemma 6.4. I f0  < A = AT E Rnxn, b E R" and a < 1 - llblli-,, then the set given by 

A).  
1 - (Y + llbIl~-t 

Proof. It follows from the identity 

0 

Lemma 6.5. I f 0  5 A = AT E IW""", b E R (A) g R" and a < 1 - llblli+, then the set 
given by 

(x, AX) - 2 (b ,  X) + (Y 5 1 

1 
is the pseudo-ellipsoid E A+b, ( 1 - a + llbll:+ 

Proof. It follows from the identity 

Lemma 6.6. 

E (A'A.2, A)  = E (a, A)  

Proof. Indeed, 

0 

(6.37) 

(X - AfA.i, A ( X  - A'AB)) = (X - A'AK, AX - A.2) 
(x, AX)  - ( A + A a ,  A x )  - (x,  A i )  + ( A + A a ,  A i )  

= (x, AX)  - 2 ( x ,  AR) + (a, AW) = (X - 8 ,  A (X - a) )  
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6.7.2 Support function 

Definition 6.3. Thefunction f s  : R" + R defined by 

p=gE# (6.38) 

is called the support (or Legendre) function (SF) of the convex closed set S E: R". 

Lemma 6.7. r f  S is the pseudo-ellipsoid F (2, A) (6.36), that is, 

S = E ( 2 ,  A )  = {X E R" I Ilx - 211; = (X - 2 ,  A (X -a)) 5 l} 

then 

Proof. Using the Lagrange principle (see Theorem 21.12), for any y E R" we have 

arg max ( y ,  x) = arg min maxL(x, h I y )  
XES X?O X€R" 

L ( x ,  h I y )  := ( y ,  X) + h [(x - 2 ,  A (X - 2 ) )  - 11 

and, therefore, the extremal point (x* ,  h*) satisfies 

a 
0 = -L(x*,  h* I y)  = y + h*A (x* - 2 )  

h* [(x* - 2 ,  A (x* - 2 ) )  - 11 = 0 
ax 

The last identity is referred to as the complementary slackness condition. The x satisfying 
the first equation can be represented as follows 

arg { y  + hA (x - 2 )  = 0) = argmin IIy + L A  (x - 2)Il2 
X E P "  XtR" 

If h. = 0, it follows that y = 0. But L ( x ,  h I y )  is defined for any y E R". So, A > 0, 
and hence, by (6.27), 

1 
h* 

X* - 2 = -A+y + (Z - A+A) IJ, IJ E R" 

Substitution of this expression in the complementary slackness condition and taking into 
account that A+ = (A')' implies 

+ (Z - A + A )  U ,  

1 
= *2 ( y ,  A + A A + ~ )  + 

(h  1 
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or, equivalently, h* = ,/m, which finally gives 

fs ( Y )  = y,‘,”s” ( Y ,  x) = L ( x * ,  A* I y )  = ( y ,  x*) 

1 

1 

= ( y ,  a + p ~ + y  + (z - A + A )  U )  

= ( Y ,  2) + p (Y, A + y )  + ( Y ,  ( I  - A + A )  U )  

- ( L A  (x - a ) ,  (Z - A + A )  u )  ( Y 3  A+Y)  
JZm = (Y,  2 )  + 

- ( h  (x - a ) ,  A ( I  - A + A )  u )  ( Y l  A+Y) 
rn = ( y , i )  + 

Lemma is proven. 0 

6.7.3 Pseudo-ellipsoids containing vector sum of two pseudo-ellipsoids 

The support function fs ( y )  (6.38) is particularly useful since the vector sum of convex 
closed sets and a linear transformation A of S have their simple counterparts in the 
support function description (see Appendix in Schlaepfer & Schweppe (1972)). 

Lemma 6.8. (on SF for the vector sum of convex sets) Let 

s1 @ s2 := (x E R” I x = XI + x2, XI E s, 1 x2 E S2} 

where Sl , Sz are convex closed sets. Then 

I fSI@S* ( Y )  = fs, (Y) + fS? ( Y )  I (6.40) 

Proof. By (6.38), it follows 

which completes the proof. 

Lemma 6.9. (on SF for a linear transformation) Let 

Bs := (X E R” I x = B z ,  z E S }  

where B E R””” is an (n x n )  matrix. Then 

(6.41) 
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Proof. By (6.38), we have 

113 

which proves the lemma. 

Lemma 6.10. (on SF for closed sets) I f  two convex closed sets are related as S1 2 S2, 
then for all y E S 

I f s ,  ( Y )  ? f s ,  ( Y )  I (6.42) 

Proof. It follows directly from the definition (6.38): 

0 

Lemma 6.11. (on SF for the vector sum of two ellipsoids) Let S1 and S2 be two 
pseudo-ellipsoids, that is, Si = E (Hi, A i )  (i = 1, 2). Then 

Proof. It results from (6.39) and (6.40). 

To bound SI @ S2 by some pseudo-ellipsoid Sg,es, means to find (H*, A*)  such that 
(see Lemma 6.11) for all y E R" 

Lemma 6.12. The choice 

o *  x = 21 +& 
A* = (y-'AT + (1 - y)-' A:)', y E (0, 1) 

is sufficient to satisfy (6.44). 

Proof. Taking H* = 8, + H2, we should to prove that 

JZ+ J Z s  Jz 
or, equivalently, 

(6.45) co
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for some A*. Applying the inequality (12.2), for any E > 0 we have 

2 
( d m + d m )  5 ( l + & ) y T A : y +  (1+e- ' )yTA:y 

= yT [(1 + E )  A: + (1 + E - ' )  A:] y 

Denoting y- '  := (1 + E )  and taking into account the identity (6.17) we get (6.45). 0 

6.7.4 Pseudo-ellipsoids containing intersection of two pseudo-ellipsoids 

If Si = E ( A i ,  A,)  (i = 1, 2)  are two pseudo-ellipsoids, then S1 f l  S2 is not a pseudo- 
ellipsoid. Sure, there exists a lot of pseudo-ellipsoids SginS2 (in fact, a set) containing 
S1 n S2. To bound SI il S2 by S;lns2 means to find (2* ,  A*) such that 

where 

s1ns2:={x EIW" I ( x - A ~ , A , ( x - ~ , ) )  5 1 

and ( x  - a2, Az (x - 2*)) I 1 )  
SglnS2 := {X E Iw" I (X - A * ,  A* (X - a * ) )  5 1)  

Lemma 6.13. Let S1 n S2 # 0. Then (i*, A*)  can be selected as follows 

and 

Proof. Notice that S;lns2 can be selected as 

s, n S, := (X E IW" I y (X - il, A~ (X - 2,)) 

+ ( 1  - v) (x - 2 2 ,  A2 (x - A , ) )  I 11, y E (0, 1)  

Straightforward calculations imply 

Y (X - 81, A1 (X - A , ) )  + (1 - V )  (X - 22, Az (x - 32))  
= (x, A+) - 2 ( b y ,  x) +aY I 1 

Applying Lemma 6.5 we get (6.48). Lemma is proven. 

(6.46) 

(6.47) 

(6.48) 
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7.7 The ratio of two quadratic forms . . . . . . . . . . . . . . . . . . . . . . .  132 

7.1 Definitions 

Let A E C""" be a Hermitian matrix ( A  = A* := ( A ) T )  and x E C". 

Definition 7.1. The function 

is called 

the Hermitian form 
converting to the quadratic form if A E R""" is a symmetric matrix ( A  = AT) and 
x E R". 

If E = ( x ( l ) ,  . . . .  x(")} is a basic in CC" such that 

then f A  (x) may be represented as 

1 r = l  j=1 
/ n  n \ 

115 
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where 

yij = (Ax( ' ) ,  x ( j ) ) ,  i, j = 1, . . . , n 

If the basis E is the standard basis (orthonormal in t..c sense o 
i.e., (x('), x ( j ) )  = S i j ) ,  then (7.2) becomes 

:he standard inner product, 

Conjecture 7.1. (Sylvester's law of inertia for quadratic forms) The positive x ( A )  
and negative u(A)  squares in (7.3) are invariants of the Hermitian form f A  (x) indepen- 
dent of an orthogonal basis in @", namely, 

i=l j = l  i = l  j=1 

where 
n n 

1=1  I = ]  

and { x(')'}, { x(')''} are the orthogonal bases in @". 

Proof. Suppose that T is a unitary matrix (T" = T - I )  transhrming an orthogonal basis 
I to another orthogonal one E' ,  i.e., 

(x(')', . . . , dn)') = T (x(? . . . , d n ) )  
( x ( l ) ) ,  x ( J ) / )  = ( T x " ' ,  Tx(-") = ( T * T x ( ' ) ,  d J ) )  = ( x ( i ) ,  x0)) = a,, 

Then by (7.3) 

Then by theorem on congruent Hermitian matrices there always exists a nonsingular 
matrix P such that 

PAP* = diag[Z,, - Z r - t , O ]  := A,, ( A )  

and (7.3) under the transformation x = Px' becomes 

i=l i= l  j=1 
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For any other basis the unitary transformation U provides 

f A  ( X )  := (AX ,  X )  = (U*P*APUX" ,  X " )  

which by (7.3) does not change the invariant indices In A .  Theorem is proven. 0 

Claim 7.1. I f  A = AT is real and x = u + i v ,  then 

Corollary 7.1. (on the extension) 

Any real quadratic f A  ( u )  can be uniquely extended up to the corresponding Hermitian 
form f A  ( x ) ,  using formula (7.4). 
It is very convenient to realize this extension by changing the product uiu with Re x i x f  
(and, hence, IuiI2 with lxiI2). 

.If 

I f A  ( U )  = laTu12 f (bTU) ( C T U )  I 
then 

(7.5) 

Corollary 7.2. Evidently, by (7.4), f A  ( x )  > 0 ( f A  ( x )  2 0)  for  any x E Cn if and only if 
f A  ( u )  > 0 ( f A  (u )  2 0 )  for  all E R". 

Claim 7.2. I f x  = ($) and A = [ ty2 1 1  A 2 2 ] ,  A12 then 

7.2 Nonnegative definite matrices 

7.2. I Nonnegative definiteness 

Definition 7.2. A symmetric matrix S E R""" is said to be nonnegative definite if 

for  all x E R". 

The next simple lemma holds. 
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Lemma 7.1. (Bellman 1970) The following statements are equivalent: 

1. S is nonnegative definite; 
2. S may be represented as 

for some matrix H ;  
3. the eigenvalues of S are nonnegative, that is, for all i = 1, . . . , n 

4. there is a symmetric matrix R E R””” such that 

(7.10) 

[ S = R 2 1  (7.1 1) 

R is called the square root of S,  and is denoted by the symbol S1I2 := R .  

Definition 7.3. If S is nonnegative and nonsingular, it is said to be positive definite. 

Remark 7.1. In the case when S is positive definite, S1I2 is also positive definite and for 
all x # 0 

The statement “S is nonnegative definite” is abbreviated 

s > o  

and, similarly, 

s > o  

means “S is positive definite”. 

Remark 7.2. The abbreviation 

1 A > B (or A > B )  I 

applied to two symmetric matrices of the same size, means that 

(7.12) 

A - B 1 0  (or A - B > 0) 
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Remark 7.3. Evidently, if A > 0 then for any quadratic nonsingular B (det B # 0) it 
follows that 

BABT > O  

and, inversely, if BABT > 0 for some nonsingular matrix B, then A > 0. 

Remark 7.4. I f  A 2 B (or A > B),  then for any quadratic nonsingular T (det T # 0) 

TATT 2 TBTT (or TATT > T B T T )  

and, inversely, if TATT 2 TBTT (or TATT > TBTT)  for some nonsingular T ,  then 
A 2 B (or A > B).  

Proposition 7.1. If 

then 

Prooj Let TA be an orthogonal transformation which transforms A to a diagonal matrix 
AA := diag (h l (A) ,  . . . , h,,(A)) and 

Then, by the previous remark, 

TAATi = AA > T A B T ~  

I,,~,, > A , ' / ~ T ~ B T , T A , ' ~ ~  

Denoting by T an orthogonal transformation which transforms the right-hand side of the 
last inequality to a diagonal matrix A, we obtain 

I n x ,  = TTT > T (A;"2TABTiA;"2) TT = A=diag(h l ,  . . . ,  h,) 

Inverting this inequality by components, we have 

which implies 

I,,,, < A ~ I ' T ~  B - I  TAT 1\X2 
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Proposition is proven. 

Proposition 7.2. I f S  > 0 and T > 0, then 

S + T > O  

with strict inequality holding if and only if 

N ( s )  n N ( T )  = 0 

The proof of these statements is evident. 

7.2.2 Nonnegative (positive) definiteness of a partitioned matrix 

Theorem 7.1. (Albert 1972) Let S be a square matrix partitioned as 

where Sll is a symmetric n x n matrix and S22 is a symmetric m x m matrix. Then 

(a} S 2 0 if and only if 

(7.13) 

(b)  S > 0 if and only if (Schur's complement) 

(7.14) 

Proof. 

(a) Necessity. Suppose that S > 0. Then there exists a matrix H with (n  + m )  rows such 
that S = H HT . Let us write H as a partitioned matrix 
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H = [ 3 x E B""", Y E B""" 

Then 

XXT XYT 
YXT S=HHT = [ y y T ]  

so that 

s1,s;; = (XXT) (XXT)' = x [X' (XXT)+] = XX' 

so that 

SI,S:,S,2 = xx+ (XYT) = (xx+x) Y T  = XYT = SI2 

Finally, if we let 

u := Y - s:*s;x 

then 

0 5 UUT = s,, - s:,s;sl* 

SufSiciency. Let (7.13) hold. Define 

x := s;{*u 

Y :=s:,sy:s:yu + (s22 - s:2sy:sl*)1~2 v 

Since 

UVT = on,, 

we can see that 
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(b) Necessity. Suppose that S > 0. Then by part (a), S11 2 0. Assuming that Sll has a 
zero eigenvalue with the corresponding eigenvector X f 0, we can see that for the 

nonzero ("o> we have 

which contradicts the fact that S > 0. So, S11 is nonsingular and S11 > 0. Similarly, 
by (4 

s22 - s:2s:,s12 = s22  - s:2s,'s12 L 0 

and by the same argument (by contradiction) SZ2 > 0. 
The eigenvalues of S-' are reciprocals of S's and so, S-' > 0 if S > 0. Therefore 

s-'= [ A  "1 > 0 ,  
BT C 

with 0 < A E Rnxn, 0 < C E Rmxm,  so that A-' > 0 and C-' > 0. The condition 

dictates that 

or, equivalently, 

This proves the necessity of (7.14). 
SufSiciency. Suppose that (7.14) holds. By part (a), S 2 0. Define 

It is easy to show that 
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Then routine calculations verify that 

A B  s [ BT c ]  = I ( n + m ) x ( n + m )  

So, S is nonsingular. 
0 

Corollary 7.3. Suppose that in the previous theorem m = 1, that is, the following repre- 
sentation holds 

(7.15) 

~ ~ 

where 0 5 S, E Pg""'. Let 

t, := STS,, a, := cr,+l - s;s,+s, 

B n  := 1 + llfk1I2, T n  - tnt,T/Bn 

Then 

(a )  S,+1 2 0 if and only if 

I S,t, = s, and a, 2 01 

and 

(b) S,,, > 0 ifand only if 
~ 

a, = a,+1 - S ~ S , ' S ,  > 0 

and 

11 S;' + [SI; 'SnS;IS,- ']  a;' - (s,-'s,) a,' 

- (S,;'S,)T a,' a,' 
I S2l = [ 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

The proof of this corollary follows directly from the previous theorem and the appli- 
cation of Cline's formula (6.33). 
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7.3 Sylvester criterion 

Here we present a simple proof of the known criterion which gives a power instrument 
for the numerical test of positive definiteness. 

Theorem 7.2. (Sylvester criterion) A symmetric matrix S E R""" is positive definite 
if and only if all leading principal minors (1.12) are strictly positive, that is, for all 
p =  1 ,2 ,  . . . ,  n 

(7.20) 

Proof. Let us prove this result by the induction method. For n = 2 the result is evident, 
Indeed. for 

under the assumption that al l  f 0, we have 

XTSX = a1,x: + 2U12XIX2 + a22x,' 

from which it follows that X T S X  > 0 (x f 0), or equivalently, S > 0 if and only if 

Let us represent S E Rflxn in the form (7.15) 

s,-1 E a,, E R 

and suppose that S,-I > 0. This implies that det S,-I > 0. Then by (7.3) S, > 0 if and 
only if the condition (7.18) holds, that is, when 

But by the Schur's formula 

A ( i  : : : :) = det S = det (a, - snT_lS;!ls,-~) (det S,-,) 

= (a, - s,T_IS;!Isn-l) (det &.-I) = an-l (det S,-,) > 0 

if and only if (7.18) holds, which proves the result. 0 
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7.4 The simultaneous transformation of a pair of quadratic forms 

7.4.1 The case when one quadratic form is strictly positive 

Theorem 7.3. For any two quadratic forms 

when one quadratic form is strictly positive, i.e. (x, Ax) > 0 for any x # 0, there exists 
a nonsingular transformation T such that in new variables z is defined as 

I z = T - l x ,  x = T z  I 
and the given quadratic forms are 

(7.21) 

Proof. Let TA transform A to the diagonal forms, namely, 

T i  ATA = diag (a l ,  a!’, . . . , a,) := AA 

with a1 > 0 ( i  = 1, . . . , n). Notice that this transformation exists by the spectral theorem 
and is unitary, i.e. T i  = T i 1 .  Then, defining such that 

Af4/’ = diag (G, A,. . . , &) 112 112 AA = A, A A  , 

we have 

[Ail”T:] A [TlA,”’] = I,,,,, 

Hence, 

is a symmetric matrix, i.e. 
diagonal form, that is, 

= iT. Let Tb be a unitary matrix transforming B to the 

T l  BT j  = diag I%, p 2 , .  . . , p,,) := LIE ( 
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Then the transformation T defined b y  

T := [TIA;l”] Tb 

exactly realizes (7.21) since 

T~ = T;T* = 

Corollary 7.4. 

where the matrices T I ,  Ail2 and Tb realize the following transformations 

T i  ATA = diag (al ,  a2, . . . , a,) := AA 

A:” = diag (&, 6, . . . , A) 

7.4.2 The case when both quadratic forms are nonnegative 

Theorem 7.4. Let two quadratic forms 

be nonnegative, that is, 

I A = A T ) O ,  B = B T ~ O /  

Then there exists a nonsingular matrix T such that 

BT-’ = I! 0 

0 c 
2 
0 

0 

0 

O! 0 

0 

(7.22) 

(7.23) 
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with xi ( i  = 1,2) diagonal and positive definite, that is, 

, a/) > O(s = 1, . . . , ni) 

and semidefinite, then there exists a unitary matrix TI such 

that TIAT: = . Then, let it be (T;)-'  BT;' = [ ii: Again, there exists 

a unitary matrix U1 such that UIB11U: = 

matrix T: by (2":) 

with El > 0. Define the unitary 

with Q 1 2 2  = 0 since B 3 0. Define (T:)-' = 0 

Next, define the unitary matrix U 2  such that 

with c2 > 0, and define also the unitary matrix T4 such that ( T J ) - '  = 

[ ; ; ;2] . Then it is easy to check that for 
0 0 

we get (7.23). 

(7.24) 

0 
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Corollary 7.5. The product of two nonnegative matrices is similar to a nonnegative 
matrix, that is, for T defined by (7.24) it follows that 

l---TGq T ( A B )  T-’ = 

Proof. Indeed, 

T ( A B )  T-I = [TATT]  [ ( T - l ) T  BT-’1 

which completes the proof. 

(7.25) 

7.5 Simultaneous reduction of more than two quadratic forms 

For the case of two quadratic forms define 

where T is given by (7.22). Let us apply the induction method, namely, suppose that 
the transformation Tk-1 transforms simultaneously one strictly positive definite form with 
a matrix A = A T  > 0 and ( k  - 2) another quadratic form with the matrices Bi = BT 
( i  = 1 ,  . . . , k - 1) to the sum of pure positive quadratics and the rest to the sum of 
quadratic elements (maybe with zero coefficients). Then the matrix 

is a symmetric one. Hence, by the spectral theorem, there exists a unitary transformation 
Ti,  such that 

Then the transformation 

will keep all previous quadratic forms in the same presentation and will transform the 
last one to a diagonal form. 

co
nt

ro
len

gin
ee

rs
.ir



Hermitian and quadratic forms 129 

7.6 A related maximum-minimum problem 

7.6.1 Rayleigh quotient 

Definition 7.4. Thefinction fH ( x )  : @" -+ R, defined by 

(7.26) 

for any Hemitian matrix H ,  is known as the Rayleigh quotient. 

Evidently, f H  ( x )  may be represented in the normalized form F H  (e )  as 

I f H  ( x )  = FH (e)  := (e,  He) ,  llell = 1 I 
(7.27) 

Below we will present the main properties of the Rayleigh quotient in the normalized 
form F H  (e) .  

7.6.2 Main properties of the Rayleigh quotient 

Theorem 7.5. The normalized Rayleigh quotient Fff (e )  (7.27) is invariant to a unitary 
transformation of the argument as well as to unitary similarity transformation of the 
matrix H ,  namely, for any unitary matrix U E C""" 

F U H U *  (e )  = F H  (2) 
e" = U"e 

keeping the property 

Proof. Since U is  unitary then UU" = I,,,, and hence 

F"HU* (e )  = (e ,  UHU*e) = (U*e, HU*e) = (2, He") = FH (e") 

and 

Theorem is proven. 

Define the set FH as 

that is, FH is the set of all possible values 
FH (e )  (7.27). 

(7.28) 

of the normalized Rayleigh quotient 
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Lemma 7.2. FH contains the spectrum G ( H )  of all eigenvalues of H ,  i.e., 

(7.29) 

Proof. If h E a ( H ) ,  then there exists an eigenvector e of H which corresponds to this 
A, that is, 

H e  = h e  

and hence, 

( e ,  H e )  = ( e ,  he) = h (e ,  e )  = h 

Let now h, ,  h2, . . . , h, be the eigenvalues of H .  

Theorem 7.6. 3 H  coincides with the convex hull ={Al ,  h2, . . . , A n )  of the eigenvalues 
of H ,  namely, 

where 

n n 

h I h = C U i h j ,  cai = 1,  aj L 0 ( i  = 1, .. . , n )  
i = l  i = l  

(7.31) 

Proof. Since H is Hermitian, there exists a unitary matrix U ,  such that 

U H U "  = A = diag (hi ,  h2, . . . ,A,} 

Hence by theorem (7.5), one has 3 f 1  = FA. So, it is sufficient to show that the field 
of the eigenvalues of the diagonal matrix A coincides with CO (A,, h2, . . . , A,}. Indeed, 
by (7.31) 

n 

h j  = C a i h i  when ai = S j j  
i = l  

Corollary 7.6. 

1 3 H  = Ei{hl,  hZ,  . . . , A,,} = h, := min hi,  h, := max hi 
f = l ,  ..., n i = l ,  ..., n 

(7.32) 
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Corollary 7.7. 

(x, Hx) 
min ( e ,  H e )  = min- = hl := min hi = A,,, ( H )  

e:llell=l * # O  ( x ,  x) i= l  ...., n 

(x, Hx) max ( e ,  H e )  = max- = h, := max hi = h,,, ( H )  
e :  Ile /I = 1 n#O (x, x) i = l ,  ..., n 

(7.33) 

(7.34) 

Corollary 7.9. (Stationary property) I f  hi is an eigenvalue of a symmetric matrix A = 

AT with the corresponding eigenvector x( j ) ,  then for  f A  (x) = ~ (x’ Ax) (x + 01 itfollows 
that 

(x, x >  

-1 (7.35) 

and the stationary property holds, that is, for any i = 1, . . . , n one has 

(7.36) 

Proof. The identity (7.35) follows directly from the simple calculation of f A ( ~ ( i ) ) .  As for 
(7.36) it is sufficient to notice that 

and hence 

Corollary is proven. 
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7.7 The ratio of two quadratic forms 

Advanced Mathematical Tools for Automatic Control Engineers: Volume I 

Consider the ratio ~ ( x )  of two quadratic forms, i.e., 

Theorem 7.7. 

and 

Proof. Using the presentation 

valid for any symmetric nonnegative matrix, for z = G'/*x we have 

(G-'I22, HG-'12z) ( z ,  [G-1'2HG-'/2] z )  - - - - 
( z ,  z )  (232) 

The result follows from corollary (7.7). 

(7.37) 

(7.38) 

(7.39) 
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8.d General type of linear matrix equation 

8.1.1 General linear matrix equation 

Here we consider the general linear matrix equation 

IAiXBi + A z X B z + . . - + A , X B ,  = C I  

where A, E Cmxm, Bj  E Cnxn ( j  = 1, .... p )  are the given matrices and X E Cmxn is 
the unknown matrix to be found. 

8. I .2 Spreading operator and Kronecker product 

Together with the Kronecker matrix product definition 

given before let us introduce the spreading operator col(.} for some matrix A E Cmxn as 

that is, 

133 
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Let col-'A be the operator inverse to col A .  Evidently, for any A ,  B E Cmxn and 
a , p € C  

1 col { a A  + p B }  = a col { A ]  + p col { B }  1 (8.4) 

8.1.3 Relation between the spreading operator and the Kronecker product 

Lemma 8.1. For any matrices A E Cmx"', B E C"" and X E Cmxn the following 
properties hold 

1. 

1 col { A X }  = ( I , , ,  @ A )  colX 1 (8.5) 

2. 

3. 

4. 

col ( A X B }  = ( B T  @ A )  C O ~  (X} 

Proof. Properties 1-3 (8.5)-(8.7) follow directly from property 4 (8.8) and (8.4). So, let 
us prove (8.8). By definition (8.3) the j t h  column (AXB) , , ,  of the matrix A X B  can be 
expressed as 

which corresponds to (8.8). 

Lemma 8.2. The eigenvalues of ( A  @ B )  are 

0 

(8.9) I k i p j  (i = 1, . . . , m; j = 1, . . . , n)  I 
where ki are the eigenvalues of A E Cmxm and p j  are the eigenvalues of B E Cnxn. They 
correspond to the following eigenvectors 

(8.10) 

where X i  and j j  are the eigenvectors of A and B, that is, 

Ax.  i - - k.x. i 1 9  B j ; j = b j y j  
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Proof. We have 

135 

which proves the lemma. cl 

Corollary 8.1. The eigenvalues of the matrix (the Kronecker sum) 

1 [ < [ n x t l  @ A )  + ( B  @ ~ r n x r n ) ~  I 
are as .follows 

hi + pj ( i  = 1, .  . . , m; j = 1,. , . , n )  

with the corresponding eigenvector 

(8.1 1) 

(8.12) 

(8.13) 

Proof. Let us check that the vector (8.13) is the eigenvector of the matrix (8.1 1) with the 
eigenvalue (AL  + p,). By (8.9) and taking into account that for the unitary matrix Z,,, 
any vector is an eigenvector with the eigenvalue equal to 1 and the relation 

we get 
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Corollary 8.2. Since the spectrum of eigenvalues for  a transposed matrix coincides with 
the spectrum of eigenvalues for the original matrix then 

hi + p j  (i  = 1, . . . ,  m; j = 1, . . . ,  n> 

8.1.4 Solution of a general linear matrix equation 

Theorem 8.1. The general linear matrix equation (8.1) has the solution X E @Imx 

and only if the vector x = colX is the solution of the vector equation 

where 

if 

4) 

(8.15) 

Proof. By the property (8.8) and since the operator col is linear, applying this operator 
to both sides of (8.11, we have 

c = colC = col { 2 (AiXB;)} = k c o l ( A i X B l )  
i = l  i = l  

P 

= (BT @ A;) COlX = Gx 
i= l  

Corollary 8.3. The general linear matrix equation (8.1) has the unique solution 
X E C m X n  given by 

(8.16) 

if and only if 

IdetG #Ol (8.17) 
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8.2 Sylvester matrix equation 

Now we will consider an important particular case of (8.1). 

Lemma 8.3. The Sylvester matrix eq.uation 

AX + X B  = -Q 

A E C""", B E @""" and X ,  C E Cmxn 
(8.18) 

has the unique solution 

~ X = col-' { [ (BT 8 A)]-' colC} 1 
if and only if 

hi + p j  # 0 for any i ,  j = 1, .  . . , n  

where hi are the eigenvalues of A and p j  are the eigenvalues of B. 

Proof. This follows directly from (8.16). 

8.3 Lyapunov matrix equation 

Lemma 8.4. Lyapunov (1892) The Lyapunov matrix equation 

(8.19) 

(8.20) 

0 

A P  + PAT =: -Q 

A ,  P ,  Q = Q T  E R""" 
(8.21) 

has the unique symmetric solution P = PT if and only if the matrix A has no neutral 
eigenvalues lying at the imaginary axis, i.e., 

IReAi # O ( i  = 1, . . . , a )  (8.22) 

Proof. Equation (8.21) is a particular case of the Sylvester equation (8.18) with B = A T ,  

which by (8.20) implies the uniqueness of the solution providing for all ( i ,  j = 1, . . . , n )  

hi + hj f 0 

This condition obviously is fulfilled if and only if (8.22) holds. 
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9.1 Basic definitions 

Definition 9.1. A real valued n x n matrix is said to be stable if all its eigenvalues 
belong to the left open complex semi-plane 

C- := { z  E C 1 Rez < 0} (9.1) 

that is, 

hi ( A )  < 0 for any i = 1 , .  . . .  n ( 9 4  

Denote the characteristic polynomial of a matrix A E R""" by pA (A), i.e., 

p A  (h )  := det IIA - hZnXJ = h" + alhn-' + .  . * + an-lh + a, (9.3) 

Notice that p A  (A) is a monic polynomial whose leading coefficient (the coefficient of the 
highest power) is 1. It is clear from (9.3) that the stability property of a matrix A E W"" 
is definitely related to the values of the coefficients ai ( i  = 1, . . . .  n )  in (9.3) since hi ( A )  
are the roots of the polynomial equation 

Below we will present several results providing the verification of the matrix stability 
property based only on the coefficients of the characteristic polynomial. 

139 
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9.2 Lyapunov stability 

9.2.1 Lyapunov matrix equation for stable matrices 

Lemma 9.1. Lyapunov (1892) 

1. If the Lyapunov's matrix equation (8.21) 

A P  + PAT = -Q 
A ,  P ,  Q = QT E R""" 

holds for some positive definite 

Q = Q T > O  

and 

P = P T > O  

then A is stable. 
2. Equation (8.21) has a positive definite solution 

P = PT = JeAt QeA'tdt > 0 
t=O 

if and only if matrix A is stable (Hurwitz) and 
(a )  or 

Q = Q T > O  

( i fQ = QT 2 0, then P = PT 2 0), 

(b)  or Q has the structure as 

Q = B B T  

such that the pair ( A ,  B )  is controllable, that is, 

1 A B  ! A 2 B  i . . . ! A"-'B = n (9.7) 

Proof. 

l(a) Claim 1 of this lemma follows directly from the previous lemma 8.4 if let in (8.21) 

B = A ,  X = P  

taking into account that the inequality (8.20) always fulfilled for different 
(nonconjugated) eigenvalues and for complex conjugated eigenvalues 

- 
pJ = h, = u, - iv, 
h, = u ,  + iv,  
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The inequality (8.20) implies the existence of a solution P .  The symmetry of P follows 
from the following fact: applying the transposition procedure to both sides of (8.21) 
we get 

p T A T  + A P T  = - Q T  = -Q 

which coincides with (8.21). But this equation has a unique solution, hence P = PT. 
l(b) Let hi be an eigenvalue of AT, that is, 

Then we also have 

__ 
(here A* := ( A T ) ,  i.e., the transposition together with the complex conjugation). 
Multiplying the left-hand side of (8.21) by x,* and the right-hand side by xi, it 
follows that 

XI" ( A P  + P A T ) x ,  = h,x:Px, +x;"Ph,x,  

= (h ,  + h , )  x:Px, = -xTQx, < 0 

and, since, by the supposition, x: Px, > 0, we obtain (h ,  + h, )  = 2 Re h, < 0, which 
means that A is stable. 

2. Sufficiency. Let A be stable. Defining the matrices 

H ( t )  := eAf Q ,  U ( t )  := eATf 

it follows that 

d H  ( t )  := AeAf Q d t ,  dU ( t )  := e A T t A T d t  

Then we have 

T T 

= / H ( t ) d U  ( t )  + / d H  ( t )  U ( t )  
t=o t=O 

= ] e A t Q e A T r A T  d t  + .i AeArQeAT' d t  
f=O r=o 
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The stability of A implies 

- 0  e A T  R ~ A T  T 
T w x  

and, moreover, the integral 

P := lim 
T H ~  eAr QeATt "1  

exists, since 

t = O  r=O 

t=O r=O 

So, taking T H 00 in (9.8), we obtain (9.9,  which means that (9.6) is the solution 

(a) If Q > 0, then 

of (9.5). 

oc oc 

P = / eAr QeATr d t  2 h,,, ( Q )  / e(AfAT)r d t  > 0 
r=0 r=0 

(b) If Q = BBT, then for any x E R" 

Suppose that there exist x f 0 and the interval (to, t l )  (to < t l )  such that 

2 IlxTeArBIl = o for all t E (to, t l )  (to < t l )  

and, hence, 

xTeA'B = 0 (9.10) 

Then the sequent differentiation of (9.10) by t gives 

xTeArAB = 0, xTeArA2B = 0,. . ., xTeAfA(n-l)B = 0 
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which may be rewritten in the matrix form as follows 

= 
x T e A t  [ B  ! A B  ! A2B . . . 

for all t E (to, t l)  (to < tl).  It means that 

which is in contradiction to (9.7). So, 

at least at one interval ( to ,  t l )  and, hence, by (9.9) 

for all x + 0. It means that P > 0. 
Necessity. Suppose that there exists a positive solution P > 0 given by (9.6). Then 
this integral exists only if A is stable. 

(a) But P may be positive only if Q > 0 (this is easily seen by contradiction). 
(b) Let x*' # 0 be an unstable mode (a left eigenvector of A corresponding to an 

unstable eigenvalue k') ,  that is, 

x*'A = hlx*' ,  Re hi 2 0 

By the relation 

I =o r=O 

it follows that it should be 

x*'B # 0 

because if not, we get x * ~  Px' = 0. But this means that the pair ( A ,  B )  is controllable 
0 (see PBH-test below). Lemma is proven. 
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ai > O ( i = l ,  . . . .  n )  

Remark 9.1. Notice that for Q = qI the matrix P as the solution of (9.5) can be 
represented as 

(9.12) 

P = P T  = q j e A ' e A r t d t  > 0 
t=O 

33 

but never as q e(A+AT)tdt, that is, 
t=O 

since 

that may be verified by the use of the Taylor series expansion for the matrix exponent 
(see Proposition 5.2). 

9.3 Necessary condition of the matrix stability 

Here we will present only a necessary condition of a matrix stability that gives the 

Let (A,  (A)}:=, be the set of zeros (roots) of the characteristic polynomial (9.3) 
simple rule how quickly can we detect if a matrix is unstable. 

or, in another representation, 

P A  (h )  = (h  - hl )  (A - h*) . . . (h  - 1,) (9.11) 

Theorem 9.1. (Stodola's rule) r fa  matrix A is stable (or, equivalently, its characteristic 
polynomial P A  (A) (9.3) is Hunvitz) then all coefficients ai in (9.3) are strictly positive, 
that is, 

Proof. Since the roots (hi 
can represent (9.1 1) as follows 

of P A  ( h )  (9.11) in general are complex values, one 

(9.13) 
i = l  k= I 
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- 
0 

0 
an 

145 

where 

A .  ] -  - - u .  j = l  , . . .  , n ,  
hk = -uk + iuk, k = 1, . . . , n,/2 

So, the first n, roots are purely real and the rest of them are complex. By the stability 
property of A all real parts are strictly positive, i.e., u j  > 0, j = 1, . . . , nr ,  and uk > 0, 
k = 1, . . . , n,/2. Hence 

n ,  nc /2  

P A  (h )  = IT (h  + U J )  n ( A 2  f 2ukh + u i  + 21;) 
J = 1  k = l  

The right-hand side is a polynomial on h with only positive coefficients which proves 
the theorem. 

The next useful conclusion follows immediately. 

Corollary 9.1. If the polynomial P A  (A) has coefficients of different signs (or some of 
them are absent (ai = 0 for at least one i ) )  the corresponding matrix A is unstable. 

Example 9.1. The polynomials 

PA (1) = h5 f 3h4 - h3 + h2 + h + 1 
P A  (h) = h5 + h3 + h2 + h + 1 

and, hence, the corresponding matrices A, are unstable. Indeed, in the first polynomial 
a2 = -1 < 0 and in the second one al = 0. 

9.4 The Routh-Hurwitz criterion 

In this section we will present the necessary and suflcient conditions (or, in another 

Let us define the, so-called, Hurwitz matrix HA as follows: 
words, the criterion) of a matrix stability. 

0 0  

. .  

. .  

(9.14) 

Here in the main diagonal the coefficients are assigned starting from a l .  Each column 
has the aligned coefficients in increasing order. Denote also by H: ( i  = 1, . . . , n )  the 
leading principal minors of H, that is, 

(9.15) 
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such that 

H," = det HA 

Lemma 9.2. (Orlando's formula) Let hi (i = 1, . . . , n)  be zeros of the polynomial 
P A  (A). Then 

I n k-1 I 

I k = l  i = l  I 
(9.16) 

Proof. The proof may be done by the induction by n.  For n = 2, evidently, 

Suppose that (9.16) is valid for the polynomial of the order n. So, we need to prove that 
(9.16) is true for any polynomial of the order (n + 1). To do that let us introduce the 
polynomial f A , h  (A) according to the following formula: 

f A , h ( h )  = + h )  P A  (A) 

+ a,hn + . . . + ~ ~ - ~ h ~  + a,h - - h"+l 

+ hh" + ha,h"-l + . . . + hU,-lh + ha, 
- h"+l + (a1 + h )  h" + (ha1 + a2) h"-I 

+ . ' . + (ha,-, + a,) h + ha, 

- 

This polynomial has the roots 

h, (i = 1, .  . . , n) ,  A,,+, = -h 

Constructing the corresponding Hurwitz matrix H A , h  for f A , h  (h) we get 

H,A9h = det 
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D = det 

147 

0 1 a 2 .  
. O U l . .  

. . 1 .  0 (-1)”-’ h2 

. . .  a,, (-1)n-lh 

0 

- 0 0 . . .  an-3 a n - l  

Introduce the, so-called, “bordering” determinant: 

D = det 

Obviously, 

D = (- 1)” H,A** 

Let us now apply some simple transformation to the determinant (9.17) which does not 
change its value. First, adding (-h) times the column (Y + 1) to the column Y for all 
r = 1,2,  . . . , n leads to 

Comparing (9.17) with (9.18) and using (9.16) and (9.4) for h = we get 

H,ASh = PA ( h )  Ih=-A,+i Ht-1 

n n k-l 

i = l  k = l  i = I  

n+l k-1 

k=l  i = l  

Lemma is proven. 
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Lemma 9.3. Defining H: := 1, for the leading minors 

of the n x n matrix 

with the elements vij given by 

for  ( i  + j )  even 

for (i + j )  odd 

C ( - I ) ~ + '  akplai+j-k if j 2 i 

"ji if j < i  
0 

for all j = 1, . . . , n the following property holds 

(9.19) 

(9.20) 

(9.21) 

where HP is the j t h  leading minor (9.15) of the Hunvitz matrix HA (9.14). 

Proof. Permute the rows and columns of V symmetrically, bring odd numbered columns 
and rows into the leading positions and even numbered rows and columns into the last 
positions which is achieved with the permutation matrix 

and leads to the resulting matrix 

D,,, := PT V P  

(the subscript denotes the order of the square matrices). Thus we get 
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v2, for n = 2m 
v ~ , ~ + ~  for n = 2m + 1 

for n = 2m det D2,,,,2, = det Em,, det F,,, 

det V = 

= { det D ( * m + ~ ) x ( ~ m + l )  = det E(rn+l)x(m+l) det F m x m  for n = 2m + 1 

149 

(9.22) 

Then define the matrices 

Therefore it is easily deduced that by (9.22) 

det HA = H i n  = det F,,, 

det HA = Him+, = det E(m+l)x(m+l) 

for n = 2m 

for n = 2m 

and 

v2, = det Em,, det F,,,, = H;,-, Him 
V Z ~ + I  = det E ( m + l ) x ( m + l )  det F m x m  for n = 2 m + 1  

for n = 2m 

Hence, in any case 

Lemma is proven. 
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- - 
-al -a2 . ' . -a, 

1 0  . . o o  
0 1 0 . .  0 
0 0 " .  

0 0 . 0 1  0 

A,,, := 

. . .  
- - 

Corollary 9.2. H f  ( j  = I , .  . . , n)  are positive if and onZy if v, ( j  = 1 , .  . . , n )  are 
positive too, or, equivalently by the Sylvester criterion, Hf ( j  = 1, . . . , n )  are positive 
if and only if the matrix V (9.20) is positive definite. 

Let us now introduce the companion matrix A,,, defined by the coefficients of 
P A  (A) (9.3): 

(9.23) 

Note that A,,, is a stable matrix if and only if all zeros of P A  (h )  have negative real 
parts. Indeed, 

y, := det (hZnX, - A) = det 

= A det 

h + a ,  a2 . . . a, 
-1 h . .  0 0  
0 - 1 h . .  0 
0 o . . .  

0 0 . O - I h  
. . .  . 

The claim is true. 

Lemma 9.4. The matrices A,,, (9.23) and V (9.20) are related as 

(9.24) 
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where W is u nonnegative definite matrix equal to 

~ 1 ~ 3  O U ;  . a 3 4 5  
. . . .  
. . . . .  
. . . . .  

~ 1 ~ 3  O U ;  . a 3 4 5  
. . . .  
. . . . .  
. . . . .  

(9.25) 

Proof. The direct computation of the left hand-side of (9.24) suffices for the verification 
of this identity. To prove that W L: 0 it is sufficient to observe that for any x E C' 

Lemma is proven. 0 

Theorem 9.2. (The Routh-Hurwitz criterion) A matrix A i s  stable ifand only if H )  > 
0 (i = 1,2,  . , . , n )  where H: are defined in (9.15). 

Proof. 
(a) Necessity. By lemma (9.1) it follows that if A is stable and W (9.25) is nonnegative 

definite then P = PT > 0 or, equivalently, vJ > 0 ( j  = 1 , 2 , .  . . , n) .  Then by (9.2) 
it follows that H: 2 0 ( j  = 1 , .  . . , n). Notice that if any H; = 0, then H," = 0. 
But this fact leads to contradiction and so deduce that H; > 0 ( j  = 1, .  . . , n ) .  The 
stability of A implies that there are no zero roots and so a, + 0. But H," = U,H,"-~ 
and so H," = 0 leads to H,f-, = 0. In this case from the Orlando's formula (9.16) we 
deduce that there are a pair of roots h, , Ak such that h, + Ak = 0. But this contradicts 
the hypothesis that both A, ,  hk have negative real parts which completes the proof of 
the necessity part. 

(b) Sufficiency. Suppose now that H: > 0 ( j  = 1, . . . , n). We need to prove that A is 
stable. By (9.2) it follows that V (22.175) is positive definite. Then by the first part 
of Lemma 9.1 we have only to prove that a")" W d ' )  > 0 for all right eigenvectors 
a(')  associated with any given eigenvalue A,(A).  Notice that we may take as a( ' )  the 
following vector 

and by (9.26) we may conclude that a(')*Wa(') = 0 if and only if 

Now H," > 0 implies a, + 0 and hence h , ( A )  f: 0. But since P A  ( & ( A ) )  = 0 we 
have 

for odd n 

h:(A)  + u I ~ : - ~ ( A )  +. . . + a,-lh,(A) = 0 

hr-' ( A )  + ~ 3 h : - ~ ( A )  + . . . + a, = 0 
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Hence 

0 for even n 

Hence 

Thus in both cases for odd or even n we obtain 

a142 - a3 = 0 ,  a1a4 - us = 0,. . 

and the second row and column of V are zero which contradicts our deduction 
that V is positive definite. Hence u(')*Wa(') 0 and thus A is stable. Theorem is 
proven. 0 

Example 9.2. The polynomial 

has the following Hunvitz matrix (9.14) 

0 
1 3 1-ag 
0 2  2 H A =  I 

(9.27) 

So, by the Routh-Hunvitz criterion the corresponding matrix A is stable if and only if all 
principal minors HA ( i  = 1, . . . ,4)  are strictly positive, that is, 
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H t = 2 > 0 ,  H;=der[ i  2 2  3] = 4 > 0  

= 1 2 - 4 ( 1 - a B > - 4 = 4 ( 1 + & ? ) > 0  
(9.28) 

2 2  0 0 
H:=HA=de t  ~ b '  1 3 ~ 1 - a g  ~ b' 1 = ( l - a B ) H ; > O  

1 -ag 

which give the following necessary and suficient condition of stability: 

1 +ag > 0,  (1 -a)!?) > 0 

or, equivalently, 

(9.29) 

9.5 The LiCnard-Chipart criterion 

The Routh-Hurwitz criterion may be represented in a form that requires at least 
twice the corresponding numerical calculation less compared with the original one. This 
simplified form is known as the Liknard-Chipart criterion. 

Theorem 9.3. (The LiCnard-Chipart criterion) A matrix A is stable i fand only if 
1. all coefficients ai in (9.3) are strictly positive, that is, 

(this means that the Stodola 's rule holds); 
2. 

where Hi" are defined in (9.15). 

(9.30) 

Proof. As it has been shown before, a matrix A is stable if and only if the matrix V 
(9.20) is strictly positive definite. But, in view of the relation (9.21) to guarantee that all 
H: > 0 ( i  = 1, , . . , n )  are positive, it is sufficient to check only the positivity of H: > 0 

0 ( i  = n - 1, n - 3, . . , , ). Theorem is proven. 
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Example 9.3. Consider the same example (9.2) with the polynomial (9.27). The Stodola 
rule implies that there should be 

1 - a p > o  (9.3 1) 

and the Liknard-Chipart criterion demands that 

H: = 4 ( 1  +aB) > 0, H t  = 2 > 0 

or, equivalently, 

1 + a p > o  (9.32) 

Conditions (9.31) and (9.32) considered together lead to (9.29). 

9.6 Geometric criteria 

All criteria and rules concerning the matrix stability property presented above are 
given in the so-called analytical form. But there exists another form of the stability 
analysis called the geometric one. This form of the stability representation requires some 
preliminaries related to the principle of argument variation discussed below. 

9.6.1 The principle of argument variation 

Consider the characteristic polynomial P A  (A) (9.3) of a matrix A in the form 
n 

P A  (A) = [A - A j  (A)] (9.33) 
j = l  

Suppose that all roots hj  (A) of this polynomial satisfy the condition 

R e h j  (A) + 0, j = 1 , .  . . , n 

This permits to represent (9.33) as 

I j=1 k= I I 

where 

1 = the number of roots with negative (left) real parts 
r = the number of roots with positive (right) real parts 

Any complex number z E C may be represented as 

(9.34) 

(9.35) 
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where argz is the angle formed by the vector z in the complex plane with the real axis 
measured in the clockwise (positive) direction. Moreover, if IzI < 00 and Re z f: 0, then 
the simple complex function 

a: 
has the following argument variation A arg f (iw) (when w varies from -00 to 00): 

w=-m 

n if Rez t O  
-n if Rez > 0 

30 

A arg f ( iw)= 
w=-rn 

Lemma 9.5. (The principle of argument variation) 
following 

(9.36) 

The polynomial (9.34) verifies the 

(9.37) 

Proof. By the evaluation of (9.34) using (9.35) we have 

1 r 

j=1 k = l  
n r 

= IT (liw - Aj (A) l )  expi arg(iw - h j ( A ) )  + c a r g ( i w  - kk (A)) 
j=1 j = l  k = l  

so. 
1 r 

j = l  k = l  

and by (9.36) we derive (9.37). Lemma is proven. 0 

Corollary 9.3. For any stable polynomial its arg PA ( j w )  is a monotonically increasing 
function of w. 

Corollary 9.4. For the polynomials without neutral roots 

A argpA (iw) = (1 - r )  - I,, ;I (9.38) 

9.6.2 Mikhailov 's criterion 

Based on the previous lemma (9.5) we may present the following important result. 
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Theorem 9.4. (Mikhailov’s criterion) The polynomial p A  (h) (9.3) of order n is Hurwitz 
(or, equivalently the corresponding matrix A is stable) if and only if the godograph of 
p A  (1) (the corresponding curve in the coordinates) 

U ( w )  := Re P A  ( iw)  

as the abscise and 

V (0) := Im P A  ( iw)  

as the ordinate such that 

P A  ( iw)  = U (0) + iV (w)  

has rotation in the clockwise (positive) direction and passes exactly n quadrants in the 
complex plane without crossing the origin when w varies from 0 up to 00. 

Proof. By definition p A  (A) is Hurwitz if and only if it has the representation (9.34) with 
1 = n. Hence, by lemma (9.5) in view of (9.37) it follows that 

A XgpA ( iw)  = n n  
W = N  

or, by corollary (9.38) to this lemma, 

a3 n 
A a rgp  ( iw)  = n- 

W=O 2 

The criterion is proven. 0 

Consider now several examples illustrating the application of Mikhailov’s criterion. 

Example 9.4. Let us consider the characteristic polynomial 

P A  (h )  = h5 + 5h4 + 10h3 + l l h 2  + 7 h  + 2 (9.39) 

We need to determine whether it is Hunvitz or not applying the geometric criterion. 
Taking h = iw for (9.39) one has 

u ( w )  = 5w4 - 11w2 + 2 
v (0) = w (w4 - low2 + 7 )  

The corresponding godograph and its zoom-farm are depicted at Figs. 9.1 and 9.2 
correspondingly. 
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Fig. 9.1. The godograph of pa ( iw) .  

In view of the geometric form of this godograph we may conclude that this polynomial 
is Hunvitz. 

Using this geometric approach one may determine not only if a polynomial is stable or 
not, but also determine the exact number (1)  of stable, ( r )  unstable and ( m )  neutral roots. 

Example 9.5. Suppose that the polynomial P A  ( A )  has the order n = 5 and its godograph 
has the form as at Fig. 9.3. Nolice that this godograph does not cross the origin (0,O) 
and therefore p A  ( A )  does not have neutral (with a real part equal to zero) roots, that is, 
m = 0. Hence b y  (9.37) we conclude that 

l + r f m  = n  = 5  
m = 0 .  1 - r = 3  
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Fig. 9.3. The godograph of P A  (iw).  

w 

Fig. 9.4. The godograph of P A  ( iw) .  

which gives 

1 = 4 ,  r = l ,  m = O  

Example 9.6. Suppose that the godograph of P A  ( iw)  is as at Fig. 9.4 and corresponds 
to a polynomial P A  (h )  of the order n = 6. One can see that this godograph crosses the 
origin (0,O). This means that P A  (A) has a root a with a real part equal to zero. But, as 
we have only one cross which corresponds to a frequency w = wo + 0, it means that 
there exist two complex conjugated roots such that 

- 
hi ( A )  = iwo, hi ( A )  = -iwo 
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ReAj(A) < 0 ( j  = 1 , .  . . , n )  

159 

(9.42) 

This means that m = 2. So, by (9.37) we conclude thal 

l + r + m  = n  = 6  

A argp ( iw)  = n, 
co 

1 - r = 2, m = 2 
w=o 

This finally gives: 

1 = 3 ,  r = l ,  m = 2  

9.7 Polynomial robust stability 

9.7. I Parametric uncertainty and robust stability 

As shown before, the stability property of a matrix A E R""" is characterized by the 
root's location of the corresponding characteristic polynomial p A  (A) (9.3). Evidently, 
any variations A A  of the matrix A, namely, A = A0 + AA, are transformed into 
the variations of the coefficients aj ( j  = 1, . . . , n )  of the corresponding characteristic 
polynomial pA (A). Denote the collection of its coefficients by 

1 a := (a , ,  . . . , a , ) ~  E R" I (9.40) 

and suppose that this vector of coefficients belongs to a connected set A E R" that 
corresponds to possible variations AA of the matrix A or maybe includes them, that is, 

l a  E A E R" 1 (9.41) 

Definition 9.2. A characteristic polynomial PA (k) (9.3) is said to be robust stable, if 
for any a E A the roots of the corresponding polynomial belongs to the left-hand side of 
the complex plane C, i.e., 

given in C under afixed o E [0, 00) when the parameters a take all possible values in 
A, that is, 

(9.43) 

The next result represents the criterion of the polynomial robust stability and is a 
keystone in robust control theory. 
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Theorem 9.5. (The criterion of polynomial robust stability) The characteristic poly- 
nomial p A  (A) (9.3) is robust stable if and only i f  
1. The class A of polynomials P A  (h )  (9.3) contains at least one Hurwitz polynomial 

2. The following principle of “zero-excluding” holds: the set QA (w) does not contain 
p: (A), named a basic one. 

the origin (“zero-point”), i.e., 

Proof. Since the vector z = p A  ( j w )  E C is continually dependent on the vector parameter 
a ,  then a “transition” from stable polynomial to unstable one (when we are varying the 
coefficients a)  may occur (this is always possible since the set A of parameters is a 
connected set) only when one of its roots crosses the imaginary axis, or, in other words, 
when there exists wo E [0, 00) such that p A  (iwo) = U (wo) + iV (wo) = 0. But this is 
equivalent to the following identity 

u (wo) = v (wo) = 0 

which means exactly that 0 E Q A  (w).  Evidently, to avoid this effect it is necessary and 
0 sufficient to fulfill conditions 1 and 2 of this theorem. Theorem is proven. 

9.7.2 Kharitonov’s theorem 

Theorem 9.6. Kharitonov (1978) Let the set A, characterizing a parametric uacer- 
tainty, be defned as 

(9.45) 

Then the polynomial P A  (A) (9.3) is robust stable if and only if four polynomials given 
below are stable (Hurwitz): 

Proof. For any a E A 

U (w)  = 1 - a2w2 + a4w4 - . . 
V (0) = a l w  - a3w3 + a5w5 ‘ .  

and hence for any w E [O,m) 

(9.46) 

U -  (w) I U (w)  L U+ (w) and V -  (w) I V (w) 5 V +  (0) 
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U -  (w) = 1 - azw2 + a,w4 - . . . 
U +  (w)  = 1 - a;w2 + a,+w4 - . . . 

and 

That's why for any w E [0, 00) the set QA (0) (9.43) is rectangular (see Fig. 9.5) with 
width [U' (0) - U -  (w) ]  and height [V+ (w)  - V -  (w) ]  and with the center in the point 
FA ( j w )  corresponding to the stable polynomial with parameters 8, = 

Notice that the vertices of the set Q A  (w) correspond exactly to the polynomials (9.46). 
Suppose now that this rectangle touches the origin by one of its sides. Since the argument 
monotonically increases the vertices of this touching side will rotate in the clock-wise 
direction, and, hence, will become non-vertical which contradicts our previous concept. 
So, the direct application of the previous Theorem 9.5 leads to the formulated result. 

(a; + a;'). 

Theorem is proven. 0 

Example 9.7. Let us find the parameter j? for which the polynomial 

is robust stable. To do this construct four polynomials (9.46): 

pa" (A) := 1 + (1 - j?) h + 212 + h3 
pa" (h )  := 1 + (1 + p )  h + 2h2 + h3 

pa" (h)  := 1 + (1 + j?) h + 1.5h2 + h3 

pa' ( A )  := 1 + (1 - j?) h + 1.5h2 + h3 

I 
Fig. 9.5. Illustration of the Kharitonov's criterion 
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The corresponding Hunvitz matrices HA are as follows: 

[lip 1.5 1 :], 1.5 1 :] 
1 + B  1 1-j3 1 

By the Liknard-Chipart criterion we find that the conditions of the robust stability are 

1 - j3 > 0 ,  1 + B > 0 or, equivalently, < 1 

and 

2 ( 1 - j 3 ) - 1 > 0 ,  2 ( 1 + / 3 ) - 1 > 0  

1.5 (1 + j3) - 1 > 0,  1.5 (1 - B )  - 1 > 0 

which leads to the following: 

2 1  
3 3  

2 1 p < 1 - - = -  p < 0.5, j3 > -0.5, B > - - 1 = -- 
3 3 '  

or, equivalently, 

Finally, all constraints taken together give 

9.7.3 The Polyak-Tsypkin geometric criterion 

Let the set A of all possible parameters a be defined as follows: 

(9.47) 
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Construct the following polynomials: 

s (0) := 1 + a2w2 + a4w4 + .  
v (w)  := CXtw + a3w3 + q w 5  ’ .  . 

I 1 
T (w) := - V ( W ) ,  w > 0 

w 

and define 

(9.48) 

(9.49) 

Theorem 9.7. Polyak & Tsypkin (1990) The characteristic polynomial p A  (A) (9.3) is 
robust stable if and only if the godograph 

Z ( iw)  := X (0) + iY (0) (9.50) 

passes exactly n quadrants, when w varies from 0 up to 00, and does not cross the 
quadrant ry  with the center in the origin and with the board equal to 2y (see Fig. 9.6) 

Fig. 9.6. Illustration of the Polyak-Tsypkin criterion. 
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for some w > 0 means that U, ( w )  = V, (0) = 0 for some E A which implies 

IU, (0) - uu* (@>I = IUd (w)l I YS (w)  

I v; ( w )  - va* ( @ > I  = I v u *  (@)I 5 Y v (@> 

and 

Since S (w)  > 0 and T (w)  > 0, we obtain 

which means that 

Z ( iw)  E rv 
Contrarily, the conditions that 0 9 QA (00) are 

Then the result follows from Theorem 9.5. Theorem is proven. 

(9.51) 

0 

Remark 9.2. The “maximal stability radius” y = ymax corresponds to the maximal quad- 
rant rYmax which touches the godograph Z ( j w )  from inside. 

9.8 Controllable, stabilizable, observable and detectable pairs 

In this subsection we shall turn to some important concepts that will be used frequently 
in the following. 
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9.8.1 Controllability and a controllable pair of matrices 

Definition 9.4. The linear stationary system 

.i ( t )  = AX ( t )  + Bu ( t ) ,  x (0) = XO 
(9.52) 

or the pair ( A ,  B )  is said to be controllable on a time-interval [0, TI i j  for any initial 
state xo and any terminal state xT, there exists a feasible (piecewise continuous) control 
u ( t )  such that the solution of (9.52) satisfies 

x ( T )  = XT (9.53) 

Otherwise, the system or pair ( A ,  B )  is said to be uncontrollable. 

The next theorem represents some algebraic criteria (the necessary and sufficient 
conditions) of the controllability. 

Theorem 9.8. (The criteria of the controilability) The pair (A,  B )  is controllable if 
and only if one of the following properties holds: 

Criterion 1. The controllability grammian 

is positive definite for any t E [0, 00). 

Criterion 2. The controllability matrix 

IC:= [ B  AB A2B . . .  A"- 'B]I  

has full  rank or, in other words, 

n 

( A  J m B )  := z I m ( A i - ' B )  =B" 
i = l  

where Im B is the image (range) of B : Iw' I--+ B" defined by 

ImB := ( y  E B" : y = Bu, u E Rr} B 

Criterion 3. The Hautus matrix 

(9.54) 

(9.55) 

(9.56) 

(9.57) 

has ful l  row rank for all h E @. 
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Criterion 4. For any left eigenvalues A. and the corresponding eigenvectors x of the 
matrix A, i.e., x * A  = kx*, the following property holds: x * B  # 0. In other words, all 
modes of A are B-controllable. 

Criterion 5. The eigenvalues of the matrix ( A  + B K )  can be jreely assigned by a 
suitable selection of K .  

Proof. Criterion 1. 
(a) Necessity. Suppose that the pair ( A ,  B )  is controllable, but for some t l  E [0, TI the 

grammian of controllability G ,  ( T )  is singular, that is, there exists a vector x # 0 
such that 

e A T B B T e A T T d t  x 
O = x T  [J ] 

TI 

= [i . xTeATBBTeATTxdr]  = 1 I /BTeATTxl12dt  

xTeAtB = 0 (9.58) 

for all t E [0, t l ] .  Select tl as a terminal instant, that is, tl = T and x ( T )  = xT = 0. 
Then by (9.59) 

0 = x ( t l )  = eArlxg + eA("-T)Bu (t) d t  
r=O J 

and pre-multiplying the last equation by X T  we obtain 

Selecting the initial conditions xo = ecAtlx, we obtain 1 1 ~ 1 1 ~  = 0, or x = 0, which 
contradicts the assumption that x # 0. 

(b) Sufficiency. Suppose conversely: G, ( t )  > 0 for all t E [0, TI.  Hence, G,. ( T )  > 0. 
Define 

u ( t )  := -BTeAT(T-f)G;'  (7') [eATxO - X T ]  

Then, by (9.52), 

x ( t )  = eArxO + eA('-r)Bu (t) dz 
r=O J (9.59) 
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G;' ( T )  [eATxO - XT] 

- G, ( T )  G;' ( T )  [eATxO - xT] = xT 

So, the pair ( A ,  B )  is controllable. The first criterion is proven. 
Criterion 2. 

(a) Necessity. Suppose that G, ( t )  > 0 for any t E [0, T I ,  but the controllability matrix 
C has no full rank, that is, there exists a nonzero-vector v E R" such that 

V * A ' B  = 0 for all i = 0 , 1 . .  . , n - 1 

But by the Cayley-Hamilton theorem any matrix satisfies its own characteristic 
equation, namely, if 

det ( A  - h l )  = aOhn + alh"-' + .  . . + anPlh  +a, = 0, aO # 0 

then 

or, equivalently, 

and hence 

By the same reason 

and so on. So, 

V * A ' B  = 0 for any i 2 0 (9.60) 
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" 1  
But since eAt = -r ( A t ) ' ,  in view of (9.60), for all t >_ 0 we have 

1 .  i =O 

1 i! u*Ai B t i  = 0 u*eA' B = 
i=O 

which implies 

ti 9 

0 = u* e A t B B T e A T t d t  = u*G,. ( t , )  J 
t=O 

for all t ,  5 T which is in contradiction with the assumption that G, ( t i )  is nonsingular. 
So, C should have full rank. 

(b) Suficiency. Conversely, suppose now that C has full rank, but G,. ( t )  is singular for 
some t = t ,  5 T .  Then, by (9.58), there exists a vector X T  # 0 such that xTeArB = 0 
for all t E [0, t i ] .  Taking t = 0, we get x T B  = 0. Evaluating the ith derivatives at 
the point t = 0, we have 

0 = x~ ( $ e A r >  B = x T A i B ,  i = O , l  ,..., n - 1  
f =o 

which implies 

[ B  A B  A 2 B  . . .  A"-'B] = x T C  = O  

It means that C has no full rank. This is in contradiction with the initial assumption 
that C has full rank. So, G,. ( t )  should be nonsingular for all t E [0, TI.  The second 
criterion is proven too. 

Criterion 3. 
(a) Necessity. On the contrary, suppose that [ A  - h l  i B ]  has no full row rank for some 

A. E C, that is, there exists a vector x* # 0 such that x * [ A  - h l  i B ]  = 0 but the 
system is controllable (C has full rank). This is equivalent to the following: 

x * A  = Ax*, x * B  = 0 

which results in 

x*C=x*  [ B  A B  A 2 B  . . .  A"-'B]  

0 

x * B  hx*B h2x*B . . .  
0 0 0 

But this is in contradiction with the assumption that C has full rank. 
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(b) Suficiency. Suppose that [ A  - AZ ! B ]  has full row rank for all A E C, but C has no 
full rank, i.e., x*C = 0 for some x # 0. Representing this x as a linear combination 
of the eigenvectors x'* of the m'atrix A as 

we get 

n 

0 = x*c = c a;xt*C 
i= l  

n 

i = l  

where 

n 

X * : = C a , x ' *  [zA,zAfZ...~:-'z] 
1 = l  

So, there exists a vector X f 0 such that .F*B = 0 and 

i = I  
n 

= .?*A = x a i x ' * A  [Z A i l  A f Z  . . . Ay-'Z] 
i = l  

? I  

= C a i A i x ' *  [ z  A l l  AfZ . . . A:'-'z] = i.F* 
i=l  

where 

- .?*Ax := ~ 

.? *.? 

which is in contradiction with the assumption that the Hautus matrix [ A  - i Z  i B ]  has 
full row rank. 

Criterion 4. It directly follows from Criterion 3. 
Criterion 5. The proof can be found in Zhou et al., 1996. 
Theorem is proven. 0 
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9.8.2 Slabilizability and a stabilizable pair of matrices 

Definition 9.5. The linear stationary system (9.52) or the pair ( A ,  B )  is said to be 
stabilizable if there exists a state feedback u ( t )  = K x  ( t )  such that the closed-loop 
system is stable, i.e., the matrix A i- B K  is stable (Hurwitz). Otherwise, the system or 
pair ( A ,  B )  is said to be unstabilizable. 

Theorem 9.9. (Two criteria of stabilizability) The pair ( A ,  B )  is stabilizable if and 
only if 

Criterion 1. The Hautus matrix [ A  - h l  ! B ]  has thefi l l  rank for all Re h 2 0. 

Criterion 2. For all h and x such that x * A  = Ax* and Reh 2 0, it follows that 
x* B # 0. 

Proof. This theorem is a consequence of the previous one. 0 

9.8.3 Obsewability and an observable pair of matrices 

Let us consider the following stationary linear system supplied by an output model: 

(9.61) 

where y ( t )  E W" is treated as an output vector and C E W m x n  is an output matrix. 

Definition 9.6. The stationary linear system (9.61) or the pair ( C ,  A )  is said to be 
observable $ for any time tl, the initial state x (0) = xg can be determined from the 
history of the input u ( t )  and the output y ( t )  within the interval [O, t , ] .  Otherwise, the 
system or pair (C,  A) is said to be unobservable. 

Theorem 9.10. (The criteria of observability) The pair (C ,  A )  is observable ifand only 
if one of the following criteria hold: 

Criterion 1. The observability grammian 

f 1 Go ( t )  :=;l eATrCrCeArdt  (9.62) 

is positive definite f o i  any t E [O, 00). 
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Criterion 2. The observability matrix 

has the ful l  column rank or, in other words, 

n 

n K e r  (CA' - ' )  = 0 
i = l  

where Ker ( A )  is the kernel or null space of A : R" H R"dejined by 

(9.63) 

(9.64) 

Ker ( A )  = N ( A )  := {x E R" : A x  = 0) (9.65) 

Criterion 3. The Hautus matrix 

has full column rank for  all h E @. 

of A, that is, Ay = hy, then C y  f 0. 

eigenvalues are in conjugated pairs) by a suitable choice of L. 

Criterion 4. Let h and y be any eigenvalue and any corresponding right eigenvector 

Criterion 5. The eigenvalues of the matrix A + LC can be freely assigned (complex 

Criterion 6. The pair (AT,  C T )  is controllable. 

Proof. Criterion 1. 
(a) Necessity. Suppose that the pair (C, A) is observable, but for some t l  the grammian 

of observability Go ( t l )  is singular, that is, there exists a vector x f 0 such that 

0 = X T  [ / eATrCTCeAr  d t  

f l  

r=O ~ r=O 

r=O 

= [ 1 x T e A T r C T C e A 7 x d t  = / IlCeA'xl12dr 

so. 
CeArx = 0 

for all t E [0, l , ] .  Then by (9.59) 

(9.66) 

r=O 
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and, hence, 

y ( t l )  = Cx ( t l )  = CeAtixo + CeA('l--I)Bu ( 5 )  d s  
r=O 1 

Selecting the initial conditions xo = 0, we obtain u ( t l )  = 0. But we have the same 
results for any xo = x f 0 satisfying (9.66) which means that xo cannot be determined 
from the history of the process. This contradicts that (C, A )  is observable. 

(b) Suflciency. Suppose conversely: Go (f) > 0 for all t E [O. 003. Hence, 

which implies that there exists a time to E [0, t ]  such that llCeAroxl12 > 0 for any 
x # 0. This means that CeArO is a full rank matrix (eATrOCTCeAro > 0). Then 

and, hence, 

and 

So, the pair (C, A) is observable. The first criterion is proven. 

Criterion 2. 
(a) Necessity. Suppose that the pair (C, A )  is observable, but that the observability matrix 
0 does not have full column rank, i.e., there exists a vector 2 f 0 such that c ? i  = 0 
or, equivalently, 

C A ' i = O V i  = O , l ,  ...,Fz- 1 
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Suppose now that xo = X. Then, by the Cayley-Hamilton theorem 

CeA(t-r)Bu ( t )  d t  = CeAtxO 

(9.67) 

which implies 

( t )  = CeArxO = o 

and, hence, xo cannot be determined from u ( t )  = 0. We obtain the contradiction. 
(b) Suflciency. From (9.67) it follows that 

and since 0 has a full rank. then OTO > 0 and hence 

which means that xo may be uniquely defined. This completes the proof. 
Criteria 3-6. They follows from by the duality of Criterion 6 to the corresponding 

criteria of controllability, since the controllability of the pair (AT, CT) is equivalent to 
the existence of a matrix LT such that AT + CTLT is stable. But then it follows that 

(AT + C T L T ) T  = A + L C  

is also stable which coincides with Criteria 6 of observability. 
Theorem is proven. 

9.8.4 Detectability and a detectable pair of matrices 

Definition 9.7. The stationaiy linear system (9.61) or the pair (C, A) is said to be 
detectable if the matrix A + LC is stable (Hunvitz) for some L. Otherwise, the system or 
pair ( C ,  A) is said to be undetectable. 

Theorem 9.11. (The criteria of detectability) The pair (C.  A )  is detectable if and only 
if one of the following criteria holds: 

Criterion 1. The Hautus matrix [ A  ihz] has full column rank for all Re h 2 0. 
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Criterion 2. Let h and y be any eigenvalue and any corresponding right eigenvector 
of A,  such that A y  = h y ,  Re h 2 0, then C y  f 0. 

Criterion 3. There exists a matrix L such that the matrix A + LC is stable. 
Criterion 4. The pair ( A T ,  CT) is stabilizable. 

Proof. It follows from the duality of Criterion 4 of this theorem to the corresponding 
0 criterion of stabilizability. Theorem is proven. 

9.8.5 Popov-Belevitch-Hautus (PBH) test 

Definition 9.8. Let h be an eigenvalue of the matrix A,  or equivalently, a mode of the 
system (9.61). Then the mode h is said to be 
I .  controllable if 

for all left eigenvectors x* of the matrix A associated with this A, i.e., 

x * A  = A X * ,  X *  # 0 

2.  observable if 

for all right eigenvectors x of the matrix A associated with this h, i.e., 

/ A x = h x ,  x f 0 1  

Otherwise, the mode is called uncontrollable (unobservable). 

Using this definition we may formulate the following test-rule (Popov-Belevitch-Hautus 
PBH-test (Hautus & Silverman (1983)) for the verification of the properties discussed 
above. 

Claim 9.1. (PBH test) The system (9.61) is 
1. controllable if and only if every mode is controllable; 
2. stabilizable if and only if every unstable mode is controllable; 
3. observable if and only if every mode is observable; 
4. detectable if and only if every unstable mode is observable. 
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10.1 Hamiltonian matrix 

Let us consider the matrix Riccati equation' 

1 P A  + A T P  + Q - P B R - ~ B T P  = o ~ 

and the associated 2n x 2n Hamiltonian matrix: 

(10.1) 

(10.2) 

Lemma 10.1. The spectrum 0 ( H )  of the set of eigenvalues of H (10.2) is symmetric 
about the imaginaiy axis. 

Proof. To see this, introduce the 2n x 2n matrix: 

0 - I n x n  

:= [Inxn 0 ] (10.3) 

having the evident properties 

So, we have 

J - l H J  = - J H J  = -HT (10.4) 

which implies that A is an eigenvalue of H (10.2) if and only if (-i) is too 
(see Fig. 10.1). 0 

' In the Russian technical literature this equation is known as the matrix Lurie equation. 

175 
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"---- 
I \ \  1 
I \  
I \  

\ 
/ 

/ 

- -?  -x 
' I  

/ I  
/ I  

I 

Fig. 10.1. Hamiltonian eigenvalues. 

10.2 All solutions of the algebraic Riccati equation 

10.2.1 Invariant subspaces 

Definition 10.1. Let A :  @" +-+ @" be a linear transformation (matrix), h be an eigen- 
value of A and x be a corresponding eigenvector of A, that is, Ax = hx.  So, A ( a x )  = 
h ( a x )  for any a E R. 

I .  We say that the eigenvector x defines a one-dimensional subspace which is invariant 
vvith respect to pre-multiplication by A since 

Ak ( a x )  = h' (ax) k = 1,. . . 

2.  Generalizing the definition before, we say that a subspace S c @" is invariant with 
respect to the transformation A,  or A-invariant, if 

Ax E S for any x E S 

or, in other words, 

AS c S 

3. I f  one of the eigenvalues has a multiplicity I ,  i.e. hl = h.2 = . . . = hl, then the 
generalized eigenvectors xi  ( i  = 1, . . . , 1 )  are obtained by the following rule 

( A  - hl1)xi = xi-1, i = 1 , .  . . , 1 ,  xg := 0 (10.5) 

10.2.2 Main theorems on the solution presentation 

Theorem 10.1. Let 0 C C*'I be an n-dimensional invariant subspace of H ,  that is, if 
z E 0 then H z  E 0, and let Pi ,  P2 E C"'" be two complex matrices such that 
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which means that the columns of 

invertible, then 

may be considered as a basis in 0. If PI is 

(10.6) 

is a solution to the matrix Riccati equation (10.1) which is independent of a specific 
choice of bases of 0. 

Proof. Since 0 is an invariant subspace of H ,  there exists a matrix A E Q"'" such that 

[ 3 = [ ;;] (1 0.7) 

Indeed, let the matrix be formed by the eigenvectors of H such that 

where each vector ui satisfies the equation 

Here hi are the corresponding eigenvalues. Combining these equations for all i = I ,  . . . , n., 
we obtain 

A = diag { A l ,  . . . , A n ]  

In the extended form, the relation (10.7) is 

[ - Q  A - B R - ' B T ]  -AT [:]=[;]A 

Post-multiplying this equation by P;' we get 

(10.8) 
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Then, the pre-multiplication of this equality by [ - ( p2p;1) i znX,  1 implies 

which means that P := PzP;' satisfies (10.1). Let T be a nonsingular matrix. Then any 

other basis from [ spanning 0 can be represented as 

and, hence, 

which proves the theorem. 

Corollary 10.1. The relation (10.8) implies 

API - BR-I BT Pz = Pi A 

A - (BR- 'BT)  P = PiRP;' (1 0.9) 

Theorem 10.2. If P E Cnxn is a solution to the matrix Riccati equation (10.1), then there 
exist matrices P I ,  Pz E CnXn with PI invertible such that (10.6) holds, that is, 

and the columns of form a basis of 0. [ 3 
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ProoJ: Define 

:= A - ( B R - ' B T )  P 

Pre-multiplying it by P gives 

P A  := P A  - P ( B R - ' B T )  P = -Q - ATP 

These two relations may be rewritten as 

Hence, the columns of [ 'Yn] span the invariant subspace 0 and defining PI := I n x ,  

0 and P2 = P completes the proof. 

10.2.3 Numerical example 

Example 10.1. Let 

- 3 2  0 0 .-[-ii -2 f - i ]  -1 

Then the eigenvalues of H are 1, 1, (- l), (- 1) and the eigenvector and the generalized 
eigenvector (10.5) corresponding to A1 = h2 = 1 are 

~1 = (1 ,  2 ,2 ,  -2)T, ~2 = (-1, -3/2,  1, O)T 

and the eigenvector and the generalized eigenvector corresponding to h3 = = - 1 are 

Several possible solutions of (IO.1) are given below: 

1. span{vl, v2} := { z  E C2nx2n : z = av1 + B V ~ ,  a, B E R} 
is H-invariant: let 

[ ;] = [ v1 v 2 ]  
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then 

P =  P,P; 

1 -3.0 2.0 -10.0 6.0 
= [ -; A ]  [ -4.0 2.01 = [ 6.0 -4.0 

2. span ( u l ,  u3} is H-invariant: let [ = 1 u1 u3 1, then 

1 - [ 2 0 1  [ -1.0 '7 = [ -2.0 2.0 
- -2 0 2.0 -1.0 2.0 -2.0 

3. span { 213, uq] is H-invariant: let [ = [ 213 v4 1, then 

0 0  1 1  
p = p2p;1= [ 0 ]  [ 3,2]-1 = [ ;] 

4. Notice that here span {vl, u4},  span {v* ,  v3} and span (212, 214} are not H-invariant. 

Remark 10.1. I f a  collection of eigenvectors of H forms a basis in CC" which defines a 
solution of the Riccati matrix equation given by P = P2 P y ' ,  then the number N R ~ ~  of all 
possible solutions of this equation is 

10.3 Hermitian and symmetric solutions 

10.3.1 No pure imaginary eigenvalues 

Theorem 10.3. Let 0 C C2" be an n-dimensional invariant subspace of H and let 
P 1 ,  P2 E Cxn be two complex matrices such that 0 = Im . Then the assumption 

where hi, h j  are the eigenvalues of H ,  implies 
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1. P; P2 is Hermitian, that is, 

P;P, = P;P, 

2. iJ; in addition, PI is nonsingular, the matrix P = P2P;I is Hermitian too, that is, 

P* = (p,p; ')* = P 

Remark 10.2. The condition (10.10) is equivalent to the restriction 

Rehi  + 0 for all i = 1 , .  . . , 2n  (10.11) 

which means that H has no eigenvahes on the imaginary axis. 

Proot Since 0 is an invariant subspace of H ,  then there exists a matrix A such that 
spectrums of the eigenvalues of A and H coincide, that is, 

o (A) = o ( H )  

and (10.7) holds: 

(10.12) 

Pre-multiplying this equation by [;:I * J, we get 

By (10.4), it follows that J H  is symmetric and, hence, is Hermitian (since H is real). 
So, we obtain that the left-hand side is Hermitian, and, as a result, the right-hand side is 
Hermitian too: 

= - A *  [ ; i ] * J  [:] 
which implies 

X A  + A*X = 0 
x := (-P;"P, + & + P I )  
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But this is a Lyapunov equation which has a unique solution X = 0 if hi (A) + h j  (A) $ 0. 
But, since the spectrum of eigenvalues of A and H coincides, we obtain the proof of the 
claim. Moreover, if P1 is nonsingular, then for P = P2P;' it follows that 

p *  = (p2p; ' )*  = (p ; ' )*  P; = (p ; ' )*  (P;PzP;') 

= ( p f  P;P2P;' = P2P;' = P 

Theorem is proven. 0 

Theorem 10.4. Suppose a Hamiltonian matrix H (10.2) has no pure imaginary eigen- 
values and X- ( H )  and X+ ( H )  are n-dimensional invariant subspaces corresponding 
to eigenvalues hi ( H )  (i = 1, . . . n )  in Res < 0 and to hi ( H )  (i = n + 1, . . . , 2 n )  in 
Re s > 0, respectively, that is, X- ( H )  has the basis 

[VI ' .  . v, ] = 

r 

= [;:I 

Then P1 is invertible, i.e. P;' exists ifand only i f the pair ( A ,  B )  is stabilizable. 

ProoJ SufSiciency. Let the pair ( A ,  B )  be stabilizable. We want to show that PI is 
nonsingular. Contrariwise, suppose that there exists a vector xo # 0 such that Plxo = 0. 
Then we have the following. First, notice that 

or, equivalently, 

R - ~ / ~ B T  p2x0 = o (10.14) 

Indeed, the pre-multiplication of (10.12) by [ I  01 implies 

AP1 - ( B R - ' B T )  P2 = P1A (10.15) 

where A = diag (A], . . . , An)  is a diagonal matrix with elements from Re s < 0. Then, pre- 
multiplying the last equality by x$ p;, post-multiplying by xo and using the symmetricity 
of P;P1 = P;"P2 we get 
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which implies (10.13). Pre-multiplying (10.12) by [Z 01, we get 

-QPl - ATP2 = P2A ( 10.16) 

Post-multiplying (10.16) by xo we obtain 

where 

X,*AXO 
ho = ~ 

llxo1I2 

which implies 

Taking into account that, by (1 0.13), 

it follows that 

Then, the stabilizability of ( A ,  B )  (see Criterion 1 of stabilizability) implies that 
P2xo = 0. so, 

and, since [ 
contradiction. 

forms the basis and, hence, has a full rank, we get xo = 0, which is a 

Necessity. Let P1 be invertible. Hence, by (10.15) 

A - ( B R - ' B T )  P2Pl' = PIAP,' 

Since the spectrum of the eigenvalues of PIAP;'  coincides with one of A, we may 
conclude that the matrix 
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is stable and, hence, the pair ( A ,  BR-' BT) is stabilizable (in the corresponding definition 
K = P2P;'). It means that for all h and x such that Ax = hx and Reh 2 0, in other 
words, for all unstable modes of A 

X *  B R - I  BT f o (10.17) 

which implies 

x " B  # O  

Indeed, by the contradiction, assuming that x x B  = 0, we obtain x*BR-'BT = 0 which 
violates (10.17) 

Corollary 10.2. The stabilizability of the pair ( A ,  B )  implies that the matrix 

A~~~~~~ := A - ( B R - I B T )  P,P;' (10.18) 

is stable (Hurwitz). 

Pro05 Post-multiplying (10.12) by P;' we get 

which after pre-multiplication by [ 1 01 gives 

But PI A P;' is stable, and hence Aclosed is stable too. 0 

10.3.2 Unobservable modes 

Theorem 10.5. Assuming that the pair (A,  B )  is stabilizable, the Hamiltonian matrix H 
(10.2) has no pure imaginary eigenvalues ifand only ifthe pair ( C ,  A) ,  where Q = CTC, 
has no unobservable mode on the imaginary axis, that is, for all h and x1 f 0 such that 
Ax1 = hxl, h = iw, it follows that Cxl f 0. 
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Proof. Suppose that h = i w  is an eigenvalue and the corresponding eigenvector 

Then 

After rearranging, we have 

( A  - iwZ)xl  = BR-'BTx2 
- (AT - iwZ)x2 = CTCxI 

which implies 

As a result, we get 

and, hence, 

In view of this, from (10.19) it follows that 

Combining the four last equations we obtain 

x; [ ( A  - iwZ) B ]  = 0 

( 1 0.1 9) 

The stabilkability of ( A ,  B )  provides the full range for the matrix [ ( A  - i w l )  B] and 
implies that x2 = 0. SO, it is clear that iw  is an eigenvalue of H if and only if it is an 

0 unobservable mode of (C, A ) ,  that is, the corresponding x1 = 0 too. 
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10.3.3 All real solutions 

Theorem 10.6. Let 0 c C2" be an n-dimensional invariant subspace of H and let 

P I ,  P2 E @nxn be two complex matrices such that the columns of form a basis of 

0 and PI is nonsingular. Then P = PzP;' is real if and only if 0 is conjugated 
symmetric, i.e. z E 0 implies that Z E 0. 

[ 21 

Proof. SuSficiency. Since 0 is conjugated symmetric, then there exists a nonsingular 
matrix N such that 

Therefore, 

So, P is real. 
Necessity. We have P = P .  By assumption P E Rnx" and, hence, 

Therefore, 0 is a conjugated symmetric subspace. 

Remark 10.3. Based on this theorem, we may conclude that to form a basis in an 
invariant conjugated symmetric subspace we need to use the corresponding pairs of the 
complex conjugated symmetric eigenvectors or its linear nonsingular transformation 
(if n is odd then there exists a real eigenvalue to which an eigenvector should be added 
to complete a basis) which guarantees that P is real. 

10.3.4 Numerical example 

Example 10.2. Let 

A = [ -: :], B = [;I, 
- 1 2 0 0  

0 1 0 - 1  I - 1 0 1 0  H =  

= 12x2, =[:, Y ]  

L 0 -1 -2  - 1 1  
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The eigenvalues hi and the corresponding eigenvectors ui are as follows: 

r -0.4172 - 0.507021' 1 I 0.25921 - 4.0993 x 10-2i 
-0.10449 - 0.240731' hl = -1.4053 + 0.689021' ul = 

1 0.59522 - 0.277203' 1 
r -0.50702 - 0.41721' I -4.0993 x f0.259211' 

-0.24073 - 0.104491' h2 = -1.4053 - 0.689021' u2 = 

1 -0.27720 + 0.595221' 

r2.9196 x lo-* + 0.440541'1 
-0.11666 + 0.539871' 
-0.49356 - 0.247921' I 0.41926 - 0.13841' 

h3 = 1.4053 + 0.689021' u3 = 

187 

r-0.44054 - 2.9196 x 10-2il I -0.53987 + 0.116661' 
0.24792 + 0.493561' i 0.1384 - 0.419261' 

h4 = 1.4053 - 0.689023' 214 = 

Notice that (-1'uz) = V l  and ( iv4)  = 213 which corresponds to the fact that the eigenvectors 
stay the same being multiplied by a complex number. Then forming the basis in two- 
dimensional subspace as 

-0.4172 - 0.507021' 
0.25921 - 4.0993 x 10-'1' 

0.59522 - 0.277201' 

-0.50702 - 0.41721' 
-4.0993 x lov2 + 0.259211' 

-0.27720 + 0.595221' 
-0.10449 - 0.240731' -0.24073 - 0.104491' 

we may define 

1 -0.4172 - 0.507021' -0.50702 - 0.41721' [ 0.25921 - 4.0993 x 10-2i -4.0993 x lo-' + 0.259211' P] := 

1 -0.13800 + 0.87261' 
-0.8726 + 0.138003' 

1.7068 + 1.40451' 
-1.4045 - 1.70681' 

p;' = 

and 

1 -0.10449 - 0.240731' 
0.59522 - 0.277201' 

-0.24073 - 0.104491' 
-0.27720 + 0.595221' P2:= 

Hence, 

1 0.44896 0.31952 
0.31949 2.8105 P = P2P+ 
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and we may see that P is a real matrix. Also we have 

A~~~~~~ := A - ( B R - ' B T )  P,P;' 

= [-;3l1;49 -1.8105 2.0 1 
with the eigenvalues: 

hl (Aclosed) = - 1.4053 + 0.689021' 

,I2 (Aclosed)  = -1.4053 - 0.689021' 

10.4 Nonnegative solutions 

10.4.1 Main theorems on the algebraic Riccati equation solution 

Theorem 10.7. The matrix Riccati equation (10.1) 

i P A  + ATP + Q - PBR-IBTP = 0 I (10.20) 

has a unique nonnegative definite solution P = PT 2 0 which provides stability to the 
matrix 

j A~~~~~~ := A - B R - 1  BT P I 
corresponding to the original dynamic system 

(10.21) 

I i = AX + BU I (10.22) 

closed by the linear feedback control given by 

1 u = - K x  = -R-lBTPx with K = R-lBTP 1 (10.23) 

if and only if the pair ( A ,  B )  is stabilizable and the pair ( C ,  A )  where 

l Q = C T C I  

has no unobservable mode on the imaginary axis. 

(10.24) 

ProoJ: The existence of P = P2 P;' and its symmetricity and reality are already proven. 
We need to prove only that P 1 0. Let us represent (10.1) in the following form 

P A  + AT P + Q - KT R K = 0 

R K  = BTP 
(10.25) 
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By (10.25) it follows that 

189 

(10.26) 

Since (Q + KTRK) 2 0,  by the Lyapunov Lemma 9.1 it follows that P 2 0. 0 

Example 10.3. Let us consider the following simple scalar dynamic system given by 

i = ax + bu, y = cx 

with 

a + 0 ,  b = l ,  c = O  

Notice that this system is completely unobservable! The corresponding Riccati equation 
(with R = r = 1) is 2ap - p 2  = p (2a - p )  = 0 and its solutions are p i  = 0, p2  = 2a. 
The case a = 0 corresponds to the case when the Hamiltonian (22.70) has the eigenvalues 
(0, i0) on the imaginary uxis. That's why this case is disregarded. 

1. The case a < 0. There exists the unique nonnegative solution p = p i  = 0 of the 
Riccati equation which makes the closed-loop system stable. Indeed, 

aclosed := a - p = a < 0 

2.  The case a > 0. Here the unique nonnegative solution of the Riccati equation making 
the closed-loop system stable is p = p2 = 2a, since 

aclosed := a - p = -a < 0 

So, the observability of a linear system is not necessary for making the closed-loop 
system stable with a stationary feedback designed as in (10.26)! 

Theorem 10.8. (On a positive definite solution) If under the assumptions of the previ- 
ous theorem additionally the pair ( C ,  A )  is observable, i.e. the matrix 0 (9.63) has the 
full column rank, then the solution P of the matrix Riccati equation (10.20) is strictly 
positive, that is, P > 0. 

Proof. Let us rewrite (10.20) as 

P A + A T P  - P B R - ~ B T P  = -Q (10.27) 

Suppose that for some vector X + 0 the condition P2 = 0 holds. Then the post- and 
pre-multiplication of (10.27) by X and X" leads to the following identity 
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This means that C-f = 0, or, equivalently, Z belongs to the unobservable subspace. 
Post-multiplying (10.27) by x" implies also that 

P A 2  = 0 

Using this fact, the post- and pre-multiplication of (10.27) by AX and ?*AT leads to the 
identity 

0 = -.%*AT QAZ = - (JCAx"lJ2 = 0 

This means that CAX = 0, or, equivalently, Ax" belongs to the. unobservable subspace. 
Also it follows that 

PA2X = 0 

Iterating this procedure we get that, for any k = 0, 1, . . . , n - 1, the following identities 
hold: 

CAkZ = 0, PAk;  = 0 

This means exactly that OX := 0 where X f 0. So, O is not a full column rank that 
0 contradicts the assumption of theorem, and, hence, P > 0. Theorem is proven. 

Corollary 10.3. I f  there exists a vector X f 0 such that P i  = 0, then the pair ( C ,  A )  is 
unobservable. 

Summary 10.1. The matrix Riccati equation (10.1) has a unique positive definite 
solution: 

I .  if and only ifthe pair ( A ,  B )  is stabilizable and the pair ( C ,  A )  has no neutral (on 
the imaginary axis) unobservable modes, that is, 

if Ax = A X ,  h = i w ,  then Cx f 0  

2. and (6 in addition, the pair ( C ,  A )  is observable, that is, 

rank O = n 

The next simple example shows that the observability of the pair (C, A) is not neces- 
sary for the existence of a positive definite solution. 

Example 10.4. (Zhou, Doyle & Glover (1996)) Indeed, for 

such that ( A ,  B )  is stabilizable, but ( C ,  A )  is not observable (even not detectable) the 
solution of the Riccati equation (10.1) is 
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This chapter follows the fundamental book of Boyd et al. (1994) where there is shown 
that a wide variety of problems arising in system and control theory can be reduced to 
a few standard convex (or quasiconvex) optimization problems involving linear matrix 
inequalities (LMIs). Here we will also touch briefly the, so-called, interior point method 
Nesterov & Nemirovsky (1994) providing a powerful and efficient instrument to solve 
numerical LMIs arising in control theory. 

11.1 Matrices as variables and LMI problem 

11.1.1 Matrix inequalities 

Definition 11.1. A linear matrix inequality (LMZ) has the block form 

where the matrices X E R""", Sii E R""" ( i  = 1, 2) are symmetric and 

such that each block Fij ( X )  is an affine transformation (mapping) from R""" to R""". 
This inequality means that F ( X )  is positive definite, i.e. U T  F ( X )  u > 0 for all nonzero 
u E R2". A nonstrict LMI has the form 

F ( X )  ? 0 (11.2) 
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Both inequalities (1 1.1) and (1 1.2) are closely related since the last one is equivalent to 
the following inequality 

F ( X )  := F ( X ) +  Q > Q > 0 

where Q E R2nx2n is any positive definite matrix. So, without loss of generality we will 
consider below only strict LMIs (1 1.1). 

Multiple LMIs 

F ( ' )  ( X )  > 0 , .  . . , Fip) (X) > 0 (11.3) 

can be expressed as a single LMI 

diag (Fi l l  (X) , . . . , F i p )  (X)) > 0 (11.4) 

Therefore we will make no distinction between a set of LMIs (11.3) and a single 
LMI (11.1). 

Remark 11.1. Nonlinear (convex) inequalities may be converted to LMIform using Schur 
complements. The basic idea of this relation is as follows: the LMI (11.1) is equivalent 
(see (7.14)) to the following systems of matrix inequalities: 

(11.5) 

11.1.2 LMI as a convex constraint 

Lemma 11.1. The LMI (11.1) is a convex constraint on X ,  i.e., the set 

(11.6) 

is convex. 

Proof. Let for some X, Y E R""" 

F ( X )  > 0,  F ( Y )  > 0 
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Define Z := AX + (1 - h )  Y for some h E [0, 11. Then 

= h F ( X )  + (1 - h)  F ( Y )  > 0 

which proves the result. 

11.1.3 Feasible and infeasible LMI 

Given an LMI F ( X )  > 0 (1 1. l),  the corresponding LMI problem is to find a feasible 
> 0 or determine that this LMI is infeasible, or, in other words, X feu' such that F ( X  

LMI has no solution. Represent LMI F ( X )  > 0 (11.1) in the form 

1 0 < F ( X )  = S + G ( X )  ~ (11.7) 

where 

s:=[ SII s12 ] 
s21 s 2 2  

I G i i X H i i  + HAXGT1 
G z I X H ~ I  + H z X G : I  

G I z X H I ~  + HAXG:2 
G z X H Z  + HGXG:, 

G ( X )  := 

LMI F ( X )  > 0 (1 1.1) is infeasible means that the affine set 

{ F ( X )  > 0 I x E R"""} 

does not intersect the positive-definite cone. From convex analysis this is equivalent to 
the existence of a linear functional 1 that is positive on the positive-definite cone and 
nonpositive on the affine set of the matrix. By the Riss theorem 18.14 the linear functionals 
that are positive on the positive-definite cone are of the form 1 = Tr(LF) ,  L 2 0, L f 0. 
Here there is used the fact that the scalar product in the matrix space is Tr(.). Since 1 is 
non-positive on the affine set { F ( X )  > 0 I X E R"""} we may conclude that 

Tr ( L S )  5 0, Tr ( L G )  = 0 (11.8) 

So, to prove that LMI (1  1.1) is infeasible means find a nonzero matrix L > 0, L + 0 
which verifies (1 1.8) where S and G is the representation (1 1.7) of F ( X ) .  
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11.2 Nonlinear matrix inequalities equivalent to LMI 

11.2.1 Matrix norm constraint 

The matrix norm constraint 

(where Z ( X )  E Rnxq depends affinely on X ) ,  or, equivalently, 

zflx, - Z ( X ) Z T ( X )  > 0 

is represented as 

(11.9) 

(11.10) 

11.2.2 Nonlinear weighted norm constraint 

The nonlinear weighted norm constraint 

1 cT(X)P- '  ( X ) c ( X )  < 1 1 (11.11) 

(where c ( X )  E R", 0 < P ( X )  E R""" depend affinely on X )  is expressed as the 
following LMI 

11.2.3 Nonlinear trace norm constraint 

The nonlinear trace norm constraint 

(1 1.12) 

I Tr(ST(X)P-' ( X )  S ( X ) )  < 1 I (11.13) 

(where S ( X )  E PQnxq, 0 < P ( X )  E R""" depend affinely on X )  is handled by introducing 
a new (slack) variable Q = QT E RPxP and the following LMI in X 

(11.14) 

co
nt

ro
len

gin
ee

rs
.ir



Linear matrix inequalities 

1 Fo ( { )  2 0 for all C such that Fi (0 1 0  ( i  = 1 , .  . . , L )  

195 

(11.19) 

11.2.4 Lyapunov inequality 

The Lyapunov inequality 

where A E R""" is a stable matrix, is equivalent to the following LMI 

11.2.5 Algebraic Riccati-Lurie 's matrix inequality 

The algebraic Riccati-Lurie's matrix inequality 

(11.15) 

(11.16) 

i X A  + ATX + XBR-'BTX + Q < 0 ~ (11.17) 

where A ,  B ,  Q = QT, R = RT > 0 are given matrices of appropriate sizes and 
X = X T  is variable, is a quadratic matrix inequality in X .  It may be represented as the 
following LMI: 

(11.18) 

11.2.6 Quadratic inequalities and S-procedure 

Let us consider the quadratic functions given by 

Fi ( { >  = CTAi{ + 2bTC + ci ( i  = 0 , 1 , .  . . , L )  

with Ai = AT (i  = 0,  1, .  . . , L ) .  Consider also the following conditions on Fo ({), 
FI (0 3 . .  . > F L ( 0 :  

Obviously if there exist such numbers t i  1 0 (i  = 1, . . . , L )  such that for all { 

I L I 
( 1 1.20) 

I i=l I 

then (1 1.19) holds. 
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Remark 11.2. It is a nontrivial fact that for L = 1 the converse also holds, provided 
that there is some 1 such that Fo (< ') > 0. The Farkas' lemma states the fact that 
in the general case, when L 2 1 and when all functions c. (< ) are a f f i e ,  i.e. Ai = 0 
( i  = 0,  1 , .  .., L), (11.19) and (11.20) are equivalent. 

The last inequality (11.20) can be represented as 

which is equivalent to the LMI inequality S 2 0. 

11.3 Some characteristics of linear stationary systems (LSS) 

11.3.1 LSS and their transfer function 

Let us consider a linear stationary system given by the following equations 

(11.21) 

(1 1.22) 

where xt  E R" is the state of the system at time t ,  zr  E R" is its output and wr E Rk is 
an external input (or noise). The matrix A is assumed to be stable and the pair ( A ,  B , )  
is controllable, or, equivalently, the controllability grammian W, defined as 

W, := q e A t B w B : e A r t d t  
r=O 

(1 1.23) 

is strictly positive definite, i.e. W, > 0. Applying the Laplace transformation to (1 1.22) 
we found that the transfer function of this LSS is equal to the following matrix 

1 H (s) = C7, ( s InXn  - A)-' B, + DI, I (11.24) 

where s E @. 

11.3.2 H2 norm 

The H2 norm of the LSS (1 1.22) is defined as 

I 

(1 1.25) 
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It is finite if and only if D?, = 0. In this case it can be calculated as follows 

If C,, is an affine function of some matrix K ,  i.e. C,, = C,, ( K ) ,  then the problem of 
finding some K fulfilling the inequality 

(11.27) 

(here y > 0 is a tolerance level of this LSS) is really LMI since by (1 1.14) the inequality 
(1 1.27) can be rewritten as 

(1 1.28) 

with a slack matrix variable Q. 

11.3.3 Passivity and the positive-real lemma 

The linear stationary system ( I  1.22) with wt and z t  of the same size is said to be 
passive if 

w:zt dt 2 0 
r=O .i (1 1.29) 

for all solutions of (11.22) (corresponding to all admissible q.)) with xo = 0 and all 
T L 0. Passivity can be equivalently expressed in terms of the transfer function (1 1.24), 
namely, (1 1.22) is passive if and only if 

1 H (s) + H* (s) = 2 Re H (s) 2 0 for all Re s > 0 I (11.30) 

that's why the passivity property is sometimes called real-positiveness. It is said that the 
system (1 1.22) has dissipation q 0 if 

w:zr dt 2 r] w: wt dt 
t=O i t=O j: (11.31) 

for all trajectories with xo = 0 and all T 3 0. 

Remark 11.3. Evidently, if (11.22) has dissipation r]  = 0, then it is passive (but not 
inverse). 
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Suppose that there exists a quadratic function V (x) := x T P x ,  P > 0,  such that for 
all x, and w, , satisfying ( 1  1.22), the following inequality holds 

(1 1.32) d -v (x , )  - 2w:zt + 2qw:wt 5 0 
d t  

Then, integrating this inequality within [0, TI-interval with xo = 0 yields 

T T 
r r 

V ( x , ) -  / w : z t d t + q  w:w,dt 1 0  I 
t=O t=O 

and, since, 

T T 

we obtain ( 1  1.3 1) .  So, if ( 1  1.32) holds, then one may guarantee the q-dissipation for 
( 1  1.22). Simple substitution 

d 
d t  
- V (X,) = 2 ~ :  P i r  = 2 ~ :  P [ A X ,  + B,wr] 

= x : [ P A + A T P ] x t + x : [ P B , ] w t  +w:[B ,TP]x t  

and 

into ( 1  1.32) implies 

or, equivalently, as the following LMI 

(11.33) 

So, if there exists a matrix P = PT > 0 satisfying ( 1  1.33) then the linear system ( 1  1.22) 
is q-dissipative. 

Lemma 11.2. (The positive-real lemma) Under the technical condition 

(1 1.34) 
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the sufficient condition of q-dissipativity (11.33) is equivalent to the existence of the 
positive definite solution P to the following Riccati inequality 

P A  + A T P  

+ [ P B W  - C Z X I  [(or; + D Z W )  - 2qZnJ1 [ B ; p  - c;] 5 0 
(11.35) 

Remark 11.4. It i s  possible to show that LMI (11.35) is feasible ifand only if(11.22) is 
passive. 

11.3.4 Nonexpunsivity and the bounded-real lemma 

The linear stationary system (1 1.22) is said to be nonexpansive if 

T T 

/ z : z , d t  5 1 w:w,dt 
t=O t=O 

(11.36) 

for all solutions of (11.22) (corresponding to all admissible wc.,) with xO = 0 and all 
T 2 0. Nonexpansivity can be equivalently expressed in terms of the transfer function 
(11.24), namely, (11.22) is nonexpansive if and only if the following bounded-real 
condition holds 

1 H* (s) H (s) 5 I for all Res > 0 1 (11.37) 

that is why this condition is sometimes called nonexpansivity. This is sometimes exp- 
ressed as 

IIHIICC 4 1 (11.38) 

where 

(1 1.39) 

Suppose that there exists a quadratic function V (x) := x T  P x ,  P > 0, such that for 
all x, and w,, satisfying (1 1.22), the following inequality holds 

- d v (x,) - 2w: w, + 2z:zt I 0 
dt 

(1 1.40) 

Then, integrating this inequality within the [0, TI-interval with no = 0 yields 

T 

V (x,) - / w:wr d t  + 
t=O t = O  
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and, since, 

T T 

t=O t=O 

we obtain (1 1.36). So, if (1 1.40) holds, then one may guarantee the nonexpansivity for 
(1 1.22). Simple substitution 

and 

into (1 1.40) implies 

or, equivalently, as the LMI 

(1 1.41) 

So, if there exists a matrix P = PT > 0 satisfying (1 1.41) then the linear system (1 1.22) 
is nonexpansive. 

Lemma 11.3. (The bounded-real lemma) Under the technical condition 

the suffEient condition of nonexpansivity (11.36) is equivalent to the existence of the 
positive definite solution to the following Riccati inequality 

Remark 11.5. It is possible to show that LMI (11.43) is feasible if and only if(11.22) is 
n onexpansive. 
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11.3.5 H,  norm 

The condition 

can be represented as 

with the transfer function H(s) given by 

(1 1.44) 

(1 1.45) 

Therefore, based on the bounded-real lemma (see (1 1.4 l)), the constraint (1 1.44) would 
be valued if 

which is equivalent to the feasibility of the following LMI 

(11.46) 

11.3.6 y-Entropy 

The y-entropy for the system (11.22) with the transfer function H (11.24) is defined 
in the following way: 

I I, ( H )  := I 
-'* 7 logdet ( I  - y 2 H  (jw) H* (jw)) dw if IlHIl, < y (1 1.47) 

00 otherwise I I \  
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When IlHll, < y ,  Zy (H) can be calculated as 

where P is a symmetric matrix with smallest possible maximum singular value among 
all solutions of the following algebraic Riccati equation 

I P A + A T P + C : C ~ , + ~ - ~ P B , , B , T P  = 0 1  
Therefore the y-entropy constraint Zy ( H )  < h is equivalent to LMI in P ,  y and h ,  
namely, 

(1 1.49) 

11.3.7 Stability of stationary time-delay systems 

Consider a stationary time-delay system given by 

I i=l I 

where xt E R" and ti > 0. If the Lyapunov-Krasovskii functional 

v ( x ,  t )  := x:px, + J x,'Pixs ds 
s=t--r, 

P > O ,  P , > O  ( i = l ,  . . . ,  L )  

satisfies 

d -v ( x ,  t )  < 0 
dt 

(11.50) 

( I  1.5 1) 

for every xt satisfying (1 ] S O ) ,  then this system is asymptotically stable, namely, 

xt i Oas t i 00 
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This can be verified by the simple calculation 

(1 1.52) 

providing that the matrices P > 0, Pi > 0 ( i  = 1, . . . , L )  are satisfying LMI W < 0. 

