

https://controlengineers.ir

@controlengineers

 اختصاصیسایت

 کنترلمهندسی

https://controlengineers.ir/

16.323 Lecture 1

Nonlinear Optimization

•	 Unconstrained nonlinear optimization

Line search methods •

Figure by MIT OpenCourseWare.

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 1–1
Basics – Unconstrained

•	 Typical objective is to minimize a nonlinear function F (x) of the
parameters x.

– Assume that F (x) is scalar x� = arg minx F (x)⇒

•	 Define two types of minima:

– Strong: objective function increases locally in all directions

A point x� is a strong minimum of a function F (x) if a scalar δ > 0
exists such that F (x�) < F (x� + Δx) for all Δx such that 0 <
�Δx� ≤ δ

– Weak: objective function remains same in some directions, and
increases locally in other directions

Point x� is a weak minimum of a function F (x) if is not a strong
minimum and a scalar δ > 0 exists such that F (x�) ≤ F (x� + Δx)
for all Δx such that 0 < �Δx� ≤ δ

•	 Note that a minimum is a unique global minimum if the definitions
hold for δ = ∞. Otherwise these are local minima.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

x

F(
x)

Figure 1.1: F (x) = x4 − 2x2 + x + 3 with local and global minima

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

Spr 2008	 16.323 1–2
First Order Conditions

•	 If F (x) has continuous second derivatives, can approximate function
in the neighborhood of an arbitrary point using Taylor series:

F (x + Δx) ≈ F (x) + Δx T g(x) +
1
Δx TG(x)Δx + . . .

2

⎡
where g ∼ gradient of F and G ∼ second derivative of F

∂2F ∂2F
⎤⎡ ⎤
⎤
⎡
 �T

∂F

∂x2

1
· · · ∂x1∂xnx1
 ⎥⎦
, G =

⎢⎢⎣

⎥⎥⎦

∂x1∂F
 ⎢⎣
...⎣ ⎦
 ...
x =
 , g = =
 .

∂x

∂2F ∂2F∂F
∂xn ∂xn∂x1

· · ·
∂x2

n
xn

•	 First-order condition from first two terms (assume �Δx� � 1)

– Given ambiguity of sign of the term ΔxT g(x), can only avoid
cost decrease F (x + Δx) < F (x) if g(x�) = 0
⇒	Obtain further information from higher derivatives

– g(x�) = 0 is a necessary and sufficient condition for a point to be
a stationary point – a necessary, but not sufficient condition to
be a minima.

– Stationary point could also be a maximum or a saddle point.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

Spr 2008	 16.323 1–3

•	 Additional conditions can be derived from the Taylor expansion if we
set g(x�) = 0, in which case:

1

F (x � + Δx) ≈ F (x �) + Δx TG(x �)Δx + . . .

2

– For a strong minimum, need ΔxTG(x�)Δx > 0 for all Δx, which
is sufficient to ensure that F (x� + Δx) > F (x�).

– To be true for arbitrary Δx = 0, sufficient condition is that
G(x�) > 0 (PD). 1

•	 Second order necessary condition for a strong minimum is that
G(x�) ≥ 0 (PSD), because in this case the higher order terms in
the expansion can play an important role, i.e.

Δx TG(x �)Δx = 0

but the third term in the Taylor series expansion is positive.

•	 Summary: require g(x�) = 0 and G(x�) > 0 (sufficient)
or G(x�) ≥ 0 (necessary)

1Positive Definite Matrix

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

http://mathworld.wolfram.com/PositiveDefiniteMatrix.html

�

Spr 2008	 16.323 1–4
Solution Methods

•	 Typically solve minimization problem using an iterative algorithm.

– Given: An initial estimate of the optimizing value of x x̂k and⇒
a search direction pk

– Find: x̂k+1 = x̂k + αkpk, for some scalar αk = 0

•	 Sounds good, but there are some questions:

– How find pk?

– How find αk ? “line search” ⇒

– How find initial condition x0, and how sensitive is the answer to
the choice?

Search direction: •

– Taylor series expansion of F (x) about current estimate x̂k

∂F
Fk+1 ≡ F (x̂k + αpk) ≈	 F (x̂k) + (x̂k+1 − x̂k)

∂x
= Fk + gk

T (αkpk)

� Assume that αk > 0, and to ensure function decreases
(i.e.	Fk+1 < Fk), set

gk
T pk < 0

� pk’s that satisfy this property provide a descent direction

– Steepest descent given by pk = −gk

•	 Summary: gradient search methods (first-order methods) using es
timate updates of the form:

x̂k+1 = x̂k − αkgk

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� � � � � �

Spr 2008 16.323 1–5
Line Search

• Line Search - given a search direction, must decide how far to “step”

– Expression xk+1 = xk + αkpk gives a new solution for all possible
values of α - what is the right value to pick?

– Note that pk defines a slice through solution space – is a very spe

cific combination of how the elements of x will change together.

• Would like to pick αk to minimize F (xk + αkpk)

– Can do this line search in gory detail, but that would be very time
consuming

� Often want this process to be fast, accurate, and easy

� Especially if you are not that confident in the choice of pk

• Consider simple problem: F (x1, x2) = x1
2 + x1x2 + x2

2 with

1 0 1
x0 = p0 = x1 = x0 + αp0 =

1 2
⇒

1 + 2α

which gives that F = 1 + (1 + 2α) + (1 + 2α)2 so that

∂F
= 2 + 2(1 + 2α)(2) = 0

∂α

with solution α� = −3/4 and x1 = [1 − 1/2]T

– This is hard to generalize this to N-space – need a better approach

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 1–6

Figure 1.2: F (x) = x1
2 + x1x2 + x2

2 doing a line search in arbitrary direction

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 1–7

Line Search – II

•	 First step: search along the line until you think you have bracketed a
“local minimum”

Figure 1.3: Line search process

Once you think you have a bracket of the local min – what is the
smallest number of function evaluations that can be made to reduce
the size of the bracket?

– Many ways to do this:

�	Golden Section Search

�	Bisection

�	Polynomial approximations

– First 2 have linear convergence, last one has “superlinear”

Polynomial approximation approach

– Approximate function as quadratic/cubic in the interval and use
the minimum of that polynomial as the estimate of the local min.

– Use with care since it can go very wrong – but it is a good termi

nation approach.

•	

•	

June 18, 2008

F(x)

a2 a3

a5

b1
b2

b3
b4
b5

a4

a1

8∆4∆2∆∆

x

Line Search Process

Figure by MIT OpenCourseWare.

co
nt

ro
len

gin
ee

rs
.ir

�	 �

Spr 2008	 16.323 1–8

Cubic fits are a favorite: •

F	̂(x) = px 3 + qx 2 + rx + s

ĝ(x) = 3px 2 + 2qx + r (= 0 at min)

Then x� is the point (pick one) x� = (−q ± (q2 − 3pr)1/2)/(3p) for
which Ĝ(x�) = 6px� + 2q > 0

•	 Great, but how do we find x� in terms of what we know (F (x) and
g(x) at the end of the bracket [a, b])?

x� = a + (b − a) 1 −
g

g

b

b

−
+
g

v

a

−
+ 2

w

v

where � 3
v = w2 − gagb and w =

b − a
(Fa − Fb) + ga + gb

Figure 1.4: Cubic line search [Scales, pg. 40]

June 18, 2008

Content from: Scales, L. E. Introduction to Non-Linear Optimization. New York, NY: Springer, 1985, pp. 40.
Removed due to copyright restrictions.co

nt
ro

len
gin

ee
rs

.ir

Spr 2008	 16.323 1–9

Observations:•

– Tends to work well “near” a function local minimum (good con

vergence behavior)

– But can be very poor “far away” use a hybrid approach of ⇒
bisection followed by cubic.

•	 Rule of thumb: do not bother making the linear search too accu

rate, especially at the beginning

– A waste of time and effort

– Check the min tolerance – and reduce it as it you think you are
approaching the overall solution.

Figure 1.5: zig-zag typical of steepest decent line searches

June 18, 2008

Figure by MIT OpenCourseWare.

co
nt

ro
len

gin
ee

rs
.ir

�

Spr 2008	 16.323 1–10
Second Order Methods

•	 Second order methods typically provide faster termination

– Assume F is quadratic, and expand gradient gk+1 at x̂k+1

gk+1 ≡ g(x̂k + pk) = gk + Gk(x̂k+1 − x̂k)

= gk + Gkpk

where there are no other terms because of the assumption that F
is quadratic and

= ⎣

⎤
⎡
⎤
⎡
 �T
∂F
x1
 ∂x1∂F
 ⎢⎣

⎥⎦
⎦
.. ..xk
 gk = =
.
 ,
 .

∂x ∂F
xn
 ∂xn x̂k⎤⎡
∂2F ∂2F
∂x2

1
· · · ∂x1∂xn

.	
⎢⎢⎣ =

– So for x̂k+1 to be at the minimum, need gk+1 = 0, so that

pk	 = −G−1 gkk

•	 Problem is that F (x) typically not quadratic, so the solution x̂k+1 is
not at the minimum need to iterate ⇒

•	 Note that for a complicated F (x), we may not have explicit gradients
(should always compute them if you can)

– But can always approximate them using finite difference tech

niques – but pretty expensive to find G that way

– Use Quasi-Newton approximation methods instead, such as BFGS
(Broyden-Fletcher-Goldfarb-Shanno)

June 18, 2008

⎥⎥⎦
Gk
 .

∂2F ∂2F

∂xn∂x1 ∂x2
n

· · ·
x̂k

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 1–11
FMINUNC Example

Function minimization without constraints •

– Does quasi-Newton and gradient search

– No gradients need to be formed

– Mixture of cubic and quadratic line searches

•	 Performance shown on a complex function by Rosenbrock

F (x1, x2) = 100(x1
2 − x2)

2 + (1 − x1)
2

– Start at x = [−1.9 2]. Known global min it is at x = [1 1]

Rosenbrock with BFGS

x
1

x 2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

x 2

Rosenbrock with GS

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

x 2

Rosenbrock with GS(5) and BFGS

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3−2−10123

−3

−2

−1

0

1

2

3

0

500

1000

x
2

x
1

Figure 1.6: How well do the algorithms work?

•	 Quasi-Newton (BFGS) does well - gets to optimal solution in 26
iterations (35 ftn calls), but gradient search (steepest descent) fails
(very close though), even after 2000 function calls (550 iterations).

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 1–12

Rosenbrock with BFGS

x
1

x 2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

x 2

Rosenbrock with GS

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 1–13

x
1

x 2

Rosenbrock with GS(5) and BFGS

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3−2−10123

−3

−2

−1

0

1

2

3

0

500

1000

x
2

x
1

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 1–14

Observations: •

1. Typically not a good idea to start the optimization with QN, and
I often find that it is better to do GS for 100 iterations, and then
switch over to QN for the termination phase.

2. x̂0 tends to be very important – standard process is to try many
different cases to see if you can find consistency in the answers.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

x

F(
x)

Figure 1.7: Shows how the point of convergence changes as a function of the initial
condition.

3. Typically the convergence is to a local minimum and can be slow

4. Are there	 any guarantees on getting a good final answer in a
reasonable amount of time? Typically yes, but not always.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

Spr 2008 16.323 1–15

Unconstrained Optimization Code

function [F,G]=rosen(x)

%global xpath

%F=100*(x(1)^2-x(2))^2+(1-x(1))^2;

if size(x,1)==2, x=x’; end

F=100*(x(:,2)-x(:,1).^2).^2+(1-x(:,1)).^2;

G=[100*(4*x(1)^3-4*x(1)*x(2))+2*x(1)-2; 100*(2*x(2)-2*x(1)^2)];

return

%

% Main calling part below - uses function above

%

global xpath

clear FF

x1=[-3:.1:3]’; x2=x1; N=length(x1);

for ii=1:N,

for jj=1:N,

FF(ii,jj)=rosen([x1(ii) x2(jj)]’);

end,

end

% quasi-newton

%

xpath=[];t0=clock;

opt=optimset(’fminunc’);

opt=optimset(opt,’Hessupdate’,’bfgs’,’gradobj’,’on’,’Display’,’Iter’,...

’LargeScale’,’off’,’InitialHessType’,’identity’,...

’MaxFunEvals’,150,’OutputFcn’, @outftn);

x0=[-1.9 2]’;

xout1=fminunc(’rosen’,x0,opt) % quasi-newton

xbfgs=xpath;

% gradient search

%

xpath=[];

opt=optimset(’fminunc’);

opt=optimset(opt,’Hessupdate’,’steepdesc’,’gradobj’,’on’,’Display’,’Iter’,...

’LargeScale’,’off’,’InitialHessType’,’identity’,’MaxFunEvals’,2000,’MaxIter’,1000,’OutputFcn’, @outftn);
xout=fminunc(’rosen’,x0,opt)
xgs=xpath;

% hybrid GS and BFGS

%

xpath=[];

opt=optimset(’fminunc’);

opt=optimset(opt,’Hessupdate’,’steepdesc’,’gradobj’,’on’,’Display’,’Iter’,...

’LargeScale’,’off’,’InitialHessType’,’identity’,’MaxFunEvals’,5,’OutputFcn’, @outftn);

xout=fminunc(’rosen’,x0,opt)

opt=optimset(’fminunc’);

opt=optimset(opt,’Hessupdate’,’bfgs’,’gradobj’,’on’,’Display’,’Iter’,...

’LargeScale’,’off’,’InitialHessType’,’identity’,’MaxFunEvals’,150,’OutputFcn’, @outftn);

xout=fminunc(’rosen’,xout,opt)

xhyb=xpath;

figure(1);clf

contour(x1,x2,FF’,[0:2:10 15:50:1000])

hold on

plot(x0(1),x0(2),’ro’,’Markersize’,12)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 1–16

68 plot(1,1,’rs’,’Markersize’,12)

69 plot(xbfgs(:,1),xbfgs(:,2),’bd’,’Markersize’,12)

70 title(’Rosenbrock with BFGS’)

71 hold off

72 xlabel(’x_1’)

73 ylabel(’x_2’)

74 print -depsc rosen1a.eps;jpdf(’rosen1a’)

75

76 figure(2);clf

77 contour(x1,x2,FF’,[0:2:10 15:50:1000])

78 hold on

79 xlabel(’x_1’)

80 ylabel(’x_2’)

81 plot(x0(1),x0(2),’ro’,’Markersize’,12)

82 plot(1,1,’rs’,’Markersize’,12)

83 plot(xgs(:,1),xgs(:,2),’m+’,’Markersize’,12)

84 title(’Rosenbrock with GS’)

85 hold off

86 print -depsc rosen1b.eps;jpdf(’rosen1b’)

87

88 figure(3);clf

89 contour(x1,x2,FF’,[0:2:10 15:50:1000])

90 hold on

91 xlabel(’x_1’)

92 ylabel(’x_2’)

93 plot(x0(1),x0(2),’ro’,’Markersize’,12)

94 plot(1,1,’rs’,’Markersize’,12)

95 plot(xhyb(:,1),xhyb(:,2),’m+’,’Markersize’,12)

96 title(’Rosenbrock with GS(5) and BFGS’)

97 hold off

98 print -depsc rosen1c.eps;jpdf(’rosen1c’)

99

100 figure(4);clf
101 mesh(x1,x2,FF’)
102 hold on
103 plot3(x0(1),x0(2),rosen(x0’)+5,’ro’,’Markersize’,12,’MarkerFaceColor’,’r’)
104 plot3(1,1,rosen([1 1]),’ms’,’Markersize’,12,’MarkerFaceColor’,’m’)
105 plot3(xbfgs(:,1),xbfgs(:,2),rosen(xbfgs)+5,’gd’,’MarkerFaceColor’,’g’)
106 %plot3(xgs(:,1),xgs(:,2),rosen(xgs)+5,’m+’)
107 hold off
108 axis([-3 3 -3 3 0 1000])
109 hh=get(gcf,’children’);
110 xlabel(’x_1’)
111 ylabel(’x_2’)
112 set(hh,’View’,[-177 89.861],’CameraPosition’,[-0.585976 11.1811 5116.63]);%
113 print -depsc rosen2.eps;jpdf(’rosen2’)
114

1 function stop = outftn(x, optimValues, state)
2

3 global xpath
4 stop=0;
5 xpath=[xpath;x’];
6

7 return

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

16.323 Lecture 2

Nonlinear Optimization

• Constrained nonlinear optimization

• Lagrange multipliers

• Penalty/barrier functions also often used, but will not be discussed here.