11.3.8 Hybrid time-delay linear stability 

Let us consider the following hybrid time-delay linear system given by 

(11.53) 

~~ 

where A. E R""", A ,  E R""", A2 E R""", A3 E R""" are the given matrices of 
the corresponding dimensions and @ : R' + R" is a function from C [-t, 01. Notice 
that the first equation in ( I  1.53) is an ordinary differential equation and the second one 
is a difference equation in continuous time that justifies the name "hybrid time-delay 
system". 

We are interested in finding the conditions of asymptotic stability for this system. 
Following Rasvan (1975), let us introduce the energetic (Lyapunov-Krasovskii-type) 
functional 

V (XI ( t ) ,  ~ 2 )  := X: ( t )  Pxl ( t )  + X: (0) Sx2 (0) dQ 1 
0=1-r 

Its derivative on the trajectories of (1 1.53) is as follows: 

d -v (Xl(t) ,  x2) = Z T  ( t )  wz ( t )  
dt  

(1 1.54) 

(11.55) 
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(11.56) 

(11.57) 

As it is shown in Rasvan (1975), the existence of the matrices P and S such that the 
following LMI holds 

w < o  

implies the asymptotic stability of (1 1 S3). 

11.4 Optimization problems with LMI constraints 

11.4.1 Eigenvalue problem (EVP) 

The eigenvalue problem (EVP) consists of the minimization of the maximum eigenvalue 
of an n x n matrix A ( P )  that depends affinely on a variable, subject to LMI (symmetric) 
constraint B ( P )  > 0, i.e., 

B ( P )  > 0 

This problem can be equivalently represented as follows: 

(11.58) 

(11.59) 

11.4.2 Tolerance level optimization 

The tolerance level optimization problem can be represented in the following manner: 

y + min 
O<y,P=PT 

P A  + A T P  + C T C  + y - ' P B B T P  < 0 
(11.60) 
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Equivalently, it can be rewritten as an optimization problem with LMI constraints: 

(11.61) 

11.4.3 Maximization of the quadratic stability degree 

The quadratic stability degree of a stable n x n matrix A is defined as a positive value 
a satisfying the matrix inequality 

for some positive definite matrix P .  The problem of the maximization of the quadratic 
stability degree consists of the following optimization problem 

a +  max 
o<a,oi P=PT 

A T P + P A + a P < O  
(1 1.62) 

which can be expressed as an optimization with LMI constraint, namely, 

O<CX,P=PT 

(11.63) 

11.4.4 Minimization oj  linear function Tr (C P CT) under the Lyapunov-type 
constraint 

Lemma 11.4. (Polyak & Sherbakov (2002)) Let 
1. the matrix A E R""" be Hurwitz; 
2. the pair ( A ,  B )  be controllable, i.4. there exists a matrix K such that ( A  + K B )  is 

Hurwitz. 
ThenJor any matrix C E Rkxn the solution of the problem 

PZO 

under the ronstraint 

(1 1.64) 

(11.65) I AP + PAT + BBT 5 01 
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A ( X )  > 0, B ( X )  > 0 

is attained on the Lyapunov matrix equation 

(11.68) 

Proof. Suppose that the minimizing solution satisfies the equation 

A P +  P A T  + B B T  = -Q < 0 

Then, by Lemma 9.1, 

P = / e A t ( Q + B B T ) e A T t d t  2 e A t B B T e A T t d t = P *  
f=O s 

t=O 

and, hence, 

Tr ( C P C T )  = Tr (CP*CT)  + Tr 

This means that P* is a minimizer. Lemma is proven. 

(11.66) 

0 

11.4.5 The convexfunction log det A-' ( X )  minimization 

First notice that log det A-' ( X )  is a convex function of A. We will encounter the 
following: 

(11.67) 

subjected to the following constraints 

where A ( X ) ,  B ( X )  are symmetric matrices that depend affinely on X 

Example 11.1. As an example of the problem (11.67)-(11.68) consider the following: 
find a minimal ellipsoid 

(1 1.69) 

containing the set of given points vi ( i  = 1, . . . , L ) ,  i.e. u, E E. Since the volume of E is 
proportional to (det P)-'I2, minimizing log det P-' is the same as minimizing the volume 
of E ,  this problem is converted into the following: 

(1 1.70) 
1 logdet P-' -+ min 1 

P€B"X" 
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11.5 Numerical methods for LMI resolution 

11.5.1 What does it mean “to solve LMI”? 

There exist several efficient methods for LMI resolution. By “solve an LMI” we 
mean here: 
0 determine whether or not the LMI (or the corresponding problem) is feasible; 
0 if it is, compute a feasible point with “an objective value” that exceeds the global 

minimum by less than some prespecified accuracy. 
What does “an objective value” mean? It depends on each concrete problem to be 

solved. Here we will assume that the problem we are solving has at least one “optimal 
point”, i.e., the constraints are feasible. 

To realize the numerical methods described below, first, let us represent the matrix X E 
En”” as the corresponding extended vector x E RnZ obtained by the simple implementation 
of the operator col, that is, 

-1 (1 1.71) 

11.5.2 Ellipsoid algorithm 

In a feasible problem, we may consider any feasible point as being optimal. The basic 
idea of the ellipsoid algorithm is as follows: 
1. One may start with an ellipsoid that is guaranteed to contain an optimal point. 
2.  Then the cutting plane for our problem is computed which passes through the center 

point x(O) of the initial ellipsoid This means that we need to find a nonzero vector 
g‘’) (namely, a vector orthogonal to the plane to be computed) such that an optimal 
point lies in the half-space 

(1 1.72) 

(Below, we shall present some examples of how to calculate gt0’ in some concrete 
problems.) 

1 { z E IWn3 I g ( 0 ) T  ( z  - x‘”) < 0 

3. After this we may conclude that the sliced half-ellipsoid 

1 8‘0) n { z E I g(O)T  ( z  - x(0 ) )  < o 

contains an optimal point. 

half-ellipsoid. This ellipsoid 
volume is expected to be less than the volume of the initial ellipsoid E ( O ) .  

More explicitly, this algorithm may be described as follows. Any ellipsoid E may be 

4. Then we compute the ellipsoid E ( ’ )  of a minimum volume that contains this sliced 
is guaranteed to contain an optimal point, but its 

5. The process is then iterated. 

associated with some positive definite matrix, that is, 
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where A = AT > 0. The minimum volume ellipsoid E containing the sliced half-ellipsoid 

{ z  E R"* 1 ( z  - a ) T  A-I ( z  - a )  5 1 ,  g T  ( z  -a) < 0 

is given by the matrix A" and the vector ii, namely, 

6 := z E IW"? I (z  - i i ) T A - '  ( z  - Z )  5 l }  I -  { 

m2 2 A = - (A - = A i S T A  
m2 - I 

( 1  1.74) 

(In the case of one variable (m  = I)  the minimal length interval containing a half-interval 
is the half-interval itself.) So, the ellipsoid algorithm starts with the initial points x(O) and 
the initial matrix A('). Then for each intermediate pair x(*) and A'k) ( k  = 0, 1, 2, . . .) 
one may compute a vector g ( k )  and then calculate 

It turns out that the volume vol E ( @  = det A(k)  of these ellipsoids decreases geometrically, 
that is. 

This means that the recursion above generates a sequence of ellipsoids that is guaranteed 
to contain an optimal point and converges to it geometrically. It may be proven that 
this algorithm converges more quickly, namely, in "polynomial time" (see Nesterov & 
Nemirovsky (1994) and references within). 

The next examples illustrate the rule of selection of the nonzero orthogonal vector g 
orthogonal to the cutting plane which is specified for each concrete problem. 
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Example 11.2. I fLMl  is represented in the form 

I m I 

I i=1 I 
(1 1.75) 

where f i  (i = 0,  1, 2, . . . , m )  are symmetric matrices. I f x  is infeasible, this means that 
there exists a nonzero vector u such that 

[ g ,  = - U T F t z 4  I 
Then for  any z satisfying gT ( z  - x )  2 0 it follows 

m 

UTF (2) u = U T  [ Fo + g z . F , ]  u = u T F o u + ~ z , u T F l u  
1 = 1  

(1 1.76) 

= UTF(X)U - g T  (2 - x )  5 0 

So, any feasible point belongs to the half-plane 

or, in other words, this g, given by (11.76), is a cutting plane for this LMI problem at 
the point x .  

Example 11.3. Ifwe deal with the minimization problem of linear function C T X  subjected 
LMI ( I  1.75), that is, 

we encounter two possible situations: 

1. x is infeasible, i.e., F (x) 5 0; in this case g can be taken as in the previous example 
(1 1.76) since we are discarding the halfplane 

{ZEW2 I g T ( z - x ) > O )  

because all such points are infeasible: 
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2. x is feasible, i.e., F (x) 0; in this case g can be taken as 

g = c  

since we are discarding the halfplane 

because all such points have an objective value larger than x and hence cannot be 
optimal. 

11.5.3 Interior-point method 

For the LMI problem 

n! 

F ( x )  := Fo + xi Fi > 0 
i=I 

let us define the, so-called, barrier function 4 (x) for the feasible set: 

logdet F-' (x) if F ( x )  > 0 
if F ( x )  5 0 (1 1.77) 

Suppose then that the feasible set is nonempty and bounded. This implies that the matrices 
F, , . . . , F,,, are linearly independent (otherwise the feasible set will contain a line, i.e. be 
unbounded). It can be shown that 4 (x) is strictly convex on the feasible set and, hence, 
it has a unique minimizer which we denote by x*, that is, 

x *  := argmin4 (x) 
X 

This point is referred to as the analytical center ofthe LMI F (x) > 0. It is evident that 

x* := arg max det F (x) 
F ( X ) > O  

Remark 11.6. Two LMIs F (x) > 0 and T T  F (x) T > 0 have the same analytical center 
provided T is nonsingular. 

Let us apply Newton's method for the search of the analytical center x* of LMI, starting 
from a feasible initial point: 
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where 0 < a(k)  is a damping factor at the kth iteration, H ( x ( ~ ) )  is the Hessian and 
g (x‘”) is the gradient, respectively, of 4 (x) at the point x@). In Nesterov & Nemirovsky 
(1 994) it is shown that if the dumping factor is 

:= 1 if S ( x ( ~ ) )  I 1/4 { I /  (1 + 6 (x(’)’>> otherwise 

I I 1 6 ( d k ) )  := .\!lR’ (dk)) H - ’  (x‘”) g (x ‘ ” )  I 
then this step length always results in x ( ~ + ’ ) ,  that is, 

(1 1.79) 

and convergence of x ( ~ )  to x* when k -+ 00. 

There exist other interior-point methods (for details, see Boyd et uZ. (1994)). 
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12.1 A-matrix inequalities 

Lemma 12.1. For any matrices X ,  Y E R""" and any symmetric positive definite matrix 
A E R""" the following inequalities hold 

I X T Y  + Y'X 5 X T A X  + Y T A - ' Y  I (12.1) 

and 

Proof. Define 

H := X T A X  + Y ' K ' Y  - X T Y  - Y T X  

Then for any vector u we may introduce the vectors 

u1 := A ' I 2 X u  and u2 := A-li2Yu 

which implies 

T 2 U ~ H U  = U T U ~  + U ; U ~  - U, ~2 - u,'u~ = 1 1 ~ 1  - ~ 2 1 1 ,  0 

or, in matrix form: 

H z O  

which is equivalent to (12.3). The inequality (12.2) is a direct consequence of (12.1). 0 

(12.3) 

213 
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12.2 Matrix Abel identities 

12.2.1 Matrix summation by parts 

Lemma 12.2. (Matrix summation by parts) For any matrices 

At E ?Amxk, B, E RkX' 

and any integer numbers no and n > no the following identity holds: 

I n  n t-1 I 

I t=no t=no 

(1 2.4) 

(here c:=,, Bs := 0 i f t  i no). 

Proof. Let us use induction. For n = no the identity (12.4) is true since 

nn nn nn t-1 

Suppose now that it is valid for some n > no and then prove that it is also true for n + 1, 
we have 

Lemma is proven. 
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12.2.2 Matrix product identity 

Lemma 12.3. (Matrix product identity) For any n x n matrices A,  ( t  = to, . . . , t f )  the 
following identity holds 

(12.5) 

Proof. Again let us use the induction method. For t f  = to the identity (12.5) is valid 
since 

Assuming that (12.5) is valid for some t f  > to one can demonstrate that it is valid for 
t f  + 1. Indeed, 

Lemma is proven. 
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12.3 S-procedure and Finder lemma 

12.3.1 DaneS' theorem 

Let 3 ( x )  = X T F X  and G ( x )  = XTGX be real quadratic forms with F ,  G E Iw""". 
Consider the mapping R" + Rz defined by 

which transforms any point from R" into the real plane Iw2. The following theorem 
represents the important geometric result (DaneS 1972) arising in the theory of quadratic 
forms. 

Theorem 12.1. (Dane? theorem) The range 

of the transformation (12.6) is a convex cone, i.e., the set P together with y E R2 contains 
also h y  for any h > 0 ( P  is a cone) and together with vectors y ( l ) ,  y(') E R2 contains 
also y = a y ( l )  + ( I  - a )  y ( 2 )  for  any a E [0, I] (P is a convex set). 

Proof. Let y = (71, v2)T be a point in R2. 

(a) Obviously, P is a cone since there exists a point x E Iw" such that 

This means that h y  E P. 
(b) Show now that P is a convex set. Let 

T 
In other words, we need to show that for any point y(O) = ( q y ) ,  q;')) E [ y " ) ,  Y ( ~ ) ]  
there exists a vector do) E R" such that 

Let A v l  + Br/2 = C be the line C crossing the points y ( ' )  and yc2) .  Consider the function 
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and the mapping R2 3 R2: 

217 

Since the points ( 1 , O )  and (0, 1) are transformed to the points y ( ' )  and y('), respectively, 
then in view of the properties 

F(x )  = F(-x>, G(x> = G(-x) 

the points ( -1 ,O)  and (0, -1) are transformed also to the same points y ( l )  and Y ( ~ ) .  

Consider then the set M defined as 

This set is nonempty since, evidently, ( f l ,  0), (0, f l )  E M. The function cp (c,, c2)  may 
be represented as 

qa ( c l I t 2 )  = at;  + 286162 + y t ;  

where a,  8, y are some real numbers. If a = ,B = y = 0 (and, hence, C = 0), then M 
is the complete plane R2. Let IayI + Ij3I + IyI > 0. Denote 6 := a y  - 8*. The curve 

an ellipse, if 6 > 0; 
a hyperbola, if 6 < 0; 
a pair of parallel direct lines (maybe coincided), if 6 = 0. 

Notice also that this curve is symmetric with respect to an origin (0,O). So, either 
M is a connected set or it is represented by two sets symmetric with respect to the 
origin. 

Case 1: M is a connected set. Then the points ( 1 , O )  and (0, 1) may be connected by a 
continuous curve without leaving the set M. Let <I = ( t ) ,  c 2  = ( 2  ( t )  (0 5 t _< 1) be 
this connecting curve and y = y ( t )  be the corresponding continuous line. Obviously, this 
line lies in G and connects the points y")  and y('). 
Case 2: M is two sets symmetric with respect the origin. In this case the points ( 1 , O )  
and (0, 1) lie in different connected parts of the curve M = MI U M 2 ,  say, ( 1 , O )  E MI  
and (0, 1) E Mz. Then by symmetricity of the curve M with respect the origin, the 
points (1, 0) and (-1,O) belong to the different connected curves, i.e., (-1,O) E M2. 
So, we may connect the points ( -1 ,O)  E MZ and (0, 1) E Mz (whose images are y ( ' )  
and y @ ) ,  respectively) by a continuous curve t I  = ( t ) ,  ( 2  = $2 ( t )  (0 5 t 5 1) staying 
in M 2  such that y = y ( t )  is again a continuous line lying in G. 

In both cases y ( t )  E C (0 5 t 5 1). This curve "covers" the interval [ y " ) ,  y ( * ) ] ,  that 
is, for any point y(O) E [ y ( I ) ,  Y ( ~ ) ]  there exists to E [0, I], such that y(O) = y ( to) .  The 
point y(O) = (t, ( to) ,  6 2  (to)) will correspond to the vector x(O) = $1 ( to)  x(I)  + $2 (to) x(*) 
verifying 

cp (619 td = c is 

Theorem is proven. 0 
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12.3.2 S-procedure 

In this subsection we follow Gelig et al. (1978). 

Theorem 12.2. (S-procedure for two quadratic forms) Let 

IF(x) 2 0 for all x where G ( x )  L 01 

Then there exist real numbers 

(12.8) 

(1 2.9) 

(12.10) 

Proof. By Dane? theorem the set P is a convex cone. Define Q as 

By the assumptions of this theorem P n Q = 0. Since P and Q are both convex cones, 
there exists (loosely) a plane separating them, that is, there exists r l ,  tl (nonobligatory 
nonnegative) I tl I + 1 t 2  I > 0 such that 

(12.11) 

Taking into account that (-1,O) E Q and ( - E ,  1) E Q ( E  > 0), then tl (-1) 5 0 implies 

tl z 0 and -rl& - t2 5 0 

Taking E -+ 0 gives r2 2 0. Since ( F ( x ) ,  G ( x ) )  E P for any x E R", then the second 
inequality in (12.1 1) leads to (12.10). Theorem is proven. 

Corollary 12.1. Let there exist a vector x(O) such that 

1 G ( X ' 0 ' )  > 0 I 
Then the following two claims are equivalent: 

1. 

(12.12) 

13(x) 2 0 for all x where G ( x )  L 01 

2. there exists t 1 0 such that 

F ( x )  - t G ( x  2 0)  for all x E R" (12.13) 

co
nt

ro
len

gin
ee

rs
.ir



Miscellaneous 219 

Proof. Since (12.10) holds it is sufficient to show that tl > 0. Suppose the converse, 
namely, that tl = 0. Then by (12.10) it follows that t 2 G ( x )  5 0 for all x, and hence, 
particularly, for x = x(O), that implies t 2  = 0. So, tl = tz = 0, but this contradicts the 
condition (12.9). Hence, t1 > 0. Defining t := t z / t l  we obtain the main result. Corollary 
is proven. 0 

Corollary 12.2. (The case of the strict basic inequality) Again let there exist a vector 
x(O) such that 

Then the following two claims are equivalent: 

1. 

I F(x)  > 0 for all x where G ( x )  2 0,  x + 0 1 (12.14) 

2. there exists t 2 0 such that 

(12.15) 

Proof. Evidently, (12.15) implies (12.14). Indeed, if t = 0, then F(x) > 0 for any x # 0. 
If 5 > 0, then F(x)  > tG (x) and F(x)  > 0 for any x + 0 such that G ( x )  2 0. Now, let 
(12.14) hold. Define the set J := {x : llxll = 1, G ( x )  2 0) .  It is bounded and closed. So, 
by (12.14) F(x)  > 0 for any x E 3. Hence, inf F(x)  = E > 0, and, as a result, F(x) - 

E L 0 for any x E J. If G ( x )  p 0, x + 0, then ~ E J. That's why F 

or equivalently, F(x) - E llxll' 2 0. So, ?(x) := F(x) - E l l ~ I / ~  2 0 under G ( x )  2 0 and 
the previous Corollary (12.1) there exists t 2 0 such that F(x) - E llx1I2 - t G ( x )  2 0. 

0 

Remark 12.1. The claim, analogous to (12.2) where nonstrict constraint G ( x )  2 0 is 
changed to the strict one, i.e., G ( x )  > 0 ,  is not correct which can be shown with a simple 
counterexample. 

X € L 7  

X ( h ) - = o >  IIx II 

Hence, F(x)  - t G ( x )  2 E l/x1I2 > 0. Corollary is proven. 

The following matrix interpretation of Theorem 12.2 takes place. 

Theorem 12.3. Let inequalities 

I Gi(x) := xTGix 5 cti ( i  = 1 , .  . . , m )  1 (12.16) 

(12.17) 

imply 
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where ai ( i  = 0, 1, . . . , m )  are some real numbers. Ifthere exists ti 
such that 

0 (i  = 1, . . . , m )  

I m m I 
( 1 2.1 8) 

then (12.16) implies (12.17). Inversely, if (12.16) implies (12.17) and, additionally, one 
of the following conditions is fulfilled: 
1. 

2. 

l m = 2 ,  n > 3 1  

and there exists a vector x(O), PI,  ~2 such that 

then there exists ti 2 0 (i = 1, . . . , m )  such that (12.18) holds. 
For m > 2 the analogue result is not true. 

Proof Sufficiency is trivial. Necessity follows from the previous Theorem 12.2 and 
Corollaries 12.1 and 12.2. The simple counterexample may show that this theorem is not 
valid for m > 2. 0 

12.3.3 Finsler lemma 

The following statement is a partial case of Theorems 12.2 and 12.3. 

Lemma 12.4. (Finsler 1937) Let F(x) := x T F n  2 0 (or strictly > 0)  for  all x E RE, 
x # 0 and such that 

1 G(x)  := XTGX = 0 I 
Then there exists a real t such that 

I F + T G  2 o (or strictly > 0)  I 

( 1 2.1 9) 

(12.20) 

Proof. This lemma is a partial case of Corollary 12.2 if we can show that in here 
the assumption (12.12) is not essential. Indeed, if (12.12) holds then Corollary 12.2 
implies (12.20). If do) does not exist, where G(x(O)) > 0, we deal only with two 
situations: 
(a) there exist x(O) where O(x(O)) < 0, 
(b) G ( x )  = 0 for all x. 
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Y := K Q ,  Q := P-'  

In case (a) changing G to (-G) we obtain the previous situation when (12.12) holds. In 
17 case (b) (12.20) holds automatically. 

(12.25) 

Below we will illustrate the role of the Finsler lemma in the quadratic stabilization 
analysis (Polyak & Sherbakov 2002). Consider the linear plant 

.i = A X  + BU (12.21) 

with the linear feedback given by 

u = Kx (1 2.22) 

The corresponding closed-loop system is 

(12.23) 

The quadratic form V (x) = xT P x  will be the Lyapunov function for (12.23) then and 
only then when 

A,:P + PA,l < 0,  P > 0 

or, equivalently, when there exist matrices K and P > 0 such that 

1 ( A  + P + P ( A  + B K )  < 0 I (1 2.24) 

This relation represents a nonlinear matrix inequality with respect to two matrices K 
and P. Fortunately, the variable changing 

Using the Finsler lemma 12.4 the variable Y may be excluded from (12.26). Indeed, the 
quadratic function 

3 ( x )  := X T  (YTBT + B Y )  x = 2 (BTX, Y x )  

is equal to zero at the subspace B T x  = 0, or when 

G ( x )  := (BTX, BTX) = X T  ( B B T ) x  = 0 
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Supposing additionally that B(x(~))  > 0 for some x(O) (but this is not a real constraint) 
Lemma 12.4 implies that there exists a real t such that 

that is. 

Y T B T  + B Y  1 - t B B T  

We may take t > 0 since BBT 2 0. So, (12.26) implies 

QAT + A Q - t B B T  5 QAT + A Q + Y T B T  + BY < 0 ,  Q > 0 

But the left inequality is reachable if we take 

Since K = Y Q-’ does not depend on t, we may take t = 2 and obtain the following 
result. 

Claim 12.1. If Q is the solution of the Lyapunov inequality 

1 QAT + A Q  -2BBT -= 01 

then the regulator (12.22) with 

stabilizes the system (12.21) and the quadratic function 

is the Lyapunov function for the closed system (12.23). 

12.4 FarkaS lemma 

12.4.1 Formulation of the lemma 

The Farkus‘ lemma (FarkaS 1902) is a classical result belonging to a class of the, 
so-called, “theorem of the alternative” which characterizes the optimality conditions of 
different optimization problems. 
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Lemma 12.5. (FarkaS 1902) Let A be a real m x n matrix and c be a real nonzero 
vector. Then 

1. either the primal system 

(12.27) 

has a solution x E R" 
2. or the dual system 

(12.28) 

has a solution y E R", 
but never both. 

The question of which of the two systems is solvable is answered by considering the 
bounded least squares problem discussed below. 

12.4.2 Axillary bounded least squares (LS) problem 

Here we follow Dax (1997). Consider the following bounded LS problem: 

(1 2.29) 

1 subject to y 2 0 1 (12.30) 

where 1 1 . 1 1  denotes the Euclidean norm. 

Lemma 12.6. The vector y* E R" solves the problem (12.29)-(12.30) if and only if y" 
and the residual vector 

satisfy the conditions 

y > _ O ,  A r * z O  i ( Y " ) ~  Ar* = 0 

(12.31) 

(12.32) 

Proof. 
(a) Necessity. Assume that y* solves (12.29)-(12.30) and consider the one-parameter 

quadratic function 
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where 
of the rn x rn unit matrix I,,,. Then, clearly, 6 = 0 solves the problem 

is the ith row of A, 8 is a real variable and eci)  denotes the ith column 

subject to y,* + 8 3 0 

since for any y (6) := y* + Be(') 

and y (0) := y*. Therefore, taking into account that 

we have that y: > 0 implies 
which constitute (12.32). 

r* = 0, while y: = 0 implies (&I) r* 2 0, 

(b)  Sufliciency. Conversely, assume that (12.32) holds and let z be an arbitrary point in 
2 0. Define also u := z - y*. Then yf = 0 implies u,  2 0, while iw" such that 

(12.32) leads to 

Hence, the identity 

shows that 

Lemma is proven. 

12.4.3 Proof of Farkui lemma 
0 

Notice that cTx < 0 implies x f 0, while ATy = c means y f 0. 

1. First, show that it is not possible that both systems are solvable. This can be seen from 
the following consideration: if both (12.27) and (12.28) hold then 

cTx = (ATy)T x = yTAx 2 0 

which contradicts C T X  < 0. 
2. Assuming that y* exists and combining (12.31) and (12.32) gives 

cTr* = (ATy* - r*)T r* = (ATY*)~ r* - ( r * ) T  r* = - Jlr*112 

co
nt

ro
len

gin
ee

rs
.ir



Miscellaneous 22s 

which leads to the following conclusion: 

Conclusion 12.1. Let y* solve (12.29)-(12.30). I f r*  = 0 then y* solves (12.28). Other- 
wise, r* solves (12.27) and cTr* = - llr*1I2. 

3. It remains to establish the existence of a point y* solving (12.29)-(12.30). It follows 
from the observation that 

Z := { A T y  I y 2 0 )  

is a closed set in R". Using the closure of Z ,  we obtain that 

is a nonempty closed bounded set of Iw". Note also that cp (x) := IIx - c1I2 is a 
continuous function on x. Therefore, by the well-known Weierstrass' theorem, cp (x) 
achieves its minimum over B. Denote it by z*.  Since B Z, there exists y* E R" 
such that y* 2 0 and z* = ATy".  Therefore, y* solves (12.29)-(12.30). However, y* 
is not necessarily unique. By (6.29) from Chapter 6 dealing with the pseudoinverse, 
any vector 

y* = u + ( A T ) + c  with any u 2 0 

is a solution of (12.29)-(12.30). 

12.4.4 The steepest descent problem 

Corollary 12.3. Let y* and r* # 0 solve (12.29)-(12.30). Then the normalized vector 
r * l  llr* 11 solves the steepest descent problem 

I minimize C T X  1 

I subject to Ax z 0 and llxll = 1 I 

Proof. Let x satisfy the constraints above. Then 

( Y * ) ~  Ax > 0 

while the Cauchy-Bounyakovski-Schwartz inequality gives 

x /  I llr*11 . IIXII = llr*lI 

Combining these two relations shows that 

c T x  = ( A T y *  - Y * ) ~  x = ( A T y * ) T  x - ( r * )T  x 

L - (r*lTx z - / ( r * l T  X I  2 - llr*II 
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Therefore, since ( A T Y * ) ~  r* = 0 and 

c T r * /  llr*11 = [ ( A T y * ) T  r* - ( r * )T  r* ]  / IIr*ll = - llr*ll 

the claim is proven. 

12.5 Kantorovich matrix inequality 

Theorem 12.4. I f A  is an n x n positive definite Hermitian matrix and e E @" is a unite 
vector (i.e. e*e = l), then 

(12.34) 

Proof. The left-hand side of (1 2.34) follows from the Cauchy-Bounyakovski-Schwartz 
inequality 

- -= llA'/2e/l . /IA-'/2e/l = .t:/(e*Ae) (e*A- le)  5 (e*Ae) ( e*A- 'e )  

The right-hand side of (12.34) can be stated in the following manner using the matrix 
A inequality (valid in a scalar case for any E > 0): 

1 1 
-e* [&A + 
2 2 
1 
5h,,x ( T  [&A + E-IA- ' ]  T - ' )  

1 1 

e 5 -Amax (&A + E - ~ A - ' )  

2h,ax (diag [&A; + 

Here we have used TAT-'  = diag (hl, . . . , hn) .  The function 

f (h )  := &h + s- 'A-I 

is convex for all h E [Amin ( A ) ,  A,,, ( A ) ]  and therefore it takes its maximum in one of 
the boundary points, that is, 
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which implies 

and, as the result, we obtain (12.34). 13 

Remark 12.2. The right-hand side of (12.34) is achievable for A = h l  since in this case 
A,,, (A) = hmi, ( A )  = h and 
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I 3 The Real and Complex Number 
Systems 
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In this part of the book we will follow the following classical publications: Rudin (1929, 
Apostol (1974), Fuchs & Shabat (1964) and Lavrentiev & Shabat (1987). 

13.1 Ordered sets 

13.1.1 Order 

Definition 13.1. Let S be a set of elements. An order on S is a relation, denoted by <, 
with the following properties: 
1. I f  x E S and y E S then one and only one of the statements is true: 

x < y ,  x = y ,  y < x  

2. I f x ,  y ,  z E S and, in addition, x < y and y < z ,  then x < z .  

‘‘x 5 y” is the negation of “ y  > x”. 
The statement “x < y” is referred to as “x is less (or smaller) than y” .  The notation 

Definition 13.2. An ordered set is a set S in which un order is defined. 

13.1.2 Infimum and supremum 

Definition 13.3. Suppose S is an ordered set and E c S. I f  there exists an element 
B E S such that x 5 B for any x E E,  we say that the subset E is bounded above and 
call /l an upper bound of E .  A low bound is defined in the same way with ‘‘2” in place 
of ‘‘5 ”* 

23 1 
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Definition 13.4. Suppose S is an ordered set and E c S is bounded above. Suppose 
also there exists an (11 E S such that 
(a )  (11 is an upper bound for E .  
(b)  If y < (11 then y is not an upper bound of E. 

written as 
Then u is called the least upper bound of E or the supremum of E which will be 

(13.1) 

The greatest lower bound, or infimum of E ,  which is bound below, is defined in the 
same manner, namely, 

XEE! a = inf E = inf x (13.2) 

This means that u is a low bound of E and there is no > a which is low bound too. 

13.2 Fields 

13.2.1 Basic definition and main axioms 

Definition 13.5. Afield is a set 3 of elements with two operations: 
I, Addition; 
2. Multiplication. 

Both mentioned operations should satisfy the following “field axioms”: 

(A): Axioms for addition 
(Al) If x, y E F then (x + y) E 3. 
(A2) x + y = y + x for all x, y E 3 which means that addition is commutative. 
(A3) (x + y) + z = y + (x + z )  for all x, y ,  z E F which means that addition is 

(A4) 3 contains an element called 0 such that x + 0 = x for all x E 3. 
(A5) For any x E 3 there exists an element (-x) E 3 such that x + (-x) = 0. 

(Ml) If x, y E 3 then xy E 3. 
(M2) xy = yx for all x, y E 3 which means that multiplication is commutative. 
(M3) ( x y ) z  = y (xz) for all x, y ,  z E F which means that multiplication is 

(M4) 3 contains an element called 1 such that l x  = x for all x E 3. 
(M5) For any x E 3 and x # 0 there exists an element l /x  E .F such that 

associative. 

(M): Axioms for multiplication 

associative. 

x (l/x) = 1. 

(D): The distributive law 
For all x, y,  L E 3 the following identity holds: 

x , ( y + z )  = x y + x z  
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13.2.2 Some important properties 

Proposition 13.1. (Resulting from axioms (A)) 
(a)  I f x  + y = x + z then y = z (cancellation law). 
(b) I f x  + y = x then y = 0. 
( c )  If x + y = 0 then y = -x. 
(d)  - (-X) = X. 

Proposition 13.2. (Resulting from axioms (M)) 
(a) I f x y  = xz and x f 0 then y = z .  
(b )  I f x y  = x and x # 0 then y = 1. 
(c )  Ifxy = 1 and x # 0 then y = l / x .  
(d)  I f x  f. 0 then l / ( l /x)  = x. 

Proposition 13.3. (Resulting from (A), (M) and (D)) 
(a)  ox = 0. 
(b) I f x  f 0 and y f 0 then xy f. 0. 
(c)  (-x> y = (-XI Y = - (xy) ’ 
(d)  ( - X I  (-Y) = X Y .  

Definition 13.6. An orderedfield is a field .F which is also an ordered set such that 
(a)  x + y < x + z i f x ,  y ,  z E F and y < z. 
(b) xy > O i f x , y  E F a n d x  > 0,  y > O o r x  ( 0 ,  y ( 0 .  

I f x  > 0 we call x positive and i fx  < 0 we call x negative. 

In every ordered field the following statements are true. 

Proposition 13.4. 
(a)  I f x  > 0 then -x < 0. 
(b)  I f x  > 0 and y < z then xy < xz .  
(c) I f x  < 0 and y < t then xy > x z .  
(d)  I f x  # 0 then x2 := xx > 0. 
(e )  I f 0  < x < y then 0 < l / y  < l/x. 

Below we will deal with two commonly used fields: real and complex. It will be 
shown that the real field is an ordered field and the complex field is nonordered. 

13.3 The real field 

13.3. 1 Basic properties 

The following existence theorem holds. 

Theorem 13.1. There exists an orderedjield R which possesses the following properties: 

r f  E c R and E is not empty and bounded above, then sup E exists in R; 
R contains the set Q of all rational numbers r ( r  = m / n  where m ,  n are integers 
(. . . - 1,0,  1,. . .) and n # 0)  is a subfield. 
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,9 := minS = inf S 

Proof of this theorem is rather long and tedious and therefore is omitted. It can be 
found in the appendix to Chapter 1 of Rudin (1976). 

Definition 13.7. The members of R are called real numbers and R itself is called the 
real field. 

The members of R have several simple properties given below. 

(13.4) 

Claim 13.1. 
(a)  Archimedean property: I f x ,  y E R and x > 0, then there exists a positive integer 

number n such that nx > y .  
(b) Q-density property in R: I f  x ,  y E R and x < y,  then there exists a rational 

number p E Q such that x < p < y .  
(c)  The root existence: For any nonnegative real x E R (x 2 0 )  and any integer n > 0 

there is one and only one real y E R such that y" = x.  This number y is written as 

13.3.2 Intervals 

Definition 13.8. 
The open interval (a ,  b )  is the set of real numbers x such that a < x < b, i.e., 

I (a ,  b) := ( X  : a < x < b}  I 
The closed interval [a,  b] is the set of real numbers x such that a 5 x 5 b, i.e., 

I [a,  b] := {X : u 5 x 5 b )  1 
* The semi-open intervals [a,  b )  and (a ,  b]  are the sets of real numbers such that a 5 

x < b and a < x 5 b, i.e., 

a ,  b]  := ( X  : a < x 5 b}  

13.3.3 Maximum and minimum elements 

Definition 13.9. Let S be a set of real numbers. 
(a)  I f  a smallest upper bound a = sup S is also a member qfS then a is called the largest 

number or the maximum element of S and denoted by max S, that is, in this case 

I a = maxS = sups  I (13.3) 

(b)  If the greatest low bound j3 = inf S is also a member of S then @ is called the smallest 
number or the minimum element of S and denoted by max S,  that is, in this case 
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Example 13.1. 

1. For S = [a ,  b ]  it follows that 

maxS = s u p s  = b 
min S = inf S = a 

2.  For S = ( a ,  b )  it follows that 

max S does not exist, sup S = b 
min S does not exist, inf S = a 

3. For S = [0, 1 - 112, 1 - 113,. . . , 1 - I l k ,  . . .) it follows that 

max S does not exist, sup S = 1 
min S = inf S = 0 

13.3.4 Some properties of the supremum 

Lemma 13.1. (Approximation property) Let S be a nonempty set of real numbers with 
supremum, say b = sups.  Then S contains numbers arbitrarily close to its supremum, 
that is, for every a < b there is some x E S such that 

ProoJ One has that x 5 b for all x E S. Supposing that x 5 a for all x E S we obtain that 
a is an upper bound for S which is strictly less than b which contradicts the assumption 

0 that b is the lowest upper bound. So, x > a.  

Lemma 13.2. (Additive property) Given nonempty sets A and B of R, let C denote the 
set 

If each of A and B has a supremum, then C has a supremum too and 

1 sup C = SUP A + SUP B I (13.5) 

ProoJ: Denoting a := sup A and b := sup B we have that z = x + y 5 a + b. Hence, 
(a + b) is a supremum for C. So, C has a supremum, say c := supC and c 5 a + b. Show 
next that a + b 5 c. By Lemma 13.1 it follows that there exist x E A and y E B such 
that 

a - E  < x  5 a ,  b - E  < y 5 b 

for any chosen E > 0. Adding these inequalities we find a + b - 26 < x + y or, 
equivalently, a + b < x + y + 2 ~ .  So, a + b 4 c + 2 ~ .  Taking E + 0, we obtain that 

0 a + b 5 c and together with c 5 a + b states that c = a + b. 
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Lemma 13.3. (Comparison property) Given nonempty sets S and T of R such that 
s I t for any s E S and t E T .  If T has an infimum B = inf T then S has a supremum and 

j sup s I inf T 1 (13.6) 

Prooj s u p s  exists by the property s I t .  Denote a := sups.  By Lemma 13.1 for any 
E > 0 there exists s E S such that a! - E < s and there is t such that /I + E > t .  So, 

or, a! < B + 2s. Tending E to zero leads to (13.6). 

Lemma 13.4. @ A  23 c R, then 

sup A I supB 
inf A > inf B (13.7) 

Proof. It evidently follows from (13.1) and (13.2). 0 

13.3.5 Absolute value and the triangle inequality 

Definition 13.10. For any real number x the absolute value of x, denoted by 1x1, is 
defined as follows: 

x if x 1 0  
11x1 = { -x if x t o  

Evidently, 1x1 1. 0 always. 

Lemma 13.5. (The fundamental inequality) If 1x1 5 a then 

Prooj This is a simple consequence of (13.8). 

Theorem 13.2. (The triangle inequality) For any real x, y E R we have 

I Ix + Yl  I 1x1 + IYI I 

(13.8) 

(13.9) 

0 

(1 3.10) 

Proof: Adding two inequalities 

co
nt

ro
len

gin
ee

rs
.ir



The real and complex number systems 237 

gives 

- I x l - I y I 5 x + y  I I x l + l Y l  

which implies 

Ix + YI I 1x1 + IYI  

Theorem is proven. 

Corollary 13.1. For any real x, y ,  z E IR we have 
I. 

~ - z l 5 l x - Y l + l Y - z l ~  

2. 

I Ix f Yl 1 1x1 - IYI  I 

3. For any reaZ numbers xi E IR ( i  = 1,) 

0 

(13.11) 

(1 3.12) 

Proof. The inequality (13.11) follows from (13.10) written as 

IX + j I  I 121 + 13 (13.13) 

if we take X := x - z and 9 := - ( y  - z ) .  The inequality (13.12) follows from (13.13) 
if we take X := x i y and j := ~ y .  The third inequality may be easily proven by 
induction. 0 

13.3.6 The Cauchy-Schwarz inequality 

Theorem 13.3. (The Cauchy-Schwarz inequality) For any real numbers x i ,  yi  E R 
( i  = G) the following inequality holds 

( 1 3.14) 
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Proof. For any z E IR we have 

n n 

i = l  i=l 
= Az2 + 2 B z  + C 

where 

n n n 

i=l i=l i=l 

This quadratic polynomial may be nonnegative for any z E R if and only if 

which is equivalent to (13.14). 0 

13.3.7 The extended real number system 

Definition 13.11. The extended real number system consists of the real field IR and two 
symbols: +oo (or simply 00) and -oo which possess the following properties: 
(a)  for any real x E R 

(b) for any real x E R 

x + o o = o o  
x--0O=-oo 
X X 

00 -00 
- = o  

(c)  i f x  > 0 then 

x-oo=00 and x ~ ( - ~ ) = - - o o  

i f x  < 0 then 

x . o o = - c ~  and x ~ ( - - o o ) = o o  

13.4 Euclidean spaces 

Let us consider an integer positive k and let IRk be the set of all ordered k-tuples 

x := ( X I ,  x2, . . . , X k )  
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where xi ( i  = 1, . . . , k )  are real numbers, called the coordinates of x. The elements of 
Rk are called points (or vectors). Defining two operations 

(13.15) 

it is easy to see that they satisfy the commutative, associative and distributive law 
that make Rk into a vector space over the vector field with 0 elements all of whose 
coordinates are 0. 

We also may define the, so-called, inner (scalar) product of two vectors x and y by 

I k I 

and the corresponding norm of x by 

(13.16) 

(13.17) 

Definition 13.12. The vector space Rk with the above inner product (13.16) and norm 
(13.1 7)  is called Euclidean k-space. 

The following properties of the norm (13.17) hold. 

Remark 13.1. The Cauchy-Schwarz inequality (13.14) for the Euclidean k-space Rk 
may be rewritten as 

or, equivalently, 

13.5 The complex field 

13.5.1 Basic definition and properties 

(1  3.18) 

(1 3.19) 

Definition 13.13. 
(a )  A complex number is an “ordered” pair x = (XI, x2) of real numbers where the$rst 

member X I  is called the real part of the complex number and the second member x2 is 
called the imaginary part. “Ordered” means that (XI, x2) and (x2, X I )  are regarded 
as distinct i f x ,  f: x2. 
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(b)  Two complex numbers x = ( X I ,  x2) and y = ( y l ,  y2) are said to be equal (we write 
x = y )  if and only if 

( c )  The sum ( x  + y )  and the product (xy) are defined by the equations 

( 1  3.20) 

The set of all complex numbers is denoted by @. 
It is easy to check that the main field operations, namely, addition and multiplication 

The following properties hold in @. 
( 1  3.20) satisfy the commutative, associative and distributive laws. 

Proposition 13.5. 
1. 

2. Given two complex numbers x = ( X I ,  x2) and y = ( y l ,  y2) there exists a complex 
number z = ( z , ,  22) such that x + z = y .  In fact, 

The complex number ( - X I ,  -x2) is denoted by (-x).  
3. For any two complex numbers x and y we have 

4. Given two complex numbers x = ( X I ,  x2) # (0,O) and y = ( y l ,  y2) there exists a 
complex number z = ( z I , z 2 )  such that 

1 xz  = y ,  namely, z := y l x  = yx-1 I 

Remark 13.2. The complex number ( x I  , 0)  = X I  is the real number X I .  This identification 
gives us the real field as a subfield of the complex field. 
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13.5.2 The imaginary unite 

24 1 

Definition 13.14. The imaginary unite i is the complex number (0, l), that is, 

-1 (13.21) 

Lemma 13.6. 

/ i *  = -1 1 

ProoJ: Indeed, by (13.20) and (13.2) 

i 2  = (0, 1) (0, 1) = ( -1 ,O)  = - 1  

Lemma is proven. 

Lemma 13.7. Any complex number x = (xl , x2) can be represented as 

ProoJ: Since by (13.2) 

XI = (XI ,  0)  
ix2 = (0 ,  1) ( X 2 , 0 >  = (0, x2) 

it follows that 

X I  + ix2 = ( X I ,  0 )  + (0, x2) = (x,, x2)  = x 

Lemma is proven. 

1. 5.3 The conjugate and absolute value of a comp,,x number 

Definition 13.15. I f a  and b are real and z = a + ib, then 
(a)  the complex number 

is called the conjugate of z and 

I a = R e z  and b = I m z l  

(13.22) 

(13.23) 

(13.24) 

(13.25) 

are referred to as the real and imaginary parts of z ;  
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(b) the nonnegative real number IzI given by 

I IzI = -1 (13.26) 

is called the absolute value (or module) of the complex number z. 

Proposition 13.6. r f x  and z are complex then 

z + Z = 2 R e z  
z - z = 2 Imz 

5. The identity IzI = 0 implies that z = 0 = (0, 0). 

9. The triangle inequality holds: 
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Proof. Propositions 1-7 can be checked directly using the definition only. The proof of 
8 follows from the identity 

To prove 9 notice that xi is the conjugate of Xz, which is why by property 3 

and, hence, 

which proves 9. 

Theorem 13.4. (Schwarz inequality for complex numbers) 
! fa i ,  bi E C ( i  = 1,) then 

1 1  n 12 / n \ / n  \ 

0 

(13.27) 

Proqc Denote 

n n 

i = l  i = l  i = l  

Notice that A ,  B are real and C is complex. If B = 0 then all bi = 0 and the inequality 
is trivial. Assume now that B > 0. Then by (13.6) 

n n 

= B2A - B ICI2 - B ICI2 + ICI2 B = B2A - B ICI2 

= B ( B A  - lq2) 

So, B A  - IC12 2 0 coincides with (13.27). Theorem is proven. 
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13.5.4 The geometric representation of complex numbers 

Let us consider the plane with Cartesian (Decartes) coordinates x (as the abscise) and 
y (as the ordinate). So the complex number z = (x, y )  may be considered as the point 
on this plane or, equivalently, as the vector with the coordinates x and y (see Fig. 13.1). 
In the polar coordinates (r,  p) the same vector is expressed as 

I z = x + iy = r (cosp + i sinp) I (1 3.28) 

where r = (ZI is the module of the complex number z and p is its argument (or phase) 
denoted by Arg z, that is, 

arctan ( f ) + 2nk for I and IV quadrants 

arctan (:) + (2k + 1) n for I1 and 111 quadrants 
p = Arg z := (13.29) 

where arctan , i.e., the value which 

is more than ( -n /2)  and does not exceed (n/2), and k = 0, 1,2,  . . . is any integer 
number. As it follows from the definitions above, the module is uniquely defined while 
the argument is not uniquely defined. 

means the principal (main) value of Arctan (3 (3 

Proposition 13.7. 
1. For any zl, z 2  E C 

(13.30) 

(13.3 1) 

Fig. 13.1. The complex number z in the polar coordinates. 
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2. For any z l ,  z 2 ,  . . . , zn E C 

I n  n 1 / n  \ / n  \ \ I  

245 

(13.32) 

Proof. The property (13.30) follows from (13.28) and the identities 

Indeed, 

z1 
z2  

The property (13.3 1) related to the quotient - results from the relations 

with the following application of (13.30). The identity (13.32) results from (13.30) by 
induction. 0 

Example 13.2. 

13.6 Some simple complex functions 

13.6.1 Power 

Definition 13.16. The nth power of the complex number z is the product 

(13.33) 

zn := zfl-'z, zo = I ,  
z - n  := (z-l)", z # O ,  n = l , 2 ,  . . .  

n = 0, 1 , 2 , .  . . 
(13.34) 

co
nt

ro
len

gin
ee

rs
.ir



246 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1 

By (13.32) and (13.33) it follows that 

Z" = r" [cos ( n p )  + i sin ( n p ) ]  
z-" = r-" [cos ( n p )  - i sin ( n p ) ]  

13.6.2 Roots 

Definition 13.17. If two complex numbers w and z are related by the equation 

then w is culled a root of degree n of the number z and denoted as 

(13.35) 

(13.36) 

(1 3.37) 

Lemma 13.8. (The Moivre-Laplace formula) There exist exactly n roots of & which 
may be expressed as 

for  z = r ( c o s p + i s i n p ) ,  k = 0 , 1 , 2  , . . . ,  n - 1  
(13.38) 

Proof. Denoting w = p (cos0 + i sine), by (13.36) and (13.35) we derive 

w" = p" [cos ( n e )  + i sin (no)]  = r (cos p + i sin p) = z 

This leads to the following relations: 

which completes the proof. 

co
nt

ro
len

gin
ee

rs
.ir



The real and complex number systems 

Example 13.4. 

241 

a = c o s (  n + 2nk ) + i s i n (  n + 2 n k  ) 
cos ($) + i s i n ( $ )  k = O  

n n  
cos (7 + + i sin (:+:) k = l  - 1  cos (; + n) + i sin (: + n) k = 2 

- 

cos (: + in) + i s i n  (: + in) k = 3 

w1 = ( 1  + i )  /&, k = 0 

wj = (-1 - i )  /&, k = 2 = 1  
wq = (1 - i )  /f i , k = 3 

The roots in the complex plane are depicted at Fig. 13.2. 

13.6.3 Complex exponential 

Definition 13.18. (Euler’s formula) I f z  = x + i y  is a complex number, we define the 
complex exponent ez = eX+jY to be the complex number 

1 ez = ex (cos y + i sin y >  I (13.39) 

Fig. 13.2. The roots of m. 
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Evidently, the complex exponent ez possesses the following properties which can be 
easily proven using only the definition (13.39). 

Proposition 13.8. For any complex numbers z,  z1 and z2 

1. 

2. 

3. 

4. ez = 1 if and only i f z  = 2 n n  . i (n  is an integer). 
5. ezl  = ez2 i fand only $2, - z2 = 2nn . i (n  is an integer). 
6. 

(13.40) 

13.6.4 Complex logarithms 

Definition 13.19. The number w is called the (natural) logarithm of the complex number 
z # 0 (the notation is w = Ln z) ife"' = z .  

Putting w = u + iv  from the definition above it follows that z = e"e'". Comparing this 
with (13.39) implies 

IzI = eu 
v = A r g z = a r g z + 2 n k  

So, u = In IzI and, thus, 

w = Lnz = In /zI + i Argz = In (zI + i (argz + 2nk) (13.41) 

Formula (13.41) defines an infinite number of complex numbers which are logarithms of 
the nonzero z E @. Of these, the particular value corresponding to k = 0 is called the 
principal value of the complex logarithm and is denoted by 

lnz := In IzI + i argz (13.42) 
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Example 13.5. 

1. 

L n i = ( 5 + 2 n k ) i  
~ 

n. lni  = - z  
2 

2.  

Ln (-1) = (2k + 1) n i  

In(-1) = n i  

Lemma 13.9. If Z I  zz + 0 then 

Ln (~122) = Lnzl + Lnzl 
= l n l z l l + l n l z ~ l + i [ a r g z ~  +argz~  + 2 n ( k t  +MI 

where kl , k2 are integers. 

Proof. 

13.6.5 Complex sines an.d cosines 

Taking in Euler’s formula (13.39) x = 0 we have 

eiY = cos y + i sin y 
e-ry = cos y - i sin y 

which implies 

eiy + e - i y  e i y  - e-iy 
, siny = 

2 2i 
cosy = 

valid for any real y E R. Extending these formulas to the complex plane C one may 
suggest the following definition. 

Definition 13.20. Given a complex number z ,  we define 

cosz = 

sinz = 
(13.43) 
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Lemma 13.10. For z = x + iy 

cosz=cosxcoshy - i s inxs inhy  
sinz = sinx cosh y + i cosx sinh y 

(13.44) 

where 

Proof. The result follows from the identities 

2 cos = ,iz + e - i i  = e-y+ix + ,+-ix 

= e-y [cosx + i sinx] + ey [cosx - i sinx] 
= cosx (eY + e-?)  - i sinx (e’ - e - y )  

which gives the first representation in (13.44). The proof for sinz is similar. 0 

Exercise 13.1. 
1. Defining 

sin z 
t a m  := - 

it is  easy to show by direct calculation that 

(13.45) 

sin 2x + i sinh 2 y  
cos 2x + cosh 2 y  

tanz = (13.46) 

2. For any complex z and n = 1,2,  . . . 

(13.47) 
I k=l co
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14.1 Functions and sets 

14.1.1 The function concept 

Definition 14.1. Let us consider two sets A and B whose elements may be any objects 
whatsoever. Suppose that with each element x E A there is associated, in some manner, 
an element y E B which we denote by y = f (x). 

1. Then f is said to be a function from A to B or a mapping of A into B. 
2.  I f €  c A then f ( E )  is defined to be the set of all elements f ( x ) ,  x E E and it is 

called the image of & under f .  The notation f (A) is called the range off (evidently, 
f (A) 

( D )  denotes the set of all x E A such that f ( x )  E B. We 
call f ( y )  is the set of 
all x E A such that f (x) = y.  I f for  each y E B the set f - I  ( y )  consists of at most 
one element of A then f is said to be one-to-one mapping of A to B. 
The one-to-one mapping f means that f ( x , )  # f ( x z )  if x 1  # x2 for any x l ,  x2 E A. 

B). I f f  (A) = B we say that f maps A onto B. 

( D )  the inverse image of D under f .  So, if y E D then f 
3. For D c B the notation f 

We will often use the following notation for the mapping f: 

I f 1  (14.1) 

If, in particular, A = R" and B = R" we will write 

1 f : R " + R " /  (14.2) 

Definition 14.2. I f  for two sets A and B there exists a one-to-one mapping then we say 
that these sets are equivalent and we write 

(14.3) 

25 1 
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Claim 14.1. The relation of equivalency (-) clearly has the following properties: 

(a)  it is reflexive, i.e., A - A; 
(b)  it is symmetric, i.e., if A - B then B - A; 
(c) it is transitive, i.e., if A - B and B - C then A - C. 

14.1.2 Finite, countable and uncountable sets 

Denote by Jn the set of positive numbers 1, 2,  . . . , n,  that is, 

and by J we will denote the set of all positive numbers, namely, 

Definition 14.3. For any A we say: 

I .  A is finite if 

A - 3.n 
for  some finite n (the empty set 0, which does not contain any element, is also 
considered as finite); 

2. A is countable (enumerable or denumerable) if 

A - 3 .  

3. A is uncountable if it is neither finite nor countable; 
4. A is at most countable if it is both finite or countable. 

any infinite subset of a countable set is countable. 
Evidently, if A is infinite then it is equivalent to one of its subsets. Also it is clear that 

Definition 14.4. By a sequence we mean a function f defined on the set 3 of all positive 
integers. i f x ,  = f ( n )  it is customary to denote the corresponding sequence by 

(sometimes this sequence starts with xo but not with XI). 

Claim 14.2. 

1. The set hf of all integers is countable; 
2. The set Q of all rational numbers is countable; 
3. The set R of all real numbers is uncountable. 
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14.1.3 Algebra of sets 

Definition 14.5. Let A and R be sets. Suppose that with each element ct E A there is 
associated a subset &, c R. Then 

(a)  The union of the sets &, is defined to be the set S such that x E S if and only if 
x E 8, at least for one (Y E A. It will be denoted by 

(14.4) 
I I 

I f  A consists of all integers (1, 2,  . . . , n) ,  which means A = Jn,  we will use the 
notation 

n 

(14.5) 

and if A consists of all integers (1,2, . . .), which means A = 3, we will use the 
notation 

i m 

(14.6) 

(6 )  The intersection of the sets €, is defined as the set P such that x E P if and only if 
x E &,for every (Y E A. It will be denoted by 

(14.7) 

I f  A consists of all integers (1, 2, . . . , n) ,  which means A = &, we will use the 
notation 

(14.8) 

and if A consists of all integers (1,2, . . .), which means A = 3, we will use the 
notation 

I ' X I  

(14.9) 
I a=I 

I f for two sets A and B we have A n B = 0, we say that these two sets are disjoint. 
(c) The complement of A relative to B, denoted by B - A, is defined to be the set 

1 23 - A := (X : x E B, but x 4 A) 1 (14.10) 
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B B B 

A U 6  A n  B B- A 

Fig. 14.1. Two sets relations. 

The sets A U B, A n B and B - A are illustrated at Fig. 14.1. Using these graphic 
illustrations it is possible to prove easily the following set-theoretical identities for union 
and intersection. 

Proposition 14.1. 

1. 

2. 

I A n ( B  U C) = (A  n B )  U (A n C) I 
3. 

I ( A  u B)  n (Au C) = A u ( B  n C )  I 
4. 

I (Au 13) n ( B U C )  n (C u A) = (An a) u (AnC) u (anc) I 
5. 

1 A n (a - c) = (A  n a) - ( A  n c) 1 
6. 

7. 

( A  - B)  U B = A 

i f  and only if B A. 
8. 
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9. 

10. 

$ A  c B. 
The next relations generalize the previous unions and intersections to arbitrary ones. 

Proposition 14.2. 

1. Let f : S -+ 7 be a function and A, B any subsets of S. Then 

2. For any Y 5 7 define f (Y )  as the largest subset of S which f maps into Y.  Then 
(a)  

and 

if and only if7 = f (S). 
(c)  

1 f - '  (7 - Y )  = s - f - 1  (Y )  I 
and for subsets B C A c S it follows that 

co
nt

ro
len

gin
ee

rs
.ir



256 Advanced Mathematical Tools for Automatic Control Engineers: Volume I 

14.2 Metric spaces 

14.2.1 Metric definition and examples of metrics 

Definition 14.6. A set X ,  whose elements we shall call points, is said to be a metric 
space if with any two points p and q of X there is associated a real number d ( p ,  q ) ,  
called a distance between p and q, such that 
(a)  

(14.11) 

1 d ( P ?  s )  = d (q3 PI I 
(c)  for  any r E X the following “triangle inequality” holds: 

1 d ( P ,  4 )  I d ( P ,  r )  + d (r, q )  I 
Any function with these properties is called a distance function or a metric. 

Example 14.1. The following functions are metrics: 

1. For any p ,  4 from the Euclidean space Iw” 
(a)  the Euclidean metric: 

1 d ( P >  4 )  = IIP - 411 I 
(6)  the discrete metric: 

(c)  the weighted metric: 

(d )  the module metric: 

I i = l  I 

( e )  the Chebyshev’s metric: 

( 14.1 2 )  

(14.13) 

( 1 4.1 4) 

(14.15) 

(1 4.16) 

(14.17) 

(14.18) 
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2. For any z1 and z2 of the complex plane C 

(14.19) 

(14.20) 

14.2.2 Set structures 

Let X be a metric space. All points and sets mentioned below will be understood to 
be elements and subsets of X. 

Definition 14.7. 

(a)  A neighborhood of a point x is a set N, (x) consisting of all points y such that 
d ( x ,  y )  < r where the number r is called the radius of N, (x), that is, 

INr ( x )  := { y  E X : d (x, y )  < r }  I (14.21) 

(b)  A point x E X is a limit point of the set & c X if every neighborhood of x contains 

(c )  If x E & and x is not a limit point of & then x is called an isolated point of &. 
(d)  & c X is closed if every limit of elements from & is a point of &. 
(e)  A point x E & is an interior point of E $there is a neighborhood ofN,  ( x )  of x such 

(f) E is open if every point of E is an interior point of 1. 
(g) The complement &" of & is the set of all points x E X such that x 6 &. 
(h)  & is bounded if there exist a real number M and a point x E & such that d ( x ,  y )  < M 

(i) & is dense in X if every point x E X is a limit point of &, or a point of &, or both. 
( j )  & is connected in X if it is not a union of two nonempty separated sets, that is, & 

a point y + x such that y E E. 

that N, ( x )  c &. 

for all y E &. 

cannot be represented as E = A U B where A # 0, B # 0 and A n B = 0. 

Example 14.2. The set J,,,, ( p )  defined as 

is an open set but the set Jclosed ( p )  defined as 

is closed. 
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The following claim seems to be evident and that is why they are given without proofs. 

Claim 14.3. 

1. Every neighborhood N, (x) c & is an open set. 
2. $x is a limit point of & then every neighborhood N, ( x )  c & contains infinitely many 

3. A finite point set has no limit points. 
points of E. 

Let us prove the following lemma concerning complement sets. 

Lemma 14.1. Let {&,} be a collection finite or infinite) of sets &u E X .  Then 

(14.22) 

then, evidently, x $! u €, and, hence, x $ &, for any a.  This 
a 

means that x E n &,". Thus, 
a 

(14.23) 

Conversely, if x E n &: then x E &," for every a, and, hence, x $ u &, . So, x E 
a 01 

which implies 

(14.24) 

Combining (14.23) and (14.24) gives (14.22). Lemma is proven. 0 

This lemma provides the following corollaries. 

Corollary 14.1. 

(a )  A set & is open i f  and only if its complement &" is closed. 
(b)  A set & is closed if and only if its complement I' is open. 
( c )  For any collection {&u} of open sets &, the set u &, is open. 

( d )  For any collection {&} of closed sets &, the set n&; is closed. 

( e )  For any finite collection ( E l ,  . . . , &,,} of open sets &, the set n &: is open too. 

(f) For any finite collection {&I, . . . , &,, 1 of closed sets &, the set u &, is closed too. 

Definition 14.8. Let X be a metric space and & c X .  Denote by &' the set of all limit 
points of 1. Then the set cl & defined as 

U 

a 

U 

U 

pK=Kzq (14.25) 

is called the closure of E. 
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The next properties seem to be logical consequences of this definition. 

Proposition 14.3. If X is a metric space and & c X ,  then 

(a)  clE is closed: 
(b) & = cl & if and only if E is closed; 
(c)  cl E c P for every closed set P c X such that & c P; 
(d)  If& is a nonempt), set of real numbers which is bounded above, i.e., 0 + E c I% and 

y := sup I < 00. Then y E cl E and, hence, y E & if E is closed. 

Proof. 
(a) If x E X and x 4 cl& then x is neither a point of & nor a limit point of E .  Hence x 

has a neighborhood which does not intersect E. Therefore the complement E' of E is 
an open set. So, cl E is closed. 

(b) If E = clE then by (a) it follows that I is closed. If E is closed then for E', defined 
in (14.8), we have that I' c 1. Hence, E = clE. 

(c) P is closed and P 3 E (defined in (14.8)) then P 3 P' and, hence, P 3 E'. Thus 
P 3 clE. 

(d) If y E & then y E c lE .  Assume y $ E.  Then for any E > 0 there exists a point 
x E E such that y - E < x < y ,  otherwise ( y  - E )  would be an upper bound of & that 
contradicts the supposition sup€ = y .  Thus y is a limit point of &. Hence, y E clE. 

The proposition is proven. 0 

Definition 14.9. Let & be a set of a metric space X .  A point x E E is called a boundary 
point of & if any neighborhood N, (x) of this point contains at least one point of & and 
at least one point of X - &. The set of all boundary points of & is called the boundary 
of the set & and is denoted by a&. 

It is not difficult to verify that 

Denoting by 

lint& := E - a~ I 

the set of all internal points of the set &, it is easily verified that 

(14.26) 

(14.27) 

i n t & = X - c l ( X - E )  
int(X-&)=A!-clE 

int (int &) = int & 
If cl E n cl D = 0 then a (& U D )  = a& u aV 

(14.28) 
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14.2.3 Compact sets 

Definition 14.10. 

1. By an open cover of a set & in a metric space X we mean a collection {G,} of open 
subsets of X such that 

(14.29) 

2. A subset K of a metric space X is said to be compact if every open cover of K 
contains afinite subcover; more exactly, there are afinite number of indices a ] ,  . . . , a, 
such that 

Remark 14.1. Evidently, every finite set is compact. 

Theorem 14.1. A set K c y c X is a compact relative to X ifand only i f K  is a compact 
relative to y. 
Proof, Necessity. Suppose K is a compact relative to X. Hence, by the definition (14.30) 
there exists its finite subcover such that 

where Gat is an open set with respect to X. On the other hand K: c u V, where {V,} is 

a collection of sets open with respect to y .  But any open set V,  can be represented as 
V, = y n 6,. So, (14.31) implies 

UI 

K c V,, U . .  . U V,, (14.32) 

Sufliciency. Conversely, if K: is a compact relative to y then there exists a finite collection 
(V,} of open sets in y such that (14.32) holds. Putting V, = yn6, for a special 
choice of indices a ] ,  . . . , a,, it follows that V, c G, which implies (14.31). Theorem is 
proven. 0 

Theorem 14.2. Compact sets of metric spaces are closed. 

Proof, Suppose K is a compact subset of a metric space X. Let x E X but x $ K 
and y E IC. Consider the neighborhoods N, (x) Nr ( y )  of these points with r < -d (x, y ) .  
Since K: is a compact there are finitely many points y1, . . . , y,, such that 

1 
2 

If V = N,, (x) f l  . . . f l  N,,, (x), then evidently V is a neighborhood of x which does not 
intersect N and, hence, V c IC'. So, x is an interior point of K'. Theorem is proven. 0 

The following two propositions seem to be evident. 
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Proposition 14.4. 

1. Closed subsets of compact sets are compacts too. 
2. I f  3 is closed and K is compact then 3 n K is compact. 

Theorem 14.3. I f &  is an infinite subset of a compact set K then E has a limit point in K .  

Proof. If no point of K were a limit point of E then y E K would have a neighborhood 
N, ( y )  which contains at most one point of & (namely, y if y E E). It is clear that no 
finite subcollection {Nr, ( y ) }  can cover 1. The same is true of K since E c K. But this 

0 contradicts the compactness of K. Theorem is proven. 

The next theorem explains the compactness property especially in R" and is often 
applied in a control theory analysis. 

Theorem 14.4. I f a  set & c R" then the following three properties are equivalent: 

(a )  & is closed and bounded. 
(b )  & is compact. 
( c )  Every infinite subset of I has a limit point in &. 

Proof. It is the consequence of all previous theorems and propositions and left for readers' 
consideration. The details of the proof can be found in Chapter 2 of Rudin (1976). 0 

Remark 14.2. Notice that properties (b) and ( c )  are equivalent in any metric space, but 
(a)  is not. 

14.2.4 Convergent sequences in metric spaces 

14.2.4.1 Convergence 
Definition 14.11. A sequence {x,} in a metric space X is said to converge ifthere is a 
point x E X which for any E > 0 there exists an integer n, such that n 2 n, implies that 
d (x,,, x )  < E .  Here d (x,,, x) is the metric (distance) in X .  In this case we say that {x,,] 
converges to x, or that x is a limit of (x,}, and we write 

n+m 
limn, = x or x, (14.33) 

I f  (x,} does not converge, it is usually said to diverge. 

Example 14.3. The sequence ( l / n }  converges to 0 in R, but fails to converge in 
R, := ( x  E R Ix > 0). 

Theorem 14.5. Let (x,} be a sequence in a metric space X .  

1. 

2. 

(x,} converges to x E X if and only if every neighborhood N, ( x )  of x contains all 
but (excluding) finitely many of the terms of (x,}. 
I f x ' ,  x" E X and 

and x, -+ x" 1 
n - x c  

Ix, -+ X I  
n-+w 
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I x’ = XI/ I 

3. I f  {x,] converges then {x,} is bounded. 
4. I f  & c X and x is a limit point of & then there is a sequence {x,] in € such that 

x = limx,. 
n + x  

Proof. 

(a) Necessity. Suppose x, + x and let N, (x) (for some E > 0) be a neighborhood 

of x. The conditions d ( y ,  x) < E ,  y E X imply y E N, (x). Corresponding to this 
E there exists a number n, such that for any n 2 n, it follows that d (x,, x) < E .  

Thus, x, E N, (x). So, all x, are bounded. 
(b) SufSiciency. Conversely, suppose every neighborhood of x contains all but finitely 

many of the terms of {x,}. Fixing E > 0 denoting by N, (x) the set of all y E X 
such that d ( y ,  x) < E .  By assumption there exists n,  such that for any n 2 n,  it 
follows that x, E N, (x) .  Thus d (x,, x )  < E if n 

For the given E > 0 there exist integers n’ and n” such that n 2 n’ implies d (x, , x’) < 
~ / 2  and n 2 n” implies d (x,, XI’) < s/2.  So, for n 2 max {n’, n”} it follows d (x’, x”) 
5 d (x’, x,) + d ( x n ,  x ” )  < E. Taking E small enough we conclude that d (x’, x ” )  = 0. 
Suppose x, --f x. Then, evidently there exists an integer no such that for all n 2 no we 

have d (x,, x) < 1. Define r := max { 1, d ( x i ,  x) , . . . , d (xnor x) }. Then d (x~,, x) < r 
f o r a l l n = l , 2 ,  . . . .  
For any integer n = 1 , 2 ,  . . . there exists a point x, E & such that d (x,, x) < l / n .  For 
any given E > 0 define n, such that En, > 1. Then for n 2 n, one has d (x,, x) < 
l / n  < E which means that x, --f x. 

n + c c  

n, and, hence, x, + x .  
,+so 

n - r c c  

n + s o  
This completes the proof. 0 

14.2.4.2 Subsequences 
Definition 14.12. Given a sequence {x,} let us consider a sequence { n k }  of positive 
integers satishing nl  < n2 < . . .. Then the sequence { x n k }  is called a subsequence 
of { x n } .  

Claim 14.4. I f  a sequence {xn) converges to x then any subsequence { x n k }  of {xn) 
converges to the same limit point x. 

Proof. This result can be easily proven by contradiction. Indeed, assuming that two 
different subsequences { x n k }  and {x,,} have different limit points x’ and x” ,  it follows 
that there exist 0 < E < d (x‘, x”) and a number k, such that for all k 2 k, we shall have: 
d ( x n k ,  x,,) > E which is in contradiction with the assumption that {x,} converges. 0 

Theorem 14.6. 

(a )  I f  {x, ) is a sequence in a compact metric space X then it contains some subsequence 

(b )  Any bounded sequence in R” contains a convergent subsequence. 
{x”,} convergent to a point of X .  
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Proof. 

(a) Let E be the range of (x,}. If {x,} converges then the desired subsequence is this 
sequence itself. Suppose that {x,} diverges. If E is finite then there is a point x E E 
and numbers n 1  < n2 < . . . such that xnz = xn2 = . . . = x. The subsequence { x n n }  
so obtained converges evidently to x. If E is infinite then by Theorem (14.3) E has 
a limit point x E X .  Choose nl  so that d (x,!, x) < 1, and, hence, there are integers 
n, > n,-l such that d (x,,, x) < l / i .  This means that x,, converges to x. 

(b) This follows from (a) since Theorem (14.4) implies that every bounded subset of R” 
lies in a compact subset of R”. 

Theorem is proven. 0 

14.2.4.3 Cauchy sequences 
Definition 14.13. A sequence {x,} in a metric space X is said to be a Cauchy (funda- 
mental) sequence if for every E > 0 there is an integer n,  such that d (x,, x,) < E if 
both n L n, and m ? n,. 

Defining the diameter of E as 

diam E := sup d (x, y )  (14.34) 1 X , Y € &  

one may conclude that if E,,, consists of the points {x,,, x,,+l,  . . .} then {x,} is a Cauchy 
sequence if and only if 

(14.35) 

Theorem 14.7. 

(a )  I f  cl E is the closure of a set E in a metric space X then 

1 diam E = diam cl E I (14.36) 

(b) I f {K,}  is a sequence of compact sets in X such that K ,  2 K,-1 (n  = 2,3,  . . .) then the 
00 

set K: := n K, consists exactly of onepoint. 
n = l  

Proof. 

(a) Since E C clE it follows that 

diamE I diam clE (14.37) 

Fix E > 0 and select x, y E clE. By definition (14.25) there are two points x’, y’ E E 
such that both d (x, x’) < E and d ( y ,  y ’ )  < E which implies 
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As a result, we have 

diam cl& 5 2~ + diam& 

and since E is arbitrary it follows that 

diam cl& 5 diam& (14.38) 

The inequalities (14.37) and (14.38) give (14.36). 

K ,  2 K ,  so that diam K ,  2 diam K .  This contradicts that diam K,z + 0. 
(b) If K contains more than one point then diam K > 0. But for each n we have that 

n+co 
Theorem is proven. 0 

The next theorem explains the importance of fundamental sequence in the analysis of 
metric spaces. 

Theorem 14.8. 

(a)  Every convergent sequence (x,} given in a metric space X is a Cauchy sequence. 
(6)  If X is a compact metric space and i f  {x,,} is a Cauchy sequence in X then (x,,} 

(c) In R" a sequence converges if and only if it is a Cauchy sequence. 
converges to some point in X .  

Usually, claim (c)  is referred to as the Cauchy criterion. 

Proof. 

(a) If x,, + x then for any E > 0 there exists an integer n, such that d (x,, x) < F for 
all n 2 n,. So, d (x,, x , ~ )  5 d (x,!, x) + d (x, x,,) < 2~ if n,  m 2 n,. Thus ( x n }  is a 
Cauchy sequence. 

(b) Let {x,} be a Cauchy sequence and the set &,t, contains the points x,, , x,,+1, x,,+2, . . . 
Then by Theorem (14.7) and in view of (14.35) and (14.36) 

lim diam cl&,, = lim diam &,, = 0 
nC+m n,-+cc 

(14.39) 

Being a closed subset of the compact space X each cl is compact (see Proposition 
14.4). And since &, 2 &n+l then cl&, 2 cl&,+l. By Theorem (14.7b), there is a 
unique point x E X which lies in cl&,. The expression (14.39) means that for any 
E > 0 there exists an integer n,  such that diam cl&, < E if n 2 n,. Since x E cl&, 
then d (x, y )  < E for any y E cl &,, which is equivalent to the following: d (x, x,) < E 

if n 2 n, .  But this means that x, + x .  
(c) Let (x,} be a Cauchy sequence in Iw" and define &ne as in statement (b) but with 

x, E R" instead of x,. For some n,  we have that diam &,, < 1. The range of {xn} 
is the union of &, and the finite set {x,, x2, . . . , xn,-l}. Hence, {x,} is bounded and 
since every bounded subset in R" has a compact closure in R", the statement follows 
from statement (b). 

Theorem is proven. 0 

Definition 14.14. A metric space where each Cauchy sequence converges is said to be 
complete. 
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Example 14.4. 

1. By Theorem 14.8 it follows that all Euclidean spaces are complete. 

2. The space of all rational numbers with the metric d (x, y )  = Ix - yI is not complete. 

3. In Iw" any convergent sequence is  bounded but not any bounded sequence obligatory 
converges. 

There is a special case when bounded sequence obligatory converges. The next theorem 
specifies such sequences. 

Theorem 14.9. (Weierstrass theorem) Any monotonic sequence Is,} of real numbers, 
namely, when 

(a)  {s,~} is monotonically nondecreasing: s, I s,+~ ; 
(b) (s,) is monotonically nonincreasing: s,, ? s,+l; 

converges if and only if it is bounded. 

Proof. If (s,] converges it is bounded by Theorem 14.5, claim 3. Suppose that {s,] is 
bounded, namely, sups, = s i 30. Then s, 5 s and for every e 0 there exists an 
integer n, such that s - E 5 s,, 5 s for otherwise s - E would be an upper bound for (s,]. 
Since { s , ~ ]  increases and E is arbitrarily small this means s, -+ s. The case s, 2 s ,+~  is 
considered analogously. Theorem is proven. 

14.2.4.4 Upper and lower limits in W 
Definition 14.15. Let {s,} be a sequence of real numbers in R. 
( a )  I f for  every real M there exists an integer n M  such that s, 2 M for all n 2 n M  we 

then write 

p F =  (14.40) 

(b)  If for every real M there exists an integer nM such that s,, 5 M for all n 2 nhl we 
then write 

( c )  Define the upper limit of a sequence {s,,] as 

(14.41) 

lim sups, := lim sups, I n + m  *+m n>t 
(14.42) 

which may be treated as the biggest limit of all possible subsequences. 
( d )  Define the lower limit of a sequence (s,] as 

(14.43) 

which may be treated as a lowest limit of all possible subsequences. 
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The following theorem, whose proof is quite trivial, is often used in many practical 
problems. 

Theorem 14.10. Let {s,) and ( tn}  be two sequences of real numbers in R. Then the 
following properties hold: 
1. 

(14.44) lim inf s, 5 lim sups, I n+cc n+cc 

2. 

limsups, = 00 i f  sn -+ co 

liminf s, = -co i f  s, -+ -00 
(14.45) 

3. 

(14.46) 

4. 

(14.47) 

5. If lims, = s then 
n+oo 

(14.48) lim inf s, = lim sups, = s 
n+cc 

6. If s, 5 t,, for all n 2 M which is fixed then 

lim sups, I lim sup t, 
(14.49) 

Example 14.5. 

1. 

7t 
limsupsin ( T n )  = 1, 

?I'm 
lim inf sin (5.) = - I  

n - t w  

2.  

n n 
limsuptan ( y n )  = co, liminftan ( T n )  = --oo 

n+cc ,+a3 
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limsups, = 1, liminf s, = -1 
I1'cO n+m 

14.2.5 Continuity and function limits in metric spaces 

14.2.5. I Continuity and limits of functions 
Let X and Y be metric spaces and & c X, f maps E into y and p E X. 

Definition 14.16. 

(a )  We write 

(14.50) 

if there is a point q E Y such that for every E > 0 there exists a6 = 6 ( E ,  p )  > 0 for 
which d y  (f  (x), q )  < E for  all x E I for which d x  ( x ,  p )  i 6.  The symbols dy and 
d x  are referred to as the distance in X and y ,  respectively. Notice that f may be 
not defined at p since p may not belong to 1. 

(b)  a in addition, p E & and dp ( f  ( x ) ,  f ( p ) )  < E for every E > 0 and for all x E & 
for which d x  ( x ,  p )  < 6 = 6 ( E )  then f is said to be continuous at the point p .  

( c )  Iff is continuous at every point of E then f is said to be continuous on €. 
( d )  I f for  any x ,  y E & c X 

jdY (f ( X I ,  f ( Y ) >  5 LfdX ( x ,  Y ) ,  L,f < ocj j 
then f is said to be Lipschitz continuous on E. 

(14.51) 

Remark 14.3. I f  p is a limit point of € then f is continuous at the point p if and 
only if 

The proof of this result follows directly from the definition above. 
The following properties related to continuity are evidently fulfilled. 

Proposition 14.5. 

1. If for metric spaces X ,  Y, 2 the following mappings are defined: 

(14.52) 

f : € c X - + Y ,  g :  f ( & ) + 2  

and 
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then h is continuous at a point p E & if f is continuous at p and g is continuous 

2. I f  f : X -+R" and f (x) := (fi (x) , . . . , fn ( x ) )  then f is continuous if and only is 

3. I f  f ,  g : X +R" are continuous mappings then f + g and ( f ,  g )  are continuous 

4. A mapping f : X -+ Y is continuous on X if and only if f (V)  is open (closed} in 

at f (P). 

all f i  (x) ( i  = I,n) are continuous. 

too on X .  

X for every open (closed) set V c y. 

14.2.5.2 Continuity, conzpactness and connectedness 
Theorem 14.11. I f f  : X -+ Y is a continuous mapping of a compact metric space X 
into a metric space y then f ( X )  is compact. 

Prooj: Let {V,} be an open cover o f f  ( X ) .  By continuity o f f  and in view of Proposition 
14.5 it follows that each of the sets f - l  (V,) is open. By the compactness of X there are 
finitely many indices a l ,  . . . , an such that 

(14.53) 

n 
Since f ( f  -' ( E ) )  c & for any & c y it follows that (14.53) implies that f ( X )  c u Vm,.  

,= I  
This completes the proof. 0 

Corollary 44.2. If ,f : X -+ R" is a continuous mapping of a cornpact metric space X 
into R" then f ( X )  is closed and bounded, that is, it contains all its limit points and 
/ l f ( x ) l l  5 M < 00 for any x E X .  

Proof. It follows directly from Theorems 14.11 and 14.4. 0 

The next theorem is particularly important when f is real. 

Theorem 14.12. (Weierstrass theorem) r f  f : X -+ R" is a continuous mapping of a 
compact metric space X into R and 

M = supf (x), m = inf f (x) 
XEX x t x  

then there exist points .xM,  x, E X such thal 

This means that f attains its muximum (at XM) and its minimum (at x,,,), that is, 

M = supf (x) = maxf (x), m = inf f (x) = minf (x) 
X€X X€X X€X X€X 
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Proof. By Theorem 14.1 1 and its corollary it follows that ,f ( X )  is a closed and bounded 
set (say, E )  of real numbers. So, if M E 1 then M E clE. Suppose M $ E.  Then for 
any E > 0 there is a point y E E such that M - E < y < M ,  for otherwise ( M  - E )  

would be an upper bound. Thus y is a limit point of 1. Hence, y E clE proves the 
theorem. 0 

The next theorem deals with the continuity property for inverse continuous one-to-one 
mappings. 

Theorem 14.13. I f f  : X + y is a continuous one-to-one mapping of a compact metric 
space X into a metric space y then the inverse mapping j - ‘  : y + X defined by 

f- ’  ( f  ( x ) )  = x E x 
is a continuous mapping too. 

Proof. By Proposition 14.4, applied to f- ’  instead of f ,  one can see that it is sufficient 
to prove that f ( V )  is an open set of Y for any open set V c X .  Fixing a set V we may 
conclude that the complement V‘ of V is closed in X and, hence, by Proposition 14.5 it 
is a compact. As the result, f (VL) is a compact subset of y (14.1 1 )  and so, by Theorem 
14.2, it is closed in y .  Since f is one-to-one and onto, f (V)  is the complement of ,f’ (V) 

0 and, hence, it is open. This completes the proof. 

14.2.5.3 Uniform continuity 
Definition 14.17. Let f : X -+ Y be a mapping of a space X into a metric space Y .  
A mapping f is said to be 

(a)  uniformly continuous on X i f  for any E > 0 there exists S = 6 ( E )  > 0 such that 

(b) uniformly Lipschitz continuous on a ( x ,  z)-set E with respect to x ,  i f  there exists a 
d y  ( f  (x), f (x’j) < E for all x ,  x ’  E X for which d x  ( x ,  x ’ )  < 6.  

positive constant L t  < 00 such that 

dY (f ( x ,  Z j ,  f (x’, z ) )  I: L f d ,  ( x ,  x’) 

for all x ,  X I ,  z E E. 

Remark 14.4. The dijjerence between the concepts of continuity and uniform continuity 
concerns two aspects: 

(a)  uniform continuity is a property of a ,function on a set, whereas continuity is defined 
for a function in a single point; 

(b) 6 ,  participating in the definition (14.50) of continuity, is a function of E andapoint p ,  that 
is, 6 = 6 ( E ,  p ) ,  whereas S, participating in the definition (14.17) of the uniform conti- 
nuity, is a function of E only sewing for all points of a set (space) X ,  that is, S = S ( E j .  

Evidently, any uniformly continued function is continuous but not inverse. The next 
theorem shows when both concepts coincide. 

Theorem 14.14. I f f  : X + Y is a continuous mapping of a compact metric space X 
into a metric space y then f is uniformly continuous on X .  
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Proof. Continuity means that for any point p E X and any E > 0 we can associate a 
number 6 ( E ,  p )  such that 

Define the set 

Since p E J ( p )  the collection of all sets J ( p )  is an open cover of X and by the 
compactness of X there are a finite set of points p l ,  . . . , p ,  such that 

(14.55) x c 3 ( p i )  u ' . . u J ( P n )  

Put 

1 .  
2 

B ( E )  := - min (6 ( E ,  P I ) ,  . . . , 6  ( E ,  p,)] > 0 

Now let x E X satisfy the inequality dx ( x ,  p )  i 8 (8) .  By the compactness (namely, by 
(14.55)) there is an integer m (1 5 m 5 n )  such that p E J (p,) implies 

1 
dx (x, P m )  < 56 ( E ,  P,) 

and, as the result, 

which completes the proof. 0 

Remark 14.5. The alternative proof of this theorem may be obtained in the 
following manner: assuming that f is not uniformly continuous we conclude that there 
exists E > 0 and the sequences [x,}, {p,} on X such that dx (x,,, p,) + 0 but 
dy (f (xn),  f (p , ) )  > E.  The last is in contradiction with Theorem 14.3. 

n -+ 00 

Next examples show that compactness is essential in the hypotheses of the previous 
theorems. 

Example 14.6. If€ is a noncompact in Iw then 

1. There is a continuous function on E which is not bounded, for example, 

1 f (x) = - x - 1 '  
E := { x  E JR: 
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Here, E is a noncompact, f ( x )  is continuous on E,  but evidently unbounded. l t  is easy 
to check that it is not uniformly continuous. 

2. There exists a continuous and bounded function on & which has no maximum, for 
example, 

E := ( x  E R : 1x1 < l} 
1 

1 + ( x  - 1 ) 2 '  
f ( x )  = 

Evidently, 

supf ( x )  = 1 
X € &  

1 
2 -  

whereas - < f ( x )  < 1 and, hence, has no maximum on 1. 

14.2.5.4 Continuity of a family of functions: equicontinuity 
Definition 14.18. A family F of functions f ( x )  defined on some x set & is said to be 
equicontinuous i f for  any E > 0 there exists a6 = S ( E ) ,  the same for all class F ,  such 
that d x  ( x ,  y )  < 6 implies d y  (f  ( x ) ,  f ( y ) )  < E for all x ,  y E & and any f E F .  

The most frequently encountered equicontinuous families F occur when f E F are 
uniformly Lipschitz continuous on X 2 R" and there exists an L f  > 0 which is a 
Lipschitz constant for all f E F .  In this case 6 = 6 ( E )  can be chosen as 6 = E/L f. 

The following claim can be easily proven. 

Claim 14.5. I f a  sequence of continuous functions on a compact set X 
convergent on X ,  then it is uniformly bounded and equicontinuous. 

Rn is uniformly 

The next two assertions are usually referred to as the Ascoli-Arzeld's theorems (see 
the reference in Hartman (2002)). They will be used below for the analysis of ordinary 
differential equations. 

Theorem 14.15. (on the propagation, Ascoli-Arzelh, 1883-1895) Let, on a compact 
x-set of I, the sequence of functions ( f n  (x)}"=, ,~, , , ,  be equicontinuous and convergent on 
a dense subset of 1. Then there exists a subsequence { f n ,  ( x ) } ~ = , , ~ , , ,  which is uniformly 
convergent on E. 

Another version of the same fact is as follows. 

Theorem 14.16. (on the selection, Ascoli-Arzela, 1883-1895) Let, on a compact x-set 
of E c R", the sequence of functions { f n  ( x ) } ~ ~ , , ~ , , , ,  be uniformly bounded and equicon- 
tinuous. Then there exists a subsequence { fn, ( x ) } ~ , ~ , ~ , , , ,  which is uniformly conver- 
gent on E .  

Proof. Let us consider the set of all rational numbers R E .  Since R is countable, all of 
its elements can be designated by numbers, i.e., R = { r j }  ( j  = 1, . . .). The numerical 
vector-sequence (f,, ( r ~ ) l ~ = , , ~ , . , ,  is norm-bounded, say, 1 1  f n  (rl)II 5 M .  Hence, we can 
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choose a convergent sequence { fn, (r*)}k=l,2, , , ,  which is also bounded by the same M .  
Continuing this process we obtain a subsequence { f,, (r4)},,=l,2,,,, that converges in a 
point r4,  q = 1 ,2 , .  . . . Let f ,  := f,, ( r , , ) .  Show that the sequence { f,} is uniformly 
convergent on E to a continuous function f E c (I). In fact, { f,} converges in any point 
of R by the construction. To establish its convergence in any point of 8,  it is sufficient to 
show that for any fixed x E E the sequence { f, (x)} converges on itself. Since { f, (x)} 
is equicontinuous, for any E > 0 there exists 8 = 6 ( E )  such that for I(x - x’II < 6 and 
x, x’ E I there is / I f p  (x) - f, (x’)II < E .  Choose r,i such that //x - r l  / /  < 8 implies 
I /  f,, (x) - f, ( r j )  1 1  < E .  But the sequence { f, ( r j ) }  converges on itself. Hence, there is 
a number pa such that I l f ,  (x) - f,, (x’)II < E whenever p ,  p’ > po. So, 

Thus { f,, (x)} converges at each x E E .  It remains to prove that { f, (x)} converges 
uniformly on E and, therefore, its limit f is from C ( E ) .  Again, by the assumption on 
equicontinuity, one can cover the set E with the finite &set containing, say, 1-subsets. 
In each of them select rational numbers, say, rl , . . . , r l .  By the convergence of { f, (x)} 
there exists po such that I l f ,  (r,) - f,, ( r , )  1 1  < E whenever p ,  p’ > po,  so that 

where j is selected in such a way that r, belongs to the same 8-subset as x. Taking 
p’ + 00, this inequality implies I l f ,  (x) - f (x) l l  5 3~ for all x from the consid- 
ered 8-subset, but this means the uniform converges on { f ,  (x)} exactly. Theorem is 
proven. 0 

14.2.5.5 Connectedness 

we will discuss its relation with the continuity property of a function f .  
The definition of the connectedness of a set I has been given in Definition 14.7. Here 

Lemma 14.2. I f f  : X -+ y is a continuous mapping of a metric space X into a metric 
space y ,  and i f& is a connected subset of X ,  then f ( E )  is connected. 

Proof. On the contrary, assume that f ( E )  = A U B with nonempty sets A, B c Y such 
that AnB = 0. Put G = En f - ’  (A) and 3-1 = En j - ’  (B) .  Then E = 6 U 3.1 and both B 
and 3-1 are nonempty. Since A c cl A it follows that 6 cf- ’  (cl A) and f (c l6)  c cl A. 
Taking into account that f (3-1) = B and cl A n B = 0 we may conclude that 6 n 3-1 = 0. 
By the same argument we conclude that B n cl 3-1 = 121. Thus, 6 and 3.1 are separated 

0 which is impossible if E is connected. Lemma is proven. 

This theorem serves as an instrument to state the important result in R which is 
known as the Bolzano theorem which concerns a global property of real-valued functions 
continuous on a compact interval [a,  b] E R: if f ( a )  < 0 and f (b) > 0 then the graph of 
the function f (x) must cross the x-axis somewhere in between. But this theorem as well 
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as other results concerning the analysis of functions given on R" will be considered in 
detail below in Chapter 16. 

14.2.5.6 Homeomorphisms 
Definition 14.19. Let f ; S + 7 be a function mapping points from one metric 
space ( S ,  d s )  to another (7, d 7 )  such that it is one-to-one mapping or, in other words, 
f-' ; 7 + S exists. I f  additionally f is continuous on S and f- '  on 7 then such 
mapping f is called a topological mapping or homeomorphism, and the spaces (S ,  d s )  
and (f (S ) ,  d 7 )  are said to be homeomorphic. 

It is clear from this definition that if f is homeomorphic then f- '  is homeomorphic 
too. The important particular case of a homeomorphism is the so-called isometry, i.e., it 
is a one-to-one continuous mapping which preserves the metric, namely, which for all 
x ,  x' E S keeps the identity 

(14.56) 

14.2.6 The contraction principle and a fixed point theorem 

Definition 14.20. Let X be a metric space with a metric d .  I f c p  maps X into X and if 
there is a number c E [0, 1) such that 

(14.57) 

for all x ,  x' E X ,  then cp is said to be a contraction of X into X .  

Theorem 14.17. (The fixed point theorem) I f  X is a complete metric space and if 
cp is a contraction of X into X ,  then there exists one and only one point x E X 
such that 

lCP(x) = x l  (14.58) 

Proof. Pick xo E X arbitrarily and define the sequence { x n }  recursively by setting x,+~ = 
cp (x,,), n = 0 ,  1, . . . . Then, since q is a contraction, we have 

Taking m > n and in view of the triangle inequality, it follows that 

co
nt

ro
len

gin
ee

rs
.ir



274 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1 

Thus {x,) is a Cauchy sequence, and since X is a complete metric space, it should 
converge, that is, there exists lim x, := x. And, since cp is a contraction, it is continuous (in 
fact, uniformly continuous). Therefore cp (x) = lim cp (x,) = lim x, = x. The uniqueness 
follows from the following consideration. Assume that there exists another point y E X 
such that cp ( y )  = y .  Then by (14.57) it follows that d (x, y )  5 cd (cp (x), cp ( y ) )  = 

0 

n+cc 

n+cc n+cr 

cd (x, y )  which may only happen if d (x, y )  = 0 which proves the theorem. 

14.3 Summary 

The properties of sets which remain invariant under every topological mapping are 
usually called the topological properties. Thus properties of being open, closed, or com- 
pact are topological properties. 
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15.1 Naive interpretation 

15.1.1 What is the Riemann integration? 

It is well known from elementary calculus that to find the area of the region under the 
graph of a positive function f on the closed interval [a,  b] ,  one needs to subdivide the 
interval into a finite number of subintervals, say n, with the kth subinterval Axk and to 
consider the sums I," defined as 

(15.1) 

L I 

Such sum is suggested to be considered as an approximation of the area by means of 
rectangles (see Fig. 15.1). 

Making the successive subdivisions finer and finer, or, in other words, taking n + 00 

and if there exists some hope that these sums will tend to a limit I R  (f) then such sums 
will converge to a real value of the square of the area under consideration. This, roughly 

Fig. 15.1. Riemann's type of integration. 

215 
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Fig. 15.2. Lebesgue’s type of integration. 

speaking, is what is involved in Riemann’s definition of the definite integral J”:, f (x) d x  
which is studied in detail within the elementary calculus course. This type of integration 
is well defined for the class of continuous or partially continuous functions. 

15.1.2 What is the Lebesgue integration? 

If a function has some more complex structure and admits any discontinuity of a 
more complex nature then another generalizing integration method is required. One of 
such method is the Lebesgue integration. It corresponds to the following approximation 
scheme (see Fig. 15.2): 

r = l  
fo := inf f ( x )  < f i  < . . < f a  := sup f(x) 

mesk is the longitude of a11 intervals where 
x E [u . b] x ~ [ a , b ]  

(15.2) 

f k - 1  5 f (x) < f k  

If a limit Z L  of I,“ (when n + 00) exists it is called the Lebesgue integral of f ( x )  on 
[a,  b ]  and is denoted by Z L  ( f )  := sxt, f. It is closely related to a measure of a set. This 
chapter considers both integration schemes in detail and rigorously from a mathematical 
point of view. 

15.2 The Riemann-Stieltjes integral 

15.2.1 Riemann integral definition 

Let [a, b] be a given interval and a partition P,, of [u ,  b] be defined as a finite 
collection of points 
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We write 
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Axi :=xi - x i - l ,  i = 1 , .  . . , n 

Definition 15.1. Suppose f is a bounded real function defined on [a,  b] and 

Then 

and 

I n I 

I i=l I 

n 

I i = l  I 

are called the upper and lower Darboux sums, respectively. 

Definition 15.2. 

1. The upper Riemann integral I' ( f ) is defined as follows: 

(15.3) 

(15.4) 

(1 5.5) 

I I" ( f >  := lim sup sup u ( P ~ ,  f >  
n-rm P" 

(15.6) 

where sup is taken over all partitions P ,  of the interval [a ,  b]. 
p, 

2. The lower Riemann integral 1 ( f ) is defined as jollows: 

I' ( f )  := Iiminf inf L (P,,, f )  
n+oo P,, 

3. If 

then 

where inf is taken over all partitions P,, ofthe interval [a,  b]. 
P" 

the Riemann integral I (f  ), ofien written as 
h 

I R  (f) = / f ( x > d x  
x =u 

(15.7) 

is defined by 

(15.8) 
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Notice that for any partition P, we have 

min Mi := m i L (P,, . f)  5 U (P,,, f )  5 M : =  max Mi 
i=l ,  ..., n i = l ,  ..., n 

So, the numbers L (P,,, f )  and U ( P,, f )  form a bounded set and, hence, are correctly 
defined. The question of the integrability of f (when (15.8) holds) is a delicate question 
which will be discussed below. 

15.2.2 Definition of Riemann-Stieltjes integral 

We shall be working here with a compact set [a,  b] E IR and all functions will be 
assumed to be real-valued functions defined on [a,  b] .  Complex-valued functions will be 
considered below in Chapter 18. 

Let P,, := (a  = xo, X I .  . . . , x ,  = b }  be a partition of [a,  b] ,  t h  be a point within the 
interval [ x k p l ,  xk) and Aa, := a! (xk) - a! (xL-,)  where a! : R + IR is a real function 
defined on [a,  b] .  

Definition 15.3. 

1. 

2. 

3. 

4. 

5. 

A partition P' of [a,  b] is said to be finer than P (or a refinement of P )  if 

A sum of the form 

I I 

I k= 1 I 

(15.9) 

(15.10) 

is called a Riemann-Stieltjes sum o f f  with respect to a corresponding to a given 
partition P,. 
We say that f is integrable in the Riemann sense with respect to a on [a ,  b] and we 
will write f E R L ~ , ~ ]  (a)  if there exists a number IRpS having the following property: 
for  any E > 0 there exists a partition P, of [a,  b ]  such that for any partition P finer 
than P, and for any choice of the points tk E [xkPl,  xk) we have 

1 1s ( P ,  f ,  a )  - P - S (  < F I 
When such number I R-S exists, it is uniquely determined and is denoted by 

(15.11) 

I R - S  := ] f ( x ) d a  ( x )  
x=a 

(15.12) 

This is the Riemann-Stieltjes integral (or simply the Stieltjes integral) of f with 
respect to a! on [a,  b]. 
The functions f and a are referred to as the integrand and the integrator, respectively. 
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Remark 15.1. The letter x in (15.12) is a “dummy variable”, so it may be replaced by 
any other convenient symbol, for example, 

(15.13) 

Remark 15.2. By taking a (x) = x, the Riemann integral (15.8) is seen to be a special 
(partial) case of the Riemann-Stieltjes integral (15.12). 

15.2.3 Main properties of the Riemann-Stieltjes integral 

Theorem 15.1. (on linear properties) 

1. I f f ,  g E R [ a , h ]  ( a )  then for any cI ,  c2 E R 

and 

I x=a b h 

x=u x =a 

2. Zf f E R F ~ , ~ ]  (a )  and at the same time f E R [ u , b ]  (/3) then for any C I ,  c2 E IW 

and 

x=a x=u I 

(15.14) 

(15.15) 

(15.16) 

(15.17) 

Proof. It follows directly from the linear property for the Riemann-Stieltjes sums (15.10) 
0 S ( P ,  c ~ f  + c ~ g ,  a )  and S ( P ,  h ,  c ~ a  + CZB) .  
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Theorem 15.2. (on intervals summation) Assume that c E [a,  b]. If two of the three 
integrals in the next identity exist then the third one also exists and 

c h I 

Ix=a x=a x=c I 

(1 5.1 8) 

~ 

Proof. If P is a partition of [a,  b] and c E P then we may introduce the corresponding 
partitions of [a ,  c] and [c, b] ,  respectively, as follows: 

P' := P n [a,  c], P" := P n [c, b] 

Then by the linear property for the Riemann-Stieltjes sums (15.10) we have 

S ( P ,  f ,  a )  = s ( P ' ,  f ,  a )  + s (,"> f>  a )  

which implies the proof of the desired result. 

Corollary 15.1. 

1. I f a  < b and f E R [ a , b ]  ( a )  then 

x=b a =a 

whenever Sxta f ( x )  d a  (x) exists. 
2. 

f (x) d a  (x) = 0 

3. The identity (15.18) can be represented as 

Theorem 15.3. (on integration by parts) I f f  E R L ~ . ~ ]  ( a )  then 

1. 

(15.19) 

(15.20) 

(15.21) 

(15.22) 
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2. 

(15.23) 

b 
Proof. Since 

such that for every P‘ 2 P, we have 

f (x) da (x) exists then for every E > 0 there is a partition P, of [a,  b] 
x=a 

Then for an arbitrary ( P  2 P,) Riemann-Stieltjes sum it follows that 

n n 

S 

Define 

k = l  k=l  k=l  

Subtracting the last two equations we derive 

k=l  

Two sums in the right-hand side can be considered as a single one of the form S (P’ ,  f ,  a )  
where P’ is a partition of [a ,  b] obtained by taking the points x k  and tk  together. So, for 
such a partition it follows P‘ 2 P, and, hence, 

h, n 
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As the result, we obtain 

which is exactly the statement that JxLu a (x) d f  (x) exists and equals A - Jxto f (x) 
0 da! (x). The theorem is proven. 

Theorem 15.4. (on the change of variables) Let f E R i a , b ]  ( a )  and let g : IR -+ IR be 
a strictly monotonic increasing (or decreasing) function defined on the interval [c,  d ] ,  
that is, 

g (x) < g (x’) if x < x’ 

Assume that 

and 

are the composite functions defined for any x E [c, d ] .  Then 

h E R [ c , d ]  (B )  and 
x =u x=c 

or, equivalently, 

(15.24) 

(15.25) 

(15.26) 

(15.27) 

Proof. By strict monotonicity it follows that for every partition P,, := {yo, y l ,  . . . , y,} 
of [c, d ]  there corresponds one and only one partition P,: := (xo, XI, . . . , x,] of [a,  b] .  
In fact, 

P,’ =,g  (P,), P, = g-’ (PA) 
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and, moreover, any refinement of Pn produces a corresponding refinement of Pi and 
conversely. If Pn 2 P, ( F  > 0) then let us consider 

If putting t k  := g ( u k )  and xk := g ( y k )  we obtain PL 1 Pi for which 

Then 

since t k  E [xk, ~ k - ~ ) .  Therefore, 

which completes the proof of this theorem. 

Exercise 15.1. If f ,  f E R [ a , b ]  (a) and g, g2 E R[a.b] (a)  then 

(15.28) 
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(15.29) 

15.2.4 Different types of integrators 

15.2.4.1 DiJjcerentiable integrators 
Theorem 15.5. (on a reduction to the Riemann integral) Given f E R,n,h~ ( a )  assume 
that the integrator a (x) can be represented as 

l i !  a (x) = a’ ( t )  dt  ( 1 5.30) 
t=a 

where a’ ( t ) ,  called the derivative of a (x) at the point x E [a,  61, is a continuousfinction 
on [a ,  b]. Then 

I .  There exists the Riemann integral 

] f ( x > a . ( x ) d x  a 

2. The following identity holds 

Proof. For a partition P, of [a ,  b] define 

(15.31) co
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By continuity of a’ (x) it follows that 

Aak = a’ (d) Axk, v k  E [xk-l, xk] 

and that a’ (x) is uniformly continuous on [a ,  b ] ,  that is, for any E > 0 there exists 
S = 6 ( E )  > 0 such that 0 < Ix - x’l < 6 implies la’ (x) - a’ (x’)l < E .  Hence, 

1s (Pn, g ,  x) - s (Pn, f ,  a>l = c f (tk) [a’ (tk) - a’ (u ’ ) ]  Axk 
n ~ k:, n 

- < c I f  ( & > I  la’ ( t k )  - a‘ /& I  I E c I f  ( & ) I  IAXkI 5 EM (b  - a)  
k = l  k = l  

where M := sup f (x). On the other hand, since f E R L ~ , ~ ]  (a) ,  there exists a partition Pn 

finer than P, such that 
x E [ a ,  b] 

which leads to the following: 

The arbitrary of E implies (15.31) which completes the proof. cl 

15.2.4.2 Step functions 
If the integrator (Y (x) is a constant over the interval [a, b] then the integral 

Jab f (x) d a  (x) exists and is equal to zero for any partially continuous function f (x). How- 
ever, if a (x) is a constant except for a jump discontinuity at one point, then the integral 
Jab f (x) da (x) not obligatory exists, but if it does exist, its value need not be zero. The 
next theorem clarifies this situation. 

Theorem 15.6. (on a single jump integrator) Given a < c < b let us assume that 

(a )  the values a (a) ,  a (c)  and a (b)  are arbitrary; 
(6)  a (x) defned on [a,  b] is a step function, i.e., 

a ( a )  i f  a i x t c  
a ( b )  i f  c t x s b  a ( x )  = 
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( c )  f : R -+ R is defined on [a,  b] in such a way that at least one of the functions f 
or a is continuous from left at c (this means that there exists lim f (x) = f ( c )  or 

x+c-0  
lim a! (x) = a (c) )  and at least one is continuous from right at c. 

Then the integral Jab f (x) d a  (x) exists, that is, f E Rra,b] (a)  and 
s i c - 0  

(15.32) 

where A a  is the jump of the function a ( x )  at the point c. 