Figure by MIT OpenCourseWare.

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 2–1
Constrained Optimization

•	 Consider a problem with the next level of complexity: optimization
with equality constraints

min F (y)
y

such that f(y) = 0

a vector of n constraints

•	 To simplify the notation, assume that the p-state vector y can be
separated into a decision m-vector u and a state n-vector x related to
the decision variables through the constraints. Problem now becomes:

min F (x, u)
u

such that f(x, u) = 0

– Assume that p > n otherwise the problem is completely specified
by the constraints (or over specified).

•	 One solution approach is direct substitution, which involves

– Solving for x in terms of u using f

– Substituting this expression into F and solving for u using an
unconstrained optimization.

– Works best if f is linear (assumption is that not both of f and F
are linear.)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 2–2

•	 Example: minimize F = x1
2 + x2

2 subject to the constraint that
x1 + x2 + 2 = 0

– Clearly the unconstrained minimum is at x1 = x2 = 0

– Substitution in this case gives equivalent problems:

min F̃2 = (−2 − x2)
2 + x 2

2
x2

or
min F̃1 = x1

2 + (−2 − x1)
2

x1

for which the solution (∂F̃2/∂x2 = 0) is x1 = x2 = −1

x
1

x 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2.8: Simple function minimization with constraint.

•	 Bottom line: substitution works well for linear constraints, but pro

cess hard to generalize for larger systems/nonlinear constraints.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�	 �

�	 �

� �

Spr 2008	 16.323 2–3
Lagrange Multipliers

•	 Need a more general strategy - using Lagrange multipliers.

•	 Since f(x, u) = 0, we can adjoin it to the cost with constants

λT = λ1 . . . λn

without changing the function value along the constraint to create
Lagrangian function

L(x, u, λ) = F (x, u) + λT f(x, u)

• Given values of x and u for which f(x, u) = 0, consider differential
changes to the Lagrangian from differential changes to x and u:

∂L ∂L
dL = dx + du

∂x ∂u

where ∂L = ∂L ∂L (row vector) ∂u ∂u1 ∂um
· · ·

Since u are the decision variables it is convenient to choose λ so that •
∂L ∂F �

+ λT ∂f =
∂x

≡ 0	 (2.1)
∂x ∂x

∂F
�
∂f
�−1

⇒	λT = −
∂x ∂x

(2.2)

•	 To proceed, must determine what changes are possible to the cost
keeping the equality constraint satisfied.

– Changes to x and u are such that f(x, u) = 0, then

∂f ∂f
df = dx + du ≡ 0	 (2.3)

∂x ∂u
∂f −1

∂f ⇒	dx = −
∂x ∂u

du (2.4)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 2–4

Then the allowable cost variations are •
∂F ∂F

dF =
∂x

dx +
∂u

du �
∂F
�
∂f
�−1

∂f ∂F
�

(2.5)

= −
∂x ∂x ∂u

+
∂u

du � �

=
∂F
∂u

+ λT ∂f
∂u

du (2.6)

∂L ≡
∂u

du (2.7)

•	 So the gradient of the cost F with respect to u while keeping the
constraint f(x, u) = 0 is just

∂L
∂u

and we need this gradient to be zero to have a stationary point so
that dF = 0 ∀ du = 0� .

•	 Thus the necessary conditions for a stationary value of F are

∂L
=	 0 (2.8)

∂x
∂L

=	 0 (2.9)
∂u
∂L

=	 f(x, u) = 0 (2.10)
∂λ

which are 2n + m equations in 2n + m unknowns.

•	 Note that Eqs. 2.8–2.10 can be written compactly as

∂L
=	 0 (2.11)

∂y
∂L

=	 0 (2.12)
∂λ

– The solutions of which give the stationary points.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 2–5
Intuition

•	 Can develop the intuition that the constrained solution will be a point
of tangency of the constant cost curves and the constraint function

– No further improvements possible while satisfying the constraints.

•	 Equivalent to saying that the gradient of the cost ftn (normal to
the constant cost curve) ∂F/∂y [black lines] must lie in the space
spanned by the constraint gradients ∂f/∂y [red lines]

– Means cost cannot be improved without violating the constraints.

– In 2D case, this corresponds to ∂F/∂y being collinear to ∂f/∂y

•	 Note: If this were not true, then it would be possible to take dy in
the negative of the direction of the component of the cost gradient
orthogonal to the constraint gradient, thereby reducing the cost and
still satisfying the constraint.

– Can see that at the points on the constraint above and blow the
optimal value of x2

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �

Spr 2008 16.323 2–6

Figure 2.9: Minimization with equality constraints: shows that function and cost
gradients are nearly collinear near optimal point and clearly not far away.

1 1

f(x1, x2) = x2 − ((x1)3 − (x1)2 + (x1) + 2) = 0 and F = 2

1 xT
1 2

x

Figure 2.10: Zoomed in plot.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �

Spr 2008 16.323 2–7

1 1

f(x1, x2) = x2 − ((x1 − 2)3 − (x1 − 2)2 + (x1 − 2) + 2) = 0 and F = 1 xT x
2 1 2

Figure 2.11: Change constraint - note that the cost and constraint gradients are
collinear, but now aligned

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 2–8

•	 Generalize this intuition of being “collinear” to larger state dimensions
to notion that the cost gradient must lie in the space spanned
by the constraint gradients.

– Equivalent to saying that it is possible to express the cost gradient
as a linear combination of the constraint gradients

– Again, if this was not the case, then improvements can be made
to the cost without violating the constraints.

•	 So that at a constrained minimum, there must exist constants such
that the cost gradient satisfies:

∂F ∂f1 ∂f2 ∂fn

∂y
= −λ1

∂y
− λ2

∂y
− · · · − λn

∂y
(2.13)

−λT ∂f =	 (2.14)
∂y

or equivalently that
∂F

+ λT ∂f = 0
∂y ∂y

which is, of course, the same as Eq. 2.11.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �

Spr 2008	 16.323 2–9
Constrained Example

•	 Minimize F (x1, x2) = x1
2 +x2

2 subject to f(x1, x2) = x1 +x2 +2 = 0

– Form the Lagrangian

L	� F (x1, x2) + λf (x1, x2) = x1
2 + x2

2 + λ(x1 + x2 + 2)

– Where λ is the Lagrange multiplier

•	 The solution approach without constraints is to find the stationary
point of F (x1, x2) (∂F/∂x1 = ∂F/∂x2 = 0)

– With constraints we find the stationary points of L

x1 ∂L ∂L
y = , = 0, = 0

x2 ∂y ∂λ

which gives

∂L
=	 2x1 + λ = 0

∂x1
∂L

=	 2x2 + λ = 0
∂x2
∂L

=	 x1 + x2 + 2 = 0
∂λ

•	 This gives 3 equations in 3 unknowns, solve to find x1
� = x2

� = −1

•	 The key point here is that due to the constraint, the selection of x1

and x2 during the minimization are not independent

– The Lagrange multiplier captures this dependency.

•	 Difficulty can be solving the resulting equations for the optimal points
(can be ugly nonlinear equations)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 2–10
Inequality Constraints

• Now consider the problem

min F (y) (2.15)
y

such that f(y) ≤ 0 (2.16)

– Assume that there are n constraints, but do not need to constrain
n with respect to the state dimension p since not all inequality
constraints will limit a degree of freedom of the solution.

• Have similar picture as before, but now not all constraints are active

– Black line at top is inactive since x1 + x2 − 1 < 0 at the optimal
value x = [1 − 0.60] it does not limit a degree of freedom in ⇒
the problem.

– Blue constraint is active, cost lower to the left, but f1 > 0 there

Figure 2.12: Cost and constraint gradients shown

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 2–11

With x1 + x2 − 1 ≤ 0, both constraints are active

Figure 2.13: Other cases of active and inactive constraints

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 2–12

•	 Intuition in this case is that at the minimum, the cost gradient must
lie in the space spanned by the active constraints - so split as:

∂F � ∂fi � ∂fj
∂y

= − λi
∂y

− λj
∂y

(2.17)
i	 j
active inactive

– And if the constraint is inactive, then can set λj = 0

•	 With equality constraints, needed the cost and function gradients to
be collinear, but they could be in any orientation.