Remark 15.3. The result also holds i f c  = a provided that 

a ( c  - 0)  := a (c )  

and i fc  = b defining 

a ( C  + 0)  := a (b)  

if I f  (tk-1) - f (c)l < E and I f  ( t k )  - f (c)l < E which may be done by the corresponding 
0 partitioning of [a,  b] .  This proves the theorem. 

Next, let us consider a step function f (x) defined on [a ,  b] by a partition P, := 
{a = x0, XI, . . . , x, = b}  such that a (x) is a constant on each open subinterval ( x k - ] ,  x k )  
and has jumps 

Aak := a (xk + 0)  - a (xk - 0) ,  k = 2, . . . , n - 1 

ACX~ := (Y (XI + 0 )  - (XI) 

Ao~, := a (x,) - 01 (x, - 0 )  

Then the following theorem provides the connecting link between the Riemann-Stieltjes 
integral and finite sums depending on values of the integrator function jumps. 
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Theorem 15.7. (on multiple jumps) Ifafunction f defined on [a ,  b] in such a way that 
neither f nor a are discontinuous from the right or from the left at each jump point xk 
then Jab f (x) d a  (x) exists, that is, f E R I ~ , ~ ]  (a)  and 

(15.33) 

I I 

Proof. Evidently, by the additivity property (15.18) the integral Jab f (x) d a  (x) can be 
0 rewritten as a sum of integrals with a single jump that proves the theorem. 

Example 15.1. Denote by [x] the, so-called, greatest-integer function defined as the 
unique integer satisfving the inequality 

( 1 5.34) 

Then any finite sum xi=, ak can be represented as a Riemann-Stieltjes integral as 
follows: 

(1 5.35) 

f (x) = ak if x E ( k  - 1, k ] ,  f (0) = 0 

Example 15.2. (Euler’s summation formula) I f  f has a continuous derivative f ‘  (see 
(15.30)) on [a,  b] then 

(15.36) 

I f a  and b are integers then (15.36) becomes 

( 15.37) 
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Notice that (15.36) may be obtained using integration by part (15.23): 

15.2.4.3 Monotonically nondecreasing integrators 
When a is nondecreasing on [a,  b] ,  i.e., when a (x) 5 a (x’) if x 5 x’, the differences 

Aak which appear in the Riemann-Stieltjes integral are all nonnegative which plays 
a vital role in the development of the integration theory. For brevity, we will use the 
abbreviation 

I “a t on [a,  b]” I (15.38) 

to mean that a! (x) is nondecreasing on [a,  b] .  The following properties seem to be evident. 

Proposition 15.1. Assume a f on [a ,  b] and f ,  g E R [ u , b ]  (a). Then 

1. I f f  (x) 5 g (x) for all x E [a,  b]  we have 

2. Zf g (x) 1: 0 for all x E [a,  b]  it follows 

(15.39) 

(15.40) 

which can be obtained from (15.39) taking f (x) = 0; 
3. 

I I f  I E R [ a , h ]  (a )  1 (15.41) 

and 

(15.42) 
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which follows from the inequality 

I l f  (x)l - I f  (Y>II  5 I f  ( x >  - f (Y)l 

289 

4. 

5. 

(15.43) 

(15.44) 

which follows from the identity 

Proposition 15.2. (The Cauchy-Schwarz inequality) If f ,  . f 2 ,  g ,  g 2  E RI,,~,] (a )  and, 
in addition, (Y T on [u,  b] ,  then 

(15.45) 

Proof. It follows directly from (15.28) since the left-hand side of this identity is 
nonnegative. 0 

Proposition 15.3. Iff, g ,  f . g E R [ u , b l  (a),  both f and g are either nondecreasing or 
nonincreasing and (Y on [a ,  b], then 

(15.46) 

Proof. It follows directly from (15.29) since the left-hand side of this identity is 
nonnegative. 0 
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15.2.4.4 Integrators of bounded variation 
Definition 15.4. If Pn is a partition of a compact interval [a,  b] ,  Aak := a (xk) - 
a ( X k - 1 )  and there exists a positive number M such that 

I n  I 

1 k=l  I 
(15.47) 

for all partitions P, of the interval [a,  b],  then a is said to be of bounded variation on 

Lemma 15.1, Ifa is monotonic on [a,  b]  then it is of bounded variation on [a,  b]. 
[a,  bl. 

Proof. Let a be nondecreasing. Then Aak 2 0 for all k = 1, . . . , n and, hence, 

k=l k=l 

If f is nonincreasing then Aak 

k= 1 

Lemma is proven. 

5 0 and I Aak 1 = - Aax which gives 

0 

Lemma 15.2. If a is continuous on [a,  b] and if a’ exists and is bounded (say, 
sup la’ (x)l 5 M < co) then a is of bounded variation on [a,  b]. 

xc[a,h]  

Proof. Since Aak = a (&)-a (xk-1) = a’ (tk) (xk - ~ k - ~ )  where tk E (xk-1, xk) it follows 
that 

F M c (xk - xk-1) = M (b  - a )  < 00 

k= 1 

which completes the proof. 0 

Lemma 15.3. I f  a is of bounded variation on [a,  b] ,  say zizl ( AakI 5 M for all 
partitions of [a,  b], then a is bounded on [a ,  b], namely, 

Proof. For any x E (a ,  b), using the special partition P := [a ,  x ,  b} ,  we find 

(15.48) 
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which implies la! (x) - a! (a)l 5 M ,  or, equivalently, a! (x) 5 a! (a)  + M .  The same 
inequality is valid if x = a or x = b. Lemma is proven. 

To work more exactly with functions of bounded variations we need the following 
definition. 

Definition 15.5. For a function a! of bounded variation on [a,  b]  the number 

(15.49) 

(where sup is taken over all possible partitions of [a,  b] )  is culled the total variation of 
a! on the interval [a,  b]. 

The following properties of V, [a,  b] are evident: 

1. Since a! is of bounded variation the number V, [a,  b]  is finite; 
2. 

3. 

V, [a, b] = 0 

if and only if a (x) = const on [a ,  b ] ;  

4. 

5. 

A := sup Ip ( x ) l ,  B := sup la!(x)l 
x E [a  .bl x E [a. h]  

6. If c E ( a ,  b )  then 

I V, [u ,  b] = V, [a ,  c]  + V, [c ,  b ] J  

7 .  If x E ( a ,  b)  then the function 

(15.50) 

(15.51) 

( 1 5.52) 

(15.53) 

I v (x) := v, [a, x] 1 (15.54) 
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possesses the following properties: 

( 4  

V ( a )  = O  

(b) V ( x )  is a nondecreasing function on [a ,  b ] ;  
(c) [V (x) - a ( x ) ]  is a nondecreasing function on [a,  b ] ;  
(d) Any point of continuity of a ( x )  is a point of continuity of V (x) and inversely. 

bounded variations. 
The following theorem gives the simple and elegant characterization of functions of 

Theorem 15.8. (on a difference of increasing functions) Let a be defined on [a,  b].  
Then a is of bounded variation on [a ,  b ]  if and only if a can be represented as the 
difference of two nondecreasing functions, namely, if and only i f  

I a (x) = a+ (x) - a- (XI  I 
I I 

(15.55) 

where a+ f on [a ,  b ]  and a- f on [a,  b]. 

Proof. Define a+ (x) = V ( x ) ,  where V ( x )  is the function (15.54), and a- ( x )  := 
V ( x )  - a (x ) .  By the statement 7(b-c) of the previous claim it follows that both a+ (x) 

0 and a- (x) are nondecreasing which proves the theorem. 

Corollary 15.2. If a ( x )  is continuous at the point x, then a+ ( x )  and a- (x) are also 
continuous at x. 

Example 15.3. Consider the function (see Fig. 15.3) 

0 1 2 3 4 

Fig. 15.3. The function of bounded variation. 
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0 i f O l X < l  
3 if l 5 x < 2  
I if 2 5 x < 3  i 2 if 3 1 x 5 4  

a (x) := 

Define (see Fig. 15.4) 

3 if l i x t 2  
4 i f 2 ( X < 3  

a+ (x) := 

( 6  if 3 5 x 5 4  

and (see Fig. 15.5) 

0 i f O ( X ( 2  
3 if 3 5 x < 3  
4 if 3 5 x 5 4  

Then, it is clear that a (x) = a+ (x) - a- (x). 

Corollary 15.3. (Royden 1968) For any function a (x) of bounded variation on [a ,  b] 
and for each point c E ( a ,  b) there exist lim a (x) and lim a (x). 

x-tr-0 X+C+O 

Corollary 15.4. (Royden 1968) Any monotone function and, hence, any function of 
bounded variation on [a,  b] can have only a countable number of discontinuities. 

Fig. 15.4. The first nondecreasing function. 
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1 2 3 4 

Fig. 15.5. The second nondecreasing function. 

Proof. It follows from the fact that for any monotone function a (x) the number of points 
where 

la (x + 0) - a  (x - 0)l > l/s, 

S, := C [Auk]-, [ X I -  := min (0; x )  
n 

k=1 

for any partition P, is finite. 0 

Corollary 15.5. (Royden 1968) rfa ( x )  is a function of bounded variation on [a ,  b] ,  then 
a’ ( x )  exists for almost all x E [a,  b],  that is, a (x) is differentiable almost everywhere 
on [a ,  b] .  

15.3 The Lebesgue-Stieltjes integral 

The purpose of this section is to present the fundamental concepts of the Lebesgue 
theory of measure and integration and to prove some crucial theorems in a rather general 
setting without obscuring the main lines of the developments by a mass of comparatively 
trivial detail. 

15.3. I Algebras, o-algebras and additive functions of sets 

Definition 15.6. A family 5 of subsets of !2 is called an algebra (or a ring) generated 
by $2, i f for any finite n < 00 and for any subsets Ai E $2 (i = 1, . . . , n )  

1. 
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2. 

3. 

(15.57) 

4. for any A E Q 

Definition 15.7. A system F of subsets of Q is called an a-algebra (or a O-ring) gen- 
erated by Q, if 
1. it is algebra; 
2. for any sequences of subsets {Ai), A; E F 

00 I 

(15.60) 

Definition 15.8. 

1. A set function Cp : F + R defined for every A E 3 is said to be additive if An B = 0 
and B E F implies 

2. A set function 6 : 3 -+ R defined for every A from a o-algebra F is said to be 
countably additive if Ai n A, = 0 and Ai , Aj E F implies 

; #; 

(15.62) 

We shall also assume that 

the range of Cp does not contain both (fcm) and (-ca), for if it did the right-hand side 

we exclude functions whose only value is (+m) or (--oo). 
of (15.61) could become meaningless; 

Assuming, in addition, for an additive Cp that 

(a> 

(15.63) 
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(b) for all A E 3 

p G q  
the following properties are easily verified. 

Proposition 15.4. 

1. If A, n A, = 0 and A,, A, E 3 then 
LfJ  

(15.64) 

2. For any A,, A2 E .F we have 

3. If A1 c A2 E 3 then 

4. I f B  c A E 3 and 4 (a) < 00 then 

(15.65) 

(15.66) 

(15.67) 

( 15.68) 

For countably additive 4 the following result holds. 

Theorem 15.9. Suppose 4 is countably additive on a-algebra 3 and A, E 3 
(i = 1,2,  . . .), A1 c d2 c . . ., A := u:, Ai E F. Then, as n -+ 00 

(15.69) 

Proof. Define Bl := A1 and B, := A, - A,-I (n = 2,3,  . . .). Then 

15.3.2 Measure theory 

This subsection deals with construction of the, so-called, Lebesgue measure which 
plays the key role in the definition of the Lebesgue-Stieltjes integral. 
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15.3.2.1 Intervals 
Definition 15.9. Intervals in p-dimensional Euclidean space IWP are defined as follows: 

1. the closed interval 

[a, b] := {x := {x,, . . . , x,,} : ai 5 xi 5 hi ( i  = m)} 
2. the semi-open interval 

or 

( a ,  b] := {x := { X I , .  . . , x,} : ai < xi 5 bi ( i  = m)} 
3. the open interval 

( a ,  b) := {x := { X I , .  . . , x , }  : ai < xi < b; ( i  = m)} 
The possibility that ai = bi for any value of i is not ruled out; in particular, the empty 
set is included among the intervals. If A is a union of a finite number of intervals it is 
called an elementary set. 

15.3.2.2 Additive set ,functions 
Definition 15.10. If I is an interval, we define 

P 

m ( I )  := (b; - ai )  
i=l 

We let & denote the family of elementary subsets of IW'' 

At this point, the following properties should be easily verified. 

Proposition 15.5. 

1. & is algebra (ring), but not a o-algebra; 
2. I f  A E & then A is a union of a finite number of disjoint intervals; 
3. I f  A E & then m (A) i s  well defined by (15.71) on &; 
4. m is additive on €. 

(15.70) 

(1 5.71) 

Remark 15.4. I f  p = 1,2, 3 then m is length, area and volume, respectively. 
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Definition 15.11. A nonnegative additive set function @ : & -+ R defined on & is said 
to be regular i f f o r  every A E & and every 6 > 0 there exist sets F, G E E such that F 
is closed, G is open, F c A c 6 and 

(15.72) 

Example 15.4. 

1. If A = I is an interval then m (15.70) is regular. 

2. For p = 1 let 01 : JR + R be a nondecreasing function possibly having discontinuity 
points. Put 

p ( [ a ,  b ] )  := 01 ( b  + 0 )  - (Y (a - 0 )  
p ( [ a ,  b ) )  := 01 ( b  - 0 )  - 0 1  (a  - 0 )  
p ( ( a ,  b ] )  := a ( b  + 0 )  - 0 1  (a  + 0 )  
~ . r .  ( ( a ,  b ) )  := 01 ( b  - 0 )  - 01 (a + 0 )  

(15.73) 

p is regular on &. 

15.3.2.3 Countably additive set functions 

a countably additive set function on a-algebra containing &. 
Our next objective is to show that every regular set function on & can be extended to 

Definition 15.12. Define 

I M 

(15.74) 

where Uz, A, is a countable covering of & c Rp by open elementary sets A,,, that is, 
& c Up”=, A,, p is additive, regular, nonnegative and finite on &, and inf being taken 
over all countable coverings of & by open elementary set. p’ ( E )  is called the outer 
measure of E corresponding to p. 

Theorem 15.10. 

1. For every A E & 

2. The following subadditivity property holds: if E = Uz, Ei then 

(15.75) 

L i = l  

(15.76) 
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Proof. 

1. Choose A E & and E > 0. By the regularity of p, A is contained in an open elementary 
set B such that p (B) 5 p (A) + E .  Since p* (A) 5 p (G) and arbitrarity it follows that 

By the definition (15.74) there is a sequence {An] of open elementary sets whose 
union contains A such that xzl p (A,) 5 p* (A) + E .  The regularity of p shows 
also that A contains a closed elementary set such that p (F) 2 p (d) - E .  Since F is 
a compact we have F c dlU . . . UdN for some N .  Hence, 

5 CP (An) + E I p* (A) + 2~ 
(1 5.78) 

which, in conjunction with (15.77), proves (15.75). 
2. Suppose E = UF, Ei and p* ( E n )  < 00 for all n. Given E > 0 there are covering sets 

{Ank}k=1,2 , , , ,  of En by open elementary sets such that xrl p (Ank) 5 p* (E,)  + 2P.5 
which leads to the inequality 

n = l  k=I n=l 
m 

n=l n = l  

and (15.76) follows. In the excluded case when p* ( E n )  = 00 for some n,  (15.76) 
trivially holds. Theorem is proven. 

0 

15.3.2.4 p-measurable sets 
Definition 15.13. 

1. For any A, B c Rl’ let us define the set S (A, B), called the symmetric difference of 
A and B, as 

2. The distance function (metric) is defined as follows 

(15.79) 

(15.80) 
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3. We will write An -+ A when n -+ 00 if 

1 limd (An, A) = 0 ~ 

n+m 
(15.81) 

4. I f  there is a sequence {An) of elementary sets such that A,, -+ A, we say that A is 
finitely p-measurable and write 

(15.82) 

5. I f  A is the union of a countable collection of finitely p-measurable sets, we say that 
A is p-measurable and write 

I A ~ ~ ( I L ) I  

Some properties of S (A, B)  are summarized in the following claim. 

Claim 15.1. 

1. 

I S (A, A) = ia 1 
2. 

I S (A, B )  = S (B ,  A) I 
3. 

I S (A, B )  c S (A, C) U S (C, B)  1 
which follows from 

( A  - B)  c ( A  - C )  U (C - B)  
( B  - A) c (C - A) U ( B  - C) 

4. 

(15.83) 

(15.84) 

(15.85) 

(15.86) 

(15.87) 

which follows from 
(AI U A21 - (6 U c (A1 - BI) U (A  - B2) 

s ( A l n d 2 , B 1 n B , ) = S ( A ~ u ~ , B ~ u ~ )  c 
S (4, q) U S (4, B;) = S (AI, BI) U S (A, ad 
where A" := RP - A is  the complement of A 

A1 - A2 = A, n 4 
The next properties of d (A, B) can be checked directly from the definition (15.80). 
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Claim 15.2. 

1. 

301 

2. 

ld (A.B)=d(B,A) /  

3. 

4. 

( 15.88) 

(15.89) 

(1 5.90) 

(15.91) 

which follows from (15.87); 
5. 

6. If d (A, 23) = 0 this does not imply A = B. By this property d (A, B )  is “quasi- 
metric”. 

The next theorem will enable us to obtain the desired extension of the measure p 
(15.73). 

Theorem 15.11. (The main theorem on a measure extension) 3n (p), 
(15.83), is a n-algebra (O-ring) and p* (15.74) is countably additive on !M (p). 

defined by  

Proof. 

(a) Let A, B E %TIf, ,  (w).  Choose {A,}, such that A,, B, E E and A, -+ A, 
B, -+ B. Then by (15.91) and (15.92) A, U B, + A U B, A, n BFl * A n  B, 
A, - B,, -+ A - B, p* (A,) -+ p* (A).  Also, p* (A)  < 00 since d (A,, A) -+ 0. 
This implies that !7?lfi, (p )  is an algebra (ring). By (15.66) we have p (A,) + p (a,) 
= p(A,UB,) + p(A,nB,). Letting n +. 00 we obtain p*(A) + p * ( B )  = 
p* ( A  U B)  + p* ( A  n B) .  If A n  13 = o then p* ( A  n B )  = 0. So, p* is additive on 
f M f , n  (PI.  
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(b) Let A E M(p). Then A can be represented as the union of countable collection 
A, with A:, E M(p). Define A! = of disjoint sets of m,,,, (p)  and for A = 

A', and 

Then A = u,"=, A,, is the required representation. By the subadditivity property 
(15.76) p* (A) 5 C,"=, p* (A,). On the other hand, 

and, by the additivity of p*on Mfi, (p ) ,  we have 

which implies 

(1 5.93) 
i = l  

Suppose p* (A) is finite. Put B, := A1 U A2 U . - .  U A,,. Then 

as n --+ 00. This means that Bfl + A and, since B, E MjLn (p), it is easily seen that 
A E Mfr ,  (p). So, we have thus shown that A E Mf,,, (p) if A E M (p )  and p* (A) 
< 00. Now it is evident that p* is countably additive on M (p). For if A = U,"l, A, 
where {A,} is a sequence of disjoint sets of M (p )  we have just shown that (15.93) 
holds if p* (Afl) < 00 for any n = 1,2 ,  . . ., and, in other cases, it looks trivial. 

(c) Finally, we have to show that M (p) is o-algebra (o-ring). If A,, E M (p ) ,  it is clear 
that UEl A, E M (p) .  Suppose A, B E M (p)  where A = U,"=, Al ,  B = B, and 
A,, B,? E Mfln (p).  Then the identity A, nB = U z l  (A,, fl B,)  implies that (A, n B )  
E M (p).  In view of p* (A,, n B )  4 p* ( A d  < 00 we have (An n B)  E Mj,,, (LL) and, 
hence, (A, - B )  E Mf,, (p) ,  and ( A  - B )  E M (p)  since ( A  - 8) = uzl (A, - a). 

Theorem is proven. 0 

So, now we may replace p* (A) by p (A) if A E M (p) and thus p, originally defined 
only on &, is extended to a countable additive set function defined on the a-algebra 
M (P). 
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Corollary 15.6. 

(a )  I f  A is open, then A E m(p) since for every open set in RP there is the union of a 

(b)  Every closed set A is also in Dl (p )  which follows from previous comment by taking 

(c)  gd E IJn (p) and E > 0 there exist a closed set 3 and an open set G such that 

countable collection of open intervals. 

complements. 

-1 (1 5.94) 

and 

(15.95) 

Now we are ready to give the main definition of this section. 

Definition 15.14. 

(a)  Such extended set function p* (15.74) is called a countably additive measure. 
(b)  The special case p = m (see (15.74)) is called the Lebesgue measure on RP. 

15.3.2.5 Borel sets 
Definition 15.15. & is said to be a Borel set if & can be obtained by a countable 
number of operations, starting from open sets, each operation consisting of taking unions, 
intersections, or complements. 

The difference between a Borel set and a-algebra (ring) (15.7) is that R in the case of 

The following facts take place for Borel sets. 
a Borel set must be an open set. 

Claim 15.3. 

1. The collection '21 of all Borel sets in RP is a a-algebra (ring). In fact, it is the smallest 

2.  I f  A E !lJI (p), there exist Borel sets 3 and G such that 3 c A c 6 and 
a-algebra (ring) which contains all open sets, that is, i f& E '21 then & E 9X (p). 

i p(G - A) = p (A  - 3) = 0 ~ 
(15.96) 

This follows from (15.95) if we take E = l / n  and let n -+ 00. 

set of measure zero. 

zero (that is, the sets & f o r  which p* (&) = 0)  may be different for different pS. 

3. If A = 3 U (A  - 3) one can see that A E tM (p)  is the union of a Borel set and a 

4. Borel sets are p-measurable for every p (for details see below), but the sets of measure 

5. For every p the sets of measure zero from a-algebra (ring). 
6. In the case of the Lebesgue measure (p = m)  every countable set has measure zero. 

But there are uncountable (in fact, perfect) sets of measure zero (see Rudin (1976) 
Chapter 11 with the Cantor set as an example). 
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15.3.3 Measurable spaces and functions 

15.3.3.1 Measurable spaces 

any metric space. 
Consider X which is a set, not necessarily a subset, of a Euclidean space, or indeed of 

Definition 15.16. 

X is said to be a measure space if there exist a a-algebra (ring) 9.Jl of subsets of X 
(which are called measurable sets) and a nonnegative countable additive function y 
(which is called a measure) defined on 5%. 
IJ in addition, X E 9.Jl then X is called a measurable space. 

Example 15.5. 

I .  Take X = IW", then M is the collection of all Lebesgue measurable subsets of Iwl' and 
y is the Lebesgue measure. 

2. Let X be the set of all positive integers. Then M is the collection of all subsets of X 
and y ( E )  is the number of elements of E. 

3. Another example is provided by probability theory where events are considered as sets 
and the corresponding probabiliQ of the occurrence of events is a countably additive 
set function. 

15.3.3.2 Measurable functions 
Definition 15.17. Let f : X -+ IR be a function, defined on the measurable space X ,  
with values in R. The function f is said to be measurable if the set {x I f (x) > a }  is 
measirrable for every real a ,  that is, when for any a E R 

Example 15.6. If X = R P  with M = M (y) defined in (15.83) then any continuous func- 
tion f is measurable, since (15.97) is an open set. 

Lemma 15.4. Each of the following four conditions implies the other three: 

I .  for ever), real a 

(x 1 f ( x )  > a }  is measurable 

2. for every real a 

{x 1 f ( x )  2 a )  is measurable 

3. for every real a 

(15.98) 

(15.99) 

(15.100) (x 1 f (x) < a }  is measurable 
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4. for every real a 

(x I f ( x )  5 a }  is measurable 

305 

(15.101) 

Proof. The relations 

being applied successfully demonstrate that (15.15) implies (15.99), (1 5.99) implies 
(15.100), (15.100) implies (15.101) and (15.101) implies (15.15). Lemma is proven. 0 

Lemma 15.5. I f f  is measurable then I f  I is measurable. 

Proof. It follows from the relation 

and the previous lemma. 

Theorem 15.12. Let [ f n }  be a sequence of measurable functions. 
Then 

and 

h(x) := lim sup f n  (x) 
n 

are measurable too. 

Proof. Indeed, 

and 

h ( x )  = lim sup f n  (x) = inf supfn (x) 
m+w n>m n>m 

which implies the desired result. 
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Corollary 15.7. 

(a}  I f f  and g are measurable then max { f ,  g ]  and min { f, g }  are measurable. 
fb} !f 

f + := max { f ,  01 and f - := - min { f ,  0) (1 5.102) 

then it follows that f + and f -  are measurable. 
(c} The limit of a convergent sequence of measurable functions is measurable. 

Theorem 15.13. Let f and g be measurable real-valued functions defined on X ,  and let 
F be real and continuous on R2. Put 

Then h is measurable and, in particular, ( f  + g )  and ( f  . g )  are measurable. 

Proof. Define 9, := { (u ,  v)  I F ( u ,  v)  > a } .  Then 9, is an open subset of R2 which can 
be represented as G,, = u,"=, {x I f n ( x )  > a ]  where 

I,, := { ( u ,  v)  I a,, < u < bn, C,  < v < dn}  

Since the set 

is measurable, it follows that the set 

is measurable too. Hence, the same is true for the set 

which completes the proof. 0 

Summary 15.1. 

(a) Summing up, we may say that all ordinary operations of analysis, including limit 
operations, being applied to measurable functions, lead to measurable functions as 
well. In other words, all functions that are ordinarily met with are measurable. But this 
is, however, only a rough statement since, for example, thefunction h ( x )  = f ( g ( x ) ) ,  
where f is measurable and g is continuous, is not necessarily measurable. 
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(b) The concrete measure has not been mentioned in the discussions above. In fact, the 
class of measurablefinctions on X depends only on the a-algebra (ring) 1)Jz. That's 
why we may speak of Borel-measurable junctions on RP, that is, offunctions for 
which the set {x I f (x) > a }  is always a Bore1 set, without reference to any particular 
measure. 

15.3.4 The Lebesgue-Stieltjes integration 

15.3.4.1 Simple functions 
Definition 15.18. 

1. I f  the range of a real-valued finetion s : X -+ R, defined on X ,  is finite, we say that 

2. Define the characteristic function x E  of a set E c X as follows: 
s is a simple function. 

(15.103) 

It is evident that if the range of a simple function s consists of the distinct numbers 
c, ,  c2, . . . , c, then s can be represented as a finite linear combination of characteristic 
functions, namely, 

I i = l  I 
I I 

where 

(1 5.104) 

(15.105) 

It is clear by the construction that s is measurable if and only if the sets ri ( i  = 1, 2, . . . n )  
are measurable. 

The next theorem shows that any function can be approximated by simple functions. 

Theorem 15.14. Let f : X --+ R be a real function on X .  There exists a sequence 
{s,} of simple functions such that s, ( x )  -+ f ( x )  as n --+ 00 for every x E X .  I f  f is 
measurable, { s n }  can be chosen to be a sequence of measurablefinctions. Zf f 2 0, {s,} 
can be chosen as a monotonically nondecreasing sequence. 

Proof. For f 2 0 define 

€",; (x) := {x  I ( i  - 1)/2" 5 f (x) 5 i/2") 

3 n  := {x I f ( x )  L n l  

for i = 1,2, . . . , n2" and n = I ,  2,  . . . . Put 

"2" (i - 1) 
2" s, (x) := c - XE,,, (x) + nx3" (x) 

i= l  
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It is not difficult to see that such constructed s,, (x) converges to f .  In the general case, let 

if = f + - f - l  (1 5.106) 

and apply the preceding construction for f + and f -. Theorem is proven. 0 

Remark 15.5. The sequence s, (x) converges monotonically to f i f f  is bounded. 

15.3.4.2 Integration 

(ring) of measurable sets and 
Here we shall define integration on a measurable space X in which M is the  algebra 

is the measure. 

Definition 15.19. (Integral of a nonnegative function) Suppose 

is measurable, and suppose & c M. Define 

I i = l  I 

I f f  is measurable and nonnegative, we define 

( 15.107) 

( 15.108) 

(1 5.109) 

where the sup is taken over all measurable simple functions such that 0 5 s (x) 5 f (x) 
for all x E X .  The left-hand side member of (15.109) is called the Lebesgue-Stieltjes 
(or, simply, Lebesgue) integral o f f  with respect to measure p over the set E. It should 
be noted that integrals may have the value (+ co). 

Claim 15.4. It is easy to verifji that 

s d p  = I E  (s) ( 1 5.1 10) 

Definition 15.20. (Integral of a measurable function) Let f be measurable. Consider 
two Lebesgue integrals 

(15.1 11) 
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where f +  and f -  are defined by (15.102). I f  at least one of the integrals in (15.111) is 
finite, we may define 

(15.1 12) 

I f  both integrals in (15.102) are finite then the left-hand side in (15.112) is finite too, and 
we say that f is integrable (or summable) on E in the Lebesgue sense with respect to 
the measure p. We write 

I .f E C (P)  on I (15.113) 

Proposition 15.6. The following properties of the Lebesgue integral are evident: 

1. I f f  is measurable and bounded on E and if p ( E )  < m, then f E C (p) on 1. 
2. I f a  I f (x) 5 b on E and i f p ( E )  < co, then 

3. I f f ,  g E C ( p )  on E and i f f  (x) I g (x) for all x E E, then 

4. I f f  E L (p )  on E, then cf  E C (p)  for  every finite constant c, and 

(15.1 14) 

(15.1 15) 

(1 5.1 16) 

5. r f  p ( E )  = 0 and f is measurable, then 

6. f f f  E C ( p )  on E, A E 9-X and A c E, then f E C ( p )  on A. 

Theorem 15.15. 

(a )  Suppose f is measurable and nonnegative on X .  For A E 9-X define 

(1 5.1 17) 

(1 5.1 18) 

Then r$ is countably additive on ?Zl. 
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( b )  The same conclusion is valid iff E C (p) on X. 

Proof. Claim (b) follows from (a) if we write f = f' - f- and apply (a) to f' and f -. 
To prove (a) we have to show that #J (A) can be represented as r$ (A) = c,"=, #J (A,) 
if An E m, A, n Aj = 0 if i f j and A = u,"==, A,*. This can be done if the simple 

0 function approximation is applied that proves (a). 

Corollary 15.8. If A E 1)31, B c A and p ( A  - B )  = 0, then 

(15.119) 

that is, the sets of measure zero are negligible in integration. 

Proof. It follows from Remark (15.1 17) and the representation A = B U (A  - B).  0 

Lemma 15.6. I f f  E C (p) on E then I f  I E C (1) on E, and 

(1 5.120) 

Proof. Let us represent E as E = A U B where f (x) 2 0 on A and f ( x )  < 0 on B. 
Then by Theorem 15.15 it follows that 

so that I f 1  E C (p) on E .  Since f _< I f  1 and -f I I f 1  one can see that 

which proves (15.120). 0 

Lemma 15.7. Suppose f is measurable on E, I f  1 5 g and g E C (p) on E. Then 
f E C (p) on 1. 

Proof. It follows from the inequalities f+ 5 g and f - 5 g. 
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15.3.5 The “almost everywhere I’ concept 

Definition 15.21. Let us write 

i f  the set { x  I f ( x )  + g (x)) n E has measure zero: 

(15.121) 

(1 5.122) 

Proposition 15.7. It is evident that on & 

1. f - f ;  
2. f - g implies g - .f; 
3. f - g and g - h imply f - h which means that the relation I ‘-” is an equivalence 

4. I f f  - g o n E t h e n  
relation. 

(15.123) 

provided the integrals exist for every A c E. 

Definition 15.22. (The “almost everywhere” concept) I f  some property P holds for 
every x E I - A and i fp (A)  = 0 then it is customary to say that P holds for  almost all 
x E I, or that P holds almost everywhere on E. 

This concept depends, of course, on the particular measure to be in use. In the literature, 
unless something is said to the contrary, it usually refers to the Lebesgue measure. 

Example 15.7. I f f  E C (p )  on & it is clear that f ( x )  must be finite almost everywhere 
on E. 

15.3.5.1 Essential supremum and infimum 
Definition 15.23. Let us consider a measurable function f : R -+ IR defined on X .  

(a)  The essential supremum “ess sup f ’’ o f f  (sometimes denoted also by “vrai max f ”) 
is defined as tollows: 

( 15.124) 

such that 

(1 5.125) 
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(b)  The essential infimum “ess inf f ” of ,f (sometimes denoted also by “vrai min f ”) 
is defined as follows: 

ess inf .f := sup c ccl ( 15. I 26) 

such that 

(15.127) 

Example 15.8. Let 11s consider the.function f : IR + R defined on [0, 2x1 as 

5 i f x = o  
sinx if x E (0,n) 

sinx if x E (n, 2 n )  
3 i f x = 2 n  

We have 

sup ,f (x) = max f (x) = 5 
X€[0.2rrl X€[O,Zrr] 

esssupf (x) = 1 
.rcz[0,2n] 

inf f (x) = min f ( x )  = -2 
*€[0.27r] xt[O,Znj  

ess min,f (x) = -I  
xe[0,2n] 

15.3.6 “Atomic” measures and &function 

15.3.6. I The “delta-function” 
Definition 15.24. The “Dirac delta-function” 6 (x - xo) (which is not in realit?? a func- 
tion, but a distribution or a measure) is defined as follows: 

(1 5.128) 

where the integral is intended in Riemann sense and f : IR -+ R is any continuous 
filmtion. 

15.3.6.2 “Atomic” measures 

{c , ,  . . . , cn)  in the points (x,, . . . , xn}, that is, 
Let us  consider a continuous function f : R -+ R which takes some fixed values 
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Consider also the sum 

I I 1 s := c c i p i ,  p i 2 0  ( i = 1 ,  . . .  (1 5.130) 
i=l 

In fact, if some multipliers p i  are negative, one can rewrite the product c j p i  as 

obtaining the previous case with nonnegative weights. 

be represented as 
Using (15.128) and in view of the additivity property of the Riemann integral, S can 

s := 2 cipi  = J f (x) 2 pis (x - Xi) dx  
i=l 

-@2 
i=l 

(15.13 1) 

Let us consider also the step function a (x) defined on [a,  b] by a partition P, := 
{a  = xo, x1, . . . , x, = b} such that a! (x) is a constant on each open subinterval ( x k - ,  , xk) 
and has jumps 

Pk := (Xk + 0) - a (xk - o), k = 2, . . . , ~1 - 1 
Pl := a! (XI + 0) - a! ( X I )  

Pn := a (x,) - a (x, - 0) 
( 15.132) 

Then, using the Riemann-Stieltjes integral representation (15.12) with the integrator a! (x) 
of a step-function type, we can represent (15.131) as follows: 

I m h I 
S := 2 ~ j p i  = / f (x) 2 pis (x - xi)  dx = f ( x )  da! (x) 1 (15.133) 

. 1  

-m i = l  a I I = ,  

So, symbolically, we can write 

I n I 1 d a  (x) := kiS (x - x i )  dx I 
l i=l I 

and 

0 if x E (xk-1, xk) a’ (x) := pis (x - xi) if x = xk 

(15.134) 

(1 5.135) 

associating a (x) with the “measure” of points xi E [a,  x) supplied by the weights F ~ .  In 
fact, a (x) is the atomic measure concentrated in the isolated points {XI, . . . , x,,}. 
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15.4 Summary 

Based on the presentations above, we may conclude that any sum S (1 5.130) with finite 
or infinite n (if it exists) can be represented by the Riemann-Stieltjes integral (15.133) 
with the integrator a ( x )  as the step-function (15.132). The same sum S (15.130) can be 
symbolically treated as the Lebesgue integral with the measure p (x) = a (x) referred to 
as the “atomic” measure concentrated in the points {x,, . . . , xn} with the corresponding 
nonnegative weights {p j ,  . . . , pn) .  
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16.1 Derivatives 

16.1. I Basic definitions and properties 

16. I .  1.1 Definition of a derivative 
Definition 16.1. Let f : S --f R be defined as a closed interval S c R and assume that 
f is continuous at the point c E S. Then 

(a )  f is said to have a right-hand derivative at c if the right-hand limit 

(16.1) 

exists as a finite value, or if the limit is (+m) or (-00). This limit will be denoted 
.as f; (c) ; 

(b)  f is said to have a left-hand derivative at c if the right-hand limit 

(16.2) 

exists as afinite value, or i f the limit is (+m) or (-GO). This limit will be denoted 
as fl (c )  ; 

(c)  f is said to have a derivative f ’  (c )  (or be differentiable) at c if 

(16.3) 

and I f ’  (c)l < 00; we say that f ‘  (c)  = +00 (or -a) ifboth the right- and left-hand 
derivatives at c are +oo (or -00); 

(d)  f is said to be dqferentiable on S if it is diflerentiable at each point c E S. 

315 
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1’6. I .  1.2 Differentiability and continuity 
Lemma 16.1. Let f be defined on [a ,  b]. I f f  is  differentiable at a point c E [a ,  b], then 
f is continuous at c. 

Proof By the definition (16.3), for any E > 0 there exists 6 = 6 (6) such that the 
inequality Ix - C I  5 S implies 

which is equivalent to the following inequalities 

Hence, I f  (x) - f (c)l 5 E ,  if take 6 := c /  [ I f ’  (c>l + E ]  which proves the lemma. 0 

Remark 16.1. The coizverse of Lemma I6 . I  is not true. To see this it is sufficient to 
construct the continuous function which fails to be differential at an isolated point. For 
example, f’ ( x )  = Ix I which is not differentiable at the point x = 0 since 

The next claim describes the usual formulas for differentiation of the sum, difference, 
product, quotient of two functions and function composition. 

Claim 16.1. Suppose .f and g are defined on [a,  b ]  and are differentiable at a point 
x E [u ,  b]. Then 

(a )  .for any a. B 

1 I 
(16.4) 

(16.6) 

Pro06 
(a) is evident by the property (16.3). For h = f g  we have 

h 0 )  - h (x) = f (f) [g  ( t )  - g <x>l+ g (x> [f 0 )  - f ( X > l  
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If we divide by (t - x) and notice that f ( t )  -+ f (x) as t --+ x (b) follows. Taking 
h = f / g ,  (c) follows from the identity 

Claim 16.2. (The chain rule) Suppose f is defined on [a,  b]  and g is defined on an 
interval, containing the range of f ,  and g is differentiable at the point f (x). Then, the 
function h (x) = g ( f  (x)) is differentiable at the point x and 

Pro05 Let y = f (x). By the derivative definition, we have 

which leads to the following identity 

or, if t # x 

Letting t + x in view of the continuity of f (x) we obtain (16.7). 0 

16.1.1.3 Higher order derivatives 
Definition 16.2. I f f  has a derivative on an interval, and i f f '  is itself differentiable, we 
denote the derivative of f by f" and call f" the second derivative of f .  Continuing in 
this manner, namely, 

we obtain thefinctions f ', f ' I ,  . . . , f ( n - l ) ,  f 
vious one. 

each of which is the derivative of the pre- 

In order for f ( " )  (x) to exist at a point x, f @ - ' )  ( t )  must exist in a neighborhood of x 
(or in a one-side neighborhood, if x is an endpoint of the interval on which f is defined). 
Sure, since f ( + l )  ( t )  must exist in a neighborhood of x ,  f("-*) ( t )  must be differentiable 
in that neighborhood. 
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16.1.1.4 Rolle’s and generalized mean-value theorems 
Theorem 16.1. (Rolle) Assume that f has a derivative (jinite or infinite) at each point 
of an open interval (a ,  b),  and assume that f is continuous at both endpoints a and b. 
If f ( a )  = f (b )  then there exists at least one interior point c at which f ‘  (c) = 0. 

Prooj Suppose that f ‘ (x) # 0 in (a ,  b )  and show that we obtain a contradiction. Indeed, 
since f is continuous on a compact set [a ,  b ] ,  it attains its maximum M and its minimum 
m somewhere in [a,  b] .  But, by the assumption, neither extreme value attains an interior 
point (otherwise f ’  would vanish there). Since f ( a )  = f (b )  it follows that M = m ,  and 
hence f is constant on [a ,  b] which contradicts the assumption that f ‘  (x) # 0 on ( a ,  b) .  

0 Therefore, f ’  (c)  = 0 at least at one point in (a ,  b). 

This theorem serves as an instrument for proving the next important result. 

Theorem 16.2. (The generalized mean-value theorem) Let f and g be two functions 
each having a derivative (finite or infinite) at each point of an open interval (a ,  b)  and 
each is continuous at the endpoints a and b. Assume also that there is no interior point 
x at which both f ’(x) and g’(x) are infinite. Then for some interior point c E (a ,  b) the 
following identity holds 

(1 6.9) 

Then h’ ( x )  is finite if both f ’(x) and g’(x) are finite and h’ ( x )  is infinite if one of f’(x) 
or g’(x) is infinite. Also, h (x) is continuous at the endpoints so that 

By Rolle’s theorem 16.1 we have that h’ ( c )  for some interior point which proves the 
assertion. 0 

Corollary 16.1. (The mean-value theorem) Let f be a function having a derivative 
(finite or infinite) at each point of an open interval ( a ,  b )  and is continuous at the 
endpoints a and b. Then there exists a point c E (a ,  b) such that 

Prooj It is sufficient to take g (x) = x in (16.9). 

(16.10) 

0 

16.1.1.5 Taylor’s formula with remainder 
Theorem 16.3. (Taylor) Suppose f is a real function on [a,  b],  n is a positive integer, 
f is continuous on [a,  b] ,  f ( n )  ( t )  exists for every t E (a ,  b). Let x and c be distinct 
points of [a ,  b], and define 

n-1 1 k=O 

P ( t )  := c - 
k !  

(16.11) 

co
nt

ro
len

gin
ee

rs
.ir



Selected topics of real analysis 319 

Then there exists a point 8 between x and c such that 

(16.12) 

Proof Let M be the number defined by 

f ( x )  = P ( x )  + M (x - c)" 

and put 

g ( t )  := f ( t )  - P ( t )  - M ( t  - c)",  t E [a ,  b] (16.13) 

We have to show that n ! M  = f ( " ' ( 8 )  for some 8 E ( x , c ) .  By (16.11) and (16.13) it 
follows that 

Hence to complete the proof we have to show that g(") ( 8 )  = 0 for some 8 E ( x ,  c) .  
The choice of M ,  which we have done above, shows that g (x) = 0, so that g' ( X I )  = 0 
for some x, E (x, c )  by the mean-value theorem 16.1. Since g' ( c )  = 0, we may conclude 
similarly that g" (x2) = 0 for some x2 E ( X I ,  c) .  After n steps we arrive at the conclu- 
sion that g(") (x,) = 0 for some x, E ( ~ " - 1 ,  c) ,  that is, between x and c. Theorem is 
proven. 0 

Remark 16.2. For n = 1 Taylor's formula (16.12) is just the mean-value theorem 16.1. 

16.1.2 Derivative of multivariable functions 

Definition 16.3. Let f : R" -+ IR be a real function mapping an open set & c R" 
into R. 

E R" and some x E R" there exists the limit - 
(1 6.14) 

a 
3 X i  

then - f (x) (sometimes denoted also as Di f (x)) is called the partial derivative of 
the function f (x) at the point x. 
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a 
ax, 

2. If there exist the partial derivatives - f (x) of thefimction f (x) at the point x for 
all i = I ,  . . . , n, then the vector 

(16.15) 

a 
ax (often denoted also as - f (x)) is called the gradient of the function f (x) at the 

point x. 
3. If for some u E R" and some x E R" there exists a vector a E R" such that 

(16.16) 

then the number aTu (often denoted also as D, f ( x ) )  is called the directional deriva- 
tive of the function f (x) in the direction u. 

Remark 16.3. In fact, the vector a in (16.16) is the gradient V f (x), that is, a = V f (x) 
and, therefore, 

Indeed, any u E R" can be represented as u = XI'=, u,e'. Taking uJ  = we obtain 

f (x + tu> - f (x> -aTu = 
t t 

f (x + t u )  - f (x) 

a 
axj 

which, according to the definition (16.14), implies the identity a; = - f (x) that 
proves (16.17). 

16.1.2.1 Mixed partial derivatives 
Definition 16.4. We call the function 

(16. IS) 

the second order ik-partial derivative of the function f (x) at point x. Higher order 
partial derivatives are similarly defined. 

The following example shows that in general 
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Example 16.1. Let us consider the function 

Then one has 

a i f  x 2 + y 2  > o  
-f (x, Y) = ax 

i f  x = y = O  

a 
ax 

Hence, - f (0, y )  = - y  and 

a2  
-f (0, y>  = -1 ayax 

On the other hand, 

f (x, 0) = 1. So, we see that which implies - f (x, 0)  = x and - 
a a 2  

a Y  axay 

a 2  a 2  
ayax axay  -1 = - f ( O , O )  $ - f ( 0 , O )  = 1 

It is not so difficult to prove the following result (see Theorem 12.13 in Apostol 
(1974)). 

f (x, y )  exist in a Theorem 16.4. If both partial derivatives - f (x, y )  and - 

neighborhood of the point (x, y )  and both are continuous at this point, then 

a2  a 2  

ayax axay 

a 
aY 

Corollary 16.2. A differential [ P (x, y )  dx  + Q (x, y )  dy] ,  where - P (x, y )  and 

- Q (x, y )  exist and are continuous, can be represented as a complete differential of 

some function f (x, y) ,  namely, 

a 
ax 

(1 6.19) 
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if and only if 

(16.20) 

ProoJ: 

(a) Necessity. If df ( x ,  y )  is a complete differential satisfying (16.19) then 

a a 
d f ( x , y ) =  - - f ( X , Y ) d X +  - - f ( X , Y ) d Y  

ax aY 

= P ( x , y ) d x + Q ( x , y ) d y  

and, hence, 

a a 
aY ax 

But, by the condition of this corollary, both derivatives - P (x, y )  and - Q (x, y )  

exist and are continuous. So, by Theorem 16.4, 

(b) Sufiiciency. Suppose (16.20) holds a 
P (x, Y )  = -f (x, Y )  and Q (x, Y )  ax 

which gives 

and there exists a function f (x, y )  such that 
= -f (x, y ) .  If so, one has 

a 
aY 

This means that any function f (x, y ) ,  for which (16.21) holds, exists which completes 
the proof. 0 

16.1.2.2 Multivariable mean-value theorem 
Theorem 16.5. Suppose that f : R" -+ R is differentiable at each point of an open 
convex set € c E%". Denote by L (x, y )  C I the line segment joining two points x, y E R", 
namely, 

L (x, y )  := { t x  + (1 - t )  y I t E [O, 1]} (16.22) 
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Then for  any x ,  y E R" there exists a point z E C ( x ,  y )  such that 

(16.23) 

Proof. Let u := y - x. Since & is open and L (x, y )  G &, then there is a 6 > 0 such that 
x + tu E & for some t E ( -8 ,  1 + 8 ) .  Define on (-8, 1 + 6) the real function F ( t )  by the 
relation F ( t )  := f ( x  + t u ) .  Then F ( t )  is differentiable on ( -8 ,  1 + 8) and by (16.16) 
for any t E (-8, 1 + 6) 

By the usual mean-value theorem 16.1, we have 

or, equivalently, 

which proves the theorem. 0 

16.1.2.3 Taylor's formula 
Theorem 16.6. Assume that f and all its partial (mixed) derivatives of order less than 
m are differentiable at each point of an open set S c R". If x and y are two points 
of S such that L ( x ,  y )  c S ( L  (x, y )  is defined by (16.22)), then there exists a point 
z E C (x, y )  such that 

(16.24) 

Prooj Define g ( t )  := f (x + t ( y  - x ) ) .  Then f ( y )  - f (x) = g  (1) - g (0). By applying 
the one-dimensional Taylor formula (16.1 2) we obtain 

m-' 1 1 
g (1) - g (0) = c $k' (0) + -$"' (01, 6 E (0, 1) m. 

k= 1 

Applying the chain rule (see Claim 16.2) we obtain the result. 0 
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16.1.2.4 Lemma on a finite increment 
Lemma 16.2. (on a finite increment) I f f  is dizerentiable in open set S c Iw” and its 
gradient V f (x) satisfies the Lipschitz condition on S,  that is, for all x, y E S there 
exists a positive constant LV such that 

then for all x, y E S the following inequality holds 

(16.25) 

ProoJ: It follows from the identities 

1 ( V f  (x + t ( y  - X I > .  y - x ) d t  = d[f (x + t ( y  - x))] 
r=O 1 

t=O 

Taking the module of both parts and applying the Cauchy-Schwartz inequality, we get 

Lemma is proven. 
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16.1.3 Inverse function theorem 

Theorem 16.7. (on the inverse function) Suppose f is  a continuously differentiable 

mapping from an open set E c R" into R", the matrix - f ( x )  := 
ax 1 1  a:k l l i  , k = i , . . . , n  

is invertible in a point x = a E E and f ( a )  = b. Then 
(a)  there exist open sets U and V in R" such that a E U ,  b E V ,  f is one-to-one on 

a 
- A  ( x )  

U and 

If ( U > = V l  (16.26) 

(b )  iff -' is the inverse off (which exists by (a)), defned on V by  

/ f - ' ( f ( x ) ) = x ,  X E U j  (1 6.27) 

then f -' is continuously di3erentiable on V .  

Proof. 
(a) Denote A := - f ( a )  and choose h so that 

a 
ax 

2h IIA-'l/ = 1 (16.28) 

a 
where 11A-I 1 1  := d m .  Since - f ( x )  is continuous in a ,  there 

exists a ball U c E,  with center in a ,  such that for all x E U 
ax 

(16.29) 

Let us associate to each point y E R" the function vOr defined by 

vv (x) := x + A-' (Y - f ( X I )  (16.30) 

Note that y = f ( x )  if and only if x is a fixed point of vpy. (16.28) and (16.29) imply 

Hence, by the mean-value theorem 16.5 it follows that 
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which means, by Theorem 14.17, that py (x) has at most one fixed point in 2.4. So, 

y = f (x) for at most one point x E U .  And, since -f (x) is invertible in U ,  we 
conclude that f is one-to-one in U .  Next, put f (U) = V and pick yo E V .  Then 
yo = f (xg) for some xo E 24. Let I3 be an open ball with the center in xo and 
radius r > 0, so small that its closure lies in U .  Let us show that y E V whenever 
IIy - yo11 < hr .  Fix y such that IJy - yo)oil < hr .  By (16.30) we have 

a 
ax 

If x E B, then it follows from (16.31) that 

Hence, q) (x) E I3. Note that (16.31) also holds if x', x" E B. Thus py (x) is a 
contraction of B into B. Being a closed subset of R", B is complete. Then by the 
fixed-point theorem 14.17 we conclude that pDV (x) has a fixed point x E a. For this 
x it follows that f (x) = y .  Thus y E f (a) c f (U)  = V which proves (a). 

(b) Pick y E V and y + z E V .  Then there exist x E U and x + h E U so that y = f (x) 
and y + z = f (x + h) .  So, 

vy (X + h )  - qy (x) = h + A-l [f (x) - f (X + h ) ]  = h - A-'z 

By (16.3 1) we have 

which, by the inequality Ila - bJI 2 llall - Ilbll, implies 

a 
Since - f (x) has an inverse on 24, say T, we get 

an 

(16.32) 
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which in view of (16.32) implies 

As z +' 0, (16.32) shows that h -+ 0 and therefore the right-hand side of the last 

inequality tends to zero which is true of the left. This proves that -g ( y )  = T .  But 

T is chosen to be the inverse of - f (x) = - f (g ( y ) ) .  Thus 

a 
ax a a 

ax ax 

( 16.33) 

a 
ax for y E V .  But both g and - f (x) are locally continuous which together with 

(16.33) implies that g is continuously differentiable on V .  
Theorem is proven. 

Summary 16.1. The inverse function theorem 16.7 states, roughly speaking, that a 
continuous differentiable mapping f ( x )  is invertible in a neighborhood of any point x 

at which the linear transformation - f (x) is invertible. 
a 

ax 

Corollary 16.3. The system of n equations 

yi = f i  (XI, . . . , x,), i = 1, . . . , n 

a 
ax 

can be solved for (x,, . . . , x,) in terms of ( y l ,  . . . , y,) if - f (x) is invertible in a 
neighborhood of the point x = (XI, . . . , x"). 

16.1.4 Implicit function theorem 

For x E R" and y E R" let us consider the extended vector z := ( x T ,  yT)T E 
Then any linear transformation A : R"i-m + R" can be represented as 

A Z  = [ A ,  A?] (;) = A& + A v y  

Then the following result seems to be obvious. 

Lemma 16.3. (A linear version) If A, is invertible, then for every y E R" there exists 
a unique x E R" such that 

(16.34) 
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This x can be calculated as 

The theorem given below represents the, so-called, implicit function theorem for nonlinear 
mappings. 

Theorem 16.8. (The implicit function theorem) Let f be a continuously diflerentiable 
mapping of an open set & c Rntm into R" such that 

-1 (16.36) 

a a 
32 ax 

,for some point f := ( i T ,  j T ) T  E &. Denote A := 7 f (2) and assume that A, := - f (i) 
is invertible. Then there exist open sets U c Rn+" and W c B" with f E U and j E W ,  
having the following properties: 
1. To every y E W there exists a unique x such that 

z =  (;) E U  and f ( x , y ) = O  (16.37) 

2. I f x  is defined to be g ( y ) ,  then g is continuously dcfSerentiable on W ,  g ( y )  = x ,  for 
any y E W 

(16.38) 

and 

(16.39) 

a 
where A ,  := - f (i). 

a y  

Prooj For z E & define 

F (x, y) := (':I) 

a 
az 

Then F is a continuously differentiable mapping of & into I@"'*. Show now that - F (2) 
is an invertible element in IFF+". Indeed, since f (2) = 0, we have 
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a 
az  

where r ( h ,  k )  is a remainder that occurs in the definition of A = - f (i). Again, since 

(f (.? + h ,  j + k ) )  
k 

F (.? + h ,  j + k )  - F (.?,j) = 

d 
It is seen that - F (2) is one-to-one and hence it is invertible. So, the inverse function 
theorem can therefore be applied to F that proves (1). To prove (2) define g (y)  for 

y E W so that @ ( y )  := ( :)) E U and (16.38) holds. Then F (g  (y) ,  y) = 

and - @ (y) k = [ ;gJy) I) . In view of the identity f (@ ( y ) )  = 0 the chain rule 

shows that 

az 

('1) 
a 
aY 

Thus 

which gives 

This completes the proof. 

Example 16.2. Let 

and.?= ( 0  l)T, j =  ( 3  2 7). Then 

2 3  1 -4 0 
A x =  [-6 111 [ 2  0 -I] 

Notice that det A,  = 20 + 0 and hence A, is invertible and x in a neighborhood o j i ,  j 
can be represented as a function of y ,  that is, x = g (y). 

co
nt

ro
len

gin
ee

rs
.ir



330 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1 

16.1.5 Vector and matrix differential calculus 

16.1.5. I Differentiation of scalar functions with respect to a vector 
Assuming that x, y E R", P E W"", A E R""", the direct calculation shows that 

a a - (xTy) = - (yTx) = y ax ax 
(16.40) 

a a 
- (Px) = P T ,  - (xTPy) = P y  
ax ax 

(16.41) 

a a 
- (YTPX) = PTy ,  
ax 

- ( X T P X )  = (P + P T ) ,  
ax 

and - ( x T P x )  = 2Px only when p = P T  
a 

ax 

a 
ax T 
- (Ax) = A 

a X 
- IIxlI2 = -, x # 0 ax IIX 112 

a 
- (x 8 v> = e 8 y = col (Inxn @ y )  ax 

e := (1, 1, . . . , 

16.1.5.2 Differentiation of scalarfun!ctions with respect to a matrix 
For the matrices A ,  B and C the direct calculation implies 

a 
-tr (A) = A 
a A  

(16.42) 

(16.43) 

(1 6.44) 

(16.45) 

(16.46) 

a a 
-tr (BAC) = BTCT,  --tr(BATC) = CB (16.47) a A  d A  

a a 
-tr (ABAT) = ABT + AB, 
a A  a A  

-tr (ABA) = ATBT + B T A T  (16.48) 

a 
-tr (BACA) = CTATBT + BTATCT 
a A  
a 

-tr(BACAT) = BAC + BTACT 
a A  

(16.49) 
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a 
-tr ( A T A )  = 2A 
aA 

a 
-tr (BATAC)= ACB + ABTCT 
aA 

-tr ( B A A T C )  = C B A  + BTCTA 
aA 
a 

a a -tr(BATABT) = 2ABTB,  
aA aA 

- t r (BAATBT)  = 2 B T B A  

a a -tr ( B T  ( A T A ) 2  B )  = -tr (BTAT (AAT) A B )  
aA aA 

= 2A (ATA) BTB + 2ABTB (ATA)  

a 
-tr (exp ( A ) )  = exp ( A )  aA 

a 
- det (BAC)  = det (BAC)  (A-I)' 
aA 

k-1 -tr a ( A k )  = k (A" ' )T ,  -tr a ( B A k )  = (A'BAk-'- ')T 
aA aA 

i=O 

a 
-tr (BA- 'C)  = - (A- 'CBAp' )T  
aA 

a 
- logdet ( A )  = - (AT)- '  
aA 

a a 
- det ( A T )  = - det ( A )  = (AT)-' det ( A )  
aA i3A 

a a 
- det ( A k )  = - [det (A) lk  
aA aA 

a 
= k [det - det ( A )  

aA 

33 1 

(16.50) 

(16.51) 

(16.52) 

(16.53) 

(1 6.54) 

(16.55) 

(16.56) 

(16.57) 

(16.58) 

(1 6.59) 

(16.60) 1 
= k [det (A)lkp1 (AT)-' det ( A )  = k (AT)-' det ( A k )  
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16.1.6 Nabla operator in three-dimensional space 

Definition 16.5. Define 

1. the differential nabla operator V or gradient, acting to a differentiable function 
cp : R3 + R',  by the,followitig formula 

(16.61) 

2. the differentiable operator div (divergence), acting to a differentiable function 
f : R3 + ps", by the following formula 

3. the diflerentiable operator rot (rotor), acting to a differentiable function f : R3 + R', 
by the following formula 

where (i, j, k) is the orthogonal basis in R'. 
Remember some important properties of the scalar ( a ,  b )  and the vector product [a,  b] of 
the vectors a = (ax,  a y ,  a z )  and b = (bx ,  b,, bz)  in R' which are defined by 

(16.63) 
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and 

It is necessary to check that 

(a, b) = (b,  a )  

( a ,  b) = 0 if a i b 

(a ,  b + C )  = (a, b)  + ( a ,  C )  

and 

(16.64) 

(16.65) 

(16.66) 

Notice also that the operators div and rot, using the definitions above, can be represented 
in the following manner 

div (D = (V, q) 
rot 40 = [V,  401 

Applying rules (16.65) and (16.66) one can prove that 

div (af + Bg) = a div f + B div g 
U , B E R  

(16.67) 

(16.68) 

( 1 6.69) 
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rot rot f = [V, [V, f ] ]  

= V (0, f )  - (V, V) f = grad div f - Af 
(16.71) 

16.2 On Riemann-Stieltjes integrals 

16.2.1 The necessary condition for existence of Riemann-Stieltjes integrals 

Here we will examine the following statement: when a is of bounded variation on 
[a ,  b] ,  continuity of f is sufficient for  the existence of the Riemann-Stieltjes inte- 
grul~xh_cz f (x) d a  (x)? We conclude that: continuity of f throughout [a,  b ]  is by no 
means necessary, however! The next theorem shows that common discontinuities (from 
the right or from the left) should be avoided if the integral sx’, f (x) d a  (x) is to exist. 
Define 

1=1  

mi := inf { f (x) : x E [ x i - ,  , x i ] }  

(16.72) 

which coincide with the upper and lower Darboux sums, respectively, (see (15.4) and 
(15.5)) for the case a ( x )  = x. 

Theorem 16.9. (The necessary condition) Assume that a t on [a ,  b] and c E ( a ,  b).  
Assume further that both f and a are discontinuous simultaneously from the right at 
x = c, that is, assume that there exists E > 0 such that for every 6 > 0 there are values 
of x and y within the interval ( c ,  c + 6 )  for which 

Then the integral s,”=, f (x) d a  (x) cannot exist. The .integral also fails to exist i f f  and 
a are discontinuous simultaneously from the left at x = c. 
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Proog Let P,, be a partition of [a,  b] containing the point c as a point of subdivision. 
Then one has 

If the ith interval has c as its left endpoint then 

since each term in (16.73) is nonnegative. If c is a common discontinuity point from the 
right, we may assume that the point x, is chosen in such a way that [a, (xi) - ai ( c ) ]  1 E .  

Moreover, by the assumptions of the theorem (Mi - m,)  2 E .  So, 

But by the definition (15.1 1) of the Riemann-Stieltjes integral there exists n such that 

and, hence, 

which is in contradiction with (16.74). If c is a common discontinuity from the left the 
0 argument is similar. Theorem is proven. 

16.2.2 The sufficient conditions for existence of Riemann-Stieltjes integrals 

Theorem 16.10. (First sufficient (Riemann’s) condition) Assume that a .T on [a ,  b]. 
If for any E > 0 there exists a partition P, of [a,  b] such that P,, is finer than P, implies 

(16.75) 

In view of (16.75) this means that S (Pn,  f, a )  has a limit when n -+ 00 which, by the 
0 definition (15.1 l), is the Riemann-Stieltjes integral. Theorem is proven. 
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Theorem 16.11. (Second sufficient condition) Iff is continuous on [a,  b ]  and a is of 
bounded variation on [a,  b],  then f E R , a , b ~  (a).  

Proofi Since by (15.55) any a of bounded variation can be represented as a (x) = 
af (x) - a- (x) (where a+ f on [a ,  b ]  and a- t on [ a ,  b ] ) ,  it suffices to prove the 
theorem when a f on [a ,  b ]  with a ( a )  < a (b ) .  Continuity of f on [a ,  b ]  implies 
uniform continuity, so that if E > 0 is given, we can find 6 = 6 ( E )  > 0 such that 
Ix - Y /  < 6 implies I f  (x) - f (y)1 < &/A where A = 2 [a ( b )  - a ( a ) ] .  If P, is 
a partition with the biggest interval less than 6, then any partition P, finer than P, 
gives 

M ,  - m, 5 & / A  (16.76) 

since 

Multiplying (16.76) by AaL and summing, we obtain 

So, Riemann's condition (16.75) holds. Theorem is proven. 

Corollary 16.4. For the special case of the Riemann integral when a (x) = x Theorem 
16.11 together with (15.23) state that each of the following conditions is sufficient for 
the existence of the Riemann integral s,"=, f (x) dx:  
1. f is continuous on [a ,  b]; 
2. f is of bounded variation on [a,  b]. 

The following theorem represents the criterion (the necessary and sufficient condition) 
for the Riemann integrability. 

Theorem 16.12. (Lebesgue's criterion for integrability) Let .f be defined and bounded 
on [a ,  b] .  Then it is the Riemann integrable on [a ,  b] ,  which is  f E RC.,~] (x), ifand only 
i f f  is continuous almost everywhere on [a.  b].  

Prooj NecessiQ can be proven by contradiction assuming that the set of discontinuity 
has a nonzero measure and demonstrating that in this case f is not integrable. SufSiciency 
can be proven by demonstrating that Riemann's condition (16.75) (when a (x) = x) is 
satisfied assuming that the discontinuity points have measure zero. The detailed proof 

0 can be found in Apostol (1974). 
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16.2.3 Mean-value theorems 

Although integrals occur in a wide variety of problems (including control), there 
are relatively few cases when the explicit value of the integral can be obtained. How- 
ever, it is often sufficient to have an estimate for the integral rather than its exact 
value. The mean-value theorems of this subsection are especially useful in making such 
estimates. 

Theorem 16.13. (First mean-value theorem) Assume that f E R [ a , b ~  (a )  with a f on 
[ a ,  b]. Denote 

M := sup f ( x ) ,  m := inf f ( x )  
x ~ [ u , b l  I E [ a ,  b ]  

Then there exists a real number c E [m, M ]  such that 

f ( x )  d a  ( x )  = c d a  ( x )  = c [a (b)  - (a)] 
x=a 1 

x=n 

(16.77) 

Pro05 If a = b both sides of (16.77) are zero and the result holds trivially. Assume that 
a (a)  < a (b). By (16.72) we have 

which proves (16.77). Theorem is proven. 0 

Remark 16.4. Evidently, i f f  is continuous on [a,  b]  then there exists xo E [a ,  b] such 
that c = f ( ~ 0 ) .  

Theorem 16.14. (Second mean-value theorem) Assume that a (x) is continuous on 
[a ,  b] and f f on [a,  b]. Then there exists a point xo E [a ,  b] such that 

I I x=a x =a 

Pro05 Integrating by parts (see (15.23)) implies 

(16.78) 

1 f (JC) d a  (x> = f (b )  a (b)  - f (a) a (a) - 
x=u x=a 
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Applying (16.77) to the integral on the right-hand side of the last identity we have 

which is the statement we set out to prove. 0 

Corollary 16.5. (The Riemann integrals’case) Let g be continuous on [a ,  b]  and f f 
on [a ,  b]. Then 
1. there exists a point xo E [a ,  b] such that 

I 1 x=a x=a 

(16.79) 

where A 5 f (a + 0) and B >_ f ( b  - 0); 

(16.79) which gives 
2. Bonnet’s theorem holds, namely, ~ in addition, f (x) >_ 0 on [a ,  b]  then A = 0 in 

(16.80) 

16.2.4 The integral as a function of the interval 

Theorem 16.15. Let a : R + R be of bounded variation on [a ,  b]  and f E R , a , b ~  (a).  
For any x E [a,  b]  define 

F (x) := ] f (s) d a  (s) 
s=a 

(16.81) 

Then 

(a )  F is of bounded variation on [a ,  b]  ; 
(b)  Every point of continuity of a is also a point of continuity of F; 
( c )  I f f  f on [a,  b]  then the derivative F’ (x) exists at each point x E ( a ,  b )  where a‘ (x) 

exists and where f is continuous. For such x 

I F’ (x) = f (x) a’ (x) 1 (16.82) 
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Prooj It is sufficient to assume that a f on [a ,  b ] .  If x f y by (16.77) it follows that 

s = x  

where c E [ m ,  MI.  So, statements (a) and (b) follow at once from this equation. To prove 
(c) it is sufficient to divide both sides by ( y  - x) and observe that c + f (x) when 

0 y + x. Theorem is proven. 

Corollary 16.6. 

I .  I f f  E R [ u , b ]  ( a )  then for  any x E [a ,  b] and the functions F and G defined as 

X li 

F (x) := J’ f ( s )  d s  and G (x) := J’ g ( s )  d s  
s=u 5 =u 

we have 

I s=u s=u s=u I 

(16.83) 

2. In the Riemann case, when a (x) = x, from (16.82) we obtain the, so-called, first 
fundamental theorem of integral calculus: 

16.2.5 Derivative integration 

Theorem 16.16. Assume f E R [ a , b ]  ( a )  and g, defined on [a ,  b],  has the derivative g‘ in 
( a ,  b) such that f o r  each x E ( a ,  b )  

g’ ( X I  = f (16.85) 

I f i n  the endpoints 

then the Newton-Leibniz formula (the second fundamental theorem of integral calculus) 
holds, namely, 

(16.86) 
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Proot For every partition Pn of [a,  b] and in view of the mean-value theorem (16.77) 
we have 

where ti E [xi-,, xi] .  But, since f is integrable, for any E > 0 the partition P, can be 
selected so fine that 

which proves the theorem. 0 

16.2.6 Integrals depending on parameters and differentiation under integral sign 

Theorem 16.17. Let f : R2 + R be continuous at each point (x, y )  E Q where 

Q := {(x, y) I a 5 x I b ,  c 5 Y I d }  (16.87) 

Assume that a is of bounded variation on [a,  b ]  and F is the function defined on [c, d ]  
by the equation 

(16.88) 

Then F is continuous on [c,  d ] ,  or, in other words, if yo E [c,  d ]  then 

I h h 

lim / f (x, y) d a  (x) = lim f (x, y )  d a  (x) 
Y+YO Y+YO 

x=a .x =a 

(16.89) 

ProoJ: Assume a f on [a,  b] .  Since Q is a compact then f is uniformly continuous on 
Q. Hence, for any F > 0 there exists 6 = 6 ( F )  such that for any pair of points z := (x, y )  
and 2’ := (x’, y’) such that llz - z ’ I I  < 6 we have I f  (x, y )  - f (x’, y‘)l 5 E .  So, if 
Iy - y’l < 6 we have 

which establishes the continuity of F ( y ) .  0 
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Corollary 16.7. (The Riemann integral case) Zf f is continuous on Q and g E R L ~ , ~ ]  
(x) then function F ( y ) ,  defined by (16.88), is continuous on [c,  d ] ,  that is, if yo E [c, d ]  
then 

x=n 
h (16.90) 

Proof. Define 

result. 

h 
F ( Y )  = La 

G(x) := S$l ,g(s)ds .  Then by (16.83) F ( y )  may be represented as 
f (x, y )  d G ( x ) .  Now, applying Theorem 16.17, we obtained the desired 

0 

Theorem 16.17 permits to establish the following important result. 

Theorem 16.18. Assume that a is of bounded variation on [a,  b ]  and F defined on [c, d ]  
by the equation F ( y )  = sxLn f (x, y )  da, (x) exists for every y E [c,  d ] .  If the partial 

derivative - f (x, y )  is continuous on Q (16.87) then F' (y) exists on [c,  d ]  and it is 

given by the formula 

a 
a y 

I I 

ProoJ: Assuming that yo E ( c ,  d )  then we have 

(16.91) 

a 
aY 

Since - f (x, y )  is continuous on Q, taking yo ,  y -+ yo we obtain the validity of (16.91) 
0 in the point y = yo. Theorem is proven. 
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The following statement can be checked directly. 

Proposition 16.1. r f ' p ,  ( t )  and 'p2 ( t )  are differentiable on [a,  b] ,  the function f ( t ,  t )  E 
(a )  is differentiable on t and continuous on 5 for anyfixed t E [a ,  b] ,  then 

Particularly, 

(16.92) 

(16.93) 

16.3 On Lebesgue integrals 

16.3. I Lebesgue 's monotone convergence theorem 

Theorem 16.19. (The monotone convergence theorem) Suppose & E !.%TI and let I f n }  
be a sequence of measurable nonnegative functions such that for all x E & 

0 5 fl (x) I f 2  (x) 5 . . . I (16.94) 

Let f be defined by 

(16.95) 

(16.96) 
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Pro05 By (16.94) it evidently follows that 

S f d P  n + w  -+ a 5 s f d P  
& & 

(16.97) 

for some a 3 0 since s, f, d p  5 s, f dp .  Choose c E (0, l) ,  and let s be a simple 
measurable function (15.104) such that 0 5 s 5 f .  Put 

I, := {x I f, (x) 2 cs (x)}, n = 1,2, .  . . 

By (16.94) €1 c €2 c . . . and by (16.95) it follows that I = uzl I,. For every n we 
have 

Let now n + 00. By Theorem 15.15 we obtain a 2 c s,, s d p .  Letting c -+ 1 we see that 
a 2 s, s d p  and (15.109) implies a 2 s,, f d p  which together with (16.97) proves the 
theorem. 0 

Corollary 16.8. Suppose fi (i = 1,2)  are Lebesgue measurable, that is, f, E C (p) on 
E. Then f = ( f i  + f 2 )  E C (p) on & and 

p & & E (16.98) 

Pro05 

Suppose, first, that f, 2 0 and f 2  2 0. Choose monotonically increasing sequences 
{s:} and {sa} of nonnegative measurable simple functions which converge to f i  

and f 2 ,  respectively. Since for simple functions (16.98) follows trivially, then for 
s, = s: + s:( it follows that 

Taking n -+ 00 and applying Theorem 16.19 we obtain (16.98). 
(b) If f l  2 0 and f i  5 0 let us put 

A := {x I f (x) L 01, B := {x I f (x) < 0 )  

Then it follows that f ,  f l  and (- f2) are nonnegative on A. Hence, by the previous 
consideration, 

(1 6.99) 
A A A d A 
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Similarly, -,f, f r  and ( - f 2 )  are nonnegative on B, so that 

/ ( - f * )  d w = / f d / l + J ( - f )  d l i = J f , d l i - J ’ ( f )  dw 
B r3 B 8 L3 

( 16.100) 

Adding (16.99) and (16.100) implies (16.98). 

f 2  are of constant sign. By previous considerations we have proved that 
(c) In the general case, & can be discomposed into four sets €, on each of which f ,  and 

and (1  6.98) follows by adding these four equations. 0 

Corollary 16.9. Suppose E E (Jn and let ( J n )  be a sequence of measurable nonnegative 
functions such that 

I m I 

1 n= I 

Then 

(16.101) 

( 1 6.1 02) 

Proof. The partial sum of (16.101) forms a monotonically increasing sequence that 
implies (16.102). 0 

16.3.2 Comparison with the Riemunn integral 

Let the measurable space X be the interval [a,  h] of the real line with thc measure 
/L = m (the Lebesgue measure) and tM be the family of Lebesgue-measurable subsets of 
[a,  b ] ,  that is, the Bore1 o-algebra. 

Theorem 16.20. 

(a)  Iff E Rfa,!,, (m)  then ,f E C (k )  on [a,  b], that is, eachfunction which is Riemann 
integrable on an interval is also Lebesgue integrable, and also both integrals are 
equal, i.e., 

(16.103) 
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(b)  Suppose f is bounded on [a,  b].  Then f E R L ~ , ~ ]  (m)  i f  and only i f f  is continuous 
almost everywhere on [a,  b]. 

Prooj 
(a) follows from Theorem 16.12. To prove (b) suppose that (Pk} is a sequence of 

partitions of [a ,  b] such that Pkf l  is a refinement of Pk.  Using the definition (16.72) 
for a(x) = x, namely, 

n n 

i= l  i = l  

m, := inf f ( x ) ,  Mi := sup f ( x )  
X C G ,  - I  ,xi 1 X € ( X , - I  2 i ]  

and defining 

i = l  
n 

such that Ui ( a )  = Li ( a )  = f ( a )  we obtain 

which leads to the existence of the limits 

L (x) := lim Lk (x), U (x) := lim Uk (x) 
k+ 30 k i x  

for which for any x E [a,  b] 

By (16.104) and Theorem 16.19 it follows that there exist the integrals 

x=a 

Zu := lim U (Pn ,  f ,  x) = 
k i n c  

x=u 

(16.104) 

So far, nothing has been assumed about f except that it is bounded on [a ,  b].  To 
complete the proof note that f E R [ a , h ]  (x) if and only if ZL = Zu, or equivalently, if 
and only if s,=, L ( x )  dx  = sXLa U (x) dx. But, in view of the fact that L (x) 5 U (x), 
this happens if and only if L (x) = U (x) for almost all x E [a,  b] .  This implies that 

h 
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L (x) = f (x) = U (x) for almost all x E [a,  b],  so far as f is measurable and (16.103) 
follows. 0 

16.3.3 Fatou’s lemma 

Lemma 16.4. Suppose E E ‘337 and let { f n }  be a sequence of measurable nonnegative 
functions. Then 

J’liminf n-cc f n  d p  I liminf n+cc J’ f n  d p  

5 lim sup fiE d p  I lim sup f n  d p  
& & 

n + x  S S n-+m 
& & 

(1 6.105) 

Proof. The intermediate inequality 

lim inf / f n  d p  I lim sup J f n  d p  
n-+% n-cc 

& & 

trivially follows from the definitions of the upper and lower limits. Denote for all x E & 

g,; (x) := inf f k  (x), g,f (x) := sup f k  (x) 

f -  (x) := liminf f n  (x) = lim g; (x) 
f +  (x) := limsup f n  (x) = lim gn+ (x) 

k z n  k>_n 

n + x  I I  + 30 

n-cc n+m 

(16.106) 

Then g; (x) and g: (x) are measurable on f (see (15.12)) and 

0 e g; (x) 5 g; (x) I . . . 
g; (x) I f n  (XI, g, (x) + f -  (x> 

. ’ ’ L g: (x) P g: (x) L 0 

g,? L f n  g,‘ + f +  (x> 

The integration of the inequality g,; (x) 5 f n  (x) and the direct application of Theorem 
16.19 for { g ;  (x)} leads to 

J’f- d p  I l i m i n f 1  n ’ x  f n  d p  
& & 

Analogously, the integration of the inequality g,’ (x) 2 f n  (x) in view of Theorem 16.19 
gives 

l i m s u p S f n  n i x  d p  I J’f+ dP 
& E 

Lemma is proven. 0 
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Strict inequalities may hold in (16.105) (see the example in Exercise 5 in Chapter 11 
of Rudin (1976)). 

16.3.4 Lebesgue’s dominated convergence 

Theorem 16.21. (on a dominate convergence) Suppose & E 9Yl and let { f n )  be a 
sequence of measurable functions such that for all x E & 

( 16.107) 

I f  there exists a function g E C (p )  on & such that for n = 1, 2, . 

almost everywhere on &, then 

(16.109) 

that is, the operation of lim and the Lebesgue integration can be interchanged if(16.107) 
and (16.108) are f u l f i : l l ~ ~ m  

ProoJ: The inequality (16.108) and Theorem 15.7 imply that f n  E C (p) and f E C (p) 
on 1. Since f n  + g 3 0 the Fatou’s lemma 16.4 shows that 

or, equivalently, 

6 f d p  5 liminf 1 f n  d p  
n+m 

E E 

Similarly, since g - f n  2 0 we have 

( 16.1 10) 

~ l i m i n f J ’ g d p + l i r n i n f / ( - f , )  n+m rl’m d p  

& E 
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so that 

- / f d p  I: liminf /(- 
11-w . 

& & 

which is the same as 

/ f d p z l i m i n f / f , , d p  n-+m 

& & 

Hence, (16.109) follows from (16.110) and (16.111). 

(16.1 11) 

0 

One important application of Theorem 16.21 refers to a bounded interval. 

Theorem 16.22. (Apostol 1974) Let Z be a bounded interval. Assume that [ f n }  is a 
sequence of measurable functions in C (p )  on Z which is boundedly convergent almost 
everywhere on 1. That is, assume there is a limit function f and positive constant M 
such that 

lim f n  (x) = f (x) and 1 f n  (x)l 5 M almost everywhere on Z i n - tm  

Then f E C (p )  and 

ProoJ: It follows from Theorem 16.21 if we take g (x) := M for all x E Z. Then 
0 g E C (p)  on Z, since Z is a bounded interval. Theorem is proven. 

16.3.5 Fubini's reduction theorem 

The Lebesgue integral defined on subsets in JR and described in Chapter 15 can be 
generalized to provide a theory of Lebesgue integration for the function defined on subsets 
of n-dimensional space R". A multiple integral in R" can be evaluated by calculating 
a succession of n one-dimensional integrals. This result is referred to as the Fubini's 
theorem. 

Definition 16.6. 
(a )  I f 1  := I ,  x 1 2  x ' . . x I ,  is a bounded interval in R", where 1, := [ak, bk], then the 

n-measure p ( I )  of I may be defined by the equation 

(16.112) 

where p ( I k )  is the one-dimensional measure, or length, of I k .  
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(b )  Analogously to the single-dimensional case, a property is said to be of Zero n-measure 
or, to hold almost everywhere on a set S c R", if it holds everywhere on S except 
for a subset of zero n-measure. 

If Pk is a partition of Ik, then the Cartesian product P := PI x . . . x P,L is called a 
partition of I .  So that, if Pk decomposes Ik into mk one-dimensional subintervals, then P 
decomposes I into m = ml ' . . m, n-dimensional subintervals, say J l ,  . . . , J,,,. 

Definition 16.7. 

(a)  A functiorz s defined on I is called a step function if a partition P of I exists such 
that s is constant on the interior of each subinterval Jk, say, 

S ( X )  = ck if X E J k  

(b )  The n-dimensional Lebesgue integral of s over I is defined by the relation 

(16.1 13) 

Definition 16.8. A real-valued function f on I E R" is called an upper function on I ,  
and we write f E U ( I ) ,  if there exists an increasing (nondecreasing) sequence {s,,} of 
step functions s, such that 
(a )  s, -+ f almost everywhere on I ,  
(b)  lim s, d p  exists. 

The sequence {s,} is said to generate f and the integral f over I is defined by the 
equation 

n+Cc I 

I I 

The integral sI f d p  is also denoted by 

The notation 

J' f ( X I , .  . . , x,) dx l  . . . dx,  
I 

is also used. Double integrals are often written with two integral signs, namely, 

(1 6.1 14) 

(16.1 15) co
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Theorem 16.23. (Fubini’s theorem for step functions) Let s be a step function on R2. 
Then for  eachfixed y E R the integral s, f ( x ,  y )  d x  exists and, as a function of x ,  it 
is Lebesgue integrable on R. Similarly, for  eachfixed x E R the integral s, f ( x ,  y )  dy  
exists and, as afunction of y ,  it is Lebesgue integrable on R. Moreover, we have 

( 16.1 16) 

Prooj There is a compact interval 1 = [a ,  b ]  x [c, d ]  such that s is a step function on 1 
and s ( x ,  y )  = 0 if ( x ,  y )  6 1. There is a partition P of I into mn subrectangles Il l  = 
[xI- , ,  x l ]  x [ y I - , ,  y I ]  such that s is constant on ZLJ ,  say, 

s ( x ,  y )  = cij if ( x ,  y )  E int Zij 

Then 

Summing on i and j we find 

Since s vanishes outside I this proves (16.116). 

The next theorem is the extension of the previous result to the general class of Lebesgue 
integrable functions. 

Theorem 16.24. (Fubini’s theorem for double integrals) Assume f is Lebesgue inte- 
grable on R2. Then (16.116) holds, 
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Proofi 

(a) First, let us prove this result for upper functions. If f E U (R’) then there exists an 
increasing (nondecreasing) sequence {s,} of step functions s, such that s, ( x ,  y )  -+ 
f ( x ,  y )  for all (x, y )  E R2 - S (S is a set of measure zero). Hence, by (16.114) 

f (x, y )  dx  dy = lim 
n+cc 

w2 P2 

and (16.1 16) results from Theorem 16.23. 
(b) To prove (16.1 16) for Lebesgue functions it is sufficient to notice that any f E C (p) 

can be represented as f = u - u where u E U (R’) and u E U (R’). Theorem is 
proven. 

Corollary 16.10. Assume that f is defined and bounded on a compact rectangle 
I = [a,  b] x [c, d] ,  and also that f is continuous almost everywhere on I .  Then f E C ( p )  
on Z and 

( 1 6.1 1 7) 

Corollary 16.11. If f is Lebesgue integrable on Rm+k then the following extension of 
the Fubini’s theorem 16.24 to high-dimensional integrals holds: 

(16.1 18) 

16.3.5.1 Tonelli-Hobson test for integrability in R2 
Theorem 16.25. (The Tonelli-Hobson theorem) Assume that f is measurable on R2 
and that at least one of two iterated integrals 
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exists. Then 
(a)  f E L: (p) on R2; 
(6) The formula (16.116) holds. 

ProoJ: Part (b) follows from (a) 
assume that the iterated integral 

because of the Fubini's theorem (16.24). To prove (a) 

exists. Let (s,} be an increasing (nondecreasing) sequence of nonnegative step functions 
defined by the formula 

Let also Jn ( x ,  y )  := min (s, (x, y ) ,  I f  ( x ,  y ) l } .  Notice that both s, and I f 1  are measurable 
on R2. So, ,fa is measurable and, since 

so f, is dominated by a Lebesgue integrable function. Therefore, by Theorem 16.21 
f, E C ( p )  on R2. Hence, we can apply Fubini's theorem 16.24 to ,f, along with the 
inequality 

to obtain 

Since {f,) is increasing this shows that lim sW2 f ,  d p  exists. But {f, ( x ,  y ) )  + I f ,  ( x ,  y)I 

almost everywhere on R2. So, I f 1  E L(p )  on R2. Since f is measurable, it follows 
that f E L (p) on R2 which proves (a). The proof is similar if the other integral exists. 

n+cc 

Theorem is proven. 0 

16.3.6 Coordinate transformation in an integral 

Definition 16.9. Let T be an open set of R". A vector function g : T -+ R" is called 
a coordinate transformation (or deffeomorphism) on T if it has the following three 
properties: 
(a) g E C' on T ,  that is, g is continuously differentiable (g has the first-order partials 

(b) g is globally one-to-one on T ;  
which are continuous) on T ;  
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(c) for all t E T the Jacobian determinant Jg (t)  of the transformation g is not equal to 
zero, that is, 

Jg (t)  := det -gj ( t )  I [:k I i ,k=l.n I (16.119) 

Remark 16.5. The properties of the coordinate transformation g mentioned above pro- 
vide the existence of g-' which is also continuously differentiable on g (T ) .  

Remark 16.6. (The Jacobian chain rule) Assume that g is a coordinate transformation 
on T and that h is a coordinate transformation on the image g ( T ) .  Then the composition 

I k = h o g := h (g (t))  1 (16.120) 

is also a deffeomorphism on T with the Jacobian determinant J k  ( t )  satisfying the equation 

Proof. It follows from the relations 

Theorem 16.26. Let T be an open subset of R", g be a coordinate transformation on 
T and f be a real-valued function defined on the image g ( T )  such that the Lebesgue 
integral s&.) f (x) dx exists. Then 

( 16.1 22) 

Pro08 The proof is divided into three parts: 

(a) Part 1 shows that (16.122) holds for every linear coordinate transformation 
a! : T + R" with the corollary that 

(16.123) 

for any subset A c T .  
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Jg ( t )  = det 

(b) In Part 2 one needs to consider a general coordinate transformation g : T + JR” and 
show that (16.122) is valid when f is the characteristic function of a compact cube 
K: c g ( T )  that gives 

_ _ -  
ap a0 ap 
34’ aY aY - - - 
ap ae ap 
az  az  az  

(16.124) 

(c) In Part 3 equation (16.124) is used to deduce (16.122) in the general form. The details 

0 
of this proof can be found in Chapter 15.10 of Apostol (1974). 

Example 16.3. (The spherical coordinates transformation) Let us take t := ( p ,  0,p) 
and 

T := {t : p > 0, 8 E [0,2n], p E [O, n]} 

The coordinate transformation g maps each point t = ( p ,  8,p) E T onto the point 
(x, y ,  z )  in g ( T )  given by the equations 

p cos 0 sin p (i) = ( p F $ y )  
The Jacobian determinant is 

r a x  ax ax 

1% T i  acp 
cos 8 sin p 

p cos 0 cos (0 

sin 8 sin p 
pcose sinp coip ] = --pzsinG 
p sin e cos p -p sin 0 

So, for any f to be a real-valued function defined on the image g ( T )  we have 
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16.4 Integral inequalities 

355 

16.4.1 Generalized Chebyshev inequality 

Theorem 16.27. (The generalized Chebyshev inequality) Let g : R -+ R be a non- 
negative nondecreasing function defined on the interval [0, a), i.e., 

and p E C (b) on I C R such that g ( [ P I )  E C (p) on &, that is, 

Then for any nonnegative value a 3 0 thejollowing inequality holds: 

(1 6.126) 

(1 6.127) 

Prooj By the additivity property of the Lebesgue integral for & = I 1  U I 2  where 

and in view of the assumptions of this theorem it follows that 

E El E2 

which completes the proof. 

16.4.2 Markov and Chebyshev inequalities 

Using the generalized Chebyshev inequality (1 6.127) one can obtain the following impor- 
tant and commonly used integral relations known as Markov and Chebyshev inequalities. 

Theorem 16.28. (The Markov inequality) Put in (16.127) 
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Then for any a > 0 the inequality (16.127j becomes 

( 1 6.1 29) 

Two partial cases corresponding to r = 1 , 2  present a special interest. 

Corollary 16.12. (The first Chebyshev inequality) For r = 1 the Markov inequality 
(16.129) becomes 

(16.130) 

Corollary 16.13. (The second Chebyshev inequality) For r = 2 the Markov inequality 
(16.129) becomes 

(16.13 1) 

16.4.3 Holder inequality 

Theorem 16.29. (The Holder inequality) Let p and q be positive values such that 

I p  > 1, q > 1, p-‘ + 9-l = 1 I (16.132) 

and q , q E C ( p )  on E c R such that 

Then the following inequality holds: 

(1 6.133) 

(1 6.134) 

Prooj If s, IqlP d p  = s, 1qI4 d p  = 0 on E then q (x) = q (x) = 0 almost everywhere 
on E and (16.134) looks trivial. Suppose that s, Iplp d p  =- 0 and s, lq lq d p  > 0. 
Since the function ln(x) is concave for any x, y ,  a ,  b > 0 the following inequality holds: 

] In(ax + b y )  2 a ln(x) + b In(y) 1 (16.135) 
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or, equivalently, 

357 

I ax + by x a y b  I (16.136) 

Taking a := l / p ,  b := l /q and 

implies 

Integrating both sides of this inequality and using the assumption that p- '  + q-]  = 1 
proves (16.134). 0 

Corollary 16.14. In the case of the Bore1 measure when 

/.L ((x I x < c E ( a ,  b ) } )  = c - u 

on E = [a ,  b]  we have 

h b 

/ v d / . L =  / W d x ,  / w =  / m f x  
& x=a & x=a 

and ( I  6.134) becomes 

( 1 6.1 37) 

Corollary 16.15. In the vector case when 
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which corresponds to the “atomic” measure concentrated in the points x = {xl , . . . , x,,) 
with the weights p := (p] , .  . . , pn), pi 2 0 ( i  = 1 , .  . . , n )  we have 

(16.138) 
n n 

and ( I  6.134) becomes 

For the “atomic” uniform measure when pi := po /n  (po > 0 )  we have 

(16.139) 

( 16.140) 

or, equivalently, 

(1 6.141) 

16.4.4 Cauchy-Bounyakovski-Schwarz inequality 

The following particular case p = q = 2 of (16.134) is the most common in use. 

Corollary 16.16. (The CBS inequality) 

I I 

I l 

and the equality in (16.142) is reached i f  

(D (x) = k q  (x) for any real k 

and almost all x E E. 

(16.142) 

(16.143) 

ProoJ: To prove (16.143) it is sufficient to substitute (D (x) = k q  (x) into (16.142). 0 
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Corollary 16.17. 1 .  In  the Bore1 measure case we have 

n n 

359 

n 

r -  I 

( 16.144) 

I 

which for the uniform measure when 

becomes 

or, equivalently, 

I I 

( 1  6.145) 

(16.146) 

(16.147) 

16.4.5 Jensen inequality 

Theorem 16.30. (The Jensen inequality) Let gu : R -+ R and g, : R -+ R be convex 
downward (or, simply, convex) and convex upward (or, simply, concave), respectively 
(see Fig. 16.1) and cp : R -+ R be a measuvablefunction such that p E C (p) on & c R. 
Let also s, d p  = 1. Then 

( 16.148) 

and 

(16.149) 

co
nt

ro
len

gin
ee

rs
.ir



360 Advanced Mathematical Tools for Automatic Control Engineers: Volume I 

Fig. 16.1. The convex g, (x) and concave g ,  (x) functions. 

Proofi By the convexity (concavity) definition (see Fig. 16.1) we may conclude that 
in both convexity and concavity cases there exists a number h(xo)  such that for any 
x, xo E R the following inequalities are fulfilled: 

g , ( x )  1 gu(x0) + h(Xo)(X - xo) 

5 gn(x0) + h(xo)(x - X O )  

(1 6.150) 

Taking x := p (x), xo := s' p d p  in (16.150) we obtain 

The application of the Lebesgue integration to both sides of these inequalities leads to 
0 (16.148) and (16.149), respectively. Theorem is proven. 

Corollary 16.18. 1. In the Bore1 measure case when d p  = ~ dx ) we have 
b - a  

(16.15 1) 
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2. In the case of the "atomic" measure for any nonnegative p l  2 0 (i = 1,  . . . , n)  such 
that C:=, p l  = 1 we have 

which for the uniform measure when pi := l / n  becomes 

(16.152) 

(1 6.153) 

3. Foranyn=1 ,2  ,..., 
(a) any even k = 2s (s = 1,2, . . .) and any pi E Iw ( i  = 1, . . . n )  it,follows that 

(16.1 54) 

(b) any odd k = 2s - 1 (s = 1 , 2 , .  . .) and any pi 3 0 ( i  = 
(16.154) also holds. 

Proo$ Indeed, by (16.153) we have 

. n )  the inequality 

which implies (16.154) for an even k ,  since the function x h  is convex in all axis R. For 
an even k this function is convex only at the semi-axis [0, 001 which permits to use the 

0 inequality (16.153) only within this region. 

Example 16.4. For gn(x) := In(lxl) we have 

(1 6.155) 
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( 1 6.1 56) 

valid for any pi > 0 (i = 0, 1, . . . , a)  such that Cb, pi = 1. 

Corollary 16.19. (The weighted norm case) Ifq : R + R" and P = PT ? 0 then 

(16.157) 

Pro05 By the definition of the weighted norm and using the matrix-root representation 
we have 

b 

= ( f (p ( x )  d x ,  PI/* 1 rp ( x )  d x )  
x=a x =a 

A =a 

where z ( x )  := P' lZq  (x). Hence, it follows that 

Applying (16.151) for g, (s) = s2 to each term in the sum on the right-hand side we have 
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x=u x=u 

L h 

which proves (16.157). 0 

16.4.6 Lyapunov inequaliq 

The inequality below is a particular case of the Jensen inequality (16.148). 

Corollary 16.20. (The Lyapunov inequality) For any measurable function p : E% -+ R 
such that Jql' E C (p )  on E c R ( t  > 0 )  and when s, d p  = 1 the following inequal@ 
holds 

( 16.158) 

where 0 < s 5 t.  

ProoJ: Define r := -. Taking in (16.148) q := Ipls and gu(x) := Ixlr implies 
t 
S 

which completes the proof. 0 

Corollary 16.21. For any measurable function cp : R + R such that Ivlk E C (p)  ( k  > 2 
is an integer) on E c R the following inequalities hold 

Corollary 16.22. 

I .  In the Bore1 measure case we have 

( 1 6.1 59) 

( 1 6.1 60) 
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x=u .I =a / 

2. In the case of the “atomic” measure for any nonnegative vi  2 0 ( i  = I ,  
that C:=Ipi = 1 we have 

and 

which for the uniform measure when pi := l / n  becomes 

.. . , n )  such 

(1 6.161) 

(16.162) 

and 

16.4.7 Kulbac inequality 

Theorem 16.31. (The continuous version) Suppose p : R + R and q : R -+ R are 
any positive function on & c R such that the Lebesgue integral 

(1 6.163) 

is finite, that is, I c ( p ,  q )  < w and the following normalizing condition holds 

( 1 6.1 64) 
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Then 

1 Z&(P,  4) L 0 I 
and I & ( p ,  q )  = 0 ifand only i f p ( x )  = q ( x )  almost everywhere on E. 

365 

(16.165) 

Proofi Notice that (-ln(x)) is a convex function on (0, oo), i.e., - In (x )  = gu(x). Hence, 
by the Jensen inequality (1 6.15 1) we have 

which proves (1 6.165). Evidently, 1, ( p ,  q )  = 0 if p ( x )  = q ( x )  almost everywhere on 1. 
Suppose Z&(p ,q )  = 0 and p ( x )  # q ( x )  for some x E Eo c E such that F ( & )  = 
J,, d x  > 0. Then the Jensen inequality (16.151) implies 

0 = Z&(p, q )  = - / ln  (m) P ( X )  p ( x ) d x  2 -In [l (g) p ( x ) )  dx 
€0 

where a := J,,, q ( x ) d x  < 1 which can always be done selecting €0 small enough. The 
0 last inequality represents a contradiction. So, p ( € 0 )  = 0. Theorem is proven. 

Theorem 16.32. (The discrete version) Suppose p = ( p , ,  . . . . pi,) and q = 
(4 ,  , . . . , qn) are any vectors with positive components such that 

i = l  i = l  

Define 

I 

Then 

and Z ( p ,  q )  = 0 ifand only i f p ,  = qi for  all i = 1 , .  . . , n. 

(16.166) 

(16.167) 

(16.168) 
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ProoJ: It practically repeats the proof of the previous theorem where instead of (16.15 1) 
we have the inequality (16.152) where g, (.) := -In (,), cpt := - and pL = pi. Theorem 

0 is proven. 

91 

PI 

16.4.8 Minkovski inequality 

Theorem 16.33. (The Minkovski inequality) Suppose cp : R -+ R and 17 : R -+ R 
are measurable functions such that I c p l p  E L (p )  and lqlp E L (p )  on & c R for some 
p E [ 1, 00). Then the .following inequality holds: 

ProoJ: Consider the following inequality 

Icp + V I P  = Irp + 171 lv + VIP-’  I /PI Icp + v r - l  + I v l  Icp + 
which after integration becomes 

( 16.170) 

Applying the Holder inequality (16.134) to each term in the right-hand side of (16.170) 
we derive: 

since p = ( p  - l ) q ,  and 
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Using these inequalities for the right-hand side estimation 

+ 

361 

in (16.170) we get 

which implies 

( I  IP + V I P  d @) ’- ‘ Iq = ( I  Iq + q I P  d p )  l i p  

Theorem is proven. 

Corollary 16.23. 

1. In the Bore1 measure case the inequality (16.134) becomes 

, I 

(16.171) 

2. In the case of the “atomic” measure for any nonnegutive pi 2 0 (i = 1, . . . , n )  
we have 

(16.172) 
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which for the uniform measure when wi  := p o / n  ( / L O  > 0)  becomes 

or, equivalently, 

( 1 6.1 73)  

( 1 6.1 74) 

16.5 Numerical sequences 

16.5.1 Infinite series 

16.5. I .  1 Partial sums and sums 

defined as follows: 
Let {a,} be a sequence of real numbers. Form a new sequence (s,) where each term is 

(16.175) 

Definition 16.10. The number s, is called the nth partial sum of the series. The series 
is said to converge (or to diverge) according1.y as {s,] is convergent or divergent. y' {s,} 
converges to s ,  that is, there exists the limit lim s, = ,s, then s is called the sum of series. 

It is clear that every theorem about sequences (a,} can be stated in terms of series 
putting ul  := sl and a, := s,, - s,-1 (for n > l ) ,  and vice versa. But it is neverthe- 
less useful to consider both concepts. So, the Cauchy criterion 14.8 can be restated as 
follows. 

11'30 

16.5.1.2 Criterion for series convergence 
Criterion 16.1. (The Cauchy criterion for series) The series s, = C:=, a, (16.175) 
converges if and only if for every E > 0 there is an integer no ( E )  such that 

( 16.176) 

if m 2 n 2 no (8). 
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Corollary 16.24. (The necessary condition of convergent) If the series s,, = c:=, a, 
(1  6.175) converges then 

(16.177) 

Pro06 Taking in (16.176) m := n + 1 we obtain (16.177), 0 

Theorem 16.34. (The criterion for monotonic sequences) Suppose {a,) is monotonic. 
Then {a,,) converges if and only if it is bounded. 

Pro05 

(a) Necessity. 
(b) SufSiciency. 

Let {a,} converges. Then it is bounded by Theorem 14.5. 
Let {a,) be bounded and suppose that a, 5 a,+l (the proof is analogous 

in the other case). Let A be the range of {a,}. If {a,} is bounded, then there exist the 
least upper bound a+ on A and for all n = I ,  2,  . . . it follows a, 5 a+. For every 
E > 0 there exists an integer no ( E )  such that 

a+ - E 5 a,&) 5 a+ 

for otherwise (a+ - E )  would be an upper bound. By monotonicity it follows that 

a+ - E 5 a, 5 a+ 

for all n no ( E )  which shows that {a,} converges to a+. 

16.5.1.3 Sum of series and telescopic series 
Lemma 16.5. 

1. Let {s:} and {s:} be convergent series, namely, 

n N 

f = l  t=l 

Then for every pair of constants a and 

(1 6.178) 

2. If {a,) and {bn)  are two telescopic series such that 

a, := b,+, - b, 
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then C:=, a, converges if and only if lim b, exists, in which case we have 
n - x  

(16.179) 

Pro05 The identity (1 6.178) results from 

and (16.179) follows from the identity 

16.5.1.4 Series of nonnegative terms 
Theorem 16.35. (The “partial sum” criterion) A series of nonnegative terms converges 
if and only if its partial sums form a bounded sequence. 

Pro05 It follows directly from Theorem 16.34. 0 

Theorem 16.36. (“2k-criterion”) Suppose al 2 a2 2 . . . 2 0. The series C,”=, a,  
converges if and only if the series c,“=, 2kap converges. 

Proot According to Theorem 16.34 it is sufficient to consider boundedness of the fol- 
lowing partial sums 

s, := al + a2 + . . . + a, 

t k  := al + 2a2 + . . . + Pa2& 

For n < 2k we have 

Sn I a1 + (a2 + ad + . . . + (a2x + . . . a2k+1-,) 

On the other hand, for n 2 2k 
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So that 

1 
z t k  5 s n  _< tk 

This means that the sequences {s,} and It,} are either both bounded or unbounded. This 
completes the proof. 

Corollary 16.25. 

(16.1 SO) 

Proof: Indeed, since the function logn is monotonically increasing it follows that the 

function is monotonically decreasing. Applying Theorem 16.36 we obtain 
1 

n (log n)” 

1 O ” 1  c, -- - 
“ 1  - 1 M c 2k 2k (log 2k)” - c ( k  log 2)P (log 2 ) P  k = l  k=l  k= I 

which, in view of Corollary 16.30 to Lemma 16.12 (see below), implies the desired 
result. 

Corollary 16.26. Continuing the same procedure one can prove that 

(16.181) 

16.5.1.5 Alternating series 
Definition 16.11. I f  an > 0 for all n, then the series cz, (-l)*+l a, is called an 
alternating series. 

Theorem 16.37. (on the convegence of alternating series) If {an} is a non-increasing 
sequence (a, > 0)  converging to zero, then the alternating series C,”=, (-I)”+’ a, con- 
verges, that is, 

( 1 6.1 82) 

and for all n = 1 , 2 , .  . . 

0 < (--l), (s - s,) < a,+1 (16.183) 
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So, xb, akbk if xi=, ak (bk - b) converges. But the last satisfies the condition of 

Theorem 16.39 since 

monotonically nondecreasing then 

ak is bounded (it is convergent) and (b, - b )  -1 0. If {b,} is 
k = l  n i x  

n M 

k= 1 k = l  k=l 

and by the same arguments { - ci=, ak ( b  - bk)}  converges. Corollary is proven. [3 

16.5.1.9 Multiplication of series 
Definition 16.13. Given two series ak and CEO bk. Define 

I n I 

k=O 

(16.192) 

The series CEO ck is referred to as the Cauchy (or convoluting) product. 

Lemma 16.8. (Mertens) If the series xEOak converges absolutely and the series 
CEO bk converges then CEO ck also converges and 

I k=O \ k = O  / \ k = O  / I 

Prooj Define the partial sums 

k=O k=O k=O 

and the series sums 

k=O k=O 

Then 

(16.193) 
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converges: 

373 

(16.186) 

r f  1x1 2 1, the series disconverges. 

ProoJ: The result (16.186) follows from the identity 

n 

(1 - x) s,z = c (2 - xkf') = 1 - XIZ+' 

k=O 

If 1x1 3 I ,  the general term does not tend to zero and, hence, series cannot converge. 0 

16.5.1.8 Some tests of convergence 
Theorem 16.38. (Integral test) Let f be a positive non-increasing function defined on 
[ l ,  00) such that f (x) + 0. For integers n = 1,2,  . . . define 

X + o O  

Then 
1. 

2. there exists the limit 

3. the sequence (s,} converges ifund only ifthe sequence (t,} converges; 
4. 