•	 For inequality constraints, need an additional constraint that is related
to the allowable changes in the state.

– Must restrict condition 2.17 so that the cost gradient points in
the direction of the “allowable side” of the constraint (f < 0).
⇒	Cost cannot be reduced without violating constraint.
⇒	Cost and function gradients must point in opposite directions.

– Given 2.17, require that λi ≥ 0 for active constraints

• Summary: Active constraints, λi ≥ 0, and Inactive ones λj = 0

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 2–13

Given this, we can define the same Lagrangian as before L = F +λT f ,•
and the necessary conditions for optimality are

∂L
∂y

= 0 (2.18)

∂L
λi
∂λi

= 0 ∀i (2.19)

where the second property applies to all constraints

– Active ones have λi ≥ 0 and satisfy ∂L
∂λi

= fi = 0

– Inactive ones have λi = 0 and satisfy ∂L
∂λi

= fi < 0.

•	 Equations 2.18 and 2.19 are the “essence” of the Kuhn-Tucker the

orem in nonlinear programming - more precise statements available
with more careful specification of the constraints properties.

– Must also be careful in specifying the second order conditions for
a stationary point to be a minimum - see Bryson and Ho, sections
1.3 and 1.7.

•	 Note that there is an implicit assumption here of regularity – that
the active constraint gradients are linearly independent – for the λ�s
to be well defined.

– Avoids redundancy

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 2–14
Cost Sensitivity

•	 Often find that the constraints in the problem are picked somewhat
arbitrarily - some flexibility in the limits.

– Thus it would be good to establish the extent to which those
choices impact the solution.

•	 Note that at the solution point,

∂L ∂F
=	−λT ∂f = 0

∂y
⇒

∂y ∂y

If the state changes by Δy, would expect change in the

∂F
Cost ΔF = Δy

∂y
∂f

Constraint Δf = Δy
∂y

So then we have that

ΔF = −λT ∂f
∂y

Δy = −λT Δf

dF ⇒
df

= −λT

– Sensitivity of the cost to changes in the constraint func
tion is given by the Lagrange Multipliers.

•	 For active constraints λ ≥ 0, so expect that dF/df ≤ 0

– Makes sense because if it is active, then allowing f to increase will
move the constraint boundary in the direction of reducing F

– Correctly predicts that inactive constraints will not have an impact.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 2–15

Alternative Derivation of Cost Sensitivity

•	 Revise the constraints so that they are of the form f ≤ c, where
c ≥ 0 is a constant that is nominally 0.

– The constraints can be rewritten as f = f − c ≤ 0, which means

∂f ∂f
∂y

≡
∂y

and assuming the f constraint remains active as we change c

∂f ∂f
∂c
≡
∂c
− I = 0

•	 Note that at the solution point,

∂L ∂F
=	−λT ∂f = −λT ∂f = 0

∂y
⇒

∂y ∂y ∂y

To study cost sensitivity, must compute ∂F To proceed, note that •	 ∂c .

∂F ∂F ∂y
=

∂c ∂y ∂c

−λT ∂f ∂y
=

∂y ∂c

−λT ∂f =
∂c

=	 −λT

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 2–16

Figure 2.14: Shows that changes to the constraint impact cost in a way that can be
predicted from the Lagrange Multiplier.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 2–17
Simple Constrained Example

• Consider case F = x1
2 + x1x2 + x2

2 and x2 ≥ 1, x1 + x2 ≤ 3

• Form Lagrangian

L = x1
2 + x1x2 + x2

2 + λ1(1 − x2) + λ2(x1 + x2 − 3)

• Form necessary conditions:

∂L
= 2x1 + x2 + λ2 = 0

∂x1
∂L

= x1 + 2x2 − λ1 + λ2 = 0
∂x2
∂L

λ1 = λ1(1 − x2) = 0
∂λ1
∂L

λ2 = λ2(x1 + x2 − 3) = 0
∂λ2

• Now consider the various options:

– Assume λ1 = λ2 = 0 both inactive

∂L

= 2x1 + x2 = 0
∂x1
∂L

= x1 + 2x2 = 0
∂x2

gives solution x1 = x2 = 0 as expected, but does not satisfy all
the constraints

– Assume λ1 = 0 (inactive), λ2 ≥ 0 (active)

∂L

= 2x1 + x2 + λ2 = 0

∂x1
∂L

= x1 + 2x2 + λ2 = 0
∂x2
∂L

λ2 = λ2(x1 + x2 − 3) = 0
∂λ2

which gives solution x1 = x2 = 3/2, which satisfies the con

straints, but F = 6.75 and λ2 = −9/2

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 2–18

– Assume λ1 ≥ 0 (active), λ2 = 0 (inactive)

∂L

= 2x1 + x2 = 0

∂x1
∂L

= x1 + 2x2 − λ1 = 0
∂x2
∂L

λ1 = λ1(1 − x2) = 0
∂λ1

gives solution x1 = −1/2, x2 = 1, λ1 = 3/2 which satisfies the
constraints, and F = 0.75

Figure 2.15: Simple example

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 2–19

Code to generate Figure 2.12

1 %

2 % 16.323 Spr 2008

3 % Plot of cost ftns and constraints

4

5 clear all;close all;

6 set(0, ’DefaultAxesFontSize’, 14, ’DefaultAxesFontWeight’,’demi’)

7 set(0, ’DefaultTextFontSize’, 14, ’DefaultTextFontWeight’,’demi’)

8

9 global g G f

10

11 F=[];g=[0;0];G=[1 1;1 2];
12

13 testcase=0
14 if testcase
15 f=inline(’(1*(x1+1).^3-1*(x1+1).^2+1*(x1+1)+2)’);
16 dfdx=inline(’(3*1*(x1+1).^2-2*1*(x1+1)+1)’);
17 else
18 f=inline(’(1*(x1-2).^3-1*(x1-2).^2+1*(x1-2)+2)’);
19 dfdx=inline(’(3*1*(x1-2).^2-2*1*(x1-2)+1)’);
20 end
21

22 x1=-3:.01:5;x2=-4:.01:4;
23 for ii=1:length(x1);
24 for jj=1:length(x2);
25 X=[x1(ii) x2(jj)]’;
26 F(ii,jj)=g’*X+X’*G*X/2;
27 end;
28 end;
29 figure(1);clf
30 contour(x1,x2,F’,[min(min(F)) .05 .1 .2 .29 .4 .5 1:1:max(max(F))]);
31 xlabel(’x_1’)
32 ylabel(’x_2’)
33 hold on;
34 plot(x1,f(x1),’LineWidth’,2);
35

36 % X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS)
37 xx=fmincon(’meshf’,[0;0],[],[],[],[],[],[],’meshc’);
38 hold on
39 plot(xx(1),xx(2),’m*’,’MarkerSize’,12)
40 axis([-3 5 -4 4]);
41

42 Jx=[];
43 [kk,II1]=min(abs(x1-xx(1)))
44 [kk,II2]=min(abs(x1-1.1*xx(1)))
45 [kk,II3]=min(abs(x1-0.9*xx(1)))
46 ll=[II1 II2 II3];
47 gam=.8; % line scaling
48 for ii=1:length(ll)
49 X=[x1(ll(ii));f(x1(ll(ii)))]
50 Jx(ii,:)=(g+G*X)’;
51 X2=X+Jx(ii,:)’*gam/norm(Jx(ii,:));
52

53 Nx1=X(1);
54 df=[-dfdx(Nx1);1]; % x_2=f(x_1) ==> x_2 - f(x_1) < =0
55

56 X3=[Nx1;f(Nx1)];
57 X4=X3+df*gam/norm(df);
58

59 plot(X2(1),X2(2),’ko’,’MarkerSize’,12)
60 plot(X(1),X(2),’ks’,’MarkerSize’,12)
61 plot([X(1);X2(1)],[X(2);X2(2)],’k-’,’LineWidth’,2)
62 plot(X4(1),X4(2),’ro’,’MarkerSize’,12)
63 plot(X3(1),X3(2),’rs’,’MarkerSize’,12)
64 plot([X4(1);X3(1)],[X4(2);X3(2)],’r-’,’LineWidth’,2)
65 if ii==1;
66 text([1.25*X2(1)],[X2(2)],’\partial F/\partial y’)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 2–20