(16.187) 

( 1  6.188) 

(16.189) 

( 16.190) 
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ProoJ 

1. By monotonicity, one has 

This implies 

In addition, we have 

which proves (1) since 

2.  But (1) implies (2) ;  
3. And ( 2 )  implies (3) since by (1) {s,] dominates Itn} and 

lim s, = d + lim tn 
n-+m ll+W 

4. To prove (16.190) notice that 

n 

Then summing these inequalities leads to the following inequality 

n n 

d k  - d n + t  = ( d r  - d r + t )  5 [ f  ( r )  - f ( r  4- I)] 
r=k r=k 

= f ( r )  - f (n  + 1) 5 f ( k )  

and, hence, when n -+ 00 we get 

Theorem is proven. 
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Theorem 16.39. (Dirichlet's test) Let An := El=, ak be a partial sum of a bounded 
series, namely, for any n = 1,2 ,  . . . let 

and let {bn}  be a non-increasing sequence of positive numbers converging to zero, i.e., 
bn J, 0. Then the series c,"=, Ukbk converges, that is, 

n-rm 

I n I 
(16.191) 

Prooj Notice that by the Abel formula (12.4) 

k=n  k=n k=n 

and, hence, 

Since bn 
we have 0 5 bn 5 E .  Taking in the previous inequality n := no ( E )  + 1 we obtain 

J, 0 for any E > 0 there exists an integer no ( F )  such that for all n 3 no ( E )  
n+m 

This means that the Cauchy criterion (16.1) holds which proves the theorem. 0 

Corollary 16.27. (Abel's test) The series c,"=, Ukbk converges ifc,"=, ak converges and 
if { b n }  is a monotonically convergent sequence. 

Proot Denote b := limb, and A := lim An.  Assume that {bpz }  is monotonically nonin- 
creasing. Then we have 

n-cc n+cx 

n n n 

k = l  k = l  k = l  
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so, xi=, U k b k  if Xi=, ak ( b k  - b)  converges. But the last satisfies the condition of 

Theorem 16.39 since C ak is bounded (it is convergent) and (b, - b) J. 0. I f  (bli} is 

monotonically nondecreasing then 

li 

k=l n + X  

n n 

k= I k =  I k = l  

and by the same arguments { - XiEl ak (b - bk)} converges. Corollary is proven. 

16.5.1.9 Multiplication of series 
Definition 16.13. Given two series ak and bk. Define 

I n I 

I k=O I 
(16.192) 

~ ~ 

The series CEO ck is referred to as the Cauchy (or convoluting) product. 

Lemma 16.8. (Mertens) If the series ak converges absolutely and the series 
bh converges then c k  also converges and 

(16.193) 

Proot Define the partial sums 

k=O k=O k=O 

and the series sums 

X 23 

A := X U ~ ,  B := x b k  
k=O k=O 

Then 

n k  n I I  n n 

k=O s=O k=O s=O .s=O k=O 
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n p2-v n 

To complete the proof it is sufficient to show that 

17 

en := - B )  --f o 
n - x  

7=O 

Define S := Z" lasl and select E > 0. Let for all n 2 no ( F )  we have 
r=O 

where I B, - B I 5 M for all n .  Then for n > 2no ( E )  we have 

.\ =o s=o 

Hence, C, -+ A B  as n -+ 00 which proves the lemma. 

Remark 16.7. (Abel) The statement of this lemma remains valid if the series CEO ak 
converges (not obligatory absolutely), 

16.5.1.10 Cesirro sunamability 
Definition 16.14. (Ceshro sum) Let An := xi=,ak be a partial sum of the series 
CEO ak and {s,} be the sequence of arithmetic means defined by 

A ,  + . . . + A n  1 " 1 "  
s, := = - C Ak = ; 7 xus 

n k=O k=O s=O 

( 1 6.1 94) 
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The series C,"=, ak is said to be Cesaro summable if {s,] converges. If lim s, = S then 
S is called the Cesaro sum (or ( C ,  1)-sum) of C,"=, ak and we write 

n+m 

00 1 
(16.195) 

Example 16.5. Let a, = x n ,  0 < x < 1. Then 

Therefore, 

1 
s, -?. - 

1 - - x  

and, hence, 

Claim 16.3. If ak is summable then it is also ( C ,  1)-summable. 

Pro05 It follows directly from (16.210) (see below). 

Example 16.6. Let a, = (-l),+' n. Then 

A, = 1 - 2 + 3 - 4 + . . . (-l),+l n 

n if n = 2 k  
(k = 1 , 2 , .  . .) = { l y -  n if n = 2 k + 1  

2 

and, therefore, 

1 
lim sup s, = - lim inf s,, = 0 

n + x  2 '  ,+00 

and, hence, c,"=, (-l),+l n is not (C,  1)-summable. 
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16.5.2 Infinite products 

Definition 16.15. We say that an infinite product nz, u, converges if there exists a 
limit 

n := lim n u ,  
n=l 

( 1 6.1 96) 

finitely, that is, 1x1 < 00. 

16.5.2.1 Cauchy criterion for a product 
Theorem 16.40. (The Cauchy criterion for a product) The infinite product nzl u, 
converges ifand only iffor every E > 0 there exists an integer no ( E )  such that n 2 no ( E )  

implies for all k = 1 , 2 ,  . . . 

(1 6.197) 

Pro05 

(a) Necessity. Denote n, := n:=, ul and suppose that there exists the limit lim n, = n. 
Sure, we can assume that no u, = 0 (since if they are, the results become trivial) 
and, hence, we can assume that n # 0. Therefore there exists M > 0 such that 
In,] > M .  This means that {n,} satisfies the Cauchy criterion for convergence (see 
Theorem 14.8). Hence, given E > 0, there is no ( E )  such that y1 2 110 ( E )  implies for 
all k = 1,2,. . . 

n+n3 

Dividing by In,( we obtain (16.197). 
(b) Suflcieizcy. Now assume that (16.197) holds. D 

1 
nc 2 qn := nr=no(E)+l ut  and take 

E = 1/2 in (16.197). Then evidently .! < lqnl < -. So, if {qn}  converges, it cannot 
converge to 0. Let E now be arbitrary. Then we can rewrite (16.197) as follows: 

3 
2 2 

- 11 < E ,  which gives 

Therefore, {q,} satisfies the Cauchy criterion (see Theorem 14.8) and, hence, is 
0 convergent. This means that n, converges too. Theorem is proven. 
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16.5.2.2 Relation between a product and a sum 
Theorem 16.41. Assume u, 2 0 (n = 1,2, . . .). Then the product n,“=, (1 + u,) con- 
verges, that is, 

i f  and only i f  the series x,”=, u, converges, that is, 

(16.198) 

(16.199) 

Proof. Denote x, := HE, (I + u,)  and s, := C;=, a,. Based on the inequality 

l + x ( e ”  (16.200) 

valid for any x, we have nn 5 exp ( s , ~ ) .  So, if (s,} converges, then {x,} converges too. 
But, on the other hand, the following inequality seems to be obvious: n, 3 s, implies the 
convergence of { s n }  if {n,} is convergent. Theorem is proven. 

Theorem 16.42. Assume u, > 0 (n = 1,2,  . . .). Then 

I n = l  I 

if and only i f  the series 

( 16.20 1) 

( I  6.202) 

Proof Again, by the inequality (1 6.200), the convergence of n, := na1 (1 - u,) to zero 
follows from the fact that s, -+ 00. On the other hand, by the inequality 

In (1 - u,) 2 -Ut 

valid for u, > 0, we have 

/ n  \ 

So, if x, -+ 0, then s, -+ 00 which proves the theorem. 
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14.5.2.3 Some low estimates for a product 
Lemma 16.9. (Nazin & Poznyak 1986) Let a E [O, l), /3 E (0, 1 ) .  Then the following 
low estimates hold: 

fa) 

(16.203) 

(1 6.204) 

I + x 2 exp (x - x2/2) 

valid for any x 2 0, we have 

30 / o o  

which implies (16.203). 
(b) Applying the inequality 

1 - x 2 exp ( L) 
x - 1  

valid for any x E [0, l), we have 

(16.205) 

(16.206) 

which gives (16.204). 
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(c) In (16.206) take x := upk-' which implies 

2 (I  - a )  exp (- 7 k 1 - ap-1 d x )  

x=l 

= (1 - a)exp (- 7 *dx - 7 x - d x )  1 - u p  aBX 
1 - u p  

x=o x=o 

Since 

l n ( l  -aj3")dx 5 
x=o 

X- 

x=o .x=O 

we derive 

which proves (16.205). Lemma is proven. 0 

16.5.3 Teoplitz lemma 

Lemma 16.10. (Teoplitz) Let {a,) ( n  = 1 ,2 ,  . . .) be a sequence of nonnegative real 
numbers such that 

I n I 

1 f = l  I 
(1 6.207) 

and (x,} ( n  = 1,2,  . . .) be a sequence of real numbers which converges to x*, that is, 

(16.208) 
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Then 

( a )  there exists an integer no such that b, > 0 for all n 2 no; 
(b) 

(16.209) 

Proof The claim (a) results from (16.207). To prove (b) let us select E > 0 and 
nb ( E )  L no such that for all n 3 nb ( E )  we have (in view of (16.208)) (x, - x* 1 5 8. Then it 
follows that 

const 
b, 

5 -  + E  -+ E when b, -+ 00 

Since this is true for any 6 > 0 we obtain the proof of the lemma. 

Corollary 16.28. I f x ,  .+ x* then 
,-too 

0 

I .  n I 
(16.21 0) 

Prooj To prove (16.210) it is sufficient in (16.209) to take a, = 1 for all 
n =  1,2, . . .  . 0 

Corollary 16.29. Let (a,) ( n  = 1,2, . . .) be a sequence of nonnegative real numbers 
such that 

I t= l  I 
(16.21 1) 

and for some numerical nonzero sequence {b,} of real numbers there exists the limit 

(1 6.2 12) 
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Let also {x,} (n  = 1 , 2 , .  . .) be a sequence of real numbers which converges to x*, 
that is, 

(16.2 13) 

limb;' a,xn = ax* 
f = l  

(1 6.2 14) 

ProoJ: Directly applying the Teoplitz lemma (16.10) we derive 

165.4 Kronecker lemma 

Lemma 16.11. (Kronecker) Let {an} (n = 
decreasing real numbers such that 

1,2,  . . .) be a sequence of nonnegative non- 

and (x,} (n  = 1 , 2 , .  . .) be a sequence of 
converges, that is, 

I n I 

(16.215) 

real numbers such that the series c:=l xt 

Then 
(a)  there exists an integer no such that b, > 0 for all n 2 no; 
(b) 

( 1 6.2 1 6) 

(16.21 7) 

Pro05 Applying the Abel identity (12.4) for the scalar case, namely, using the identity 

n n n f - 1  
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we derive 

385 

. n  . r  n t-1 1 

Denote a, := b, - bt-l. Then 

n r  n l  

and hence, by the Teoplitz Lemma 16.10, we have 

r n 1-1 / n \ - I  n 

which proves (16.217). 0 

16.5.5 Abel-Dini lemma 

Lemma 16.12. (Abel-Dini) For any nonnegative number sequence {u, ,} , ,=~,~,, , ,  such that 

(1 6.2 18) 

the following properties hold: 
(a )  There exists an integer no such that S,, > 0 for  all n 2 no; 

( 6 )  The series c:=,, - converges i f p  > 0 and it disconverges i f p  = 0, that is, ur 

s: +p 

I I 

Proo& (a) follows from (16.218). Evidently u,  = S, - so 

(16.219) 

To prove (b) for all positive S define the function R,  ( S )  := S--(l+P) (see Fig. 16.2). The 
dashed area corresponds exactly to the function V, (n) .  
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Fig. 16.2. The function R, (S) .  

For p > 0 we have 

Taking n -+ 00 in the left-hand side of this inequality we obtain the result of this lemma 
for the case p > 0. Consider now the case p = 0 and suppose that 

(16.220) 

U sr - st-1 st-1 Then -+ 0, or, equivalently, = 1 - - -+ 0. This means that for any 

E > 0 there exists an integer k ( E )  such that for all t 3 k ( E )  we have - > 1 --E. In view 

of this we have 

st Sf s, Sf-1 

St 

S, = (1 - E )  In - -+ oc) since S, -+ 00 
S k ( & )  

Uf which contradicts (16.220). So, C;"=,, - = 00. Lemma is proven. 
Sf 
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Corollary 16.30. 

Proof. It follows from Lemma 16.12 if we take ut  3 1. 

(16.221) 

0 

16.6 Recurrent inequalities 

16.61 On the sum of a series estimation 

Lemma 16.13. (Nazin & Poznyak 1986)' Let the numerical sequences {y,} and [g,} 
satisJj, the conditions 

Then the following upper estimate holds 

and, hence, ,for n -+ oo 

(16.222) 

(1 6.223) 

(16.224) 

where {h,}  is any sequence of positive real numbers such that 

(1 6.225) 

Prooj Using the Abel identity (1 2.4) of the summation by part in the scalar form, namely, 

' This lemma as well as Lemma 16.16 given below were first proven by A.V. Nazin (see the citations in 
Nazin & Poznyak 1986). 
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no ( E )  such that for any n 2 no ( E )  we have (/Itla,) - p 

for a, := yn-' and B,, := g,, we have 

5 E ,  which implies the 

n 11-1 I I n  I 

which implies (16.223). Lemma is proven. 0 

16.6.2 Linear recurrent inequalities 

Lemma 16.14. (on linear recurrent inequalities) Let us consider a real numerical non- 
negative sequence { u, ] which satisfies the following recurrent inequalitl): 

where {a,) and {B, t }  are numerical sequences such that 

(16.226) 

(1 6.227) 

Then 

(1 6.228) 

Taking n > no ( E )  and making the recursion back up to no ( E )  we obtain 

(16.229) 
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lim sup (npu,) 5 __ - < lim inf (npw,) 
d 

c - p  n+w 

(here we accept that n:=, (1 - a,) := I if m > n). Applying the inequality (16.229) to 
the right-hand side we derive 

(16.23 1) 

n n 

n n n 

Using the Abel identity ( I  2.5) (the scalar version) 

n n n 

f=no(&) t=no(&) t=t+l 

and the inequality 1 - x 5 e-x, valid for any x ,  we get 

= ( p  + E )  + (u,,o(E) - p - E )  exp (- 2 a t )  +- ( p  + E )  

,=no(&) 

since exp (- x:=no(c) a,) +- 0 by the property (16.227). Since E > 0 may be selected 
0 arbitrarily small the statement (16.228) follows. Lemma is proven. 

Lemma 16.15. (Nazin & Poznyak 1986) Suppose fhut sequences (u,) and {w,) for  all 
n L no satisfy the following recurrent inequalities 

(1 6.230) 

where c > p > 0. Then 

Moreover, there exist the sequences (u,} and {wn}  for  which the identities in (16.231) 
are attuined. 
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Pro05 Without loss of generality we may accept that no 2 c. Let us introduce the 
sequence {y,)  generated by the recurrent relation 

Show that 

d 
lim (nPyn)  = - 

c -  P n+oo 

For all n > no from (16.232) we have 

Since 

(16.233) 

(16.234) 

we have 

Substitution of this identity into (16.234) implies 

Taking into account that 

(16.235) 
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and 

n n 

0 (k-(p+')) n (1 - :) 
k=nn m=k+l  

(here E E (0, c - p ) )  from (16.235) it follows that 

d 
C - P  

Yn+l = - (n  + 11-p + o (n-p) (16.236) 

We also have yn 2 u, if y,, = un0 and yn 5 w, if yno = w,," which together with (16.236) 
leads to (16.23 1). 0 

Corollary 16.31. (Chung 1954) Let the sequence { u n }  of nonnegative real numbers sat- 
isfy the following recurrent equation: 

where { cn }  and {d,} are the sequences or real numbers such that 

(16.237) 

limc, = c > p > 0, limd, = d  > 0 
n+m n+w 

(16.238) 

then 

(16.239) 

Pro05 By lim definition for any E > 0 there exists a number no such that for all n 2 no 

I C n - c C I i E ,  I d n - d l I E  

which implies 

C - E  5 C ,  5 c + E ,  d - E 5 d, 5 d + E  
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Using these inequalities in (16.237) gives 

Applying Lemma 16.15 we obtain 

d - &  
< liminf npun 1. 

c + ~ - p  - n+m 

Taking E + +O proves (16.239). 

d + &  limsup npun 5 
n+w c - - E - p  

16.6.3 Recurrent inequalities with root terms 

The lemmas below seem to be extremely important for the Lyapunov-like stability 
analysis for discrete time nonlinear systems. 

Lemma 16.16. (Nazin & Poznyak 1986) Let the sequence {u,}  of nonnegative real 
numbers satisfy the following recurrent equation: 

where r E (0, I )  and {an},  { B n } ,  {&} are sequences of real numbers such that 

for some c ,  d and a satisfying 

Then 
(a)  i f s  > r a  + (1 - r )  t and under a = 1, c > t - 1, it follows that 

t (a) = c - ( t  - 1) x (a = 1) 

(16.242) 

(16.243) 

1 if cu=l 
0 if a f l  

x (a = 1) = 1 { 
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(b) i f s  = ra + (1 - r )  t and under a = 1, c > t - 1,  it follows that 

where f > 0 is the root of the nonlinear equation 

I 2 ( a )  f = d + a f 1 

a + Ja2 + 4 2 ( a ) d  
22 (a )  

(for r = 112 we have f = 

S - a  
(c)  i f s  < r a + ( l - r ) t a n d u n d e r a = l , c r k = -  , it follows that 

1 - r  

Pro08 Let us use the inequality 

r 

x0 
x' 5 (1 - r ) x ;  + T X  

valid for any x, xo > 0. Indeed (see Fig. 16.3), 

(16.244) 

(16.245) 

( 16.246) 

(16.247) 

x' 5 1 (x) = c + k x  

where the parameters of the linear function 1 (x) can be found from the following system 
of linear equations 

which gives k = rxE;-', c = ( 1  - r )  xC; and, hence, x' 5 c + kx = ( 1  - r )  x; + rxh-'x. 
Taking 

x := u,, xo := fn-"  (p  := min {t  - a ,  k ] )  

f Y  I(x)= c+kx 

Fig. 16.3. Illustration of the inequality (16.247). 
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and using the obtained inequality for u; in (16.240), for all n 3 no we obtain 

Now the results (16.243), (16.244) and (16.246) follow immediately if applied to 
the last inequality Lemma 16.15 for the case a = 1 and Corollary 16.31 for the 
case a < 1. 0 

Lemma 16.17. (Nazin & Poznyak 1986) Let the sequence {u,} of nonnegative real 
numbers satisb the following recurrent equation: 

( 16.248) 

where r E (0, 1) and {a,,}, {&}, {&} are sequences of nonnegative real numbers such 
that 

a, 2 c ,  lim sup (finla,) = b, lim sup (&/a,) = d 
n + w  n + w  n=no 

a n  E (0, 11, Bn 2 0, 8, ? 0 

Then 

limsup u, I inf u (c)  
c>r 1 1 n+co 

where 

( 16.249) 

(16.250) 

(16.251) 

ProoJ: Using the inequality (16.247) for x = u, and xo = &/a,,, c > r in (16.248), we 
derive 
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or, equivalently, 

& , : = a , ( l - k ) ,  ~ , : = ~ , 6 , , + ( 1 - ~ ) ( C ~ n / a , ) ,  r / ( l - r )  6, - 

Then applying Lemma 16.14 we obtain 

lim sup u, 5 lim sup (~,/ii,,) := u (c) 
n+cc 

n+tx 

Taking inf of the right-hand side we get (16.250) and (16.251). Lemma is proven. 0 
c > r  
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17.1 Differentiation 

17.1.1 Differentiability 

Let f be a complex-valued function of a complex variable z .  Any complex function 
can be represented as follows 

(17.1) 

We refer to u and u as the real and imaginuvy parts of f and write 

I u = R e f ,  u = I m f j  (1 7.2) 

Example 17.1. 

f ( z >  = 2’ = (x + iy)* = x2 - y2 + i2xy 

u (x, y )  = x2 - y2 ,  v (x, 4’) = xy 

Definition 17.1. If f is defined in some neighborhood of a finite point z and 

lim (‘ -t - existsfinitely w e  say that the function f ( z )  is differentiable at 
A ? 3 0  AZ 
the point z. This limiting vulue is called the derivative off ( z )  at z and we write 

f ( z  + Az> - f ( z >  f ’ ( z )  := lim 
Az+O Az 

(1 7.3) 

391 
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17.1.2 Cauchy-Riemann conditions 

The next theorem gives conditions which must be imposed on the functions u ( x ,  y)  
and u ( x ,  y )  in order that f ( z )  should be differentiable at the point z .  

Theorem 17.1. (The necessary conditions of differentiability) Let f be defined in a 
neighborhood of the point z E C and be differentiable at z .  Then 
(a)  the partial derivatives 

exist; 
(b)  and the following relations hold: 

a a a a 
-u ( x ,  y )  = -u  (x, y ) ,  -u ( x ,  y )  = --u ( x ,  Y) 
ax aY aY ax 

(17.4) 

PruoJ Since f’(z) exists then for any given E > 0 there exists 6 = S ( E )  > 0 such that 

(17.5) 

whenever 0 < lAzl < 6. Representing Az as Az  = t e i f f ,  where t = IAzl and cy = argz 
(see (13.40)), we can see that (17.5) is fulfilled independently of cy when 0 < t < 6 .  Let 
us take cy = 0. This means that Az = t = A x .  This implies 

1 u ( X  + A X ,  y )  - u ( x ,  Y> u (X + A x ,  Y )  - u (x, Y )  + i  
Ax Ax 

f ’  ( z )  = lim 
Ax-0 

a a 
ax ax 

= -u (x, y )  + i--v ( x ,  y)  
(17.6) 

Taking a = n/2 we find that Az = i t  = i Ay and, therefore, 

1 u ( x ,  Y + AY) - u ( x ,  Y )  + u (x, y + AY) - u ( x ,  y) 
i Ay i A y  

f ’  ( 2 )  = lim 
Ay+O 

i a  a a a 
i a y  84’ a Y  aY 

= ---u (x, y )  + - u  ( x ,  y) = -i-u ( x ,  y )  + - u  (x, y )  

(17.7) 

Comparing (17.6) with (17.7) we obtain (17.4). Theorem is proven. 

The conditions (17.4) are called the Cauchy-Riemann conditions. They are also 
known as the d’Alembert-Euler conditions. The theorem given below shows that these 
conditions are also sufficient to provide the differentiability. 
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Theorem 17.2. (The sufficient conditions of differentiability) The Cauchy-Riemann 
conditions (17.4) are also suSficient for the differentiability o f f  ( z )  provided the func- 
tions u ( x ,  y )  and u ( x ,  y )  are totally differentiable (all partial derivatives exist) at the 
considered point. The derivative f ‘  ( 2 )  can be calculated as 

aY a l  a a a 
ax ax aY 

f ’ ( z )  = -u (x, 4’) + i-u ( x ,  y )  = -u (x, y )  - i--u ( x ,  y )  (17.8) 

Pro05 By the total differentiability it follows that 

au i3U 

ax aY 
au a v  

ax 34’ 

A u  := u ( X  + A X ,  y + A.y) - u ( x ,  y )  = -AX + - A y  + 0 (IAzI) 

Au := u ( X  + A X ,  y + A y )  - u (x, y )  = --AX + - A y  + 0 (IAzI) 

Therefore 

f ( Z  + Az) - f ( z )  - A u  + i A u  
Az A x  + iAy - 

A x  + iAy 
Using now the Cauchy-Riemann conditions (17.4), the simple rearrangement gives 

Az A x  + i A y  

A x  + i A y  

A x  + i A y  

= [g+ig] +o(l)  

where o( 1) -+ 0 whenever 1 Azl -+ 0. So that f ’  ( z )  exists and is given by 

a u  . a u  
f ’ (z )  = - + 1 -  ax  ax 

which completes the proof. 
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Example 17.2. For the same function f (z) = z2  as in Example 17. I we have 

au  av au  a v  

ax ax a y  ay 
f‘ (z) = 2x - i2y 

_ -  - - - - = -2y = 2 x ,  - - 

Definition 17.2. A function f ( z ) ,  differentiable at each point of an open set D c C, 
is called regular (or holomorphic) on D. Sure, here we assume that we deal with 
a single-valued (or unqorm) function since the notion of differentiability ( I  7.3) has 
been introduced only for single-valued functions. If a regular function f (z) possesses a 
continuous derivative on V then it is called an analytic function.‘ 

Below these definitions will be extensively used. 

Example 17.3. It is easy to check that, as in real analysis, 

d 
- COtZ = -~ 

d 1 1 d z t a n z =  - 
cos2 z ’ d z  sin2 z 

(1 7.9) 

17.1.3 Theorem on a constant complex function 

An application of the Cauchy-Riemann equations ( I  7.4) is given in the next lemma. 

Lemma 17.1. Let f = u + i u be a function with a derivative everywhere in an open disc 
D c C centered at the point z = ( a ,  b). 
I .  Ifany of u .  u or 1 f 1’ := u2 + v 2  is  constant on D, then f is constant on D. 
2. Also, f is constant on V if f ‘(2) = 0 for all z E D. 

Proof. Suppose u is a constant on D. By (17.4) it follows that - = - = 0. Therefore 
av a u  
ax a y  

So, u is a constant on D. By the same argument we show that u is a constant on D if u 
is a constant. NOW suppose that I f  1’ := u2 + u2 is a constant. This, in view of (17.4), 
implies 

au  a v  au  a u  
ax ax ay  ay ax ax 

0 = u- + u- = u- + 21- = -u!! + ua” 

’ It can be shown that the existence of f ’ ( z )  on D automatically implies continuity of f ’ ( z )  on D (Goursat 
1900). So, regularity and analyticity can be considered as two definitions having an identical mathematical 
sense. 
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and, hence, 

2 au  8U 

ax ax 
(u  f v 2 )  - = I f / * -  = 0  

all 
If l f I 2  = 0, then u = u = 0 and so f = 0. If l . f I 2  # 0, then - = 0 and so u is 
a constant. Hence, by the arguments above, v is also a constant that shows that .f is a 
constant too. Finally, if f ’  = 0 on D, then both - and - are equal zero. So, v is a 

0 

ax 

a v  a v  
ax ay 

constant, and hence, u is a constant too. Lemma is proven. 

17.2 Integration 

17.2. I Paths and curves 

Definition 17.3. A path (contour) in a complex plane is a complex-valued function 
C = C ( t ) ,  continuous on a compact interval [a,  b] E R. The image of [a,  b] under C 
(the graph of C )  is said to be a curve described by C and it is said to join the points 
C ( a )  and C (h) .  r f  
(a )  C ( a )  + C (b), the curve is called an arc with the endpoints C ( a )  and C (b);  
(b) C ( t )  is one-to-on(> on [a,  b] ,  the curve is called a simple (or Jordan) arc; 
(c)  C ( a )  = C (b), the curve is a closed curve; 
(d)  C ( a )  = C (b) and C ( t )  is one-to-one on [a,  b], the curve is called a simple (or 

Jordan) closed curve. 

These types of curves are shown in Fig. 17.1 

Definition 17.4. 

(a)  A path C is called rectifiable f i t  has afinite arc length. 

an arc a Jordan arc 

a closed curve a Jordan closed 
curve 

Fig. 17.1. Types of curves in the complex plane. 
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(b)  A path C is called piecewise smooth if it has a bounded derivative C' which is 
continuous everywhere on [ a ,  b ]  except (possibly) afinite number ofpoints for which 
it is required that both right- and left-hand derivatives exist. 

(c)  A piecewise smooth closed path is called a circuit. 
(d)  The arc length Ac ( a ,  b )  of a path C on [a ,  b ]  is defined by 

1 Ac ( a ,  b )  := SUP {A: ( a ,  b )  : Pm E P ( a ,  6 ) )  I 
p, 

I m I ( 1 7.10) 

i = l  

where P ( a ,  b) is the set of all possible partitions of [a ,  b]. 

Lemma 17.2. A path C is rectifiable ifand only i fC  ( t )  is of bounded variation on [a ,  b].  

Proof: If P,n := {to = a ,  t l ,  t2, . . . , tm = b }  is apartitionof [a ,  b ] ,  andif C ( t )  is afunction 
of bounded variation on [a ,  b ] ,  that is, for all a i ti-1 5 ti i b 

then 

which proves this lemma. 

Corollary 17.1. The arc length Ac ( a ,  b )  may be calculated as the Lebesgue integral 

t=a 

and 

Definition 17.5. I f a  E C, r > 0 and the path C is defined by the equation 

(17.1 1) 

(17.12) 

c ( t )  := a + re", t E [o, 2x1 1 (17.13) 
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then this path is called a positively (counterclockwise) oriented circle (or a sphere in 
C) with the center at a and the radius r. It is denoted by B ( a ,  r )  and is referred to as 
C = B ( a , v ) .  

17.2.2 Contour integrals 

Let C be a path in the complex plane C with domain [a ,  b ] ,  and f : @I --+ C be a 
complex-valued function 

f ( z )  = u (x, y )  + i v ( x ,  y ) ,  z = x + iy 

defined on the graph of C. 

Definition 17.6. 
defined by 

The contour integral of f along C, denoted by s, f (z)dz ,  is 

I h / f (z)dz  := / f (C ( t ) )dC  ( t )  = lim sups (Pm,  {PI) 
m + x  P, 

c f=CI 

m 

I A (P,) := max Izk - z k - I 1  -+ 0 
k = l ,  ..., m m + m  

(17.14) 

whenever the Riemann-Stieltjes integral LLa f (C ( t ) )dC  ( t )  on the right-hand side of 
(17.14) exists. Zj’the contour C is closed, that is, C ( a )  = C ( b )  (see Fig. 17.2), then the 
integral (17.14) is denoted by  

I h=a I 
(17.15) 

Remark 17.1. If f ( z )  is a partially continuous bounded function, the integral (17.14) 
always exists. 
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Lemma 17.3. The calculation of the contour integral lc f ( z )  dz  (17.14) can be realized 
by the calculation of four real integrals according to the following formula: 

(17.16) 

Proof. It follows from the presentation 

m m 

k = l  k= I k = l  

Denote by C- the same contour C but passed in the clockwise direction (see Fig. 17.2). 
Then the following properties seem to be evident. 

Proposition 17.1. 

1. 

(17.17) 

Fig. 17.2. The closed contour C = Cl + Cz within the region V. 
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2. 

3. For any a ,  p E 

405 

(17.1 8) 

( 17.1 9) 

4. 

(17.20) 

17.2.3 Cauchy ’s integral law 

We investigate the conditions under which the integral sC f ( z )  dz along a path C 
joining any two given points a and b in a domain D is independent of the particular path 
C (in D),  but depends on a and b only. 

Lemma 17.4. I t  is necessary and sufficient that the integral off ( z )  along a path joining 
any two given points a and b in a domain D is independent of the particular path C 
(in D) in that the integral of the same function f ( z )  around a closed path C in V (see 
Fig. 17.2) should vanish, that is, 

f ( z l d z  = 0 i (17.21) 

Proof. 

(a) Necessity. Suppose that the integral SC f ( z )  dz along any path C in 2) depends only 
on the endpoints a and b, i.e., j”, f ( z )  dz = 4 ( a ,  b). Let us choose two distinct arcs 
CI and Cz of C joining a and b (see Fig. 17.2). Then we have 

j f ( z )  d z  = J’ f ( z >  d z  + J’ f ( z )  nz 
C CZ CI 

= 4 ( a ,  b )  - 4 ( a ,  6 )  = 0 
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(b) SufJiciency. Suppose now that (17.21) holds for a domain ID. Suppose a ,  b E I D  and 
select any two paths C; and Cz in D joining a to b. Since C = C ,  + Cz and (17.21) 
holds, we get 

Hence, sC, f ( z ) d z  = sc, f ( z ) d z  for any paths C2 and C;. This means that 
0 sc f ( z )  dz = Cp (u ,  b) exactly. The lemma is proven. 

17.2.3.1 Simply-connected domains 
Now we are ready to formulate the following fundamental integral theorem. 

Theorem 17.3. (Cauchy’s integral law) If f ( z )  is a regular function in a simply- 
connected domain2 ’D, then the integral o f f  ( z )  along any path C in ID depends only on 
the endpoints of this path, or in other words, i f  C is any closed contour in ID then 

/ f ( z ) d z = O  
c 

Proof. By (17.16) it suffices to show that each of the real line integrals 

vanishes. By Corollary 16.2 (from the Real Analysis chapter) it follows that 

along any closed contour in a simply-connected domain 27 if and only if the partial 
derivative of the real functions P (x, y )  and Q (x, y )  exist and are continuous in ID and 

(17.22) 

*We are reminded that a domain D in an open plane is simply connected if and only if any closed Jordan 
contour C in D is reducible in D, that is, can be continuously shrunk to a point in D without leaving D. 
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at each point of D. Indeed, 

407 

and 

since a = b. But, in our case, 

for the first integral, and 

So, (17.22) coincides exactly with the Cauchy-Riemann conditions (17.4) which proves 
the theorem. 0 

Remark 17.2. The converse of Theorem 17.3 is also true, namely, i f f  ( z )  is continuous 
in a simply-connected domain D and fc f ( z )  d z  = 0 for every closed contour C in D, 
then f ( z )  is regular in D. The proof can be found in Fuchs & Shahut (1964). 

As it follows from the consideration above, Theorem 17.3 enables us to give an 
equivalent alternative definition of a regular function: a single-valued function f(z) is 
regular in D if it is continuous in D and its integral around any closed contour C in 
D is equal to zero. 

17.2.3.2 Multiply-connected domains 
The Cauchy theorem 17.3 can be generalized so as to apply to multiply-connected 

domains. Let D be an (n + 1)-ply connected bounded domain whose frontier consists 
of ( n  + 1)  disjoint contours Co (the external boundary componcnt), C1, . . . , C,, and let 
,f ( z )  be regular at each point of the closed region D (see Fig. 17.3 showing a case in 
which n = 3). 

By taking suitable (disjoint) cuts yl, yz, . . . yn we form from D a simply-connected 
domain D’ whose boundary we denote by C.  We will consider each cut (i = 1, . . . , n )  
as two-edged as in Fig. 17.3. 

Theorem 17.4. I f f  ( z )  is regular at each point of the closed region D whose frontier C 
consists of a$nite number of disjoint contours C, (i = 0, 1, . . . , n) ,  that is, C = U:=o C,, 
then the integral fC f ( z )  d z  of f ( z )  around the boundary oj  D (taken so that each 
component of the boundary is traversed in a sense such that the interior D of D remains 
on the left) is equal to zero. 
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17.2.4 Singular points and Cauchy ’s residue theorenz 

17.2.4.1 Types of singularities 
Definition 17.7. Consider a function f ( z )  which is regular (analytic) everywhere on 
an open set D bounded by a closed contour C (here we are writing C for Co), except 
at a ,finite number of isolated points a1 , a2, . . . , a,. These exceptional points are called 
singular points (singularities) of f ( z ) .  

Isolated singularities are divided into three types according to the behavior of the 
function in a deleted neighborhood of the point concerned. 

Definition 17.8. An isolated singularity a of the function f ( z )  is said to be 

1. a removable singularity, iflim f ( z )  existsfiiiitely; 
2.  upole, iflimf ( z )  = k~; 
3. an essential singularity, f ( z )  does not tend to a limit (finite or infinite) as z -+ a. 

7’12 

: i u  

Remark 17.3. All of these notions are closely connected with the, so-called, Laurent 
expansion of the,fiinction f ( z )  which will be discussed below. There will be shown that 

a removable singularity cannot contain the term A ,for uny finite n 2 1 (for ( z  - a)” 
sin z 

example, the function - at the point z = a = 0 has a removable Jingularity); 
z 

evidently, that a function J ( z )  defined in some deleted neighborhood of z = a has a 

pole at z = a i j  and only if the function g ( z )  := ___. is regular at a and has zero at 
z = a,  i.e., g (a)  = 0 (while g ( z )  is not identical 
in the case of isolated essential singularity there exist (the Sokhotsky-Cazoratti theorem, 
1868) at least two sequences { z k }  and { z i l } ,  each converging to a, such that the 
corresponding Jequences { f ( z k ) }  and { f ( z : : ) }  tend to dzrerent limits us n -+ cc 
(for exaniple, the function ell‘ at the point z = n = 0 has an essential singularity and 
i~ regular for all other 7) .  

1 

equal to zero); 
f: ( z )  

Definition 17.9. A function f ( 2 )  is called meromorphic (ratio v p e )  if its singularities 
are only poles. 

From this definition it immediately follows that in any bounded closed domain of the 
complex plane a meromorphic function may have only a finite number of poles: for, 
otherwise, there would exist a sequence of distinct poles converging to a (finite) point in 
the region; such point would necessarily be a nonisolated singularity that contradicts our 
hypothesis that any finite singular point of this function must be a pole. 

Example 17.4. Meromorphic jimctions are I /  sin z ,  tan z ,  cot z. 

17.2.4.2 Cauchy ’s residue theorem 
We enclose the ak by mutually disjoint circles Ck in D such that each circle Ck 

enclosing no singular points other than the corresponding point ak. It follows readily 
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from ( 1  7.25) that the integral of f ( z )  around Ck is equal to the integral around any other 
contour Ci in D which also encloses ak, but does not enclose or pass through any other 
singular point of f ( z ) .  Thus the value of this integral is a characteristic of f ( z )  and the 
singular point ak. 

Definition 17.10. The residue of f ( z )  at the singular point ak is denoted by res f (ak) 

and is defined by 

( 1 7.26) 

Formula (17.24) leads immediately to the following result. 

Theorem 17.5. (Cauchy’s residue theorem) Let I) be an open domain bounded by a 
closed contour C and let f ( z )  he regular (analytic) at all points of D with the exception 
of a finite number of singular points a1 , a2, . . . , a, contained in the domain D. Then the 
integral of f ( z )  around C is 2ni times the sum of its residues at the singular points, 
that is, 

(17.27) 

Corollary 17.3. The residue o f f  (2) at a removable singularity is equal to zero. 

The next subsection deals with method of residues calculating without integration. 

17.2.5 Cauchy ’s integral formula 

17.2.5. I Representation of an analytic function through its contour integral 
The theorem below reveals a remarkable property of analytical functions: it relates the 

value of an analytical function at a point with the value on a closed curve not containing 
the point. 

Theorem 17.6. (Cauchy’s integral formula) Assume f is regular (analytic) on an open 
set D, and let C be any contour (circuit) in D which encloses a point z E D but does 
not cross it. Then 

(17.28) 
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Proof. Define a new function g on D as follows: 

41 1 

f ( w )  - f  (4 if # z  

if w = z  
g ( w )  := { w - z  

f ’  ( z )  

Then g ( w )  is regular (analytic) at each point w # 2 in D and at the point z itself it is 
continuous. Applying the Cauchy theorem 17.3 to g gives 

d w  = f m d w -  f ( z ) f - d w  1 
w - 2  w - z  f C C C C 

O =  g ( w ) d w  = 

which proves (17.28). 0 

Example 17.5. I f C  = B (2, r )  is apositively (counterclockwise) oriented circle (17.13) 
with the center at a and the radius r,  that is, 

c = c ( t )  := z + reir,  t E [O, 2x1 

then 

and by (17.18) we derive that 

(17.29) 

In this case ( 1  7.28) becomes 

~ f E d w  = 2ni f ( z )  

Corollary 17.4. (Mean-value theorem) For C = B ( z ,  r )  it follows that 

I 2n I I f ( z )  = & 1 f ( z  + reir)  d t  
t=O 

(17.30) 

(17.31) 
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Proof. By (17.18) and (17.30) we have 

2 n i f  ( z )  = i f d d w  
W - - z  

C 

which proves (17.31). 0 

The next theorem shows that formula (17.30) holds not only for positively oriented 
circles (17.13) but for any circuit containing z as an internal point. 

Theorem 17.7. I f f  is regular (analytic) on an open set D, and let C be any contour 
(circuit) in D (not obligatory C = B ( z ,  r ) )  which encloses a point z E D but does not 
cross it, then 

d w  = 2nin ( C ,  z )  I / &  (17.32) 
C 

where n ( C ,  z )  is an integer called the winding number (or index) of C with respect to z 
which is the number of times the point C ( t )  “winds around” the point z as t varies over 
the interval [a ,  b].  

Proof. By (17.18) it follows that 

C 1=u 

Define the complex-valued function F (x) by the equation 

”(‘) d t ,  
t E [a ,  b ]  c ( t )  - z F ( x )  := ] 

To prove the theorem we must show that F ( b )  = 2n in  for some integer n.  Notice that 

F ( x )  is continuous and F’(x) = at each point where C’ ( t )  exists, and, hence, 

the function G (x) defined by 

” 
C ( x )  - 2  
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is also continuous on [a.  b] and, moreover, at each point, where C' ( t )  exists, we have 

G' (x) = e -F(L)C '  (x) - F'(x)ePrc') [C (x) - 21 

Therefore, G' (x) = 0 for each t in [ a ,  b] except (possibly) for a finite number of points. 
By continuity of G (x )  on [a ,  b] we conclude that G ( x )  is a constant throughout [a ,  b] 
that implies G ( a )  = G (b)  or, equivalently, 

Since C ( a )  = C (b)  f L we find epFo') = 1 that gives F ( b )  = 2n in  exactly where n 
is an integer and corresponds to the number of times the point C ( t )  "winds around" the 

0 point z as t varies over the interval [a.  b] .  This completes the proof. 

Corollary 17.5. Cauchy's integral formula (17.28) can now be restated in the form ; ( w ) d w  = n ( C ,  z )  f ( z )  (17.33) 

Example 17.6. Let C be any contour enclosing the point a E C. We need to calculate 
J := jC ( z  - a)" d z  for  every integer n = . . . , -1, 0, 1. . . . By (1  7.25) it follows that 

J = / ( z  - a)" d z  = ( z  - a)" d z  ! 
c R ( a , r )  

Letting z - a = re'p we get d z  = re'vi dq, and hence, 

Since 

1 
ekpdq  = -ekp + K ,  

k k # 0, K = const 

one gets 
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and J = 2ni  i f n  = -1. So, 

0 for n $ -1 
2ni  for n = - I  1 J = f' ( z  - a)" d z  = ( 1  7.34) 

I I 

Notice that case n = - 1 follows directlyfrom (17.30) if we take f ( z )  = 1. 

17.2.5.2 High-order derivatives integral representation 
By definition, the analytical function is a function of a complex-variable differentiable at 

any point of a domain D. The next theorem shows that an analytical function automatically 
has a derivative of any order which in turn is analytical too. 

Theorem 17.8. (The bounds for high-order derivatives) I f f  (z) is regular (analytical) 
in an open domain D and is continuous in D, then it possesses the derivatives of all 
orders at each point z E D and the derivative of the order n can be calculated as 

(17.35) 

where C is the boundaiy of D, that is, C = D \ D. 

Prooj By the derivative definition and using (17.32) for n (C, z )  = 1, we have 

dw 
1 1 1 

= -1im- .f f (w) [ ( 
- - -1im f ( I D )  d w = L . f - - $ $ $ d w  2 n  i 

2ni  h+Oh w - z - h )  ( w - z )  
C 

(w - z - h)  (W - Z) 
C C 

So, for n = 1 the theorem is proven. Let us use now the induction method, namely, 
supposing that it is true for some fixed n and using the same calculations as before, we 

0 can easily show that it is true also for ( n  + 1) which completes the proof. 

Remark 17.4. Formula (17.35) may be obtained by the formal direct differentiation of 
Cauchy ' s  formula ( I  7.28) by z .  

Remark 17.5. If the function cp (2) is continuous on the boundary C of an open domain 
D, then the function 

C 

is regular (analytical) in D. 
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Example 17.7. 
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d w  = sin'"(z) = -sinz sin (w) 
,dw = - 

C C 

17.2.5.3 Cauchy 's inequalities 
Formula (17.35) leads directly to the following important inequalities known as 

the Cauchy's inequalities for the module of the nth derivative. Indeed, from (17.35) it 
follows that 

(17.36) 

where r is the distance between the point z and the boundary C ,  i.e., r := inf I/z - wII, 
M is the supremum of the module of f (w) in D ,  i.e., M := sup I f ( z ) l  and 1 is the 

length of C ,  i.e., 1 := l$Cdwl. In particular, if f (w) is analytical in the disc D = 
{w E C : Iw - zI < r ) ,  then 1 = 2nr  and we obtain 

u , t C  

?ED 

( 17.37) 

17.2.5.4 Liouville's theorem 
Definition 17.11. A function analytical everywhere on C is called an entire function. 

Example 17.8. Entire functions are polynomials, sin z and COS z ,  and e'. 

Theorem 17.9. (Liouville) Every bounded entire function is constant. 

Proof. Suppose I f ( z ) i  5 M for all z E @. Then by (17.37) applied for n = 1 it follows 

that I f ( " ) ( z )  1 I - for every r > 0. Letting r -+ 00 implies f'(z) = 0 for every z E C M 
r 

which completes the proof. [7 

17.2.6 Maximum modulus principle and Schwarz's lemma 

Theorem 17.10. (Maximum modulus principle) I f  a function f ( z )  is analytic and not 
constant on an open region D and is continuous on D, then its module I f  (z) l  cannot 
achieve its maxima in any point D, that is, every contour 

C = B ( a ,  r )  := { z  E C I Iz - a1 = r }  c D 

contains points z such that 

(17.38) 
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Proot By continuity of I f  (z)l it achieves its maximum M on 6. Denote by & the set of 
all extrema points, i.e., 

& := { z  E Dl I f  (z)l = M }  

Suppose that & = D .  This means that I f  ( z ) l  = M for all points z E D and, by 
Lemma 17.1, it follows that f ( z )  = const on D that contradicts with the assumptions 
of the theorem. Suppose now that E c D ,  namely, there exists a boundary point zo E & 
such that it is an internal point of D .  Let us construct a circuit C = B ( z o ,  r )  which 
contains a point z1  E D such that z 1  $ E (this can always be done since zo is a 
boundary point). Then i f  ( z ) l  < M ,  and for any small enough E > 0, by continuity 
of f ( z ) ,  there exists a set Cj, which is a part of C where I f  ( z ) i  < M - E .  Denote 
C2 := C\CI .  Evidently that for any z E C2 one has I f  (z) l  5 M .  Then by Theorem 17.4 it 
follows that 

=O 

which implies 

1 El1 
2n r 2n r 
__ ( [ M  - & ] I 1  + M l z )  = M - ~ 

I , : =  / d z ,  12 := J’f ( z ) d z  
CI C2 

But the last inequality is impossible which leads to the contradiction. Theorem is 
proven. 

Corollary 17.6. (Minimum modulus principle) I f a  jiinction f ( z )  is analytica2 and not 
constant on D,  and it is continuous and nonequal to zero on D, then the minimum of 
I f (z ) l  cannot be achieved on D. 

Proof. It can be easily done if we apply Theorem 17.10 to the function g ( z )  = 
llf ( 2 ) .  0 

Using the maximum modulus principle it is possibly easy to state the following useful 
result. 

Lemma 17.5. (Schwartz, around 1875) If function f ( z )  is analytical in the open 
domain IzI < 1, it is continuous on Iz/ f 1, and, in the addition, 
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then 

-1 (17.39) 

IJ' at least in one interml point o j  the domain I z I  < 1 the exact equality I j  ( z ) l  = IzI 
holds, then this equality takes place at any point cf this domain and, besides, 

I f ( z )  = e ' a z  1 
where u is u real constant. 

Proof. To prove this result it is sufficient to consider the function 

(17.40) 

which is analytical on the set 0 < IzI < I and continuous in IzI 5 1. Applying to this 
function the maximum modulus principle 17.10 we derive that on the circle I z I  = 1 
we have 

and by this principle, Ip (z)l 5 1 everywhere on IzI I 1,  which gives 1.f (z)l 5 IzI. So, 
the first part of the lemma is proven. If in some internal point zo we have 1.f ( S O ) \  = I z o I ,  
then in this point Iq (z)l = 1 and, again by maximum modulus principle 17.10, it follows 
that Ip(z) I  =_ 1 everywhere on IzI 5 1. By Lemma 17.1 we have that q ( z )  = const 

0 which can be represented as e'" which implies (17.40). 

17.2.7 Calculation of integrals and Jordan lemma 

17.2.7. I Real integrul calculation using the Cauchy 's residue theorem 
The main idea of integral calculus using Cauchy's residue theorem consists of the 

following. Assume we must calculate the usual (Riemann) integral s,"=, f ( x )  dx  of the 
real function f ( x )  over the given interval (finite or infinite) (a ,  h )  E R. Let us complete 
this interval with some curve C' which together with ( a ,  h)  contains a domain 2). Let us 
then extend (analytically) our given function ,f ( x )  up to a function ,f ( z )  defined on -0. 
Hence, by Cauchy's residue theorem (17.27) 

which gives 

(17.41) 
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If the integral over C' can be calculated or expressed as a function of the integral 
s'Lu. f ( x )  d x ,  then the problem of the integral calculus might be solved! This technique 
clearly shows that the integral of a real function f ( x )  can be calculated as the sum 
of residues in its singular points that is significantly simpler especially in the case of 
poles. 

Remark 17.6. Usually to simplzfi calculations, the extended function f (2) is selected 
in such a manner that on ( a ,  6 )  it would be its real or imaginary part that permits to 
calculate s,=, f ( x )  d x  by simple separation of real and imaginary parts. b 

17.2.7.2 Improper integrals and Jordan lemma 
If the interval is infinite, then one may be considered an extended family of the contours 

c; U (ak, bk) C cL+, U bk+,) such that (ak, b k )  -+ (a ,  b)  as k -+ 00. In this case 
it is not obligatory to calculate the integral iCL f ( z ) d z  but it is sufficient only to find 
its limit. Very often it turns out that this limit is equal to zero. This fact may be shown 
using the lemma given below. 

Lemma 17.6. (Jordan) If on some sequence { C i }  of contours cuts 

the function g (2) tends to zero uniformly on argz, then for any h > 0 

I I 

1 g (z) eiE.' dz  = 0 (17.42) 

I l 

a 
Prooj Denote z = x + i y  = reLv, Mk := max lg ( z ) l  and (Yk := arcsin-. By the 

lemma assumption, Mk -+ 0 and (Yk -+ 0 such that ( Y k R k  --f a.  Let a > 0 
(see Fig. 17.4). 

c; R k  

k + x  I+% h - c c  

t Y  

Fig. 17.4. The contour CL with cuts A B  and C D .  
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On the cuts A B and C D we have I e’”‘ 1 = e-‘y 5 ern’, therefore 

2 
Applying the inequality s inp  2 -p valid3 for cp E [0, 2x1 we get 

n 

at the cut B E  which implies 

Analogously, Is,, g ( z )  elAz dzl k2w 0 which proves the lemma for the case a > 0. 
If a cc 0, the proof is significantly simpler since there does not need to calculate integrals 

0 over the cuts A B and C D.  Lemma is proven. 

cos t Example 17.9. Let us calculate the, so-called, Laplace integral Jzo dt.  Select 
elz 

the auxiliaryfimction f ( z )  = - and the contour Ci ,  as in Fig. 17.4 with a = 0. 
z 2  + b2 

Since the function g ( z )  := - satisfies on Ck, the inequality lg (z)l < ~ 

R: - b2’ 
then it converges uniformly to zero as R,: -+ 00 and hence, by the Jordan lemma ( I  7.6), 
ScRk f ( z ) d z  = sc, g ( z ) e I i d z  k7f,o 0. Then, for any Rk > Ibl by Cauchy’s residue 

theorem ( I  7.27) it follows that 

1 1 
z 2  + b2 

Ri. 

To prove this inequality it is sufficient to notice that ( T ) ’ = F ( p - t a n q ~ )  < O a t ( O , 2 r r ) a n d ,  

sin cp 
hence, the function - decreases at this interval. 

9 
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since f ( z )  inside the joint contour has the unique singular point (pole of the multiplicity 
one) z = (bl i.  Separating the real and imaginary parts and using that the$dnction f ( z )  
is even, we finally conclude that 

cx. I 

(17.43) 

17.3 Series expansions 

In this section we will consider the problem of the representation of analytical functions 
by power-series expansions and their generalizations (“negative power”). More exactly, 
we will deal with a series given by 

cx. c c,, ( z  - a)” = . . . + CL, ( z  - a)-“ . . . + c-I (2 - a)-’ 
l i=--x 

+ CO + C I  ( Z  - a >  + . . . + cn (Z -a )”  +,  . . (17.44) 

where z is a complex variable, and c, and a are constants named coefficients and the 
center of the series, respectively. 

17.3. I Taylor (power) series 

Theorem 17.11. (0. Cauchy, 1831) A function f ( z )  can be represented by the corre- 
sponding Taylor series 

(2 - a )  + .  . . + - ( z  - a)” + R, 
n !  

f ‘ ” ’ ( a )  are given by (17.35) 

(2 - a )  + .  . . + - ( z  - a)” + R, 
n !  

f ‘ ” ’ ( a )  are given by (17.35) (17.45) (17.45) 

in any open domain circle with a boundary C = B ( a ,  r )  where this function is analytical. 
In any closed domain I?, belonging to this circle, this Taylor series converges uniformly, 
that is, R, --+ 0 when n + 00 independently ofz E I?. 

Proof. Let us use the known formula of the geometric progression 

valid not only for real, but for complex variables q E C (q  f .  l),  rewriting it as 

1 qn+l 
-- - 1 + q + q2 + . . . + 4“ + __ 
1 - q  1 - q  

(17.46) 
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Fixing some point a E D ( D  is the open domain where f ( z )  is analytical) and using 
(17.46) we may write 

-- 1 - ~[ 1 
: - a ]  

l - -  
w - a  

( w - z )  ( 2 0 - a )  

n+ I 1 
z - a  (s) 

1--  
w - a  

1 
(w - a )  

I + -  w - a  w - a 
- - 

1 
2x1 

Multiplying both sides by -f ( w )  and integrating along the contour C = B ( a ,  r ) ,  

lying in D and containing both points z and a ,  and applying Cauchy's formula (17.28), 
we obtain (17.45). Let us now consider any positive r' such that 0 < r' < r ,  where r is 
the radius of the circle C = B ( a ,  r ) ,  and the circle Iz - a /  5 kr' with any k satisfying 
0 < k < 1. Let z belong to this last circle and C' = B ( a ,  r ' ) .  Then Iw - a1 = Y ' ,  and 
hence, 

Iw - Z I  = I(w - a )  + (a  - z)l 

2 (w - a /  - Iz - a (  2 r' - kr' = (1 - k)r' 

Applying this inequality to (1 7.45) we have 

where M = I f  ( z ) l  (the function f ( z )  is analytical within this circle and, hence, 

it is bounded). Since k < 1, we obtain R,, + 0 when n -+ cc for every z satisfying 
0 

sup 
z:lz-<ll5r' 

) z  - a1 5 kr'. Theorem is proven. 

Claim 17.1. (The Cauchy-Adhamar formula) Every power (Taylor) series has a defi- 
nite radius of convergence 

which is finite or fcc and may be calculated as 

(17.47) 
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ProoJ: To prove this result it is sufficient to show that for any z ,  for which Iz - a I 5 k R ,  
0 < k < 1, the series c,"=, c, ( z  - a)" converges, and for any z ,  for which Iz - a1 > R. 
this series disconverges. By the upper limit definition, for any E > 0 there exists no ( E )  

1 1 1 
such that 

R R R ( 7 ) '  
< - + E for all n 3 no ( E ) .  Selecting E such that - + E < 

we obtain 

I - k  
0 < q = 1 - - -  

l + k < l  

for any n 2 no ( E )  and z satisfying ) z  - a1 I kR.  So, we get 

To prove the rest of the theorem, again notice that by the definition of the upper limit, for 
any E > 0 there exists a subsequence n = nk such that fl> - - E ,  or, equivalently, 

1 
R 

But if Iz - a1 > R we can always select E such that Iz - a1 > 1. This means 

Claim is proven. 0 
that the term c,, ( z  - a)nk will tend to 00 and, hence, c,"=, c, ( z  - a)" disconverges. 

Example 17.10. 

(a )  The following series converge for any z E C 

I I 
2 !  3!  ez = 1 + z + -2 + -z3 + . . . ; 

s i n z = 1 - - z 3 + - z  1 1 5  - . . . ;  c o s z = ~ - - z  1 2  + - - z  1 4  - . . .  
3! S !  2! 4! 

sinhz = z + -z3 1 + -z 1 5  +.  ..; coshz = 1 + -z2 1 + -z4 1 +... 
3! S !  2! 4! 
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(6 )  The following series converge for  any z such that Iz/ < 1 

1 1 3  In(I + z )  = z - -2 + - z  + .  . . 
2! 3! 

a ( a - 1 )  a ( a - l ) ( a - 2 )  z 3 +  . . .  
3! (1 + z)" = 1 + a z  + z 2  + 2! 

Remark 17.7. r f  f ( z )  is regular at z = a and f ( a )  = 0 (f ( z )  is not zero identically), 
then by Taylor's theorem it may be presented by the power series (1  7.44) as follows 

(17.48) 

where C N  + 0 and N ( f ,  a )  > 1 .  The number N ( f ,  a ) ,  appearing in (17.48), is called 
the order of the zero off (2) at z = a. 

Lemma 17.7. (Parseval's identity) For any function analytical on the disk Iz - a1 5 R 
and any r E [O, R )  the following identity holds 

(17.49) 

ProoJ: By the direct calculation of the circuit integral of I f  (z)I2 over the Iz - a1 = r 
using the Taylor expansion f ( z )  = c,"=, c, ( z  - a)" gives (17.49). 

17.3.2 Laurent series 

Suppose f ( 2 )  is regular in the annulus K defined by r < Iz - a1 < R ,  0 5 r < 
R 5 00. We construct the annular domains K'  and K" defined by r' < Iz - a /  < R' and 
r" < / z  - a1 < R" where r < r' < r" < R" < R' < R so that K contains K' and K' 
contains I?'' (see Fig. 17.5). 

As f (2) is regular on I?', by the Cauchy integral formula (17.30) it can be 
represented as 

(17.50) 
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where CR' and Crs denote circles of the respective radii R' and r' with centers at the point 

a (see Fig. 17.5). Then for all points 

So, the fraction I/(( - z )  can be expended as a geometric series uniformly convergent 
on ( on CR!, that is, 

z - a  (2  - a)" 
I - z  ( I - Z Y  (( - Z)"+l 

+...  1 +- +. . .+  -- - 

Substitution of this expansion in (17.50) gives 

where 

(17.51) 

(17.52) 

Fig. 17.5. The annular domains 
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Notice that, in general, c,, cannot be represented in the form ___ since ,f ( z )  is not P' 
n! 

rl 
regular at z = a.  Analogously, for any { on C,.) we have 

. . .  - 1 5 ' - a  (5' - a)"-' 
( Z  - a)" 

- 
2 . . .  - 

Z-a ( z - a )  

and, as the result, 

with 

(17.53) 

(1 7.54) 

Combining ( I  7.52) and (17.54) in (17.50) we obtain the following result. 

Theorem 17.12. (Laurent, 1843) Everyfunction f ( z )  which is regular in the annulus 
K := { z  E C I r < jz - a I < R )  can be represented in this annulus by its Laurent series 

n=O n=-I 

(17.55) 

The term f l  ( z )  is called the regular part of the Laurent series and the term .f2 ( z )  is 
called the principal part of the Laurent series, respectively. 

Corollary 17.7. Cauchy's inequalities for the Laurent series are us 

(17.56) 

iftkefunction f ( z )  is bounded on the circle ) z  - a1 = p E ( r ,  R ) ,  i.e., I f  ( z ) ]  5 M .  
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Example 17.11. The function 

1 1 
- 

1 
( Z - l ) ( Z - 2 )  z - 2  z - 1  f ( 2 )  = 

is regular in the annulus (“rings”) 

So, in K1 

1 = - y - ) = - ; ( l + - + - + . . .  1 1 z z2 
2 - 2  2 1-212 2 4  

1 3  7 
2 4  8 

- _  - + - z + - z 2 + . .  

In K2 

1 1  
- - (1 + 2-’ + z - 2 . .  .) 1 

2 - 1  z l - l / z  z 

- (z-1 + z - * .  . .) 

In K3 

1 1 1 2 4  
~ 2 - 2  = - z (-) 1-212 =; ( I + - + -  z 22 +. . .  

1 1  1 -- - - - (1 + 2-’ + z - 2 . .  .) 

2 4  2 
- (z-1 + z -  . . .) = z-2 + 32-3 + . . . 

1 
z - 1  z l - l / z  z 

sin x Example 17.12. Let us calculate Euler’s integral Jxz-, -dx. Evidently, 
x 

00 0 cc 
sin t sin x I~ = J s d t  + 1 --dt = 2  

X X . x  
x=o 1=-, x = o  
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Introduce the auxiliary function f (2) = - and select the contour 
Z 

C := C, U [r, R ]  U CR U [ -R,  -r] 

as it is  shown in Fig, 17.6. Within this contour the function f (2) is regular and, hence, 
by Cauchy 's residue theorem ( I  7.27) it follows that 

By Jordan's lenzma (17.6) lim sc, f ( z )  d z  = 0. To estimate sc, f ( z )  d z  let us consider 

the Laurent expansion (1 7.55) of f ( 2 )  in the neighborhood of the point z = 0: 
R+CX 

where P ( z )  is a function continuous in z = 0. Thus, using representation z = reZV, we 
also have 

f ( z ) d z =  -dz 
cr s cr se: 

-R - r  r R 

Fig. 17.6. The contour C .  
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So, (17.57) can be rewritten as 

where, in view of z = x + i y ,  

R -r R -1  

sin x eir - e- ix  

dx = ] 2i-ddx 
x x 

r I 

oo sinx n 
x 2 

Taking R + 00 and r -+ 0 from (17.58) we obtain so ---dx = - and, finally 

(17.58) 

sin x 7 * d x = x  
x = - - x  

(17.59) 

17.3.3 Fourier series 

Let function f ( z )  be analytical in annulus 

Thus within this annulus it may be represented by the Laurent expansion (17.55) 

(17.60) 

In particular, for the points z = eit of the unitary circle we obtain 

I n=-m n = l  I 
m 

a0 
= - + 2 

[a,l cos (nr) + b, sin (n t ) ]  
n = l  

(17.61) 
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where a. := 2c0. a,, := c, f c-,, b, := i (c, - c - ~ ) ,  and, hence, by (17.60), 

Za 

~ a. = f (cis) d Q ,  a,? = 1 7 f (ei') cos ( n t )  do 
n 

(1 7.62) 

The series (17.60) is known as the Fourier series of the function cp ( t )  written in 
complex form. 

17.3.4 Principle of argument 

Theorem 17.13. (The principle of the argument) Let V be the interior domain 
bounded b y  a contour C and f ( z )  be a function having afinite number of multi-poles bl , 
b2, . . . , b p  with the respective orders P I ,  p2. . . . . pp and a finite number of multi-zeros 
a I  , a2 ,  . . . , aN with the respective orders n I, n2, . . . . t i N .  Then the logarithmic derivative 
f ' ( 7 ) l f  ( Z )  is regular 011 C,  and has in V at most a finite number of singularities suck 
that the following identitj holds 

" " ) d z  = 2n i  ( N f  - P j )  = i A, arg f ( z )  1 f m  
1 

2n AC arg f ( z )  := - ( N t  - P i )  

(1 7.63) 

ProojF: Considering the multi-connected domain VE,,L (with the "joint" boundary C, @), 
obtained from D by excluding (deleting) all singularity points (in this case zeros and 
poles), we conclude that the logarithmic derivative f '  ( z ) / f  ( z )  is regular on VE ," and, 

hence, by (17.23) the integral jc ~ '' ("dz can be represented as a finite sum of the 

individual integrals taken over the contours 
f ( z )  

Cf"" := { Z  E C 1 I Z  - ak/ = &k > 0}, k = 1,. . . , N 
C y '  := { z  E c I Iz - b,I = /.Ls > O}, s = 1 , .  . . , P 

Indeed, by (17.23) 
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which implies 

( 1  7.64) 

f '  (2) 
f ( z )  . f ( z )  

f I (2) d z  
So, it is sufficient to consider the individual integrals fCker,, -dz and fCyie - 

for each fixed k and s. For the zero ak by (17.48) it follows that 

and hence, 

in some neighborhood of the point a. Thus, the logarithmic residue of a regular function 
at a zero is equal to the order nk of that zero. Analogously, for the pole b k  in some of its 
deleted neighborhood we have 

and, hence, 

Thus, the logarithmic residue of f ( z )  at a pole is equal to the order pa of that pole 
with the sign rcversed. Combining these two logarithmic residues in (17.64) we derive 
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f '  ( z )  
f ( 2 )  

the relation jC -dz = 2n i  ( N f  - Pf). To complete the proof it is sufficient to notice 

that jC ~ " ("dz = A, In f (2) where In f ( z )  denotes a value of the logarithm which 
f ( z )  

varies continuously as z makes one complete circuit of C (starting from some fixed point, 
z o ,  say) and A, In f ( z )  denotes the corresponding variation of In f ( z ) .  Since 

AC In f ( z )  = AC In I f  ( z ) l  + i A c  arg f ( z )  

we have jC f ' o d z  = i A c  arg f ( z )  which completes the proof. 
f ( z )  

0 

17.3.5 Rouche' theorem 

One of the important applications of the principle of the argument is the following 
theorem. 

Theorem 17.14. (Rouchk) Let D be the interior domain bounded by a contour C. If 
functions f ( z )  and g ( z )  are analytical on D, continuous on l? and satisfy the inequality 

at each point z on C,  then the functions f ( z )  and [ f ( z )  + g ( z ) ]  have the same number 
of zeros in D, each zero being counted according to its multiplicity. 

Proof. Notice that by the assumption of this theorem 1 f ( z ) l  > 0 on C and 

Hence, the functions f ( z )  and [ f ( z )  + g ( z ) ]  have no zeros on C and the principle of 
the arguments is applicable to both. Based on the identity 

we derive 

AC arg [ f ( z )  + g ( z ) ]  = AC arg f ( z )  + AC arg 1 + - ( gi3 
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But A, arg (1 + m) = 0 since the point w = 1 + - (') always remains inside the 

circle /w - I I < 1. So, Ac arg [f ( z )  + g ( z ) ]  = A, arg f ( z )  and to complete the proof 
one needs to apply the formula (17.63), namely, since Pf  = PfiX = 0 we have 

f ( z )  f ( z )  

1 
2n 

= -ACargf (z)  

= N f + ,  - Pf,, = Nf., 

Theorem is proven. 0 

17.3.6 Fundamental algebra theorem 

Theorem 17.15. (The fundamental theorem of algebra) Any polynomial of degree 
n 5. 1 has a zero (root), that is, for any n 1. 1 there exists a point zo E CC such that 

(17.66) 

where 

1 Pl' ( z )  := aoz" + alzn-I + . . . + a,_Iz +a,,,  a" # 01 ( 1  7.67) 

Corollary 17.8. Every polynomial pa  ( z )  (17.67) of degree n 2 1 has exactly a zeros 
(roots), that is, for  any z E CC the polynomial pi, ( z )  can be represented us 

I n I 

I i=l I 
(17.68) 

First prooj (based on Liouville's theorem) Assume that pa ( z )  (17.67) has no zero 
and prove that pl, ( z )  is a constant. Let f ( z )  = l/p, (2). Then f is analytic everywhere 
on CC since, by the assumption, pu ( z )  $ 0 in @. Since 

pi, ( 2 )  = zn [a0 + 4 z - I  + . * .  + a , - l P + l  + a,z-"] + 00 
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as IzI -+ 00, so i f  (z)/ --+ 0 as Iz( + 00. Therefore, f (z) is bounded on C, and so, by 
Liouville's theorem 17.9, f (z) and hence pu ( z )  is a constant on C that is possible if 
and only if a, = 0 for i = 0, 1, . . . , n - 1. This contradicts with the condition a0 if 0. 
Theorem is proven. 0 

Second pro06 (based on the RouchC theorem) Let us put g ( z )  := alzn-l + . . . + 
anPlz  + a, and select R large enough such that on the circle 1zJ = R there would be 
I f ( z ) l  > Ig(z)I  (this always may be done since I f (z) I  = la01 R" and Ig(z)I 5 /all 
R"-I + . . . + larz-, I R + la,l). Then by the RouchC theorem (17.14) these two functions 
f (z) and [f ( z )  + g (z)] have the same number of roots. But f ( z )  := aOzn has exactly 

0 n roots which completes the proof. 

Example 17.13. Let us define how many roots the polynomial 

pu  (2) = z8 - 4z5 + z2 - 1 

has in the disc IzI < 1. Define f ( z )  := z8 - 42' and g (z) := z2 - 1. Notice that on the 
circle / z /  = 1 we have I f  (z)l = 1z3 - 41 2 4- 1z31 = 3 and lg (z)l 5 / z 2 /  + 1 = 2. Thus, 
by the Rouche' theorem (17.14) the number of roots of pa ( z )  is equal to the number of 
roots of f ( z )  := zx - 42' = i? ( z3  - 4) in the disc IzI < 1 which is equal to 5 (since 
z3  - 4 f 0 within the disc). 

17.4 Integral transformations 

In this section we will consider the class of the, so-called, integrul transformalions 
of an original complex function f ( t )  of a real argument (defined on R+) into the 
corresponding function F ( p ) ,  called the image, defined on the complex plane C. This 
class of transformations is given by the relation 

(17.69) 

where the function K : R+ x C + C is called the kernel of the integral transformation 
(17.69). Such sorts of transformations are actively applied in theory of differential equa- 
tions and many other fields of physics and engineering practice. Let us briefly present 
the most important of them. In any case, we will assume that the original function f ( t )  
satisfies the following conditions: 
A1 It satisfies Holder's condition, i.e., for any t E R+ (maybe with the exception of 

some exclusive points) there exists positive constants L ,  ho and a 5 1 such that for 
all h : Ihl 5 ho 

(17.70) 
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A3 There exist such constants M > 0 and SO > 0 such that 

(17.72) 

(the constant so is called the increment index of the function f ) . 4  

17.4.1 Laplace transformation ( K  ( t ,  p )  = e-Pr)  

17.4. I .  1 Direct Laplace transformation 
Definition 17.12. The Laplace image of the function f ( t )  satisfying assumptions A1-A3 
is called the complex function F : C --+ C of the complex variable p := s + i o  defined 
by the relation 

t=O 

(17.73) 

where the integral is taken over the positive ~emi -ax i s .~  We will write 

(17.74) 

Theorem 17.16. For any original function f ( t )  satisfying assumptions A1-A3 its 
Laplace image F ( p )  is correctly defined within the semi-plane Rep = s > so, where so 
is the increment index o f f ,  and F ( p )  is analytical (regular) within this semi-plane. 

Proof. Indeed, for any p such that Rep = s > so the integral (17.73) converges 
absolutely since by A3 (17.72) it is estimated from above by a convergent integral, 
that is, 

j .Jf ( t )e-P'dl  
t=O r=O 

(17.75) 

More exactly, 

It is known also as the, so-called, double-side Laplace transformation defined by 

F ( p )  := 7 f ( t ) e - P r  d t  
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Then, for any p within the semi-plane Rep 2 s1 > SO we have 

(17.76) 

which exactly means that the function F ( p )  possesses its derivative and, hence, is 
0 analytical in any point of the semi-plane Rep > so. Theorem is proven. 

Corollary 17.9. I f p  -+ 00 such that Rep = s + 00, then F ( p )  tends to zero, i.e., 

Proof. It follows directly from (1 7.75). 

(1 7.77) 

0 

17.4.1.2 Inverse Laplace transformation 

simple lemma. 
To obtain the main result on the inverse Laplace transformation we need the following 

Lemma 17.8. For any function 4 (x) integrable (in Riemann sense) on the interval [a,  p ] ,  
we have 

~ lim ] 4 (x) sin ( b x )  dx  = 0 
b-oo 

(17.78) 

Proof. If 4 (x) is continuously differentiable then the integration by parts implies 

x=a x=LY 

If @ ( x )  is an integrable function then for any E > 0 there exists a conti- 
nuously differentiable function 4, (x) and the constant b, > 0 such that 
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Lemma is proven. 

The next theorem presents the main result on the inverse Laplace transformation. 

Theorem 17.17. (on the inverse transformation) I f f  ( t )  is an original function satis- 
bing assumptions A1-A3 and F ( p )  is its image, then in any point t >_ 0 where it satisfies 
Holder’s condition (1  7.70) the following representation holds 

(17.79) 

Here the integral is taken over any line Rep = a > SO and is understood in the main- 
valued sense, that is, as the limit of the integral along the interval [a - ib, a + ib]  
when b + m. 

Pro05 Let us consider the integral 

[ i f r h  a+i h 
1 1 

2n i 2n i 
f h  ( t )  := - J’ F ( p )  ep f  d p  = ~ J’ e p f  ( 7 f ( r )  e-pr d r  

a-rh a- ih  r=O 

Since by (17.75) the integral srz0 f (5) e-Pr d t  converges uniformly on p in the semi- 
plane Rep ? a ,  we may change the order of the integration which gives 

M 

r=-r 

Denote g ( t )  := f ( t ) e P r  and notice that by A2 g (1) E 0 for t < 0. Therefore, 
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The second integral for any b > 0 is exactly the Euler's integral (17.59) and, hence, it is 
equal to n which leads to the following expression 

The first integral by Lemma 17.8 tends to zero as b -+ 00 which completes the proof. c7 

Corollary 17.10. The originalfiinction f ( t )  is completely defined by its image F ( p )  
(see formula ( I  7.79)) with the exception of the points of discontinuity. 

17.4.1.3 Some properties of the Laplace transformation 
1. By direct calculation using (17.73) it follows that 

1 1 

P P - Po 
C ( l }  = -, C(eP0") = ~ , C {S ( t  - r ) }  = e-pr (17.80) 

2. Denoting G ( p )  := J:o g ( t )  e-p '  d t ,  for any complex numbers a and /3 we have 

(17.81) 

3. 71 C {sin (w t ) }  = C 

( 17.82) 

4. 

5 .  

(17.83) 

(17.84) 
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6. For any a > 0 

ff 
(17.85) 

7. Differentiation of original functions: If a function f ( t )  is continuous for t > 0 and 
f '  ( t )  or, in general, f(") ( t )  is an original function too, then 

(17.86) 

c { f'"' ( t ) )  = p " F ( p )  - p" - ' f  (0) 
-p"-2 f '  (0) - . . . - f ' "  - I )  (0) (17.87) 

Indeed, integrating by part we derive 

m 

C { f '  ( t ) }  = / f '  ( t )  eCPf dt = [ f ( t )  eCpr]," + p f ( t )  ecPt dt 
r=O t=O i 

and, since Rep = s > so, it follows that I f  ( t )  e-pt  1 5 Me-(s- ,so)f .  Therefore 

which implies (17.86). Applying (17.86) n times we obtain (17.87). 
8. Differentiation of images: 

(17.88) 

This can be obtained by the direct differentiation (since F ( p )  is analytical in Rep = 
s > so), that is, 

F' ( p )  = - 

F(") ( p )  = (-1)" 

tf ( t )  eCpf d t ,  F" ( p )  = 

t " f  ( t )  e-Pt d t  

r=O i l=O 

r=o i 
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Example 17.14. 

n !  n! 
C ( P }  = - pn+, , C{tnepot] = 

(p' + w')' 

(p' + w2)2 

( P  - 

2PO C {t  sin (w t ) }  = 

p' - w2 c ( t  cos ( w t ) }  = 

9. Integration of original functions: 

(17.89) 

(17.90) 

It follows from (17.86) that if we take g i t )  := sTt=o f (t) dt and calculate F ( p )  

= L { f ( t ) }  = C (g '  ( t ) }  = p G  (p) that gives G (p) = -. 

belongs to the semi-plane Rep 2 a > SO) converges, then 

F ( P )  
P 

10. Integration of images: If the integral spm F ( p )  d p  (the path of integrations completely 

(17.91) 

It follows from changing the order of integration: 

7 F ( p )  d p  = 7 f ( t )  ( l e - p t  d p )  dt I,$ f o e - " '  t d t  
P t=O 

11. Theorem on delay effect: For any positive t 

12. Theorem on shifting effect: 

(17.93) 

13. Multiplication (Borel) theorem: Denoting the convolution ( f  * g )  of two functions by 

(17.94) 
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we have 

Indeed, 

- - f e - p f  ( J f ( r ) g ( t - t ) d t  
t=O r=O 

= i . f ( r )  ( t=z i e - p f g ( t - 7 ) d t  
r=O 

Corollary 17.11. (Duhammel's integral) 

(17.95) 

14. Theorem on the inverse transformation: Let f ( t )  and g ( t )  have the increment indices 
s and sg , correspondingly. Then 

(17.97) 

where a > sf and Rep > sg + a. 
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Indeed, 

44 I 

= & 7 [ ' T F  ( 4 )  eq fdq]  g ( t )  e-Pt d t  
r=O u - I X  

a-icc 

15. First theorem on the expansion: If in a neighborhood of a point p such that IpI 2 R 
( R  is large enough) the function F ( p )  may be presented by the Laurent series 

(17.98) 

then its original f ( r )  = C-' { F ( p ) }  can be represented as 

(17.99) 

This can be obtained using formulas (17.89). 
16. Second theorem on the expansion: Let the function F ( p )  be a meromorphic in a semi- 

plane Rep > so, for any a > so the integral s,-:: F ( p ) d p  converges absolutely 
and there exists a system of circles C, (jpl = R, -+ 00, R ,  < R2 < . . . ) such that 
F ( p )  + 0 uniformly respectively arg p .  Then F ( p )  is the image of the function 

f ( r )  = 1 res F(p)eP '  
Pk 1 ( P k )  

(17.100) 

where the sum is taken over all singular points pk.  This result may be proven using 
Cauchy's residue theorem (17.27) and the Jordan lemma (17.6). 

Corollary 17.12. I f F ( p )  = - A ( p )  is rational such that 
B ( P )  

L I 
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with Pk is a pole of F ( p )  and nk is its multiplicity, then 

(17.101) 

17.4.2 Other transformations 

17.4.2.1 Heavyside transformation 
It is given by (17.69) with 

(17.102) 

1 
17.4.2.2 Fourier transformation K ( t ,  iw) = -e-"' & 
Main definitions 

If in the double-side Laplace transformations [(in the direct one (17.73) put the incre- 
ment index (17.72) SO = 0 and in the inverse transformation (17.79)) put a = 01 such 
that the integration is done over the imaginary axis ( p  = iw) ,  we obtain the, so-called, 
Fourier transformation: 

I t=-m 

c.2 

w=--00 

(17.103) 

In physics the function 3 (w)  is called the spectral function of the "oscillations" f ( t ) .  

Remark 17.8. The range of the application of the Fourier transformation (17.103) is 
significantly narrower than one for the Laplace transformation ( I  7.73) since the corre- 
sponding first nonproper integral in ( 1  7.103) converges if the function f ( t )  is absolutely 
integrable, i.e., J", I f  (t)l dt  < 00. In the case of the Laplace transformation (17.73) 
such condition becomes as Lz-w 1 f ( t )  e-" 1 dt < 00 ( s  > so) which significantly extends 
the class of the original functions. From a physical point of view the Fourier transfor- 
mation (1  7.103) is more natural than the Laplace transformation ( I  7.73) since formulas 
(1  7.103) coincide (maybe some constants are different) with those of the representation 
of the original function f ( t )  as the Fourier series ( I  7.62) 

x 
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valid for periodical (with the period T )  functions f ( t )  treated as “oscillations”. 

The auxiliary function hh (w)  
According to Rudin (1973) put 

H ( t )  := e- ’ “ ,  t E (--00, 00) 

and notice that 

0 < H ( t )  5 1, H ( h t )  --+ 1 as h -+ 0 

Define also the following parametric family of functions 

h,: (w) := - 7 H (ht)e’IWdt,  h > 0, w E E% 
& .  

A simple computation gives 

and, therefore, 

7 hi ( @ ) d o  = (17.104) 

Proposition 17.2. I f a  function g : R+-+ R is  absolutely integrable on [0, co), that is, 

\ g ( t ) l d t  < -00, g ( t )  = 0 for  t < 0 
r=O .? 

and its Laplace transformation is G ( p ) ,  then 

( 17.105) 
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Proof. The simple application of Fubini’s reduction theorem 16.24 gives 

= -!- J’ H (h t )  eitoG ( i t ) d t  
2n  

Proposition 17.3. I f a  function g : R -+ R is bounded almost everywhere, that is, ess sup 
)g  (w)l < 00, and it is continuous at a point o, then 

as h -+ 0. 

Proof. In view of (1 7.104) and by the dominated convergence theorem we have 

M 

1 
- - - 7 [g (o - As) - g ( w ) ]  hh=l (s) ds + 0 as h +. 0 

& .  
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Corollary 17.13. For any p E [ 1 , ~ )  

The Plancherel theorem 

theorem. 
One of the most important results of the Fourier transformation theory is the next 

Theorem 17.18. (Plancherel, around 1800) r f  f ( t )  E L2 [ O , c o )  and its Laplace trans- 
formation (17.73) is F ( p )  E LY12,6 then the following identity (known as Parseval's 
identity) holds: 

Proo$ Recalling that f ( t )  = 0 for t < 0, define the function 

g (x) := ( f  0 f )  (x) 

where f (x) := f (-x). Then 

and, in view of (17.95), its Laplace transformation is 

( 1 7.107) 

The exact definitions of the functional spaces L2 (0, m) and WZ are given in Chapter 18. 
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Indeed, 

It is easy to see that g (x) is a continuous function. But it is also bounded since 

Therefore, by Propositions 17.2 and 17.3, it follows that 

(g  * h , )  (0) = H (hw)  G (iw) dw ' i  
But 
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and 

H (hw) G ( iw)  dw = 
w=-m o=--00 

o=-m 

which completes the proof. 0 

Corollary 17.14. I f  f ( t ) ,  g ( t )  E L2 [0,  co) and their Luplace transformation (17.73) 
are F ( p ) ,  G ( p )  E H2, then the following identity holds: 

1 where G” (s) := G (-s) 

ProoJ: It completely repeats the proof of the previous theorem. 

17.4.2.3 Two-dimensional Fourier transformation 
It is given by 

(17.108) 

(17.109) 
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17.4.2.4 Both-side Laplace transformation 
If we refuse assumption A2 (17.71) and in the Fourier transformation (17.103) make 

the integration in the range (-a. GO), we obtain the, so-called, both-side Laplace trans- 
formation given by 

F ( p )  := 7 ,f ( t )  e-pi dt. f ( t )  = 2n i 
t=-m U--130 

(17.110) 

17.4.2.5 Melline transformation 
In (17.1 10) if we change p with ( - p )  and t with In t, we get 

Defining g (t) := f (In t) and G ( p )  := F ( - p )  we obtain the, so-called, Melliize trans- 
,forination: 

u + i w  
1 1 G ( p )  := 7 g (t) t P - l  d t ,  g (t) = - 

I r=-m a-ica 

Denote this transformation by G ( p )  := M { g  (t)}. 

Claim 17.2. I t  is easy to check thaz 
1. 

2. 

3. 

(17.1 11) 

( 17.1 1 2 )  

(17.1 13) 

( 17.1 14) 
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4. 

This transformation turns out to be very useful for the solution of partial diflerential 
equations of a heating Qpe. 

17.4.2.6 Hankel (Fourier-Bessel) transformation 

o = p cos 9, t = p sin 6 which gives 
Let us in (17.109) make the transformation to the polar coordinates, i.e., y = r sincp, 

r = - x  L v=-m J 

Representing g ( r ,  c p )  as g ( r ,  c p )  = e-jflVX ( r )  (where n is an integer) and (cp - 6) as 
cp - 6 = - + t ,  we derive 

n 
2 

1 
2n 

Defining J ,  ( z )  := - LEO cos (nt - z sin t )  d t ,  G,, ( p )  = ein(o+T’2)G ( p ,  6), we may 
write 

and, 
n 

hence, substituting 9 - cp = t - - we obtain 
2 

(17.1 16) 
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which, finally, implies 

I p=-oO I 

(17.117) 

Formulas (17.116) and (17.117) are called the Hankel (Fourier-Bessel) transformution. It 
is frequently used for the solution of the partial differential equation describing potential 
electric two-dimensional fields. 
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In Chapter 14 important concepts were introduced such as 
1. Lineality of a space of elements; 
2. Metric (or norm) in a space; 
3.  Compactness, convergence of a sequence of elements and Cauchy sequences; 
4. Contraction principle. 

As examples we have considered in detail the finite dimensional spaces R” and C 
of real and complex vectors (numbers). But the same definitions of lineality and norms 
remain true if we consider as another example a functional space (where an element is 
a function) or a space of sequences (where an element is a sequence of real or complex 
vectors). The specific feature of such spaces is that they are all infinite dimensional. This 
chapter deals with the analysis of such spaces which is called “functional analysis”. 

Let us introduce two important additional concepts which we will use below. 

Definition 18.1. The subset V o f a  linear norvried space X is said to be dense in X if its 
closure is equal to X. 

This property means that every element x E X may be approximated as closely as we 
like by some element u E V ,  that is, for any x E X and any E > 0 there exists an element 
u E V such that IIx - uII < E .  

All normed linear spaces have dense subsets, but they need not be obligatory countable 
subsets. 

Definition 18.2. A normed linear space X is said to be separable if it contains at least 
one dense subset which is countable. 

The separable spaces have special properties that are important in different applications. 
In particular, denoting the elements of such countable subsets by {ei}i=,, . , . it is possible 
to represent each element x E X as the convergent series 

45 1 
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i= I 

(18.1) 

where the scalars ( I  E R are called the coordinates of the element x in the basis {e,),,, . 

18.1 Linear and normed spaces of functions 

Below we will introduce examples of some functional spaces with the corresponding 
norm within. The lineality and main properties of a norm (metric) can be easily verified 
that is why we leave this for the reader as an exercise. 

18.1.1 Space in, of all bounded complex numbers 

Let us consider a set m of sequences x := (.x&}E, such that 

xi  E C" and sup llxiII < 00 
L 

where llxl 1) := d w  and introduce the norm in m as 

(18.2) 

18.1.2 Space 1; of all summable complex sequences 

By definition 

18.1.3 Space C [a, b] of continuous functions 

It is defined as follows 

f ( t )  I f is continuous for all t E [a,  b ] ,  

I l f l lC(n,h] := n& 

18.1.4 Space Ck [a,  b] qf continuous1.y d8erentiable functions 

It contains ail functions which are k-times differentiable and 
continuous, that is, 

(18.3) 

(1 8.4) 

(18.5) 

the kth derivative is 
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C k  [ a ,  b] := f ( t )  I fen) exists and is continuous { 

18.1.5 Lebesgue spaces L ,  [a, b] (1 5 p < 00) 

For each 1 5 p < 00 it is defined by the following way: 

Remark 18.1. Sure, here functions f ( t )  are not obligutory continuous. 

18.1.6 Lebesgue spaces L ,  [a ,  b] 

It contains all measurable functions from [a ,  b] to C, namely, 

( 1  8.6) 

(1 8.7) 

Ilf I I x  := esssup I f  (t)l < WJ 

(18.8) 

18.1.7 Sobolev spaces S:, (G) 

It consists of all functions (for simplicity, real valued) f ( t )  defined on G which have 
p-integrable continuous derivatives f ( j )  ( t )  (i = 1, . . . , l),  that is, 

Sk (G) := f ( t )  : G + JR I< 00 ( i  = 1 , .  . . ,1) { 
(the integral is understood in the Lebesgue sense), (1 8.9) 

More exactly, the Sobolev space is the completion (see definition below) of (18.9). 
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18.1.8 Frequency domain spaces LTxk, E%L:xk, Lzk and RLZk 

By definition 
1. The Lebesgue space LFXk is the space of all p-integrable complex matrices, i.e., 

2. The Lebesgue space RLTxk is the subspace of L;Xk containing only complex matrices 
with rational elements, i.e., in 

each element Fi, (s) represents the polynomial ratio 

] pi, and qi,J are positive integers I 
(18.11) 

Remark 18.2. If pi,J 5 qi,i for  each element E ,  of ( l S . l l ) ,  then F ( s )  can be inter- 
preted as a matrix transfer function of a linear (finite-dimensional) system. 

3. The Lebesgue space L?' is the space of all complex matrices bounded (almost 
everywhere) on the imaginary axis elements, i.e., 

= ess sup k:zx ( F  ( j w )  F" ( j w ) }  < 00 
w € ( - w , w )  

( 1 8.12) 

(the last equality may be regarded as the generalization of the maximum modulus 
principle 17.10 for matrix functions). 

4. The Lebesgue space R L z k  is the subspace of ILZ' containing only complex matrices 
with rational elements given in the form (18.1 1). 

18.1.9 Hardy spaces WTxk,  RWrxk ,  WGk and IWMIZk 

The Hardy spaces RWTxk ,  WZk and are subspaces of the corresponding 
containing complex matrices with only Lebesgue spaces L;xk, RILTxk, L z k  and 

regular (holomorphic) (see Definition 17.2) elements on the open half-plane Re s > 0. 
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Remark 18.3. Zf p, , ,  5 qr,]  for each element F,, oj  then F ( s )  E RMI;xk can be inter- 
preted as a matrix transfer function of a stable linear finite-dimensional) system. 

Example 18.1. 

1 I - s  
2 - s  2 - s 

1 - s  1 
2 + s 2 + s  
e P  e-' 

2 - s  2 + s  

- E PsII,2 := RIL;"', 

__ E IH[I[,2 := NIL;"', 

~ E TI,Z := ILy, 
e-.' ~ E iL, :=LEI, 

~ E RIL, := IWIL2' 
~ E RH, := RIHI;' 

~ E IH[? := 

1 - s  1 -s 
2 - s  2 + s  

- E H, := w!$ 

18.2 Banach spaces 

18.2.1 Basic definition 

Remember that a linear normed (topological) space X is said to be complete (see 
Definition 14.14) if every Cauchy (fundamental) sequence has a limit in the same space X .  
The concept of a complete space is very important since even without evaluating the limit 
one can determine whether a sequence is convergent or not. So, if a metric (topological) 
space is not complete it is impossible to talk about a convergence, limits, differentiation 
and so on. 

Definition 18.3. A linear, normed arid complete space is called a Banach space. 

18.2.2 Examples of incomplete metric. spaces 

Sure, not all linear normed (metric) spaces are complete. The example given below 
illustrates this fact. 

Example 18.2. (of a noncomplete normed space) Let us consider the space C L  [0, 11 
of all continuous,functions f : [0, I]  -+ R which are absolutely integrable (in this case, 
in the Riemaizn sense) on [0, 11, that is, for  which 

Consider the sequence { f,,) of the conlinuous functions 

(18.13) 

nt if t E [0, l / n ]  
1 if t E [ l / n ,  11 f n  := { 
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Then for n > m 

l l fn - f m / I c L [ O , I ]  = I f n  ( t )  - .Ln (t)l dt  
t=O .i 

as n ,  m + 00. So, { f n }  is a Cauchy sequence. However, its pointwise limit is 

In other words, the limit is a discontinuous function and, hence, it is not in C L  [0, I ] .  
This means that the functional space %L [0, 11 is not complete. 

Example 18.3. By the same reason, the spaces C L ,  [0, I ]  (the space of continuous and 
p-integrable functions) are not complete. 

18.2.3 Completion of metric spaces 

There exist two possibilities to correct the situation and to provide the completeness 
property for a linear normed space if initially some is not complete: 

try to change the definition of a norm; 
try to extend the class of considered functions (it was suggested by Cauchy). 

18.2.3.1 Changing of a norm 
To illustrate the first approach related to changing of a norm let us consider again the 

space of all functions continuous at the interval [0, I], but instead of the Lebesgue norm 
(18.13) we consider the Chebyshev type norm ~ ~ f ~ ~ c ~ u , b ,  as in (18.5). This means that 
instead of the space C L  [0, I ]  we will consider the space C [a,  b ]  (18.5). Evidently, that 
this space is complete, since it is known that uniform convergent sequences of continuous 
functions converge to a continuous function. Hence, C [a ,  b ]  is a Banach space under 
this norm. 

Claim 18.1. By the same reasons it is not dgfSicult to show that all spaces Ck [a,  b ]  (18.6) 
are Banach. 

Claim 18.2. The spaces L ,  [a,  b] (1 i p < 00) (18.7), L ,  [a,  b ]  (18.8), LTXk (23.19) 
and LEk (18.12) are Banach too. 
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18.2.3.2 Completion 

Theorem 18.1. Any linear normed space X with a norm IjxIIx can be considered 
as a linear manifold which is complete in some Banach space 2. This space J? is called 
the completion of X .  

Proof. Consider two fundamental sequences { x ? ~ }  and {x:~} with elements from X. We 
say that they are equivalent if Ilx, -xAll -+ 0 as iz -+ m and we will write { x n }  - {.A}. 
The set of all fundamental sequences may be separated (factorized) at noncrossed classes: 
{x,,} and {xi} are included in the same class if and only if { x n }  - {xi} .  The set of all 
such classes X, we denoted by 2. So, 

x := U X I .  

Let us make the space ,$? a normed space. To do that, define the operatiorz of summing of 
the classes X, by the following manner: if {x,~} E X, and { y n }  E X, then class (Xi + X,) 
may be defined as the class containing {x,? + y,,}. The operation of the multiplication by 
a constant may be introduced as follows: we denoted by k X l  the class containing {Ax,?) 
if {x,} E X,. It is evident that 2 is u linear space. Define now the norm in 2 as 

It easy to check the norm axioms for such norm and to show that 
(a) X may be considered as a linear manifold in 2; 
(b) X is dense in 2, i.e., there exists {x,,] E X such that Ijx, - k'Ilx + 0 as n -+ 00 

(c) J? is complete (Banach). 
for some X, E X; 

This completes the proof. 0 

This theorem can be interpreted as the following statement. 

Corollary 18.1. For any linear norm space X there exists anBarzach space 2 and a 
linear, injective map T : X -+ A? such that T ( X )  is dense in X and for all x E X 

18.3 Hilbert spaces 

18.3. I Definition and examples 

Definition 18.4. A Hilbert space X is an inner (scalar) product space that is complete 
as a linear normed space under the induced norm 

(18.14) 
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P ( x ,  M) := Y ~ M  inf IIx - y ( /  

Example 18.4. The following spaces are Hilbert 

(1 8.19) 

1. The space I," of all summable complex sequences (see (18.4) for p = 2)  under the 
inner product 

( 1 8.15) 

2. The Lebesgue space L2 [a ,  b ]  of all integrable (in Lebesgue sense) complex functions 
(see (18.7) for p = 2)  under the inner product 

(18.16) 

3. The Sobolev's space St ( G )  of all 1 times differentiable on G quadratically integrable 
(in Lebesgue sense) complex functions (see (18.9) for p = 2 )  under the inner product 

(1 8.17) 

4. The frequency domain space LI;IXk of all p-integrable complex matrices (23.19) under 
the inner product 

(18.18) 

5. The Hardy spaces (the subspace of Lyxk containing only holomorphic in the 
right-hand semi-plan Cf := { s  E C (Res  > 0) functions) under the inner product 
(1 8.18). 

18.3.2 Orthogonal complement 

Definition 18.5. Let M be a subset of a Hilbert space U, i.e., M c 3-1. Then the 
distance between a point x E U and M is defined by 

The following claim seems to be evident. 

Claim 18.3. I f x  E M ,  then p ( x ,  M) = 0. I f  x @ M and M is a closed set (see 
Definition 14.7), then p ( x ,  M) > 0. 
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Corollary 18.2. r f  M c 3c is a closed convex set and x @ M ,  then there exists a unique 
element y E M such that p (x, M )  = IIx - ylj. 

Proof. Indeed, suppose that there exists another element y* E M such that 

Then 

4d’ = 2 /Ix - y1I2 + 2 Ijx - y*1I2 

which gives 1l.x - y*ll* 5 0,  or, equivalently, y = y * .  17 

Corollary 18.3. If M c 3c is a subspace of 3c (this means that it is a closed convex 
linear manifold in 3c} then for any x E X there exists a unique element X M  E M such 
that 

This element X M  E M is called the orthogonal projection of the element x E 3c onto 
the subspace M c 3c. 

Lemma 18.1. Let p ( x ,  M )  = IIx - x~ 11 where M is a subspace o f a  Hilbert space 3c 
with the inner product (x. Y ) ~ .  Then ( x  - X M )  I M ,  that is, for any y E M 

Proof. By the definition (18.20) for any A E C (here X M  + hy E M )  we have 

which implies 

- xy’ ’ ) I 2  ? 0 which leads to the equality 

0 

(x - x M  3 y ) X  Taking A = - one has - 
IIY I I 2  llYll 

(x - x , ~ ,  y)% = 0. Lemma is proven. 
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Definition 18.6. y M is a subspace of a Hilbert space 31 then the orthogonal comple- 
ment M' is defined by 

I MI := {x E 31 1 (x, y ) %  = 0 for all L' E M )  1 (18.22) 

It is easy to show that ,VL is a closed linear subspace of 3t and that 31 can be uniquely 
decomposed as the direct sum 

131 = M @ M L  1 (1 8.23) 

This means that any element x E 31 has the unique representation 

1 x = > X M  + x,A& 1 (1 8.24) 

where x,w E M and XMMI E MI such that l /x / / *  = I l x ~ l \ *  + //x,w- l 1 2 .  

Theorem 18.2. Let M be a subspace of a Hilbert space 31. M is dense in 31 if and only 
i f M L  = {O]. 

Proqf: 

(a) Necessity. Let M be dense in U .  This means that M = 31. Assume that there exists 
xo E 3t such that xg 1 M .  Let {y,} c M and y, + .Y E 31. Then 0 = (yil. xo) + 
( y ,  xu) = 0 since M is dense in 31. Taking y = xu we get that (xo, xg )  = 0 which 
gives xO = 0. 

(b) Sufficiency. Let ML = {0}, that is, if ( y , x o )  = 0 for any y E M ,  then xo = 0. 
Suppose that M is not dense in 31. This means that there exists xo $ M. Then by 
the orthogonal decomposition Xg = yo + i g  where yo E M and zo E (A?)' = M'. 
Here zo + 0 for which ( z o ,  y).tl = 0 for any y E M. By the assumption such element 

0 zo = 0. We get the contradiction. Theorem is proven. 

18.3.3 Fourier series in Hilbert spaces 

Definition 18.7. An orthonormal system (set) (q$,} of functions in a Hilbert space U is 
a nonempty subset (#,, I n 2 1) of U such that 

(1 8.25) 

1. The series c:, a&, is called the series in 31 with respect to the system {#,,} (18.25); 
2. For any x E 31 the representation (if it exists) 

( 1  8.26) 

is called the Fourier expansion of x with respect to ( # n } .  
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Lemma 18.2. In (18.26) 

Proof. Pre-multiplying (18.26) by @k and using (18.25) we find 

x x 

11=I k = l  

which proves (18.27). Lemma is proven. 

Corollary 18.4. (The Parseval equality) 

(1 8.27) 

0 

( 1  8.28) 

Proof. It follows from the relation 

Example 18.5. 

1. Classical Fourier expansion. In ?-L = L2 [0, I ]  the corresponding orthogonal Oasis 
{ $ / I  1 is 

which implies 

where 
I I 

a0 = x ( t )  d t ,  a,, = x ( t )  A c o s  (2nnt)  d t  
t=O .I t=O .I 

b,l = ] x ( t )  A s i n  (2nn t )  dt  
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2. Legendre expansion. In E = L2 [0, 11 the corresponding orthogonal basis {&) is 
{ @ n )  = {pn} where 

[ ( t2  - l)k], k 2 1 
1 d k  p k  := -- 

2kk! dtk 

18.3.4 Linear n-manifold approximation 

Definition 18.8. The collection of the elements 

n 

is called the linear n-manifold generated by 

(1 8.29) 

the system of functions (@kJk=i; ; ; .  

Theorem 18.3. The best L2-approximation of any elements x E E by the element u, 
from the n-manifold (18.29) is given by the Fourier coefficients ck = (Yk  (18.27), namely, 

Proof. It follows from the identity 

IIX - a,, = i l x  - 

k=n+l k= 1 

which reaches the minimum if ck = ak (ck : k = z). Theorem is proven. 

18.4 Linear operators and functionals in Banach spaces 

18.4.1 Operators and functionals 

Definition 18.9. 

(18.30) 

0 

1. Let X and y be linear normed spaces (usually either Banach or Hilbert spaces) 
and T : V + y be a transformation (or operator) from a subset 2, c X to y. 
D = 2) ( T )  is called the domain (image) of the operator T and values T (V) constitute 
the range (the set of possible values) R ( T )  of T .  If the range of the operator T is 
finite-dimensional then we say that the operator has finite range. 
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2. I fy  is a scalar field .F (usually R) then the transformations T are called function&. 
3. A functional T is linear if it is additive, i.e., ,for any x ,  y E D 

I T (X + y) = T x  + T y  1 
and homogeneous, i.e., for any x E D and any h E .F 

4. Operators for which the domain V and the range T (V) are in one-to-one correspon- 
dence are called invertible. The inverse operator is denoted by T-I : T (V) -+ V, so 
that 

Example 18.6. 

1. The shift operator T y h  : 1; -+ 1; defined by 

for any i = 1,2 ,  . . . . 
2. The integral operator T, : L2 [a,  b ]  + R defined by 

for  any f ,  g E L2 [a,  bl. 

3. The differential operator Td : V ( T )  = C' [a ,  b ]  -+ C [a ,  b ]  defined by 

for any f E C' [a,  b] and any t E [a ,  b] .  

It is evident in the following claim. 

Claim 18.4. 

I .  T is invertible if and only if it is injective, that is, T x  = 0 implies x = 0. The set 
( x  E V I T x  = 0) is called the kernel of the operator and denoted by 

1 ker T := {x E V 1 T x  = 0 )  I 
So, T is injective if and only ifker T = (0). 

2. I f  T is linear and invertible then T-' is also linear. 

co
nt

ro
len

gin
ee

rs
.ir



464 Advanced Mathematical Tools far  Automatic Confrol Engineers: Volume I 

18.4.2 Continuity and boundedness 

18.4.2.1 Continuio 
Definition 18.10. 

Let T : D ( T )  -+ Y be a map (operator) between two linear normed spaces X (with 
a norm I l . l i x )  and Y (with a norm l l . l l y ) .  It is said to be continuous at xo E X iJ; 
given E > 0, there exists a 6 = 6 ( E )  > 0 such that / IT(x)  - T(xo)/ly < 6 ,  whenever 

T is semi-continuous at a point x g  E X if it transforms any convergent sequence 
{ x ~ , ]  c D ( T ) ,  x, + xo, n + 00 into a sequence ( T  (x,)]  c R ( T )  weakly convergent 
to T (xo), i.e., /IT (x,) -+ T (x0)ll -+ 0 when n -+ 00. 

T is continuous (or semi-continuous) on 'D ( T )  i f i t  is continuous (or semi-continuous) 
at eve? point in D ( T ) .  

lIx - xollx < 6. 

Lemma 18.3. Let X and y be Banach spaces and A be a linear operator defined at X .  
If A is continuous at the point 0 E X ,  then A is continuous at any point xo E X .  

ProoJ This result follows from the identity Ax - Ax0 = A (x - xg). If x +. xo, then 
z := x - xo + 0. By continuity at zero Az + 0 that implies Ax - Axo -+ 0. Lemma is 
proven. 0 

So, a linear operator A may be called continuous if it is continuous at the point 
xg = 0. 

18.4.2.2 Boundedness 

Definition 18.11. 

A linear operator A : D (A)  c X -+ Y between two linear normed spaces X (with 
a norm I l . l l x )  and Y (with u norm / l . l l y )  is said to be bounded ifthere exists a real 
number c > 0 such that for all x E 2) ( A )  

The set of all bounded linear operators A : D (A) c X -+ Y is usually denoted by 

A linear operator A : 'D (A) c X +. y is called a compact operator if it maps any 
bounded subset of X onto a compact set of Y. 
The induced norm of a linear bounded operator A : 'D ( A )  c X -+ y may be 
introduced as follows 

c (X, Y). 

(18.32) 
~ ~ _ _  

(here it is assumed that i f D  (A) = ( 0 )  then by definition / / A  / I  = 0 since A0 = 0). 

It seems to be evident that the continuity and boundedness for linear operators are 
equivalent concepts. 
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Claim 18.5. A linear operator A : 2, ( A )  c X + y is continuous if and only if it is 
bounded. 

Example 18.7. 

< 00 (q  > l), then the “weighting”operator A defined b j  

(1 8.33) 

making from l,, to 1, ( p - ’  + q--‘ = I )  is linear and bounded since by the Holder 
inequality (16.134) 

2. I f B  := j;“=, s,”=, IK ( x ,  s)ly ds d x  < GO, then the integral operator A : X = L ,  [a,  b]  
+ y = L,  [a ,  b] = y ( p - ’  + q’-’ = I )  defined by 

is linear and bounded since by the Holder inequulity (16.134) 

( 1  8.34) 

1 3. r f B  := ma? Ern=, laLv (t)l < 00, then the differential operator A : ‘D C X = Ck [a ,  b]  
t€V 

-+ y = C [a,  b] = y defined by 

I I I I y = Af := x a ,  ( t )  f‘“’ ( t )  I 
I “4 I 

(18.35) 
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is linear and bounded since 

18.4.2.3 Sequence of linear operators and uniform convergence 

linear bounded operators C (X, Y )  acting from X to y .  
It is possible to introduce several different notions of a convergence in the space of 

Definition 18.12. Let (A,} c C ( X ,  Y )  be a sequence of operators. 

1. We say that 
0 A,, uniformly converges to A E C (X, Y) if llAn - All -+ 0 whenever n -+ 00. 

0 A,, strongly converges to A E C (X, Y )  if IIA,,f - Af/ ly  -+ 0 whenever n + 00 
Here the norm llAn - AJI is understood as in (18.32); 

,for m y  .f E X .  
2. If the operator A is dependent on the parameter a E A, then 

A ( a )  is uniformly continuous at a0 E A, if 

0 A (a )  is strongly continuous at a. E A, i f for all f E X 

I IIA (a )  f - A (ad f l y  -+ 0 as + a0 I 
In view of this definition the following claim seems to be evident. 

Claim 18.6. A,, uniformly converges to A E C ( X ,  Y )  ifund only $A,,  J' -+ A f uniformly 
on f E X in the ball l / f l l x  5 1. 

Theorem 18.4. r f  X is a linear normed space and y is a Baizach space, then C ( X ,  y )  
is a Banach space too. 

Prooj: Let {A,} be a fundamental sequence in the metric of C (X, y ) ,  that is, for any 
E > 0 there exists a number no = no ( E )  such that for any n > no and any natural p we 
have - All < E .  Then the sequence (Anf} is also fundamental. But Y is complete, 
and, hence, {A,,f} converges. Denote y := lim A , f .  By this formula any element f E X 
is mapped into an element of Y ,  and, hence, it defines the operator y = Af .  Let us 
prove that the linear operator A is bounded (continuous). First, notice that (l]A,tll} is also 
fundamental. This follows from the inequality 1 1 1  An+p 11 - 11 A ,  11 I 5 11 Aniy - A ,  1 1 .  But it 
means that { ~ I A , , ~ ~ }  is bounded, that is, there exists c > 0 such that llA,II 5 c for every 
n 2 1. Hence, llAnfll I c II f 11. Taking the limit in the right-hand side we obtain llAf 11 

0 

n-+w 

5 c 11 f 11 which shows that A is bounded. Theorem is proven. 
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18.4.2.4 Extension of linear bounded operators 

to the closure of their domain without changing of its norm value. 
Bounded linear operators that map into a Banach space always have a unique extension 

Theorem 18.5. Let A : D ( A )  c X + y be a linear bounded operator (functional) 
mapping the linear normed space X into a Banach space Y .  Then it has a unique bounded 
extension A : D (A) -+ y such that 
1. Af = Af  for  any f E D ( A ) ;  

2. I / A / /  = IIAll. 

Proof. If f E V ( A ) ,  put Af = A f .  Let f E X ,  but x $ 2) (A). By the density of 
D (A) in X ,  there exists the sequence I f n )  c D ( A )  converging to x. Put i f  = lirn Afn. 
Let us show that this definition is correct, namely, that the limit exists and it does not 
depend on the selection of the convergent sequence I f n } .  The existence follows from 
the completeness property of Y since I( Afn - Afin 11 5 1 1  A II ( 1  f n  - fni 11 x. Hence, lirn Afn 
exists. Supposing that there exists another sequence { f ; }  c D (A) converging to f we 
may denote a := lim Afn and b := lim AX:. Then we get 

n + x  

n + x  

n+cc n + m  

But llAfnll i IlAlI l l f i i l l  that for n -+ 00 implies / / A f l /  5 IlAll I l f l l ,  or, equivalently, 
l lA l \  5 IIAII. We also have 1 1 ~ 1 1  := sup ( / A . f l /  2 l lA f l \  = IIAII. So, we 

have (lj/l = IlAll. The linearity property of A follows from the linearity of A. Theorem 
is proven. 

sup 
" f € - m A ) .  IlfIlx51 I1 f 112 5 1 

Definition 18.13. The operator A constructed in Theorem 18.5 is called the extension 
of A to the closure D (A) of its domain V (A) without increasing its norm. 

The principally more complex case arises when 2, (A) = X. The following important 
theorem says that any linear bounded functional (operator) can be extended to the whole 
space X without increasing into a norm. A consequence of this result is the existence of 
nontrivial linear bounded functionals on any normed linear space. 

Theorem 18.6. (The Hahn-Banach theorem) Any linear bounded functional A : D (A) 
c X + y defined on a linear subspace D ( A )  of a linear normed space X can be 
extended to a linear bounded functional A defined on the whole X with the preservation 
ofthe norm, i.e., gf = Af for any f E V ( A )  such that IlAIl = //All. 

Proof. Here we present only the main idea of the proof. 

(a) If X is separable, then the proof is based on Theorem 18.5 using the following 
lemma. 

Lemma 18.4. Let X be a real normed space and L a linear manifold in X where there 
is defined a linear functional A.  If fo  $ L and L1 := { f + tfo I f E C, t E R} is a linear 
manifold containing all elements f + t f , ,  then there exists a linear bounded functional 
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A l  defined on such that it coincides with A on C and preserving the norm on C1, 
namely, IlAlIl = 11AIl. 

Then, since X is separable, there exists a basis { f n } n z l  such that we can construct the 
sequence of s-manifolds 

connected by C,+, = Ls 

I fi E X ,  hj E R  

+ { . f n C l } ,  Lo := 0. Then we make the extension of A to each 
of the subspaces Cszl based on the lemma above. Finally we apply Theorem 18.5 to the 
space X = U C, using the density property of X. 

0 
J > 1  

(b) In general, the proof is based on Zorn's lemma (see Yoshida (1979)). 

Corollary 18.5. Let X be a normed (topological) space and x E X ,  x # 0. Then there 
exists a linear bounded functional f ,  defined on X ,  such that its value at any point x is 
equal to 

and 

(18.37) 

Proof. Consider the linear manifold C := { t x } ,  t E R where we define f as follows: 
( t x ,  f )  = t J(x1/. So, we have ( x ,  f )  = Ilxll. Then for any y = t x  it follows 1(y, f ) /  = 

0 It/ . / lx / /  = lltxll = Ilyll. This means that 1 1  f 1 )  = 1 and completes the proof. 

Corollary 18.6. Let in a normed space X there be defined a linear manifold C and the 
element xo # C having the distance d up to this manifold, that is, d := inf Ijx - xoII. 
Then there exists a linear functional f defined on the whole X such that 
1. ( x ,  f )  = 0 for any x E C 
2. (xo, f )  = 1 
3. l l f  II = l l d  

X€L 

Proof. Take C1 := C + (xo} .  Then any element y E Ll is uniquely defined by 
y = x + txo where x E C and t E R. Define on C1 the functional f := t .  Now, if y E 
C, then t = 0 and.(y, f )  = 0. So, statement 1 holds. If y = X O ,  then t = 1 and, hence, 
(xg, f )  = 1 which verifies statement 2.  Finally, 
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which gives 1 1  f 1 1  I 1 / d .  On the other hand, by the “inf” definition, there exists a sequence 
(x,) E C such that d = lim IIx, - xoll. This implies 

Il’X 

Taking limit in the last inequality we obtain 1 5 d l l f l l  which gives l l f l l  1. l / d .  
0 Combining both inequalities we conclude the statement 3. Corollary is proven. 

Corollary 18.7. A linear manifold C is not dense in a Banach space X if and 
only if there exists a linear bounded functional f f 0 such that (x, f )  = 0 for  
any x E C. 

Proof. 

(a) Necessity. Let f X .  Then there exists a point xo E X such that the distance 
between xo and C is positive, namely, p (xg, C) = d 0. By Corollary 18.6 there 
exists f such that (xg, f )  = 1, that is, f f 0 but (x, f )  = 0 for any x E C. 

(b) Sufficiency. Let now c = X .  Then for any x E X, in view of the density property, 
there exists {x,} E C such that x, + x when n -+ 00. By the condition that there 
exists f f 0, = 0 for any x E C, we have (x, f )  = lim (x,, f )  = 0. Since x is 
arbitrary, it follows that f = 0. Contradiction. Corollary is proven. 

0 

n+oc 

Corollary 18.8. Let {xk}; be a system of linearly independent elements in a normed 
space X .  Then there exists a system of linear bounded fuactionals (517, defined on the 
whole X ,  such that 

These two sys tem {xk ) ;  and {h); are called bi-orthogonal. 

Proof. Take x I  and denote by L1 the linear span of the elements x2, . . . , x,. By linear 
independency, it follows that p (XI,  L , )  > 0. By Corollary 18.6 we can find the linear 
bounded functional ,fl such that ( X I ,  f , )  = 1, (x. f i )  = 0 on L l .  Iterating this process 

0 we construct the desired system { A ] : .  

18.4.3 Compact operators 

In this subsection we will consider a special subclass of bounded linear operators 
having properties rather similar to those enjoyed by operators on finite-dimensional 
spaces. 

Definition 18.14. Let X and y be normed linear spaces. An  operator A E C ( X ,  y) is 
said to be a compact operator i f  A maps a bounded set of X onto relative compact sets 
of y, that is, A is Linear and fo r  any bounded sequence {x,) in X the sequence {Ax,,} 
has a convergence subsequence in y. 
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Claim 18.7. Let X and y be normed linear spaces and A : X -+ y be a linear operator. 
Then the following assertions holds: 

If A is bounded, that is, A E L ( X ,  Y) and dim (Ax) < 00, then the operator A is 
compact. 
I f  dim ( X )  < 00, then A is compact. 
The range of A is separable i f  A is compact. 
I f  { A ,  1 is a sequence of compact operators from X to Banach space Y that converges 
uniformly to A, then A is a compact operator. 
The identity operator I on the Banach space X is compact i f  and only i f  dim ( X )  < 00. 

I f  A is a compact operator in C ( X ,  Y) whose range is a closed subspace of Y ,  then 
the range of A is finite-dimensional. 

Proof. It can be found in Rudin (1976) and Yoshida (1979). 0 

Example 18.8. 

I .  LetX=12andA:12-+12bedef inedbyAx:= ( X I , %  5, ...). ThenAiscompact. 
2 '  3 

Indeed, defining A,z by 

X n  . . . , -, O , O ,  . . . n 

we have 

and, hence, IIA - A, 1 1  5 (n + l)-'. This means that A,, converges uniformly to A and, 
by the previous claim (d) ,  A is cornpact. 

2. Let k ( t ,  s )  E L2 ( [ a ,  b] x [a,  b ] ) .  Then the integral operator K : L2 ( [ a ,  b ] )  + 
L2 ( [ a ,  b ] )  defined by ( K u )  ( t )  := syL, k ( t ,  s )  u ( s )  d s  is a compact operator (see 
Yoshida (1979)). 

Theorem 18.7. (Approximation theorem) Let CP : M c X + Y be a compact operator 
where X ,  y are Banach spaces and M is a bounded izonempty subset of X .  Then for 
every n = 1,2 ,  . . . there exists a continuous operator CP, : M -+ y such that 

sup IICP (x) - CP, (x)ll 5 n-' and dim (span 0, ( M ) )  < m (18.39) 

as well as CP, ( M )  5 co @ ( M )  - the convex hull of 0 ( M ) .  

Proof. (see Zeidler (1995)). For every n there exists a finite (2n)-'-net for A ( M )  and 
elements u E CP ( M )  ( j  = 1, . . . , J )  such that for all x E M 
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Define for all x E M the, so-called, Schauder operator A, by 

J / J  

are continuous functions. In view of this A,, is also continuous and, moreover, 

J / J  \ -' 

Theorem is proven. 

18.4.4 Inverse operators 

Many problems in the theory of ordinary and partial differential equations may be 
presented as a linear equation A x  = y given in functional spaces X and Y where 
A : X -+ y is a linear operator. If there exists the inverse operator A-l : R ( A )  -+ D (A),  
then the solution of this linear equation may be formally represented as x = A-ly .  
So, it seems to be very important to notice under which conditions the inverse operator 
exists. 

18.4.4.1 Set of nulls and isomorphic operators 

D ( A )  C X and R ( A )  5 Y. 
Let A : X + Y be a linear operator where X and y are linear spaces such that 

Definition 18.15. The subset N (A) C D (A) defined by 

is called the null space of the operator A. 
Notice that 
1. N ( A )  # ia since 0 E N(A) .  
2. N (A) is a linear subspace (manifold). 

(18.40) 

Theorem 18.8. An operator A is isomorphic (it transforms each point x E D ( A )  only 
into a unique point y E R ( A ) )  if and only ifN ( A )  = {0}, that is, when the set of nulls 
consists only of the single 0-element. 
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Proof. 

(a) Necessity. Let A be isomorphic. Suppose that N ( A )  # (0). Take z E N ( A )  such 
that z # 0. Let also y E R ( A ) .  Then the equation A x  = y has a solution. Consider 
a point x* + z .  By lineality of A it follows A (x* + z )  = y .  So, the element y has 
at least two different images x* and X *  + z .  We have obtained the contradiction to 
isomorphic property assumption. 

(b) Suficiency. Let N ( A )  = (0). But assume that there exist at least two X I ,  x2 E V ( A )  
such that Axl = Ax2  = y and xl f x2. The last implies A ( X I  - x2) = 0. But this 
means that (xl - x2) E N ( A )  = (O}, or, equivalently, x1 = x2. Contradiction. 0 

Claim 18.8. Evidently, 

i f a  linear operator A is isomorphic then there exists the inverse operator A-'; 
the operator A-' is a linear operator too. 

18.4.4.2 Bounded inverse operators 
Theorem 18.9. An operator A-'  exists and, simultaneously, is bounded if and only if 
the following inequality holds 

( 1  8.41) 

f i r  all x E D ( A )  and some m > 0. 

Proof. 

(a) Necessity. Let A-I exists and be bounded on V (A-I) = R ( A ) .  This means that 
there exists c > 0 such that for any y E R ( A )  we have llA-lyll 5 c 11y11. Taking 
y = A x  in the last inequality, we obtain (18.41). 

(b) Sufliciency. Let now (18.41) hold. Then if Ax = 0 then by (18.41) we find that 
x = 0. This means that N ( A )  = (0) and by Theorem 18.8 it follows that A-'  exists. 
Then taking in (18.41) x = A- ' y  we get IIA-'yll 5 1n-I lIyll for all y E R ( A )  which 

0 proves the boundedness of A-' . 

Definition 18.16. A linear operator A : X + y is said to be continuously invertible if 
R ( A )  = y ,  A is invertible and A-I E C ( X ,  y )  (that is, it is bounded). 

Theorem 18.9 may be reformulated in the following manner. 

Theorem 18.10. An operator A is continuously invertible if and only ifR ( A )  = y and 
for  some constant m > 0 the inequality (18.41) holds. 

It is not so difficult to prove the following result. 

Theorem 18.11. (Banach) If A E L ( X ,  y )  (that is, A is linear bounded), R (A) = y 
and A is invertible, then it is continuously invertible. 

Example 18.9. Let us consider in C [O, 11 the following simplest integral equation 

( A X )  ( t )  := x ( t )  - tsx (s) ds  = y ( t )  
s=o 

(18.42) 
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w ( t )  := 

The linear operator A : C [0, I]  -+ C [0, 11 is defined by the left-hand side of (18.42). 
Notice that x ( t )  = y ( t )  + ct,  where c = s,=,sx ( s )  ds. Integrating the equality 

sx ( s )  = sy (s) + cs2 on [0, 11, we obtain c = i s,:, sy ( s )  ds. Hence, ,for any y ( t )  
in the right-hand side of (18.42) the solution is x ( t )  = y ( t )  + i Ji, t sy  ( s )  d s  := 
( A - ‘ y )  ( t ) .  Notice that A-’ is bounded, but this means by definition that the operator A 
is  continuously invertible. 

I 

x ;  ( t )  . ’ .  x:, ( t )  

xy-”  ( t )  xF-1) ( t )  

. 

Example 18.10, Let y ( t )  and a, ( t )  ( i  = 1, . . . , 12)  be continuous on [0, TI.  Consider the 
following linear ordinaiy differential equation (ODE) 

( A x )  ( t )  := x‘“) ( t )  + a ]  ( t )  x(”-’) ( t )  + . . . + a,, ( t )  x ( t )  = y ( t )  (1 8.43) 

under the initial conditions x (0) = x’ (0)  = . . . = x(’-‘) (0) = 0 and define the operator 
A as the left-hand side of (18.43) which is, evidently, linear with V ( A )  consisting of all 
functions which are n-times continuously differentiable, i.e., x ( t )  E C” [O. TI. We will 
solve the Caiiclzy problem finding the corresponding x ( t ) .  Let xi  ( t ) ,  x? ( t )  , . . . , x,, ( t )  
be the system of n linearly independent solutions of (18.43) when y ( t )  = 0. Construct 
the, so-called, Wronsky ’s determinant 

It is well known (see, for  example, El’sgol’ts (1961)) that W ( t )  # 0 for  all t E [0, TI. 
According to the Lagrange approach dealing with the variation of arbitrary constants 
%ve may find the solution of(18.43) fo r  any J ( t )  in the form 

which leads to the following ODE-system for  c, ( t )  ( i  = 1, . . . , 1 2 ) :  

~ 

.’I ( t )  XI ( t )  + c; ( t )  x2 ( t )  + . . . + c;, ( I )  n, ( t )  = 0 
c; ( t )  x; ( t )  + c; ( t )  x; ( t )  + . . . + CI, ( t )  XI, ( t )  = 0 

c; ( t )  $ - I )  ( t )  + c; ( t )  x:n-‘) ( t )  + . . . + c:, ( t )  x y )  ( t )  = y ( y )  

I . .  

Resolving this system by Cramer’s rule we derive c; ( t )  = - w k  ( t )  v ( t )  (k = 1,  . , , , n )  w ( t )  ’ 
where wk ( t )  is the algebraic complement of the kth element of the last nth row. Taking 
into account the initial conditions we conclude that 
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which implies the following estimate 5 c (Iyllc,o,r~ with c = max c;=l I x ~  ( t ) /  
rf[O,T] 

ds that proves that the operator A is continuously invertible. 

18.4.4.3 Boundsfor IlA-'/ /  

Theorem 18.12. Let A E L ( X ,  Y )  be a linear bounded operator such that IIZ - All < I 
where I is the identical operator (which is, obviously, continuously invertible). Then A 
is continuously invertible and the following bounds hold: 

(18.44) 

(1 8.45) 

Proof. Consider in C (X, y )  the series ( I  + C + C2 + . . .) where C := I - A.  Since 
I /Ck / /  5 llCllk this series uniformly converges (by the Weierstrass rule), i.e., 

S , * : = I + C + C 2 +  . . .  C ,  -?. s 
n+co 

It is easy to check that 

( I  - C )  s, = I - c n + l  

s, ( I  - C )  = I - C,+' 

cn+l + 0 
n-m 

Taking the limits in the last identities we obtain 

( I  - C ) S  = I ,  S ( I  - C )  = I 

which shows that the operator S is invertible and S-' = I - C = A .  So, S = A-I and 

Taking n -+ co we obtain (18.44) and (18.45). 

18.5 Duality 

Let X be a linear normed space and 3 be the real axis R, if X is real, and be the 
complex plane C, if X is complex. 
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18.5.1 Dual spaces 

Definition 18.17. Consider the space C (X, 3) of all linear bounded functionals defined 
on X. This space is called dual to X and is denoted by X*, so that 

jx* :=C(X,F)I (1 8.46) 

The value of the linear functional f E X* on the element x E X we will denote by f (x), 
or (x, f ) ,  that is, 

1 f (x) = ( x ,  f )  1 ( 1 8.47) 

The notation (x, f )  is analogous to the usual scalar product and turns out to be very useful 
in concrete calculations. In particular, the lineality of X and X* implies the following 
identities (for any scalars a l ,  a2, PI ,  B2, any elements x l ,  x2 E X and any functionals 
f, f l ,  f 2  E x*>: 

(18.48) 

(p means the complex conjugated value to B.  In a real case 8 = B) .  If (x, f) = 0 
for any x E X, then f = 0. This property can be considered as the definition of the 
''null''-functional. Less trivial seems to be the next property. 

Lemma 18.5. If (x, f )  = 0 for any f E X*, then x = 0. 

Proof. It is based on Corollary 18.5 of the Hahn-Banach theorem 18.6. Assuming the 
existence of x f; 0, we can find f E X* such that f + 0 and (x, f )  = Ilxll # 0 which 
contradicts the identity ( x ,  f )  = 0 valid for any f E X*. So, x = 0. 

Definition 18.18. In X* one can introduce two types of convergence. 
Strong convergence (on the norm in X*): 

Weak convergence (in the functional sense): 
f n  + f ( f n ,  f E x*>, i f l l f n  - f l l  + 0. 

n + x  n + x  

f n  4 f ( f n ,  f E X*), i f for any x E X one has 
n + x  

Remark 18.4. 

1. Notice that the strong convergence of a functional sequence { f , , )  implies its weak 

2. (Banach-Shteingauss): f n  -$ f ifand only if 
convergence. 

(a)  { I1 5, II I is bounded; 
(b )  (x, 5,) -+ (x, f )  on some dense linear manifold in X. 

11'30 

n i x  

Claim 18.9. Independently of the fact whether the original topological space X is Banach 
or not, the space X* = C (X, F )  of all linear bounded functionals is always Banach. 
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Proof. It can be easily seen from Definition 18.3. 

More exactly this statement can be formulated as follows. 

Lemma 18.6. X* is a Banach space with the norm 

0 

(18.49) 

Furthermore, the following duality between two norms ((.I1 and 11. )I x* takes place: 

(1 8.50) 

Proof. The details of the proof can be found in Yoshida (1979). 

Example 18.11. The spaces L ,  [a,  b] and L ,  [a,  b] are dual, that is, 

where p-l + q-' = 1, 1 < p < GO. Zndeed, i f x  ( t )  E L ,  [a,  b ]  and y ( t )  E L,  [a ,  b] ,  
then the functional 

(18.52) 

is evidently linear, and boundedness follows from the Holder inequalit?. (16.137). 

Since the dual space of a linear normed space is always a Banach space, one can consider 
the bounded linear functionals on X * ,  which we shall denote by X**. Moreover, each 
element x E X gives rise to a bounded linear functional f * in X* by f * ( f )  = f (x), 
f E X*. It can be shown that X c X**, called the natural embedding of X into X**. 
Sometimes it happens that these spaces coincide. Notice that this is possible if X is 
a Banach space (since X** is always Banach). 

Definition 18.19. If X = X**, the Banach space X is called reflexive. 

Such spaces play an important role in different applications since they possess many 
properties resembling those in Hilbert spaces. 

Claim 18.10. Reflexive spaces are all Hilbert spaces, R", l;, and Lp, l  (G) .  

Theorem 18.13. The Banach space X is reflexive ifand only ifany bounded (by a norm) 
sequence of its elements contains a subsequence which weakly converges to some point 
in X .  

Proof. See Trenogin (1980), Section 17.5, and Yoshida (1979) p. 264, the Eberlein- 
Shmulyan theorem. 0 
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18.5.2 Adjoint (dual) and self-adjoint operators 

Let A E C (X. Y )  where X and Y are Banach spaces. Construct the linear functional 
cp ( x )  = (x, yi) := ( A x ,  f) where x E X and f E Y*. 

Lemma 18.7. ( I )  D (yi) = X, ( 2 )  cp is a linear operator, (3)  cp is bounded. 

Prooj: (1) is evident. ( 2 )  is valid since 

From this lemma it follows that cp E X*. So, the linear continuous operator cp = A*f is 
correctly defined. 

Definition 18.20. The operator A* E C (Y*, X * )  defined by 

I (x. A* f )  := ( A X ,  f )  1 (1 8.53) 

is called the adjoint (or dual) operator of A 

Lemma 18.8. The representation (Ax.  f )  = (x, yi) is unique (yi E X " ) f o r  any x E D (A)  
if and only if D ( A )  = X. 

Proof. 

(a) Necessity. Suppose D ( A )  f X. Then by Corollary 18.7 from the Hahn-Banach 
theorem 18.6 there exists yio E X', (00 f 0 such that (x, q ~ )  = 0 for all x E D ( A ) .  But 
then (Ax,  f) = (x ,  cp + 90) = 0 for all x E D (A)  which contradicts the assumption 
of the uniqueness of the presentation. 

(b) Sufliciency. Let D ( A )  = X. If ( A x ,  f )  = (x, c p l )  = (x,  9 2 )  then (x, cpl - cp2) = 0 
and by the same Corollary 18.7 it follows that cpl - yi2 = 0 which means that the 

0 
repreqentation is unique. 

Lemma 18.9. ZfA E C ( X .  Y )  where X and y are Banach spaces, then llA*ll = IIAII. 

Proof. By property ( 3 )  of the previous lemma we have llyill 5 IIAII l l f l l ,  i.e., (IA*ll I 
1 1  A 11. But, by Corollary 18.5 from the Hahn-Banach theorem 18.6, for any xo such that 
Axo # 0 there exists a functional f ,  E Y* such that l l fo l l  = 1 and I(Axo, fo)l = IIAxoll 
which leads to the following estimate: 

So, llA*11 3 IlAll and, hence, IIA*Il = IlAll which proves the lemma. 
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Example 18.12. Let X = y = R" be n-dimensional Euclidean spaces. Consider the 
linear operator 

aikxk, i = 1 , .  . . , n 

Let z E (Rn)* = R". Since in Euclidean spaces 

(18.54) 

the action of an operator is the corre- 
sponding scalarproduct, then ( A x ,  z )  = ( A x ,  z )  = (x, A T z )  = (x, A*z) . So, 

pTF (18.55) 

Example 18.13. Let X = y = L2 [a ,  b] .  Let us consider the integral operator y = K x  
given by 

y ( t )  = k ( t ,  S )  x (s) ds i (18.56) 

with the kernel k (t, s )  which is continuous on [a,  b] x [a,  b]. We will consider the case 
when all variables are real. Then we have 

which shows that the operator K" (w = K * z )  is defined by 

(18.57) 
s=a 

that is, K* is also integral with the kernel k ( s ,  t )  which is inverse to the kernel 
k ( t ,  s )  of K .  

Definition 18.21. The operator A E C ( X ,  y ) ,  where X and y are Hilbert spaces, is 
said to be selfadjoint (or Hermitian) if A* = A, that is, if it coincides with its adjoint 
(dual) form. 

Remark 18.5. Evidently for self-adjoint operators 2) (A) = 2) (A*).  
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Example 18.14. 

1. In R", where any linear operator A is a matrix transformation, it will be self-adjoint 

2. In C", where any linear operator A is a complex matrix transformation, it will be 

3. The integral operator K in Example 18.13 is self-adjoint in L 2  [a,  b] if its kernel is 

if it is symmetric, i.e., A = AT, or, equivalently, a,, = a,!. 

self-adjoint if it is Hermitian, i.e., A = A*, or, equivalently, a,, = Z,,. 

symmetric, namely, i f k ( t ,  s )  = k(s ,  t ) .  

It is easy to check the following simple properties of self-adjoint operators. 

Proposition 18.1. Let A and B be self-adjoint operators. Then 

1. ( a A  + B B )  is also self-adjoint for any real a and B. 
2. ( A B )  is self-adjoint if and only if these two operators commute, i.e., if A B  = B A .  

3. The value ( A x ,  x) is always real for any x E .F (real or complex). 
4. For any self-adjoint operator A we have 

Indeed, ( A B x ,  f )  = ( B x ,  A f )  = (x, B A f ) .  

( I  8.58) 

18.5.3 Riesz representation theorem for Hilbert spaces 

Theorem 18.14. (F. Riesz) If 31 is  a Hilbert space (complex or real) with a scalar 
product (s, .), then for any linear bounded functional f ,  defined on 3-1, there exists the 
unique element y E 'H such that for all x E 3c one has 

(18.59) 

and, furthermore, l l f l l  = /JyJI. 

Proof. Let L be a subspace of 31. If L = ?L, then for f = 0 one can take y = 0 and 
the theorem is proven. If L f. 3-1, there exists zo 1 L ,  zo f 0 (it is sufficient to consider 
the case f (zo) = (zo,  f )  = 1; if not, instead of zo we can consider Z O / ( Z O ,  f ' ) ) .  Let now 
x E 3-1. Then x - ( x ,  . f )  zo E L ,  since 

Hence, [x - (x, f )  zo] i zo which implies 
2 O = (X - (x, f )  ZO, ZO) = ( - x ,  zo)  - ( x ,  f )  llzoll 

or, equivalently, ( x ,  f )  = ( x .  zo/11z0112). So, we can take y = zo/llz0ll2. Show now the 
uniqueness of y. If ( x ,  f )  = ( x ,  y) = (x, f ) ,  then (x, y - j) = 0 for any x E 'H. Taking 
x = y - j we obtain IIy - jli2 = 0 which proves the identity y = j. To complete 
the proof we need to prove that llfll = I lyl l. By the Cauchy-Bounyakovski-Schwarz 
inequality 1 ( x ,  f )  1 = 1 (x, y )  I i I1 f 1 1  lIy / I .  By the definition of the norm II f II it follows 
that l l f l l  I 11y11. On the other hand, ( y ,  f) = ( y ,  y )  I I1 f 11 llyll which leads to the inverse 

0 inequality Ilyl) 5 l l f l l .  So, l l f l l  = Ilyll. Theorem is proven. 
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A different application of this theorem can be found in Riesz & Nagy (1978 (original 
in French, 1955)). 

18.5.4 Orthogonal projection operators in Hilbert spaces 

Let M be a subspace of a Hilbert space 3t. 

Definition 18.22. The operator P E C (2, M )  ( y  = P x j ,  acting in 'H such that 

y := argmin Ijx - z / /  (1 8.60) 
z c M  

is called the orthogonal projection operator to the subspace M .  

Lemma 18.10. The element y = P x  is unique and ( x  - y ,  z )  = 0 for any z E M .  

Proof. See subsection 18.3.2. 

The following evident properties of the projection operator hold 

Proposition 18.2. 

I .  x E M ifand only if P x  = x. 
2. Let M' be the orthogonal complement to M ,  that is, 

0 

1M'- := ( 2  E 3t I z I M }  1 (18.61) 

Then any x E 3t can be represented as x = y + z where y E M and i I M .  Then 
the operator P' E C ('ti, M'), defining the orthogonal projection any point from 3t 
to M I ,  has the following representation: 

/ P L Z - P I  (1 8.62) 

3. x E M' if and only if P x  = 0. 
4. P is a linear operator, i.e., for any real a and /3 we have 

(1 8.63) 

5. 

(1 8.64) 
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48 I 

/ P " = P l  

since for  any n E M we have P' (Px) = Px. 
7. P is selj-adjoint, that is, 

(18.65) 

l P * = P I  

8. For any x E 3.t 

I (Px .x )  = (P2x.x) = (Px, Px) = IIPx/I2 1 
whiclz implies 

(18.66) 

(18.67) 

(1 8.68) 

which follows from (18.67), the Caiichy-Bounyakovsk-Schwarz inequalit4. and 
(18.64). 

11. Let A = A* E C (2, X) and A* = A. Then A is obligatory an orthogonal projection 
operator to some subspace M = (x E 7-L IAx = x} c 3c. Indeed, since x = Ax + 
( I  - A) x it follows that Ax = A2x = A (Ax) E M and ( I  - A ) x  E M I .  

The following lemma can be easily verified. 

Lemma 18.11. Let PI be the orthogonal projector to a subspace M I  and P2 be the 
orthogonal projector to a subspace M I .  Then the following four statements are equivalent: 

I .  

2.  

3. 
4. 

/I P2xII I II PIXI1  f o r  any x E ?L. 
(P*x ,  x) 5 ( P , X ,  x) for any x E x. 

Corollary 18.9. 

1. M2 I M I  if and only if PI P2 = 0. 
2.  PI P2 is a projector if and only if PI P2 = P2 PI .  
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3. Let 
too 

N P, (1 = 1, . . . , N )  be a projection operator. Then xi=, P, is a projection operator 
i f  and only if 

4. PI - Pz is a projection operator if and only if Pi P2 = P2, or, equivalently, when 
PI 2 Pz. 

18.6 Monotonic, nonnegative and coercive operators 

Remember the following elementary lemma from real analysis. 

Lemma 18.12. Let f : R + R be a continuous function such that 

(1 8.70) 

for any x, y E R and 

x f ( x )  -+ 00 when 1x1 + 00 (18.71) 

Then the equation f (x) = 0 has a solution. Zf(17.80) holds in the strong sense, i.e., 

then the equation f (x) = 0 has a unique solution. 

Proof. For x < y from (17.80) it follows that f (x) is a nondecreasing function and, in 
view of (17.81), there exist numbers a and b such that a < b,  f ( a )  < 0 and f ( b )  < 0. 
Then, considering f (x) on [a,  b] ,  by the theorem on intermediate values, there exists a 
point ( E [a,  b]  such that f (c) = 0. If (18.72) is fulfilled, then f (x) is a monotonically 
increasing function and the root of the function f (x) is unique. 

The following definitions and theorems represent the generalization of this lemma to 
functional spaces and nonlinear operators. 

18.6.1 Basic definitions and properties 

Let X be a real separable normed space and X* be a space dual to X .  Consider a 
nonlinear operator T : X -+ X* ( D  ( T )  = X, R ( T )  c X * )  and, as before, denoted by 
f (x) = (x, f )  the value of the linear functional f E X* on the element x E X. 

Definition 18.23. 

1. An operator T is said to be monotone if for any x ,  y E D ( T )  

(18.73) 
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2. It is called strictly monotone i f for  any x # y 

and the equality is possible only if x = y .  
3. It is called strongly monotone i f for any x, y E 2) ( T )  

(1 8.74) 

(1 8.75) 

where the nonnegative function a ( t ) ,  defined at t 2 0, satisfies the condition a (0)  = 0 
and a ( t )  + 00 when t + 00. 

4. An operator T is called nonnegative if for  all x E D ( T )  

5. An operator T is positive i f for all x E V ( T )  

6. An operator T is called coercive (or, strongly positive) i f for all x E D ( T )  

(1 8.77) 

(1 8.78) 

where function y ( t ) ,  defined at t 2 0, satisfies the condition y ( t )  + 00 when t --+ 00. 

Example 18.15. The function f (x) = x3 + x - 1 is the strictly monotone operator 
in R. 

The following lemma installs the relation between monotonicity and coercivity 
properties. 

Lemma 18.13. I fan  operator T : X + X* is strongly monotone then it is coercive with 

Proof. By the definition (when y = 0) it follows that 

This implies 

which proves the lemma. 
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Remark 18.6. Notice that i f a n  operator T : X -+ X" is coercive then /IT (x)ll + 00 
when / x /  -+ 00. This follows from the inequalities 

or, equivalently, from \IT (x)ll ? y (Ilxll) + 00 when llxll + 00. 

The next theorem generalizes Lemma 18.12 to the nonlinear vector-function case. 

Theorem 18.15. Trenogin (1980) Let T : R'l + R" be a nonlinear operator (a  vector 
function) which is continuous everywhere in R" and such that for any x ,  y E X 

(i.e., in (18.75) a! ( t )  = ct) .  Then the system of nonlinear equations 

(18.81) 

has a unique solution x* E R" 

Proof. Let us apply the induction method. For n = 1 the result is true by Lemma 
18.12. Let it be true in R"-I (n  1 2). Show that this result holds in R". Consider in 
R" a standard orthonormal basis {el):=, (e l  = ( S , k ) z = , ) .  Then T ( x )  can be represented 
as T ( x )  = ( T , ( x ) ] ~ = , ,  x = c y = l x J e J .  For some fixed t E R define the operator T, by 
Tt : Rn-l + R"-' for all x = ~~~~ x , e ,  acting as T, (x )  := {T,(x + ten)}:::. Evidently, 
T,(x) is continuous on R"-' and, by the induction supposition, for any x ,  y E R"-' it 
satisfies the following inequality 

This means that the operator 
system of nonlinear equations 

also satisfies (18.80). By the induction supposition the 

T,(x  +te,,) = 0,  i = 1, .. . , n  - 1 (1 8.82) 

has a unique solution 2 E R"-'. This means exactly that there exists a vector-function 
2 = C"-' , = I  x J e ,  : R -+ Rn-l which solves the system of nonlinear equations T, (x) = 0. 
It is not difficult to check that the function 2 = 2 ( t )  is continuous. Consider then the 
function $ ( t )  := T,(x + te,,). It is also not difficult to check that this function satisfies 
all conditions of Lemma 18.12. Hence, there exists such 5 E R that $ (t) = 0. This 

0 exactly means that the equation (18.81) has a unique solution. 

The following proposition seems useful. 
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Theorem 18.16. Trenogin (1980) Let T : R" -+ R" be a continuous monotonic operator 
such that for all x E R" with llxll > h the following inequality holds: 

pmEq (18.83) 

Then the equation T ( x )  = 0 has a solution x* such that IIx*ll 5 A. 
Proof, Consider the sequence { F ~ ] ,  0 < &k + 0 and the associated sequence {Tk),  

T : R" + R" of the operators defined by Tk ( x )  := & k X  + T (x). Then, in view of 
monotonicity of T ,  we have for all x ,  y E R" 

k + J s  

Hence, by Theorem 18.15 it follows that the equation T k ( x )  = 0 has the unique solution 
xi such that llx;ll 5 h. Indeed, if not, we obtain the contradiction: 0 = (x:, Tk(xl))  

2 &k llx;I/ > 0. Therefore, the sequence {x:} C R" is bounded. By the Bolzano- 
Weierstrass theorem there exists a subsequence {xi,} convergent to some point ,i c R" 
when k, 4 00. This implies 0 = Tk,(xz,) = E,;,X:~ + T (x i?) .  Since T (x) is continuous 

0 

2 

then when k, + co we obtain T (X). Theorem is proven. 

18.6.2 Galerkin method for  equations with monotone operators 

The technique given below presents the constructive method for finding an approxi- 
mative solution of the operator equation T (x) = 0 where T : X + X* ( D  ( T )  = X ,  
R ( T )  c 2.). Let {pJ,& be a complete sequence of linearly independent elements from 
X, and X, be a subspace spanned on y l ,  . . . , y,,. 

Definition 18.24. The element x, E X having the construction 

(1 8.84) 

is said to be the Galerkin approximation to the solution of the equation T (x) = 0 with 
the monotone operator T if it satisfies the following system of equations 

1 (pk, T (x,)) = 0,  k = 1 , .  . . , n I 
or, equivalently, 

(18.85) 

Remark 18.7. 
1. It is easy to prove that x, is a solution of (18.85) ifand only if ( u ,  T (x,)) = 0 for any 

u E x,. 
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2. The system (18.85) can be represented in the operator form J,C, = x,, where the 
operator J, is defined bv (18.85) with C, := (c1, . . . , c,). Notice that 11 J,II 5 d m .  In view of this, the equation (18.85) can be rewritten in the stcmdard 
basis as 

1 (qk,  T (JnCn) )  = 0, k = 1 , .  . . , n I (18.87) 

Lemma 18.14. I f  an operator T : X -+ X* ( V ( T )  = X ,  R ( T )  c X * )  is strictly 
monotone (1 8.74) then 

I .  The equation (18.81) has a unique solution. 
2. For any n the system (18.85) has a unique solution. 

Proof. If u and u are two solutions of (18.81), then T ( u )  = T ( u )  = 0, and, hence, 
(x - y .  T ( u )  - T ( u ) )  = 0 which, in view of (18.741, takes place if and only if u = li. 
Again, if x i  and .x: are two solutions of (18.85) then (x,:, T (xi)) = (x:, T (x:)) = 
(x;, T (xi)) = (x::, T ( xe ) )  = 0, or, equivalently, 

(x: - x:, T (x;) - T (x:)) = 0 

which, by (18.74), is possible if and only if x: = x:. 0 

Lemma 18.15. Trenogin (1980) Let an operator T : X + X" (V ( T )  = X ,  R ( T )  c 
X * )  be monotone and semi-continuous, and there exists a constant h > 0 such that for 
all x E X with IIx/I > h we have ( x ,  T (x)) > 0. Then for any n the system (18.85) has 
the solution x, E X such that I(x,II 5 h. 

Proof. It is sufficient to introduce in R" the operator T, defined by 

and to check that it satisfies all condition of Theorem 18.16. 0 

Based on these two lemmas it is possible to prove the following main result on the 
Galerkin approximations. 

Proposition 18.3. Trenogin (1980) Let the conditions of Lemma 18.15 be fulfilled and 
(x,) is the sequence of solutions of the system (18.8-5). Then the sequence { T (x,)) weakly 
converges to zero. 

18.6.3 Main theorems on the existence of solutions for equations with monotone 
operators 

Theorem 18.17. Trenogin (1980) Let T : X -+ X* ( D ( T )  = X ,  R ( T )  c X * )  be an 
operator, acting from a real separable reflexive Banach space X into its dual space X * ,  
which is monotone and semi-continuous. Let also there exist a constant h > 0 such that 
for all x E X with IIxII > h we have (x, T ( x ) )  > 0. Then the equation T (x) = 0 has 
the solution x* such that IIx*II 5 h. 
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Proof. By Lemma 18.15 for any n the Galerkin system ( 1  8.85) has the solution x, such 
that IIx, /I 5 A. By reflexivity, from any sequence {x,) one can take out the subsequence 
(x,,} weakly convergent to some xg E X such that llxoll 5 A. Then, by monotonicity of 
T ,  it follows that 

But S,! = (x - x,,,, T (x)) - (x, T (x,,)), and, by Proposition 18.3, (x, T (x,,)) + 0 
weakly if n' -+ 00. Hence, S,! -+ (x - xg, T (x)), and, therefore for all x E X 

(X - X O .  T (x)) 2 0 (1 8.88) 

If T (xg) = 0 then the theorem is proven. Let now T (xg) f 0. Then, by Corollary 18.5 
from the Hahn-Banach theorem 18.6 (for the case X = A?*-), it follows the existence of 
the element zo E X such that ( zo ,  T (xg)) = ]IT ( x g ) / l .  Substitution of x := x g  -tzg ( t  > 0 )  
into (18.88) implies (zg, T (xg - tzg)) 5 0 ,  which for t + $0 gives ( z o ,  T (xg)) = 
/IT (xo)II 5 0. This is equivalent to the identity T (XO) = 0. So, the assumption that 
T (xu) # 0 is incorrect. Theorem is proven. 

Corollary 18.10. Let an operator T be, additionally, coercive. Then the equation 

(1 8.89) 

has a solution fo r  any y E X" .  

Proof. For any fixed y E X *  define the operator F ( x )  : X + X *  acting as F ( x )  := 
T (x) - y .  It is monotone and semi-continuous too. So, we have 

and, therefore, there exists h > 0 such that for all x E X with llxll > h one has (x, F (x)) 
> 0. Hence, the conditions of Theorem 18.17 hold which implies the existence of the 

0 solution for the equation F (x) = 0. 

Corollary 18.11. I f  in Corollary 18.10 the operator is strictly monotone, then the solution 
of (18.89) is unique, i.e., there exists the operator T- '  inverse to T .  

Example 18.16. (Existence of the unique solution for ODE boundary problem) 
Consider the following ODE bounduty problem 

m 1 Dx ( t )  - f ( t ,  x) = 0, t E ( a ,  6) 

Dx ( t )  := 

D := - is the differentiation operator 
Dkx ( a )  = Dkx (b)  = 0, 0 5 k 5 m - 1 

(-1)' D' { F'' (x) D'x ( t ) } ,  
1=1 

d 
d t  

(18.90) 
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in the Sobolev space ST ( a ,  b )  (18.9). Suppose that f ( t ,  x) for all x1 and x2 satisfies the 
condition 

Let for the functions Pi (x) the following additional condition be fulfilled for some ct > 0: 

Consider now in ST (a ,  b )  the bilinear form 

defining in Sr ( a ,  b)  the nonlinear operator 

which is continuous and strongly monotone since 

Then by Theorem 18.1 7 and Corollary 18.10 it follows that the problem (18.90) has the 
unique solution. 

18.7 Differentiation of nonlinear operators 

Consider a nonlinear operator @ : X + Y acting from a Banach space X to another 
Banach space Y and having a domain l3 (0) c X and a range R ( T )  c Y. 

18.7.1 Fre‘chet derivative 

Definition 18.25. We say that an operator @ : X ’+ Y (27 (a) C X, R (@) c Y) acting 
in Banach spaces is Frbchet differentiable in a point xo E l3 (@), if there exists a linear 
bounded operator @’ (XO) E G ( X ,  y )  such that 

(18.91) 

or, equivalently, 

(1 8.92) 
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Definition 18.26. I f  the operator @ : X -+ y (2, (@) C X ,  R (@) C y),  acting in 
Banach spaces, is Frbchet-differentiable in a point x g  E D (@) the expression 

is called the Frbchet differential of the operator @ in the point xo E V (@) under the 
variation h E X ,  that is, the Fre'chet differential of @ in xg is nothing more than the 
value of the operator @' (xg) at the element h E X .  

Remark 18.8. If originally @ (x) is a linear operator, namely, if @ (x) = A x  where A 
E C (2.  y) ,  then @' (xg) = A in any point xo E D ( A ) .  

Several simple propositions follow from these definitions. 

Proposition 18.4. 

I .  If F, G : X -+ y and both operators are Fre'chet differentiable in x g  E X then 

( 1 8.94) 

and for  any scalar a 

1 (a F)'  (xg) = a F' (xg) 1 (18.95) 

2.  If F : X + y is Fre'chet-differentiable in xo E V (A) and G : 2 -+ X is Fre'chet- 
differentiable iri zo E V ( G )  such that G ( i g )  = x g  then there is well-defined and 
continuous in the point zo the superposition ( F  o G )  of the operators F and G,  namely, 

1 F (G ( z ) )  := ( F  0 G) ( z )  1 
and 

(1 8.96) 

Example 18.17. Infinite-dimensional spaces F : X = Rk + y = R' and G : 2 = R" 
+ X = R' we have the systems of two algebraic nonlinear equations 

y = F ( x ) .  x = G(z )  

and, moreover, 

where A is called the Jacobi matrix. Additionally, (18.97) is converted into the following 
representation: 
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Example 18.18. If F is the nonlinear integral operator acting in C [a,  b]  and is 
defined by 

?=a 

then F’(uo) exists in any point Ug E C [a, b]  such that 

18.7.2 Gdteaux derivative 

Definition 18.27. rffor any h E X there exists the limit 

(1 8.98) 

then the nonlinear operator 8Q, (xo I h )  is called thefirst variation of the operator Q, ( x )  
in the point xo E X at the direction h. 

Definition 18.28. If in (18.98) 

where A,, E C ( X ,  y )  is a linear bounded operator then Q, is Gateaux-differentiable in 
a point xo E D (0) and the operator A,, := Q,’ ( X g )  is called the Gateaux derivative of 
Q, in the point xo (independently on h). Moreover, the value 

is known as the Gateaux differential of Q, in the point xo at the direction h. 

It is easy to check the following connections between the Giiteaux and Frkchet differ- 
entiability. 

Proposition 18.5. 

I .  Fre‘chet-differentiability implies GBteaux-differentiability. 
2. Gdteaux-differentiability does not guarantee Fre‘chet-differentiability. Indeed, for the 

function 

1 if y = x 2  
0 if y # x 2  f ( x ,  Y )  = 
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which, evidently, is not dzperentiable in the point (0,O) in the Frkchet sense, the Gdteaux 
differential in the point (0 ,  0 )  exists and is equal to zero since, in view of the properties 

f ( 0 ,O)  = 0 and f ( t h ,  t g )  = Ofor any (h ,  g), we have 

differential. 

= 0. f ( t h ,  t g )  - f (030) 
t 

3. The existence of the first variation does not imply the existence of the Gdteaux 

18.7.3 Relation with “variation principle” 

The main justification of the concept of differentiability is related to the optimization 
(or optimal control) theory in Banach spaces and is closely connected with the, so-called, 
variation principle which allows us to replace a minimization problem by an equivalent 
problem in which the loss function is linear. 

Theorem 18.18. Aubin (1979) Let @ : U -+ y be afLlnctional G6teaux-differentiable 
on a convex subset X of a topological space U.  I fx*  E X minimizes @ (x) on X then 

(x”, @’ (x*)) = min ( x .  CP’ (x*)) 
r € X  

(18.101) 
I I 

In particular, if x” is an interior point of X ,  i.e., x* E int X ,  then this condition implies 

1 CP‘ ( x * )  = 01 ( 1 8.102) 

Proof. Since X is convex then 4; = x* + h (x - x*) E X for any h E (0, I ]  whenever 

x E X. Therefore, since x* is a minimizer of @ (x) on X ,  we have 

Taking the limit h -+ +O we deduce from the GBteaux-differentiability of @ (x) on X that 
( x  - x*, CP’ (x*)) 2 0 for any x E X. In particular if x* E int X then for any y E X there 
exists E > 0 such that x = x*  + EY E X, and, hence, (x - x*, CP’ (x*)) = E ( y .  0’ ( x * ) )  3 0 

0 

@ (3 - Q, (x*) ~ o. 
h 

which is possible for any y E X if CP’ (x*) = 0. Theorem is proven. 

18.8 Fixed-point theorems 

This section deals with the most important topics of functional analysis related with 

The existence principle; 
The convergence analysis 

18.8.1 Fixed points of a nonlinear operator 

In this section we follow Trenogin (1980) and Zeidler (1995). 
Let an operator CP : X -+ 31 (23 (CP) c X, R (@) c y )  acts in Banach space X .  

Suppose that the set M a  := D (@) n R (@) is not empty. 

Definition 18.29. The point x* E M Q  is called a fixed point of the operator @ i f  it 
satisfies the equality 

( I  8.103) 
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Remark 18.9. Any operator equation (18.81): T (x) = 0 can be transformed to the form 
(18.103). Indeed, one has 

.f. (x) := T (x) +x = x 

That’s why all results, concerning the existence of the solution to the operator - equation 
(18.81), can be considered as ones but with respect to the equation T (x) = x. The 
inverse statement is also true. 

Example 18.19. Thefi.xedpoints of the operator Q, (x) = x3 are {O, -1, 1) which~follow~s 
jrorn the relation o = x3 - x = x (x2 - 1) = x (x - 1) (x + 1). 

Example 18.20. Let us try to find the fixed points of the operator 

Q, (x) := ] x ( t )  x (s) ds + f ( t )  
s=n 

( 1  8.104) 

assuming that it acts in C [0, 11 (which is real) and that hi, f ( t )  dt 5 114. By the 
definition (18.103) we have x ( t )  J;Ln x (s) ds + f ( t )  = x ( t ) .  Integrating this equation 
leads to the following: 

which gives 

I =o 
2 

1=0 

( I  8.105) 

So, any ,function x ( t )  E C [0, 11 satisfying (18.105) is a fixed point of the operator 
(18.104). 

The main results related to the existence of the solution of the operator equation 

(1 8.106) 

are as follows: 

The contraction principle (see (14.17)) or the Banach theorem (1920) which states 
that ifthe operator Q, : X -+ X ( X  is a compact) is k-contractive, i.e., .for all x, x’ E X 

then 

(a) the solution of (18.106) exists and is unique; 
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(b) the iterative method x,,+l = (9 (x,) exponentially converges to this solution. 

The Brouwer fixed-point theorem for finite-dimensional Banach space. 
The Schauder fixed-point theorem for infinite-dimensional Banach space. 
The Leray-Schauder principle which states that a priori estimates yield existence. 

There are many other versions of these fixed-point theorems such as Kakutani, Ky-Fan 
etc. related some generalizations of the theorems mentioned above. For details see Aubin 
(1979) and Zeidler ( 1  986). 

18.8.2 Brouwer fixed-point theorem 

To deal correctly with the Brouwer fixed-point theorem we need the preparations 
considered below. 

18.8.2.1 The Sperner lemma 
Let 

Sh. ( x g ,  . . . , x,y) := 
N 

(1 8.107) 

be an N-simplex in a finite-dimensional normed space X and { S , ,  . . . , S J }  be a 
triangulation of SAT consisting of N-simplices S, ( j  = 1 ,  . . . , J )  (see Fig. 18.1) such that 

(a) S,Y = U S,;  
(b) if j # k ,  then the intersection S, f' Sk or is empty or a common face of dimension 

less than N .  
Let one of the numbers (0, 1 ,  . . . , N )  be associated with each vertex u of the simplex 

S,. So, suppose that if u E S, := S ,  (x l0 ,  . . . , x,,), then one of the numbers io,  . . , , i N  is 
associated with u.  

J 

, = I  

i # k  

Definition 18.30. S, is called a Sperner simplex if and only if all of its vertices carry 
dijferent numbers, i.e., the vertices of SN carry different numbers 0. 1 ,  . . . . N .  

Lemma 18.16. (Sperner) The number of Sperner simplices is always odd. 

Fig. 18.1. N-simplex and its triangulation. 
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Proof. It can be easily proven by induction that for N = 1 each S j  is a 1-simplex 
(segment). In this case a 0-face (vertex) of S j  is called distinguished if and only if 
it carries the number 0. So, one has exactly two possibilities (see Fig. 18.2a): (i) S, 
has precisely one distinguished (N - 1)-faces, i.e., S j  is a Sperner simplex; (ii) S j  has 
precisely two or more distinguished (N - 1)-faces, i.e., Sj  is not a Sperner simplex. 
But since the distinguished 0-face occurs twice in the interior and once on the bound- 
ary, the total number of distinguished 0-faces is odd. Hence, the number of Sperner 
simplices is odd. Let now N = 2 (see Fig. 18.2b). Then Sj  is 2-simplex and a 1-face 
(segment) of S j  is called distinguished if and only if it carries the numbers 0. 1. Conditions 
(i) and (ii) given above are satisfied for N = 2. The distinguished 1-faces occur twice in 
the interior and, by the case N = 1, it follows that the number of the distinguished 1-faces 
is odd. Therefore, the number of Sperner simplices is odd. Now let N 2 3. Supposing 
that the lemma is true for (N - l),  as in the case N = 2, we easily obtain the result. 0 

18.8.2.2 The Knaster-Kuratowski-Mazurkiewicz (KKM) lemma 
Lemma 18.17. (Knaster-Kuratowski-Mazurkiewicz) Let S,v (xg, . . . . x,) be an N- 
simplex in n finite-dimensional normed space X .  Suppose we are given closed sets [ C l } E ,  
in X such that 

( 1 8.108) 

for all possible systems of indices (io. . . . , in) and all k = 0, . . . , N .  Then there exists a 
point v E SN (xg. . . . , x , ~ ~ )  such that v E C, for all j = 0, . . . , N .  

Proof, Since for N = 0 the set So (xg) consists of a single point xo, and the statement 
looks trivial. Let N 2 1. Let u be any vertex of S, ( j  = 0, . . . , N) (for a triangulation 
S , ,  . . . , S,) such that v E S, ( x l o , .  . . , x I N ) .  By the assumptions of this lemma there 
exists a set CI such that u E C k .  We may associate the index k with the vertex v .  
By the Sperner lemma 18.16 it follows that there exists a Sperner simplex S, whose 
vertices carry the numbers 0, . . . , N .  Hence the vertices u g ,  . . . , U N  satisfy the condi- 
tion vk E Ck ( k  = 0, . . . , N). Consider now a sequence of triangulations of simplex 
SN (xo, . . . , x,) such that the diameters of the simplices of the triangulations tend to zero 

Fig. 18.2. The Sperner simplex 
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(selecting, for example, a sequence barycentric subdivision of S). So, there are points 
~ 1 : " '  E Ck ( k  = 0, . . . , N;  n = 1 , 2 ,  . . .) such that lim diam S,v ( v r ) ,  . . . , v,,, = 0. Since 

the simplex Sv (xg, , . . , xN) is a compact, there exists a subsequence { uf'} such that 

uiO -+ u E S,v (xu,. . . , xW) for all k = 0, .  . . , N. And since the set Ck is closed, this 

0 

, 1 1 3 0  ( n ) )  

1 1 s  

implies u E Ck for all k = 0. . . . , N. Lemma is proven. 

Now we are ready to formulate the main result of this section. 

18.8.2.3 The Brouwer theorem 
Theorem 18.19. (Brouwer 1912) The continuous operator Q : M + M has at least 
one fixed point when M is a compact, convex, nonempty set in a finite-dimensional 
normed space over the field .F (real or complex). 

Proof. 

Consider this operator when M = S,v and demonstrate that the continuous operator 
Q : Shr -+ SN ( N  = 0. 1, . . .) has at least one fixed point when SN = SN (xo, . . . , xW) 
is an N-simplex in a finite-dimensional normed space X. For N = 0 the set SO 
consists of a single point and the statement is trivial. For N = 1 the statement is 
also trivial. Let now N = 2 .  Then Sl = S2 (xg, XI, x2) and any point x in S, can be 
represented as 

2 2 

x = c A, (x) x,, h, >_ 0,  c A, = 1 (1 8.109) 
i=O i =O 

We set 

Ci := {x E SN I h, (Qx) I h, (x). i = 0,  1,2} 

Since h, (x) and @ are continuous on S N ,  the sets C, are closed and the condition 
(18.108) of Lemma 18.17 is fulfilled, that is, SN E U Clm ( k  = 0, 1, 2). Indeed, if 

it is not true, then there exists a point x E S2 (x,,), x,, , x I 2 )  such that x $ U C,,, 
i.e., A,,,, (Qx) > h,,,, (x) for all m = 0, . . . , k .  But this is in contradiction to the 
representation (1 8.109). Then by Lemma 18. I7 there is a point y E S2 such that y E 

C, ( j  = 0, 1, 2). This implies h, ( Q y )  5 h, ( y )  for all j = 0, 1, 2. Since also Qy E S2 
we have 

k 

m=O 
k 

m =O 

2 2 

i=O i=O 

and, hence, h, ( Q y )  = h, ( y )  for all j = 0, 1 , 2  which is equivalent to the expression 
@y = y. So, y is the desired fixed point of @ in the case N = 2. In N 3 one can 
use the same arguments as for N = 2. 
Now, when M is a compact, convex, nonempty set in a finite-dimensional 
normed space, it is easy to show that M is homeomorphic to some N-simplex 
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( N  = 0, 1, 2, . . .). This means that there exist homeomorphisms @ : M -+ B and 
C : SN + B such that the map 

is the desired homeomorphism from the given set M onto the simplex S N .  Using 
now this fact shows that each continuous operator @ : M -+ M has at least one 
fixed point. This completes the proof. 

0 
Corollary 18.12. The continuous operator B : K -+ K has at least a fixed point when 
K is a subset of a aornzed space that is homeomorphic to a set M as it is considered in 
Theorem 18.19. 

Proof. Let C : M -+ K be a homeomorphism. Then the operator 

is continuous. By Theorem 18.19 there exists a fixed point x*  of the operator 
@ := C-' o B o C ,  i.e., C-' ( B  (Cx*)) = x*. Let y = Cx. Then B y  = y ,  y E K .  Therefore 

0 B has a fixed point. Corollary is proven. 

18.8.3 Schauder fixed-point theorem 

This result represents the extension of the Brouwer fixed-point theorem 18.19 to a 
infinite-dimensional Banach space. 

Theorem 18.20. (Sehauder 1930) The compact operator @ : M -+ M has at least one 
,fixed point when M is a bounded, closed convex, nonempty subset of a Banach space X 
over the field 3 (real or complex). 

Proof. Zeidler (1995) Let x E M .  Replacing x with x - xo, if necessary, one may 
assume that 0 E M .  By Theorem 18.7 on the approximation of compact operators it 
follows that for every n = 1, 2, . . . there exists a finite-dimensional subspace X, of X 
and a continuous operator @, : M -+ X, such that ll@, (x) - @, (x)ll 5 n-I for any x 
E M .  Define M ,  := M n X,,. Then M ,  is a bounded, closed, convex subset of X, with 
0 E M ,  and @, ( M )  C M since M is convex. By the Brouwer fixed-point theorem 
18.19 the operator @, : M ,  -+ M ,  has a fixed point, say x I I ,  that is, for all n = 1, 2, . . . 
we have Qn (x,~) = x, E M,. Moreover, l l@ (x,) - x, II 5 la-'. Since M ,  E M ,  the 
sequence {x,} is bounded. The compactness of @ : M -+ M implies the existence of a 
sequence {X,) such that @ (x,) -+ u when n -+ 00. By the previous estimate 

IIu - x,,ll = /Ib - @ (&>I + [@ (x,d - x,l/I 
5 / / [ u  - @ (x,)lll + l l @  (.GI) - x,/I -+ 0 

fl'cu 

So, x, -+ u.  Since @ (x,) E M and the set M is closed, we get that u E M .  And, finally, 
since the operator @ : M -+ M is continuous, it follows that Q, (x) = x E M .  Theorem 
is proven. 0 
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Example 18.21. (Existence of solution for integral equations) Let us solve the following 
integral equation 

(18.110) 

Define 

Proposition 18.6. Zeidler (1995) Assume that 

(a )  The function F : Qr -+ IR is continuous; 
1 

(6)  I A I F  i r,  P := ~ max IF ( t ,  x, u>l; b - a ( t . . r ,u )EQ,  

Setting X := C [a ,  b] and M := {u  E X I IIuII 5 r } ,  it follows that the integral 
equation (18.110) has at least one solution u E M .  

Proof. For all t E [a ,  b] define the operator 

Then the integral equation (18.1 10) corresponds to the following fixed-point problem 
Au = u E M. Notice that the operator A : M -+ M is compact and for all u E M 

Hence, A (M) G M .  Thus, by the Schauder fixed-point theorem 18.20 it follows that 
0 equation (18.1 10) has a solution. 

18.8.4 The Leray-Schauder principle and a priori estimates 

In this subsection we will again concern ourselves with the solution of the operator 
equation 

(1 8.11 1) 1 Q, (x) = x E X I 
using the properties of the associated parametrized equation 

I t@ (x) = x E x, t E [O, 1) 1 ( 18.1 12) 
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For t = 0 equation (18.1 12) has the trivial solution x = 0, and for t = 1 coincides with 
(1 8.1 1 1 ) .  Assume that the following condition holds: 

(A) There is a number r > 0 such that if x is a solution of (18.1 12), then 

Remark 18.10. Here we do not assume that (18.112) has a solution and, evidently, that 
the assumption (A) is trivially satisfied ifthe set Q, ( X )  is bounded since IlQ, (x) 11 5 r for 
all x E X .  

Theorem 18.21. (Leray-Schauder 1934) l f the compact operator @ : X -+ X given on 
the Banach space X over the field .F (real or complex) satisfies assumption (A), then the 
original equation (18.11 1) has a solution (nonobligatory unique). 

Proof. Zeidler (1995) Define the subset 

and the operator 

Obviously, (IB (x) )I  5 2r for all x E X which implies B ( M )  C M .  Show that B : M 
-+ M is a compact operator. First, notice that B is continuous because of the continuity 
of @. Then consider the sequences (u , )  E M and { v , ~ )  such that (a) { u , )  E M or 
(b) (u , }  4 M .  In case (a) the boundedness of M and the compactness of @ imply that 
there is a subsequence { v l l k }  such that B (vnk) = Q, (v l lk)  + z as n -+ 00. In case 
(b) we may choose this subsequence so that 1 / 1 1  @ ( unk)  I I -+ a! and Q, ( vni) -+ z .  Hence, 
B ( v n k )  + 2raz. So, B is compact. The Schauder fixed-point thcorem 18.20 being 
applied to the compact operator B : M -+ M provides us with a point x E M such that 
x = B (x). So, if ( 1  @ (x)ll 5 2r, then B (x) = @ (x) = x and we obtain the solution of the 
original problem. Another case 11 @ (x) 11 > 2r is impossible by assumption (A). Indeed, 
suppose Q, (x) = x for 11 Q, (x)ll > 2r. Then x = Bx = t @  ( x )  with f := 2r/llQ, (x) 11 < 1 .  
This forces IIx 11 = t 1) Q, (x) )I = 2r which contradicts with assumption (A). Theorem is 
proven. 0 

Remark 18.11. Theorem 18.21 turns out to be very useful for the justification of the 
existence of solutions for different types of partial differential equations (such as the 
famous Navier-Stokes equations for viscous fluids, quasi-linear elliptic etc.). 
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I 9 Ordinary Differential Equations 

Contents 
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19.2 Regular ODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  502 
19.3 CarathCodory’s type ODE . . . . . . . . . . . . . . . . . . . . . . . . . .  530 
19.4 O D E w i t h D R H S . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  535 

19.1 Classes of ODE 

In this chapter we will deal with the class of functions satisfying the following ordinary 
differential equation 

X ( t )  = f ( t .  x ( t ) )  for almost all t E [to, to + 01 
.x (to) = xo 

f : R x X + X  
(19.1) 

where f is a nonlinear function and X is a Banach space (any concrete space of functions). 
Cauchy’s problem for (19.1) consists of resolving (19.1), or, in other words, in finding a 
function x ( t )  which satisfies (19. I). 

ODE meaning an ordinary dt~erential equation, 
DRHS meaning the discontinuous right-hand side. 

For simplicity we will also use the following abbreviations: 

Usually the following three classes of ODE (1 9. I )  are considered: 

f ( t .  x) is continuous in both variables. In this case x ( t ) ,  satisfying (19.1), should be 
continuous differentiable, i.e., 

1.  Regular ODE: 

2. ODE of Carathe‘odory’s type: 

3. ODE with discontinuous right-hand side: 
f ( t ,  x) in (19.1) is measurable in t and continuous in x. 

f ( r ,  x) in (19.1) is continuous in t and discontinuous in x. In fact, this type of ODE 
equation is related to the differential inclusion: 

1 i ( t )  E F ( t ,  x ( t ) )  1 (19.3) 

where F ( t ,  x )  is a set in R x X. If this set for some pair ( t ,  x) consists of one point, 
then F ( t ,  x) = f ( t ,  x). 
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19.2 Regular ODE 

19.2.1 Theorems on existence 

19.2.1.1 Theorem based on the contraction principle 
Theorem 19.1. (on local existence and uniqueness) Let f ( t ,  x) be continuous in t on 
[to, to + Q ] ,  (0 > 0 )  and for any t E [to, to + 01 it satisfies the, so-culled, local Lipschitz 
condition in x, that is, there exist constants c ,  L f  > 0 such that 

(19.4) 

for all t E [to, to + 01 and all x, xl, x2 E B,. (xo) where 

Then Cauchy's problem (19.1) has a unique solution on the time-interval [to, to + Q,], 
where 

(1 9.5) 

Proot 

1. First, show that Cauchy's problem (19.1) is equivalent to finding the continuous 
solution to the following integral equation 

(19.6) 

Indeed, if x ( t )  is a solution of (19.1), then, obviously, it is a differentiable function 
on [to, to + 6 1 .  By integration of (19.1) on [to, to + 0,] we obtain (19.6). Inversely, 
suppose x ( t )  is a continuous function satisfying (19.6). Then, by the assumption (19.4) 
of the theorem, it follows 

This implies that if s, SO E [to, to + 011 and s + SO, then the right-hand side of the 
last inequality tends to zero, and, hence, f (s, x (s)) is continuous at each point of the 
interval [to,  to + $11.  And, moreover, we also obtain that x ( t )  is differentiable on this 
interval, satisfies (19.1) and x (to) = XO. 
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2 .  Using this equivalence, let us introduce the Banach space C [to, to + el] of abstract 
continuous functions x ( t )  with values in X and with the norm 

Consider in C [to, to + Q I ]  the ball B, (XO) and notice that the nonlinear operator 
@ : C [to, to + 611 + C [to, to + 011 defined by 

@ (x) = xo + 1 f (s, x (s)) ds 

transforms B, (XO) into B,. (x0) since 

S=tO 

(19.8) 

5 max / I l f  (s, x (s))ll ds  i Q I C  < r 
t € [ t O . t O + f h ]  

s=to 

Moreover, the operator @ is a contraction (see Definition 14.20) on B, (xo). Indeed, 
by the local Lipschitz condition (19.4), it follows that 

i max 

I OIL, 11x1 - x 2 l I c  = 4 11x1 - x 2 l l c  

I l f  (s, X I  (s)) - f (s, x2 (s>>ll ds  
f E [to J0+01 I .I 

s=to 

where q := 81 L f  < 1 for small enough r .  Then, by Theorem (the contraction principle) 
14.17, we conclude that (19.6) has a unique solution x ( t )  E C [to, to + Q , ] .  Theorem 
is proven. 

Corollary 19.1. If in the conditions of Theorem 19.1 the Lipschitz condition (19.4) is 
fulfilled not locally, but globally, that is, for all X I ,  x 2  E X (which corresponds with the 
case r = oo), then Cauchy's problem (19.1) has a unique solution for [to, to + Q ]  for  any 
8 big enough. 

ProoJ It directly follows from Theorem 19.1 if we take r + 00. But here we prefer to 
present also another proof based on another type of norm different from (19.7). Again, let 
us use the integral equivalent form (19.6). Introduce in the Banach space C [to, to + Q,] 
the following norm equivalent to (19.7): 

(19.9) 
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Then 

Multiplying this inequality by e - L f f  and taking max we get 
f E [ r ~ . r o + Q ]  

Since q := 1 - e - L f H  < 1 we conclude that @ is a contraction. Taking 6 big enough we 
obtain the result. Corollary is proven. 

Remark 19.1. Sure, the global Lipschitz condition (19.4) with r = so holds for  a very 
narrow class of jimctions which is known as the class of "quasi-linear" fLiizctions, that 
is why Corollary 19.1 is too conservative. On the other hand, the conditions of Theorem 
19.1 for  finite (small enough) r < so are not so restrictive1.y valid for  any function 
satisfying somewhat mild smoothness conditions. 

Remark 19.2. The main disadvantage of Theorem 19.1 is that the solution of Cauchy's 
problem (19.1) exists only on the interval [to, to + 011 (where 61 satisfies (19.5)), but not 
at the complete interval [to,  to + 61, which is v e q  restrictive. For example, the Cauchy 
problem 

i ( t )  = x2 ( t ) ,  x (0)  = 1 

1 
1 - t  

has the exact solution x ( t )  = __ which exists only on [0, 1) but not for all [0, 00). 

The theorem presented below gives a constructive (direct) method of finding a unique 
solution of the problem (19.1). It has several forms. Here we present the version of this 
result which does not use any Lipschitz conditions: neither local, nor global. 

Theorem 19.2. (Picard-Lindelof 1890) Consider Cauchy 's problem (19. I )  where the 
function f ( t ,  x) is continuous on 

(19.10) 
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a 
ax 

and the partial derivative - f ; S -+ R" is also continuous on S. Define the numbers 

(19.1 1) 

and choose the real number 8 such that 

Then 
I .  Cauchy's problem (19.1) has a unique solution on S;  
2. the sequence (x, ( t ) }  offunctions generated iteratively by 

s=to 

xo ( t )  = X O ,  n = 0, 1, . . . ; to - 8 I t 5 8 + to 

(19.12) 

(19.13) 

converges to x ( t )  in the Banach space X with the norm (19.7) geometrically as 

(19.14) 

Proqf Consider the integral equation (19.6) and the integral operator @ (19.8) g' iven on 
S .  So, (19.6) can be represented as 

where @ : M -+ X .  For all t E [to, to + 81 we have 

- < max ( t  - to)  max I l f  ( t ,  x)II I 8 M  5 r 
I t [ tn.  tn+Ql ( t , l ) E S  

i.e., @ ( M )  5 M .  By the classical mean value theorem 16.5 
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and, hence, 

Applying now the contraction principle we obtain that (19.6) has a unique solution 
x E B, (xo). We also have 

Theorem is proven. 0 

19.2.1.2 Theorem based on the Schauder fixed-point theorem 

the assertion of uniqueness. 
The next theorem to be proved drops the assumption of Lipschitz continuity but, also, 

Theorem 19.3. (Peano 1890) Consider Cauchy 's problem (19.1) where the function 
f ( t ,  x) is continuous on S (19.10) where the real parameter B is selected in such a 
way that 

/ O < B s r ,  B M s r l  (19.15) 

Then Cauchy's problem (19.1) has at least one solution on S. 

Proog 

(a) For the Schauderfixed-point theorem use Zeidler (1995). By the same arguments as 
in the proof of Theorem 19.2 it follows that the operator (0 : B, (xo) -+ B, (no) is 
compact (see Definition 18.14). So, by the Schauder fixed-point theorem 18.20 we 
conclude that the operator equation (0 (x ( t ) )  = x ( t ) ,  x ( t )  E B, (xg) has at least one 
solution. This completes the proof. 

(b) Direct proof (Hartman 2002). Let 6 > 0 and xo( t )  E C' [to - 6 ,  to] satisfy on 
[to - 6, to] the following conditions: xo( t )  = X O ,  llxo(t) - xol/ I r and llxh(t)ll d .  
For 0 < E 5 6 define a function x,(t) on [to - 8, to + E ]  by putting x,(to) = xo on 
[to - 6 ,  to ]  and 

~ t ( t )  = xo + f (s, X, (S - E ) )  ds 
J =tc, .I 

on [to, to + E ] .  Note that x E ( t )  is a Co-function on [to - 6,  to + E ]  satisfying 

(19.16) 
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Thus, for the family of functions { x E n ( t ) } ,  E, -+ 0 whereas for n + 00 it follows 
that the limit x ( t )  = lim xEll ( t )  exists uniformly on [to - 6 ,  to + 01, which implies that 

n+co 

uniformly as n + 00. So, term-by-term integration of (19.16) with E = E, gives 
(19.6) and, hence, x ( t )  is a solution of (19.1). 

The following corollary of Peano’s existence theorem is often used. 

Corollary 19.2. (Hartman 2002) Let f ( t ,  x )  be continuous on an open ( t ,  x)-set of E 
C R1+” satisfying 11 f ( t ,  x)ll 5 M .  Let also Eo be a compact subset of E. Then there 
exists a 0 > 0, depending on E, EO and M ,  such that if (to, xo) E Eo, then (19.6) has a 
solution on It - to/ I 0. 

19.2.2 Differential inequalities, extension and uniqueness 

The most important technique in ODE theory involves the “integration” of the, so- 
called, differential inequalities. In this subsection we present results dealing with this 
integration process which is extensively used throughout; there will be presented its 
immediate application to the extension and uniqueness problems. 

19.2.2. I Bihari and Gronwall-Bellman inequalities 
Lemma 19.1.(Bihari 1956) Let 

1. v ( t )  and ( ( t )  be nonnegative continuous functions on [to, co), that is, 

2. for any t E [to, 00) the following inequality holds 

( 1 9.1 8) 

where c is a positive constant ( c  > 0 )  and CD (v) is a positive nondecreasing continuous 
function, that is, 

10 < @ (v)  E c [to. 03) v v  E (0, ij), 5 5 co] (19.19) 

Denote 

V 

ds 
Q (v)  := / (0 c v c V) 

s=c 

(19.20) 
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If in addition 

( t ) d t  < Q ( V  - 0), t E [to, 00) 
r=to J 

then for  any t E [to, 00) 

(19.21) 

(19.22) 

where Q-' ( y )  is the function inverse to Q (v), that is, 

y = \u (v) ,  u = q-' ( y )  (19.23) 

In particular, if V = 00 and \y (m) = 00, then the inequality (19.22) is fulfilled without 
any constraints. 

Proof. Since Q, (v) is a positive nondecreasing continuous function the inequality (19.18) 
implies that 

and 

Integrating the last inequality, we obtain 

(19.24) 

Denote 
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Then evidently 

Hence, in view of (19.20), the inequality (19.24) may be represented as 

f 1 

Taking into account that w ( to)  = c and Q (w ( to) )  = 0, from the last inequality it 
follows that 

( 19.25) 

1 
Q ( u )  = - (0 < v < 5) 

Q, ( u )  

the function Q ( u )  has the uniquely defined continuous monotonically increasing inverse 
function Q-' ( y )  defined within the open interval (Q(+O), Q ( V  - 0) ) .  Hence, (19.25) 
directly implies I 

w ( t )  = c +  6 ( t ) Q , ( u ( t ) ) d r  5 V' ( j ( s ) d s )  
r=lo 1 S=to 

which, in view of (19.18), leads to (19.22). Indeed, 

u ( t )  5 c + $ (t) cD (u  ( t ) ) d t  5 Q-' ( j H S ) d S )  
i =lo S = f o  

The case V = 00 and Q (00) = 0;) is evident. Lemma is proven. 

Corollary 19.3. Taking in (19.22) 

Q, ( u )  = urn (rn > 0, m f 1) 

it follows that 

r=fo 

(19.26) 
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Corollary 19.4. (Gronwall 1919) If u ( t )  and t ( t )  are nonnegative continuous func- 
tions on [to, 00) vertfiing 

(19.27) 

then for any t E [to, 00) the following inequality holds: 

(19.28) 

This result remains true i f c  = 0. 

ProoJ: Taking in (19.18) and (19.20) 

@ ( u )  = u 

we obtain (19.193) and, hence, for the case c > 0 

and 

which implies (19.28). The case c = 0 follows from (19.28) applying c + 0. 0 
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19.2.2.2 Differential inequalities 
Here we follow Hartman (2002) completely. 

Definition 19.1. Let f ( t ,  x) be a continuous function on a plane ( t ,  x)-set E. By a 
maximal solution x o ( t )  of Cauchy’s problem 

I i ( t )  = f ( t ,  x), x (to) = xo E R 1 (19.29) 

is meant to be a solution of (19.29) on a maximal interval of existence such that i f x  ( t )  
is any solution of (19.29) then 

FZ3G-A (19.30) 

holds (by component-wise) on the common interval of existence of x ( t )  and xo ( t ) .  The 
minimal solution is similarly defined. 

Lemma 19.2. Let f ( t ,  x) be a continuous function on a rectangle 

s+ := { ( t ,  x) E R2 1 to 5 t 5 to + 0 5 to, IIX - xollc 5 r }  (19.31) 

and on Ss 

Il f  ( t .  x)ll 5 M and a := min (0; r / M }  

Then Cauchy’s problem (19.29) has a solution on [to, to + a )  such that every solution 
x = x ( t )  of i ( t )  = f ( t ,  x), x (to) _< xo satisfies (19.30) on [to, to + a) .  

Proof. Let 0 < a’ < a. Then, by Peano’s existence theorem 19.3, the Cauchy problem 

I 
n 

i ( t )  = f ( t ,  x) + - 1  x(f0) = xo (19.32) 

has a solution x = x,(t)  on [to, to +a’] if n is sufficiently large. Then there exists 
a subsequence {nk}k=l,2,,, ,  such that the limit xo ( t )  = limx,,(t) exists uniformly on 
[ to ,  to + a’] and xo ( t )  is a solution of (19.29). To prove that (19.30) holds on [to, to + a’] 
it is sufficient to verify 

k+m 

for large enough n. If this is not true, then there exists a t = f l  E (to, to + a’) such that 
x ( t , )  > x , ( t l ) .  Hence there exists a largest tz on [to, t l )  such that x ( t 2 )  = x,(t2) and 

x ( t )  > xn( t ) .  But by (19.32) xi(t2) = x’(t2) + -e, so that x,(t) > x ( t )  for t > t2 near 
t2. This contradiction proves (19.33). Since a’ < a is arbitrary, the lemma follows. 0 

1 
n 

Corollary 19.5. Let f ( t ,  x) be a continuous function on an open set iE and (to, xo) E 

E R2. Then Cauchy’sproblem (19.29) has a maximal and minimal solution near (to, xo). 
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19.2.2.3 Right derivatives 
Lemma 19.3. 

1. I f n  = 1 and x E C‘ [a,  b] then /x (t)l has a right derivative 

1 
DR Ix (t)I := lim - [Ix ( t  + h)l - Ix (t)1] 

O < h - t O h  

such that 

(19.34) 

(19.35) 

and 

(19.36) 

2. I f n  > 1 and x E C’ [a,  b] then I(x (t) / l  has a right derivative 

I I 

such that on t E [a ,  b) 

(19.37) 

(1 9.38) 

Proof. Assertion ( I )  is clear when x ( t )  f 0 and the case x ( t )  = 0 follows from the 
identity 

x ( t  + h )  = x ( t )  + hx’ (f) + o ( h )  = h [x’ ( t )  + 0 ( I ) ]  

so that, in general, when h + 0 

Ix ( t  + h>l = Ix ( [ > I  + h [ Ix’ ( t> /  + 0 ( I ) ]  

1% ( t  + h)l = IXk (t)l + h [ 1.; (t) j  + 0 (111 

The multidimensional case (2) follows from ( I )  if we take into account that 

Taking the max of these identities, we obtain 
k = l ,  ..., n 

I IIx ( t  + h)II = IIx (t>II + h max Ixk (t>l + o (1) 

whereas h + 0. This proves (19.38). 

k = l ,  ..., n [ 
0 
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Example 19.1. Let x ( t )  := ( t  - to)2. Then x' ( t )  := 2 ( t  - to) is continuous and, hence, 
x ( t )  E C ' .  By Lemma 19.3 itSollows that DR Ix (t)l = 2 It - tol. 

19.2.2.4 Differential inequalities 

used in the ODE theory. 
The next theorem deals with the integration of differential inequalities and is frequently 

Theorem 19.4. (Hartman 2002) Let ,f ( t ,  x) be continuous on an open ( t ,  x)-set E g R 
and xo ( t )  be the maximal solution of (19.6). Let u ( t )  be continuous on [to, to + a ]  function 
such that 

u ( to)  5 xo,  ( t ,  u )  i"E 
D R V  ( t )  5 f ( t ,  21 ( t ) )  

Then, on the common intervul of existence of xo( t )  and u ( t )  

(1 9.39) 

(1 9.40) 

Remark 19.3. I f  the inequalities (19.39) are reversed with the left derivative DLu ( t )  
instead of DRu ( t ) ,  then the conclusion (19.40) must be replaced by u ( t )  2 xo(t) where 
xo(t )  is the miitimal solution of (19.6). 

Prosf: It is sufficient to show that there exists a S > 0 such that (19.40) holds for 
[to, to + 61. Indeed, if this is the case and if u ( t )  and xo( t )  are defined on [to, to + B ] ,  
then it follows that the set of t-values, where (19.40) holds, cannot have an upper bound 
different from B. In Lemma 19.2 let it > 0 be large enough and S be chosen independent 
of n such that (19.32) has a solution x = x , ( t )  on [to, to + 61. In view of Lemma 19.2 
it is sufficient to verify that u ( t )  5 .x,(t) on [to, to + 61. But the proof of this fact is 

0 

In fact, the following several consequences of this theorem are widely used in the ODE 

absolutely identical to the proof of (19.33). Theorem is proven. 

theory. 

Corollary 19.6. I f u  ( t )  is continuous on [ t o ,  trl and DRu ( t )  5 0 when t E [to, t r] ,  then 

Corollary 19.7. (Lemma on differential inequalities) Let f ( t ,  x), x'(t)  be as in 
Theorem 19.4 and g ( t ,  x) be continuous on an open ( t ,  x)-set E R2 satisfying 

I g ( t ,  x) 5 f ( t ,  x) I (1  9.42) 

Let also u ( t )  be a solution of the following ODE: 
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on [to, to + a].  Then 

m (19.44) 

holds on any common interval of existence of u ( t )  and x o ( t )  to the right of to, 

Corollary 19.8. Let x o ( t )  be the maximal solution of 

.i ( t )  = f ( t ,  x ( t ) ) ,  x (to) := x o  E R 

and xo( t )  be the minimal solution of 

Let also y = y ( t )  be a C' vector valued function on [to, to + a ]  such that 

(19.45) 

holds on any common interval of existence of xo ( t )  and y ( t )  (or xo ( t )  and y ( t ) ) .  

Corollary 19.9. Let f ( t ,  x) be continuous and nondecreasing on x when t E [to, to + a].  
Let xo ( t )  be a maximal solution of (19.6) which exists on [to, to +a] .  Let another 
continuous function u ( t )  satish on [to, to + a]  the integral inequality 

(19.47) 

where uo 5 xo. Then 

(19.48) 

holds on [to,  to + a].  This result is false i fwe omit: f ( t ,  x) is nondecreasing on x. 

ProoJ: Denote by V ( t )  the right-hand side of (19.47), so that u ( t )  5 V ( t ) ,  and, by the 
monotonicity property with respect to the second argument, we have 

By Theorem 19.4 we have V ( t )  5 xo ( t )  on [to,  to +a] .  Thus u ( t )  I xo ( t )  which 
completes the proof. 0 
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19.2.2.5 Existence of solutions on the complete axis [to,  00) 
Here we show that the condition 11 f ( t ,  x)II 5 k IIxII guarantees the existence of the 

solutions of ODE .i ( t )  = f ( t ,  x ( t ) ) ,  x (to) = xo E R" for any t 2 to. In fact, the 
following more general result holds. 

Theorem 19.5. (Wintner 1945) Let for any t 2 to and x E R" 

I ( x ,  f ( t ,  x)) I Yr ( 1 1 ~ 1 1 2 )  I 
where the function Yr satisfies the condition 

(19.49) 

(19.50) 
s=so 

Then Cauchy's problem 

.i ( t )  = f ( t ,  x ( t ) ) ,  x (to) = xo E R" 

has a solution on the complete semi-axis [to,  00) for any xo E R". 

Proof: Notice that for the function w ( t )  := IIx (t)1I2 in view of (19.49) we have 

Then by Theorem 19.4 (see (19.44)) it follows that w (to) 5 so implies w ( t )  5 s ( t ) ,  
where s ( t )  satisfies 

.i ( t )  = 2*(s ( t ) ) ,  s ( to)  = so := llxo1(2 

But the solution of the last ODE is always bounded for any finite t 2 to. Indeed, 

J % -  - 2 ( t  - to)  (19.51) 

and Yr (s) > 0 as s 2 so implies that S ( t )  > 0, and, hence, s ( t )  > 0 for all t > to. But 
the solution s ( t )  can fail to exist on a bounded interval [to, to + a ]  only if it exists on 
[to,  to +a]  with a < a and s ( t )  + co if t -+ to + a. But this gives the contradiction 
to (19.50) since the left-hand side of (19.51) tends to infinity and the right-hand side of 
(1 9.5 1) remains finite and equal to 2a. 

Remark 19.4. The admissible choices of * ( s )  may be, for example, C ,  Cs ,  Cs  Ins .... 
for lnrge enough s and C as a positive constunt. 
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Remark 19.5. Some generalizations of this theorem can be found in Hartman (2002). 

Example 19.2. If A ( t )  is a continuous n x n matrix and g ( t )  is continuous on [to, to + a ]  
vector function, then Cauchy 's problem 

i ( t )  = A ( t )  x ( t )  + g ( t ) .  x (to) = xo E R" (19.52) 

has a unique solution x ( t )  on [ to ,  to + a].  It follows from the Wintner theorem 19.5 i f w e  
rake \I, ( s )  := C (1 + s )  with C > 0. 

19.2.2.6 The continuous dependence of the solution on a parameter and on the 

Theorem 19.6. r f '  the right-hand side of ODE 
initiul conditions 

i ( t )  = f ( t ,  x ( t ) ,  p ) ,  x (to) = xo E R" (19.53) 

is continuous with respect to p on [p - ,  p+] and satisfies the condition of Theorem 19.1 
with the Lipschitz constant L f  which is independent of p, then the solution x ( t ,  p) 
of (19.53) depends continuously on p E [p-, p.'] E R"' as well as on xo in some 
neighborhoods. 

Proo$ The proof of this assertion repeats word by word the proof of Theorem 19.1. 
Indeed, by the same reasons as in Theorem 19.1, the solution x ( r ,  p )  is a continuous 
function of both t and p if L f  is independent of p. As for the proof of the continuous 
dependence of the solution on the initial conditions, it can be transformed to the proof of 
the continuous dependence of the solution on the parameter. Indeed, putting 

t := t - t o ,  z := x ( t ,  p)  - x g  

we obtain that (1 9.53) is converted to 

d 
z (0) = 0 --z d t  = f (t + to, z +,yo, p) ,  

where xo may be considered as a new parameter so that f is continuous on xo by the 
0 assumption. This proves the theorem. 

19.2.3 Linear ODE 

19.2.3.1 Linear vector ODE 
Lemma 19.4. The solution x ( t )  of the linear ODE (or the corresponding Cauchy's 
problem) 

~ i ( t )  = A ( t )  x ( t ) ,  x ( t o )  = xo E R""", t 2 to 1 (19.54) 

where A ( t )  is a continuous n x n-matrix function, may be presented as 
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where the matrix Q, ( t ,  to) is the, so-called, fundamental matrix of the system (19.54) and 
satisfies the following matri.x ODE 

and filfills the group property 

(19.56) 

( 1 9 .57) 

Prooj Assuming (19.55), the direct differentiation of (19.55) implies 

d 
dt  

i ( t )  z= -Q, ( t ,  to)  ~0 = A ( t )  Q, ( t ,  to) xo = A ( t )  x ( t )  

So, (19.55) verifies (19.54). The uniqueness of such a presentation follows from Example 
19.2. The property (19.57) results from the fact that 

x ( t )  = Q , ( t , s ) X , T  = a, ( t , s )Q, (s , to )x( to)  = Q,(t , to)x( to)  

Lemma is proven. 

19.2.3.2 Liouville's theorem 

(or has its inverse) on any finite time interval. 
The next result serves as a demonstration that the transformation @ ( t ,  t o )  is nonsingular 

Theorem 19.7. (Liouville 1836) VQ, ( t ,  to) is the solution to (19.561, then 

(19.58) 

ProoJ: The usual expansion for the determinant det Q, ( t ,  t o )  and the rule for differentiating 
the product of scalar functions show that 

d - det Q, ( t ,  to) = 
dt 

n 

det 6 j  ( t ,  to) 
j =  1 

where 6 j  (I ,  to) is the matrix obtained by replacing the j throw Q,j,l ( t ,  to) , , . . , a,,, ( t ,  to) 
of Q, ( t ,  to) by its derivatives 6j,, ( t ,  t o ) ,  . . . , 6j,n ( t ,  to). But since 

co
nt

ro
len

gin
ee

rs
.ir



518 Advanced Mathematical Tools fo r  Automatic Contrd Engineers: Volume I 

it follows that 

det 6 j  ( t ,  to) = aj,j ( t )  det Q, ( t ,  to) 

which gives 

d " d  
- det Q, ( t ,  to) = - det 6~j ( t ,  to) 

dt  
J = 1  d t  

/ I  

= x a j , j  ( t )  det Q, ( t ,  to) = tr {A ( t ) }  det Q, (f, to)  
j =  I 

and, as a result, we obtain (19.58) which completes the proof. 0 

Corollary 19.10. rffor the system (19.54) 

( 1 9.59) 

then for any t E [to, T ]  

I det Q, ( t ,  to) > 0 1 (1 9.60) 

ProoJ It is the direct consequence of (19.58). 0 

Lemma 19.5. If (19.59) is fulfilled, namely, J",:, trA ( s )  ds > -00, then the solution 
x ( t )  on [0, T ]  of the linear nonautonomous ODE 

where A ( t )  and f ( t )  are assumed to be continuous matrix and vector functions, may be 
presented by the Cauchy formula 

where CP-' ( t ,  to) exists for all t E [to, T ]  and satisfies 

(19.62) 

d 
- @ - I  ( t ,  to) = - @ - I  ( t ,  to) A ( t ) ,  (to, to)  = I dt  

(19.63) 
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Pro05 By the previous corollary, @-I  ( t ,  t o )  exists within the interval [to, TI .  The direct 
derivation of (19.62) implies 

@-' ( s ,  to) g ( s )  ds + @ ( t ,  to)  @ - I  ( t ,  to) g ( t )  I 
which coincides with (19.61). Notice that the integral in (19.62) is well defined in view 
of the continuity property of the participating functions to be integrated. By identities 

@ ( t ,  to)  @-I  ( t ,  to)  = I 

d d 
dt  dt 
- [@ ( t ,  t o )  @-' ( t ,  to)] = 6 ( t ,  to)  @ - I  ( t ,  to)  + @ ( t ,  t o )  - @ - l  ( t ,  to )  = 0 

it follows that 

= -@-' ( t ,  t o )  [ A  ( t )  @ ( t ,  to)] @ - I  ( t ,  to) = - @ - I  ( t ,  t o )  A ( t )  

Lemma is proven. 

Remark 19.6. The solution (19.62) can be rewritten as 

since by (19.57) 

~ @ ( t ,  s) = @ ( t ,  t o )  @-' ( s ,  to)  1 

19.2.3.3 Bounds for norm of ODE solutions 
Let IJAJ(  := sup IIAxl( where llxll is Euclidean or Chebishev's type. 

llx II = 1 

Lemma 19.6. Let x ( t )  be a solution of (19.61). Then 

0 

(19.64) 

(19.65) 

(19.66) 
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Proot By (19.61) it follows that 

Let u ( t )  be the unique solution of the following ODE: 

which solution is 

Then, by Lemma 19.7, it follows that IIx (t)ll I u ( t )  for any t 2 to which gives 
(19.66). 0 

Corollary 19.11. Similarly, if w ( t )  is the solution of 

then IIx ( t )  11 2 II ( t )  for any t 2 to that gives 

(19.67) 

19.2.3.4 Stationary linear ODE 
If in (19.1) A ( t )  = A is a constant matrix, then it is easy to check that 

I O C .  I 
1 

@ ( t ,  to) := eA(t-ro) where eAr = -Aktk 
k !  I 

k=O 

and (19.62), (19.64) become 

(19.68) 

(19.69) 
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19.2.3.5 Linear ODE with periodic matrices 

reduced to the case of constant coefficients. 
In this subsection we show that the case of variable, but periodic, coefficients can be 

Theorem 19.8. (Floquet 1883) Let in ODE 

X ( t )  = A ( t )  x ( t )  (19.70) 

the matrix A ( t )  E R""" (-m < t < 00) be continuous and periodic ofperiod T ,  that is, 
.for any t 

A ( t  + T )  = A ( t )  

Then the fundamental matrix @ ( t .  t o )  of (19.70) has a representation of the form 

(19.71) 

(19.72) 

and R is a constant I E  x n iriutrix. 

Proofi Since 6 ( r )  is a fundamental matrix of (19.70), then 6 (t + T )  is fundamental 
too. By the group property (19.57) it follows that 6 (t + T )  = 6 (t) 6 ( T ) .  Since 
det 6 ( T )  f 0 one can represent 6 ( T )  as 6 ( T )  = eKT and hence 

6 (t + T )  = 6 ( 5 )  eKT (1 9.73) 

So, defining Z (5) := 6 ( r )  e-Rr.  we get 

z ( r  + T )  = 6 (t + T )  e-R(T+T) 

= [6 (t + T )  e - ~ ' ]  e-Rr 

= 6 (t) e-Rr = z (t) 
which completes the proof. 0 

19.2.3.6 First integrals and related adjoint linear ODE 
Definition 19.2. A function F = F ( f ,  x) : R x @" -+ C, belonging to C1 [R x C n ] ,  is 
called the first integral to ODE (19.1) if it is constant over trajectories of x ( t )  generated 
by ( i9 . i ) ,  that is, if for  any t 2 to and any xo E C" 
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In the case of linear ODE (19.54) the condition (19.74) is converted into the following: 

(19.75) 

Let us try to find a first integral for (19.54) as a linear form of x ( t ) ,  i.e., let us try to 
satisfy (19.75) selecting F as 

(19.76) 

where z* ( t )  E @” is from C’ [C“]. 
The existence of the first integral for ODE (1 9.1) permits to decrease the order of the 

system to be integrated since if the equation F ( t ,  x ( t ) )  = c can be resolved with respect 
to one of the components, say, 

then the order of ODE (19.1) becomes equal to (n  - 1). If one can find all n first integrals 
Fa ( t ,  x ( t ) )  = c, (a = 1, . . . , n )  which are linearly independent, then the ODE system 
(19.1) can be considered to be solved. 

Lemma 19.7. Afirst integral F ( t ,  x) for (19.54) is linear on x ( t )  as in (19.76) if and 
only if 

ProoJ: 
(a) Necessity. If a linear F ( t ,  x) = ( z ( t ) ,  x ( t ) )  is a first integral, then 

(19.77) 

(19.78) 

Suppose that i (t’) + A* (t’) z (t’) # 0 for some t’ L to. Put 

x (t’) := 2 (f’) + A* (t’) z (t’) 

Since x (t’) = @ (t’, to) xo and @ - I  (t’, to)  always exists, then for xo = CD-’ (t’, to) 
x (t’) we obtain 

d 
d t  
- F (t’, x (t’)) = (i (t’)  + A* (t’) ~ ( t ’ ) ,  x (t’)) 

= I l i  (t’) + A* (t’) z (t’)1I2 Z 0 
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which is in contradiction with the assumption that F ( t ,  x ( t ) )  is a first integral. 
(b) Sufficiency. It directly results from (19.78). 

Lemma is proven. 

Definition 19.3. The system (19.77) is called the ODE system adjoint to (19.54). For 
the corresponding inhomogeneous system ( I  9.61) the adjoint system is 

There are several results concerning the joint behavior of (19.54) and (19.77). 

Lemma 19.8. A matrix @ ( t ,  to) is a findamental matrix for the linear ODE (19.54) if 
and only if (@* ( t ,  to))-' = (W' ( t ,  to))* is a fundamental matrix for the adjoint system 
(1  9.77). 

Proof. Since @ ( t ,  to) @-I ( t ,  to) = I by differentiation it follows that 

d d 
dt dt 
- @ - I  ( t ,  to) = -@-I ( t ,  to) -@ ( t ,  to) @-I ( t ,  to)  = -@-' ( t ,  to) A ( t )  

and taking the complex conjugate transpose of the last identity gives 

d 
- (@-I  ( t ,  to))* = -A* ( t )  (W' ( t ,  t o ) ) *  
dt 

The converse is proved similarly. 0 

Lemma 19.9. The direct (19.61) and the corresponding adjoint (19.79) linear systems 
can be presented in the Hamiltonian form, i.e., 

(19.80) 

where 

is called the Hamiltonian function for the system (19.61). In the stationary homogeneous 
case when 

12 ( t )  = A x ( t ) ,  x (to) = xo E R""", t to I (19.82) 

the Hamiltonian function is a first integral for  (19.82). 
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Proof. The representation (19.80) follows directly from (19.81). In the stationary, when a 
-H ( t .  z ,  x) = 0, we have 
at 

So, H ( t ,  z ,  x) is a constant. 

Lemma 19.10. lf A ( t )  = -A* ( t )  is skew Hermitian, then 

-1 

0 

(19.83) 

Lemma 19.11. (Green's formula) Let A ( t ) ,  g ( t )  and ( t )  be continuous f o r t  E [a ,  b ] ;  
x ( t )  be a solution of (19.61) and z ( t )  be a solution of (19.79). Thenfor all t E [a ,  b] 

I s=u I 

(19.84) 

Proof: The relation (19.84) is proved by showing that both sides have the same deriva- 
tives, since ( A y ,  z )  = ( y ,  A * z ) .  

19.2.4 Index of increment for ODE solutions 

Definition 19.4. A number r is called a Lyapunov order number (or the index of the 
increment) for a vector function x ( t )  defined for t 2 to, if for every E > 0 there exist 
positive constants Cp and C,  such that 

1I-x ( t )  I/ 5 C:e(T-s)r for some arbitraiy large t 
(19.85) 
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which equivalently can be fornzulated as 

(19.86) 

Lemma 19.12. I f x  ( t )  is the solution of (19.61), then it has the Lyapuizov order number 

I / 
t 

?'roo$ It follows directly from (19.66). 

19.2.5 Riccati differential equation 

(19.87) 

0 

Let us introduce the symmetric IZ x n matrix function P ( t )  = PT ( t )  E C' [0, TI which 
satisfies the following ODE: 

- P  ( t )  = P ( t )  A ( t )  + A ( t ) T  P ( t )  
- P  ( t )  R ( t )  P ( t )  + Q ( t )  

P ( T )  = G 3 0 

(19.88) 

with 

A ( t ) ,  Q ( t )  E IW""", R ( t )  E R"'"'" (19.89) 

Definition 19.5. We call ODE (19.88) the matrix Riccati differential equation. 

Theorem 19.9. (on the structure of the solution) Let P ( t )  be a symmetric nonnegative 
solution of (19.88) dejined on [0, TI. Then there exist two functional n x tz  matrices 
X ( t ) ,  Y ( t )  E C '  [0, TI satisfying the following linear ODE 

( 1  9.90) 

I I 

with 

(19.91) 
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where A ( t )  and Q ( t )  are as in (19.88) and such that P ( t )  may be uniquely represented 
as 

1 P ( t )  = Y ( t )  x-' ( t )  j 
f o r  any finite t E [O, TI.  

(19.92) 

Proo$ 

(a) Notice that the matrices X ( t )  and Y ( t )  exist since they are defined by the solution 
to the ODE (19.90). 

(b) Show that they satisfy the relation (19.92). Firstly, remark that X (2") = I ,  so 
det X ( T )  = 1 > 0. From (19.90) it follows that X ( t )  is a continuous matrix function 
and, hence, there exists a time r such that for all t E ( T  - r ,  T ]  det X ( t )  > 0. As a 
result, X-' ( t )  exists within the small semi-open interval ( T  - t, TI.  Then, directly 
using (19.90) and in view of the identities 

d 
d t  

x-' ( t )  x ( t )  = I ,  - [x-' ( t ) ]  x ( t )  + x-' ( t )  x ( t )  = 0 

it follows that 

= -x-' ( t )  [ A  ( t )  X ( r )  - R ( t )  Y ( t ) ]  X-' ( t )  

= -X-' ( t )  A ( t )  + X-' ( t )  R ( t )  Y ( t )  X-'  ( t )  

(19.93) 

and, hence, for all t E ( T  - t, T ]  in view of (19.88) 

d d 
- d t  [ y  ( t )  x-' ( t ) ]  = Y ( t )  x-' ( t )  + Y ( t )  - dt  [x-' ( t ) ]  

= [-Q ( t )  X ( t )  - A T  ( t )  Y ( t ) ]  X - '  ( t )  

+ Y ( t )  [-X-' ( t )  A ( t )  + X-' ( t )  R ( t )  Y ( t )  X-I ( t ) ]  

= -Q ( t )  - AT ( t )  P ( t )  - P ( t )  A ( t )  

+ P ( t )  R ( t )  P ( t )  = P ( t )  

d 
which implies - [Y ( t )  X-' ( t )  - P ( t ) ]  = 0, or, 

dt  

Y ( t )  X-' ( t )  - P ( t )  = const 
f E ( T - r ,  TI 

But for t = T we have 
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const = Y ( T )  X- '  ( T )  - P ( T )  = Y ( T )  - P ( T )  = o 
r c(T -7 .71  

So, for all t E ( T  - t, TI it follows that P ( t )  = Y ( t )  X-' (t). 

presentation within t E t E ( T  - t, T ]  
(c) Show that det X ( T  - t) > 0. The relations (19.90) and (19.92) lead to the following 

X ( t )  = A ( t )  X ( t )  - R ( t )  Y ( t )  = [ A  ( t )  - R ( t )  P ( t ) ]  X ( t )  

and, by Liouville's theorem 19.7, it follows that 

det X ( T  - t) = exp t r  [ A  ( t )  - R ( t )  P ( t ) ] d t  

By continuity, again there exists a time tl > t that det X ( t )  > 0 for any 
t E [T  - t, T - t l ] .  Repeating the same considerations we may conclude that 
det X ( t )  > 0 for any t E [0, TI.  