67 text([X4(1)-.75],[0*X4(2)],’\partial f/\partial y’)

68 end

69 end

70 hold off

71

72 %%%%%%%%%%%%%%%%%%%%%%%%

73

74 f2=inline(’-1*x1-1’);global f2

75 df2dx=inline(’-1*ones(size(x))’);

76

77 figure(3);gam=2;

78 contour(x1,x2,F’,[min(min(F)) .05 .1 .2 .3 .4 .5 1:1:max(max(F))]);

79 xlabel(’x_1’);ylabel(’x_2’)

80

81 xx=fmincon(’meshf’,[0;0],[],[],[],[],[],[],’meshc2’);

82 hold on

83 Jx=(g+G*xx)’;

84 X2=xx+Jx’*gam/norm(Jx);

85 plot(xx(1),xx(2),’m*’,’MarkerSize’,12)

86 plot(X2(1),X2(2),’mo’,’MarkerSize’,12);

87 plot([xx(1);X2(1)],[xx(2);X2(2)],’m-’,’LineWidth’,2)

88 text([X2(1)],[X2(2)],’\partial F/\partial y’)

89 hold off

90

91 hold on;

92 plot(x1,f(x1),’LineWidth’,2);

93 text(-1,1,’f_2 > 0’)

94 text(-2.5,0,’f_2 < 0’)

95 plot(x1,f2(x1),’k-’,’LineWidth’,2);

96 text(3,2,’f_1 < 0’)

97 if testcase

98 text(0,3,’f_1 > 0’)

99 else

100 text(1,3,’f_1 > 0’)
101 end
102

103 dd=[xx(1) 0 xx(1)]’;
104 X=[dd f(dd)];
105 df=[-dfdx(dd) 1*ones(size(dd))];
106 X2=X+gam*df/norm(df);
107 for ii=3
108 plot([X(ii,1);X2(ii,1)],[X(ii,2);X2(ii,2)],’LineWidth’,2)
109 text([X2(ii,1)-1],[X2(ii,2)],’\partial f/\partial y’)
110 end
111 X=[dd f2(dd)];
112 df2=[-df2dx(dd) 1*ones(size(dd))];
113 X2=X+gam*df2/norm(df2);
114 %for ii=1:length(X)
115 for ii=1
116 plot([X(ii,1);X2(ii,1)],[X(ii,2);X2(ii,2)],’k’,’LineWidth’,2)
117 text([X2(ii,1)],[X2(ii,2)],’\partial f/\partial y’)
118 end
119 hold off
120

121 %%%%%%%%%%%%%%%%%%%%%%
122

123 f2=inline(’-1*x1+1’);global f2
124 df2dx=inline(’-1*ones(size(x))’);
125

126 figure(4);clf;gam=2;
127 contour(x1,x2,F’,[min(min(F)) .05 .1 .2 .3 .4 .5 1:1:max(max(F))]);
128 xlabel(’x_1’);ylabel(’x_2’)
129

130 xx=fmincon(’meshf’,[1;-1],[],[],[],[],[],[],’meshc2’);
131 hold on
132 Jx=(g+G*xx)’;
133 X2=xx+Jx’*gam/norm(Jx);
134 plot(xx(1),xx(2),’m*’,’MarkerSize’,12)
135 plot(X2(1),X2(2),’mo’,’MarkerSize’,12);
136 plot([xx(1);X2(1)],[xx(2);X2(2)],’m-’,’LineWidth’,2)
137 text([X2(1)],[X2(2)],’\partial F/\partial y’)
138 hold off

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

1

2

3

4

5

6

7

8

9

Spr 2008 16.323 2–21

139

140 hold on;

141 plot(x1,f(x1),’LineWidth’,2);

142 text(-1,3,’f_2 > 0’)

143 text(-2.5,2,’f_2 < 0’)

144 plot(x1,f2(x1),’k-’,’LineWidth’,2);

145 text(3,2,’f_1 < 0’)

146 if testcase

147 text(0,3,’f_1 > 0’)

148 else

149 text(1,3,’f_1 > 0’)

150 end

151

152 dd=[xx(1) 0 xx(1)]’;

153 X=[dd f(dd)];

154 df=[-dfdx(dd) 1*ones(size(dd))];

155 X2=X+gam*df/norm(df);

156 for ii=3

157 plot([X(ii,1);X2(ii,1)],[X(ii,2);X2(ii,2)],’LineWidth’,2)

158 text([X2(ii,1)-1],[X2(ii,2)],’\partial f/\partial y’)

159 end

160 X=[dd f2(dd)];

161 df2=[-df2dx(dd) 1*ones(size(dd))];

162 X2=X+gam*df2/norm(df2);

163 %for ii=1:length(X)

164 for ii=1

165 plot([X(ii,1);X2(ii,1)],[X(ii,2);X2(ii,2)],’k’,’LineWidth’,2)

166 text([X2(ii,1)],[X2(ii,2)],’\partial f/\partial y’)

167 end

168 hold off

169

170 %%%%%%%%%%%%%%%%%%%%%%%%%

171

172 if testcase

173 figure(1)

174 print -r300 -dpng mesh1b.png;%jpdf(’mesh1b’);

175 axis([-4 0 -1 3]);

176 print -r300 -dpng mesh1c.png;%jpdf(’mesh1c’);

177 figure(3)

178 print -r300 -dpng mesh2.png;%jpdf(’mesh2’);

179 figure(4)

180 print -r300 -dpng mesh2a.png;%jpdf(’mesh2a’);

181 else

182 figure(1)

183 print -r300 -dpng mesh1.png;%jpdf(’mesh1’);

184 axis([-.5 4 -2 2]);

185 print -r300 -dpng mesh1a.png;%jpdf(’mesh1a’);

186 figure(3)

187 print -r300 -dpng mesh4.png;%jpdf(’mesh4’);

188 figure(4)

189 print -r300 -dpng mesh4a.png;%jpdf(’mesh4a’);

190 end

191

192 %

193 % sensitivity study

194 % line given by x_2=f(x_1), and the constraint is that x_2-f(x_1) <= 0

195 % changes are made to the constraint so that x_2-f(x_1) <= alp > 0

196 figure(5);clf

197 contour(x1,x2,F’,[min(min(F)) .05 .1 .213 .29 .4 .6:.5:max(max(F))]);

198 xlabel(’x_1’)

199 ylabel(’x_2’)

200 hold on;

20 f=inline(’(1*(x1-2).^3-1*(x1-2).^2+1*(x1-2)+2)’);

20 dfdx=inline(’(3*1*(x1-2).^2-2*1*(x1-2)+1)’);

20 plot(x1,f(x1),’k-’,’LineWidth’,2);

20 alp=1;

20 plot(x1,f(x1)+alp,’k--’,’LineWidth’,2);

20

20 global alp

20 [xx1,temp,temp,temp,lam1]=fmincon(’meshf’,[0;0],[],[],[],[],[],[],’meshc3’);

20 alp=0;

210 [xx0,temp,temp,temp,lam0]=fmincon(’meshf’,[0;0],[],[],[],[],[],[],’meshc3’);

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

1

2

3

4

5

6

7

8

9

Spr 2008 16.323 2–22

211

212 [meshf(xx0) lam0.ineqnonlin;meshf(xx1) lam1.ineqnonlin]

213

214 legend(’F’,[’const=0, F^*=’,num2str(meshf(xx0))],[’const = 1, F^*=’ ,num2str(meshf(xx1))])

215

216 hold on

217 plot(xx0(1),xx0(2),’mo’,’MarkerSize’,12,’MarkerFaceColor’,’m’)

218 plot(xx1(1),xx1(2),’md’,’MarkerSize’,12,’MarkerFaceColor’,’m’)

219

220 text(xx0(1)+.5,xx0(2),[’\lambda_0 = ’,num2str(lam0.ineqnonlin)])

221

222 axis([0 2.5 -1 .5])

223 print -r300 -dpng mesh5;%jpdf(’mesh5’);

1 function F=meshf(X);
2

3 global g G
4

5 F=g’*X+X’*G*X/2;
6

7 end

1 function [c,ceq]=meshc(X);
2

3 global f
4

5 c=[];
6 %ceq=f(X(1))-X(2);
7 ceq=X(2)-f(X(1));
8

9 return

function [c,ceq]=meshc(X);

global f f2

%c=[f(X(1))-X(2);f2(X(1))-X(2)];
c=[X(2)-f(X(1));X(2)-f2(X(1))];

ceq=[];

return

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 2–23

Code for Simple Constrained Example

1 figure(1),clf
2 xx=[-3:.1:3]’; for ii=1:length(xx);for jj=1:length(xx); %
3 FF(ii,jj)= xx(ii)^2+xx(ii)*xx(jj)+xx(jj)^2;end;end;%
4 hh=mesh(xx,xx,FF);%
5 hold on;%
6

7 plot3(xx,ones(size(xx)),xx.^2+1+xx,’m-’,’LineWidth’,2);%
8 plot3(xx,3-xx,xx.^2+(3-xx).^2+xx.*(3-xx),’g-’,’LineWidth’,2);%
9

10 xlabel(’x_1’); ylabel(’x_2’); %
11 hold off; axis([-3 3 -3 3 0 20])%
12 hh=get(gcf,’children’);%
13 set(hh,’View’,[-109 74],’CameraPosition’,[-26.5555 13.5307 151.881]);%
14

15 xx=fmincon(’simplecaseF’,[0;0],[],[],[],[],[],[],’simplecaseC’);
16 hold on
17 plot3(xx(1),xx(2),xx(1).^2+xx(2).^2+xx(1).*xx(2),’rs’,’MarkerSize’,20,’MarkerFace’,’r’)
18 xx(1).^2+xx(2).^2+xx(1).*xx(2)
19

20 print -r300 -dpng simplecase.png;
21

1 function F=simplecaseF(X);
2

3 F=X(1)^2+X(1)*X(2)+X(2)^2;
4

5 return

1 function [c,ceq]=simplecaseC(X);
2

3 c=[1-X(2);X(1)+X(2)-3];
4 ceq=0;
5

6 return

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

16.323 Lecture 3

Dynamic Programming

• Principle of Optimality

• Dynamic Programming

• Discrete LQR

Figure by MIT OpenCourseWare.

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 3–1
Dynamic Programming

• DP is a central idea of control theory that is based on the

Principle of Optimality: Suppose the optimal solution for a
problem passes through some intermediate point (x1, t1), then
the optimal solution to the same problem starting at (x1, t1)
must be the continuation of the same path.

• Proof? What would the implications be if it was false?

• This principle leads to:

– Numerical solution procedure called Dynamic Programming for
solving multi-stage decision making problems.

– Theoretical results on the structure of the resulting control law.

Texts: •

– Dynamic Programming (Paperback) by Richard Bellman (Dover)
– Dynamic Programming and Optimal Control (Vol 1 and 2) by D. P.

Bertsekas

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 3–2

Classical Examples

•	 Shortest Path Problems (Bryson figure 4.2.1) – classic robot naviga

tion and/or aircraft flight path problems

•	 Goal is to travel from A to B in the shortest time possible

– Travel times for each leg are shown in the figure
– There are 20 options to get from A to B – could evaluate each

and compute travel time, but that would be pretty tedious

•	 Alternative approach: Start at B and work backwards, invoking
the principle of optimality along the way.

– First step backward can be either up (10) or down (11)

•	 Consider the travel time from point x

– Can go up and then down 6 + 10 = 16
June 18, 2008

10

6

7

11

x B

Figure by MIT OpenCourseWare.

Figure by MIT OpenCourseWare.

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 3–3

– Or can go down and then up 7 + 11 = 18

– Clearly best option from x is go up, then down, with a time of 16

– From principle of optimality, this is best way to get to B for any
path that passes through x.

• Repeat process for all other points, until finally get to initial point
⇒ shortest path traced by moving in the directions of the arrows.

• Key advantage is that only had to find 15 numbers to solve this
problem this way rather than evaluate the travel time for 20 paths

– Modest difference here, but scales up for larger problems.

– If n = number of segments on side (3 here) then:
� Number of routes scales as ∼ (2n)!/(n!)2

� Number DP computations scales as ∼ (n + 1)2 − 1

June 18, 2008

Figure by MIT OpenCourseWare. co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 3–4
Example 2

• Routing Problem [Kirk, page 56] through a street maze

– Similar problem (minimize cost to travel from c to h) with a slightly
more complex layout

• Once again, start at end (h) and work backwards

– Can get to h from e, g directly, but there are 2 paths to h from e.

– Basics: J� = 2, and gh

J�
gh = 5 fh = Jfg + J�

– Optimal cost from e to h given by

J� = min{Jefgh, Jeh} = min{[Jef + J�
fh], Jeh}eh

= min{2 + 5, 8} = 7 e f g h→ → →

Also J� = J� = 10 • ehdh de + J�

– Principle of optimality tells that, since we already know the best
way to h from e, do not need to reconsider the various options
from e again when starting at d – just use the best.

• Optimal cost from c to h given by

J�
dh], [Jcf + J�

ch = min{Jcdh, Jcfh} = min{[Jcd + J�
fh]}

= min{[5 + 10], [3 + 5]} = 8 c f g h→ → →

June 18, 2008

Figure by MIT OpenCourseWare.

co
nt

ro
len

gin
ee

rs
.ir

�	 �

Spr 2008	 16.323 3–5

•	 Examples show the basis of dynamic programming and use of principle
of optimality.

– In general, if there are numerous options at location α that next
lead to locations x1, . . . , xn, choose the action that leads to

Jαh
� = min [Jαx1 + Jx

�
1h

], [Jαx2 + Jx
�
2h

], . . . , [Jαxn + Jx
�
nh

]
xi

•	 Can apply the same process to more general control problems. Typi

cally have to assume something about the system state (and possible
control inputs), e.g., bounded, but also discretized.

Roadmap:

– Grid the time/state and quantized control inputs.

– Time/state grid, evaluate necessary control

– Discrete time problem discrete LQR ⇒

– Continuous time problem calculus of variations cts LQR ⇒	 ⇒

Figure 3.1: Classic picture of discrete time/quantized space grid with the linkages
possible through the control commands. Again, it is hard to evaluate all options
moving forward through the grid, but we can work backwards and use the principle
of optimality to reduce this load.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

Spr 2008	 16.323 3–6
Classic Control Problem

•	 Consider the problem of minimizing:
tf

min J = h(x(tf)) + g(x(t), u(t), t)) dt
t0

subject to

ẋ = a(x, u, t)

x(t0) = fixed

tf = fixed

– Other constraints on x(t) and u(t) can also be included.

•	 Step 1 of solution approach is to develop a grid over space/time.

– Then look at possible final states xi(tf) and evaluate final costs

– For example, can discretize the state into 5 possible cases x1 ,. . . ,x5

Ji
�	 = h(xitf

) , ∀ i

•	 Step 2: back up 1 step in time and consider all possible ways of
completing the problem.

– To evaluate the cost of a control action, must approximate the
integral in the cost.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

�	 �

�	 �

Spr 2008	 16.323 3–7

Consider the scenario where you are at state xi at time tk, and apply •	
control uijk to move to state xj at time tk+1 = tk + Δt.

– Approximate cost is
tk+1

g(x(t), u(t), t)) dt ≈ g(xk
i , uij, tk)Δtk

tk

– Can solve for control inputs directly from system model:
j i

j i i ij i ij xk+1 − xk xk+1 ≈ xk + a(xk, uk , tk)Δt a(xk, uk , tk) = ⇒	
Δt

ijwhich can be solved to find uk .

– Process is especially simple if the control inputs are affine:

ẋ = f(x, t) + q(x, t)u

which gives
j i

uij	 = q(xk
i , tk)

−1 xk+1 − xk − f(xk
i , tk)k Δt

So for any combination of xi and xj can evaluate the incremental •	 k k+1

cost ΔJ(xk
i , xjk+1) of making this state transition

Assuming already know the optimal path from each new terminal •	
point (xjk+1), can establish optimal path to take from xik using

J�(xk
i , tk) = min ΔJ(xk

i , xk
j
+1) + J�(xk

j
+1)j

xk+1

– Then for each xk
i , output is:

�	Best xk
i
+1 to pick, because it gives lowest cost

�	Control input required to achieve this best cost.

•	 Then work backwards in time until you reach xt0, when only one value
of x is allowed because of the given initial condition.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

Spr 2008	 16.323 3–8
Other Considerations

•	 With bounds on the control, then certain state transitions might not
be allowed from 1 time-step to the next.