(d) Show that the matrix G ( t )  := Y ( t )  X-' ( t )  is symmetric. One has 

d d 
- [ Y T  ( t )  x ( t )  - X T  ( t )  Y ( t ) ]  = Y T  ( t )  x ( t )  + Y ( t )  [ X  ([>I d t  

d 
d t  

- -XT ( t ) Y ( t )  - XT ( t )  Y ( t )  = [-Q ( t ) X ( t )  - AT ( t ) Y  ( t ) IT  X ( t )  

+ Y T  ( t )  [ A  ( t )  X ( t )  - R ( t )  Y ( t ) ]  - [ A  ( t )  X ( t )  - R ( t )  Y (t)IT Y ( t )  

and Y (T)T  X ( T )  - [ X  (T)IT Y ( T )  = YT ( T )  - Y ( T )  = GT - G = 0 that implies 
YT ( t )  X ( t )  - X T  ( t )  Y ( t )  = 0 for any t E [O, TI.  So, YT  ( t )  = XT ( t )  Y ( t )  X - I  ( t )  
= X T  ( t )  P ( t )  and, hence, by the transposition operation we get Y ( t )  = PT ( t )  X ( t )  
and P ( t )  = Y ( t )  X-' ( t )  = PT ( t ) .  The symmetricity of P ( t )  is proven. 

(e) The Riccati differential equation (19.88) is uniquely solvable with P ( t )  = 
Y ( t )  X- '  ( t )  2 0 on [0, T ]  since the matrices X ( t )  and Y (t)  are uniquely defined 
by (19.92). 0 

co
nt

ro
len

gin
ee

rs
.ir



528 Advanced Mathematical Tools for Automutic Control Engineers: Volume I 

19.2.6 Linear first order partial DE 

Consider the following linear first order partial DE 

(19.94) 

where x E R" is a vector of n independent real variables and z = z ( x )  is a real-valued 
function of the class C' ( X ) ,  x E X C R". Defining 

equation (19.94) can be rewritten as follows 

a"t) X ( x ,  7.). - = z (x, z )  ( 1  9.95) 

Any function z = z (x) E C' (X) satisfying (19.95) is its solution. If so, then its full 
differential d z  is 

(19.96) 

Consider also the following auxiliary system of ODE: 

or, equivalently, 

(19.97) 

(19.98) 

(19.99) 

which is called the system of characteristic ODE related to (19.95). The following 
important result, describing the natural connection of (19.95) and (19.98), is given below. 

Lemma 19.13. Ijz = z (x) satisfies (19.97), then it satisfies (19.95) too. 
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ProoJ: Indeed, by (19.99) and (19.96) we have 

dxi = X i  ( x ,  Z) Z-'  ( x ,  Z )  dz 

which implies ( I  9.94). 0 

19.2.6. 1 Cauchy 's method of characteristics 

DE of a system of nonlinear ODE. 
The method, presented here, permits to convert the solution of a linear first order partial 

Suppose that we can solve the system (19.98) of ODE and its solution is 

1 xi = Xi(Z, Ci), i = 1, . . . , n 1 (19.100) 

where ci are some constants. 

Definition 19.6. The solutions (19.100) are called the characteristics of (19.94). 

Assume that this solution can be resolved with respect to the constants ci, namely, 
there exist functions 

I lcri = $' (x,z) = ci (i = 1 , .  .. , n )  I (19.101) 

Since these functions are constants on the solutions of (19.98) they are the first integrals 
of (19.98). Evidently, any arbitrary function Q1 : R" + R of constants ci ( i  = 1, . . . , n )  
is a constant too, that is, 

Q (q, . . . , c,) = const 1 (19.102) 

Without the loss of a generality we can take const = 0, so the equation (19.102) becomes 

I @ ( C I , .  . . , c,) = 0 1 (19.103) 

Theorem 19.10. (Cauchy's method of characteristics) If the first integrals (19.74) 
+i (x, z )  of the system (19.98) are independent, that is, 

(1 9.104) 

then the solution z = z (x) of (19.97) can be found from the algebraic equation 

1 Q (91 (x, z )  , . . . t 9, (x, z ) )  = 0 

where Q1 . . . , 9,) is an arbitrary function of its arguments. 

(19.105) 
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ProoJ: By Theorem 16.8 on an implicit function, the systems (19.74) can be uniquely 
resolved with respect to x if (19.104) is fulfilled. So, the obtained functions 
(19.100) satisfy (19.99) and, hence, by Lemma 19.13 it follows that z = z (x) 
satisfies (19.95). 0 

Example 19.3. Let us integrate the equation 

The system (19.97) 

dx,, d z  
~ - . . .  = - - - - - d x  I 

xi xn PZ 

has the following first integrals 

P xi - z = c i  ( i  = 1, . . . ,  n )  

So, z = z (x) can be found from the algebraic equation 

@ (xp - z , .  . . , x; - 2 )  = 0 

where Q, . . . , $,,) is an arbitrary function, for example, 

n n 

@ ($1 3 . . . ,  qn) := C hi +i 3 C hi j~ o 
i=l  i = l  

which gives 

/ n  \ - ’  n 

19.3 CarathCodory’s type ODE 

19.3.1 Main definitions 

The differential equation 

( 1 9.1 06) 

(1 9.107) 

in the regular case (with the continuous right-hand side in both variables) is known to be 
equivalent to the integral equation 

( 1 9.1 08) 
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Definition 19.7. I f  the function f ( t ,  x) is discontinuous in t and continuous in x E R", 
then the functions x ( t ) ,  satisfiing the integral equation (19.108) where the integral is 
understood in the Lebesgue sense, is called the solution of ODE (19.107). 

The material presented below follows Filippov (1988). 
Let us define more exactly the conditions which the function f ( t ,  x) should satisfy. 

Condition 19.1. (Carathhodory's conditions) In the domain D of the ( t ,  x)-space let 
the following conditions be fulfilled: 

I .  the function f ( t ,  x) be defined and continuous in x for almost all t;  
2. the function f '  ( t ,  x) be measurable (see (15.97)) in t for each x; 
3. 

where the function m ( t )  is summable (integrable in the Lebesgue sense) on eachfinite 
interval (i j ' t  is unbounded in the domain D). 

Definition 19.8. 

(a)  Equation (19.107), where the function f ( t ,  x) satisfies conditions 19.1, is called 

(b) A function x ( t ) ,  defined on an open or closed interval I ,  is called a solution of 
Carathkodory 's type ODE. 

Curathe'odory's tjpe ODE ij' 

it is absolutely continuous on each interval [a, j3] E I ;  
it satisfies almost everywhere this equation or, which under conditions 19.1 is the 
same thing, satisfies the integral equation (19.108). 

19.3.2 Existence and uniqueness theorems 

Theorem 19.11. (Filippov 1988) For t E [to, to + a ]  and x : Ilx - X O I I  5 b let thefunc- 
tion f ( t ,  x) satisfy Carathe'odoty's conditions 19.1. Then on a closed interval [to, to + d ]  
there exists a solution of Cauchy 's problem 

In this case one can take an arbitrary number d such that 

0 < d 5 a ,  cp (to + d )  i b where cp ( t )  := 1 m ( s )  ds 
s=to 

( 19.1 1 0) 

(19.1 11) 

( m  ( t )  isfrom (19.109)). 
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Prooj For integer k 2 1 define h := d / k ,  and on the intervals [to + i h ,  to + ( i  + 1) h]  
(i = 1,2 ,  . . . , k )  construct iteratively an approximate solution xk ( t )  as 

(for any initial approximation xo(s), for example, xo (s) = const). Remember that if 
f ( f ,  k)  satisfies CarathCodory's conditions 19.1 and x ( t )  is measurable on [a ,  b ] ,  then the 
composite function f ( t ,  x ( t ) )  is summable (integrable in the Lebesgue sense) on [a ,  b ] .  
In view of this and by the condition (19.1 11) we obtain /(xk ( t )  - xo 1 1  5 b. Moreover, for 
any a ,  ,8 : to 5 a < ,8 5 to + d 

(19.1 13) 

The function cp ( t )  is continuous on the closed interval [to, to + d ]  and therefore uniformly 
continuous. Hence, for any E > 0 there exists a 6 = 6 ( E )  such that for all IB - a1 < 6 the 
right-hand side of (19.1 13) is less than E .  Therefore, the functions xk ( t )  are equicontinuous 
(see (14.18)) and uniformly bounded (see (14.17)). Let us choose (by the Arzela's theorem 
14.16) from them a uniformly convergent subsequence having a limit x ( t ) .  Since 

and the first term on the right-hand side is less than E for h = d /  k < 6 ,  it follows that 
xk (s - h )  tends to x ( s ) ,  by the chosen subsequence. In view of continuity of f ( t ,  x) 
in x ,  and the estimate I( f ( t ,  x)ll 5 m ( t )  (19.109) one can pass to the limit under 
the integral sign in (19.112). Therefore, we conclude that the limiting function x ( t )  
satisfies equation (19.108) and, hence, it is a solution of the problem (19.1 10). Theorem is 
proven. 0 

Corollary 19.12. If Carathe'odoiy's conditions 19.1 are satisfied for to - a 5 t 5 to and 
IIx - XO//  5 6, then a solution exists on the closed interval [to - d ,  to] where d satisfies 
(19.1 11). 

Prooj The case t 5 to is reduced to the case t 2 to by the simple substitution of 
( - t )  for t .  0 

Corollary 19.13. Let ( to ,  xo )  E D C &ti+" and let there exist a summable function 1 ( t )  
(in fact, this is a Lipschitz constant) such that for any two points ( t ,  x) and ( t ,  y )  of V 

(19.114) 

Then in the domain D there exists at most one solution of the problem (19.110). 
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Proqf. Using (19.1 14) it is sufficient to check CarathCodory’s conditions 19.1. 0 

Theorem 19.12. (on the uniqueness) If in Corollary 19.13 instead of (19.114) there is 
f~iljilled the inequality 

then in the domain 2) there exists the unique solution of the problem (19.110). 

Pro08 Let x ( t )  and y ( t )  be two solutions of (19.1 lo). Define for to 5 t 5 tl the function 
z ( t )  ;= x ( t )  - y ( t )  for which it follows that 

d 
dt  

almost everywhere. By (19.115) we obtain - 1 1 ~ 1 ) ~  5 1 ( t )  llz11’ and, hence, 
d 
- (ePL@’ 1 1 ~ 1 1 ~ )  5 0 where L ( t )  = S,:, 1 ( s )  ds .  Thus, the absolutely continuous func- 
dt 
tion (i.e., it is a Lebesgue integral of some other function) ePL(‘ )  llz11* does not increase, 
and it follows from z ( t o )  = 0 that z ( t )  = 0 for any t 2 to. So, the uniqueness is 
proven. 

Remark 19.7. The uniqueness of the solution of the problem (19.110) implies that if 
there exists two solutions of this problem, the graphs of which lie in the domain ’D, then 
these solutions coincide on the common part of their interval of existence. 

Remark 19.8. Since the condition (19.1 14) implies the inequality (19.115) (this follows 
from the Cauchy-Bounyakoski-Schwarz inequality), thus the uniqueness may be consid- 
ered to be proven ,for t 2 to also under the condition (19.114). 

19.3.3 Variable structure and singular perturbed ODE 

19.3.3.1 Variable structure ODE 
In fact, if by the structure of ODE (19.107) .i ( t )  = f ( t ,  x ( t ) )  we will understand 

the function f ( t ,  x ) ,  then evidently any nonstationary system may be considered as 
a dynamic system with a variable structure, since for different tl # t2 we will have 
, f  ( t l ,  x) f f ( t 2 ,  x ) .  From this point of view such treatment seems to be naive and has 
no correct mathematical sense. But if we consider the special class of ODE (19.107) 
given by 

(19.116) 
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where x (.) is the characteristic function of the corresponding event, namely, 

1 if t E l t i - 1 ,  ti) 
0 if t 4 [ti-l, t i ) ’  

ti-1 <ti  x ( t  E [ti-I, t i ) )  := (19.1 17) 

then ODE (19.116) can also be treated as ODE with “jumping” parameters (coefficients). 
Evidently, if f’ (x) are continuous on a compact D and, hence, are bounded, that is, 

max max Ilf‘ (x) l l  5 M 
i = 1  ...., N X E D  

(19.1 18) 

then the third Carathtodory ’s condition (19.109) will be fulfilled on the time interval 
[a, B ] ,  since 

( 1 9.1 1 9) 

Therefore, such ODE equation (19.1 16) has at most one solution. If, in addition, for each 
i = 1, . . . , N the Lipschitz condition holds, i.e., 

then, as it follows from Theorem 19.12, this equation has a unique solution. 

19.3.3.2 Singular perturbed ODE 
Consider the following ODE containing a singular type of perturbation: 

where 6 ( t  - ti) is the “Dirac delta-function’’ (15.128), pl is a 
continuous function. The ODE (19.120) must be understood as 

The last term, by the property (15.134), can be represented as 

t N N 

( 1 9.1 20) 

real constant and f is a 
the integral equation 

(19.121) 
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where x ( t  2 t i )  is the “Heavyside’s (step) function” defined by (19.117). Let us apply 
the following state transformation: 

N 

x ( t )  := x ( t )  + c p i x  ( t  > ti) 
i=l 

New variable X ( t )  satisfies (with po := 0) the following ODE: 

(1 9.122) 

where 

p (x ( t ) )  := f x ( t )  - cp; ( ) 
Claim 19.1. This means that the perturbed ODE (19.120) are equivalent to a variable 
structure ODE (19.116). 

19.4 ODE with DRHS 

In this section we will follow Utkin (1992), Filippov (1988) and Geligle et al. (1978). 

19.4.1 Why ODE with DRHS are important in control theory 

Here we will present some motivating consideration justifying our further study of 
ODE with DRHS. Let us start with the simplest scalar case dealing with the following 
standard ODE which is affine (linear) on control: 

I i ( t )  = .f (x ( t ) )  + u ( t ) ,  x ( t )  = xo is given] (19.123) 

where x ( t ) ,  u ( t )  E JR are interpreted here as the state of the system (19.123) and, 
respectively, the control action applied to it at time t E [0, TI.  The function f : R --+ R 
is a Lipschitz function satisfying the, so-called, Lipschitz condition, that is, for any 
x, x‘ E JR 

/ f ( x )  - f (x’)j 5 L jx - - ’ I ,  0 5 L -= 00 ( 1 9.1 24) 
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u ( t )  := u (x ( t ) )  

Problem 19.1. Let 11s try to stabilize this system at the point x* = 0 using the, so-called, 
feedback control 

(1 9.125) 

considering the following informative situations 
the complete information case when the function f (x) is exactly known: 
the incomplete information case when it is only known that the function f (x) is 
bounded as 

(this inequality is assumed to be valid for any x E R). 

There are two possibilities: 

1. use any continuous control, namely, take II : R + R as a continuous function, 
i.e., u E C ;  

2. use a discontinuous control which will be defined below. 

19.4. I .  I The complete information case 

should satisfy the following identity 
Evidently, at the stationary point x* = 0 any continuous control u ( t )  := LL (x ( t ) )  

f (0) + 11 (0) = 0 (19.127) 

For example, this property may be fulfilled if we use the control u (x) containing the 
nonlinear compensating term 

and the linear correction term 

that is, if 

The application of this control (19.128) to the system (19.123) implies that 

X ( t )  = -kx ( t )  

and, as the result, one gets 

x ( t )  = xo exp ( -k t )  + 0 
t+O 

(19.128) 

So, this continuous control (19.128) in the complete information case solves the stabi- 
lization problem (19.1). 
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19.4.1.2 The incomplete information case 
Several informative situations may be considered. 

1. f ( x )  is unknown, but a priori it is known that f (0) = 0. In this situation the 
Lipschitz condition (19.124) is transformed into 

which for the Lyapunov function candidate V(x) = x2/2 implies 

Since f (x) is unknown let us select u (x) in (19.128) as 

( 1 9.129) 

( 1 9.1 30) 

The use of (19.130) in (19.129) leads to the following identity: 

i.(x ( t ) )  I Lx2 ( t )  + x ( t )  u (x ( t ) )  = ( L  - k )  x 2  ( t )  = -2 ( k  - L )  V(x ( t ) )  

Selecting k big enough (this method is known as the “high-gain control”) we get 

This means that in the considered informative situation the “high-gain control” solves 
the stabilization problem. 

2.  f (x) is unknown and it is admissible that f (0) f 0. In this situation the condition 
(19.127) never can be fulfilled since we do not know exactly the value f (0) and, 
hence, neither the control (19.128) nor the control (19.130) can be applied. Let us try 
to apply a discontinuous control, namely, let us take u (x) in the form of the, so-called, 
sliding-mode (or relay) control: 

LI (x) = -k, sign(x), k, > 0 

where 

(19.13 1) 

if x > O  

E [-1, 11 if x = 0 
( 19.132) 
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Fig. 19.1. The signum function. 

Taking 

k, = k ( x  ( t ) )  := k" + k' Ix (t)l 

kO > fo, k' > f f  

we have 

Hence. 

which leads to the following identity 

or, equivalently, 

(19.133) 
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This means that the, so-called, “reaching phase”, during which the system (19.123) 
controlled by the sliding-mode algorithm (19.131)-( 19.133) reaches the origin, is 
equal to 

rn k0 - fo  
(19.134) 

Conclusion 19.1. It follows from the considerations above that the discontinuous (in this 
case, sliding-mode) control (19.13 1)-( 19.133) can stabilize the class of the dynamic 
systems (19.123), (19.124), (19.126) in finite time (19.134) without the exact knowledge 
of its model. Besides, the reaching phase may be done as small as you wish by the 
simple selection of the gain parameter ko in (19.134). In other words, the discontinu- 
ous control (19.131)-(19.133) is robust with respect to the presence of unmodeled 
dynamics in (19.123) which means that it is capable of stabilizing a wide class of 
“blacwgray-box” systems. 

Remark 19.9. Evidently, using such discontinuous control, the trajectories of the con- 
trolled system cannot stay in the stationary point x* = 0 since it arrives at it in finite 
time but with a nonzero rate, namely, with i ( t )  such that 

f ( 0 )  + ko if x ( t )  + +O { f (0)  - kO if x ( t )  --+ -0 i ( t )  = 

which provokes the, so-called, “chattering effect” (see Fig. 19.2). Simple engineering 
considerations show that some sort of smoothing (or low-pass filtering) should be applied 
to keep dynamics close to the stationaq point x* = 0. 

Remark 19.10. Notice that when x ( t )  = x* = 0 we only know that 

/ i  ( t )  E [ f ( O )  - k”, f ( 0 )  + k o ]  1 (19.135) 

This means that we deal with a differential inclusion (not an equation) (19.135). So, we 
need to define what does it mean mathematically correctly a solution of a differential 
inclusion and what is it itself: 

All these questions, arising in the remarks above, will be considered below in detail 
and be illustrated by the corresponding examples and figures. 

“ t  

Fig. 19.2. The “chattering effect”. 
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19.4.2 ODE with DRHS and differential inclusions 

19.4.2.1 General requirements to a solution 
As it is well known, a solution of the differential equation 

with a continuous right-hand side is a function x ( t )  which has a derivative and satisfies 
(19.136) everywhere on a given interval. This definition is not, however, valid for DE 
with DRHS since in some points of discontinuity the derivative of x ( t )  does not exist. 
That’s why the consideration of DE with DRHS requires a generalization of the concept 
of a solution. Anyway, such a generalized concept should necessarily meet the following 
requirements : 

For differential equations with a continuous right-hand side the definition of a solution 
must be equivalent to the usual (standard) one. 
For the equation i ( t )  = f ( t )  the solution should be the functions x ( t )  = f ( t )  d t  + c 
only. 
For any initial data x (to) = xInlt within a given region the solution x ( t )  should exist 
(at least locally) for any t > to and admit the possibility to be continued up to the 
boundary of this region or up to infinity (when ( t .  x )  -+ co). 
The limit of a uniformly convergent sequence of solutions should be a solution too. 
Under the commonly used changes of variables a solution must be transformed into a 
solution. 

19.4.2.2 The definition of a solution 
Definition 19.9. A vector-valued function f ( t ,  x), defined by a mapping f : IR x IR” + 
RP, is said to be piecewise continuous in a finite domain 9 C R”+’ if G consists of a 
finite number of a domain Gi ( i  = 1, . . . , I ) ,  i.e., 

G = i J G ,  
1 = 1  

such that in each of them the function f ( t ,  x )  is continuous up to the boundary 

M i  := Gi\Gi ( i  = 1 , .  . . , I )  (19.137) 

of a measure zero. 

The most frequent case is the one where the set 

i = l  

of all discontinuity points consists of a finite number of hypersurfaces 

o = s k ( X ) € C 1 ,  k = l ,  . . . ,  m 

where & (x) is a smooth function. 

co
nt

ro
len

gin
ee

rs
.ir



Ordinary differential equations 

i ( t )  E 3- ( t ,  n ( t ) )  

54 1 

(19.139) 

Definition 19.10. The set M defined as 

1 M = (x E R" I s (x) = ( S ,  (x) , . . . ,  s, (x))T = 0) I (1 9.138) 

is called a manifold in R". It is referred to as a smooth manifold if S k  ( x )  E C ' ,  
k =  I ,  . . . ,  m. 

Now we are ready to formulate the main definition of this section. 

Definition 19.11. (A solution in Filippov's sense) A solution x ( t )  on a time interval 
[to,  t f ]  of ODE X ( t )  = f ( t ,  x ( t ) )  with DRHS in Filippov's sense is called a solution of 
the differential inclusion 

that is, an absolutely continuous on [to,  t f ]  function x ( t )  (which can be represented as a 
Lebesgue integral of another function) satishing (19.139) almost everywhere on [to, t f ] ,  
where the set F ( t .  x )  is the smallest convex closed set containing all limit values of the 
vector-function f ( t ,  x*) ,jbr ( t ,  x*) 6 M ,  x* + x, t = const. 

Remark 19.11. The set 3- ( t ,  x )  
1. consists of one poitzt f ( t ,  x) at points of continuity of the function f ( t ,  x); 
2. is a segment (a  conve.x polygon, or polyhedron), which in the case when ( t ,  x )  E M ,  

(19.137) has the vertices 

fi ( t ,  x )  := lim f ( t ,  x*) 
(r,x*)tG,, x * + x  

(19.140) 

All points ,fi ( t ,  x) are contained in F ( t ,  x), hut it is not obligatory that all of them 
are vertices. 

Example 19.4. For the scalar differential inclusion 

i ( t )  E -sign ( x  ( t ) )  

the set F ( t ,  x) is as follows (see Fig. 19.3): 

1 T 

Fig. 19.3. The right-hand side of the differential inclusion i, = - s ign  (x,). 
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1. F ( t , x ) = - 1  if x > 0 ;  

2. F ( t , x )  = 1 if x < 0; 

3. F ( t , x )  = [ - I ,  11 (f- x =o. 

19.4.2.3 Semi-continuous sets as functions 
Definition 19.12. A multi-valued function (or a set) F = 3 ( t ,  x) ( t  E R, x E R*) is 
said to he 

a semi-continuous in the point (to, xg) if for any E > 0 there exists 6 = 6 (to, XO, E )  

such that the inclusion 

implies 

( 1 9.1 42) 

a continuous in the point (to, xo) if it is semi-continuous and, additionally, for any 
E > 0 there exists 6 = 6 (to, xo, E )  such that the inclusion 

implies 

(19.143) 

Example 19.5. Consider the multi-valuedfinctions F ( t ,  x) depicted at Fig. 19.4. 

Here thefinctions (sets) 3 ( t ,  x ) ,  corresponding to theplots (I)-(#), are semi-continuous. 

Fig. 19.4. Multi-valued functions. 

co
nt

ro
len

gin
ee

rs
.ir



Ordinary differential equations 543 

19.4.2.4 Theorem on the local existence of solution 

considerations. 
First, let us formulate some useful result which will be applied in the following 

Lemma 19.14. r f x  ( t )  is absolutely continuous on the interval t E [a, B ]  and within this 
infeewal 1 1 . i  (t)II 5 c, then 

1 
- (xp - xa)  c Conu u i ( t )  1 8 - a  u.a. I C [ C Y , , ~ ]  

(19.145) 

where Conv is a convex closed set containing U .i ( t )  for almost all t E [a, B ] .  

Proof. By the definition of the Lebesgue integral 

1 
i ( t )  dt  = limsk B - a  k - t x  

t=a 

where 

h k 

are Lebesgue sums of the integral above. But s k  E Conu U i ( t ) .  Hence, the same fact 

0 
a.a t e [ a , p ]  

is valid for the limit vectors lim sk which proves the lemma. 
k + x  

Theorem 19.13. (on the local existence) Suppose that 

A l .  a multi-valued function (set) F ( t ,  x )  is a semi-continuous at each point 

A2. the set .F ( t ,  x )  is a convex compact and sup IlylI = c whenever 

Then for any t such that It - to1 5 t := p l c  there exists an absolutely continuous 
function x ( t )  (maybe not unique) such that 

i ( t )  E 3 ( t ,  x), x ( to)  = xo 

that is, the ODE i ( t )  = f ( t ,  x ( t ) )  with DRHS has a local solution in Filippov’s sense 
(see Definition 19.11). 
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t 
Proof. Divide the interval [to - t, to + t] into 2m-parts t,'"' .- .- to + j -  m 
(i  = 0. f l ,  . . . i rn) and construct the, so-called, partially linear Euler's curves 

By the assumption (A2) it follows that x,,~ ( t )  is uniformly bounded and continuous 
on Dy,p  (to, xo). Then, by ArzelB's theorem 14.16 there exists a subsequence { x , , ~  ( t ) }  
which uniformly converges to some vector function n ( t ) .  This limit evidently has a 
Lipschitz constant on Dy,o ( to ,  xg) and satisfies the initial condition x (to) = xo. In view 
of Lemma 19.14, for any h > 0 we have 

C Con u 6 f7""" (A) := Ak 
a a  i ~ [ i o - k . t o + + + h ]  I=-ini 

Since F ( t ,  x) is semi-continuous, it follows that supinf IIx - yll + 0 whenever k -+ 00 

(here A := Conv U~~-,, f ( A ,  A,)). The convexity of F ( t ,  x) implies also that 

sup IIx - y 11 + 0 when 11 + 0 which. together with previous property, proves 

the theorem. 0 

Y€AI'E*  

a a  h e [ t , t + h ]  

inf 
r e A  ) . E 3 ( f 3 X )  

Remark 19.12. By the same reasons as for the case of regular ODE, we may conclude 
that the solution of the diflerential inclusion (if it exists) is continuously dependent on to 
and xo. 

19.4.3 Sliding mode control 

19.4.3.1 Sliding mode su$ace 

surface S given by the equation 
Consider the special case where the function f (t, x )  is discontinuous on a smooth 

I s ( x )  = o ,  s : I W n +  R, s(.) E c']  (19.146) 

The surface separates its neighborhood (in Rn) into domains 4+ and B-. For t = const 
and for the point x* approaching the point x E S from the domains G+ and 4- let us 
suppose that the function f ( t ,  x * )  has the following limits: 

lim 

lim 

f ( t ,  x * )  = f -  ( t ,  x) 

f ( t ,  x*) = f + ( I ,  x )  
( r , x * ) E Q - .  x*+x  

( f . X . ) € G + ,  x *+x  

(19.147) 

Then by Filippov's definition, 3 ( t ,  x )  is a linear segment joining the endpoints of the 
vectors f- ( t ,  x) and f+ ( t ,  x). Two situations are possible. 

co
nt

ro
len

gin
ee

rs
.ir



Ordinary differential equutions 545 

If for t E ( t l ,  t 2 )  this segment lies on one side of the plane P tangent to the surface S 
at the point x, the solutions for these t pass from one side of the surface S to the other 
one (see Fig. 19.5 depicted at the point x = 0); 
If this segment intersects the plane P ,  the intersection point is the endpoint of the 
vector f’ (r. x) which defines the velocity of the motion 

along the surface S in R” (see Fig. 19.6 depicted at the point x = 0). Such a solution, 
lying on S for all t E (t,  , t 2 ) ,  is often called a sliding motion (or mode). Defining the 
projections of the vectors f - ( t ,  x) and f + ( t ,  x) to the surface S (Vs (x) # 0) as 

one can find that when p -  ( t ,  x) < 0 and pf ( t ,  x) > 0 

f O ( f 9  x) = a f  - ( t ,  x) + (1 - a) f +  ( t ,  x) 

Here a can be easily found from the equation 

I 
I 

f +\ I 

Fig. 19.5. The sliding surface and the rate vector field at the point x = 0 

Fig. 19.6. The velocity of the motion. 
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or, equivalently, 

0 = (Vs(x), .f - ( t ,  x) + (1 - a )  f+ ( t ,  x)) 

= U P -  ( t ,  x) + (1 - a )  p +  ( t ,  x) 

which implies 

Finally, we obtain that 

( 19.149) 

19.4.3.2 Sliding mode surjiace as a desired dynamic 
Let us consider in this subsection several examples demonstrating that a desired 

dynamic behavior of a controlled system may be expressed not only in the traditional 
manner, using some cost (or payoff) functionals as possible performance indices, but 
also representing a nominal (desired) dynamic in the form of a surface (or manifold) in 
a space of coordinates. 

First-order tracking system: consider a first-order system given by the following ODE: 

( 1 9.1 50) 

where u ( t )  is a control action and f : RxR -+ R is supposed to be bounded, that is, 

Assume that the desired dynamics (signal), which should be tracked, is given by a smooth 
function r ( t )  (1; (t)I 5 p) ,  such that the tracking error e, is (see Fig. 19.7) 

e ( t )  := x ( t )  - r ( t )  

Select a desired surface s as follows 

(19.15 1) 

which exactly corresponds to an “ideal tracking” process. Then, designing the control 
u ( t )  as 

u ( t )  := -k sign (e  ( t ) )  
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controller plant 

547 

* 

Fig. 19.8. The finite time error cancellation 

we derive that 

2 ( t )  = f ( t ,  x ( t ) )  - i ( t )  - k sign (e ( t ) )  

and, hence, 

So, taking k > f + + p implies the finite time convergence of e, (with the reaching phase 

t f  = to the surface (19.151) (see Figs. 19.8 and 19.9). 

Stabilization of a second order relay system: let us consider a second order relay system 
given by the following ODE 

2 ( t )  + azx ( t )  + U l X  ( t )  = u ( t )  + 6 ( t )  

u ( t )  = -k sign (S ( t ) )  - the relay-control 

S ( t )  := x ( t )  + c x ( t ) ,  c > 0 

It ( t ) \  5 <+ - a bounded unknown disturbance 

(19.152) 
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r r, x 

\ 

Fig. 19.9. The finite time tracking. 

\ 

Fig. 19.10. The sliding motion on the sliding surface s ( x )  = .x2 + cx, 

We may rewrite the dynamic (XI := x) as 

i, ( t )  = .X? ( t )  

i2 ( t )  = -alxi ( t )  - a2x2 ( t )  + u ( t )  + $ ( t )  

u ( t )  = -ksign (x2 ( t )  + CXI ( t ) )  

Here the sliding sugace is 

( 19.1 53) 

1 s (..) = x2 + CXI j 

So, the sliding motion, corresponding to the dynamics S ( t )  := i ( t )  + cx ( t )  = 0, is given 
by (see Fig. 19.10) 

x ( t )  = xoe-" 

Let us introduce the following Lyapunov function candidate: 
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for which the following property holds: 

if we take 

jk  = lull 1x1 (t)I + ( c +  b 2 1 )  1x2 (t)I + c +  + P ,  P > 01 (19.154) 

This implies V (s) 5 - p , / m ,  and, hence, the reaching time t f  (see Fig. 19.9) is 

(19.155) 

Sliding surface and a related LQ-problem: consider a linear multi-dimensional plant 
given by the following ODE 

i ( t )  = A ( t )  x ( t )  + B ( t )  u ( t )  + t ( t )  

xg is given, x ( t )  E R", u ( t )  E R' 
BT ( t )  B ( t )  > 0 rank [ B  ( t ) ]  = r 

c ( t )  

for any t E [t , ,  t l ] 

is known as external perturbation 

( 19.156) 

A sliding mode is said to be taking place in this system (19.156) if there exists a finite 
reaching time t ,T,  such that the solution x ( t )  satisfies 

1 0  (x, t )  = o for all t 2 t ,  I ( 19.157) 

where 0 (x, t )  : R" x R+ + R' is a sliding function and (21.65) defines a sliding sur$uce 
in R"+l. For each t l  > 0 the quality of the system (19.156) motion in the sliding surface 
(21.65) is characterized by the pegormance index (Utkin (1992)) 

(19.158) 

Below we will show that the system motion in the sliding surface (21.65) does not depend 
on the control function u ,  that's why (19.158) is a functional of x and 0 (x, t )  only. Let 
us try to solve the following problem. 
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Problem formulation: for the given linear system (19.156) and tl > 0 define the optimal 
sliding function cr = cr (x, t )  (21.65) providing the optimization in the sense of (19.158) 
in the sliding mode, that is, 

( 19.159) 

where E is the set of the admissible smooth (differentiable on all arguments) sliding 
functions CT = cr (x, , t ) .  So, we wish to minimize the performance index (19.158) varying 
(optimizing) the sliding surface E S. 

Introduce a new state vector z defined by 

z = T ( t ) x  ( 1 9.1 60) 

where the linear nonsingular transformations T ( t )  are given by 

(19.161) 

( t )  E R'"' and B2 ( t )  E R'"' represent the matrices B ( t )  in the form H~~~ ~ m - r ) x ( n - r )  

B ( t )  = [ B1 (''1 det [B2 ( t ) ]  f 0 V t L 0 
B2 ( t )  ' 

(1 9.162) 

Applying (19.162) to the system (19.156), we obtain (below we will omit the time 
dependence) 

A l l Z l  + A 1 2 2 2  

= (s:) = ( n21zI + A2zz2) + (il) + (i;) 
where z I  E R"-', z 2  E R' and 

(19.163) 

( 1 9.1 64) 

Using the operator T- I ,  it follows x = T- 'z  and, hence, the performance index (19.158) 
in new variables z may be rewritten as 

(19.165) 
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and the sliding function cr = cr (x, t )  becomes 

cr = I7 ( P z ,  t )  := a ( z ,  t )  ( 19,166) 

Remark 19.13. The matrices 
Otherwise, they can be symmetrized as follows: 

Q12 ,  Q21 and Q22 are supposed to be symmetric. 

f$ 

Q;l l  := (ell + Q:I)/2. Q22 := (Qn + Q ; 4 2  

el* = ( 8 1 2  + Q:2 + Q2l  + Q & / 2  

Assumption (Al): we will look for the sliding function (19.166) in the form 

( 19.167) 

If the sliding mode exists for the system (19.163) in the sliding surface a ( z ,  t )  = 0 under 
assumption (Al),  then for all t 2 ts the corresponding sliding mode dynamics, driven by 
the unmatched disturbance c, ( t ) ,  are given by 

il = ' 4 1 , Z l  + i 1 2 z 2  + $1 

z 2  = -a0 ( Z l ,  t )  
(1 9.169) 

with the initial conditions z1 (f,) = (Tx Defining z2 as a virtual control, that is, 

(1 9.1 70) u := z* = - 6 0  ( Z l ,  t )  

the system (19.169) may be rewritten as 

il = '411z1 + i l * U  + $1 (19.171) 

and the performance index (19.165) becomes 

tl 

Jt,.r, = 1 1 [ ( i l ,  Q Y I Z l )  + 2 ( Z l l  Q:*u) + (w S a ) ]  dt  (1 9.172) 
2 

f, 

In view of (1 9.17 1) and (19.172), the sliding surface design problem (1 9.159) is reduced 
to the following one: 
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But this is the standard LQ-optimal control problem. This means that the optimal control 
UJ = v* t ) ,  optimizing the cost functional (19.172), defines the optimal sliding 
surface o* (x, t )  (see (19.171) and (19.168)) in the following manner: 

v* ( z ,  I, t )  = -60 (Z I ,  t )  

ii ( z ,  t )  = z2 - v* t )  = 0 

or, equivalently, 

(1 9.174) 

19.4.3.3 Equivalent control method 
Equivalent control construction: here a formal procedure will be described to obtain 
sliding equations along the intersection of sets of discontinuity for a nonlinear system 
given by 

.i ( t )  = f ( t ,  x ( t ) ,  24 ( t ) )  

x ( t )  E R”, u ( t )  E R‘ 

and the manifold M (19.138) defined as 

1 s (x) = (S, (x) , . . . , S” (x))T = 0 

(19.175) 

( 19.176) 

representing an intersection of m submanifolds Si (x) ( i  = I ,  . . . , m )  

Definition 19.13. Hereinafter the control u ( t )  will be referred to (according to V. Utkin) 
as the equivalent control u(eq) ( t )  in the system (1 9.175) i f  it satisfies the equation 

S (X ( t ) )  = G (X ( t ) ) i  ( t )  = G (x ( t ) )  f ( t ,  x ( t ) .  u ( t ) )  = 0 

a 
G (X ( t ) )  E R””“, G (X ( t ) )  = S S  ( X  ( t ) )  

(19.177) 

It is quite obvious that, by virtue of the condition (19.177), a motion starting at 
S (x ( to))  = 0 in time to will proceed along the trajectories 

1 i ( t )  = f ( t ,  x ( t ) ,  u(eq )  ( t ) )  I 
which lies on the manifold S ( x )  = 0. 

(19.178) 

Definition 19.14. The above procedure is called the equivalent control method (Utkin 
1992; Utkin et al. 1999) and equation (19.178), obtained as a result of applying this 
method, will be regarded as the sliding mode equation describing the motion on the 
manifold S ( x )  = 0. 
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From the geometric viewpoint, the equivalent control method implies a replacement 
of the undefined discontinued control on the discontinuity boundary with a continuous 
control which directs the velocity vector in the system state space along the discontinuity 
surface intersection. In other words, it realizes the velocity f "  ( t ,  x ( t ) ,  ( I ) )  (19.149) 
exactly corresponding to Filippov's definition of the differential inclusion in the point 

Consider now the equivalent control procedure for an important particular case of a 
nonlinear system which is affine on u ,  the right-hand side of whose differential equation 
is a linear function of the control, that is, 

x = x ( t ) .  

(19.179) 

where f : R x KY --+ R" and B : R x R" + R""' are all argument continuous vector 
and matrix, respectively, and 11 ( t )  E Rr is a control action. The corresponding equivalent 
control should satisfy (19.177), namely, 

Assuming that the matrix G (x ( t ) )  B ( t ,  x ( t ) )  is nonsingular for all x ( t )  and t ,  one can 
find the equivalent control from (19.180) as 

Substitution of this control into (19.179) yields the following ODE: 

which describes the sliding mode motion on the manifold S (x) = 0. Below the corre- 
sponding trajectories in (19.182) will be referred to as x ( t )  = x(") ( t ) .  

Remark 19.14. r f  we deal with an uncertain dynamic model (19.1 75) or, particularly, 
with ( I  9.1 79), then the equivalent control ~ ( ' 4 )  ( t )  is not physically realizable. 

Below we will show that ~ ( " 4 )  ( t )  may be successfully approximated (in some sense) 
by the output of the first-order low-pass filter with the input equal to the corresponding 
sliding mode control. 

co
nt

ro
len

gin
ee

rs
.ir



554 Advanced Mathematical Tools ,for Automatic Control Engineerr: Volume 1 

u ( t )  = u(s1) ( t )  

dC1) ( t )  := -k, [G (x ( t ) )  B ( r ,  x ( t ) ) ] - '  sign (S  (x ( t ) ) )  

kf > 0, sign (S (x)) := (sign (SI (x)) , . . . , sign (S, ( x ) ) ) ~  

(19.183) 

we obtain 

m 
which, in view of the inequality, IJS/I 2 C IS i / ,  implies 

i=l  

(19.185) 

Remark 19.15. Ifthe sliding motion on the manifold S(x) = 0 is stable then there exists 
a constant ko E (0, 00) such that 
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and, hence, k ,  (19.184) may be selected as a constant 

1 k ,  := k = ko + p ~ ( 19.1 86) 

Low-pass filtering: to minimize the influence of the chattering effect arising after the 
reaching phase let us consider the property of the signal obtained as an output of a 
low-pass filter with the input equal to the sliding mode control, that is, 

(19.187) 

where u("') ( t )  is given by (19.183). The next simple lemma states the relation between 
the, so-called, averaged control u("') ( t ) ,  which is the filtered output, and the input signal 
U(.T'' ( t ) .  

Lemma 19.15. I f  

g+ 2 IlGB ( t ,  x (t))/I := A,!& ([B' ( t ,  x ( t ) )  (3'1 [GB ( l ,  x ( t )> l )  

([BT ( t ,  x ( t ) )  G T l  [GB ( t ,  x (t))l) 2 x L r ,  M > 0 
( 19.1 88) 

L 

then for  the low-pass filter (19.187) the following properties hold: 
1. The difference between the input and output signals are bounded, ie . ,  

(19.189) 

2. The amplitude-frequency characteristic A (w) of the filter is 

( 1 9.1 90) 

whose plot is depicted at Fig. 19.11 for  p = 0.01, where y = A (w)  and x = w. co
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0 2.5 5 7.5 10 

Fig. 19.1 1. The amplitude-phase characteristic of the low-pass filter 

and by (19.187) 

\=o 
(19.191) 

r 1 

which implies 

Hence, (19.189) holds. 
2 .  Applying the Fourier transformation to (19.187) leads to the following identity: 

or, equivalently, 
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So, the amplitude-frequency characteristic 

A (w)  := d [ R e  U(Oc') ( j w ) I 2  + [Im U@') ( j w ) ] *  

of the filter (19.187) is as in (19.190). Lemma is proven. 

19.4.3.4 The realizable approximation of the equivalent control 
By (19.191) u~"" may be represented as ur(0') = sslo u!"!d ( e d - ' ) / " ) .  Consider 

the dynamics xI(uL! of the system (19.175) controlled by U P ' )  (19.191) at two time intervals: 
during the reaching phase and during the sliding mode regime. 

1.  Reaching phase ( t  E [0, t f ] ) .  Here the integration by part implies 

Supposing that ujs" (19.183) is bounded almost everywhere, i.e., lizi:\"il 5 d.  The 
above identity leads to the following estimation: 

\ =O 

So, ui"'') may be represented as 

(19.192) 

where & may be done as small as you wish taking ,u tending to zero, since 

l l t f  II 5 ,ud + 0 (e-"") 

As a result, the trajectories xf("' and xt(U") will differ slightly. Indeed, 

i F i i  = f (t, xi,')) - B (t. x:%')) uj") 

x/ ' ( a t ' )  = f ( t ,  .;"'i) - B ( t ,  xyL' ) )  
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Defining 

B = B ( f .  x,@"'). G = G(xt(U")), f" = f (f, x:")) 

and omitting the arguments for simplicity, the last equation may be represented as 

i r ( \ / )  = f - Buj\/ ' ,  i t ( a b )  = f" - B u y  

Hence by (19.192), the difference A, := x,(") - xr(uu) satisfies 

A, = A, - ] [ (f - f )  - Buj"" + buj""'] ds 
S =O 

.\ =o 

Taking into account that A" = 0 (the system starts with the same initial conditions 
independently on an applied control) and that f ( f ,  x) and B (x) are Lipschitz (with 
the constant L f  and L R )  on x it follows that 

Since 0 ( e - f / w )  = p 0  ( i e - t / l L )  = po (1) 5 p~ and 

we finally have 
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Now let us apply the Gronwall lemma which says that if u ( t )  and 6 ( t )  are nonnegative 
continuous functions on [to, 00) verifying 

u ( t )  4 c + < (s) u (s) ds  
1 =I0 I 

then for any t E [to, 00) the following inequality holds: 

This result remains true if c = 0. In our case 

for any s E [o, t , f ) .  S O ,  

I l l& /I 5 6 := B + p  (d + E )  t f  exp ( ( L ;  + LBuy ' ) )  t i )  1 

(19.193) 

( 19.194) 

(19.195) 

Claim 19.2. For any finite reaching time t f  and any small value 6 > 0 there exists a 
small enough p such that 11 A, I( is less than 6 .  

2. Sliding mode phase ( t  > t i ) .  During the sliding mode phase we have 

S (x,(")) = i (xt"") = G (J' - B U Y ' )  = 0 (19.196) 

if ur = u y )  for all t > t f .  Applying u f  = uIuu) we cannot guarantee (19.196) already. 
Indeed, 

r 

S (xy(n')) = S (x~~")) + 1 s (x:")) d s  
s=r, 

and, by (19.195), 

Hence, in view of (19.196), / IS (xy"') / /  = O(p) .  

Claim 19.3. During the sliding-mode phase 

(19.197) 
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20.3 

This chapter deals with the basic notions concerning the stability property of 
certain solutions or sets of solutions of the different classes of ordinary differential 
equations (ODE). 

In the famous work of A.M. Lyapunov (Lyapunov 1892) there is given some very 
simple (but philosophically very profound) theorems (hereafter referred to as the direct 
Lyapunov’s method) for deciding the stability or instability of an equilibrium point of an 
ODE. The idea of this approach consists of the generalization of the concept of “energy” 
and its “power” the usefulness of which lies in the fact that the decision on stability can 
be made by investigating the differential equation itself (in fact, its right-hand side only) 
but not by finding its exact solution. 

The purpose of this chapter is to give an introduction to some of the fundamental ideas 
and problems in the field which can be successfully applied to some problems arising in 
automatic control theory. 

20.1 Basic definitions 

20.1.1 Origin as an equilibrium 

Definition 20.1. The vector-valuedfilnction y ( t ,  yo, to) E Rn is said to be the dynamic 
motion satisbing 

if 
0 there exists no other function satisbing this ODE with the same initial conditions: 

it is differentiable in t for all t 3 to. 

56 1 
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Remark 20.1. Evidently, by this definition, y (to, yo, to) = yo. 

Consider the, so-called, nominal dynamic motion y* ( t ,  yo,  to )  satisfying 

and 

j* ( t )  = g* ( t ,  y* ( t ) ) ,  y* (to) = yo* E R" 

the dynamic motion in deviations x ( t ,  xo,  t o )  E R", defined by 

x ( t ,  XO, to) := y ( t ,  yo,  to) - Y* ( t ,  yo,  to)  
( t )  = f ( t ,  x ( t ) )  

x ( t o )  = xo := yo - yo* 
f ( t ,  x) := g ( t ,  x - y * )  - g* ( t ,  y * )  

(20.1) 

Definition 20.2. Supposing that equation (20.1) admits the dynamic motion x ( t  , 0,  to) = 0. 
We will also call it the trivial solution orthe equilibrium which can be expressed by 

(20.2) 

Further we will assume that the solution, belonging to the initial point xg in a certain 
neighborhood llxoI/ < 6 of the origin, exists for  all t 2 to and is uniquely determined by 
the initial values xo, to.' 

In this chapter we will study different aspects of stability of the equilibrium point 
x = 0. 

20.1.2 Positive definite functions 

First, let us introduce the following definitions which will be intensively used hereafter. 

Definition 20.3. A real function V = V ( t ,  x), specijied in the domain IIxII 5 h 
( x  E R", h > 0 )  for all t 3 to, is calledpositive-definite ijthere exists a real continuous 
function W (x) defined for ilxll 5 h such that 

1. 

/ W ( O ) = O /  (20.3) 

(20.4) 

3. for all t L to 

(20.5) 

' We may assume that f ( t ,  x )  is an n-dimensional vector function which is locally (uniformly on t )  Lipschitz 
on x in a neighborhood of the point .x = 0. 
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Ij' the properties (2)-(3) are replaced by W (x) < 0 and V ( t ,  x) 5 W (x), then the 
function V ( t ,  x) will be negative-definite. 

Example 20.1. 

v ( t ,  x) = x: + x: + xlxz sint 

is precisely such a function. Indeed, 

v ( t ,  x) = xt + x: + xIx2 sin t 2 xt + xi - 1x1 I IxzI 

= (1x1 I - lxzl)' + 1x11 1x21 2 1x1 I 1x21 := w (-x> 

So, all conditions of Definition 20.3 are fulfilled for the function W (x). 

Definition 20.4. Denote by X ( t ,  X O ,  t o )  the dynamic motion (trajectory) which satisfies 
(20.1) when x (to) = X O .  Then, if there exists the time derivative of the function v ( t )  := 
V ( t ,  X ( t ,  xo, to)) ,  then the function V ( t ,  x )  is said to be differentiable along the integral 
curves (or the path) X ( t ,  xg, to) of the system (20.1). 

Claim 20.1. The full time derivative of the differentiable function v ( t )  is calculated as 
folloMis 

I 

In short (20.6) is written as 

a av 
i = l  

at 

(20.6) 

(20.7) 

20.2 Lyapunov stability 

20.2.1 Main definitions and examples 

Definition 20.5. The equilibrium zero-point (or zero-state) x = 0 of the system given by 
ODE (20.1) is said to be 
1. Lyupunov stable, or locally stable, i f for  any E > 0 there exist ti 2 to 2 0 and 6 = 

6 (t;,  E )  > 0 such that fur all t 2 to we have 1I.i ( t ,  no, t;) I /  < E whenever x ( t i )  = xo 
and IlxoII < 8; 

2. uniformly Lyupunov stable, or uniformly locally stable, if it is Lyapunov stable for 
any t; 2 to, that is, S is independent on t;l; 
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3. asymptotically locally stable i f  it is locally stable and, additionally, X ( t ,  xo, t;) .+ 0 

4. asymptotically uniformly locally stable i f  it is uniformly locally stable and, addition- 

5. exponentially locally stable if 

it is asymptotically uniformly locally stable, and, 
additionallj, there exists two positive constants a and f i  such that 

ast -+oo;  

ally, x ( t ,  xo, t;) -+ o as t + 00. 

(20.8) 

Definition 20.6. The equilibrium zero-point (or zero-state) x = 0 of the system given by 
ODE (20.1) is said to be unstable i f  at least one of two requirements holds: 

either the solution x ( t )  of (20.1) is noncontinuable in t from t = to up to 00 in any 
neighborhood of the zero-state x = 0; or 
when for any 6 > 0 and any t' 2 to there exists E = E (6, t ' )  and t" p t' such that 
IIx (t")  1 1  > E in spite of the fact that IIx ( t ' )  11 < 6. 
The illustrations of Lyapunov and asymptotic types of stability are given by Figs. 20.1 

and 20.2. 

Example 20.2. (The linear oscillator) Consider the model of the linear oscillator given by 

i ( t )  + d i  ( t )  + w2x ( t )  = 0 
t 2 to := 0, w > 0 ,  x (0)  = xo, i (0) = io are given 

(20.9) 

(a )  The no-f?iction case d = 0: x1 ( t )  := x ( t ) ,  x2 ( t )  := .i ( t )  

i ,  ( t )  = x2 ( t ) ,  i 2  ( t )  = -w2x1 ( t )  

/ 

Fig. 20.1. Lyapunov's stability illustration. 
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A 

Fig. 20.2. Asymptotic local stability illustration. 

and 

i 0  x i  ( t )  = x ( t )  = xo cos at + - sin wt 

x2 ( t )  = 1 ( t )  = -xow sin wt + - cos wt 

w 
i f l  

w 

This means that the state is uniformly locally stable. 

(b)  The friction case d > 0: XI  ( t )  := x ( t ) .  x2 ( t )  := 1 ( t )  

2 i ,  ( t )  = x2 ( t ) ,  i 2  ( t )  = -w XI ( t )  - dn2 ( t )  

and 

565 

2 

hi,* = -d f /( ;) - w2 
2 
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In any case, Re hi < 0 ( i  = 1 , 2 )  which implies 

Therefore the stationary state is exponentially locally stable with (II = max ( J h ,  1 Ic, I) 
, = I , ?  

and B = -max (Re  
,=1,2 

20.2.2 Criteria of stability: nonconstructive theory 

The theory, designed by A.M. Lyapunov (Doctor thesis 1892, the first translations from 
Russian are in Lyapunov 1907), says that if for a system (20.1) there exists a Lyapunov 
(positive-definite “energetic”) function, then the zero-state is Lyapunov stable. So, 
this theory deals with the, so-called, sufficient conditions of stability. But there exists 
another concept (see Zubov 1962, 1964) which states that if the zero-state of (20.1) is 
locally stable, then obligatory there exists a corresponding Lyapunov function. This 
means exactly that the existence of a Laypunov function is also a necessary condition of 
stability. 

In this subsection we will present the “joint result” (due to Zubov (1962)) on the 
necessary and sufficient conditions of local stability or, in other words, the criterion of 
local, asymptotic and exponential stability for nonlinear systems governed by (20.1). 

20.2.2.1 Criterion of Lyapunov (local) stability 
Theorem 20.1. (The criterion of stability (Zubov 1964)) The zero-state of the system 
(20.1) is Lyapunov (or, locally) stable ifand only ifthere exists a function V ( t ,  x), called 
the Lyapunov function, satisbing the following conditions: 

1. V ( t ,  x) is defined for llxll I h and t 3 to; 
2. V ( t ,  0) = 0 for all t > to and is continuous in x for all t 
3. V ( t ,  x )  is positive-definite, that is, there exists a function W (x) such that 

to in the point x = 0; 

V ( t ,  x) 2 W (x) 
W (0) = O5 W (x) > 0 for  llxll > 0 

for all t L to 

4. thefunction v ( t )  := V ( t ,  X ( t ,  xo, to)) does not increase3 in t 2 to for all xo satisbing 
IlxoII I h. 

In fact, here it is proven more accurately: this state is globally exponentially stable (the exact definition in 

Notice that here it is not required for v, to be t-differentiable. 
subsection 20.2.3), since the property 112 ( I ,  no, i;) 1 1  5 CL exp (-fit) +. 0 is true for any xg and any fi 3 0. 

I‘M 
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Proof. 

(a) Sufficiency. Suppose that there exists a function V ( t ,  x) satisfying all conditions (1)- 
(4) of Theorem 20.1. Take E < h and consider the sphere lixll = E .  By condition (3) 

inf W (x) := h > 0 
x : I l x  l l=E 

By the continuity of V ( t ,  x) (the properties (1)-(2)) it follows that there is a number 
6 = 6 (to, E )  > 0 such that V (to, x) < h as llxll < 6. Take any point xo satisfying 
ljxo(( < 6. Then V (to, xo) < h and by property (4) the function V ( t ,  X ( t ,  XO, t o ) )  is 
not increasing for t 2 to which implies 

Hence, IIx ( t ,  xo, to)  1 1  < E for all t 2 to, otherwise there exists an instant time t“ > to 
such that lIx (t“, xo, to) I /  = E and, therefore, 

v (t“, x (?, xo, t o ) )  L W (x (6 xo, t o ) )  2 

which contradicts (20.10). The sufficiency is proven. 

X ( t ,  xo, to)  of (20.1) for llxol( 5 h. Define the function V ( t ,  x) as follows 
(b) NecessiQ. Let the stationary zero-point be Lyapunov stable. Consider the solution 

v ( t ,  x) := sup IlX (s, x, t)ll 
s ? f 

(20.1 1) 

where X (s, x, t )  is the solution (20.1) started at the point x at time t .  So, the condition 
(1) of Theorem 20.1 holds. Since x = 0 is a stationary point (an equilibrium), then 
V ( t ,  0) = 0 which follows from (20.11). Additionally, this function is continuous at 
the point x = 0 for any t 2 to. Indeed, for E > 0, by the stability property, there 
exists 6 = 6 (to, E )  such that IlX ( t ,  xo, to) 11 < CE whenever llxo/I < 6. By (20.1 l), 
V (to, xo) < E which proves the fulfillment of condition (2) of Theorem 20.1. One 
can see also that when llxoll > 0 

So, V ( t ,  x) is positive-definite and condition (3) is also fulfilled. To demonstrate the 
validity of condition (4) it is sufficient to establish that 

v (t’, x (t’, xo, to ) )  I v (t”, x (t”, xo, to ) )  if t” L t’ L to 

which means that the function does not increase along the solutions x ( t ,  XO, to). This 
0 completes the proof of the necessity of the conditions of Theorem 20.1. 
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Remark 20.2. Condition (4) of Theorem 20.1 seems to be restrictive since the integral 
curves X ( t ,  xo, to) are not given analytically and, therefore, are unknown if we do not 
know the exact analytical solution of (20.1). However, this problem can be slightly 
simplified i f  we remember the following fact: 

“By one of the Lebesgue theorems (see Corollary 15.5), the derivative of a monotone 
function exists almost everywhere.” 

Therefore, by the condition (4)  the function v ( t )  := V ( t ,  X ( t ,  xo, t o ) )  is monotone on 

any integral curve X ( t ,  xo, to) and, hence, there exists the derivative -I, V ( t ) .  Admitting 
d -  
u1 

and 
at 3x1 

(” ’) for all t 2 to and also the existence of the partial derivatives 
all x in a neighborhood of the origin, condition (4)  can be verified by checking the 

av  ( t ,  x) 

inequality 

(20.12) 

a (” x, of the function V ( t ,  x), as it is defined 

in (20.11), cannot be calculated analytically. So, this means that Theorem 20.1 makes 
only a “philosophical sense”, but not a practical one: it says that any system with the 
stable zero-state has a Lyupunov function. 

av ( t ?  x) a,zd Sure, the derivatives 
at ax, 

Corollary 20.1. (Lyapunov 1892)4 If the function V ( t .  x) is positive-definite and con- 
tinuous in x at x = 0 unifarmly in t for all t >_ to and 

(20.13) 

then the stationary point x = 0 of the system (20.1) i s  uniformly local stable. 

Proof. In the proof of Theorem 20.1 a number S = S (to, t) is selected from the condition 
(20.10) such that V (to. xo) < h for l/xoll < 6. Since V ( t ,  x) is continuous in x at the 
point x = 0 uniformly in t for all t 3 to, then there exists a number 6 = 6 ( E )  such that 

0 V (to, xo) < h for all J1xo/I < S ( E )  at all to which proves the corollary. 

20.2.2.2 Criterion of asymptotic stability 
Theorem 20.2. (The criterion of AS (Zubov 1964)) The state x = 0 of the system 
(20.1) is asymptotically stable if and only if all assumptions of Theorem 20.1 hold and 
in the condition (4)  the function ( t )  := V ( t ,  X ( t ,  xo, to)) decreases monotonically up 
to zero, that is, 

1 ii ( t )  := v ( t ,  x ( t ,  xo, to)) J. 0 as t --f 0;) 1 (20.14) 

This result is referred to as the second Lyupunov’s theorem (method), 
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Proof. 

(a) Necessity. If x = 0 is asymptotically stable, then 112 ( s ,  x, t)II -+ 0 as t + W, and, 
therefore, by the construction (20.1 I) ,  it follows that 

v ( t )  := v ( t ,  .i ( t ,  xg, to)) = sup 112 (s. x ,  t)II + 0 
f+CC & > I  

Monotonicity results from the inequality 
v ( t )  := v ( t ,  x ( t ,  xo, to ) )  = sup IlX (s, x, t)II 

\zt 
2 sup 112 (s, x, t)II = v ( t ' ,  x (t ' ,  X ( ) ,  to)) = v ( t ' )  

,>t'>t 

(b) Suficiency. If sup 1l.i ( s ,  x, t)/I -+ 0, then it follows that 
I'OO 3 > r  

x ( t , x o ,  to) + 0 
f - 3 0  

Theorem is proven. 0 

20.2.2.3 Criterion of exponential stability 
Theorem 20.3. (on exponential stability) For unv solution X ( t ,  xo, to) of (20.1) to be 
exponentially stable (see Definition 20.5) it is necessary and suSficient that there exist 
two positive-definite functions V ( t ,  x )  and W ( t .  x )  such that 

1. for any x and any t L to there exists b > 0 for which 

I w ( t ,  x )  2 gv ( t ,  x )  I 
2. the functions V ( t ,  x) and W ( t ,  x )  are related by 

(20.15) 

d -v ( 1 .  x ( t ,  X " ,  to ) )  = -w ( 1 ,  x ( t ,  xo, to)) I dt  
(20.16) 

Pro($ 

(a) Necessity. Let the solution X ( t ,  xo, to) of (20.1) be exponentially stable with some 
a > 0 and j3 > 0. Define W ( t ,  x) and V (to, x o )  

w ( t ,  x) := IIx112, v ( t ,  x )  := w (s, x- (s, x, t ) )  ds (20.17) 

The relation (20.16) is evident. Show that V (t .  x ) ,  as it is defined above, satisfies the 
condition (20.15). By (20.8) we have 

,=I .r 
V ( t , x )  = Ilx(S,x,t)112ds 

s=t j: 
s=t 

28 
a2 

This means that V ( t ,  x )  satisfies (20.15) with 6 := -. 
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(b) Sufficiency. Show that (20.16) and (20.15) imply (20.8). Considering 
V ( t ,  X ( t ,  XO, to))  # 0 (if not, we already have the stability since X (s, xo, to) = 0 for 
all s L t )  and integrating (20.16) lead to 

and, hence, by (20.15) 

which corresponds to the exponential stability (20.8) with a = V (to, xg) and /3 = b. 
0 Theorem is proven. 

20.2.2.4 Criterion of instability 
Theorem 20.4. (Criterion of instability (Zubov 1964)) For the state x = 0 of the svs- 
tem (20.1) to be unstable, it is necessary and sufficient that there exist two scalar con- 
tinuous functions V ( t ,  x )  and W ( t ,  x) 2 0, defined in ( t ,  x)-domain Q (which includes 
the point x = 0), such that 

I .  
2. 

3. 

V ( t ,  x )  is bounded in Q; 
for any t L to and 6 > 0 there exists n (t’) : IIx (t’)II < 6 ,  t’ 2 t such that in this point 
the inequality V (t’, x ( t ’ ) )  > 0 holds; 
there exists the time derivative 

(20.19) 

Proof. 

(a) Necessity. Suppose there is instability. This means exactly that there exists E > 0 
such that for any t 2 to and any 6 > 0 it is possible to find x (t’) : IIx (t’)II < 6 such 
that the inequality 112 (f, x ( t ’ ) ,  t’) 1 1  < t fails to hold for all f 2 t‘ 2 t .  Take any 
point ( x  (t’) ,  t’) satisfying the inequalities IIx (t’)II < 6 ,  t’ L to and 0 < 6 < E .  Then 
two cases may occur: either (1) 112 (f, x (t’) ,  t’) 1 1  5 E for all f 2 t i  or (2) there exists 
an instant t“ = T(x  (t’), t’) when 1l.i (t x (t’) ,  t’) / I  = E and 112 (t“, x (t’) ,  t’) / I  < E for 
all t‘ 5 f < f. Let V (f, x (t’))  = 0 in the first case and V (t“, x ( t ’ ) )  = e-(’-‘) = e’-’ 
in the second one. Thus the function V ( t ,  x) is defined at any point of the set 
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( ( t ,  x) I /Ix (t’)II < E ,  t 2 to) and is bounded therein since V ( t ,  x )  < 1. So, condition 
( I )  holds. The second type points exist in a neighborhood of the point x = 0 and, 
hence, by the construction, condition (2) holds too. Show that condition (3) is also 
satisfied. Indeed, in the first case, when V (t’, x ( t ’ ) )  = 0 for all f 2 t‘, we have 
d 
- V ( t ,  X ( t ,  xu, t o ) )  = V ( t ,  X ( t ,  xo, to))  along any such motion. In the second case, 

d 
d t  
when V (f, x (t’))  = et? we also have -V ( t ,  X: ( t ,  X O ,  t o ) )  = V ( t ,  X ( t ,  X O ,  t o ) )  and, 

dt  
hence, condition ( 3 )  holds with h = 1 and W = 0. 

(b) Sufficiency. Suppose that all the conditions of the theorem hold. Show that x = 0 
is unstable. Assume conversely that x = 0 is stable and, hence, V ( t ,  x) is bounded 
(uniformly on to) in 52. By property (2) there exists a point (t’, x (t’)) E R such 
that V (t’, x (t’))  > 0. But, by property (3),  integrating ODE (20.19) with the initial 
condition V (t’, x (t’)) implies 

. .  

v ( t ,  x ( t ,  x ( t ’ ) ,  t’)) L v (l’, x ( t ’ ) )  e 4 - t ’ )  for t 2 t’ 

which contradicts the boundedness of V ( t :  x) on R. So, the point x = 0 is unstable. 
Theorem is proven. n 

Example 20.3. (The “mathematical point” in a potential field) Consider a mathemat- 
ical point with mass m which can move in the (x, y)-plane over the potential convex 
curve I’I = I’I (x) which corresponds to its vertical position, i.e., y = n (x). Then its 
velocity u ( t ) ,  the kinetic T and the potential V energies are as follows 

v2 ( t )  := 2 ( t )  + -2 ( t )  

V = mgy ( t )  = mgl7 (x ( t ) )  

So, the Lagrange dynamic equation (see, for example, Gantmacher (1990)) 

for this case becomes 

2 ( t )  (1 + [n’ (x ( t ) ) ]2)  + n’ (x ( t ) )  [i’ (2) n” (x ( t ) )  + g ]  = 0 

and, hence, for XI ( t )  := x ( t ) ,  x2 ( t )  := i ( t )  we have 

In view of convexity n”(x,  ( t ) )  > 0. This results in the conclusion that the set of 

. If the function all possible stationar?, points consists of all points XI : n’ (x,) = 0 
x 2 = i 1  = o  
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n = ll (x) is strictly convex (see Definition 21.2) with the minimum in x = 0, then 
the zero-state is (globally) uniformly asymptotically stable (see Fig. 20.3a). If it is only 
convex such that the minimum is attained in a neighborhood of x = 0 (see Fig. 20.3b), 
then the zero-state is unstable. 

Remark 20.3. All criteria presented above are nonconstructive in the sense that each of 
them demands the exact knowledge of the solution X ( t ,  xo,  to) of (20. I ) .  

The next subsection deals only with the sufficient conditions of global asymptotic 
stability which are based on some properties of the right-hand side of ODE (20. I )  which 
makes them constructive and easily verified. 

20.2.3 Suficient conditions of asymptotic stability: constructive theory 

This constructive theory of stability, more precisely, asymptotic stability, exists due 
to fundamental investigations of Lyapunov (1892), Rarbashin (195 l), Krasovskii (1952), 
Antosiewicz (1958), Letov (1962), Rumyantzev (1963), Chetaev (1965), Zubov (1964), 
Halanay (1966) and others. 

20.2.3. I Sufficient conditions .for asymptotic stability: General result 
Theorem 20.5. (on asymptotic local stability (Zubov 1964)) Assume that there exists 
u positive-defnitefilnction V ( t ,  x) which is continuous in the point x = 0 unifbrmly on 
t for all t 2 to and satisfying the following ODE 

d -v ( t ,  X ( t ,  xu, t o ) )  = -w ( t .  x ( t ,  x g ,  to)) I dt 
(20.20) 

on the trajectories of the system (20. I )  where W ( t ,  x) is a positive-defnite~inction (see 
Definition 20.3). Then the statiomiry point x = 0 of the system (20.1) is asymptotically 
locally stable unijormly on to. 

Pro?/: Suppose that such function V (1,  x) exists. Show that X ( t ,  xo, to) -+ 0 as t -+ 00 

whenever llxoI( is small enough, that is, show that for any E > 0 there exists T = 
T ( E )  such that 112 ( t ,  xo, to)II < E for all t > T .  Notice that by the uniform continuity 

t Y = 

Fig. 20.3. Potential surfaces. 
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V ( t ,  x) and by Corollary 20.1 all trajectories X ( t ,  xO, to) of (20.1) remain within the 
region where ljX ( t ,  xo, to)II < E if llxoll < 6. So, the function W ( t ,  X ( t ,  xo, to)) remains 
bounded too. Suppose that 112 ( t ,  xo, t o ) / /  does not converge to zero. By monotonicity of 
V ( t ,  .? ( t ,  xo, to)), this means that there exists t > 0 and a moment T = T (t) such that 
for all t 2 T (t) we have IlX ( t ,  xo. to)ll > t. Since W ( t ,  x) is a positive-definite function, 
it follows that 

w ( t ,  x ( t ,  xg, t o ) )  > a > 0 

for all t 2 T ( E )  and, hence, by (20.20) we have 

s=to 

- < v ( to ,  x ( to ,  xu, to)) - at  + -cc 

which contradicts the condition that V ( t ,  x) is a positive-definite function. The fact that 
CI this result is uniform on to follows from Corollary 20.1. Theorem is proven. 

20.2.3.2 Asymptotic stabilit?, for stationary system 
Consider the stationary (autonomous) ODE 

1 i ( t )  = f (x ( t ) ) ,  f (0) = 0, t 2 to I 
Notice that the right-hand side of (20.21) can be represented as follows: 

(20.21) 

f (x) = Ax + h ( x )  
h ( x )  := , f ( ~ )  - AX 

(20.22) 

Below we will give three very important results concerning the asymptotic stability 
property of the zero-state x = 0 for the stationary systems governed by (20.21). 

Theorem 20.6. (Lyapunov 1892)5 Zf 
1. the matrix A E R""" in (20.22) is stable (Hunvitz), i.e., .for all i = 1, . . . , n 

I Re hi ( A )  < 0 I (20.23) 

2. and 

(20.24) 

then the stationary point x = 0 is exponentially locally stable. 

This result is referred to as the first Lyupunov's theorem (method). 
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Proof. By the Lyapunov Lemma 9.1 for any 0 < Q = QT E R""" and a given stable A 
there exists 0 c P = P T  E WXfl such that 

A P  + P A T  = -Q 

Then for the Lyapunov function V (x) := X T  Px  we have 

By assumption (2) of this theorem, for E < [2 11 P 11 A,,, (Q-I)] always exists 6 such 
that if (Ix (to)Ij 5 6 ,  then llh ( X  (to))ll / IIx (t0)II 5 E .  Taking the corresponding x (to) from 
the last differential inequality we find that 

ci := 1 - 2 IIP/I A,,, (Q-') E > 0 

and, hence, 

V ( t ,  X ( t ,  xo, to))  5 V ( to ,  X (to, xo, to))  e-"t + 0 as t + 00 

Theorem is proven. 

Remark 20.4. If the function f (x) is differentiable at x = 0, then the matrix A in the 
Lyapunov theorem 20.6 is 

(20.25) 

that is, A is the linear approximation of the nonlinear vector function f (x) in the origin. 

Example 20.4. Consider the second-order ODE 
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which can be rewritten as the following extended first-order ODE 

XI ( t )  := x ( t ) ,  x2 ( t )  := i ( t )  

The stationary points 

x; = - c +  J K G ) ,  x; = 0 2 * (  
XT* = - ( c  - J-), x;* = 0 

1 
2 

exist i f c 2  3 4a. Using the Taylor expansion in a small neighborhood of the stationary 
points, the function f (xlr x2) can be represented as 

f ( X I ,  x2) = f 2  (x;.**, x;.**) + A‘*.**’ x + o ( ( ( x  (I) = A‘*,**)x + o ( ( ( x  (I) - 
0 

where 

A‘*) = - a f ( x )  I x = x *  - - [,”. -;I, b* := -k (1 + ~ a 
ax c - X f )  

In both cases the eigenvalues of A satisj) the quadratic equation 

A* +Bh - b = 0 

and are equal 

Hence, the points x*’** are exponentially locally stable by the Lyapunov theorem 20.6 
when c2 > 4a, since Re hl,z < 0. 

Example 20.5. (Lefschetz 1965) For which a ,  b arid f (0) the following system 

X(3) ( t )  + f (i ( t ) )  ( t )  + a i  ( t )  + bx ( t )  = 0 (20.26) 
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is asymptotically locally stable? Here the functioiz f ( z )  is assumed to be differentiable 
in the point z = 0. Let us apply the Lyapunov theorem 20.6 and represent (20.26) in the 
1natri.x form: 

X ]  ( t )  := x ( t ) ,  x? ( t )  := i ( t ) ,  x3 ( t )  := 2 ( t )  

where 

1 0 0 
0 1 1, h ( i ) =  ( 0 

A =  [ -b -a - f ( O )  [-f '  (0)  x2 + 0 (Ilx2ll)l x3 

Firstly, notice that 

So, to answer the initial question we should try to find the conditions when the matrix A 
is stable. The corresponding characteristic polynomial is 

and it is Hunvitz if and only if (see Criterion 9.3) 

f (0)  > 0 ,  a > 0,  b > 0 ,  af  (0)  > b 

which gives the relation among the parameters guaranteeing the exponential local 
stability. 

20.3 Asymptotic global stability 

20.3. I Definition of asymptotic global stability 

Definition 20.7. The equilibrium zero-point (or zero-state) x = 0 of the system given by 
ODE (20.1) is said to be asymptotically globally stable6 i fX ( t ,  xo, to) -+ 0 when t -+ 00 

for any initial state xo = x (to) of a bounded norm. 

Sometimes such asymptotically globally stable systems are called, by R. Kalman, mono-stable (or having 
the dichotomy property) systems. 
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20.3.2 Asymptotic global stability for stationary systems 

Theorem 20.7. (Barbashin & Krasovskii 1952) To guarantee the asymptotic global 
stability of the unique stationary point x = 0 of (20.21) with the continuous right-hand 
side it is suflicient to show, the existence of a dixerentiable function V = V(x) such that 
(a )  v (0) = 0 andfor any x f 0 

lv(x>>ol (20.27) 

(20.28) 

( c )  for any to ,  xo E R and any X ( t ,  xg, to) f 0 

(20.29) 

Proof. By assumption (c) V (X ( t ,  xo, to))  monotonically decreases and is bounded from 
below. Therefore, by the Weierstrass theorem 14.9 V (X ( t ,  xu, to)) $ V* monotonically. 
By property (b) X ( f ,  xo, to) remains to be bounded. Suppose that V* > 0. Hence, by 
property (a) there exist E > 0 and T = T ( E )  3 to such that inf IlX ( t .  xg, to)II > E .  

f ? r ( F )  

Therefore, by (20.29) we get 

d 
sup -v (X ( t ,  xo, to)) -=z -&’, E’ > 0 

t>T(e)dt 

which implies the inequality 

0 < v* < v (X ( t ,  xo, to)) = v (X ( T ,  x ( T ) ,  T ) )  

+ J’ g V  (X ( s ,  xg, to))  ds 5 V ( X  ( T ,  x ( T ) ,  T ) )  - E’ ( t  - T )  
.S=T 

making the right-hand side negative for large enough t .  This leads to the contradiction. 
0 So, V *  = 0. Theorem is proven. 

Theorem 20.8. (Krasovskii 1952) Assume that 
(a )  the function f ( x )  in (20.21) is difSerentiable everywhere in x and the stationary point 

(b) there exists a positive-definite matrix B = BT > 0 such that the functional nzatrix 
x = 0 (where f ( x )  = 0)  is unique; 

M ( x )  defined by 

a a 
ax 

M (x) := - f (x)’ B + B g  f (x) (20.30) 
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is strictly negative on x,  that is, for all x E R" 

I h,, ( M  ( x ) )  5 -c, c > 0 I (20.3 1) 

Then the point x = 0 is asymptotically globally stable. 

Proof. Take in Theorem 20.7 

1 
V (x) := 2 f ( x ) ~  B f  (x) 2 0 

Notice that V ( x )  is nonnegative in R". Then 

d 
- v (-U ( t ,  xo, t o ) )  = f (2  ( t ,  xo, t o ) )  M (i ( t ,  xo, to)) f (2 ( t ,  xo3 to)> dt 

I hmx ( M  (XI) I l f (X ( t .  xo> tO))1l2 

5 --c I l f (X ( t ,  xo, t O ) ) 1 l 2  < 0 

if X ( t ,  xo,  to) + 0. Hence, by Theorem 20.7 we have the asymptotic global stability that 
proves the desired result. 0 

Example 20.6. Consider the following ODE: 

(20.32) 

Let us demonstrate how Theorem 20.8 works. The stationary points here satisjj the 
relation 

-ax: + bx; = 0, sinx; - x; = 0 

and are equal to x ;  = x; = 0. It is the unique equilibrium point since the derivative 
of the function q5 ( X I )  := -axl + b sin XI, which zeros we are interested in, at the point 
x I  = O i s  

q5'(xl):=-a+bcosxl < - a - b < O  

and remains negative for all X I  (see the corresponding graphics of q5 (XI)). Then we have 

a 
ax cos x ,  - f ( X )  = [ 

Taking in Theorem 20.8 B = I we get 

1 -2a b + cos x1  
b + C O S X ~  -2 M (x) = 
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This matrix will be strictly negative. Indeed, by the Sylvester criteria 7.20 we have 

-2a < 0 
4a - ( b  + cos ~ 1 ) ~  = 4a - b2 - 2b cos x1 - cos2 x1 

5 4a - b2 - 2bcosxl 5 -4a - b2 f 2  Ibl < 0 as a > 1/4 

So, the state xT = xs = 0 is asymptotically globally stable. 

20.3.3 Asymptotic global stability for nonstationary system 

Let us consider again the general ODE (20.1). The results below deal with the asym- 
ptotic stability of the origin on the trajectories of this system. 

We need a definition to use throughout this subsection. 

Definition 20.8. The class K of functions f : R -+ R is said to be Hahn’s class if it 
contains all nonnegative functions satisfying the jbllowing conditions: 

1. f E C (-m, oo), i.e., f is continuous in R; 
2. f is strictly monotone, i.e., for any x E E% and any E > 0 

I f (x + &) ’ .f (x) I (20.3 3) 

3. 

(20.34) 

Theorem 20.9. (Antosiewicz 1958) If 
1. the stationary point x* = 0 of (20. I )  is uniformly (on t o )  locally stable; 
2. there exists a function V (#, x) which is continuously differentiable in both variables 

and, additionally, 
(a)  for any x E R“ and any t 2 to 

(b) for any t 2 to 

I v ( t ,  0 )  = 0 I 
(c)  for any x E R” and any t 2 to 

(20.3 5) 

(20.36) 

(20.37) 

where the functions a (.), b (.) are from Hahn’s class Ic, then the stationary point 
x* = 0 of (20.1) is asymptotically globally stable. 
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Proof. By the conditions of the theorem it follows that any trajectory .i ( t ,  xo, to) 
obligatory will arrive at some small neighborhood !d containing the point x = 0 and will 
never leave it. Indeed, by condition (2c) - V (i,  X ( t ,  xg, to)) < 0 whenever 1l.x I1 =- 0 and, 

hence, decreases reaching i-2 in a finite time t' uniformly on to. By condition ( 1 )  after 
this moment it will always belong to 0. Suppose that l1.i ( t ,  xg, to)II does not converge 
to zero. By monotonicity of V ( t ,  X ( t ,  xo, to)) (see the condition (20.37)), this means 
that there exists t > 0 and a moment T = T ( E )  such that for all t 2 T ( E )  we have 
IlX ( t ,  xo, to ) / /  > t.. Since b (Ilxll) belongs to Hahn's class K ,  it follows that 

d 
dt 

, xo) - at -+ -cc 

which contradicts the assumption (20.35) that V ( t ,  x) > a (Ilxll). So, 1 1 . i  ( t ,  xo, f o ) I )  -+ 0 
0 as t + 00. Theorem is proven. 

Corollary 20.2. (Halanay 1966) The result of Theorem 20.9 reniains true if instead uf 
ussuvzptiun (2c) there is 

Pruof It is sufficient to take in Theorem 20.9 

since c (V ( t ,  x)) 2 c (a (Ilxll)). 0 

Theorem 20.10. (Chetaev 1965) Let there exist the function k (.) E C, a (-) E K and 
v ( t ,  x) E c' such that 

1. fur any x E R" and any t > to 

(20.39) 

2. for m y  t 2 to 

(20.40) 
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3. k (.) E IC, i.e., for any t 2 to k ( t )  2 0 and k ( t )  -+ co as t -+ 00. 

Then the stationary point x* = 0 of (20.1) is asymptotically globally stable. 

Proof. Evidently, by condition (2),  V ( t ,  X ( t ,  xo, t o ) )  is a nondecreasing function of t 
and, hence, in view of condition (l), 

co > lim sup V ( t ,  X ( t ,  xo, t o ) )  2 lim inf V ( t ,  X ( t ,  xo, to)) 

2 liminfk(t)a(IIX(t,xo,to)ll) 2 0  
I’W t-+m 

1-m 

But, by condition (3) ,  k ( t )  -+ 00 and, hence, a (112 ( t ,  XO, t 0 ) I I )  + 0 as t + co. And 
since a (.) E K it follows that 1l.i ( t ,  xo, t0)II -+ 0 as t -+ 00. Theorem is proven. 0 

20.4 Stability of linear systems 

20.4.1 Asymptotic and exponential stability of linear time-varying systems 

Consider the linear time-varying system given by the following ODE: 

(20.41) 

Its solution can be presented as 

(20.42) 

where @ ( t ,  to)  is the corresponding fundamental matrix defined by (19.56). This presen- 
tation, evidently, implies the following proposition. 

Proposition 20.1. The system (20.41) is 
(a)  locally stable if and only if 

c := sup I I Q  ( t ,  to)// < co i t t t o  

(b) asymptotically globally stable if and only if 

(20.43) 

(20.44) 

Let A ( t )  satisfy the inequality 

tr A ( s )  ds > -W s (20.45) 
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which by the Liouville’s theorem 19.7 implies that det @ ( t ,  to) # 0 for all t > to, and as 
a result there exists a constant a > 0 such that 

p (DT (s, t )  CP (s, t )  ds 2 a (20.46) 
S = f  

Below we present the criterion of exponential stability expressed in terms of Lyapunov’s 
approach (see Theorem 20.3). It is interesting to note that for the class of linear systems 
this approach turns out to be constructive. 

Theorem 20.11. (on exponential stability (Zubov 1964)) For the solution X ( t ,  XO, to) 
of (20.41) satisfying (20.45) to be exponentially globally stable (see Definition 20.5) it 
is necessary and sufficient to show the existence of two quadratic forms 

V ( t ,  x) = X T  P ( t ) x  and W (l, x) = X T  Q ( t ) x  (20.47) 

such that 
1. both quadratic forms are positive definite and increase no quicker than the quadratic 

function, i. e., 

1 al , a2,bl, b2 are positive constants I 
2. V ( t ,  x) and W ( t ,  x) are related as 

Proof. 

(a? Necessity. Let IlX ( t ,  XO, t0) l l  5 a exp ( - p  ( t  - to)) .  Define 

W ( t ,  x )  := /lx/12 

V ( t ,  x) := W (s, X ( s ,  X ,  t ) )  d s  
f = f  i 

(20.48) 

(20.49) 

(20.50) 

Evidently, in this case bl = b2 = 1. Show that V ( t ,  x) as it is defined above satisfies 
the conditions (20.48) and (20.49). By (20.42) and in view of (20.46) we have 

V ( t ,  x) = X T  (s, x, t )  X (s, x, t )  d s  
C = f  ii 
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By the inequality (20.8) one has 

s=t 

1 
This means that V ( t ,  x) satisfies (20.48) with a l  = a and a2 = -a2. Obviously, 

V ( t ,  x), as it is defined in (20.50), satisfies (20.49). 
(b) SufSiciency. Show that (20.49) together with (20.47) and (20.48) imply (20.8). Inte- 

grating (20.49) for V f 0 leads to 

28 

and, hence, 

Notice that 

bl < x'Q(.~).i W (s, X ( s ,  xO, to))  
a2 X T P ( S ) X  v (s, x (s, xo, t o ) )  

- - - - 

Application of these estimates in (20.51) gives 

a1 IIX ( t ,  xo, t0>11*  5 v ( t ,  x ( t ,  xo, t o ) )  I v ( t o ,  xo) exp 

Using the estimates (20.15) for V (to,  xo) implies 

a1 IIX ( t ,  xo, to)11* 5 v ( t ,  x ( t ,  xo, to)> I a2 11x011~ exp (-2 [t  - t o ] )  

and, therefore, we obtain the exponential global stability (20.8) for the zero-state 
x = 0 with 

Theorem is proven. 0 

Remark 20.5. Since 

d dXT d dX -v ( t , X ( t , x o , t o ) ) =  -P(t)X +XT-P(t)X + X T P ( t ) -  
d t  d t  d t  d t  

d 
A T  ( t )  P ( t )  + --P(t) + P ( t ) A  ( t )  

d t  
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and 

W ( t ,  X ( t ,  X O ,  t o ) )  = X T  Q(t)X 

in view of (20.49), we have 

d 
AT ( t )  P ( t )  + - P ( t )  + P ( t ) A  ( t )  

dt  

which is true on any trajectory X = X ( t ,  X O ,  to). This transforms the nonconstructive form 
of Theorem 20.3 into the constructive one as in Theorem 20.11. 

Corollary 20.3. For any solution .f ( t ,  X O ,  to) of (20.41) satisfying (20.45) to be expo- 
nentially stable (see Definition 20.5) it is necessary and sufficient that there exist two 
symmetric positive dejinite matrices P ( t )  and Q ( t )  such that 

Equation (20.52) is known as the differential Lyapunov equation. If A ( t )  = A is a 
constant matrix then we may take P ( t )  = P, Q( t )  = Q and (20.52) is converted into the 
algebraic Lyapunov equation 

~ A T P  + P A  + Q = 0 1  (20.53) 

Its property is seen in Lemma 9.1. 

20.4.2 Stability of linear system with periodic coefficients 

Consider again the linear system (20.41) where the matrix A ( t )  is periodic with the 
period T, i.e., for any t 2 to 

A ( t )  = A ( t  + T )  (20.54) 

Proposition 20.2. For equation (20.41) the fundamental matrix is 

Z (t) = Z (t + T )  

and, hence, all stability properties depend on the properties of the matrix R .  But according 
to (19.73) for  t = 0 it follows that 

So, we can derive the following results. 

co
nt

ro
len

gin
ee

rs
.ir



Elements of stability theory 

~ i ( t )  = A ( t )  x ( t )  + w ( t ) .  x ( to)  = xo E R', t 2 to 

585 

(20.55) 

Corollary 20.4. 
1. the system (20.41) is exponentially stable if and only if 

R e h , ( R )  <OforalEi = 1, . . . ,  n 

2. the system (20.41) is Lyapiinov stable if and only if 

Re h, ( R )  5 0 for all i = 1,. . . , n 

and the multiplicity pl of the eigenvalues Re hi ( B )  = 0 does not exceed 1, i.e., 

20.4.3 BIBO stability of linear time-varying systems 

(20.5 6) 

Below we present the criterion explaining when IIx l l L m  is also bounded for any xo. Such 
systems are called BIBO (bounded input-bounded output) stable. 

Theorem 20.12. (Criterion of BIBO stability) For the system (20.55) IIx II L, < 00 

whereas l l~ l l ,~,  < 00 if and only if the corresponding fundamental matrix Q, ( t ,  t o )  
satisfies the following conditions: 
I .  

2. 

(20.57) 

Proof By (19.64) we have 

x ( t )  = ( t ,  t o )  xo + Q, ( t ,  S) w (s) ds 
A =in 1 
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SufSiciency follows directly from this formula since 

Let us prove necessity. Suppose that IJx II L ,  < 00. Taking w ( t )  = 0 we have x ( t )  = 
@ ( t ,  to) xo that proves the necessity of which condition (1). Take now xg = 0 and suppose 
that condition (2) is violated, that is, there exists at least one element ( i o ,  j o )  of the matrix 
@ ( t ,  to) such that 

Hence, 

Taking then 

sign @ i o j o  ( t ,  s) if j = jo  
if j Z j o  

w, (s) := 

from the last inequality we obtain 

IIX (t>II 2 / @ , o j o  ( t ,  s > /  + as t -+ 00 
\= lo  1 

But this contradicts the assumption that lIx /I L ,  < 00. Theorem is proven. 

Example 20.7. Consider the system given by 

i ( t )  + [u + sin (oot )]x  ( t )  = w ( t ) ,  x (to) = xo E R, a > 0 

0 
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The corresponding transition matrix (in this case it is a scalar function) is as follows 

Q ( t ,  s) = exp { - ] [a + sin (mot ) ]  d t  
T =I 

1 
WO 

-a ( t  - s )  + - [cos (mot) - cos (WOS) ]  

So, it is bounded and, hence, the first condition of the theorem is fulfilled. Let us check 
the second one: 

I 

[cos (mot) - cos (WoS)]  

WO 
IQ ( t ,  to)l d t  = lim 1 exp { a  (s - t )  + 

I 

1 
a {+- < exp { $) 1iy:p I exp {-a ( t  - s)} ds = - exp 

J=10 

This means that the second condition (20.57) of the theorem is also valid for any a > 0, 
and, hence, this system is BIB0  stable for any a > 0. 

20.5 Absolute stability 

20.5.1 Linear systems with nonlinear feedbacks 

Consider the dynamic system given by the following ODE: 

i ( t )  = AX ( t )  + bu ( t ) ,  t 2 to 

Z.4 ( t )  = cp (Y  ( t ) )?  Y ( t )  = C T X  ( t )  

A E R"""; b, c E R"; u ( t ) ,  y ( t )  E R 

(20.58) 

It can be interpreted (see Fig. 20.4) as a linear system given by the transfer function 

1 H ( s )  = C T  ( s l  - A)- '  b I 
with a nonlinear feedback 

(20.5 9) 

(20.60) 

We will consider the class F of continuous functions (p ( y )  (nonlinear feedbacks) 
satisfying 

(20.61) 
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Fig. 20.4. A linear system with a nonliner feedback. 

Fig. 20.5. A function u = ~ ( y )  from the class 3 

Definition 20.9. The nonlinear system (20.58) is said to be absolutely stable in the class 
F if the solution x ( t )  = 0 (or zero-state) is asymptotically globally stable (see Definition 
20.7) for any nonlinear feedback (20.60) satisfying (20.61). 

In this section we are interested in finding the conditions guaranteeing the absolute 
stability of the system (20.58) in the class 3. 

20.5.2 Aizerman and Kalman conjectures 

Proposition 20.3. (Conjecture of M.A. Aizeman, 1949) Let the system (20.58) be stable 
for any 

It seems to be true that this system remains stable for any feedback q ( y )  satishing 
(20.611, namely, for  any cp (y) such that 

.:k 
cp ( Y )  0.:- 

Y 
for 
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Proposition 20.4. (Conjecture of R. Kalman, 1957) Let the system (20.58) be stable for 
any 

It seems to be natural to admit that this system remains stable for any feedback cp ( y )  
satishirig the conditions: 

q ( y )  is differentiable, 
0 I w’ ( y )  5 k 

rp (0)  = 0 

Claim 20.2. Conjectures of Both M.A. Aizerman and R. Kalman are not valid. 

Proof. See a number of counterexamples in Pliss (1964). 0 

Counterexample (Pliss 1964) Let 

S 2  

[(s + 0.S)2 + (0.9)2] [(s + 0.5)2 + (1.1)2] 
H (s) = 

The closed-loop system is stable for any u = k y  with 

k E [ - 0 , 7 1 2 4 , ~ )  

It follows for example from the Routh-Hurwitz criterion (see Theorem 9.2), applied to 
the closed-loop system. But for 

in this system auto-oscillations arise, and, hence, there is no asymptotic stability. 
These conjectures were proposed before the keystone result of V.M. Popov who found 
the exact conditions of absolute stability of the linear system (20.58) with any feedback 
satisfying (20.61). 

20.5.3 Analysis of absolute stability 

To guarantee the absolute stability of the system (20.S8)-(20.6 l), according to the 
Barbashin-Krasovskii theorem 20.7, it is sufficient that there exists the Lyapunov function 
V ( x )  such that 

(a) V (0) = 0 and 

V ( x )  > 0 for any x f: 0 

V ( x )  + 03 whereas llxll --+ 00 

co
nt

ro
len

gin
ee

rs
.ir



590 Advanced Mathematical Tools for Automatic Control Engineers: Volume I 

(c) for any t ? to 

In Lurie & Postnikov (1944) it was suggested that the function V (x) as a quadratic 
form plus the integral of the nonlinear feedback be found, that is, 

\ = L T X  

V ( x ) = x T P x + q  J' cp(y)dy r- ). =o 

where P = P T  is a real matrix and q is a real number. 

Remark 20.6. Notice that if 

(20.62) 

(20.63) 

the fiinction V (x) (20.62) satisfies conditions (a)  and (b)  given above. Indeed, by the 

condition (20.61) we have yip ( y )  2 0 for any y E R, and, therefore, 

Below we shall see that q is also admitted to be negative. 

Calculating the time derivative of (20.62) on the trajectories of (20.58) we obtain 

d 
-V ( t ,  X ( t ,  XO, to)) = 2xT ( t )  P ( A X  ( t )  + bu ( t ) )  + qu ( t )  j ( t )  
dt  

j ,  ( t )  = CT ( A x  ( t )  + bu ( t ) )  

The right-hand side is a quadratic form of variables x and u ,  namely, 

Qo (x, U) := 2xT P (AX + bu) + q U C T  ( A X  + bu) 

So, (20.64) is 

Therefore, to fulfill condition (c) ,  given above, one must fulfill the condition 

Qo (x, u )  < 0 for all real x E Iw" and all u E R 

which, by (7.6), is equivalent to fulfilling of the following inequality: 

Qo (2, u )  < 0 
for all complex z E @" and all complex u E @ 

(20.64) 

(20.65) 

(20.66) 

(20.67) 
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Next, return to the constraints (20.61), and notice that they can be rewritten as 

0 5 u / y  5 k ,  0 5 u2 5 kuy, uy 2 k-’u2 

or, equivalently, as 

1 Q l  (x, u )  := u (k-lu - y)  5 0,  y = C T X  I (20.68) 

Notice that Q l  (x, u )  is also a quadratic form of x and u ,  and in fact defines the constraint 
for these variables. 

Theorem 20.13. (Gelig et al. 1978) Suppose that 

the matrix A in (20.58) has no pure imaginary eigenvalues; 
the nonlinear feedback p ( y )  is from the class .F (20.61). 

To guarantee the existence of the function V ( x )  of the form (20.62) for which 

in any points x = x ( t )  E R” and any u = u ( t )  E R satisbing the constraints (20.61), it is 
necessary and sufficient that for all w E [-a, a] the following ‘yrequency inequality” 
(it is known as Popov’s inequality) would be fulfilled: 

k-I - Re [(l + Giw) H ( iw)]  > 0 i (20.69) 

where the complex function H ( s )  is the transfer function (20.59) of the linear subsystem 
and 4 is a real number. 

Remark 20.7. In fact, the frequency inequality (20.69) is the necessary and sufficient 
condition forfulfilling only condition (c)  of the Barbashin-Krasovskii theorem 20.7 which, 
together with conditions (a)  and (b), is sufficient for asymptotic global stability of the 
zero-state of the system given by (20.58). 

Proof. 

(a) Suficiency. Evidently, inside the constraint (20.68) there exists a point (a, i) such 
that Q ,  (a, i) < 0. Hence, S-procedure (see subsection 12.3.2) may be applied in its 
version given in Corollary 12.2, that is, for some r 2 0 and any (x, u )  (Ilx I/ + Iu I # 0) 
define the quadratic form 

Obviously, 
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and, hence, the condition 

Q r  ( ~ 7  u> < 0 (Ilxll + IuI # 0) (20.7 1) 

is sufficient to guarantee that -V ( t ,  x) < 0. Expanding the quadratic form QT (n, u )  

up to its Hermitian form (20.67) (see by (7.6)) we get that the condition (20.71) is 
equivalent to the following 

d 
dt 

Q r  ( z ,  u> = Qo ( z ,  u> - ~ Q I  (z, u )  

= 2Re z*P ( A z  + bu) + q Re [u*cT (Az  + bu)]  

- tRe  [u* ( k ' u  - y)] < 0 

(Ilzll + IuI f 0) 

Let now z and u be connected in such a way that (after the application of the Laplace 
transformation (1 7.73)) 

iwz = Az + bu 

where w is a real number for which det [ A  - i w l ]  f 0. Then 

Rez*P ( A z  + bu) = Reiw ( z * P z )  = 0 

and 

Q r  ( z ,  u )  = q Re [iwu*y] - tReu* (k-lu - y)  

By (20.59), we also have that 

y = H ( iw)  u 

So, finally, we obtain 

Q r  ( z ,  u )  = Q T  ( z ,  u )  = Re [qiw ( iw)  + t ( iw)  - t k - ' 1  Iu12 < 0 

whereas (lul # 0). Since for w = 0 it follows that t > 0, dividing by t and denoting 
q" = q / t  we get (20.69). 

(b) Necessity. It follows directly from the properties of S-procedure (see Theorem 12.3), 
if we take into account that it gives necessary and sufficient conditions of the "equiv- 
alency" of the sets defined by the inequalities Qo (x, u )  < 0 under the constraints 

0 Q l  (x, u )  < 0 and Q, (x, u )  < 0 (Ilxll + IuI f 0). Theorem is proven. 

Remark 20.8. Theorem 20.13 still does not guarantee the global asymptotic stability 
for each admissible nonlinear feedback, since we have still not proved the validity of 
properties (a)  and (b)  of the Barbashin-Krasovskii theorem 20.7 for the Lyapunov function 
(20.62). 
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20.5.4 Popov’s sufficient conditions 

The next theorem gives such additional conditions. 

Theorem 20.14. (Sufficient conditions (Popov 1961)) Let 

(a)  in (20.58) the matrix A is stable (Hurwitz); 
(b)  for some (not obligatory nonnegative) and for all w E [-w, 531 Popov’s frequency 

condition (20.69) holds. 
Then the system (20.58), (20.61) is absolutely stable in class 3. 

Proof. To complete the proof we need to prove the validity of conditions (a) and (b). Let 
(20.69) hold. For u = 0 the inequality (20.71) implies 

Q r ( x , u ) = 2 ~ T P A ~ = x T ( P A + A T P ) ~  < 0  

or, equivalently, 

P A + A T P < O  

So, by the Lyapunov Lemma 9.1, it follows that P > 0. 
(a) For q = ijr 2 0, by the condition (20.61) we have ycp ( y )  2 0 for any y E R, and, 

therefore, l:, cp ( y )  dy  3 0. Hence we derive that V (0) = 0, V (x) > 0 for any x f 0 

and V (x) + 00 whereas llxll + 00. 
(b) Let q = ijr < 0. Taking u = p y  (0 5 p 5 k )  we get -V ( t ,  x) < 0 for the system 

(20.58), (20.68) with u = p y .  Then, the matrix A, := A + pbcT of the corresponding 
closed-loop system has no eigenvalues on the imaginary axis since A, is Hurwitz for 
any p : 0 5 p 5 k .  For such a system the direct substitution shows that the Lyapunov 
function (20.62) is 

d 
dt 

v, (x) = X T  ( P  + -ccT) qE;L x 
2 

d 
dt 

and, since - V ( t ,  x) < 0, it follows (by the same Lyapunov Lemma 9.1) that 

which gives k # 00. For p = k we get 
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Let now p E 3. In this case the form V (x) (20.62) can be represented as 

J 
y = o  

So, V (0) = 0, V (x) > 0 for any x f 0 and V (x) + 00 whereas IIxII -+ 
the proof. 

I 

00 completes 

Remark 20.9. As it is mentioned in Gelig, Leonov & Yakubovich (1978), Popov’s 
frequency condition (20.69) guarantees the absolute stability for the system (20.58), 
(20.61) with a much wider class of nonlinear feedback, namely, for all nolinearities that 
sutisb the condition 

(20.72) 

some {t,,}, t,, + 00. It rnay include also unstable linear systems (where A is not 
obligatory stable). 

Remark 20.10. For lj  = 0 in (20.69) the corresponding Popov’s.frequency condition is 
called “the circle criterion” which is valid also for a much wider class of nolineurities 
including multi-valued functions such as hysteresis elements. 

20.5.5 Geometric interpretation of Popov ’s conditions 

Let us represent the transfer function H (iw) as 

H ( iw)  = U (w )  + iV (w)  

U (a)) := Re H ( iw) ,  V (w) := Im H ( iw)  

Then Popov’s frequency condition (20.69) can be represented as follows: 

(20.73) 

I y w v  (w )  > u (w)  - k-’ I (20.74) 

Definition 20.10. The line 

I <wV (w)  = U (w) - k-‘ I 

in the’plane (U (w) ,  wV (w))  is 

(20.75) 

called Popov’s line, with tan @ = 4 (see Fig. 20.6). 
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Fig. 20.6. The geometric interpretation of Popov’s “criterion”. 

Claim 20.3. Popov’s frequency condition (20.69) is fulflled ifthere exists a real number 
4 such that the “modified godograph” ( U  (w ) ,  wV (w ) )  of the transfer function H ( i w )  
lies “above” Popov’s line (see versions (a)-(c) of Fig. 20.6) for all w E [0, m]. If such 
a line does not exist (it cannot be drawn), then such a system cannot be referred to as 
absolutel-y stable. 

Example 20.8. 

1 - i w  2 - w 2  3w H ( iw)  = - - - - - i- 
2 + i w  4 + w 2  4 + w 2  

2 - 0 2  3 0 2  u (w)  = - 
4 + w2’ 

w v  (w)  = -- 
4 + w2 

The corresponding godograph is  depicted at Fig. 20.7. The Popov’s line can be drawn 
with 4 < 0 crossing the point (k-’ ,  0 )  for any k > 0.5. 

20.5.6 Yakubovich-Kalman lemma 

As mentioned above, Popov’s frequency condition (20.69) can be generalized for a 
significantly wide class of dynamic systems. All of them are based on the verification of 
negativity (positivity) of some Hermitian (quadratic) forms obtained as a time-derivative 
of a Lyapunov function (usually of the form (20.62)) on the trajectories of a linear 
system resembling (20.58) and (20.61). This verification can be done using the, so-called, 
“Yakubovich-Kalman lemma” known also as the “frequency theorem”. Its simplified 
version oriented to the systems governed by (20.58) and (20.61) is given below. 

Lemma 20.1. (Yakubovich 1973) Let the pair ( A ,  b)  in (20.58) be controllable (see 
Criterion 3 in Theorem (9.8)) and 

(20.76) 
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I G [@ ( iw)bu,  u ]  < 0 

Advanced Mathematical Tools for Automatic Control Engineers: Volume I 

(20.80) 

Fig. 20.7. Analysis of the admissible zone for the nonlinar feedback. 

Let 

G ( x ,  u )  := x*Gx + 2Ke (x*gu) - I yI2 u*u 

be a Hermitian form qf ( x ,  u )  where x E C? and u E C. 
1. If 

1 G [@ (iw) bu, u ]  5 0 I (20.77) 

for all u E CC and all w E [-00, 601, then there exist a Hermitian matrix P = P" E 
CC""", a vector h E @" and a constant y & CC such that the following identity holds 

12Rex"P (Ax  + bu)  + G ( x ,  u )  = - Ih*x - yuI2 I (20.78) 

where P ,  h and y satisJL the equations (the "resolving Lourie's equations") 

P A  + A T P  + hh*+G = 0  
P b -  h y  f g  = O  (20.79) 

( r f  A ,  b and G are real, then P = P T ,  h and y can be also real.) 
2. if 

2Rex"P (Ax  + bu) + G (x, u )  < 0 (20.81) 

whenever llxll + IuI # 0. 
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3. If for all u E C 

then 

(20.82) 

(20.83) 

where the polynomial g h  ( s )  can be selected as stable (Hunvitz) by the corresponding 
selection of h. 

Proof. To prove (1) it is sufficient to compare the vector and matrix parameters in both 
parts of equation (20.78) which leads to (20.79). Indeed, the right-hand side of (20.78) is 

- Ih*x - yuI2 = x*hh*x - IyI2 U*U + 2x* ( h y )  u 
= - x x  (hh*) x - IyI2 u*u + 2Rex* ( h y )  u 

In turn, using the identity 

2Rex*PAx = x* (PA + A T P ) x  

the left-hand side of (20.78) can be represented as 

2Rex*P (Ax + b u )  + G (x, u )  = 2Rex*PAx 
+ 2Rex*Pbu + x"Gx + 2Re (x*gu)  - 1y12 u*u 
= x * ( P A + A T P + G ) x + 2 R e ( x * [ g + P b ] u )  - Iy12u*u 

Comparing the coefficients in (20.84) and (20.85) we get 

PA + A T P  + G = -hh* 
g + P b  = h y  

which coincides with (20.79). 
To prove (2) let us rewrite (20.81) as follows 

G [d, ( i o )  bu, u ]  = -I7 ( iw)  1uI2 

where I7 ( i w )  is continuous and satisfies 

Introduce also the regularized Hermitian form G, (x, u )  defined by 

(20.84) 

(20.85) 
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Then, evidently, 

Gt (x, U )  I -no 1 ~ 1 ’  + 6 (1 + C )  (11x1I2 + IuI’) 5 0 

where the constant c satisfies the inequality 110 ( iw)  b1I2 5 c. But, by property ( 
follows that there exists P = P* such that 

2Rex*P  ( A x  + bu)  + G, (x, u )  = - Ih*x - yul’ 5 0 

which proves (20.81). Property (3) follows directly from the assumptions of 
theorem. 