•	 With constraints on the state, certain values of x(t) might not be
allowed at certain times t.

•	 Extends to free end time problems, where
tf

min J = h(x(tf), tf) + g(x(t), u(t), t)) dt
t0

with some additional constraint on the final state m(x(tf), tf) = 0.

– Gives group of points that (approximately) satisfy the terminal
constraint

– Can evaluate cost for each, and work backwards from there.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �
� �

Spr 2008 16.323 3–9

Process extends to higher dimensional problems where the state is a •
vector.

– Just have to define a grid of points in x and t, which for two
dimensions would look like:

Figure 3.2: At any time tk, have a two dimensional array of grid points.

Previous formulation picked x’s and used those to determine the u’s. •

– For more general problems, might be better off picking the u’s and
using those to determine the propagated x’s

i i ij jJ�(xk, tk) = min ΔJ(xk, uk) + J�(xk+1, tk+1)
ij
uk

i ij j= min g(xk, uk , tk)Δt + J�(xk+1, tk+1)
ij
uk

– To do this, must quantize the control inputs as well.

– But then likely that terminal points from one time step to the next
will not lie on the state discrete points must interpolate the cost ⇒
to go between them.

June 18, 2008

Figure by MIT OpenCourseWare.

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 3–10

•	 Option 1: find the control that moves the state from a point on
one grid to a point on another.

•	 Option 2: quantize the control inputs, and then evaluate the result

ing state for all possible inputs

xjk+1 = x ik + a(x ik, u
ij
k , tk)Δt

– Issue at that point is that xjk+1 probably will not agree with the
tk+1 grid points must interpolate the available J� .⇒

– See, for example, R.E.Larson “A survey of dynamic programming
computational procedures”, IEEE TAC Dec 1967 (on web) or sec
tion 3.6 in Kirk.

Do this for all admissible uij and resulting xj , and then take •	 k k+1

J�(x ik, tk) = min J(x ik, u
ij
k , tk)ij

uk

•	 Main problem with dynamic programming is how badly it scales.

– Given Nt points in time and Nx quantized states of dimension n

– Number of points to consider is N = NtNx
n

⇒ “Curse of Dimensionality” – R. Bellman, Dynamic Pro

gramming (1957) – now from Dover.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

Spr 2008	 16.323 3–11
DP Example

•	 See Kirk pg.59: �	 T

J = x 2(T) + λ u 2(t) dt
0

with ẋ = ax + u, where 0 ≤ x ≤ 1.5 and −1 ≤ u ≤ 1

•	 Must quantize the state within the allowable values and time within
the range t ∈ [0, 2] using N=2, Δt = T/N = 1.

– Approximate the continuous system as:

ẋ ≈
x(t + Δ

Δ

t)
t
− x(t)

= ax(t) + u(t)

which gives that

xk+1 = (1 + aΔt)xk + (Δt)uk

– Very common discretization process (Euler integration approxima

tion) that works well if Δt is small

•	 Use approximate calculation from previous section – cost becomes

N−1

J = x 2(T) + λ uk
2Δt

k=0

•	 Take λ = 2 and a = 0 to simplify things a bit.

– With 0 ≤ x(k) ≤ 1.5, take x quantized into four possible values
xk	∈ {0, 0.5, 1.0, 1.5}

– With control bounded |u(k)| ≤ 1, assume it is quantized into five
possible values: uk ∈ {−1, −0.5, 0, 0.5, 1}

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 3–12

• Start – evaluate cost associated with all possible terminal states
j J� j j

2)2
= h(x
) = (x
x
2
 2
 2

0 0
0.5 0.25
1 1

1.5 2.25

• Given x1 and possible x2, can evaluate the control effort required to
make that transition:

x
j 2
 = x
i
1
+ u(1)
u(1)

x1 0 0.5 1 1.5
0 0 0.5 1 1.5

0.5 -0.5 0 0.5 1
1 -1 -0.5 0 0.5

1.5 -1.5 -1 -0.5 0

i

which can be used to compute the cost increments:
ij jΔJ
 x
12
 2

x1 0 0.5 1 1.5
0 0 0.5 2 XX

0.5 0.5 0 0.5 2
1 2 0.5 0 0.5

1.5 XX 2 0.5 0

ij
12 + J�

2
j(x2

i

and costs at time t = 1 given by J1 = ΔJ
)

j

2
xJ1

i
 0 0.5 1 1.5
x
1

0
0.5

1
1.5

0
0.5
2

XX

0.75
0.25
0.75
2.25

3
1.5
1

1.5

XX
4.25
2.75
2.25

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 3–13

Take min across each row to determine best action at each possible •	
x1 ⇒ J1

�(xj 1)

i jx1 x2→
0 0→

0.5 0.5→
1 0.5→

1.5 1→

Can repeat the process to find the costs at time t = 0 which are •	
J0 = ΔJij 1 (x

j)01 + J�
1

j
J0 x1

x0 0 0.5 1 1.5
0 0 0.75 2.75 XX

0.5 0.5 0.25 1.25 3.5
1 2 0.75 0.75 2

1.5 XX 2.25 1.25 1.5

i

and again, taking min across the rows gives the best actions:

i jx0 x1→
0 0→

0.5 0.5→
1 0.5→

1.5 1→

•	 So now we have a complete strategy for how to get from any x0
i to

the best x2 to minimize the cost

– This process can be highly automated, and this clumsy presenta

tion is typically not needed.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

Spr 2008	 16.323 3–14
Discrete LQR

•	 For most cases, dynamic programming must be solved numerically –
often quite challenging.

•	 A few cases can be solved analytically – discrete LQR (linear quadratic
regulator) is one of them

•	 Goal: select control inputs to minimize

1	 1
N−1

J	 = x T [x T T
NHxN + kQkxk + uk Rkuk]

2	 2
k=0

so that
1 � T T

�
gd(xk, uk) = xkQkxk + uk Rkuk

2
subject to the dynamics

xk+1 = Akxk + Bkuk

– Assume that H = HT ≥ 0, Q = QT ≥ 0, and R = RT > 0

– Including any other constraints greatly complicates problem

•	 Clearly JN
� [xN] = 2

1 xT HxN ⇒ now need to find JN
�
−1[xN−1]N

JN
�
−1[xN−1] = min	 N [xN]}

uN−1
{gd(xN−1, uN−1) + J�

1 � �
= min xN

T
−1QN−1xN−1 + uN

T
−1RN−1uN−1 + xN

T HxN]
uN−1 2

•	 Note that xN = AN−1xN−1 + BN−1uN−1, so that

1 �
JN
�
−1[xN−1] = min x T	 T

N−1QN−1xN−1 + uN−1RN−1uN−1
uN −1 2 �

+ {AN−1xN−1 + BN−1uN−1} T H {AN−1xN−1 + BN−1uN−1}

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �

�

Spr 2008 16.323 3–15

• Take derivative with respect to the control inputs

∂JN
�
−1[xN−1] T

∂uN−1
= uN−1RN−1 +{AN−1xN−1 + BN−1uN−1} T HBN−1

• Take transpose and set equal to 0, yields

RN−1 + BN
T
−1HBN−1 uN−1 + BN

T
−1HAN−1xN−1 = 0

• Which suggests a couple of key things:

– The best control action at time N − 1, is a linear state feedback
on the state at time N − 1:

u �N−1 = −
�
RN−1 + BN

T
−1HBN−1

�−1
BN
T
−1HAN−1xN−1

≡ −FN−1xN−1

– Furthermore, can show that

∂2J�
N−1[xN−1]

= RN−1 + BN
T
−1HBN−1 > 0

∂u2
N−1

so that the stationary point is a minimum

• With this control decision, take another look at

JN
�
−1[xN−1] =

2

1
xN
T
−1

�
QN−1 + FN

T
−1RN−1FN−1+

{AN−1 − BN−1FN−1} T H {AN−1 − BN−1FN−1} xN−1

1 T
≡
2
xN−1PN−1xN−1

– Note that PN = H, which suggests a convenient form for gain F :

FN−1 =
�
RN−1 + BN

T
−1PNBN−1

�−1
BN
T
−1PNAN−1 (3.20)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

Spr 2008	 16.323 3–16

•	 Now can continue using induction – assume that at time k the control
will be of the form u� = −Fkxk where k

Fk =
�
Rk + Bk

TPk+1Bk
�−1

Bk
TPk+1Ak

and Jk
�[xk] = 1

2x
T
k Pkxk where

Pk = Qk + Fk
TRkFk + {Ak − BkFk} T Pk+1 {Ak − BkFk}

– Recall that both equations are solved backwards from k + 1 to k.