) it 

the 
0 

Remark 20.11. This lemma is also valid when b = B is a matrix. This generalization 
can be found in Vidyasagar (1993). 

Corollary 20.5. The matrix algebraic Riccati equation 

P A + A T P  - K T P K  + Q = O  
R K  = B T P  (20.86) 

has a unique positive definite solution P = P i  > 0 and the corresponding K such that 
the matrix [ A  - B K ]  is stable, if R > 0, the pair ( A ,  B )  is controllable and one of two 
conditions is fulfilled: 
(a)  

Q = CTC 
the pair ( C ,  A )  is observable 

Proof. The existence of P and K satisfying (20.86) is equivalent to fulfilling the identity 

2Re [x* ( - P )  ( A x  + B y ) ]  - ( x * Q x  + y*Ry)  
= - ( y  + K x ) *  R ( y  + K x )  

valid for all complex x and y .  By the Yakubovich-Kalman Lemma 20.1 to have this 
identity it is sufficient that 

Since R > 0 this property holds. Moreover, the strict condition (20.80) also holds and 
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if y f 0. Hence, from Lemma 20.1 it follows also that there exists a unique solution P ,  
K for which A := [A - B K ]  is stable. Since (20.86) is equivalent to 

then for Q > 0 we have Q > 0 and, by the Lyapunov Lemma 9.1, there exists P > 0 
resolving the last matrix equation. If Q = CTC, the existence of the positive definite 

0 solution also follows from Lemma 9.1 (statement (2)). 

Remark 20.12. It seems to be useful to compare the statement of Corollary 20.5 with 
Theorem 10.7 which gives the same conditions for the existence of a strictly positive 
solution of the matrix Riccati equation making the closed-loop system stable. 
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This chapter deals with the simplest problems of optimization in finite-dimensional spaces 
starting with unconstrained optimization of smooth convex functions and proceeds to 
investigate the influence of different complicating factors such as nonsmoothness, singu- 
larity of a minimum point and constraints of equality and inequality types. Each class of 
problems is analyzed in a similar way: first, the necessary conditions of extremality are 
derived, then sufficient conditions of an extremum are proved, followed by the results 
concerning existence, uniqueness and the stability of a solution. Finally some numerical 
methods (with their analysis) are presented. The selected method of the presentation 
follows (Polyak 1987). 

21.1 Some properties of smooth functions 

21.1.1 Differentiability remainder 

Definition 21.1. The function f : Rn -+ R is said to be 

1. differentiable at a point x E R" if there exists a vector a E R" such that for all y E R" 

(21.1) 

(the vector a is usually called the gradient off ( x )  at the point x E R"); 

such that for all y E Iw" 
2. twice differentiable at a point x E R" if there exists a symmetric matrix H E IW""" 

(21.2) 

(the matrix H is called the matrix of second derivatives of Hessian of f (x) at the 
point x E Rn). 

60 1 
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Lemma 21.1. (on a finite increment) 

1. If f (x) is differentiable on [x, x + y], then 

2. If f (x) is twice differentiable on [x, x + y], then 

Proofi For any x, y E R" define the function 

4J (t) := f (x + t Y )  

(21.3) 

(21.4) 

(2 1.5) 

which is, obviously, differentiable (twice differentiable) if f (x) is differentiable (twice 
differentiable). The identity (21.3) follows from the Newton-Leibniz formula 

and (21.4) results from the Taylor formula 

Lemma is proven. 

Corollary 21.1. 

(a)  If0 f (x) satisfies the Lipschitz condition on [x, x + y], that is, 

(21.6) 

(21.7) 

(21.8) 
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(b) If for all x, y E R" 

then for all x, y E R" 

(c) rffor all x, y E R" 

then for all x, y E R" 

603 

(21.9) 

(21.10) 

(21.11) 

(21 * 12) 

Prooj The inequality (21.8) follows directly from (21.3), (21.7) and (21.11) if we take 
into account that 

The inequalities (21.10) and (21.12) result from (21.4) and (21.9) since 
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and 

] ] ( [v2f  (x + T Y )  - V 2 f  (XI] y ,  y )  dt dt  
r=O r=O 

which proves the corollary. 

Exercise 21.1. I t  is easy to check that 

0 

(21.13) 

where 

2. I f x  f 0  

3. 

The following lemma will be useful in the considerations below. 

Lemma 21.2. (Polyak 1987) Let 

(a )  f (x) be differentiable on R”; 
(b)  V f (n) satisfy the Lipschitz condition (21.7) with the constant L f ;  

(21.14) 

(21.15) 

(2 1.16) 
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(c)  f (x) be bounded from below, i.e., f (x) 2 f * > --OO for all x E R'. 
Then 

ProoJ: Putting in (21.8) y := -L i 'Vf  (x) we obtain 

which implies (21.17). Lemma is proven. 

21.1.2 Convex functions 

21.1.2.1 Main definition 
Definition 21.2. A scalar valuedfunction f ( x )  defined on R" is said to be 

1. convex (see Fig. 21.1) i f for any x, y E R" and any Q! E [0, 11 

2. strictly convex i f for  any x + y E R" and any Q! E [0,  11 

(21.17) 

(21.18) 

(2 1.19) 

t 

; f ( a x + y ( l  - a ) )  ' 
I -4 I * I 

Y 

Fig. 21.1. A convex function. 
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3. strongly convex with the constant 1 > 0 iffor any x ,  y E R” and any a E [0, 11 

(21.20) 

4. concave (strictly, strongly with the given constant) i f  the function [ - f ( x ) ]  is convex 
(strictly, strongly with the same constant). 

21.1.2.2 Some properties of convex (not obligatory diflerentiable) functions 
Claim 21.1. From Definition 21.2 it follows directly that 

(a)  the afJine function f (x) = ( a ,  x) + b is both convex and concave; 
(b)  if the functions fi ( x )  are convex (concave) then the functions 

k 

f ( x )  = C YiJ;: ( x ) ,  Yi 2 0 (i  = 1 , .  . . , k )  
1 = 1  

and 

are convex (concave) too. 

Claim 21.2. If f ( x )  is convex on R”, then for any x(’), . . . , x@) E R” and any 
a’,  . . . , (Yk such that ai 1 0 (i = 1, . . . , k ) ,  x:=l a! = 1 the following inequality holds 

(21.21) 

Proof. It follows directly from the Jensen inequality (16.152). 

Lemma 21.3. Any convex function is continuous. 

ProoJ: Let us prove this result by contradiction. Suppose that there exists a point x where 
a convex function f ( x )  is discontinuous. This means that in any 6-neighborhood of x, 
containing x as an internal point, there are always two points x’ and x” such that 
l f ( x ’ )  - f ( a x ” +  (1  -a)x’ ) l  > E > Ofor any 0 < a- < a < a+ < 1. Assuming that 
f (x’) >_ f (x”),  we have f ( x ’ )  + E > f (x”).  But, by the convexity property, we also have 

f (ax/’ + (1 - a )  x’) 5 af (x”) + (1 - a )  f (x’) 

for any a E [0, 11, or equivalently, 

f (x’) + E > f (x”) L f (x’)  
1 E + - [f (ax’’ + (1 - a )  x’) - f (x’)] 2 f (x’) + - 
a a! 

which, for a satisfying 0 < a- < a < a+ <’ 1, implies contradiction. 
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Corollary 21.2. I f f  ( x )  is convex, then the set 

Qa := (X E K" I f (x) 5 a} (21.22) 

is convex and closed. 

Lemma 21.4. Any convexfinction f (x) at any arbitrary point has a one side deriva- 
tive in any direction y and this derivative is uniformly bounded with respect to this 
direction. 

Prooj One has 

(21.23) 

which completes the proof. 0 

Corollary 21.3. (Rademacher theorem) Any convex ,function is cl@erentiable almost 
everywhere (excepting a set of measure zero). 

21.1.2.3 Some properties of convex differentiable functions 
Lemma 21.5. I f a  function f (x) on R" is differentiable, then 

1. its convexity is equivalent to the inequality 

valid for all x, y E R"; 
2. its strict convexity is equivalent to the inequality 

1 f (x + z )  > f ( x )  + (V f ( x ) ,  z )  I 
valid jor all x E R" and all z # 0 ( z  E R"); 

3. its strong convexity is equivalent to the inequality 

1 
f (x + z )  L f (x) + ( O f  ( X I ,  z> + 2 11z112 

(21.24) 

(21.25) 

(21.26) 

valid.for all x ,  z E R". 
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Proof. 

(a) Necessity. Suppose that (21.18), (21.19) and (21.20) hold. Show that (21.24), (21.25) 
and (21.26) result from them. Taking there 1 - a = S -+ 0 and substituting y = z +x 
we obtain the result. Indeed, from (21.18) we have 

and, when 6 -+ 0 in the left-hand side of this inequality, it follows that 

which leads to (21.24) if we take y = z fx. The inequalities (21.19) and (21.20) are 
derived analogously. 

(b) Sujjiciency. Suppose that (21.24) holds. Define the function 

gu (x, y >  := af (XI + (1 - a) f ( y )  - f (ax + (1 - a )  y )  

To prove (21.18) we need to prove that for all x, z E R" and all (Y E [0, 11 

First, notice that all x, z E R" 

All stationary points a* E [0, I]  (ifthey exist) of the function g, (x, y )  satisfy the identity 

or, equivalently, 

For any stationary point a*, after the application of the inequality (21.24) and in view 
of the last identity, we have 

g,=,* (x, y> := a * f  (x) + (1 - a*) f ( y )  - f (a*x + (1 - a*) y )  

= a* [ f  (x) - f ( Y ) l +  f ( Y >  - f (a*x + (1 - a*) Y )  
? a* [ f  (x) - f ( y ) ]  - ( O f  ( a * x  + (1 - a*) y ) ,  a*x - y )  = 0 

(2 1.29) 

which, together with (21.28), implies (21.27). Indeed, if we assume that there exists 
a point a' such that g,=,f (x, y )  < 0, then, by the continuity and taking into account 
(21.28), it follows that there should be a minimum point a* where also g,=,* (x, y )  < 0 
which contradicts with (21.29). So, for all a E [0, I] it follows that g, (x, y )  2 0. 
The validity of (21.19) and (21.20) may be proven by the same manner. Lemma is 
proven. 0 
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Corollary 21.4. I f  a convex function f (x) is differentiable on R" then for any 
x. y E R" 

(21.30) 

and 

which means that the gradient of a convex function is a monotone operator. 

Proof. The inequality (21.30) is proven just above. Changing y to x and x to y we 
also have 

( O f  ( Y ) ,  (x - Y>> 5 f (x) - f ( Y )  

Adding this inequality with (21.30) we obtain (21.31). 0 

Corollary 21.5. I f a  function f (x) is twice differentiable on R", then 

its convexity is equivalent to the matrix inequality 

(21.32) 

valid for all x E R"; 
the matrix inequality 

(21.33) 

valid for all x E E%" implies its strict convexity; 
its strong convexity is equivalent to the matrix inequality 

(21.34) 

valid for all x E R"; 
i f x "  is an optimal (minimal) point of strongly convex function f (x) (with a constant 
1 > O), then (taking x = x*, y = x and V f (x*) = 0)  the inequalities above lead to 
the following ones: 

(21.35) 

(21.36) 

(21.37) 
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Example 21.1. 

1. The function f (x) = x 2  is strongly convex (and, hence, convex and strictly convex) 

2. The functions f ( x )  = x4 and f ( x )  = ex are strictly convex (and, hence, convex, but 

with 1 = 2. 

not strongly convex). 

The next two lemmas will be used hereinafter. 

Lemma 21.6. (Polyak 1987) Let 

( a )  f (x) be convex and twice diTerentiable on R"; 
(b)  V f (x) satisfies the Lipschitz condition (21.7) with the constant L f .  

Then for all x, y E R" 

(21.38) 

Proof. By (21.6) we have 

Of ( y ) = V f  (x)+ --of ( x + r ( y - x ) ) d t  
r=O J it 

1 

= vf (x) + 1 V2 f (x + t ( y  - x)) ( y  - x )  d t  = A ( y  - x )  
r=o 

where, by the strict convexity condition and the property (21.32), 

A = A T  := V2f ( X  + t ( y  - x ) ) d r  2 0 
r=O 1 

which, implies (in view of the inequalities ll All I 2 A and l l  All i L f )  

Lemma is proven. 
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Lemma 21.7. r f  

1. the function f (x) is differentiable strongly convex on R" (see (21.20)) with the constant 

2. x* is its minimum point, then for all x E R" 
I > 0, 

Prooj The inequality (21.26) can be rewritten as follows 

which, for z := x* - x, leads to the following inequality 

(21.39) 

which completes the proof. 

21.2 Unconstrained optimization 

21.2.1 Extremum conditions 

Definition 21.3. 

The point x* is called a local minimum of ,f (x) on R" if there exists 6 > 0 such that 

The point x* is called a global minimum (simply minimum) of the function f (x) on 
f (x) 2 f (x*) for all x satisfying IIx - x*JI 5 6.  

R" i f f  ( x )  2 f ( x*) for  all x E R". 

21.2.1.1 Necessary conditions 
Theorem 21.1. (on necessary conditions) Let x* be a local minimum o f f  (x) on R". 
1. The first-order necessary condition (Fermat). I f f  ( x )  is differentiable at x*, then 

l V f  ( x * ) = O l  (2 1.40) 

2. The second-order necessary condition. I f f  ( x )  is twice differentiable at x*, then 

Proot To prove (1) suppose that V f (x*)  # 0. Then T > 0 we have 

(21.41) 

f (x* - t V  f (x")) = f (x*) + (Of (x*), - t V f  (x*)) + 0 ( t )  

= f (x*> - T llVf (X*>1l2 + o (t) > f (x*) 
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for small enough t which contradicts the fact that x* is a minimum. So, (21.40) holds. 
To prove (2) let us use (21.2) which for any y E R" and a small positive t =- 0 
gives 

or, equivalently, 

0 5 t2 (V2f (x*) y ,  y )  + 0 ( T 2 )  

Dividing by r 2  and tending t to zero implies (V2f (x*) y ,  y )  which is equivalent to 
(21.41). Theorem is proven. 0 

21.2.1.2 SufJicient conditions 
Theorem 21.2. 

1. Thefirst-order sufficient condition. Let f ( x )  be a convex on ps" function differentiable 
at a point x*  such that the first-order necessary condition (21.40) holds, that is, 
V f (x*) = 0. Then x* is a global minimum point off ( x )  on R". 

2. The second-order suficient condition. Let f ( x )  be twice differentiable at a point 
x*  and 

I Vf (x*) = 0, v2 f ( x * )  > 0 I (21.42) 

Then x*  is a local minimum point. 

ProoJ: The first-order sufficient condition follows directly from (21.24) since for any 
z E R" 

The second-order sufficient condition follows from the Taylor formula (2 1.2) since 

for small enough t > 0 which proves the result. 

21.2.2 Existence, uniqueness and stability of a minimum 

21.2.2.1 Existence of a minimum 
Theorem 21.3. (Weierstrass) If 
(a)  f ( x )  is continuous on R", 
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(6)  the set 

613 

(21.43) 

is nonempty and bounded for some a! E R. 
Then there exists a global minimum off (x) on R" 

Proof. For some vector-sequence { x ( ~ ) }  we have 

f ( x ' ~ ) )  +. inf f (x) < a! as k + cm 
XER" 

Then dk) E Qa for large enough k .  But the set Qa is a compact and, hence, the sequence 
{ x ( ~ ) }  has a limit x* E Qa. But from the continuity of f ( x )  it follows that f ( x * )  = 

0 inf f ( x )  which proves the theorem. 
A EW" 

21.2.2.2 Uniqueness of a minimum 
Definition 21.4. 

1. A minimum point is called locally unique if there are no other minimum points in 

2. x* is said to be a nonsingular minimum point if the second-order sufficient conditions 
some neighborhood of this point. 

(21.42) hold, that is, if0 f (x ' )  = 0, V2 f (x*) > 0. 

Theorem 21.4. A nonsingular minimum point is locally unique. 

Proot Suppose that x* is a nonsingular minimum point, but there exists another minimum 
point x** # x* in any small neighborhood of x*, that is, f (x*) = f (x**) when llx** - x*  I /  
< 6 for any small enough 6. Then we have 

f (x**)  = f (x* + (x** - x*)) = f ( x * )  + (V f ( x * ) ,  x** - x * )  

+ (v* f (x*) (x** - x*), (x** - x*)) + 0 (llx** - x*112) 
= f (x*) + ( 0 2 f  (x*) (x** - x*), (x** - x*,) + 0 (llx** - X*1l2) > f ( x * )  

since 

(V2f  (x*) (x** - x*), (X** - x*)) > 0 (llx** - x*I12) 

So, we have obtained the contradiction that x* is a minimum point. Theorem is proven. 
0 

Proposition 21.1. A minimum point of a strictly convex function is globally unique. 

Proof. It follows directly from the definition (21.19). Indeed, putting in (21.19) y := x*  
we get (for a! > 0) 

1 

1 

0 < - [ f  (Y + a! (.c - Y ) )  - f ( y ) ]  
a! 

= - [f (x*  + a! (x - x * ) )  - f ( x * ) ]  < f ( x )  - f (x*) 
a! 
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21.2.2.3 Stability of a minimum 
Definition 21.5. A local minimum point x* off ( x )  is called 

(a)  locally stable if every local minimizing sequence converges to x*, that is, there exists 
6 > 0 such that 

implies 

(b)  globally stable if any minimizing sequence converges to x*. 

Theorem 21.5. (Polyak 1987) A local minimum point x* of a continuous function f ( x )  
is locally stable if it is locally unique. 

Prooj Let { x ( ~ ) }  be a local minimizing sequence. By the compactness of a unit sphere 
in R", from any sequence there can be extracted a convergent subsequence, namely, there 
exists { ~ ( ~ i ) }  such that x@,) -+ X. But from the definition of a local minimizing sequence 
one gets 1l.f - x* 11 5 6 .  By the continuity property, we have 

which implies X = x* since x* is a local minimum point. The same is true for any other 
0 convergent subsequence, so, x@)  -+ x* ,  and therefore x* is locally stable. 

The next result turns out to be often useful in different applications. 

Lemma 21.8. (on regularized (perturbed) functions) The stability property implies 
that a minimum point of a nonperturbed functions is closed to a minimum point of a 
perturbed function, namely, i f x*  is a nonsingular minimum point off ( x )  and g ( x )  is 
continuously differentiable in a neighborhood of x*, then, for sufliciently small E > 0, 
the function F, ( x )  := f ( x )  + Eg ( x )  has a local minimum point x: in a neighborhood of 
x*, and 

(21.44) 

Prooj By Definition 21.4 it follows that x: satisfies 

VF,  (x:) = V f ( x i )  + EVg (x:) = 0 
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and, hence, we have 

0 = V F ,  ( x ; )  = V f ( x ; )  + EVg (x;)  

= v f (x* + (x; - x*)) + s v g  (x;)  = v2 f (x*)  (x; - x*) 

+, '5 [vg ( x * )  + (vg (x:) - vg (.*I)] + 0 (/IxE* - . * ] I 2 )  
By the continuity property of V g  (x) at the point x = x* it follows that for any 2: > 0 
there exists 8 > 0 such that IlX - x*IJ 5 8 implies IIVg (2) - V g  (x*)ll < E .  Taking 
here X := x:, s" := ks (where, maybe, k < 1) and E := E ,  from the last identity it 
follows that 

0 = V 2 f  (x*)  (x; - x*) + s v g  ( X * )  + 0 ( E )  

which implies (21.44). Lemma is proven. 0 

Remark 21.1. When g ( x )  2 0 for all x E R" then g ( x )  is usually called a regularizing 
term and the function F, ( x )  is called the regularized function. 

21.2.3 Some numerical procedure of optimization 

Let us consider the following numerical procedure for finding a minimum point 
x* E R'l of the function f ( x )  on R" using only the value of its gradient V f (x,) in a 
current point xn: 

0 < yrl E R, 0 < H, = H,' E RnX" 

21.2.3.1 Strong (argument) convergence 
Theorem 21.6. (on strong (argument) convergence) 
Assume that 

1. x* is an optimal point of strongly convex differentiable function f ( x )  with a constant 

2. V f (x) satisfies the Lipschitz condition (21.7) with the constant L f ;  
3. for any n = 0 ,  1 , .  . . 

1 > 0 (such point always exists by Proposition (21.1)): 

(21.46) 

Then for the sequence (x,) generated by (21.45) with any initial conditions 2 we have 
the following exponential convergence: 

W, := IIX, - x * 2  1lHFl = o (4" )  = o ([e'"q]") + o (21.47) 

whereas n -+ 00. 
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Proo$ We have the following recursion: 

Recall that 

By the condition (21.36), 

and by (21.7) 

Substitution of these inequalities into (21.48) implies 

Theorem is proven. 

Corollary 21.6. (on the gradient method convergence) If in 
(21.45) we take 

17 

(21.49) yn := y ,  H, : = I  
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we get the gradient method 

617 

(21.50) 

which converges exponentially as 

with 

q = 1 - y (21 - y L ? )  

Corollary 21.7. (on the modified Newton's method) Zf in (21.45) we take 

y, := y ,  H, := [V2f(x , - , )]-I  (21.5 1) 

we get the modified Newton's method 

which converges exponentially as 

w, := IIx, - x*11;,,;, = 0 (9")  

within the class of strongly convex functions satisfying 

0.755 5 1/L ,  < 1 

Proof. It follows from the estimates (in view of (21.34)) that 

(21.52) 

(2 1.53) 
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if we use them in (21.46). Moreover, defining x := l / L  < 1, we get 

q = L f / l - P / L ; = X - 1 - x 4 <  1 

if x 2 0.755. 0 

Below we show that there exist other modifications of Newton’s method working 
within much wider classes of functions. 

21.2.3.2 Weak (functional) convergence 
Theorem 21.7. (on weak (functional) convergence) Assume that 

1. the function f (x) is diflerentiable and is bounded from below, i.e., 

f ( X >  _> f *  > --oo (21.54) 

2. V f (x) satisfies the Lipschitz condition (21.7) with the constant L,; 
3. for all n = 0, 1,2 ,  . . . 

Amax ( f f n + ~ )  i A+ 

(21.55) 

Then for the sequence (x,} generated by (21.45) with any initial conditions 2 we have 
the following property: 

(21.56) 

whereas n -+ 00. co
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or, equivalently, 

(21.57) 

We also have 

which, by the Weierstrass theorem 14.9 in view of the boundedness from below, implies 
the existence of the limit 

lim f (x,) = f > -00 
n - t m  

Summing the inequalities (21.57) on n = 0, 1, .., T and taking T + 00, we get 

xi 

C I IVf  (xn)I12 F (ZC->-' [f ( ~ 0 )  - f ]  < 00 
n=O 

which implies 11 Of (x,) 11 -+ 0 as n -+ 00. Theorem is proven. 

Corollary 21.8. (on the gradient method) If in (21.45) we take 

we get the gradient method 

x,+1 = x, - yVf (x,), xg = 2 ,  n = 0, 1 , 2 ,  . 
2 ( 1 -  x) 

Lf 
0 < y, 5 1' := 

for  which 

for any initial conditions 2 E R" 

Corollary 21.9. (on the modified Newton's method) If in 
(21.45) we take 

(21.58) 
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and if we get the modified Newton's method 

xn+I = xn - v [v2f (xn)]-' (xn) 

x r J = i ,  n = 0 , 1 , 2  , . . .  
2 ( 1 -  x) 

L.f A+ 
O <  y I p := 

then again (21.58) is valid. 

Remark 21.2. (One more modification) Let the function f (x) be twice dzzerentiable, 
its second derivative satisfies the Lipschitz condition with the constant LVz and be strongly 
convex (with the constant 1 > 0)  on R". Taking in (21.45) 

H, := [V'f (x,~-I)]-' 

we get the modified Newton's method with a switched step-parameter for which, at the 
end of optimization, we obtain the, so-called, "quadratic" exponential convergence 

(21.59) 

starting from xni which is sufficiently close to the minimum point x* such thal 

ProoJ: First, notice that in this case h,,, (H,+1) 5 A+ = I - ' .  Evidently, by Theorem 
21.7 we have IIV f (x,)ll -+ 0 as n -+ 00, and, hence, there exists the number n* for 

L V2 which 7 llVf (x,.)li < 1. Consider n 3 n*. Taking x = x, and y := - y  [V2f (x,)]-' 
21 

V f (x,) in the inequality / / V f  (x + y )  - V f (x) - V2 f (x) y l !  F 2 11y1I2 we get 
x,+~ = x + y and 

LV2 

Denoting Z, := iiVf (x,)li we obtain z n f l  5 (LV2/212) 2:. Integrating this inequality 

we get zn I --q2". Applying then the inequality (21.37) we get (21.59). Corollary is 

proven. 0 

212 
L V 2  
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Many other methods of unconstrained optimization can be found in (Polyak 1987) and 
the references within. 

21.3 Constrained optimization 

21.3.1 Elements of convex analysis 

21.3.1 . I  Convex sets 
Definition 21.6. 

1. A set Q R” is convex i f i t  contains any segment with the endpoints lying in Q, i.e., 

2. The convex hull conv Q of a set Q C R“ is an intersection of all convex sets 
hx + (1 - h)  y E Q for any h E [0, 11 whenever x ,  y E Q. 

containing Q, or, equivalently, Carathe‘odoq’s lemma, see Rockafellar (1970), 

I n i l  n+l \ I  

I I i = l  i = l  

Claim 21.3. 

It is easy to check that 
if Q is bounded and closed then 

conv Q = Q 

if Q is convex then the sets 

aQ := { X  = ax’ E R” I cx E R, 
A Q  := {x = AX’ E R” 1 A E R”””, 

X ’  E Q }  
X’ E Q }  

are convex too; 
if Q l  and Q 2  are convex then Q ,  n Q2 is convex. 

Claim 21.4. For a convex function f ( x )  the set 

Qa := { X  E JR” I f ( x )  5 a }  

(21.60) 

(21.61) 

is convex. 

Proof. Let x’, x” E Q m .  Then, by the convexity property (21.18), 

f (Ax’ + (1 - h)  x”) 5 h f  (x’)  + (1 - h )  f (x”)  
- <ha  + (1 - h ) a  = a  

which means that z := Ax‘ + (1 - h)  x” E Qa.  

Definition 21.7. A function f ( x )  is called quasi-convex ifthe sets Qm (21.61) are convex 
for any a. 
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T Q  { x }  = argmin IIx - yI /  
FQ 

Remark 21.3. Ifthe sets Qa are convex, then f ( x )  is not obligatory convex, for example, 
f ( x )  = e-1'. 

(21.62) 

21.3.1.2 Projections and their properties 
Definition 21.8. The projection of the point x E R'l onto the set Q E R" is a point 
T Q  [x} E Q such that 

Proposition 21.2. The following assertions seem to be evident: 

(a)  I f x  E Q then 

TQ ( x }  = x 

T Q  ( X I  = argmin l /x  - y112 
Y E Q  

(c)  I f  Q is closed convex then TQ {x} is unique, since Cp ( y )  := IIx - y/12 is a strictly 
convex function and, hence, has a unique minimum point. 

Lemma 21.9. I f  Q is closed convex then 

1. for all x E R" and all y E Q 

(21.63) 

2. for all x ,  y E R" 

(21.64) 

Proof. 
1. Since, by Definition 21.8 and in view of the closeness and the convexity of Q, for any 

y E Q we have 

2 
IIx - nQ [x)lI 5 IIx - Y11' 
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Lemma is proven. 0 

21.3.1.3 Separation theorems 
Here we will formulate and prove the theorem, named the separation theorem, see 

Fig. 21.2 for  afinite dimensional space (in infinite dimensional spaces this result is known 
as the Hahn-Banach theorem), which plays a key role in constrained optimization. 

I 

Fig. 21.2. Illustration of the separation theorem. 
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Theorem 21.8. (Alexeev et al. 1979) 
Let Q & R" be a convex subspace (or a set) of R" which does not contain the point 0, 
that is, 0 $ Q. Then there exists a vector a = ( a ] ,  . . . , a,)T E R" such that for  any x = 
(xi, . . . , x,) E Q the following inequality holds: 

I i=l I 
(21.65) 

In other words, the plane C:=, a , x ,  = 0 separates the space R" in two subspaces, one 
of which contains the set Q completely. 

ProoJ: Let lin Q be a minimal linear subspace of R" containing Q.  Only two cases are 
possible: 

lin Q # R" or lin Q = R" 
1. If lin Q + R", then lin Q is a proper subspace in R" and, therefore, there exists a 

hyperplane c:=, a,x, = 0 containing Q as well as the point 0. This plane may be 
selected as the one we are interested in. 

2. If lin Q = R", then from vectors belonging to Q we may select n-linearly independent 
ones forming a basis in R". Denote them by 

el,  . . . ,  en (el E Q ,  i = 1, . . . ,  n )  

Consider then the two convex sets (more exactly cones): a nonnegative "orthant" K 1  
and a "convex cone" Kz defined by 

9 

x E R" : x = Cult?', 

i =, 1, . . . , s 
a, 2 0, Z' E Q 

1 = I  

(s E N is any natural number) 
K2 := 

(21.66) 

These two cones are not crossed, that is, they do not contain a common point. Indeed, 
suppose that there exists a vector 

which also belongs to Ic2. Then one is obliged to find s E N ,  ii, 2 0 and 2' such that 
X = xi=, ii,2'. But this is possible only if 0 E Q ,  since, in this case, the point 0 might 
be represented as a convex combination of some points from Q ,  i.e., 

(21.67) 

i= l  i=l i= l  
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e' (G + 6) =c s 

' = I  c (sil + 6,) 
J = I  

But this contradicts with the assumption that 0 4 Q. So, 

I C ~  n K2 = 0 ( 2  1.68) 

3. Since XI is an open set, then any point x E K1 cannot belong to conv K2 in the same 
time. Note that conv K2 is a closed and convex set. Let us consider any point xo E K1, 
for example, xo = - C:=, 2' and try to find the point y o  E conv K2 closer to xo. 
Such point obligatory exists, namely, it is the point minimizes the continuous function 
f ( y )  := IIx - yII within all y belonging to the compact 

conv Kz n {x  E K1 : IIx - lixoll/l 5 E - small enough} 

4. Then let us construct the hyperplane H orthogonal to the (xo-yo) and show that this 
is the plane that we are interested in, that is, show that 0 E H and Q belongs to a half 
closed subspace separated by this surface, namely, 

int H n conv Ic2 = M 

and, since, Q conv X 2 ,  then 

Q E (R"\int H )  

By contradiction, let us suppose that there exists a point 5 E (int H n E2). Then the 
angle L x o y o j  is less than n/2, and, besides, since conv K2 is convex, it follows that 
[ y o ,  j ]  E conv K2. Let us take the point j '  E ( y o ,  j )  such that ( x o ,  j ' )  I ( y o ,  j )  and 
show that j '  is not a point from conv K2 close to xo.  Indeed, the points y o ,  5 and j '  
belong to the same line and j '  E int H .  But, if j '  E [ y o ,  j ]  and j '  E convK2, then 
obligatory I/xo - j'll < /Ixo - yell (a shortest distance is less than any other one). At 
the same time, j '  E ( y o ,  j ) ,  so jlxo - j / l  < I/xo - y o / ] .  Also we have 0 E H, since 
if not, the line [O, oo), crossing yo and belonging to E2, should obligatory have the 

0 common points with conv IC2. Theorem is proven. 

Definition 21.9. The convex sets Ql and Q2  in R" are said to be disjoint (or separable) 
if there exists a number (Y and a vector a E R" (a  f. 0)  such that ( a ,  x) 2 (Y for all 
x E Ql and ( a ,  x) 5 ct for all x E Q2. These sets are called strictly disjoint (or strictly 
separable) if ( a ,  x) 1 ctl for all x E Q I  and ( a ,  x )  i a2 for all x E Q 2  and a2 < a] .  

Lemma 21.10. (Polyak 1987) If Ql, Q2 be convex disjoint (separable) sets in R" and, 
additionally, Q2 be closed and bounded. Then Ql and Q2 are strictly separable. 

Pro05 First, notice that the function 
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is convex. So, by the properties of Q2, this function attains its minimum on Q2. 
Denote 

a2 := argmin VI (x) ,  a1 :=xQ, (az) 
x ~ c Q 2  

Then a2 f al and 

Hence, by the disjointedness definition, 

(a ,  - u2, x )  2 (a ,  - a2, U I )  := a1 

(a ,  - a z , x )  2 (al -a2, uz) :=a2 

for all x E Q l  

for all x E Q2 

which implies 

Lemma is proven. 

21.3. I .4 Subgradient 
Definition 21.10. A vector a E PS" for which 

I f (x + Y )  2 f (XI + ( a ,  y)  I ( 2  1.69) 

for all y E R" is  culled the subgradient of the convex function f (x) at the point 
x E R" and is denoted by a = af (x). Sure, in the nonsmooth points there exist a set of 
subgradients denoted by D f (x) (see Fig. 21.3). 

X + Y  

Fig. 21.3. Subgradients. 
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The following properties of the subgradients of convex functions seem to be evident. 

Claim 21.5. 

1. Analogously to (21.31) the subgradient of a convex function is a monotone operator, 
i.e., for any x, y E R" and any a f  (x) E D f (x), a f  ( y )  E D f ( y )  

( a t  (x) - af ( Y ) ,  x - Y )  2 0 (21.70) 

2. f i  (x,y), as it is defined in (21.23), for any x , y  E R" can be calculated as 
follows 

4. For the convex functions f ,  (x) and f 2  ( x )  we have 

5. For any matrix A E R""" and any x E R" 

a f  ( A X )  = ATaf (x) 

Exercise 21.2. The following relations seem to be useful: 

1. 
X 

if x f O  { -  a with llall 5 1 if x = 0 
IIX II a llxll = 

2. 
m m 

(21.71) 

(21.72) 

(21.73) 

(21.74) 

(21.75) 

(21.76) 

Lemma 21.11. The set 2, f ( x )  at any point x E R" is nonempty, convex, closed and 
bounded. 

ProolJ: Consider in the set Qa := (x, a : f (x) 5 a} (which is called the epigraph 
of f (x)). Obviously, this set is convex, and, by Lemma 21.3, it has an interior point, 
since the points {x, f (x)} form its boundary. By the convexity of Qa, there exists a 
supporting hyperplane for Qa at the point x, given by {a ,  -11 for some a .  Thus, a is 
a subgradient of f (x) at x. The convexity, closedness and boundedness follow from 
Lemma 21.4. 0 

co
nt

ro
len

gin
ee

rs
.ir



628 Advanced Mathematical Tools for Automatic Control Engineers: Volume I 

21.3.2 Optimization on convex sets 

Here we will be interested in the following optimization problem 

( 2  1.77) 

where Q is a convex (not obligatory bounded) set and f ( x )  is assumed to be smooth 
(differentiable) on Q if any special assumptions are accepted. 

Definition 21.11. We say that the point x* E Q is 

(a)  a local minimum of f (x) on Q if f ( x * )  5 f ( x )  for all x E Q and such that 

(b)  a global minimum o f f  ( x )  on Q iff (x*)  5 f (x) for all x E Q. 
IIX -x*ll 5 8, 6 > 0; 

21.3.2. I Necessary first-order minimum condition 
Theorem 21.9. (The necessary condition) Let 

1. f (x) be differentiable at the global minimum point x3;  
2. the set Q be a convex set. 

Then for all x E Q 

(21.78) 

Prooj We will prove this theorem by contradiction. Suppose that (V f (x*), 2 - x * )  i 0 
for some 2 E Q. Then, by the convexity of Q ,  the point x, := x* + M (2 - x*)  E Q for 
all a E [0, 11, and, hence, for small enough a 

which contradicts the assumption that x* is a minimum point. Theorem is proven. 0 

21.3.2.2 Sufficient first-order minimum condition 
Theorem 21.10. (The sufficient condition of optimality) Let 

1. f (x) be diferentiable at the point x* E Q; 
2. the set Q be a convex set; 
3. for all x E Q the following inequality holds 

Then the point x* is a local minimum point on Q. 

Proot Take E 2 81 > 0, so that 

( 2  1.79) 

a I f  (x) - f ( x" )  - (Vf ( x * ) , x  -x*)l I - Ilx - - * I 1  
2 
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for all x E Q such that IIx - x*II 5 e l .  Then, by (21.79), 

f ( X I  1. f (x*) + (Of (x*), x - x*) 

2 2 
a a 

- - Ilx - x*II P f (x*) + - IIx - x*II 

which means the local optimality of x*. Theorem is proven. 

Remark 21.4. Notice that x* in (21.79) cannot be an interior point of Q, and, therefore, 
under the conditions of Theorem 21.10 the minimum is attained at a boundmy point of Q. 

21.3.2.3 Criterion of optimality for convex (not obligatory differentiable) functions 
Theorem 21.11. (The criterion of optimality) Let 

1. f (x) be convex on Iw"; 
2. Q Iw" be a convex set. 

Then the point x* E Q is a global minimum on Q if and only if 

j (af (x*), x - x*) 2 0 I 
for some subgradient af (x*) E V f (x*) and all x E Q. 

Prooj 

(21.80) 

Necessity. Suppose that there is no such subgradient. Then the sets V f  (x*) and 
S := ( y  E R' : ( y ,  x - x*) 2 0, x E Q} do not intersect. Notice that S is convex 
and closed. By Lemma 21.1 1 ,  the set D f (x*) is convex, closed and bounded. So, 
in the separation lemma 21.10, there exists c E R" such that ( c ,  a )  5 -a < 0 for 
all a E V f (x') and ( c ,  y )  > 0 for all y E S .  Denote by r the closure of the cone 
generated by all feasible directions, i.e., 

If c f- r, then again there exists a vector b such that (b ,  x) 2 0 for all x E r 
and ( c ,  b )  < 0. But b E S and, therefore, the inequality ( c ,  b )  < 0 contradicts the 
condition (c, y )  > 0 for all y E S. So, c = r, and, hence, one can find the sequences 
h k  > 0 and x' E Q such that hk (xk - x*) -+ c. Taking k large enough such that 

we obtain 

1 1 
2 2 

- - -a + -a = --a 
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and, hence, f; (x, h k  ( x k  - x*)) < 0. Therefore, for sufficiently small y > 0, it 
follows that 

f (x* + y (2 - x * ) )  < f (x*> 

which contradicts the assumption that x* is a minimum point. The necessity is proven. 
(b) SufSiciency. Let (21.80) hold for all x E Q and some subgradient af (x*). Then 

i.e., x* is a global minimum point on Q. Lemma is proven. 0 

Remark 21.5. In the case of no constraints, the criterion (21.80) becomes 

21.3.3 Mathematical programing and Lagrange principle 

21.3.3. I Nonlinear programing problem 
The general problem of nonlinear programing is formulated as follows: 

minf (x) 
.K EW" 

g i ( x ) i O ,  i = 1 ,  ..., r 
h,j (x) = 0,  j = 1 ,  . . . , r' 

(21.82) 

Notice that any equality constraint hi (x) = 0 can be represented as two inequality-type 
constraints: 

So, the general nonlinear programing problem (21.82) can be represented as 

r g f  (x) 

g i ( x ) i O ,  i = l ,  . . . ,  m 

where m = r + 2r' with 

(2 1.83) 

{ h j ( x )  if i = r + j  ( j  = 1, .  . . , r ' )  g i ( x )  = - h j ( x )  if i = r + r ' + j  
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21.3.3.2 Lagrange principle 
The theorem below follows the scheme of presentation given in (Alexeev et al. 1979) 

where the same result is formulated in a more general case in Banach (not obligatory 
in finite dimensional) space. It permits to represent the given constraint optimization 
problem as another (but already) unconstrained optimization problem. 

Theorem 21.12. (Lagrange principle) Consider the general nonlinear programing 
problem (21.83) where the functions f ( x )  and gi  (x) ( i  = 1, . . . , m )  are assumed to be 
differentiable but not convex. 

A. (Necessary conditions, Karush-John). Ifx* is a local minimum point, then there exist 
nonnegative constants p* 2 0 and v; >_ 0 ( i  = 1, . . . , m )  such that the following two 
conditions hold: 

1. “local minimality condition to Lagrange function” 

namely, 

or, equivalently, 

m 

w*v f (x”) + c vfVg; ( x * )  = 0 
i=l 

(2 1.84) 

(21.85) 

(21.86) 

2. “complementary slackness”: 

vl*gi(x*) = 0 (i = 1, . . . , m )  (21.87) 

B. (Sufficient conditions). If p* > 0 (the regular case), or equivalently, if the vec- 
tors Vg ,  (x*) ( i  = 1, . . . , m), corresponding to the active indices for  which vr* > 0, 
are linearly independent, then conditions (1)-(2) above turn out to be sufficient to 
guarantee that x* is a local minimum point; 

C. To guarantee the existence of p* > 0 it is sufficient that the, so-called, Slater’s 
condition holds, namely, that in a neighborhood i2 (x*) of x* there exists X 
such that 

gi ( X )  c 0 ( i  = 1, .. . , m )  (21.88) 

ProoJ: First, define the set 

(21.89) 
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A. The set C is nonempty and convex. Indeed, the vector q with positive components 
belongs to C since in (21.89) we may take x = x*. So, C is nonempty. Let us show 
that it is convex. To do that we need to prove the existence of a vector xu E R (x*) 
(R (x*) can always be selected as a convex set) such that for any q" := q + a (q' - q ) ,  
a E [0, 11 we have 

if for some x, x' E C2 (x*) 

Denote x" := x + a (x' - x), a E [0, I]  which, by the convexity of 52 (x*), also 
belongs to R (x*). Since the functions f ( x )  and gi(x) (i = 1, . . . , m )  are differentiable 
in Q (x"), it follows that 

and, hence, 

f ( P )  - f ( x * )  = ( V f ( x * ) ,  x0 - x*) + 0 (IIx" - x*ll) 
= a [ ( V f ( x * ) ,  x' - x*) + 0 (llx' - x* It)] 

+ (1 - a> [ ( V f ( x * ) ,  x - x*) + 0 (Ilx - x*ll,] 
< a& + (1 - a )  qo = q; 

Analogously, g;(x") 5 qq, which implies q" E C. So, C is nonempty and convex. 
B. The point 0 does not belong to C .  Indeed, if so, in view of the definition (21.89), 

there exists a point X E X o  satisfying 

(21.90) 

which is in contradiction to the fact that x* is a local solution of the problem. So, 0 $ C. 
Based on this fact and taking into account the convexity property of C, we may apply 
the separation principle (see Theorem 21.8): there exist constants (p*, u:, . . . , u i )  
such that for all 17 E C 

(2 1.91) 

C.  Multipliers p* and u: (i = 1, . . . , m )  in (21.91) are nonnegative. In (A) we have 
already mentioned that any vector q E RL+' with positive components belongs to 
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C ,  and, particularly, the vector E ,  . . . , E ,  1, E ,  . . . , E 

vector into (21.91) leads to the following inequalities 

( E  > 0). Substitution of this (- 
(21.92) 

Tending E to zero in (21.92) implies the nonnegativity property for the multipliers 
p* and u' ( i  = 1 , .  . . , m).  

D. Multipliers u,* ( i  = 1, . , . , m )  satisfy the complementary slackness condition (21.87). 
Indeed, if gl, (x*) = 0, then the identity u;Og,, (xi) = 0 is trivial. Suppose that 
gl, (x*) < 0. Then the point 

6 , 0 , .  . . , o ,  gl, (x*), 0, . . . , o  (6  > 0 )  1 - ( lo 

(21.93) 

belongs to the set C. To check this it is sufficient to take x = x* in (21.89). Substitution 
of this point into (21.91) implies 

Tending 6 to zero we obtain that uE",gr, (x*) 2 0, and since gl, (x*) < 0, it follows 
that ul*, 5 0. But in (C) it has been proven that u i  > 0. So, u; = 0, and, hence, 

E. Minimality condition to Lagrunge function. As it follows from (21.89), for x E i-2 (x*) 
vE",g/, (x*) = 0. 

the point 

belongs to C for any 6 > 0. Substitution of this point into (21.91), in view of (D), 
yields 

/ m \ 

m 

= w * f ( x * )  + c u:g; (x*) - p"6 = L (X*, /.L*, V * )  - P*6 
i = l  

(21.95) 

Taking 6 -+ 0 we obtain (21.85). 
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F. If p* > 0 (the regular case), then the conditions (A l )  and (A2) are sufficient for the 
optimality. Indeed, in this case it is clear that we may take p* = 1, and, hence, for 
any x satisfying gi (x) 5 0 ( i  = 1, . . . , m )  

This means that x* is the optimal solution. Notice also that, by (21.86), if p* = 0 it 
follows that 

m m c v y g ,  (x*) = c ujrvg, (X*) = 0 

which means linear dependence of the vectors Vgi (x*) corresponding to the active 
constraints. 

G. Slater’s condition of the regularity. Suppose that Slater’s condition is fulfilled, but 
p* = 0. We directly obtain the contradiction. Indeed, since not all u: are equal to 
zero simultaneously, it follows that 

L 

L (i, 0 ,  u*) = c u;gi ( X )  < 0 = L (x*, 0,  u * )  
I=1 

which is in contradiction with (E). Theorem is proven. 0 

21.3.3.3 Convex programing 
Theorem 21.13. (Kuhn & Tucker 1951) Suppose that 

1. all functions f (x) and gi (x) (i  = 1, . . . , m )  in the general nonlinear programing 

2. Slater’s condition (“the existence of an internal point”) holds, i.e., there exists X E R” 
problem (21.83) are differentiable‘ and convex in R”; 

such that 

gi ( 2 )  < 0 ( i  = 1 , .  . . , m )  (21.96) 

Then, for a point x f  E R” to be a global solution of (21.83) it i i  necessary and 
suficient to show the existence of nonnegative constants u,? 2 0 ( i  = 1, . . . , m )  such 
that the, so-called, saddle-point property for the Lagrange function (21.84) holds for any 
x E Iw” and any ui 2 0 (i = 1 , .  . . , m )  

L (x, 1, u*) 2 L (x*, 1, u * )  2 L (x*, 1, u )  (21.97) 

I Here we present the version of the theorem dealing with differential functions. In fact the same result 
remains valid without the assumption on differentiability (see (Polyak 1987)). 
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Finite-dimensional optimization 

or, in another form, 

635 

min L ( x ,  1, u*)  = min maxL ( x ,  1, u )  
X€R" xeR" v20 

= L ( x * ,  1, u*)  (21.98) 
=max min L ( x ,  1, u )  = max L (x*, 1, u )  

V Z O  X € R "  U?O 

Proo$ 

(a) Necessity. By Slater's condition (see item C in Theorem 21.12) we deal with the 
regular case, and, therefore, we may take ,u* = 1. If x* is a global minimum of 
(21.83), then, in view of the convexity condition, it is a local minimum also. Hence, 
by Theorem 21.12, we have L ( x * ,  1, u*)  5 L (x, 1, u*).  On the other hand, 

i=l 

which proves the necessity. 
(b) Sufficiency. Suppose that (21.97) holds. Then 

m 

L ( x * ,  1, u*)  = f ( x * )  + C u:g; ( X * )  

which implies 

m in 

i = l  i=l 

for all ui 2 0 ( i  = 1, . . . , m).  This is possible if and only if (this can be proven by 
the contradiction) 

gj ( x * )  I 0 ,  u,Tgi (x*) = O ( i  = 1, . . . , m )  

So. we have 

i = l  
in 

i = l  i = l  

which means that x* is a solution of (21.83). Theorem is proven. 0 
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Remark 21.6. The construction of the Lagrange function in the form (21.84) 

m 

i= l  

with p 2 0 is very essential. Indeed, the usage of this form only as L ( x ,  1, u) ,  when 
the regularity conditions are not valid, may provoke a serious error in the Optimization 
process. The following counterexample demonstrates this effect. Consider the simple 
constrained optimization problem formulated as 

ho(x) := x1 -+ mi; } 
(2 1.100) 

g ( x ) : = x ; + x ; i O  

This problem evidently has the unique solution x1 = x2 = 0. But the direct usage of the 
Lagrange principle with p = 1 leads to the following contradiction: 

1 L (x, 1, u*> = x1 + u* (x: + x;) -+ min 

--L ( x* ,  1, u*)  = 1 + 2u*x; = 0 
3x1 

X€R? 
a 

I a 
- L (x*, 1, u * )  = 2u*x; = 0 8x2 . 

+ o  u* f 0 ,  x; L O ,  x; = -- 
1 

2u* 

(21.101) 

Notice that for this example Slater’s condition (21.96) is not valid. 

21.3.4 Method of subgradient projection to simplest convex sets 

Let us consider the constrained optimization problem (21.77) 

min f ( x )  
X ~ Q  

where the function f ( x )  is supposed to be convex, and the set Q is convex and having a 
simple structure such that the projection operation TCQ { x )  (21.62) can be easily realized. 
Consider also the following i.terative procedure: 

(2 1.102) 

where a f (x,,) is any subgradient form 23 f (xn), and yn 2 0 is “the step of the procedure”. 
Denote by x* E Q the solution of the constrained optimization problem (21.77) with the 
convex f .  

Theorem 21.14. (omstrong convergence) Suppose that 

1. f ( x )  has on Q a unique global minimum point x*, that is, 

f (x) > f (x*) for  all x E Q ,  x # x* (2 1.103) 
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2. f o r  any x E Q and any a f  (x) E D f  (x) 

3. the step size yn satisfies the conditions 

30 m 

(2 I .  1 04) 

( 2  1.105) 

Then for  any initial value xo E Q the vector sequence [ x n } ,  generated by the procedure 
(21.102), converges to x* whereas n + 00. 

Proof: By the projection operator property (21.64), and in view of the inequality (21.70) 

it follows that 

So, defining u,, := IIx, - x*lj2, we have 

By (21.80) it follows that ( a f  (x*), x,, - x*) 2 0, and hence, (21.106) implies 

Let us consider the sequence (Gladishev's transformation) (w,} defined by 

X m 

(2 1.108) 
L =n i=n s = n + l  

The variable w,, is correctly defined since, in view of the inequality 1 + x 5 e x ,  it 
follows that 

CCI / m \  
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For this variable, using (21.107), we have 

X 00 00 cc 

I =n i=n y = n + l  

So, 0 5 w,,+~ 5 w,, and, hence, by the Weierstrass theorem, this sequence converges, i.e., 

w,~ + w* as FZ + 00 

In view of (21.108), it follows that u,? also converges (in fact, to the same limit point), 
that is 

u , ~  + u* as n -+ 00 

Returning to (21.106), after summing these inequalities, we obtain 

I =O i=O i=O 

or, equivalently, 

Taking n -+ 00, we get 

x 

Since, by the assumption of this theorem, EEO yn = 00, we may conclude that there 
exists a subsequence ( n k ]  such that ( a f  (x*), xnk - x*) + 0 whereas k + 00. But, by the 
uniqueness of the global minimum (see the condition (21.103)), we derive that x , ~ ,  + x* 
as k + 00, or equivalently, unL -+ 0. But {u,) converges, and, therefore, all subsequences 
have the same limit u*, which implies u* = 0. Theorem is proven. 
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21.3.5 Arrow-Hurwicz-Uzawa method with regularization 

Consider again the general non-linear convex programing problem in the form 
(21.83), i.e., 

(2 1.109) 

when all functions are assumed to be convex (not obligatory strictly convex), the set Q 
is a convex compact, and Slater's condition (21.96) is fulfilled. Additionally, we will 
assume that 

Associate with this problem the following regularized Lagrange function 

S I Ls (x, 1, u) := L (x, 1, u )  + - ( l/xll2 - llv112)3 8 2 0 I 
nr 

L (x, 1, u )  = f (x) + y U , P i  (x) 
I i= l  

(21.110) 

First, notice that the function Ls (x, 1, u )  for 6 > 0 is strictly convex on x for any fixed u,  
and it is strictly concave on u for any fixed x, and, hence, it has the unique saddle point 
(x* (S), u* (6)) for which the following inequalities hold: for any u with nonnegative 
components and any x E R" 

As for the function L (x, 1, u) ,  it may have several (not obligatory unique) saddle points 
(x*, u*). The next proposition describes the dependence of the saddle point (x *  (S), u* (6)) 
of the regularized Lagrange function (21.1 10) on the regularizing parameter 6 and analyses 
its asymptotic behavior when S -+ 0. 

Proposition 21.3. 

1. For any x E R" and any u with nonnegative components the following inequality 
holds: 

(21.11 2)  
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2. For any 6 ,  6’ > 0 there exists 0 < c < 00 such that the following “Lipschitz-Qpe” 
continuity property holds: 

/ Jx *  (6) - x* (6’)jJ + j Ju*  (6) - u* (6’) 1 )  5 c 16 - 6’1 (21.1 13) 

3. When 0 < 6,, -3 0 

(x* (&), u* (6,)) -+ (x**, Y**) as n + 00 

(x**,  u**) = argmin ( l l x * ~ / ~  + / / u * / / ~ )  
( .‘(*,V*) 

(2 1.1 14) 

ProoJ 
1. In view of (21.30) for any x, y E R” we have 

So, since L (x, 1, u )  is convex on x for any fixed v, and it is linear on v, in view of 
(21.30) it follows that 

1 
) = (. - x* ( 6 ) .  --L (x, 1, u )  + 6 (x - x* (S), x) 

( 
a 

x - x* (a), -Ls (x, 1, u )  
ax 

a 
ax 

1 L (x, 1, u )  - L (x* (a), 1, u )  + 6 (x - x* (S), x) 

and 

1 a 
u - u* (S), -Ls (x, 1, u )  ( a u  

1 = (v - u* (6), --L (x, 1, u )  - 6 ( u  - u* (6) ,  u )  
a 

a v  
Ill 

= c (Ui - u; (6)) gi (x) - 6 (u  - u* (6), u )  
i = l  

which leads to the following relation: 

(21.1 15) 

(21.116) 
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(21.1 17) 

which proves (21.112). 

function on 6. 

Lagrange function) and applying the inequalities 

2. The inequality (21.1 13) results from the linear dependence of the regularized Lagrange 

3. Taking in (21.117) x = x*, u = u* (one of the saddle points of the nonregularized 

L (x*, 1, u*)  - L (x* (6), 1, u*) 5 0 
m m 

leads to the following relation: 

0 5 L (x*, 1, u*) - L (x* (S), 1, u*) + s (x* - x* (S), x*) 
m 

- c (u: - u: (6)) g, (x*) + 6 (u* - u* (6), u') 
/ = I  

- < 6 (x* - x* (6), x*) + s (u* - u* (a), u*)  

Dividing both sides by S > 0 we obtain 

0 5 (x* - x* (S), x*) + (u* - u* (6), u*> (21.118) 

which is valid for any saddle point (x*, u*) of the nonregularized Lagrange function. 
We also have 

s s 
2 2 

Ls (x* (S), 1, u*)  = L (x* (s), 1, u*) + - IIx* (S)1I2 - - Ilu*Il2 

Dividing by S > 0 implies 

2 
IIx* (S)II' + IIu* (S)1I2 5 j [ L  (x* (S), 1, u * )  - L (x*, 1, u* (S))] 

+ llx*/IZ + llU*1l2 < 00 

co
nt

ro
len

gin
ee

rs
.ir



642 Advanced Mathematical Tools for Automatic Control Engitzeers: Volume 1 

This means that the left-hand side is uniformly bounded on 8, and, hence, if 6 + 0, 
there exists a subsequence 8 k  ( k  -+ 00) on which there exist the limits 

Suppose that there exist two limit points for two different convergent subsequences, 
i.e.. there exist the limits 

x* (&) -+ X * ,  u* (&) + V* as k' -+ 00 

Then for 6 = 6k + 0 and 6 = 8k '  -+ 0 in (21.118) we have 

0 5 (x* - x*, x*) + (u* - v*, u*)  
0 5 (x" - x*, x*) + (u* - v*, u*) 

From these inequalities it follows that points (X*, ;*) and (X*, V*) correspond to the 
minimum point of the function 

1 
2 

s ( X * ,  u*) := - (llx*11' + llU*1l2) 

defined for all possible saddle points of the nonregularized Lagrange function. But the 
function s (x*, u*) is strictly convex, and, hence, its minimum is unique which gives 

0 X* = X*, 6" = V " .  Proposition is proven. 

Consider the following numerical procedure' 

(21.1 19) 

where the operator [.I.+. acts from R" into R" as follows: 

xi if xi 0 
0 if xi  < 0 [x i ]+  := { 

Theorem 21.15. Assume thal 

1. f ( x )  and gi ( x )  (i = 1 ,  . . . , m )  are convex and dc&-entiahle in R"; 
2. the estimates (xn, u,,) are generated by the procedure (21.119): 

(21.120) 

* In Arrow et al. (1958) this procedure is considered with 8 = 0, that is why the corresponding convergence 
analysis looks incomplete. 
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3. the step size yn and tho regularizing parameter 6,& satisfy the following conditions: 

n =O 

16n+1 - & I  --f as + 0O 5 + h which is small enough, 
6,l Y n  6, 

Then for  any initial value l io E Q and any 110 with nonnegative components the vector 
sequences bn}, {u,,}, generated by  the procedure (21.119), converge as n -+ 00 to 
x**, u** dejned b y  (21.114). 

Prouf Using the property (21.64) of the projection operator we get the following recur- 
sion for the variable wtl := IIx, - x* (S,1))12 + 1111, - u* (6,,)/12: 

Taking into account that 
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and applying the inequalities (21.1 12) and (21.1 13) the last recursion can be estimated as 
follows: 

Here ci Ti = 1, 2) and Ci (i = 0, . . . , 5) are positive constants. By Lemma 16.17 applied 
for the case r = 112 and for 

in view of the conditions of this theorem, we have 

c is any large real number, b = 0 ,  d = 0 

and, hence, u(c)  = 0 which proves the theorem. 

Corollary 21.10. Within the class of numerical sequences 

the conditions of Theorem 21.15 are satisfied i j  

/ Y + S I 1 ,  Y > S ,  Y < l l  

ProoJ It follows from the estimates that 

0 

(2 1.1 22) 

(2 1.123) 

=o(+ n +  1) [(l+:)s-l])  
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and 

which implies (21.123). Corollary is proven. 0 

Corollary 21.11. Within the class (21.122) of the parameters of the procedure (21.119) 
the rate x of convergence 

is equal to 

I x = min { y  - 6; I - y ;  6) I (2 1,124) 

The maximal rate x* of convergence is attained for 

I y = y*  = 213, 6 = 6* = 1/3 1 (21.125) 

ProoJ: By Lemma 16.16 and in view of (21.121) it follows that for xo characterizing the 
rate of convergence 

we have x0 = min{y - S; 1 - y } .  But, by (21.1 13), it follows that 

2 2 
IIX, - X**ll + 1 1 %  - v**II = w, + 0 (Sd 

which implies (21.124). The maximal value x* of x is attained when y - S = 1 - y = 6, 
0 i.e., when (21.125) holds which completes the proof. 

Remark 21.7. Many other numerical methods, solving the general nonlinear programing 
problem (21.83), are discussed in (Polyak 1987). 
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Since the fabric of the universe is most pegect, and is the work of a most wise Creator, 
nothing whatsoever takes place in the universe in which some ,form of maximum and 
minimum does not appear. 

Leonard Euler, 1744. 

22.1 Basic lemmas of variation calculus 

The following lemmas represent the basic instrument for proving the main results of 
variation calculus theory and optimal control theory (see, for example, Gel’fand & Fomin 
(1961), Ivanov & Faldin (1981) and Troutman (1996)). 

22. I .  1 Du Bois-Reymond lemma 

First, let us prove the following simple auxiliary result. 

Lemma 22.1. If 0 5 p E C [ a ,  b]  and JA?=,p(x)dx = 0, then p ( x )  = 0 for  all 
x E [a,  b]. 

Proof. Since p (x) 2 0, for any x E [a,  b]  we have 

t=a t=a 

So, P (x) = 0 on [a,  b ] ,  and, hence, P’ (x) = 0 too. This exactly means p (x) = P’ (x) = 0 
0 which proves the statement of this lemma. 
641 
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Lemma 22.2. (Du Bois-Reymond) Zf h E C [a,  b] is a continuous on [a,  h] scalar 
,function of the scalar argument and 

b / h (x) u' (x) dx = 0 
x=u 

(22.1) 

h (x) = c = const on [a,  b] 

Proof. For a constant c, the function u (x) := kLu [h ( t )  - c ] d t  is in C' [a,  b]  (it has 
a continuous derivative) and u' (x) = h (x) - c so that u (a)  = 0. It will be in D1 if, 
additionally, it satisfies the condition u (6) = 0, that is, if u (b) := J=, [h ( t )  - c] dt  = 0, 
or c = (b - a)-' f ,  h ( t )  d t .  Thus, for these c and II (x), in view of (22.1), we have 

b 

2 0 5 ] [h (x) - c] dx = [h (x) - c]  u' (x) dx 
x =a x=u 

h 

x =a 

and, by Lemma 22.1, it Follows that [h (x) - c ] ~  = 0 which completes the proof. 

The next lemma generalizes Lemma 22.2. 

Lemma22.3. I f h E C [ a , b ] a n d f o r s o m e m =  1 , 2  , . . .  

h (x) u'") (x) dx = 0 
X=U .i 

for all u E D,n where 

D,, := { u E C" [a ,  b] : u ( ~ )  (a )  = u@) (6)  = 0, k = 0, 1, . . . , m - I}  

Then on [a,  b] the function h (x) is a polynomial of a degree I < m, that is, 

Proof. By a translation, we may assume that a = 0. The function 

H (x) := j (. . . ( j. ( tp(t)dt) &,) ...I dt,  
I, =o r,-, =o 
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is in C"' [0, b] with the derivative H(") (x) = h (x), and, fulfilling the identities 

H (0) = H' (0) = . . . = H " " ~ ' )  (0) = 0 

Then, if q is a polynomial of a degree 1 < m, then P (x) := ,x"q (x) vanishes at x = 0 
together with P ( ' )  (x) for i < m, while p (x) := P(") (x) is another polynomial of the 
degree 1 < m. Define v (x) := H (x) - P (x), so that I)('") (x) = h (x) - p (x). Show 
next that with the proper choice of q (x) we can make dk)  (b) = 0 ( k  = 0, I ,  . . . , in - I) .  
Supposing that this choice has been made, the resulting v E D,, and, moreover, 

- - . . . = (-l)m p'") (x) v (x) d x  = 0 
x=O 

since the boundary term vanishes. By the assumptions of this lemma it follows that 

h b 

0 5 I [h (x) - p (x)]' d x  = [h (x) - p (XI] d") (x) d.x I 
.r=o x=o 

h 

= / h (x) u ( ~ )  (x) d x  = 0 

So, by Lemma 22.1, we get h (x) = p (x) on [0, b]. Lemma is proven. 0 

Lemma 22.4. Zfg, h E C [a ,  b] and 

] [g  (x) v (x) + h (x) v' (x)] d x  = 0 
x=-u 

fur  all v E Dl := (ti E C' [a,  b] : v ( a )  = v (b) = O}.  Then h E C' [a,  b] and 

h' (x) = g (x) f i r  all x E [a ,  b] 

Proof. Denote G (x) := j z ,  g ( t )  d t  for x E [a ,  b]. Then G E C' [a,  b] and G' (x) = 
g (x). The integration by part implies 

0 = 1 [g (x) v (x) f h (x) v' (x)] d x  = [h (x) - G (x)] v' (x) dx 
x=a I 

x=a 

+ G' ( x )  (x) I::!, = [h (x) - G (x)] 2)' (x) d x  
x i ==a 
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By Lemma 22.2, it follows that h (x) - G (x) = c = const, so that 

h ( x )  = G (x) + C, h' (x) = G' (x) = g ( x )  

which proves the lemma. 0 

Corollary 22.1. Zfg E C [a,  b] and JxLo g (x) u (x) d x  = 0 for all u E D1, then g (x) E 0 
on [u,  b]. 

Proof It is sufficient to put h (x) = 0 in Lemma 22.4. 0 

This corollary also admits the following generalization. 

22. I .2 Lagrange lemma 

Lemma 22.5. (Lagrange) Z f g  E C [a,  b] and for some m = 0, 1, . . . 

g ( x ) u ( x ) d x = O  
r=u .? 

for all u E D,, where 

D, := { U  E C" [a,  b] : u ( ~ )  (a)  = u") (b) = 0, k = 0, 1 , .  , . , m - l }  

then g ( x )  3 0 on [a ,  b]. 

Proof Suppose, by contradiction, that g (c)  > 0 for some c E ( a ,  b).  Then by continuity, 
there exists an interval [a, /?] C ( a ,  b) which contains c and such that 

or, equivalently, g (x) 2 g (c ) /2  > 0. On the other hand, the function 

(x - a )  (B - x ) ~ + '  for x E [a, B ]  
for x $ [a, B ]  u ( x )  := { O  

is in C" [u,  b] and nonnegative. This implies that the product g ( x )  u ( x )  is also continuous, 
nonnegative, and not identically zero. Thus, s,"=, g (x) u (x) dx > 0, which contradicts 

0 the hypotheses of this lemma. Lemma is proven. 

The vector-valued version of Lemma 22.4 is also admitted. 

Lemma 22.6. I f d  = 1 , 2 , 3 , .  . . and G ,  H E ( C  [a,  b])" (G (x), H ( x )  E R") so that 
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for any V E D,  := { u E (Cl [a ,  b])" : V ( a )  = V (b) = o} (here 6 is the zero-vector), 
then H E (cl [a,  b])"and H' (XI = G ( X I  011 [u ,  b]. 

Proof. It follows directly from Lemma 22.4 after its application to each individual 
\ T  

component taking V (x) = for i = 1, . . . , n.  0 

b Corollary 22.2. If H E (C [a ,  b])" and s,=, (G (x), H (x)) d x  = 0 for all V E D,, then 
H (x) = const E R" on [a ,  b]. 

Proof. It is sufficient to.take G (x) = 0 in Lemma 22.6. 

22.1.3 Lemma on quadratic functionals 

Lemma 22.7. (Gel'fand & Fomin 1961) If q ,  p E C [a ,  b] and 

0 

(22.2) 

for anyfunction y E D I  := { y  E C' [u,  b] : y ( a )  = y (b)  = 0} ,  then p (x) 2 0 on [a ,  b]. 

Proof. By the contradiction method, suppose that there exists xo E ( a ,  b )  such that 
p (XO) < 0. Select the function 

2 (here a > 0 is small enough). Then ( yk  (x)) = 0 - l  and, by the mean-value theorem, 

and 

p (x) (y; (x))' dx = 2p (i) 2 q P ( X )  (Y; (XI) dx = 
x=a x = x - u  
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where X E [xo - u, xo + 01. For small enough 0, so that p ( 2 )  < 0,  we have 

which contradicts the hypotheses of this lemma. So, p (xo) 1 0 for any internal point of 
the interval [a,  b ] .  As for the boundary points a ,  b ,  the values p ( a ) ,  p ( b )  also cannot 
be negative since, if so, by the continuity property, p (x) should be negative in a small 

0 internal neighborhood which is impossible. Lemma is proven. 

22.2 Functionals and their variations 

Here we will briefly remember the main definitions of the first and second variation 
of functionals in some functional Banach space 8. 

Definition 22.1. The functional J ( y )  defined in a Banach space 13 with a norm I l . l I a  is 
said to be 

1. strongly differentiable (in the Frkchet sense) at the “point” yo E 8, if there exists a 
linear (with respect to variation h E 8)jiinctional (PI (yo, h )  such that for any h E 8 

(22.3) 

where a (yo, h )  + 0 as l lhll~ + 0; 

(22.3) can be represented as 
2 twice strongly differentiable (in the Frkchet sense) at the “point” yo E 8, if A J (yo.  h )  

where rpl (yo ,  h )  is a linear (with respect to the variation h E 8) functional, ( ~ 2  (yo ,  12) 

is a quadratic functional with respect to the variation 12 E B, i.e., for  any hl ,  A2 E R 
and any h ,  h , ,  h2, A, il ,  E B 

and, again, a: (yo, h )  -+ 0 as IlhIlB -+ 0. 
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Definition 22.2. The functionals 91 ( yo ,  h )  and 92 (yo,  h) ,  defined above, are called the 
first and second strong differentials of J ( y )  and are denoted (according to (18.93)) by 

(22.5) 

There exist other differentials, namely, weak differentials (in the GIteaux sense). For 
details concerning these functionals and their relation with strong ones see section 18.7.2. 
Below we shall use only FrCchet differentials. 

22.3 Extremum conditions 

22.3. I Extremul curves 

The, so-called, variation principle (see Theorem 18.18) will be actively used in this 
section for the solution of various problems of variation calculus theory. 

Definition 22.3. 

1. A functional J ( y ) ,  defined in a Banach .space B with a norm I l . I l a ,  has a local 
extremum in a region 6 (defining some additional constraints to the class of admissible 
functions) at the curve (function) yo E B n 6, if there exists a neighborhood 

s-28 := { y  E B n  6 I IlY - Yolla < A} 

such that jbr all y E Q b  one has J (y) >_ J (yo) .  The function yo is said to be an 
extremal curve. 

2. If J ( y )  2 J ( y o )  for all y E B n B, then the extremal curve yo is said to be a global 
extremum of the functional J ( y )  on B n 4. 

22.3.2 Necessaiy conditions 

Reformulate here Theorem 18.18 for the case of the FrCchet differential existence. 

Theorem 22.1. (on the necessary conditions) Let the curve yo E int ( B  n 4 )  be a local 
extreinal (minimal) curve of the functional J (y) which is assumed to be strongly (Fre‘chet) 
differentiable at the “point” yo. 

1.  the first-type necessary conditions) Then for any admissible h E B n 4 

(22.6) 

2. (The second-type necessary conditions) IJ; additionally, J ( y )  is twice strongly 
(Fre‘chet) diflerentiable at the “point” yo, then for any admissible h E B f l6  
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Proof. Let J ( y )  2 J (yo)  for all y within some Q8. 

1 .  Then, by Definition 22.3 and in view of the property (22.3), for any (yo  + h )  E aZs 
we have 

If rpl ( y o ,  ho)  c 0 for some admissible ho, then for small enough a it follows that 

which contradicts the optimality of yo in Q8. Suppose that cpl ( y o ,  h )  > 0 for some 
admissible hoe Since the strong (Frichet) differential is linear on h and yo E int (B f l  G), 
it follows that (yo - ho) E 0 8  and, therefore, 

and, as the result, again 

for small enough a ,  which contradicts the optimality of yo in Qs. 

curve yo E int ( B  n G) we have 
2. According to the first-type necessary condition (22.6) in view of the optimality of the 

Again, if for some admissible ho ((yo - ho) E Rs) we suppose rp2 ( y o ,  ho) c 0, then 
for small enough 6 > 0 we have 

since a (yo,  E ~ O )  -+ 0 whereas E -+ 0 for any ho. But the last inequality contradicts 

0 the condition of optimality of the curve yo. 

22.3.3 Suflicient conditions 

Theorem 22.2. (on the sufficient conditions) Let 

1. the functional J ( y )  be twice strongly (Fre'chet) differentiable in B n G; 
2. for  some yo E B f l  G and any admissible h : (yo - h )  E B n G, h E Q8 
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and 

655 

1 ~ 2  ( Y O ,  h )  1 k llhll;, k > 0 I 
Then yo is the unique local minimal curve of the functional J ( y )  on I3 n G. 

Proof. 

1. By (22.4) and in view of the condition of this theorem, for any admissible h 

For any small enough F > 0 it follows that 

1 
A J  (Yo,  Eh) = p 2  (Yo, Eh) f a  (yo,  Eh) 11Eh11; 

(22.8) 

since a (yo ,  ~ h )  -+ 0 whereas E + 0 for any admissible h. This means that yo is a 
local extremal (minimum) curve. 

2. Suppose that in Q8 there exists two extremal curves yo and YE, such that J ( y o )  = 
J (y;) 5 J ( y ) .  Then, taking h := y i  - yo in (22.8), we get 

1 
2 

For small enough 6 and any h E: Q8, we have -k +a (yo,  h )  > 0 which together with 
the previous inequality leads to the following conclusions: 0 = Ilhlli, or, equivalently, 

0 y; = yo. Theorem is proven. 

22.4 Optimization of integral functionals 

In this section we will consider the following main problem of variation calculus: 

F (x, y ,  y ’ )  dx + min 
Y€C’ [iZ,b] 

(22.9) 

where the function F : R3+ R is assumed to be twice di#erentiable in all arguments. 
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22.4.1 Curves with fixed boundary points 

22.4.1.1 Scalar case 
Here, we will additionally suppose that we are looking for the extremum (minimum) 

of the integral function in (22.9) over all continuously differentiable curves y E C' [a,  b ]  
satisfying the following boundary conditions: 

The necessary conditions for this problem are given below. 

I ,  The first-type necessaT condition (22.6): 

x=u (22.1 1) 

where the variation curves h E C1 [a ,  b] and satisfies the boundary conditions 
h ( u )  = h(b ) .  

2. The second-type necessary condition (22.7): 

(22.12) 

where y(x) satisfies (22.11) and the variation curves h E C' [a ,  b] and fulfills the 
boundary conditions h(a )  = h(b).  
In (22.11) and (22.12) the following relations obtained by the integration by parts are 

used: 

x=u I = U  

=](-2m a F ) h d x  
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and 

x=u x=u 
b 

= 1 (---F) d a2 h2dx  
dx  a y  a y  

Theorem 22.3. (Euler-Lagrange) The first-type necessary condition for a curve y E 
C’ [a ,  b], satisfying (22.10), to be an extremal curve is: 

(22.13) 

Prooj It follows directly from (22.1 1)  if we apply Lemma 22.4. 0 

The condition (22.13) is referred to as the Euler-Lagrange condition. 

Theorem 22.4. (Legendre) The second-type necessary condition for a curve y E 
C‘ [a ,  b], satisfying (22.10) and (22.13), to be an extremal (minimizing) curve is: 

(22.14) 

Proof: It follows directly from (22.12) if we apply Lemma 22.7. 0 

The condition (22.14) is often referred to as the Legendre condition. 
The sufficient conditions, guaranteeing that a curve y ( x )  is minimizing for the func- 

tional J ( y ) ,  may be formulated in the following manner. 

Theorem 22.5. (Jacobi) rffor some curve y E C1 [a ,  b], verz..ing (22.10), the following 
conditions are ,fulfilled: 

I. it satisfies the Euler-Lagrange necessary condition (22.13); 
2. it satisfies the strong Legendre condition 

(22.15) 

3. there exists a function u E C’ [a,  b],  which is not equal to zero on [a,  b], and satisfying 
the next ODE (the Jacobi ODE): 

(22.16) 
F ,  P := ~ 

Q := -F - ____ 
a y 2  dx ay a y  

then this curve provides the local minimum to the functional J ( y ) .  

co
nt

ro
len

gin
ee

rs
.ir



658 Advanced Mathematical Tools for Automatic Control Engineers: Volume I 

Pmoj: It follows directly from Theorem 22.2 if we define llhlli for B = C’ [a ,  b]  
(see (18.6)) as 

Indeed, by the assumptions of this theorem, we have 

b 
h2 

coz ( y ,  h )  = / [Qh2 + P (h’)’] dx = ] I(!&) - U + P (h’)l] dx 

= ] [& ( p ~ ‘ )  - h2 + P 
U 

x =a 
b b , d h2 

+ 1 [-p.;& ( z )  + P (h’)2] d x  =/I‘ [(l~’)~ - - U  - (;)I dx 
d x  

x=a L =‘l 

2 b 
= 1 P [(hr)’ - 2h‘ (F) + u. h2 (.’).I d n  = P (h’ - !$) dx 

x=a x=a 
2 

? k ] ( h ‘ -  F ) 2 d x  = k Ilhllctra,bl 2 ] (b. - !$) dx 
x =a x=a 

where h := h/lJhllc~,a,bl satisfies 

Notice also that 

hU’ 
since, if not, one has h‘ - - = 0, and, as a result, h = u. But, by the assumption of this 

theorem, u ( a )  # 0 and u (b) f 0, which contradicts with h ( a )  = h (b)  = 0. So, finally, 
it follows that 

U 

Theorem is proven. 0 

Example 22.1. (“Brachistochrone” problem) The problem (formulated by Johann 
Bernoulli, 1696) consists offinding the curve A B  (see Fig. 22.1) such that, during the 
sliding over of this curve in a gravity field with the initial velocity equal to zero, the 
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t ’  

Fig. 22.1. Illustration of the Brachistochrone problem 

material point of the mass m can realize the sliding from the initial point A to the final 
point B in the shortest time. 

So, we have to minimize J (y) = T (y) where y(x) is the altitude of the point at the 
curve at the point x E [a ,  b] which satisfies the relation 

mu2 
2 

mgy + - = E = const 

Since, b y  the initial condition, when y = y ( a )  = a we have u = 0 which implies 
E = mga. That is why 

u = + ( ; - g y )  = 1 / 2 g ( a - y )  

ds d x  
u = - = = m -  

dt  dt  

which leads to the following formula for  the functional T (y): 

*=u x=u 

Since the function F (y, y’) = does not depend on x, the first-type Euler- 

Lagrange condition (22.13) for  this functional has the first integral 

a 1 
F ( Y ,  Y’) - Y‘,F ( Y ,  Y’)  = ; 

aY 
Indeed, 

(22.17) 
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Multiplying both sides by y‘ we get 

which implies (22.17). In our case it is equivalent to the following ODE: 

Squaring gives 

c2 = (a - y )  [l  + ( y ; ) 2 ]  

or. 

With the introduction of the dependent variable Q = 0 (x) such that 

e c2 
(a - y )  = c2 sin2 - = - (1 - c o d ) ,  8 E [o, 2x1 

2 2  

then 

(22.18) 

By substitution of these expressions into (22.18) yields 

C2 

2 2 

C2 C2 
Integrating gives - [e - sine] = x - C I .  Denoting c2 := - we get the parametric 

2 2 ’  
(Brachistochrone) curve (of the cycloid type) 

1 = c2ol sin* or I = -el (1 - cos e )  

x = c2 [Q - sin 61 + c l ,  c2 > 0 
y = 01 - C? (1 - COSO), e E [0 ,2n ]  

(22.19) 

The constants cI and c2 can be found from the boundary conditions 

e = ea = o :  A = c i ,  Y ( A )  = a  
e = & :  B = A + ~ ~ [ 6 ~ - s s i n 6 ~ ] ,  y ( B ) = , f ? = a - c 2 ( 1 - c o s e B )  
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Example 22.2. Let us try to answer the following question: which stable linear system 
of the first order, given by 

i ( t )  = ax ( t ) ,  x (0) = xO, x (00) = 0 (22.20) 

provides the minimum of the functional 

J (x) := 7 [agx2 ( t )  + aI i2  ( t ) ]  dt 
t=O 

where q, a1 > 0. 

(22.21) 

1. Variation calculus application. The first-type necessary condition qf‘ the optimality 
for this filnctional is 

aox ( t )  - a,, ( t )  = 0 

since F = a0x2 + a1i2.  Its general solution is 

x ( t )  = cle-kt + c2ekt, k := a 
Taking into account the boundary conditions Mie get: c2 = 0, c1 = x0 which gives 
x ( t )  = xOepkt,  or, equivalently, i ( t )  = -kx ( t ) .  So, the optimal a = u* in (22.20) is 
a = a* = -JG. Let us show that the obtained curve is minimizing. To do this 
we need to check conditions (2 )  and (3 )  of the Jacobi theorem 22.5. First, notice that 

-F = 2al > 0. So, condition (2 )  is.firlfilled. The Jacobi equation (22.16) is as 
a 2  

a i  a i  
follows 

It has a nontrivial solution u ( t )  = uOePk‘ > 0 or L ~ O  > 0. This means that condition 
(3)  is also valid. So, the curve i ( t )  = -kx ( t ) ,  x (0) = XO is minimizing. 

2. Direct method. ’ Assuming that the minimal value of the cost functional (22.21) is finite, 
i.e., x ( t )  + 0 with t --f 00, we can represent it in the following equivalent form 

30 

J (x) := J [ao? ( t )  + 22/.0.1. ( t )  i ( t )  + a 1 i 2  ( t ) ]  dt 
t=O 

M 30 

- 2- / x ( t )  i ( t )  dt = 1 [ A x  ( t )  + fii ( t ) ]  dt 
t=O t=O 

+ -x2 (0) 2 & Z x 2  (0) 

’ The author has been informed of this elegant and simple solution by Prof. V. Utkin 
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The last inequality becomes the equality when 

or, equivalently, when 

which coincides with the previous result. 

22.4.1.2 Vector case 
Consider the following optimization problem 

(22.22) 
x=u 

where the function F : 
and the functions yi satisfy the following boundary conditions 

.i R is assumed to be twice differentiable in all arguments, 

(22.23) 

Theorem 22.6. (The Euler-Lagrange vector form) The first-type necessary condition 
for curve yi E C’ [a,  b], satisbing (22.23), to be extremal curves is: 

Proof It follows directly from the identity 

(22.24) 

= ] 2 ( L F .  - - - F  d a )  h . d x  
x=u i = l  

if we take into account the independence of the variation functions hi ( i  = 1, . . . , n) ,  
and apply Lemma 22.4. 0 

Theorem 22.7. (The Legendre vector form) The second-type necessary condition for 
curve yi E C’ [a ,  b],  satisbing (22.23) and (22.24), to be extremal curves is: 
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where the matrix in (22.25) is defined by 

Proo$ It follows directly from (22.7) and the relation 
b 

o I q 2 ( Y ? h ) =  / [ (v ; ,YF(x>Y,Y’)h ,h)  
x=a 

+ 2 (V;,yrF ( x ,  Y ,  y’)h, h’) + (V;f,y,F ( x ,  y, y’lh’, h)] d x  

h 

+ (V;,.yJF ( x ,  Y ,  y’) h’, h’) dx  1 
if we apply the vector version of Lemma 22.7. 0 

The next theorem gives the sufficient conditions for the vector function y to be a 
minimizer in the problem (22.22). 

Theorem 22.8. (The Jacobi vector form) Zf for some vector function y E (C‘ [a,  b])“, 
verifying (22.23), the following conditions are fulfilled: 

1. it satisfies the Euler-Lagrange necessary condition (22.24); 
2. it satisfies the strong Legendre vector condition 

(22.26) 

3. there exists vector functions uL E (C’ [a ,  b])” ( i  = 1, . . . , n) ,  such that 

det [u’ (x) . . . u” (x) 1 $ 0  for all x E [u, b] 

I I 

and satisfying the next ODE (the Jacobi vectorform ODE): 

id“, QU - - (Pu’) = 0 

with 
d 

dx Q := V;,yF (x, Y, Y‘) - -V;.,,F (x, Y ,  Y’) 

P := V;,,,,F (x, y, y’) 

then this vector finction provides the local minimum to the functional J ( y ) .  

(22.27) 

(22.28) 
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Prooj It follows directly from the vector form of Theorem 22.2 if we define llhll; for 
B = (C'  [a, b])" (see (18.6)) as 

and, practically, repeat the proof of Theorem 22.5. 

22.4.1.3 Integral functional depending on derivatives of an order more than one 

functions 
Let us consider the first-type necessary condition of the optimality for the integral 

within the functions y E C" [a, b], satisfying the boundary conditions 

First, notice that 

where the variation functions h(') satisfy the conditions 

h(') (a) = h(" (b) = 0 (i = 1 ,  . . . , n )  

a F  
Integrating each integral term s,"=, -h(') dx of this equality i-times we derive 

ay(" 

(22.29) 

(22.30) 

(22.3 1) 

Theorem 22.9. (Euler-Poisson) Let the curve y E C" [a, bl, satisfying (22.30), be an  
extremal (minimum or maximum) curve for the functional (22.29). Then it should satisfy 
the following ODE: 

(22.32) 

Proof. It follows directly from (22.3 1) applying the Lagrange lemma 22.5. 
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22.4.2 Curves with non-fixed boundary points 

Problem formulation: among all smooth curves y = y ( x )  with the boundary points 
(xo,  yo) and (xl, y l ) ,  belonging to the given curves (“sliding surfaces”) y = rp ( x )  and 
y = 9 (x), find one which minimizes the functional 

Realizing the function variation ( y  + h )  such that 

and integrating by parts, we derive 

(22.3 3) 

(22.34) 

(22.3 5) 

Remark 22.1. Since the problem in 22.4.2 contains as a partial case the problem (22.9) 
with fixed boundary points, then any solution of the problem in 22.4.2 should satisjji the 
Euler-Lagrange condition (22.13), which simplifies (22.35) up to 

Applications (22.34) to (22.36) imply 

Theorem 22.10. 

(22.37) 

lf some curve y = y(x) E C‘ with the boundary points ( X O ,  yo) and 
( x l ,  yl), belonging to the given curves (“sliding surjkes”) y = rp ( x )  and y = $I ( x )  
provides an extremum to the functional (22.33), then 
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1. it satisfies the Euler-Lagrunge condition (22.13), i.e., 

aF d aF = o  - - -- 
ay dx  ay‘ 

2. it should, additionally, satisfy the, so-called, trunsversulity conditions 

(22.3 8) 

Proof. The relations (22.38) result from (22.37) if we take into account that the variations 
6x0 and 6x1 are independent. 

Example 22.3. 

= 0, which leads to the fol- d Y’ The Euler-Lagrange condition (22.13 ) is - - 

lowing relation 
dx  x d m  

The boundary condition y (0) = 0 gives c: = l/ci. So, finally, the Euler-Lagrange 
condition (22.13) is ( y  - c2)2 + x 2  = c:. The transversality conditions (22.38) imply 
0 = y ’ =  -c_ = 1, which, together with y = 2 - x, gives c2 = 2. Finally, the 

extremal curve IS as follows: 

X 

y 7 c2 

(y - 2)* + x 2  = 4 

22.4.3 Curves with a nonsmoothness point 

If an extremal curve has a nonsmooth point x* E [a,&] in the problem (22.9) with a 
fixed boundary point, that is, 

y (x) is continuous in x i  

Y’ (x) Ix+x*-o f Y’ (x> Ix+x*+O 
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where (we can consider at each semi-interval [a ,  x*] and [ x * ,  b ]  the boundary point x* 
as a non-fixed one) 

which gives 

Since here Sy and Sx are admitted to be arbitrary, we obtain the, so-called, Weierstrass- 
Erdmann conditions: 

a F  a F  
Ix=x=-o = - lx=.r*+o 

aY‘ 
(22.39) 

Example 22.4. Consider the functional 

h 

J ( y )  = / ($)* (1 - yO2dx 
x=a 

The boundary points aye assumed to be fixed. The Euler-Lagrange condition (22.13) 
gives y = c ~ x  + c2. The Weierstrass-Erdmann conditions (22.39) are 

2y‘ (1 - y ’ )  (1 - 2y’) Ix=**-o = 2y’ (1 - y ’ )  (1 - 2y’) Jx=x*+o 

- (y’>2 (1 - y ’ )  (1 - 3y’) I x = r * - O  = - (y’)2 (1 - y ’ )  (1 - 3y‘) Ix=+*+o 

which are fulfilled for  extremal curves such that 
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22.5 Optimal control problem 

22.5. I Controlled plant, cost functionals and terminal set 

Consider the controlled plant given by the following system of ordinary differential 
equations (ODE) 

(22.40) 

T where x = (x', . . . , x") 
that may run over a given control region U c R' with the cost functional 

E Iw" is its state vector, u = ( u ' ,  . . . , u ' ) ~  E R' is the control 

(22.41) 

containing the integral term as well as the terminal one and with the terminal set 
M E R" given by the inequalities 

I M = {x E R" : g l ( x )  5 0 ( I  = 1, . . . , L ) )  I (22.42) 

The time process or horizon T is supposed to be fixed or nonfixed and may be finite or 
infinite. 

Definition 22.4. 

(a)  The finction (22.41) is said to be given in Bolza form. 
(b)  If in (22.41) ho(x) = 0 we obtain the cost functional in Lugrange form, that is, 

(22.43) 

(c)  If in (22.41) h ( x ,  u ,  t )  = 0 we obtain the costfunctional in Mayer form, that is, 

Usually the following assumptions are assumed to be in force: 

(Al) ( U ,  d )  is a separable metric space (with the metric d )  and T > 0. 
(A2) The maps 

f : R" x u x [O, TI -+ R" 
h : R" x U x [0, TI -+ R 
ho : R" x U x [0, TI -+ R 
gl : R" -+ R" (I = 1,. . . , L )  

(22.45) 
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are measurable and there exist a constant L and a continuity modulus W : [0, 00) + 
[0, co) such that for 40 = f (x, u ,  t ) ,  h (x, u ,  t ) ,  ho (x, u ,  t ) ,  gl (x) ( I  = 1,. . . , L )  
the following inequalities hold: 

(A3) The maps f ,  h ,  ho and $1 (1 = 1 , .  . . , L )  are from C' in x and there exists a 
continuity modulus W : [0, 00) + [0, 00) such that for 9 = f (x, u ,  t ) ,  h (x, u ,  t ) ,  
ho (x. u ,  t ) ,  gl (x) ( I  = 1, . . . , L )  the following inequalities hold: 

(22.47) 

v t  E [0, T I ,  x. 2 E Iw", u ,  i E U ) 

22.5.2 Feasible and admissible control 

Definition 22.5. A function u( t ) ,  to 5 t _< T ,  is said to be 

(a)  a feasible control if it is measurable and u ( t )  E U for all t E [0, TI. Denote the 
set of all feasible controls by 

U [0, T ]  := { u  (.) : [O, TI + U I u ( t )  is measurable} (22.48) 

(b )  an ddmissible or realizing the terminal condition (22.42), if the corresponding 
trajectory x ( t )  satisfies the terminal condition, that is, satisfies the inclusion 
x(T) E M .  Denote the set of all admissible controls by 

In view of Theorem 19.1 on the existence and the uniqueness of an ODE solution, it 
follows that under assumptions (Al)-(A2) for any u ( t )  E U [0, TI equation (1.4) admits 
a unique solution x (.) := x (., u (+)) and the functional (22.41) is well defined. 

22.5.3 Problem setting in the general Bolza form 

Based on the definitions given above, the optimal control problem (OCP) can be 
formulated as follows. 

Problem 22.1. (OCP in Bolza form) 

Minimize (22.41) over U a d m i s  [o, T] (22.50) 
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Problem 22.2. (OCP with a fixed terminal term) If in the problem (22.50) 

M = { x  E R" : g1(x) = x - Xf 5 0,  g2(x) = - ( x  - Xf) 5 o} (22.51) 

then it is called the optimal control problem with faed  terminal term x f  . 

Definition 22.6. Any control u* (.) E Uadmis  [0, T ]  satisfying 

is called an optimal control. The corresponding state trajectories x*  (.) := x* (., u* (.)) 
are called an optimal state trajectory, and (x* (.), u* (.)) is called an optimalpair. 

22.5.4 Mayer form representation 

Summary 22.1. Introduce (n + 1)-dimensional space IF7+' of the variables x = 
( X I ,  . . . , x , ,  x,+ I )~  where the first n coordinates satisfj; (22.40) and the component x , + ~  
is given by 

with the initial condition for the last component given by 

xn+1 (0)  = 0 

(22.53) 

(22.54) 

(22.5 5 )  

As a result, the initial optimization problem in the Bolza form (22.50) can be reformulated 
in the space R"+' as the Mayer problem with the cost functional J ( u  (.)) 

J (U ('1) = J ~ o ( x  (TI) + xn+1 (TI (22.56) 

where the function ho(x) does not depend on the last coordinate x,+] ( t ) ,  that is, 

---ho(x) = 0 
a 

ax,,+,  
(22.57) 

Summary 22.2. From the relations above it follows that the Mayer problem with the 
cost function (22.56) is equivalent to the initial optimization control problem (22.50) in 
the Bolza form. 

There exist two principal approaches to solving optimal control problems: 

Pontryagin et al. 1969 (translated from Russian)); 
the first one is the maximum principle (MP) of L. Pontryagin (Boltyanski et al. 1956; 
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and the second one is the dynamic programing method (DPM) of R. Bellman (1957). 

We will touch on both of them below. 

22.6 Maximum principle 

The maximum principle is a basic instrument to derive a set of necessary conditions 
which should satisfy any optimal control. As an optimal control problem may be regarded 
as an optimization problem in the corresponding infinite dimensional (Hilbert or, in 
general, Banach) space. the necessary conditions (resembling the Kuhn-Tucker conditions 
in the fini te-dimensional optimization) take place. They are known as the maximum 
principle which is really a milestone in modern optimal control theory. It states that any 
dynamic system closed by an optimal control strategy or, simply, by an optimal control 
is a Hamiltonian (with the doubled dimension) system given by a system of the forward- 
backward ordinary differential equations and, in addition, an optimal control maximizes 
the function called Hamiltonian. Its mathematical importance consists of the following 
fact: the maximization of the Hamiltonian with respect to a control variable given in a 
finite-dimensional space looks and really is much easier than the original optimimtion 
problem formulated in an infinite-dimensional space. The key idea of the original version 
of the maximum principle comes from classical variations calculus. To derive the main 
MP formulation, first one needs to perturb slightly an optimal control using the so-called 
needle-shape (spike) variations and, second, to consider the first-order term in a Taylor 
expansion with respect to this perturbation. Tending perturbations to zero, some variation 
inequalities may be obtained. Then the final result follows directly from duality. 

22.6.1 Needle-shape variations 

Let (x* (.), u* (.)) be the given optimal pair for the problem (22.52) and M ,  5 [0, T ]  
be a measurable set of the time interval with Lebesgue measure IMEI = E > 0. Let now 
u (.) E Uadmrs [0, TI be any given admissible control. 

Definition 22.7. Dqfine the following control 

(22.58) 

Evidently uF (.) E Uadnlis [0, TI. Below u' (.) is referred to as a needle-shape or spike 
variation of the optimal control u* ( t ) .  

The next lemma plays a key role in proving the basic MP theorcm. 

Lemma 22.8. (The variational equation) Let xE  (.) := x (., uE (.)) be the solution of 
(22.52) for the plant model given by (22.40) under the control uF (.) and AE (.) be the 
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solution to the following differential equation 

where x~~ ( t )  is the characteristic function of the set M,, that is 

Then 

and the following variational equations hold 
(a) for the cost function given in Bolza form (22.41) 

J (u' (.)) - J (u* (.)) = (x* ( T ) ) ,  A' ( T )  
7- 

(22.59) 

(22.60) 

(22.61) 

(22.62) 

(6)  for the cost function given in Mayer form (22.44) 

Proof. Define 6' ( t )  := x F  ( t )  - x* ( t ) .  Then assumption (A2) (22.46) for any t E [0, TI 
implies 

which, by the Gronwall lemma 19.4, leads to the first relation in (22.61). Define 

(22.64) 

17' ( t )  := x E  ( t )  - x* ( t )  - A' ( t )  = 6' ( t )  - AE ( t )  (22.65) 
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Integrating the last identity (22.66) and in view of (A2) (22.46) and (A3) (22.47), we 
obtain 

(22.67) 

The last inequality in (22.67) by the Gronwall lemma directly implies the third relation in 
(22.61). The second relation follows from the first and third ones. The same manipulations 

0 lead to (22.62) and (22.63). 

22.6.2 Adjoint variables and MP formulation 

The classical format of MP formulation gives a set of first-order necessary conditions 
for optimal pairs. 

Theorem 22.11. (MP for Mayer form with a fixed horizon) If assumptions 
(A/)-(A3) a pair (x* (.), u* (.)) is optimal then there exist the vector jknctions $ ( t ) ,  
satishirig the system of the adjoint equations 

under 
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and nonnegative constants p 2 0 and vl 2 0 ( I  = 1, . , . , L )  such that the following four 
conditions hold: 

(a)  (the maximality condition): for almost all t E [O, T ]  

(22.69) 

where the Hamiltonian is defined by 

H ( $ ,  x .  u ,  t )  := $'f (x, U ,  t )  

t ,  x, u ,  $ E [O, T ]  x R" x R' x R" 

(6)  (transversality condition): the equality 

(22.70) 

(22.71) 

holds: 

vI = 0, that is, for any ( I  = 1, , . . , L )  
(c)  (complementary slackness conditions): either the equality g / ( x * ( T ) )  = 0 holds, or 

(d)  (nontriviality condition): at least one of the numbers l$(T)l and v1 is distinct from 
zero, that is, 

I L I 
(22.73) 

Proof. Let $ ( t )  be the solution of (22.68) corresponding to the terminal condition $ ( T )  = 
b and f E [O, TI.  Define Me := [f, f + E ]  5 [O, TI.  If u*(t)  is an optimal control, then 
according to the Lagrange principle (see Theorem 21.1 2), formulated for a Banach space, 
there exist constants p > 0 and ul 2 0 ( I  = 1, . . , , L )  such that for any E L 0 

(22.75) 

Taking into account that $ ( T )  = b and A' (0) = 0, by the differential chain rule, applied 
to the term $(t)TA' ( t ) ,  and, in view of (22.59) and (22.68), we obtain 

b T A f  ( T )  = I / / ( T ) ~ A ~  (7') - I/?(O)~A' (0) 

T T 

= J ' d  ($ ( t )TAE ( t ) )  = ( I ~ ~ ( L ) ~ A €  ( t )  + $( t )TAE ( t ) )  d t  .I 
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The variational equality (22.62) together with (22.74) and (22.76) implies 

I 

/ = I  

(22.77) 

1. Tending E to zero from (22.77) it follows that 
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which should be valid for any A' ( T )  la=O. This is possible only if (this can be proved 
by contradiction) 

(22.78) 

which is equivalent to (22.7 1). So, the transversality condition is proven. 
2. In view of (22.78), the inequality (22.77) may be simplified to the following one 

ifF 

0 I - / I f f ( $  ( t ) ,  x* ( t ) ,  uE ( t ) ,  t )  - H ( $  ( t ) ,  x* ( t ) ,  Z l *  ( t ) ,  t ) ] d t  
!=I 

(22.79) 

This inequality together with separability of metric space U directly leads to the 
maximality condition (22.69). 

3. Suppose that (22.72) does not hold, that is, there exist an index 10 and a multiplier V) ,  
such that u /g l ( x* (T) )  < 0. This gives 

It means that zi* (.) is not optimal control. We obtain the contradiction. So, the com- 
plementary slackness condition is proven too. 

4. Suppose that (22.73) is not valid, i.e., I$(T)I + p + c/L_, UI = 0. This implies 
@(T) = 0, p = u1 = 0 ( I  = 1, . . . , L ) ,  and, hence, in view of (22.68) and 
by the Gronwall lemma 19.4, it follows that $ ( t )  = 0 for all t E [O, TI.  So, 
H ( $ ( t ) ,  x ( t ) ,  u ( t ) ,  t )  = 0 for any u ( t )  (not only for u"(t)) .  This means that the 
application of any admissible control keeps the cost function unchangeable which 
corresponds to a trivial situation. So, the nontriviality condition is proven too. 

22.6.3 The regular case 

In the, so-called, regular case, when p > 0 (this means that the nontriviality condition 
holds automatically), the variable $ ( t )  and constants ul may be normalized and change 
to $ ( t )  := $ ( t ) / p  and Vi := ul1i-c. In this new variable the MP formulation looks as 
follows. 

Theorem 22.12. (MP in the regular case) If under assumptions (Al)-(A3) a pair 
(x* (.), u* (.)) is optimal, then there exists a vector function $ ( t )  satishing the system of 
the adjoint equations 
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and vl L 0 (1 = 1, . . . , L )  such that the following three conditions hold: 

(the maximality condition): for almost all t E [O, TI 

H ( $ ( t ) ,  x*( t ) ,  u*( t ) ,  t )  = max H($( t ) ,  x*( t ) ,  u ,  t )  
u d J  

671 

(22.80) 

where the Hamiltonian is defined by 

H(+, x, U ,  t )  := GT f ( x ,  U ,  t )  

t ,  x ,  u ,  + E [O, TI x R" x R' x R" 

(transversality condition): for every (Y E A, the equalities 

hold; 
(complementary slackness conditions): either the equality g,  (x* ( T ) )  = 0 holds, or 
ugr = 0, that is, for any ( I  = 1, . . . , L )  uLgr(x*(T)) = 0. 

Remark 22.2. This means that without loss of generality we may put I*. = 1. It may be 

shown that the regularity property takes place if the vectors - g l ( x * ( T ) )  are linearly 

independent. The verification of this property is usually not so simple a task. 

a 
ax 

22.6.4 Hamiltonian form and constancy property 

Corollary 22.3. (Hamiltonian for the Bolza problem) Hamiltonian for the Bolza prob- 
lem has the form 

(22.81) 

ProoJ It follows from (22.53)-(22.57). Indeed, since the Mayer's form representation 
0 ( t )  = h (x ( t ) ,  u ( t ) ,  t ) )  implies y!r0+, ( t )  = 0, then +,+, ( T )  = --I*.. 

Corollary 22.4. (Hamiltonian form) Equations (22.40) and (22.68) may be represented 
in the, so-called, Harniltonian form (the forward-backward ODE form): 

(22.82) 

Proo& It directly follows from comparison of the right-hand side of (22.70) with (22.40) 
and (22.68). cl 
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Corollary 22.5. (Constancy property) For stationary systems when in (22.40), (22.4 I )  

itfollows that for all t E [to, TI 

Proof. One can see that in this case the Hamiltonian H = H(+(t ) ,  x ( t ) ,  u ( t ) )  does not 

depend on t directly, that is, H = 0. Hence, u*(t)  is a function of +( t )  and x*( t )  only, 

i.e., u*(t)  = u* ( $ ( t ) ,  x*( t ) ) .  Denote 

a 
d t  

Then (22.82) becomes 

which implies 

and hence H (+(t) ,  x*( t ) )  = const for any t E [to, TI .  n 

22.6.5 Nonfxed horizon optimal control problem and zero property 

Consider the following generalization of the optimal control problem (22.40), (22.44), 
(22.50) permitting terminal time to be free. In view of this, the optimization problem may 
be formulated in the following manner: minimize 

over u (.) E Uadmis [O, TI and T 3 0 with the terminal set M ( T )  given by 

M ( T )  = { X  (7') E R" : gl(x ( T ) ,  T )  5 0 ( I  = I , .  . . , L ) }  (22.86) 

Theorem 22.13. (MP for non fixed horizon case) I f  under assumptions (AI)-(A3) the 
pair (T* ,  u* (.)) is a solution of the problem (22.85), (22.86) and X *  ( t )  is the corre- 
sponding optimal trajectory, then there exist the vector functions $ ( t ) ,  satisfying the 
system of the adjoint equations (22.68), and nonnegative constants 1-1. 2 0 and v, > 0 
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(1 = 1, . . . , L )  such that all four conditions of the previous Theorem 22.11 are fulfilled 
and, in addition, the following condition to the terminal time holds: 

(22.87) 

Proof. Since ( T * ,  u* (.)) is a solution of the problem then evidently u* (.) is a solution 
of the problem (22.40), (22.44), (22.50) with the fixed horizon T = T *  and, hence, all 
four properties of the Theorem 22.11 with T = T *  should be fulfilled. Let us find the 
additional condition to the terminal time T *  which should be satisfied too. 

(a) Consider again the needle-shape variation defined as 

u* ( t )  if t E [0, T*]\ ( M ,  A (T*  - E ,  T*I) 
u ( t )  E Uadmis [0, T * ]  U' ( t )  := if t E M ,  G [0, T* - E )  { u ( t )  E Uadmis [0, T * ]  if t E [T* - E ,  T * ]  

Then, for C (u  (.), p, u ,  T ) ,  

L 

C ( U  F ,  u ,  T )  := F J  (U T )  + C vigi ( x ( T ) ,  T )  
I= 1 

it follows that 

0 5 c ( U E  (.), p, u ,  T* - E )  - C (u* (.), p, v ,  T * )  
L 

= pho (X ( T *  - E ) ,  T* - E )  + C (X ( T *  - E ) ,  T* - E )  

/=1 
L 

- Pho (x* ( T * ) ,  T * )  - c u/gl (x* ( T * ) ,  T * )  
I=1  

Hence, applying the transversality condition (22.7 1) we obtain: 

a 
( x ( T * ) ,  T * )  + u l E g 1  (X ( T * ) ,  T * )  

(22.88) 

(22.89) 
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which, by dividing by E and tending E to zero, implies 

(b) Analogously, for the needle-shape variation 

u* ( t )  if t E [0, T * )  \M, 

u* ( T *  - 0) if E [ T * ,  T* + E ]  

u ( t )  E Lfadrnis [0, T * ]  if t E Me 

it follows that 

0 5 L (uG (.), w ,  u ,  T *  + E )  - L (u* (.), p, u ,  T * )  

a 
= E P-ho (X ( T * ) ,  T * )  + vl--g/ (X ( T * ) ,  T * )  ( a"T aT 
- E H ( @  ( T " ) ,  X* ( T * ) ,  U* (T  - 0) ,  T * )  + o (6 )  

and 

(22.90) 

(22.91) 

(22.92) 

Combining (22.88) and (22.91), we obtain (22.87). Theorem is proven. 

Corollary 22.6. (Zero property) If under the conditions of Theorem 22.13 the functions 
ho (x, T ) ,  gl (x, T )  (I = 1, . . . , L )  do not depend on T directly, that is, 

a a 
aT aT 
-ho (x, T )  = -gl (x, T )  = 0 (1 = 1 , .  . . , L )  

then 

H ( @  ( T * ) ,  X* ( T * ) ,  U* (T  - 0), T * )  = 0 (22.93) 

r f ;  in addition, the stationary case is considered (see (22.83)), then (22.93) holds for all 
t E [0, T*] ,  that is, 

ProoJ: The result directly follows from (22.84) and (22.93). 0 
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22.6.6 Joint optimal control and parametric optimization problem 

Consider the nonlinear plant given by 

(22.95) 

at the fixed horizon T ,  where a E R/’ is a vector of parameters which also can be selected 
to optimize the functional (22.44) which in this case is 

(22.96) 

(A4) It will be supposed that the right-hand side of (22.95) is differentiable on a at all 

In view of this OCP is formulated as follows: 
a E RlI. 

Minimize J (u  (.), a )  (22.96) 
over u (.) E U,d,n,7 [0, TI and a E PSJ’ 

(22.97) 

Theorem 22.14. (Joint OC and parametric optimization) If under assumptions 
(AI)-(A3) and (A4)  the pair (u* (.), a*) is a solution of the problem (22.85), (22.86) and 
X* ( t )  is the corresponding optimal trajectory, theit there exist the vector functions $ ( t )  
satisbing the system of the adjoint equations (22.68) with x* ( t ) ,  u* ( t ) ,  a* and nonizega- 
tive constants F 2 0 and u( 2 0 (1 = 1, . . . , L )  such that all four conditions of Theorem 
22.11 are  fulfilled and, in addition, the jollowing condition to the optimal parameter 
holds: 

r=O 

Proo$ For this problem L (u  (.), F ,  u ,  a )  is defined by 

(22.98) 

(22.99) 

a 
an Introduce the matrix A‘ ( t )  = -x* ( t )  E R”xP, called the matrix of sensitiviQ (with 

respect to parameter variations), which satisfies the following differential equation: 

A‘ ( t )  = 

- - a 
aa 
-f  (x* ( t ) ,  u* ( t ) ,  t ;  a*) (22.100) 

a 
ax + - f  (x* ( t ) ,  u* ( t ) ,  t ;  a*)  A‘(t), Aa (0) = 0 
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In view of this and using (22.68), it follows that 

= (a - d [Aa(t)T@(t)]  + o(lla - a * / / )  I 
t=O 

a 
ax 

+ --f (x* ( t ) ,  u* ( t ) ,  t ;  

+ A" ( t )T -f (x* ( t ) ,  U* ( t ) ,  t ;  @ ( t )  

I a 
aa $ ( t )  dt  + o (lla - a*ll) 

= (a - --f (x* ( t ) ,  U* ( t ) ,  t ;  a*)T @(t )d t  + o (lla - a*ll) .i :a 
t=O 

But this inequality is possible for any a E RP in a small neighborhood of a* if and 
only if the relation (22.98) holds (which may be proved by contradiction). Theorem is 
proven. 0 

22.6.7 Sufficient conditions of optimality 

The necessary and sufficient conditions of the constrained concave optimization 
problem on x E X C R" is (see (21.80)) 

which should be valid for all x E X ( X  is supposed to be a convex set and f ( x )  is 
concave on X ) .  

Here we will also need an additional assumption concerning the control region. 

(A4) The control domain U is supposed to be a convex body (i.e., it is convex and has a 
nonempty interior). 

Lemma 22.9. (on a mixed subgradient) Let (a be a convex (or concave) function on 
R" x U where U is a convex body. Assuming that (a ( x ,  u )  is diflerentiable in x and 
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is continuous in (x, u), the following inclusion turns out to be valid for any (x*, u * )  E 
R" x u: 

ProoJ For any y E R", in view of the convexity of p and its differentiability on x, it 
follows that 

Similarly, in view of the convexity of p in u, there exists a vector r E Iw' such that for 
any x*, y E R" and any U E U 

rp (x* + y ,  u* + U >  - lo (x* + y ,  u" )  2 (r,  4 (22.103) 

So, taking into account the previous inequalities (22.102)-(22.103), we derive 

cp (x* + y ,  u* + ii) - q (x*, u* )  

= [p (x* + y ,  u* + U )  - p (x* + y ,  u* ) ]  (22.104) 

+ [P (x* + 31, u*> - q (x*, .*)I 2 (r,  U )  + (rppx(x*, u * ) ,  y )  

Then, by the definition of subgradient (21.69), it means that 

The concavity case is very similar if we note that (-PO) i s  convex. 

Now we are ready to formulate the central result of this subsection. 

Theorem 22.15. (Sufficient condition of optimality) Let, under assumptions (Al)-(A4), 
the pair (x* (.), u* (.)) be an admissible pair and + ( t )  be the corresponding adjoint 
variable satisfying (22.68). Assume that 

I .  ho(x) and g, (x) ( 1  = 1, . . . , L )  are convex; 
2. H(+( t ) ,  x, u ,  t )  is concave in (x, u )  for any fixed t E [O, T ]  and any +( t )  E R". 

Then this pair (x* (.), u* (.)) is optimal in the sense of the cost,functional J (u  (.)) = 
ho(x (7')) (22.44) if 

at almost all t E [O, TI.  

Proofi By (22.105) and in view of the criterion of optimality (21.80), it follows for any 
u E U that 
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Then, by concavity of H ( + ( t ) ,  x, u ,  t )  in ( x ,  u) ,  for any admissible pair (x, u )  and 
applying the integration operation, in view of (22.106) we get 

(22.107) 

Let us introduce the "sensitivity" process 6 ( t )  := x ( t )  - x* ( t )  which evidently 
satisfies 

Then, in view of (22.68) and (22.107), i t  follows that 

T 

(22.108) 

(22.109) 

= 1, . . . , L )  and the complementary slackness 
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and, since u( . )  is arbitrarily admissible, the desired result follows. 

(22.1 10) 

0 

Remark 22.3. Notice that to check the concavity proper9 of H ( $ ( t ) ,  x, u ,  t )  (22.70) in 
(x, u )  for any fixed t E [0, T ]  and any $ ( t )  E R" is not a simple task since it depends on 
the sign of the $ , ( t )  components. So, the theorem given above may be applied directly 
practically only for a veiy narrow class of particular problems where the concaviv 
proper@ may be analytically checked. 

Example 22.5. Consider the following variation calculus problem: 

T 
' r  / 1 . i  ( t ) ( d t  + inf 

X€C'  [O.T] (22.11 1) 
t=o 

i ( t )  1 a > 0 ,  x (0) = 0, x ( T )  = ( 

It can be represented as an optimal control problem. Indeed, denoting X := u,  the initial 
problem (22.111) can be represented as 

T 

(22.112) 
t=o 

i ( t )  = u ( t ) ,  u ( t )  3 a > 0 ,  x (0) = 0, x ( T )  = < 
According to (22.81), the corresponding Hamiltonian function is 

H ( $ .  x, u.  t )  := $u - p Iu (t)I 

where @ = $ ( t )  satisfies the following adjoint ODE (22.68) $ ( t )  = 0 with the transuer- 
sality condition $ ( T )  = 0, which gives $ ( t )  = 0 for all t E [O. TI. The nontriviality 
condition (22.73) implies p > 0. So, by the maximality condition (22.80), it follows that 

argmax H ( @ ,  x, u ,  t )  = argmin p Iu (t) l  = a 
u >a u z a  
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This leads to the following fo rmf i~r  the optimal control: u ( t )  = a. The corresponding 
optimal curve is x ( t )  = at + c. The boundary conditions imply c = 0, aT = <. 
So, finally, we m y  conclude that the initial problem (22.1 I I )  has the unique solution 
x ( t )  = at if and only if the terminal value x ( T )  = f > 0 is equal to < = aT.  In any 
other cases the solution does not exist. 

Example 22.6. Consider the following variation calculus problem 

T + inf 
X€C’[O.T] 

12 (t)l I 2 (22.1 13) 

x (0) = 1, x ( T )  = -1, X (0) = X ( T )  = 0 

Let us introduce u ( t )  := 2 ( t )  E C[-1, TI ,  x1 ( t )  := x ( t )  and x2 ( t )  := .i ( t ) .  Then the 
initial problem (22.113) can be represented as the following optimal control problem: 

T -+ inf 
u d [ O , T j  

XI = x2, X2 = u ,  Iu (t)l 5 2 

X I  (0) = 1, X I  ( T )  = -1, X? (0) = ~2 ( T )  = 0 

By (22.81 ), the corresponding Hamiltonian function is 

(22.114) 

H ( @ , x , u , t )  : = * i x z + I l r , ~ - ~ ,  P L L O  

T since T = J=, h dt with h = 1. Here @ = @ ( t )  satisfies the following system of the 
adjoint ODE (22.68) 

$1 ( t )  = 0, $2 ( t )  = -*1 

which solution is a ramp function 

*I ( t )  = CI 

7+k2 ( t )  = -cl t + c2, cl,  c2 = const 

So, by the maximality condition (22.80), it follows that 

u* ( t )  = argmax H ( @ ,  x ,  u ,  t )  
1452 

1452 
= argmaxH(pk2u) = 2signq2 = 2sign(c2 - clt) 

The corresponding optimal curve is 

xI  ( t )  = 2 ] 1 sign (c2 - c l t )  dt ds + c3t + c4 

\=O r=O 
t 
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By the boundary conditions it follows that 

c4 = 1, c3 = 0 

Changing the time scale as t’ := t / T  leads to 

0 = / sign (c2 - tit') d t ’ ,  c; = clT 
r’=O 

which implies 2c2 = c;.  Since sign (ab)  = sign ( a )  sign (b) 

-1 = 1 [ sign [cl (5 - t ) ]  d t ]  d s  
r=O r=O 

= 1 [ 1 X s Z r  sign [CI (5 - T)] d r ]  ds  
s=O r=O 

T T  T 

= J’ ( 1 x s z r d s )  sign [ C I  (g - t)] d t  = (T  - t )  sign [cl (: - t ) ]  d t  
r=O s=O r=O 

This leads to the following conclusion 

Many other interesting examples can be found in Alexeev et al. (1984). 

22.7 Dynamic programing 

The dynamic programing method is another powerful approach to solving opti- 
mal control problems. It provides sufSicient conditions for testing if some control is opti- 
mal or not. The basic idea of this approach consists of considering a family of optimal 
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control problems with different initial conditions (times and states) and of obtaining some 
relationships among them via the, so-called, Hamilton-Jacol?y-Bellman rquation (HJB) 
which is a nonlinear first-order partial differential equation. The optimal control can be 
designed by maximization (or minimization) of the generalized Hamiltonian involved in 
this equation. If this HJB equation is solvable (analytically or even numerically) then the 
corresponding optimal controllers turn out to be given by a nonlinear feedback depending 
on the optimked plant nonlinearity as well as the solution of the corresponding HJB equa- 
tion. Such approach actually provides the solutions to the whole family of optimization 
problems, and, in particular, to the original problem. Such a technique is called “invariant 
embedding”. The major drawback of the classical HJB method is that it requires that 
thi\ partial differential equation admits a smooth enough solution. Unfortunately this is 
not the case even for some very simple situations. To overcome this problem the so- 
called viscosity solutions have been introduced (Crandall & Lions 1983). These solutions 
are some sort of nonsmooth solutions with a key function to replace the conventional 
derivatives by set-valued super/sub-differentials maintaining the uniqueness of solutions 
undcr very mild conditions. These approaches not only save the DPM as a mathematical 
method, but make it a powerful tool in tackling optimal control. In this section we do 
not touch on this approach. But we will discuss the gap between necessary (MP) and 
sufficient (DPM) conditions. 

22.7.1 Bellman’s principle of optimality 

Claim 22.1. (Bellman’s principle (BP) of optimality) “Any tail of an optimal trajec- 
tory is optimal too.”2 

In other words, if some trajectory in the phase space connects the initial x (0) and terminal 
x ( T )  points and is optimal in the sense of some cost functional, then the sub-trajectory, 
connecting any intermediate point x (t’) of the same trajectory with the same terminal 
point x (7), should also be optimal (see Fig. 22.2). 

22.7.2 Suficient conditions for BP fulfilling 

Theorem 22.16. (Sufficient condition for BP fulfilling) Let 

1. the performance index (a cost functional) J (u  (.)) with u (.) E IAarlm,, [O. TI be sepa- 
rable for any time t’ E (0, T )  such that 

where u I  (.) is the control within the time interval [0, t ’ )  called the initial control 
strategy and u2 (.) is the control within the time interval [t‘, TI called the terminal 
control strategy; 

Bellinan’s principle of optiinality, formulated in Bellman (1960), is as follows: “An optimal policy has the 
property that whatever the initial state and the initial decisions it must constitute an optimal policy with regards 
to the state resulting from the first decision.” 
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Fig. 22.2. Illustration of Bellman’s principle of optimality. 

2. the functional J 1  ( U I  (.), J2 (u2 (.))) is monotonically nondecreasing with respect.to 
its second argument J2 (u2 (.)), that is, 

J l  (u1 (.I> J 2  (u2 (.)I> ? J l  (u1 J 2  (4 (9)) 
if J 2  (u2 2 J 2  (.; (.I) 

Then Bellman’s principle of optimality takes place for this functional. 

(22.116) 

Prooj For any admissible control strategies u 1  (.), u2 (.) the following inequality holds 

Select 

(22.1 17) 

(22.118) 

(22.1 19) 

(22.120) 

(22.121) 
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Since J1 ( u l  (.), J z  (u2 (.))) is monotonically nondecreasing with respect to the second 
argument, from (22.121) we obtain 

(22.122) 

Combining (22.121) and (22.122), we finally derive that 

Summary 22.3. In strict mathematical form this fact may be expressed as follows: under 
the assumptions of the theorem above for  an-y time t' E (0, T )  

Corollary 22.7. For the cost functional 

J (U (.)) := ho (X ( T ) )  + h ( X  ( t ) ,  u ( t ) ,  t )  d t  
f=O i 

given in the Bolza form (22.41) Bellman's principle holds. 

Proof. For any t' E (0, T )  from (22.41) obviously it follows that 

J (. (.I> = JI (UI  (.)I + J 2  (u2 (.>> 

where 

f '  

(22.124) 

(22.125) 

(22.126) 

The representation (22.125) evidently yields the validity (22.115) and (22.1 16) for this 
functional. 0 
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22.7.3 Invariant embedding 

69 1 

22.7.3.1 System description and basic assumptions 

system over [s ,  T I :  
Let (s, y) E [0, T )  x R" be "an initial time and state pair" to the following controlled 

x ( t )  = f (x ( t ) ,  u ( t ) ,  t ) ,  
x ( s )  = 4' 

a.e. t E [s, TI (22.127) 

where x E R" is its state vector, and u E R' is the control that may run over a given 
control region U c R' with the cost functional in the Bolza form 

containing the integral term as well as the terminal one and with the terminal set M C 
R" given by the inequalities (22.42). Here, as before, u (.) E Ua,,m,s [s, TI.  For s = 0 and 
y = xo this plant coincides with the original one given by (22.40). 

Suppose also that assumption (Al) is accepted and, instead of (A2), its small modifi- 
cation holds: 

(A2') The maps 

I f : W" x u x [O, TI + R" 

ho : R" x u x [O, TI -+ R 
gl : R" + R" (1 = 1 , .  . . , L )  

h :R" x U x [O,T]  -+ R 
(22.129) 

are uniformly continuous in (x, u ,  t )  including t (before in (A2) they were assumed to 
be only measurable) and there exists a constant L such that for (o = f (x, u ,  t ) ,  h (x, u ,  t ) ,  
ho (x, u ,  t ) ,  gl (x) ( 2  = 1, . . . , L )  the following inequalities hold: 

(22.130) 

It is evident that under assumptions (Al)-(A2') for any (s, y )  E [0, T )  x R" and any 
u (.) E Uadmis [s, TI the optimization problem 

(22.131) 

formulated for the plant (22.127) and for the cost functional J (s, y ;  u (.)) (22.128), 
admits a unique solution x (.) := x (., s, y ,  u (.)) and the functional (22.128) is well 
defined. 

co
nt

ro
len

gin
ee

rs
.ir



692 Advanced Mathematical Tools for Automatic Control Engineers: Volume I 

Definition 22.8. (The value function) The function V (s, y )  defined for anv ( s ,  y )  E 

[O, T )  x R" as 

(22.132) 1 V (s, y) := inf J ( s ,  y ;  u (.)) 
U (  )c%dmi,[y%T1 

v ( T .  Y) = ho(Y> 

is called the value function of the optimization problem (22.131). 

22.7.3.2 Dynamic programing equation in the integral form 
Theorem 22.17. Under assumptions (Al)-(A2') for bny (s, y )  E [0, T )  x E" the following 
relation holds 

1 7 s  (22.133) 

Proof. The result follows directly from BP of optimality (22.124), but, in view of the 
great importance of this result, we present the proof again, using the concrete form of the 
Bolza cost functional (22.128). Denoting the right-hand side of (22.133) by v (s, y )  and 
taking into account the definition (22.132), for any u (.) E Uadmla [s, T ]  we have 

v (s, v )  I J (s, y ;  u (.)> 

= h (x ( t ,  s, y ,  u (.)), u ( t ) ,  t )  d t  + J (i, ~ ( $ 1 ;  u (.)) 
f=S 

and, taking infimum over u (.) E Uadmis [s, TI ,  it follows that 

v ( $ 9  Y )  I v (s, Y )  (22.134) 

Hence, for any E > 0 there exists a control u, (.) E &admr\ [s, T ]  such that for x, (.) := 
x (., s, y .  u,  (.I) 

(22.135) 

Tending E -+ 0 the inequalities (22.134), (22.135) imply the result (22.133) of this 
theorem. 0 

Finding a solution V (s, y )  to equation (22.133), we would be able to solve the origin 
optimal control problem putting s = 0 and y = xo. Unfortunately, this equation is very 
difficult to handle because of overcomplicated operations involved on its right-hand side. 
That's why in the next subsection we will explore this equation further, trying to get 
another equation for the function V (s, y) with a simpler and more practically used form. 
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22.7.4 Hamilton-Jacoby-Bellman equation 

To simplify the sequent calculations and following Young & Zhou (1999) we will 
consider the original optimization problem without any terminal set, that is, M = R”. 
This may be expressed with the constraint function equal to 

g (x) := 0 .  /IX11* - & I 0 ( E  > 0) (22.136) 

which is true for any x E R”. Slater’s condition (21.88) is evidently valid (also for any 
x E W). So, we deal here with the regular case. Denote by C’ ([0, T )  x Iw”) the set of 
all continuously differentiable functions u : [0, T )  x R“ += R. 

Theorem 22.18. (The HJB equation) Suppose that under assumptions (AI)-(A2’) 
the value function V ( s .  y )  (22.132) is continuously differentiable, that is, V E 

C‘ ([0, T )  x R”). Then V ( s ,  y )  is a solution to the following terminal value problem of 
a first-order partial differential equation, named below the Humilton-Jucoby-Bellinun 
(HJB) equation associated with the original optimization problem (22.131) without 
terminal set ( M  = R”): 

a a 
- - V ( t , x ) +  s u p H ( - - V ( t , x ) , x ( t ) , u ( t ) , t )  = o  

at ltcu a.w 
( t ,  X )  E [0, T )  x ps”, V ( T ,  X) = I Z O  (x), x E R” 

(22.137) 

(22.138) 

is the same as in (22.81) with p = 1 corresponding to the regular optimization problem. 

Proof. Fixing u ( t )  E II E U ,  by (22.133) with s  ̂ s we obtain 

s - s 

f =s 

which implies 

resulting in the following inequality 

a a 
a t  uGu ax 

0 2 --v (s, y )  + supH(--V(t, x), x ( t ) ,  u( t> ,  t )  (22.139) 

co
nt

ro
len

gin
ee

rs
.ir



694 Advanced Muthematical Tools for  Automatic Control Engineers: Volume 1 

On the other hand, for any E > 0 and s, closed to 2, there exists a control u (.) := u,,; (.) 
E Z/ladmis [s, TI for which 

Since V E C' ([0, T )  x R'), the last inequality leads to the following 

t=s 

1 
< ~ / [-"v ( t ,  x ( t ,  s, y ,  u ( 0 ) ) )  

a t  
- A  s - s  

t=S 

which for 2 4 s gives 

(22.142) 

Here the uniform continuity property of the functions f and h has been used, namely, 

Combining (22.139) and (22.142) when E -+ 0 we obtain (22.137). U 
The theorem below, representing the sufiicient conditions of optimality, is known as 

the verification rule. 
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Theorem 22.19. (The verification rule) Accept the following assumptions: 

1. Let u*(.)  := u* be a solution to the following optimization problem 

(22.144) 
a 

SUP 
ax u t U  

H(--V ( t ,  x), X, U ,  t )  -+ 

a 
ax 

with fixed values x, t and - V ( t ,  x); 

2. Suppose that we can obtain the solution V ( t ,  x) to the HJB equation 

a a --v ( t ,  x )  + H(--v ( t ,  x), x, u* (.), t )  = 0 
a t  ax (22.145) 

V ( T ,  X) = ho (x), ( t ,  X )  E [0, T )  x R" I 
which for any ( t , x )  E [0, T )  x R" is unique and smooth, that is, V E 
C' ([0,  T )  x R"); 

3. Suppose that for any (s, x) E [0, T )  x R" there exists (a.e. t E [s ,  T I )  a solution 
x*  (s, x)  to the following ODE (ordinary di2erential equation) 

a i* ( t )  = f X *  ( t ) ,  u* t ,  x* ( t ) ,  -v ( t ,  x* ( t ) ) ) ,  t )  ( ( ax 
x*  (s) = x 

(22.146) 

Then with (s, x) = (0, xo) the pair 

a 
is optimal, that is, u* is an optimal control. 

Proof. The relations (22.138) and (22.145) imply 

d a 
- v ( t ,  x* ( t ) )  = - - v ( t ,  x* ( t ) )  
d t  at > >  a a + c v  ( t ,  xi ( t ) I T  f x*  ( t ) ,  u* t ,  x*  ( t ) ,  -v ( t ,  x*  ( t ) )  , t ( ( ax 

a 
t ,  X*  ( t ) ,  z V  ( t ,  X*  ( t ) )  

Integrating this equality by t within [s ,  T ]  leads to the following relation 

v ( Z ,  x* ( T ) )  - v (s, x* (s)) 
T 

(22.148) 

= - ] h  ( x * ( t ) , u *  ( t , x * ( t ) ,  %V(t ,x*( t ) )  a 

f = S  
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which, in view of the identity V ( T ,  x* ( T ) )  = ho (x" ( T ) ) ,  is equal to the following one 

v (s, x*  (s)) = ho (x* ( T ) )  

a + ) h  (x* ( t ) ,  u* ( t .  x* ( t ) ,  &V ( t .  x* ( t ) )  

By (22.133), this last equation means exactly that 

a 
is an optimal pair and U* is an optimal control. 

(22.149) 

0 

22.8 Linear quadratic optimal control 

22.8.1 Nonstationary linear systems and quadratic criterion 

Consider in this section the dynamic plants (22.40) in their partial representation when 
at each time t E [0, TI the right-hand side of the mathematical model is a linear function 
with respect to the state vector x ( t )  and the control action u ( t )  as well, namely, for 
almost all t E [0, TI 

x ( t )  = A ( r )  x ( t )  + B ( t )  u ( t )  + d ( t )  
x (0) = xo 

(22.150) 

Here the functional matrices A ( t )  E R""" and B ( t )  E R""' are supposed to be bounded 
almost everywhere and the shifting vectorfunction d ( t )  E R" i s  quadratically integrable, 
that is, 

A (.) E Lm (0, T ;  R"""), B (.) E C" (0, T ;  R""'), d (*) E L2 (0, T ;  R") 
(22.151) 

The admissible control is assumed to be quadratically integrable on [0, TI and the terminal 
set M coincides with all space R" (no terminal constraints), i.e., 

Uadmia [0, TI := {U (.) : u (.) E L2 (0, T ;  R'), M = R"} (22.152) 

The cost functional is considered in the form (22.41) with quadratic functions inside, 
that is, 

T 
1 1 
2 2 

J (.>> = -xT ( T )  G x  ( T )  + - / [x' ( t )  Q ( t ) x  ( t )  
(22.153) 

+ 2uT ( t )  S ( t )  x ( t )  + U T  ( t )  R ( t )  u ( t ) ]  dt 
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where 

G E R""", Q (.) E P (0, T ;  Rnx" )  

S (.) E C" (0, T ;  RnXr) ,  R (*) E Lm (0,  T ;  R r x r )  
(22.154) 

such that for almost all t E [0, TI 

G L 0 ,  Q ( t )  2 0 ,  R ( t )  5 61, 6 > O (22.155) 

Note that all coefficients (except G) in (22.150) and (22.153) are dependent on time t .  

22.8.2 Linear quadratic problem 

Problem 22.3. (Linear quadratic (LQ) problem) For the dynamic model (22.150) find 
an admissible control u* (.) E &dmi.$ [O. T ]  such that 

J (u* (.)) = inf J (u (.)) (22.156) 
U ( . ) a d r n l \  [ O . U  

where the cost function J (u  (.)) is given b.y (22.153). 

We will refer to this problem as the linear quadratic optimal control problem (LQ). 

22.8.3 Maximum principle for LQ problem 

22.8.3.1 MP formulation 
Theorem 22.20. (Maximum principle for LQ problem) Zfapair ( x* ( t ) ,  u* (.)) is opti- 
mal, then 

1. there exists a solution @ ( t )  to the following ODE on [0, TI 

& ( t )  = - A T  ( t )  @ ( t )  + Q ( t )  X* ( t )  + S T  ( t )  U* ( t )  

@ ( T )  = -Gx* ( T )  
(22.157) 

2. the optimal control u* (.) E Uad,,,i,y [o, T ]  is as folEows 

Proof. Since in this problem we have no terminal conditions, we deal with the regular 
case and may take E.L = 1. Then by (22.81) and (22.82) it follows that 

H ( $ ,  x, u ,  t )  := $rT [ A  ( t ) ~  + B ( t )  u + d ( t ) ]  
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SO, 

a 
= - - - f f (W) ,x * ( t ) ,  u* ( t ) ,  t )  ax 

a 
= -AT ( t )  $0) + Q ( I )  x* ( t )  + S T  ( 1 )  u* ( t )  

@ ( T )  = --ho (x* ( T ) )  = -cx* ( T )  
ax 

which proves claim (1) (22.157) of this theorem. Besides, by MP implementation, 
we have 

u* ( t )  E Argmin H ( $ ,  x*, u ,  t )  
U € W  

or, equivalently, 

a 
- H ( $ ,  x*, u*, t )  = BT ( t )  $( t )  - R ( t )  U* ( t )  - S ( t )x*  (1) = 0 
aI.4 

(22.160) 

0 which leads to claini (2) (22.158). 

22.8.4 Sufficiency condition 

Theorem 22.21. (on the sufficiency of MP) I f  the control u* ( t )  is as in (22. /58) and 

Q ( t )  - S ( t )  R-' ( t )  ST ( 2 )  2 0 (22.16 1) 

then it is a unique optimal one. 

Prooj: It follows directly from Theorem 22.15 on the sufficient conditions of optimality. 
The uniqueness is the result of equation (22.160) which has a unique solution if R (I)  2 2jZ 
a.e. t E [0, TI,  S > 0 (22.155). Besides, the Hessian of the function H ( @ ,  x, u ,  t )  (22.159) 
is as follows 

Let us show that 1 1  7;) 
M22 > 0 is nonnegative definite, that is, 

:; 11 2 0. A symmetric block-matrix [ :{ with 

if and only if 

MI1 L 0, M11 - &M,;_'M:2 L 0 
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So, by the assumption (22.161) of the theorem we have that 

This means that the function H ( @ ,  x, u ,  t )  is concave (not obligatory strictly) on (x, u )  
0 for any fixed +(t )  and any t E [0, TI. 

Corollary 22.8. I f S  ( t )  = 0, then the control u* ( t )  (22.158) is always uniquely optimal. 

Proof. Under this assumption the inequality (22.161) always holds. 0 

22.8.5 R,iccati differential equation and feedback optimal control 

22.8.5. I Riccati differential equation 
Let us introduce the symmetric matrix function P ( t )  = P T  ( t )  E C' (0, T ;  BYxn) and 

the vector function p ( t )  E C' (0, T ;  Rn) which satisfy (a.e. 1 E [0, TI)  the following ODE: 

1 - P  ( t )  = P ( t )  A ( t )  + A ( t )  P ( t )  + Q ( t )  

- [BT ( t )  P ( t )  + S (t>lT R-' ( t )  [BT (t> P ( t )  + S ( t ) ]  

= P ( t )  A ( t )  + A ( t )T  P ( t )  - P ( t )  [ B  ( t )  R-' ( t )  BT ( t ) ]  P ( t )  + Q ( t )  

P ( T )  = G 
(22.162) 

with 

A ( t )  = A ( t )  - B ( t )  R-' ( t )  S ( t )  

Q ( t )  = Q ( t )  - ST ( t )  R-' ( t )  S ( t )  
(22.163) 

and 

(22.1 64) 

-L; ( t )  = [ (A ( t )  - B ( t )  R-' ( t )  S ( t ) ) T  

- P ( t )  B ( t )  R-' ( t )  BT ( t ) ]  p ( t )  + P ( t )  d ( t )  

P ( T )  = o  
Definition 22.9. We refer to ODE (22.162) as the Riccati differential equation and p ( t )  
is referred to as the shifting vector associated with the problem (22.156). 

22.8.6 Linear feedback control 

Theorem 22.22. (on a linear feedback control) Assume that 

P ( t )  = P T  ( t )  E c' (0, T ;  R""") 
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is a solution of (22.162) and 

p ( t )  E c' (0, T ;  R") 

verifies (22.164). Then the optimal control u* (.) E Uaadmis [0, T ]  for the problem (22.156) 
has the linear feedback form 

and the optimal cost function J (u* (.)) is as follows 

1 
J (u* (.)) = XX; P (0)  xo + pT (0) xo 

(22.166) 

f=O 

Proof. 

1. Let us try to find the solution of ODE (22.157) in the form 

The direct substitution of (22.167) into (22.157) leads to the following identity ( t  will 
be suppressed for simplicity): 

( Q  - STR-'S) x* - (AT  - sTRp'BT) [ -P  ( t ) x*  - p ]  = $ 
= - P x *  - P [Ax* + B (u*)  + d ]  - p = - P x *  

- P  [AX* + B R - I  [ B T  (-PX* - p )  - sx*] + d ]  - p 

= -Px* - P (A - BR-' [ B T P  + S ] )  x* + P B R - l p  - Pd - p 

This yields 

But, in view of (22.162) and (22.164), the right-hand side of (22.168) is identically 
zero. The transversality condition @ ( T )  = -Gx* ( T )  in (22.162) implies 

which holds for any x* ( T )  if P ( T )  = G and p ( T )  = 0. 
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2. To prove (22.166) let us apply the chain integration rule for xT ( t )  P ( t )  x ( t )  and for 
pT ( t ) x  ( t ) ,  respectively. In view of (22.150) and (22.162) we obtain 

X T  ( T )  P ( T )  x ( T )  - X T  (s) P (s) x (s) 

= x*T ( T )  Gx* ( T )  - x*T (s) P (s) X* (s) 

T T 

t )  P ( t ) x  ( t ) ]  dt = / - [xT ( t )  P ( t ) x  ( t ) ] d t  = / [2xT ( t )  P ( t ) i  ( t )  + x  ( 
d 
d t  

t=s f=s 
T 

= 1 {xT ( t )  ( [ P  ( t )  B ( t )  + ST ( t ) ]  R-' ( t )  [ P  ( t )  B ( t )  + ST ( t ) lT  

t=s 
-Q ( t ) )  x ( t )  + 2u*T ( t )  BT ( t )  P ( t )  x ( t )  + 2dT ( t )  P ( t )  x ( t ) }  dt  

(22.169) 

and, applying (22.164), 

(22.170) 

Summing (22.169) and (22.170) and denoting 

1 
J* (s, x (s)) := -xT (s) P (s) x ( 3 )  

2 
T 

+ 1 / [XT ( t )  Q ( t i  x ( t )  + U*T ( t )  R ( t )  U* ( t )  + 2 u * ~  ( t )  s ( t )  x ( t i ]  
2 

t=s 

we get 

1 
2 

J *  (s, x (s)) - -xT (s) P (s) x (s) - PT (s) x (s) 

T 

= / ( u * ~  ( t )  R ( t )  u* ( t )  
2 

+ x T  ( t )  [ P  ( t )  B ( t )  + ST ( t ) ]  R-' ( t )  [ P  ( t )  B ( t )  + ST (t)lT x ( t )  

+ 2xT ( t )  [P ( t )  B ( t )  + ST (t)lT u* ( t )  

+ 2XT ( t )  [ p  ( t )  B ( t )  + ST (t)]' R-' ( t )  BT ( t )  p ( t )  

t = I  
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+ 2 ~ * ~  ( t )  BT ( t )  p ( t )  + 2pT ( t )  d ( t ) }  dt 

T 

= 1 
2 

{ / I  R-'I2 ( t )  [R ' ( t )  u* ( t )  + [ P  ( t )  B ( t )  + ST (?)IT x T  ( t ) ]  
t=s 

(22.171) 

which, taking s = 0, x (s) = XO, and in view of 

yields (22.166). Theorem is proven. 

Theorem 22.23. (on the uniqueness of the optimal control) The optimal control u* (.) 
E i!&,mjs [0, T ]  is unique if and only if the corresponding Riccati differential equation 
(22.162) has a unique solution P ( t )  2 0 on [0, TI. 

Proof. 

1. Necessity. Assume that u* (.) E [o, T ]  is unique and is given by (22.165). But 
this is possible only if P ( t )  is uniquely defined ( p  ( t )  will be uniquely defined 
automatically). So, the corresponding Riccati differential equation (22.162) should 
have a unique solution P ( t )  2 0 on [0, TI.  

2. Sufficiency. If the corresponding Riccati differential equation (22.162) has a unique 
solution P ( t )  2 0 on [0, T I ,  then, by the previous theorem, u* (.) is uniquely defined 
by (22.165) and the dynamics xi ( t )  is given by 

i* ( t )  = [ A  ( t )  - B ( t )  R-' ( t )  ( B T  ( t )  P ( t )  + S ( t ) ) ]  X *  ( t )  
(22.172) 

So, the uniqueness of (22.165) follows from the uniqueness of the solution of 
ODE (22.172). 0 

22.8.7 Stationary systems on the infinite horizon 

22.8.7. I Stationary systems and the infinite horizon cost function 
Let us consider a stationary linear plant given by the following ODE 

t E [0, 001 x ( t )  = Ax ( t )  + Bu ( t ) ,  
x (0) = xO, A E R""", B E R""' 

supplied by the quadratic cost function in the Lagrange form, namely, 

[x' ( t )  QX ( t )  + uT ( t )  RU ( t ) ] d t  
t = O  

(22.173) 

(22.174) 
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where 0 5 Q = Q T  E R""", and 0 < R = RT E R'"' are the weighting matrices. 

within the class of admissible control strategies consisting of all u (.) such that 
the solution of (22.173) exists: 
u (.) 

and DPM. 

The problem is as before: find a control u* (.) minimizing J (u (.)) over all controls 

L2 (0, 00; Rr) (otherwise, the criterion (22.174) does not exist). 
We will try to solve this problem by two methods: the, so-called, direct method 

22.8.7.2 Direct method 
Let us introduce the function V : R" H R as follows 

v (x) := X T  P x  (22.175) 

where the matrix P is a symmetric matrix P = PT E R""". Then, in view of (22.173), 
we obtain 

V (x ( t ) )  = 2xT ( t )  P i  ( t )  = 2xT ( t )  P [ A X  ( t )  + BU ( t ) ]  

The integration of this equation leads to the following: 

v (x ( T ) )  - v (x (0))  = X T  ( T )  P x  ( T )  - X O ' P X O  

T 

= / 2xT ( t )  P [ A X  ( t )  + Bu ( t ) ]  dt  
t=n 

Adding and subtracting the terms X T  ( t )  Qx ( t )  and U T  ( t )  Ru ( t ) ,  the last identity may 
be rewritten in the following form 

X T  ( T )  Px ( T )  - XO'PXO 

= j (2xT ( t )  P [ A x  ( t )  + Bu ( t ) ]  + x T  ( t )  Qx ( t )  + u T  ( t )  Ru ( t ) )  dt 
t=O 

T T 

- / [xT ( t )  Qx ( t )  + u T  ( t )  Ru ( t ) ]  dt = / (x' ( t )  [ P A  + A T P  + Q l x  ( t )  

t=O t=n 

+ 2 (R-"*BTPx ( t ) ) T  R ' h  ( t )  + l l R ' / 2 ~  (t)l12) dt  

- / [xT ( t )  Qx ( t )  + uT ( t )  Ru ( t ) ]  dt 

T 

r=O 

= 1 ( x T  ( t )  [ P A  + A P  + Q - P B R - ' B T P ]  x ( t )  
t=O 

+ IIR-'12BTP~ ( t )  + R'/*u (t) \12) dt  - [xT ( t )  Qx ( t )  + uT ( t )  Ru ( t ) ] d t  
t=O 1 
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which implies 

[xT ( t )  Q x  ( t )  + uT ( t )  Ru ( t ) ]  dt  = x: PXO - xi ( T )  P x  ( T )  
t=O 

r=O 

1 

+ / x T  ( t )  [ P A  + A T P  + Q - P B K ' B ' P ]  x ( t ) d t  
f=O 

(22.176) 

Selecting (if it is possible) the matrix P as a solution to the following matrix Riccati 
equation 

P A  + A T P  + Q - P B R - ' B T P  = 0 (22.177) 

from (22.176) we get 

T / [x' ( t )  QX ( t )  + U T  ( t )  Ru ( t ) ] d t  = x:Pxo - x T  ( T )  Px (2') 
t=O 

T 

+ / 1 1  R-'12BT P x  ( t )  + R'/'u (t)/12 d t  
r=O 

2 x,'Pxo - X T  ( T )  P x  ( T )  
(22.178) 

Theorem 22.24. If for the system (22.173) the pair ( A ,  B )  is stubilizuble and the pair 
( ell2, A )  is observable then the optimal control u* ( t )  minimizing (22.174) is given by 

where P is the unique positive definite solution of (22.177) making the closed-loop system 
asymptotically stable. Moreover, the minimal value of the cost functional is 

P I CCI I 
[x' ( t )  QX ( t )  + U' ( t )  RU ( t ) ]  dt  = X J P X O  

r=o 
(22.180) 

Proof. First, notice that the dynamic system (22.173) closed by an optimal control should 
be stable. Indeed, suppose that there exists at least one unstable mode of the controlled sys- 
tem. Then, by the observability of the pair (C, A),  it follows that the vector y ( t )  = Cx ( t )  
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Variational calculus and optimal control 705 

(Q := CTC) should tend to infinity and, hence, f o x T  ( t )  Q x  ( t )  dt tends to infinity 
with T --+ 00 that cannot correspond to an optimal control. So, the term x T  ( T )  Px ( T )  
has to tend to zero and can be disregarded. By Theorem 10.8 there exists the unique 
positive definite solution P of (22.177) which makes the closed-loop system stable since 

,i ( t )  = AX ( t )  + Bu* ( t )  = ( A  - BR- 'BT P )  x ( t )  = Acloqe,-~~ ( t )  

where Aclosed is defined in (10.26). Taking this P in (22.179) and in view of (22.178) 
0 under u (.) = u* (.) the equality (22.180) holds. Theorem is proven. 

Does the optimal control stabilize nonobsewable systems? 
Proposition 22.1. The optimal control does not necessarily stabilize a nonobsewable 
linear stationary system. 

The next simple example illustrates the statement given above. 

Example 22.7. Consider the following linear second-order controllable time invariant 
system 

Let the costfunctional be J (u  (.)) = LEO [xT ( t )  Q x  ( t )  + u2 ( t ) ]  dt with x ( t )  := [ :: 
and Q := [ -I  ] 2 0. In our case this system can be represented in the form 

(22.173) with A = [ A ]  and B = [ ] . Notice that this system is unobservable since 

the column rank of the obsewability matrix 0 = [Ccq] = [ -\ -:I is incomplete 

and equal to 1. The statement of the proposition becomes evident if we define y ( t )  := 
x1 ( t )  - x2 ( t )  and represent this system as 

1 -1 

j ,  ( t )  = -y ( t )  - u 

J (u (.)) = 7 [y' ( t )  + u2 ( t ) ]  dt 
t=O 

with 

(22.181) 

According to Theorem 22.24 the optimal control in (22.181) is u* ( t )  = py  ( t )  where 
p = - 1. As it is expected, in the optimal system y ( t )  -+ 0 as t + 00. Evidently, the 
second component x2 ( t )  -+ 00, and, hence, the optimal system is unstable which proves 
the above proposition. This effect appears due to instability of the unobservable state 
component x2 ( t ) !  
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(3 := 

The revealed fact permits to indicate the class of stable unobservable optimal systems. 
If the pair ( C ,  A )  is unobservable then there exists a nonsingular linear transformation 

T x  = (::) such that the system (22.173) can be represented in the, so-called, canonical 

obsewability form 

- - 
C 

C A  
C A 2  

- CAn-' - 

(22.182) 

with x, and x 2  being the observable and unobservable state components. Let us show 

how this transformation can be found. Select T in the form T = (L) where the matrix 

u E Rkxn consists of k basis row vectors of the observability matrix (9.63) 

Since the system is unobservable then k < n. The matrix w E R(n-k)xn is an arbitrary 
one such that det T f 0. Denote 

The identity TT-I = I implies 

and 

v N ~  = 0 (22.183) 

Since v A  and vC are in the same basis there exist matrices L A  and Lc such that 

Then 
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Variational calculus and optimal control 707 

In view of (22.183) and the relations 

CT-' = (LCUNI L C U N ~ )  = ( C N 1 0 )  

we finally get (22.182) and the cost functional (22.174) becomes 

J (u = 7 [x: ( t> Qlxl ( t )  + uT 0 )  Ru (t>l dt 
t = O  

where Ql = C:C1 and the pair (Cl ,  All) is observable. Then, by Theorem 22.24, the 
optimal control is 

U *  ( t )  = -R-'B: plxl ( t )  

with PI being the positive-definite solution to the reduced order Riccati equation 

which makes the first subsystem (with respect to xl) stable. It is evident that the optimal 
system (22.173) is stable if the matrix A22 is Hurwitz (stable). According to the PBH test 
9.1, such systems are called detectable. Finally we may formulate the following claim. 

Claim 22.2. The linear time invariant system (22.173) optimal in the sense of the cost 
functional (22.174) is stable i f  and only if this system is stabilizable and detectable. 

22.8.7.3 DPM approach 
Consider the following HBJ equation (22.137): 

a 
-h+supH(- -V(x) ,x ,u )  = o  

u6u  ax 
x E R", I? = const, v (0) = o 

with 

H ( @ ,  X, U )  := @ T  (AX + B u )  - x T  QX - 1 1 ~  RU 

x, u ,  l// E [O, 001 x R" x R' x R" 

(22.184a) 

(22.185) 

Theorem 22.25. (Verification rule for LQ-problem) If the control u* is a maximizing 
vector for (22.185) with some I? = const, that is, 

1 a 
u* = - -R- 'BT-v (x) 

2 ax 
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where V (x) is a solution to the following HJ equation: 

a 
ax 

--VT (x) AX - 
l a  a - 

X T Q X  + --VT (x) BR- 'BT-V  ( x )  = h 
4 ax ax 

and the closed-loop system is stable, then such u* is an optimal control. 

Proof It is evident that only admissible control may be stabilizing (if not, the cost 
function does not exist). By (22.185) for any stabilizing u (.) it follows that 

a 
H(--V (x"), x*,  u*) = h,  H ( -  

ax 

and, hence, 

a 
.- v (x), x, u )  5 h ax 

which, after integration, leads to the following inequality 

or, equivalently, 

1' 7' 00 / [x*TQx* + u * ~  Ru*] d t  5 [ x T Q x  + u T R u ]  d t  + d (V  (x) - V (x*)) I' 
t=O t=O I =O 1 [xT Qx + uT R u J d t  + V (x ( T ) )  - V T  (x" ( T ) )  V(r(0))=~T(r*(o)) - 

t=O 

Within the class of stabilizing strategies we have 

v (x ( T ) )  - VT ( X *  ( T ) )  -3. 0 
7'-30 

which, in view of the last inequality, shows that u* (.) is an optimal control. 0 

Try to find the solution to (22.185) as V (n) = xT P x  with P = P T 1 0. This implies 
a 

-V (x) = 2 P x ,  and, hence, 
ax 

- ~ X T P  (AX - B R - ~ B T P X )  - X T Q X  - X T P B R - ~ B T P X  

= x T  ( - P A  - ATP - Q + P E R - ' B T P )  x = 0 

The last equation is identically fulfilled for any x E R" if P is the solution to the same 
Riccati matrix equation as in (22.177) for a stabilizable and observable system. So, finally, 
the optimal control is u* ( t )  = -R-'BT PX ( t )  which naturally coincides with (22.179). 
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Variational calculus and optimal control 709 

22.9 Linear-time optimization 

22.9.1 General result 

For this problem the cost functional is 

It can be obtained from the Bolza form functional 

T 

(22.186) 

if we put ho(x)  = 0, h (x, u ,  t )  = 1. Then for a linear plant, given by (22.150), the 
Hamiltonian (22.81) is 

H ( $ ,  X ,  U ,  t )  := qT [A ( t ) x  + B ( t )  u + d ( t ) ]  - p (22.187) 

and, hence, the maximality condition (22.69) becomes as follows: 

U* ( t )  E ArgmaxlCrT ( t )  [A ( t )  x ( t )  + B ( t )  u ( t )  + d ( t ) ]  
U € U  

= Argmax+T ( t )  B ( t )  u ( t )  = Argmax [BT ( t )  $ ( t ) lT u ( t )  
U € U  Zl€U 

r 
(22.188) 

Theorem 22.26. (on linear time-optimal control) Ifthe set U of the admissible control 
values is  a polytope defined by 

u := {U E Iw' : u k  5 uk ( t )  5 u:, k = 1,. . . , r }  (22.189) 

then the optimal control (22.188) is as follows 

and it is unique. 

(22.190) 

Proof. Formula (22.190) follows directly from (22.1 SS), (22.189) and the .uniqueness 
is the consequence of the theorem on the sufficient condition of the optimality which 
demands the concavity (and not obligatory strict) of the Hamiltonian with respect to 
(x, u )  for any fixed $, which is evidently fulfilled for the Hamiltonian function (22.187) 
which is linear on x and u .  0 
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22.9.2 Theorem on n-intervals for stationaiy linear systems 

Consider in detail the partial case of linear systems (22.150) when the matrices of the 
system are constant, that is, A ( t )  = A ,  B ( t )  = B .  For this case the result below has 
been obtained in Feldbaum (1953) and is known as the theorem on n-intervals. But first, 
let us prove an axillary lemma. 

Lemma 22.10. I f h i ,  h2, . . . , h, are real numbers and f l  ( t ) ,  . . . , f m  ( t )  are thepolyno- 
mials with real coeficients and having the orders k l  , . . . , k,, correspondingly. Then the 
function 

(22.191) 

has a number of real roots which does not exceed 

no := kl + .  . . + km f m  - 1 (22.192) 

Proof. To prove this result let us use the induction method. 

1. For m = 1 the lemma is true. Indeed, in this case the function ( t )  = f l  ( t )  ehlr has 
the number of roots coinciding with k l  since eAi r  > 0 for any t .  

2. Suppose that this lemma is valid for m - 1 > 0. Then let us prove that it holds for m .  
Multiplying (22.191) by e-*,' we obtain 

(22.193) 

Differentiation by t the relation (22.193) (k,  + 1)-times implies 

where fi ( t )  are the polynomials of the same order as f i  ( t ) .  By the supposition before, 
the function p1  ( t )  has a number of roots which do not exceed 

Since between two roots of continuously differentiable function, there is at least one 

root of its derivative, then the function vkm ( t )  := - (v ( t )  e-*,') will have nk,, = 
nk,+l+ 1. Continuing this process, finally we get that the function yo ( t )  := q ( t )  e-',' 
will have 

dkm 
dtkm 
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And, since e-'*' > 0 always, we may conclude that q ( t )  has the same number of roots 
0 as ~ J O  ( t ) .  Lemma is proven. 

Now we are ready to prove the main result of this section. 

Theorem 22.27. (Feldbaum 1953) If the matrix A E R""" has on1.y real eigenvalues, 
then the number of switches of any component of the optimal control (22.190) does not 
exceed (n - l), that is, a number of the intervals, where each component of the optimal 
program (22.190) is constant, does not exceed n. 

ProoJ: Let h l ,  h2,  . . . , h, be the different eigenvalues of the matrix A and r,, r2, . . . , rm 
are their multiplicity numbers, correspondingly. Then a general solution of the adjoint 
system of equations $( t )  = -ATy?(t) may be represented as 

(22.194) 

where pi j  ( t )  are polynomials on t whose order does not exceed ( r j  - 1). Substituting 
(22.194) into (22.188) implies 

where I")kj ( t )  are the polynomials on t ,  whose order does not exceed (rj - l ) ,  equal to 

(22.195) 

Now the number of switches is defined by the number of the roots of the polynomials 
(22.195). Applying directly the lemma above, we obtain that the polynomial function cy=l j k j  (t) e 'if has a number of real roots which do not exceed 

(rl - 1) + (r2 - 1) + .. . + (rk - 1 )  + ( k  - 1) = rl + .. . +rk - 1 = n - 1 

Theorem is proven. 
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In this chapter we will present the material following Francis (1987), Zhou et al. (1996), 
Curtain & Zwart (1995) and Poznyak (1991). 

23.1 W2-optimization 

23.1.1 Kalman canonical decompositions 

The class of finite dimensional linear time invariant dynamic systems consists of 
systems described by the following ODE with constant coefficients: 

+i ( t )  = A X  ( t )  + BU ( t ) ,  x ( to)  = X O  

y ( t )  = C X  ( t )  + DU ( t )  
(23.1) 

where x ( t )  E R" is associated with the system state, u ( t )  E R' is the input, and y ( t )  E IRP 

is the system output. A ,  B ,  C and D are appropriately dimensioned real constant matrices. 
If r = p = 1, then a dynamic system (23.1) is called SISO (single input-single output), 
otherwise it is called MIMO (multiple input-multiple output). In compact form (23.1) 
can be rewritten as 

j (a) = [El (a) I (23.2) 

where [: ;] will be referred to as a state space realization. The corresponding transfer 

matrix G (s) from u to y which connected their Laplace transformations U (s) and Y (s) 
(with zero-initial conditions) is defined by 

(23.3) 

711 
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and is equal to 

I G (s) = C (sZ - A)-' B + D I (23.4) 

Proposition 23.1. The transfer matrix G (s) is not changed under any nonsingular coor- 
dinate transformation X = T x  (det T # 0) which converts (23.1) into 

d -  
dt 
-x ( t )  = TAT- '?  ( t )  + T B u  ( t )  

y ( t )  = C T - ' i  ( t )  + Du ( t )  
(23.5) 

Prooj Evidently, 

- 
Proposition 23.2. The corresponding controllability c and obsewability 0 matrices are 
related to the original ones C (9.55) and 0 (9.63) by 

(23.6) 

This implies that the controllability and obsewability properties are invariant under the 
similarity (nonsingular) coordinate transformations. 

Proof. It follows directly from the definitions (9.55) and (9.63). 0 

The next theorems, known as the Kalman decompositions, show (see the details in 
Zhou et al. (1996)) that any linear system (23.1) can be transformed by a similarity 
transformation into a system having two groups of the coordinates such that one of them 
is obligatory controllable, or obscrvable, or both properties hold simultaneously. 

Theorem 23.1. (on the controllable canonical form) If the controllability matrix has 
rank k, < n, then there exists a similarity transformation 

such that 

where A, E RLLXk( and the pair is controllable (see Criteria 9.8). Moreover, 

G (s) = C ( s l  - A)-' B + D = e, ( s l  - A,)-' B, + D 
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Proof. Since the pair ( A ,  B )  is uncontrollable and the rank of the controllability matrix 
c is equal to k, cc n, there exist k, linearly independent columns, say, ( u i ,  . . . , vk,) 
of C such that u, := BAJ' (ji E [0, n - I]). Adding any linearly independent (among 
themselves and with ( u l ,  . . . , vk,) ) vectors (vkc+t, . . . , u n )  one can form the matrix 

which is nonsingular by the construction. Then the matrix 

T = Q-' (23.8) 

will give the desired decomposition. Indeed, since by the Cayley-Hamilton theorem 3.1 
any vector u, can be represented as a linear combination of the columns of C, which 
implies 

AT-' = [ AUJ . . . Aukc Auk,+l . . . Aun]  

By the same way, each column of the matrix B is a linear combination of vectors 
( u , ,  . . . , vk,), which also leads to the following relation 

Notice also that C can be represented as 

Again, by the Cayley-Hamilton theorem 3.1 any matrix (Ac) '  with i > k, can be 

represented as a linear combination of the matrices (2.)' ( j  = I ,  .. ., kc) ,  which 
is why 

So, the pair (A,, B.) is controllable. Theorem is proven. n 

Corollary 23.1. According to Theorem 23.1 the state space {X} may be partitioned in 

two orthogonal subspaces { (2 1 1 and (i".> where the first subspace is controllable 
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from the input and the second one is completely uncontrollable from the input. Moreover, 
since 

it follows that the controllable subspace is the span of the vectors vi ( i  = 1, . . . , kc) ,  or 
equivalently Im C. 

Theorem 23.2. (on the observable canonical form) Ifthe observability matrix has rank 
k, < n, then there exists a similarity transformation 

such that 

where i, E Rkllxko and the pair C,, A, is observable (see Criteria 9.10). Moreover, ( -  - 1  
G (s) = C (sl - A)-' B + D = E, (Sl - A,)-' B, + D 

Proof. By duality of the controllability. and observability properties (see Criterion 6 
in Theorem 9.10) the proof of this theorem can be converted to the proof of the 
previous one. 0 

Combining the two above theorems one can get the following joint result. 

Theorem 23.3. (The Kalman canonical decomposition) The state vector x of anyfinite 
dimensional linear time invariant dynamic system, given by (23.1), may be transformed 
by a nonsingulur transformation T (det T # 0) into the new states 
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such that 

717 

where the vector 2c,o is controllable and observable, 2c>,n0 is controllable but unobsew- 
able, 2unc,o is uncontrollable but observable, and, finally, Xunc ,uno  is both uncontrollable 
and unobservable. Moreover, 

G (s) = C (sI - A)-' B + D = C?c,o 

23.1.2 Minimal and balanced realizdtions 

Criteria for the minimality of transfer matrix realizations 

Definition 23.1. A state space realization of the transfer matrix function G ( s )  

is said to be a minimal realization of G ( s )  if the matrix A has the smallest possible 
dimension. Sometimes, this minimal dimension of A is called the McMillan degree 

A 

[c  D l  

of G (s). 

Lemma 23.1. (The criterion of minimality of a realization) A state space realization 

[: :] of the transfer matrix function G ( s )  is minimal if and only if the pair ( A ,  B )  

is controllable and the pair (C,  A )  is observable. 

Proof. 

1. Necessity. First, show that if [: :] is minimal then the pair ( A ,  B )  is controllable 

and the pair ( C ,  A )  is observable. On the contrary, supposing that ( A ,  B )  is uncontrol- 
lable and/or (C;  A )  is unobservable, by Theorem 23.3 there exists another realization 
with a smaller McMillan degree that contradicts the minimality of the considered 
realization. This fact proves necessity. 
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2. Sufficiency. Let now the pair ( A ,  B )  be controllable and the pair ( C ,  A )  be observ- 
able. Suppose that the given realization is not minimal and there exists another real- 

ization [: :] which is minimal with order n,in < n. Since by Theorem 23.3 

- - .  
for any i = 0, 1, . . . one has CAi B = C A ' B  which implies 

- -  
OC = 0c (23.9) 

By the controllability and observability assumptions 

rank (0) = rank (0) = n 

and, hence, by the Sylvester inequality (2.24) we also have that rank (OC) = n. By 
the same reasons, 

rank (8) = rank (c) = k = rank 

which contradicts the identity rank(0C) = rank 0 C  resulting from (23.9). Suffi- 

ciency is proven. (--> 
Corollary 23.2. If [ 2 :] (i = 1, 2) are two minimal realizations with the 

controllability C, and obsewability Oi matrices respectively, then there exists the unique 
nonsingular coordinate transformation 

(23.10) 

such that in the compact forms presentation (23.2) the corresponding matrices are 
related as 

Prooj It directly follows from (23.9) and (23.5). 

Balanced realization for a transfer matrix 
In spite of the fact that there are infinitely many different state space realizations 

for a given transfer matrix, some particular realizations turn out to be very useful for 
control engineering practice. First, let us prove the following lemma on the relation of 
the structure of a state space realization with the solutions of the corresponding matrix 
Riccati equations. 
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Lemma 23.2. Let, [g e ]  be a state space realization of a (not necessarily stable) 

transfer matrix G (s). Suppose that there exists symmetric matrices 

(23.12) 

with PI, Ql nonsingular, that is, PI > 0 and Ql > 0, such that 

A P +  P A T +  BBT = O  

AQ + QAT+CTC = O  
(23.13) 

(in fact, P and Q are the controllability (9.54) and observability (9.62) grammians, 
respectively). 

A11 A12 BI 
1. I f  the partition of the state space realization, compatible with P, is A21 A22 B2 , [ CI CZ D ]  

then [ “d,l 21 is also the realization of G (s), and, moreover, the pair ( A l l ,  B1) is 

controllable, All is stable and PI > 0 satisfies the following matrix Lyapunov equation 

(23.14) 

All  A12 Bl 
2. I f  the partition of the state space realization, compatible with Q, is 

then [ “d,l :] is also the realization of G (s), and, moreover, the pair (Cl, A l l ,  ) is 

observable, All  is stable and Ql > 0 satisfies the following matrix Lyapunov equation 

Proof. 

1. Substituting (23.12) into (23.13) implies 

which, since PI is nonsingular, gives B2 = 0 and Azl = 0. Hence, 

Ail  A12 Bi All  A12 B1 

CI c2 D CI c2 D 
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and, by Lemma 2.2, one has 

G (s) = C (sZ - A)-' B + D 

and, hence, [ :: :] is also a realization. From Lemma 9.1, it follows that the pair 

( A l l ,  B , )  is controllable and Al l  is stable if and only if PI > 0. 
2. The second part of the theorem results from duality and can be proven following the 

analogous procedure. 0 

Definition 23.2. A minimal [: :] state space realization o f a  transfer matrix G (s 

said to be balanced, if two grammians P and Q are equal, that is, 

(23. 

is 

Proposition 23.3. (The construction of a balanced realization) Let [: :] be a min- 

imal realization of G(s) .  Then the following procedure leads to a balanced reulization: 

1. Using (23.13), compute the controllability P > 0 and the obsewability grammians 

2. Using the Cholesky factorization (4.31), find matrix R such that 
Q > 0. 

P = R T R  

3. Diagonalize R Q RT getting 

R Q R T  = U C 2 U T  

4. Let T = RTUC-'12 and obtain new Pbal and as 

Phi,, := T P T T  = ( T T ) - '  QT-' := Qba, = c (23.17) 

Proof. The validity of this construction follows from Theorem (7.4) if A = P and B = Q. 
Taking into account that for minimal realization A > 0 and B > 0, we get (23.17). 0 

Corollary 23.3. 

I PhalQbal = C 2  = diag (c;, . . . , a:) I (23.18) 
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where, with the decreasing order number, CT~ 2 . , . 2 a, are called the Hankel singular 
values of a time invariant linear system with transfer matrix G (s ) .  

23.1.3 MI2 norm and its computing 

It was mentioned in sections 18.1.8 and 18.1.9 that the Lebesgue space LTXk (or 
simply IL2) consists of all quadratically integrable complex (m  x k )  matrices, i.e., 

! (with F- ( j w )  := FT ( - j w ) )  

(23.19) 

IL2 space is (see (18.18)) a Hilbert space with the scalar (inner) product defined by 

I w=-m I 
(23.20) 

The Hardy space W y x k  (or, simply, W2) is the subspace of LFxk consisting of all 
quadratically integrable complex (m x k )  matrices with only regular (holomorphic) 
(see Definition 17.2) elements on the open half-plane Res > 0. Evidently, IH12 is also a 
Hilbert space with the same scalar product (23.20). 

Lemma 23.3. 

/ I L 2  = MI2 @MI; I (23.21) 

such that i f X  E IHI2 and Y E MI; then 

1- (23.22) 

Proof. It is a direct consequence from Lemma 18.1 on the orthogonal complement of a 
0 subset of a Hilbert space. 

The next theorems state the relation between L y x k  [0, 00) and myXk.  
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Theorem 23.4. I f  f ( t ) ,  g ( t )  E L y x k  [0, m) and their Laplace transformation (17.73) 
are F ( p ) ,  G ( p )  E IHIyxk, then the following identities hold: 

1. 

I cc 

I w 

= ( F ,  G h 2  := / tr { F ( j w )  G- ( j w ) }  dw 

where 

G- ( j w )  := GT ( - j w )  

2. 

(23.23) 

(23.24) 

(23.25) 

The identities (23.23) and (23.25) will be referred to as the generalized Parseval’s 
identities. 

Proof. It is a direct consequence of the Plancherel theorem 17.18 and its Corollary 
17.14. 0 

Remark 23.1. I t  is obvious from the manipulations above that Lz-norm 11 f I),,isfinite if 
and only if the corresponding transfer matrix F ( p )  is strictly proper, i.e., F (00) = 0. 

Sure, /IF 
exist two other possibilities to realize this computation. 

1. The first computational method 

can be computed, in principle, directly from its definition (23.25). But there 

By the residue Theorem 17.5, IIFIIi, is equal to the sum of the residues of 
tr { F ( j w )  G- ( j w ) }  at its poles ak ( k  = 1, . . . , n )  in the left half-plane of the complex 
plane C, i.e., 
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I 03 .. 

1 1 llFlli, = / .tr { F (jw) G- (jw)} dw 
w=-CG 

n 

I k = l  

(23.26) 

2. The second computational method 
It turns out to be useful in many applications to have an alternative characterization 
of )I F I /& using the advantages of the state space representation. 

Theorem 23.5. Let a transfer matrix G ( s )  have a state space realization [: :] with 

the matrix A stable (Hurwitz). Then 11G11& can be computed as follows: 

[IGII& = tr { B T Q B )  = tr { C P C T )  (23.27) 

where P is the controllability (9.54) and Q is the obsewability (9.62) grammians, 
respectively, which can be obtained from the following matrix Lyapunov equations 

A P  + P A T  + B B T  = 0 
A T Q +  Q A + C T C  = O  (23.28) 

Proof. Since A is stable it follows that 

CeA'B if t 2 0  g ( t )  = C-' ( G )  = 

and, by Parseval's identity (23.25) and the Lyapunov Lemma 9.1, we have 

t=O 
02 

= / tr { B T e A T ' C T C e A t B }  dt  

= /" tr { CeAt B B T e A T f  CT } dt  
r=o 

= tr { C ( , [ e A t B B T e A T f d t )  CT} = tr{CQCT} 

which proves the theorem. 

co
nt

ro
len

gin
ee

rs
.ir



724 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1 

Example 23.1. Ifthe state space realization of G ( p )  is [-: A] then by (23.28) P = 1/2 

and Q = 2. So, by (23.27), IlGll:12 = 2. 

Remark 23.2. To compute the norm 11 G IlkL2 it is possible to use the following procedure: 

Separation: represent G ( p )  as 

where G+ ( p )  E RW2, i.e., it contains only stable elements, and G- ( p )  E FSHi 
Representation: 

(23.29) 

(23.30) 

Calculation: using state space representations of G ,  ( s )  and G- (-s) (which corre- 
spond to a stable system) calculate l lG+l /~2 ,  I1G- (s)ll& = IlG- (-s)l1i2 and, finally, 
IIG I&, applying (23.30). 

23.1.4 W2 optimal control problem and its solution 

Consider a linear dynamic system given by 

i ( t )  = AX ( t )  + Bu" ( t ) ,  x (0) = XU 

(23.3 1) 
A E RnX", B E R""' 

Problem 23.1. The problem, called LQR (linear quadratic regulation), consists ofjinding 
ajeedback control ii ( t )  = Kx ( t )  E L; [0, 00) which 

1. provides the property x ( t )  E L;  [0, 00); 

2. minimizes the quadratic performance index 

r=o 

where it is supposed that 

(23.3 2 )  

(23.33) 

Denote 

1 u ( t )  := R"*U ( t )  1 (23.34) 
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permits to represent (23.32) as follows 

and the factorization 

Q = C T C ,  I = DTD, S = CTD 

leads to 

Defining 

I z ( t )  := C x  ( t )  + Du ( t )  I (23.35) 

we can reformulate Problem 23.1 as the following L2 problem: 

Problem 23.2. (LQR-L2 optimization) 

. i = A x + B u  
z = C x  + Du 

Under a fixed feedback u 
as an uncontrolled system 

(23.3 6) 

= K x  the given linear controlled system can be represented 
with a singular input: 

.i = AKx + xo8 ( t ) ,  x (0) = 0 
z = CKX (23.3 7 )  

A K  : = A +  B K ,  C K  := C +  DK 

The associated transfer matrix GK ( s )  from the singular input xo8 ( t )  to the “output” z is 

1 G K  ( s )  = CK ( I S  - AK)- ’  I (23.38) 

[ACE ;]* 
with the state space realization 
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K = K* := - (B'X + D'C) 

Theorem 23.6. (Zhou et al. 1996) r f  the pair ( A ,  B )  is controllable and (C ,  A )  is 
detectable, then the solution of the LQR problem is given by 

(23.39) 

and the corresponding optimal pe$ormance index J (u  (.)) (23.32) is 

where X is the stabilizing solution of the ,following matrix Riccati equation 

1 ( A  - BDTC) X + X ( A  - BDTC)' 
(23.41) 

-XBBTX + ( D T C ) T  (D'C) = 0 

(In fact, X is the obsewability grammian of ( C p ,  A p )  sutisJjiing the matrix Lyapunov 
equation 

A l e x  + XAK* - C,T,CK* = 0 (23.42) 

coinciding with (23.41)). 

Proof. First, notice that under the conditions of this theorem and by Theorem 10.7 the 
Riccati equation (23.41) has the unique stabilizing nonnegative definite solution X. If 
K = K* is fixed, then the relation (23.40) results from the Plancherel theorem 17.18 and 
the formula (23.27) if B = I .  To prove the inequality IIGK (s)x~IIt, L IIGK* (s)x011~, 
for any stabilizing feedback u = Kx, let us consider in (23.36) 

u ( t )  = K*x ( t )  + u ( t )  

which gives 

or, equivalently, 

Applying the Laplace transformation to this relation, in the frequency domain we have 

Z (s) = CK* (IS - AK*)-' [ X O  + BV ( s ) ]  + DV (s) 

= GK* (s) xo + U (s) V (s) 

where 

(23.43) 
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(since AK* is a stable matrix). Using (23.42) it is not difficult to check that 

U -  (s) U (s) = I ,  U -  (s) GK- ( s )  E RW; 

Indeed, the space realizations of U (s) and U -  (s) are 

Define the matrix 

I -x 
T : =  [o I ] 

which is nonsingular for any X > 0. Then, the application of this similarity state trans- 
formation (which does not change U (s)) to the state vector leads to the following state 
space realization: 

which gives U -  (s) U (s) = I .  Also 

which is equivalent to U -  (s) GK* (s) E RWk. Taking these properties into account and 
in view of (23.43) we obtain 

and 
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where the equality is attained when U (s) V (s) = 0 for any V (s) which is possible if and 
only if U (s) = 0. By the stability df G p  (s) we get that IJGK* (s) xollrAz = II GK* (3) xo Ilk2. 
Theorem is proven. 0 

23.2 W,-optimization 

23.2.1 ILW, W, norms 

As it has already been mentioned in section 18.1, 

everywhere) on the imaginary axis elements, i.e., 
1. the Lebesgue space ILF' is the space of all complex matrices bounded (almost 

/I FllLY.i. := ess sup 5 ( F  ( i w ) )  < 00 
UJ€(-X,cG) 

(23.44) 

where 

6 ( F  ( i w ) )  := { F  ( i w )  F* ( i w ) }  

= ( F *  ( i w )  F ( i o ) }  
(23.45) 

is the largest singular value of the matrix F ( iw) .  The space L z k  with the norm 
11 F 1ILEi (23.44) is a Banach space; 

2. the rational subspace of L z k ,  denoted by RLzk, consists of all proper and (with real 
coefficients) rational transfer matrices, defined on @, with no poles on the imaginary 
axis; 

3. the Hardy spaces Wzk and RWzk  are closed subspaces of the corresponding Lebesgue 
spaces LZk and RLzxk containing complex matrices with only regular (holomorphic) 
(see Definition 17.2) elements on the open half-plane Res  > 0. The W c k  norm is 
defined as 

(23.46) 

4. the rational subspace of H y k ,  denoted by RIHIn,"k, consists of all proper and rational 

An engineering interpretation of the H, norm 11 F I l w y k  (23.46) of a scalar transfer function 
is the distance in the complex plane C from the origin to the farthest point on the Nyquist 
plot (x := R e F  ( i o ) ,  y := ImF ( i w ) )  of F ,  and it also appears as the peak value in the 
Bode magnitude plot of IF(io1. 

Example 23.2. For 

stable transfer matrices with real coefficients. 

l - s  
F (s) = 

(1 + s) (1 + 2s) 
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(in fact, F (s) E IWH’ C RH,) we have 

F ( iw)  = ReF ( iw)  + i ImF ( iw)  

1 + 3w2 
ReF (io) = 

(1 + w2) (1 + 4w’) 

-2w (2 - w2) 
I m F  ( i w )  = 

(1 +w2)  (1 +4w2) 

d( I + 3w2)2 + 4w’ (2  - w’)’ 

(1 + w’) (1 + 4w2) 
IF (iw)l = 

The Nyquist plot is given in Fig. 23.1, and the Bode magnitude plot is depicted in 
Fig. 23.2. 

Example 23.3. For 

s - 1  F (s) = - E RW, 
s + l  

it follows that 

- iw - 1 -iw - 1 
F (iw) F (iw) = ~~ = 1 = 5’ ( F  ( iw ) )  

iw  + 1 - iw + 1 

Re F ( i  w )  

w = o  

-0.3-- 

-0.4 -- 

-0.5 -- 

P O . ~ - -  

-0.7 -- 

Fig. 23.1. The Nyquist plot of F (iw). 
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Fig. 23.2. The Bode magnitude plot IF ( iw)l .  

Example 23.4. For 

(; JS) E RW00 
1 

F (s) = - 
s f l  

we have 

and 

1 + 2 w * + J G z 7  1 / 2 + 0 2 + J i p T 2  - o2 ( F  ( i w ) )  = - 
2 [l + w2] 1 +w2 

so. 

= 2  
Jm- 1/2 

= I +  max 
Ot (-m, 00) 1 +w* 

The following inequality turns out to be important in the considerations below. 
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Lemma 23.4. [on a relation between IL2 and IL, norms] For any g(s)  E IL; and any 
G ( s )  E L z k  

Proof. By the definition (23.19) it follows that 

IIG (s) g(s)ll& := 7 [g-(iw)G" ( iw)  G ( iw)  g( iw)]  dw 
o=--00 

00 

< - [g-(iw)A (,,,axG- ( iw)  G ( i w ) )  g( iw)]  d o  
277 . 

w=-m 

< -!i 7 tr { G- ( iw)  G ( i w ) }  g-( iw)  g(iw)dw 
- 2n 

w = - m  

ess sup tr { G- ( iw)  G ( i w ) }  gs ( iw)  g(iw)dw 
- 2n w€(--OC,m) 1 

o=-m 

w = - w  

which proves the lemma. 

23.2.2 Laurent, Toeplitz and Hankel operators 

Main definitions 
Definition 23.3. For G E ILZk we may define I..? Laurent (or, mu..,lication) operator 

acting as 

A G  F := G F  E L; if F E I,: 

Lemma 23.5. AG is a linear bounded operator, that is, 

(23.49) 
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Proof. Directly, by the definition (23.19) and in view of (18.32), characterizing the 
operator norm, it follows that 

w=-m 

which completes the proof. 0 

By the orthogonal decomposition of the Hilbert space L$ (see (18.23)) it follows that 

I IL: = (W$@ IN; 1 (23.50) 

where (HI;)’ is the orthogonal completion in JL,: of Hi, that is, (Hi)’ is given by 

(Hi)’ := { F : C -+ Ck, F 

and IIFIILp := sup IIF ({ + jo>112dw) 

is holomorphic (see Definition 17.2) 

(23.51) .i 2 

t <o 

In view of the decomposition (23.50) the Laurent operator Ac (23.48) can be represented 
in the “block form” 

(23.52) 

where its “projections” A; ( i ,  j = 1, 2) act as 

(23.53) 

so that 
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Definition 23.4. 
(a )  The Hankel operator rc associated with G E L z k  is defined by 

that is, 

where n is the orthogonal projection operator from IL? onto H?. 
(b)  The Toeplitz operator TG associated with G E IL","' is defined by 

(23 .55) 

that is, 

(23.57) 

1 
s f a  

Example 23.5. (See Curtain & Zwart (1995)) Consider G(s) = - with Re a > 0. 
Any F E Hz can be represented as 

F ( s )  = F ( a )  + (s - a )  X ( s )  for  any s E Cf := {s E @1 /Res > 0} 

where X ( s )  E Hl. So, we have 

[ F  (a)  + (-s - a)  x (-s)] = - ) P:: =n( -  1 
s + a  

Properties of Hankel operator rc 
Proposition 23.4. The Hankel operator r G  (23.54) associated with G E ILzk has the 
following properties: 

1. 

-1 (23.58) 

2. if G I ,  GZ E ILzk then 

(23.59) 
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Proof. 

1. By (23.55) and (23.49) it follows that 

which implies 

2. The property (23.59) easily follows from the fact that the Laurent (multiplication) 
operator AG (23.48) satisfies a similar relation, namely, 

Proposition is proven. 0 

Remark 23.3. If G ( s )  E RE","k then G ( s )  can be decomposed into a "strictly causal 
part" G, (s) E IWIHI;~' and an "anticausalpart" G,,,, (s), where G,,,, (s) E (wH;~~)', 
such that for all s E C 

(23.60) 

I Hence, one can check that i f  F E (a:) then 

or, shortly, 

that is, the Hankel operator r G  associated with G (s) E RUZk depends only on the 
strictly causalpart G,(s) of G (s). 

Remark 23.4. Particularly, if G ( s )  is antistable, i.e., G" ( s )  E R H z k ,  then G, ( s )  = 0 
and 

( rG=oi  (23.62) 
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Hankel operator in the time domain 

with the corresponding Hankel operator rG (23.54) defined in the frequency domain. 
Here we will introduce the time domain Hankel operator which has a natural relation 

Definition 23.5. Let g ( t )  E L;lxk [0, 00). Then the time domain Hankel operator rg is 
defined by 

rg : L; [o, 00) + L; [o, 00) 

( r ,u)  ( t )  := g ( t  + t )  u ( t )  d t ,  t 2 0 
r=O i 

Proposition 23.5. 1. For t 2 0 

~ (rp) ( t )  = 7 g ( t )  ii ( t  - t ) d t  

I r=-m 

?=--a? I 

where 

0 if t 2 O  i u ( - t )  if t < 0 
ii (t) = 

2. 

I 00 I 

(23.63) 

(23.64) 

(23.65) 
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Proof. 

1.  Indeed, 
M 00 

(r,u) ( t )  = g (t + t) u (t) d t  = 
r=O J S = f  

cu co 

= /6 (s) u ( t  - s)ds = .I g (s) u ( t  - s)ds 
.s=t s=O 

= / g ( t - r ) u ( t ) d t =  g ( t - t ) u ( t ) d r  / t--S=t 

2. Define the operator f, : .L: [0, 00) -+ LT (--00, -00) by the relation 

r: (s) ii (t - s ) d s  
.s---00 

Then 

f = - M  

. .  
s=o s’=O 

The result (23.65) follows then from the inequalities 

M cu 

t=O 7=--W 

The proposition is proven. 

The relation (23.64) permits to interpret the Hankel operator rg, associated with the 
transition function g, as the map from the past inputs u ( t )   it<^ to the further output 
Y ( t )  l Y Z O ,  that is, (Y ( t >  l Y Z O )  = rg (u ( t )  L<o) (see Fig. 23.3). 
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IR h 
Fig. 23.3. Time domain interpreation of the Hankel operator. 

Lemma 23.6. The frequency domain Hankel operator F'G (23.54) is the Laplace- 
transformed version of the time domain operator rg (23.63) where g ( t )  is the inverse 
(bilateral) Laplace transformation of G (s), that is, if U ( s )  = C { u }  ( s )  then 

(23.66) 

p j j q  (23.67) 

Proof. From (23.64) by the property (17.95) we have 

g (t) U ( t  - t) d t  = g ( t  - S) ii (s) ds 

and, hence, 

The equality (23.67) is true because of the isomorphism property between L2 and JL2 
0 spaces (see the Plancherel theorem 17.18). 
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I 
The norm of Hankel operator rc acting from (RW;) onto IwW? 

Suppose that G (s) E RW","k has a minimal state space realization [: :] with A 

stable. Then, according to (9.54), (9.62) and Lemma 9.1, the controllability G, and 
observability Go grammians are given by 

CT: 1 G, := eArBBTeATrdt ,  Go := ~ e A " C r C e " ' d t  

I r=O r=O I 

and satisfy the matrix Lyapunov equations 

I AG, + G,AT = -BBT,  ATG,  + G,A = -CTC 

(23.68) 

(23.69) 

Let us define also the controllability q, and the observability Q, operators which are 
defined, respectively, as 

! I  Qcu ( t )  := e-Ar Bu (5) d t  
(23.70) 

and 

qIJ : cn -+ L,; [0, 00) 

Qox0 := CeA'xO, t p O 
(23.71) 

Lemma 23.7. For any G ( s )  E RHZk with a minimal state space realization 

we have 

(23.72) 

and for any z E ern 

(23.73) 
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Proof This fact can be easily checked directly using the representation of rs in the form 
(23.64). Ihdeed, assuming that x (--00) = 0 and in view of (23.64), we get 

(@,Q,u) ( t )  = CeAf e-ArBu ( t )  d t  .I 
= ] CeA('-')Bu ( t ) d t  = S (t  - r)G ( t ) d t  = (r ,u)  ( t )  .I 

The relation (23.73) results from the definitions (23.68), (23.70) and (23.71) which 
completes the proof. 0 

Theorem 23.7. (on the norm of the Hankel operator) For any G ( s )  E RIHI","k with a 

minimal state space realization 

1. the operators rzrg, rGrG and the matrix G,G, have the same positive eigenvalues; 
2. 

[s 4 
(23.74) 

Proof 

l ( a )  If cT2 is an eigenvalue of Firg corresponding to an eigenvector (function) 0 # u E 
L! (-a, 01, then by definition 

and in view of (23.73), after the pre-multiplication of the last identity by @, and defining 
z := \vcu, it follows that 

So, g 2  is an eigenvalue of G,G,. Since both matrices G,  and G, are strictly positive it 
follows that g 2  > 0. 

l (b)  To show that the operator r&rc has the same eigenvalues let us rewrite equations 
(23.69) in the following form 

- (sZ - A) G,  + G ,  (sZ + A T )  = -BBT 

(sZ + A T )  G ,  - Go (sZ - A )  = -CTC 
(23.75) 

Pre- and post-multiplying the first equation in (23.75) by C (sZ - A)-' and (sZ + AT)-' v, 
respectively, where 

(23.76) 
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and w is an eigenvector corresponding to A,,, (G,G,), namely, 

GcGow = Amax (GrCo) w 

we get 

-CC, (sl + AT)-' u + C (sl - A)-' Gcu 

= -C (sl - A)-' BBT ( s l  + AT)-' u 

Notice that 

i -CC, ( ~ l  + AT)-' u = -CG, ( s l  - (-A)') u E (RMI;") 

C ( s l  - A)-' G,v E RWT 

Define two vector functions 

(23.77) 

f(s) := C (sl - A)-' w E RE;" I (23.78) I g(s) := -BT (sl + AT)-' u E (RH:)' I 
which will be referred to as the Schmidt pair of 

matrix G (s) E RIHlZk with a minimal state space 

and 

Notice that the right-hand side in (23.77) is 

-C ( ~ l  - A)-' BBT ( ~ l  + AT)- '  u = C ( ~ l  - A)-' B g ( s )  = G ( s )  g(s) 

which implies 

Projecting this equality to RHT and in view of (23.54) we get 

(23.79) 
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Analogously, pre- and post-multiplying the second equation in (23.75) by W T  ( s l  + AT)-' 
and (sl - A)-' B, respectively, we get 

wTGo (sl - A)-'  B - W T  (sl + AT)-' GOB 

= - w T  ( s Z  + AT)-' CTC ( ~ l  - A)-' B = fT(-S)C ( s )  = f-(S)G (s) 

Since by definition G,w = 2/3Lmax (G,G,)v the last equality becomes as follows 

Projecting this identity to RWT we obtain 

= Il (f-(s)G ( 3 ) )  := f-(S)rc 

Taking the conjugation operation from both sides of this equality we have 

rEf(s) = (G,G,,)g(s) I 
The relations (23.79) and (23.80) lead to the following identity 

(23. SO) 

This means that g(s) is the eigenvector of T;rc corresponding to the eigenvalue 
h,,, (C,C,). Evidently, the other eigenvectors are 

such that hi, = A,,, (G,.G,) for an index io. This shows that 

and, hence, 

(23.82) 

2. (23.74) follows from (23.82) and the relation (23.67). Theorem is proven. 0 

Corollary 23.4. For any s E C. 

(23.83) 
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Proof. It results directly from (23.79) and (23.80) since 

Corollary is proven. 

Example 23.6. For 

, G ( w ) = - I  
2 

G, ( s )  = - 
l + s  

in view of the relation (23.61) r G  = r G ,  itfollows that the minimal state space realization 

of G, ( s )  is [ -1 1 
O ] .  So 

A=-1 ,  B = l  and C = 2  

and, hence, by (23.69) 

Using (23.74) we get 

23.2.3 Nehari problem in 

Nehari problem formulation 
The Nehari problem deals with the approximation of a transfer matrix G(s) E RLZk 

by an anticausal transfer matrix X E (RHr')) '  where the approximation is done 
with respect to L, norm. It is naturally formulated in frequency domain terms in the 
following way: 
Given a matrix-valued function G(s) E IWLzk, find the IL, distance of G from the 
set of unstable matrix valued functions X (s) E (RWzk)' and define one of X o  (s) E 

where this minimal distance is achieved, that is, for the given G(s) E RLZ' 
calculate 

(23.84) 

co
nt

ro
len

gin
ee

rs
.ir



W2 and W, optimization 743 

and find any X O  (s) E (REJIZ')', referred to as an optimal element, such that 

Even this problem is formulated in Banach space RIL","', it admits a precise and elegant 
solution in terms of the Hankel operator rc of the matrix-valued function G(s). 

Theorem 23.8. (Nehari 1957) Let G(s) E RILZk. Then 

(23.86) 

where G, E RWyXk is the causal part G(s). r f  there exists an optimal element Xo ( s )  E 

(REX;'))' such that (23.85) holds, then it should satisfy the identity 

where g(s) is defined by (23.78) for a minimal state-space realization of G,(s). 

Proof. By (23.58), (23.59), (23.61) and (23.62) for any X (s) E (EEJIZ'))' it follows that 

which states the inequality 

(23.88) 

Suppose that there exists X o  (s) E (RWz')L such that co
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and consider 

(23.90) 

Using the presentation 

h (s) = n h  ( s )  + n'h ( s )  

n h  ( s )  E RWT, n'h ( s )  E (RHT)' 

and remembering that 

we derive 

So. (23.90) becomes 

which, by (23.47) and (23.89), implies 

This means that if (23.89) holds then obligatory (23.87) holds too. Theorem is proven. 0 

Corollary 23.5. In a multidimensional case (when k+m > 2) the Nehariproblem (23.84) 
has infinitely many solutions, and at least one of them, referred to as the central optimal 
element, is given by 

(23.91) 
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Proof The direct substitution of (23.91) into (23.87) and (23.86) shows that XO (s) given 
by (23.91) is a solution of the Nehari problem. Indeed, 

which proves the desired result. 0 

Corollary 23.6. The transfer matrix [G(s) - X O  (s)] with X o  ( s )  given by (23.91) is an 
all-pass transfer matrix, that is, 

I tr ([G(s) - xO (s)]- [G(s) - xO (s)]) = const I (23.92) 
s 

Corollary 23.7. (Adamjan et al. 1971) In the scalar case (m = k = 1) the Nehari 
problem (23.84) has the unique solution given by 

(23.93) 
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Proof. This fact follows directly from (23.87) since it is the unique central element. 
Indeed, 

Example 23.7. Let 

(1 + S)*  (5  + s) 

(1 + 10s) (s - 1) (s - 5 )  
G ( s )  = 

I t  can be represented as 

U 
G,.(s) = ___ 1 + 10s’ 

a = 0.70749 

b + cs 
Gun,,  (3) = b = 0.96257, c = 1,2193 

(s - 1) (s - 5) ’ 

G(w) = 0.1 

The minimal state-space realization of G, ( s )  is 

A B  -0.1 0.1 
[ c o ] = [  a 0 1  

which gives 

G ,  = 0.05, Go = 5a2 

a U 
w = 1, u = IOa, f(s) = ___ g(s) := -___ 

S + O . l ’  s -0.1 
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and, finally, 

147 

0 .45374~~  - 1.5031s + 3.2313 
(s - 1) (s - 5 ) .  

- - b + cs 
( s  - 1) (s - 5 )  

= 0.45374 + 

Remark 23.5. The problem dealing with the approximation of a transfer matrix G(s) E 
RLZk by a causal transfer matrix X ( s )  E R H g k ,  where the approximation is done 
with respect to IL., norm, is equivalent to the Nehari problem (23.84) where the given 
transfer matrix G(s) E RILEk is changed to 

I G(s )  := G(-s) E RILEk I (23.94) 

Indeed, changing variable s to (-s) it follows that 

= dist (G, (WHZ”)’) 

(23.95) 

23.2.4 Model-matching (MMP) problem 

A controlled system is said to be robust if it possesses a guaranteeing working quality 
in spite of the presence of some uncertain factors (usually related to environment pertur- 
bations) which may affect it during a normal regime. Formally, the problem of synthesis 
of robust controlled systems belongs to the class of the, so-called, min-max optimization 
problems where max is taken over the set of uncertainties or disturbances and min is 
taken over the set of admissible controllers. In this subsection we will consider one of the 
most important min-max control problems and show its close relationship to the Nehari 
problem discussed above. 

co
nt

ro
len

gin
ee

rs
.ir



748 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1 

MMP problem formulation 
Consider a multi-connected linear system which block scheme is presented in Fig. 23.4. 
Suppose that all blocks in Fig. 23.4 are stable, that is, 

Problem 23.3. (MMP) The model-matching problem (MMP) consists offinding a stable 
block with the transfer matrix Q ( s )  which for the worst external perturbation $ of a 
bounded energy, i.e., 

(23.96) 

would provide the "best approximation " of the given plant with the transfer matrix TI  ( s )  
by the model with the transfer function T2 ( s )  Q ( s )  T ~ ( s ) ,  namely, the MMP problem is 

where 

4' ( t )  := L-' {TI ( s )  6 ( s ) }  

j ( t )  := C-' { [Tz ( s )  Q ( s )  T3 ( s ) ]  E ( s ) )  

Stable plant 

Model 

(23.97) 

Fig. 23.4. The block scheme for the MMP problem. 
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are the inverse Laplace transformations ( I  7.79) of the corresponding vector junction 
defined on C and 

is the Laplace transformation (17.74) of 6 ( t ) .  

One can see that it is a min-max optimization problem. 

The equivalent MMP problem formulation in the frequency domain 
Lemma 23.8. (on the equivalency) The MMP problem (23.97) in the time domain is 
equivalent to the following MMP problem in the frequency domain: 

(23.98) 

Proof. By Parseval’s identity (17.107) it follows that 

00 

where E ( iw)  := L { E  ( t ) }  is the Laplace transformation (17.74) of E (t). But by (23.47) 

and the equality is attained. Indeed, if 

wo := argmax ess sup (5- (TI ( iw)  - TZ ( iw)  Q ( iw)  T3 ( iw))  
W E  (-00, m) 

is finite, then the equality in (23.99) is attained when 

(23.99) 

- 
E ( iw)  5 ( iw)  = 2n6 (o - W O )  Z k l x k l  
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If lwol = 00, then ess sup 5 (TI ( iw)  - T2 (iw) Q ( iw)  T3 (ic.))  can be approximated 
W E  (--00, -00) 

with any desired accuracy since the functional 

is bounded everywhere in the right semi-plane of @. In view of this, 

which completes the proof. 

Inner-outer factorization 
Definition 23.6. A transfer (m  x k )  matrix N (s) is called 
1. inner iffor all s E @. 

p-Gziiq 
i.e., N ( s )  is stable, and 

(23.100) 

(23.101) 

I N -  ( s )  N ( s )  = N T  ( - S )  N (s) = Z k x k  1 (23.102) 

2. co-inner iffor all s E C 

(23.103) 

i.e., N ( s )  is stable, and 

I N (s) N- ( s )  = N (s) N T  ( - S )  = I,,, I (23.104) 

Remark 23.6. Observe that for N ( s )  to be inner it must be "tall", i.e., the number of 
rows should be more or equal to the number of columns. Sure that by duality, for N ( s )  
to be co-inner (or, equivalently, for N T  ( -s)  to be inner) the number of columns should 
be more or equal to the number of rows. 

Example 23.8. In the scalar case (m = k = 1) the followingfirnctions are inners: 

a - s 1 - U S  + bs2 
1, __ (a is any real number) 

a + s' 1 +as  + bs2 
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Proposition 23.6. If N (s) is inner and F ( s )  E IL; then 

that is, the multiplication of any vector F ( s )  E IL; by an inner N does not change the 
IL; norm of F.  Analogously, if fi ( s )  is co-inner and F ( s )  E IL; then 

Proof. Indeed, 

For the co-inner case the proof is similar. 

(23.106) 

The next lemma presents the state-space characterization of inner transfer functions. 

Lemma 23.9. (Zhou et al. 1996) Suppose that a transfer matrix N ( s )  E RIH[","k has a 

state-space realization [: i] and X = XT 3 0 satisfies the matrix Lyapunov equation 

ATX + XTA + CTC = 0 

Then the following properties hold: 
(a)  the relation 

I D T C  + B T X  = 01 

implies 

1 N- (s) N (s) = DT D I 

(23.107) 

(23.108) 

(23.109) 

(b) ifthe pair ( A ,  B) is controllable and (23.109) holds then (23.108) holds too. 
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Proof. Notice that the state-space realization of N -  (s) N (s) is 

0 B 
-CTC -AT - C T D ]  [ D:C BT DTD 

Define the matrix 

which is nonsingular for any X 2 0. Notice that 

(23.1 10) 

Then, the application of this similarity state transformation (which does not change 
the corresponding transfer matrix) to the state vector leads to the following state-space 
realization and corresponds to the multiplication of (23.110) by T and post-multiplication 
by T-' yields that N -  (s) N (s) also has the state-space realization 

BTX + DTC BT DT D 

A 0  B 
0 -AT - (XBT + C T D )  

B T X + D T C  BT DT D 

( s l  - A)-' ( 0' ( s Z + A T ) - '  
[ B T X + D T C  BT 

Then (a) and (b) follow easily. 0 

One can see that adding the simple condition DTD = I provides that N -  (s) N (s) = I .  
The next corollary of the theorem above evidently states the more exact result. 

Corollary 23.8. Suppose N ( s )  has a state-space realization [ (4 i] which is minimal 

and stable (A is Hurwitz). Let Go be the corresponding obsewability grammian. Then 
N ( s )  is an inner ifand only if 
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1. 

BTG, + DTC = 0 

2. 

D T D  = I (23.1 11) 

Definition 23.7. We say that for G ( s )  E LWzk there exist 
(a)  a right co-prime factorization (RCF) if 

I G ( s )  = N ( s )  M-I ( s )  1 (23.1 12) 

where N ( s )  E R W r p  is an inner and M ( s )  E RIHIk,"" (i.e., M ( s )  is stable); 
(b)  a left co-prime factorization (LCF) if 

1 G (s) = A?' ( s )  fi (s) 1 (23.1 13) 

where fi ( s )  E RWZ' is a co-inner and ( s )  E RWgm (i.e., A? ( s )  is stable) 

Remark 23.7. It is not dzficult to show (see Zhou et al. (1996)) that 
(a )  two matrices N ( s )  and M ( s )  in (23.112) are right-co-prime over RW, ifthey have 

the same number of columns and there exist matrices X and Y '(of the corresponding 
size) in RIHI, such that 

[ X Y ]  [;I = X M + Y N = I  (23.1 14) 

(b)  two matrices M ( s )  and fi ( s )  in (23.113) are left-co-prime over RIH, if they have 
the same number of rows and there exist matrices 2 and r (of the corresponding 
size) in RMI, such that 

(23.1 15) 

The relations (23.114) and (23.115) are often called the Bezout identities. 

The next theorems show when such factorizations exist. 

Theorem 23.9. (Zhou et al. 1996) Suppose G ( s )  E IL.W","k and m 2 k.  Then there 
exists an RCF G ( s )  = N ( s )  M-' ( s )  such that N ( s )  is an inner ifand only if 
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for all w E [-m, a] (including at ha). Furthermore, if G ( s )  E IWW”,”k and its 

state-space realization ] has the stabilizable pair ( A ,  B )  such that the transfer 

matrix G ( iw)  = C ( iw - A)-’  B + D has the full column rank for all w E [-00, 001, 

then a particular state-space realization of the desired RCF is 

[ 

(23.1 17) 

where 

R = D T D > O  

F = -R-l ( B T X  + DTC)  
(23.11 8j 

and X 2 0 is a solution of the following Riccati equation 

(A - B R - ’ D T C )  x + x (A  - B R - ~ D T C ) ~  

- X B R - ~ B T X  - CT ( I  - D R - ~ D T )  c = o 
(23.1 19) 

for any w E [-a, 001 since M (s) E RIHI~p, that is, M (s) is “stable”. 
(b) SufSiciency. First notice that if G = NM-‘  is an RCF, then G = ( N Z )  ( M Z ) - ’  is 

also RCF for any nonsingular matrix Z E R‘’xP. Suppose now that N has its state-space 
realization as 

[:z; E] 
For N to be an inner, as it follows from Corollary 23.8, we should have 

D Z  = I 

Select F in such a manner that the following matrix identities have been fulfilled: 

(BZ)T X + (DZ)T (C + D F )  = 0 

(A + B F ) T  X + X (A + B F )  + (C + D F ) T  (C + D F )  = 0 
(23.120 j 
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Take Z = R-'12 where R := D T D  > 0 by the assumption of the theorem. Then the first 
equation in (23.120) becomes 

( ~ ~ - 1 1 ~ ) ~  x + ( D R - ' / ~ ) ~  (c + D F )  

= R-'12BTX + R-'I2DT (C + D F )  = 0 

which implies 

Then, pre-multiplication of the last equation by R-'12 gives 

F = -R-' ( B T X  + D T C )  

Substituting this F into the second equation in (23.120) gives exactly (23.119). The 
existence of a nonnegative solution X 2 0 for (23.119) guarantees the fulfilling of 
(23.1 16)' 0 

Remark 23.8. Notice that if G ( s )  = N (s) M-' ( s )  E RIHI",Xk, then M-' ( s )  E RWZ' 
and M-' ( s )  is culled an outer, so 

(23.12 1) 

where 

The factorization (23.121) is referred to as an inner-outer factorization. In an anal- 
ogous way the co-outer can be introduced such that the following co-inner-co-outer 
factorization takes place: 

G (s) = k-' ( s )  8 ( s )  = Go,, (s) Gjnn ( s )  

Gjnn (s) := fi (s), Go,, (s) = k-' (s) 
(23.122) 

Remark 23.9. The analogue result is valid for LCF (23.113), namely, supposing G ( s )  E 
and m 5 k, one concludes that there exists an RCF G ( s )  = M-' ( s )  fi ( s )  where 

fi ( s )  E IWIHlZ' is a co-inner and k ( s )  E RWZm (i.e., k ( s )  is stable) if and only if 

for all w E [-a, a] (including at ha). 

' For details see Theorem 13.19 in Zhou et al. (1996). 
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Lemma 23.10. For any F ( s )  E LHZk and any inner N ( s )  E RWgm (or any co-inner 
i? (s) E IWWEP) 

(23.124) 

that is, the pre-multiplication by an inner or the post-multiplication by a co-inner pre- 
serves the IL, norm of any transfer matrix. 

Proof. It follows directly from the definition (23.44) since 

IINFllLYk := ess sup 6 ( N  ( iw)  F ( i w ) )  
w € i - c c , m )  

and 

Now we are ready to give the solution to the MMP problem (23.98) showing its 
equivalence to the Nehari problem (23.95). 

Theorem 23.10. The MMP problem (23.98) is equivalent to the Nehari problem 
(23.95) with 

(23.125) 
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and one of its solutions is 

(23.126) 

where f(s) and g-(s) is the Schmidt pair (23.78) for  N2" ( s )  TI ( s )  ii ( s )  and G,, Go its 
grarnmians (23.68). 

Proof. Using RCF and LCF for T2 ( s )  = N2 ( s )  MY1 ( s )  and for T 3  (s) = k,' (s) f i 3  (s), 
respectively, and applying the property (23.124), we get 

which is exactly (23.95) with (23.125). The solution (23.126) results from (23.126). 0 

23.2.5 Some control problems converted to MMP 

W,-control robust with respect to external perturbations-Problem formulation 
Problem 23.4. For the linear system given in the frequency domain by Fig. 23.5 

Fig. 23.5. The block scheme of a linear system with an external input perturbation and an internal feedback. 
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u (s) := c ( u } ,  Y ( s )  := c { y }  
z ( s )  := c [ z } ,  w (s) := L {w} 

(23.127) 

( z  ( t )  E R” is associated with the part ~Jcoordinates forming a costfunction, u ( t )  E R‘ 
is the controlled input, y ( t )  E R” is the system output which may be used for feedback 
designing and w ( t )  E Rp is an external perturbation) design a feedback (dynamic) 
controller with a transfer matrix K ( s )  given by 

such that 
1. K (s) is proper and stable, i.e., 

2. it minimizes the following min-ma criterion 

(23.128) 

(23.129) 

I J ( K ) +  K(s)tWAG” min I (23.130) 

where supremum is taken over all external perturbations of a bounded energy. 
Here the large symbols are the Laplace transformation of the small ones. 

Notice that 

and 
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which leads to the following relations 

Remark 23.10. 1. The cost functional J ( K )  (23.130) exists (finite) if and only if the 
closed-loop system is stable, that is, when Z (s) E L;+' and Y (s) E L; i f  W (s) E I,;. 

2. By Lemma 23.4 it is possible i f  and only if the transfer functions from W (s) to Z ( s )  
and Y ( s )  are stable, namely when 

Parametrization of all stabilizing stationary feedbacks 
Problem 23.5. Characterize the set of all stabilizing feedbacks K ( s )  which provides the 
stability for K ( s )  itself as well as for [ I  - G,, ( s )  K (s)]-' supposing that the transfer 
matrices 

are stable, that is, we will try to find 

such that 

I [ I  - G,, (s) K (s)]-' E RWEp I (23.13 1) 

providing 

Gu,, (s) E RWZ', G,, (s) E RWZr 

Proposition 23.7. K ( s )  stabilizes G ( s )  if and only i f  it stabilizes G,, (s). 

Proof. It follows directly from (23.131). 
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Theorem 23.11. (Youla parametrization, 1961) The set of all (proper real rational) 
transfer matrices K ( s )  stabilizing G,, ( s )  is parametrized by the formula 

1 = [%(s) - Q ( s ) f i ( s ) ]  [f(s) - Q ( s ) k ( s ) l  
(23.132) 

where the matrix Q ( s )  E RIH[, (provided that two inverted matrices exist) and all other 
matrices are also from RH, and define the, so-called, double-co-prime factorization of 
G,, (s), namely, 

Proof. It can be found in Francis (1987) as well as in Zhou et al. (1996). 

Corollary 23.9. If K ( s )  is as in (23.132), then 

(23.133) 

(23.134) 

Proof. Substituting G,,, (s) = N ( s ) M - ' ( s )  = k-' ( s ) N ( s )  and using the second identity 
0 in (23.133) imply the desired relations (23.134). 

The solution of H, - linear robust control problem 
Theorem 23.12. The problem 23.4 is equivalent to the model matching problem (23.98) 
with 

Proof. The cost functional (23.130) can be represented as 

(23.135) 
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where (omitting the argument) 

T = G,, + G,,K [I - G,,K]-' G u y  

which in view of (23.134) becomes 

T = G,, + G,,N 

= [G,, + G,,NXG,,] - [G,,N] Q [fiG,,] 

which completes the proof. 0 

Robust filtering problem: consider a linear system which block scheme is given at 
Fig. 23.6. 

Problem 23.6. Find afilter F ( s )  E R H z n  if it exists which minimizes 

(23.136) 

Here w ( t )  E L i  [0, 00) is an external noise, x ( t )  E L; [0, 00) is a state vector, 
y ( t )  E LT [0, ca) is an output of the system and i ( t )  E L; [0, 00) is a state estimate. 
For physical reasons it is supposed that all transfer matrices are stable, that is, 

G ( s )  E RH;", F (s) E RHzm, H (s) E R H z m  ~ 

Fig. 23.6. Filtering problem illustration. 
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As before, in view of (17.107) and (23.100), we have 

= c IlC (s) - F (s) H ( ~ ) l l & ~ , . .  

Using the left-co-prime factorization (23.1 13) 

I H (s) = k P ( s ) f i ( s )  I 
and applying the property (23.106), we derive 

J ( F )  = c G ( s )  - F (s) k - ' ( s ) f i ( ~ )  

2 

/ I  
= c I /  [G (s) - F (s) k - ' ( s ) f i ( s ) ]  f i - (s) / l  RHk,." (23.1 37) 

= c G (s) f i - ( s )  - F (s) k ' ( s )  I /  
which leads to the following result. 

Theorem 23.13. The robustfiltering problem (23.6) is equivalent to the model matching 
problem (23.98) with 

(23.138) 

Proof. It results from (23.137). 0 
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