•	 Now consider time k �− 1, with �

Jk
�
−1[xk−1] = min

1
xk
T
−1Qk−1xk−1 + uk

T
−1Rk−1uk−1 + Jk

�[xk]
uk−1 2

•	 Taking derivative with respect to uk−1 gives,

∂Jk
�
−1[xk−1] T T =	u
∂uk−1

k−1Rk−1 + {Ak−1xk−1 + Bk−1uk−1} PkBk−1

so that the best control input is

uk−1	 = −
�
Rk−1 + Bk

T
−1PkBk−1

�−1
Bk
T
−1PkAk−1xk−1

= −Fk−1xk−1

•	 Substitute this control into the expression for Jk
�
−1[xk−1] to show that

Jk
�
−1[xk−1] =

1
x Tk−1Pk−1xk−1

2
and

Pk−1 =	 Qk−1 + Fk
T
−1Rk−1Fk−1 +

{Ak−1 − Bk−1Fk−1} T Pk {Ak−1 − Bk−1Fk−1}

•	 Thus the same properties hold at time k −1 and k, and N and N −1
in particular, so they will always be true.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� � � �

� �

� �

Spr 2008 16.323 3–17
Algorithm

• Can summarize the above in the algorithm:

(i) PN = H

(ii) Fk =
�
Rk + Bk

TPk+1Bk
�−1

Bk
TPk+1Ak

(iii) Pk = Qk + Fk
TRkFk + {Ak − BkFk} T Pk+1 {Ak − BkFk}

cycle through steps (ii) and (iii) from N − 1 0.→

Notes:•

– The result is a control schedule that is time varying, even if A, B,
Q, and R are constant.

– Clear that Pk and Fk are independent of the state and can be
computed ahead of time, off-line.

– Possible to eliminate the Fk part of the cycle, and just cycle
through Pk

Pk = Qk+Ak
T Pk+1 − Pk+1Bk Rk + Bk

TPk+1Bk
−1
Bk
TPk+1 Ak

– Initial assumption Rk > 0 ∀ k can be relaxed, but we must ensure
that Rk+1 + Bk

TQk+1Bk > 0. 2

• In the expression:

i i ij jJ�(xk, tk) = min g(xk, uk , tk)Δt + J�(xk+1, tk+1)
ij
uk

the term J�(xk
j
+1, tk+1) plays the role of a “cost-to-go”, which is a

key concept in DP and other control problems.

2Anderson and Moore, Optimal Control: Linear Quadratic Methods, pg. 30

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

Spr 2008	 16.323 3–18
Suboptimal Control

The optimal initial cost is J0
�[x0] = 2

1 x0
TP0x0. One question: how •

would the cost of a different controller strategy compare?

uk = −Gkxk

• Can substitute this controller into the cost function and compute

1 T 1
N−1

T TJ	 = xNHxN + [xkQkxk + uk Rkuk]
2	 2

k=0
N−1

1	 1 �
⇒	 JG =

2
xN
T HxN +

2
xk
T [Qk + Gk

TRkGk]xk

k=0

where
xk+1 = Akxk + Bkuk = (Ak − BkGk)xk

Note that: •

1
N�−1 �

T	 T
� 1 � T T

�
xk+1Sk+1xk+1 − xk Skxk	 = xNSN xN − x0 S0x0

2	 2
k=0

•	 So can rearrange the cost function as
N−1

JG =
1
xN
T HxN +

1 ��
xk
T [Qk + GT

kRkGk − Sk]xk
2	 2

k=0 � 1 �	 �
+ x Tk+1Sk+1xk+1 −

2
x TNSN xN − x T

0 S0x0

– Now substitute for xk+1 = (Ak − BkGk)xk, and define Sk so that

SN = H

Sk = Qk + Gk
TRkGk + {Ak − BkGk} T Sk+1 {Ak − BkGk}

which is another recursion, that gives
1 TJG = x0 S0x0
2

•	 So that for a given x0, we can compare P0 and S0 to evaluate the
extent to which the controller is suboptimal.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �	 � �

�	 �

Spr 2008	 16.323 3–19
Steady State

Assume3 •

– Time invariant problem (LTI) – i.e., A,B,Q,R are constant
– System [A,B] stabilizable – uncontrollable modes are stable.

•	 For any H, then as N →∞, the recursion for P tends to a constant
solution with Pss ≥ 0 that is bounded and satisfies (set Pk ≡ Pk+1)

Pss = Q + AT Pss − PssB R + BTPssB
−1
BTPss A (3.21)

– Discrete form of the famous Algebraic Riccati Equation

– Typically hard to solve analytically, but easy to solve numerically.

– Can be many PSD solutions of (3.21), recursive solution will be
one.

•	 Let Q = CTC ≥ 0, which is equivalent to having cost measurements
z = Cx and state penalty zT z = xTCTCx = xTQx. If [A,C]
detectable, then:

– Independent of H, recursion for P has a unique steady state
solution Pss ≥ 0 that is the unique PSD solution of (3.21).

– The associated steady state gain is

Fss = R + BTPssB
−1
BTPssA

and using Fss, the closed-loop system xk+1 = (A − BFss)xk is
asymptotically stable, i.e.,

|λ(A − BFss)| < 1

– Detectability required to ensure that all unstable modes penalized
in state cost.

•	 If, in addition, [A,C] observable4, then there is a unique Pss > 0

3See Lewis and Syrmos, Optimal Control, Thm 2.4-2 and Kwakernaak and Sivan, Linear Optimal Control Systems, Thm 6.31

4Guaranteed if Q > 0

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 3–20 Discrete LQR Example

•	 Integrator scalar system ẋ = u, which gives

xk+1 = xk + ukΔt

so that A = 1, B = Δt = 1 and

N−1

1 1 �
2 2J = x(N)2 + [xk + uk]4 2

k=0

so that N = 10, Q = R = 1, H = 1/2 (numbers in code/figures might differ)

•	 Note that this is a discrete system, and the rules for stability are
different – need |λi(A − BF)| < 1.

– Open loop system is marginally stable, and a gain 1 > F > 0 will
stabilize the system.

Figure 3.3: discrete LQR comparison to constant gain, G = −0.25

•	 Plot shows discrete LQR results: clear that the Pk settles to a con

stant value very quickly

– Rate of reaching steady state depends on Q/R. For Q/R large
reaches steady state quickly

•	 (Very) Suboptimal F gives an obviously worse cost

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 3–21

•	 But a reasonable choice of a constant F in this case gives nearly
optimal results.

Figure 3.4: discrete LQR comparison to constant gain, G = F (0)

Figure 3.5: State response comparison

•	 State response consistent

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 3–22
Gain Insights

•	 Note that from Eq. 3.20 we know that

FN−1 =
�
RN−1 + BN

T
−1PNBN−1

�−1
BN
T
−1PNAN−1

which for the scalar case reduces to
BN−1PNAN−1

=FN−1
RN−1 + BN

2
−1PN

•	 So if there is a high weighting on the terminal state, then H → ∞
and PN is large. Thus

FN−1 →
BN−1PNAN−1 A
BN

2
−1PN

→
B

and
A

xN = (A − BF)xN−1 = (A − B)xN−1 = 0
B

regardless of the value of xN−1. This is a nilpotent controller.

•	 If control penalty set very small, so that R → 0 (Q/R large), then

FN−1 →
BN

B
−1

2

PNAN−1 A
PN

→
BN−1

and xN = 0 as well.

– State penalized, but control isn’t, so controller will exert as much
effort as necessary to make x small.

– In fact, this will typically make x(1) = 0 regardless of x(0) if there
are no limits on the control effort.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

Spr 2008	 16.323 3–23

Discrete scalar LQR

% 16.323 Spring 2008

% Jonathan How

% integ.m: integrator system

%

clear all

close all

%A=1;B=1;Q=1;R=1;H=0.5;N=5;

A=1;B=1;Q=1;R=2;H=.25;N=10;

P(N+1)=H; % shift indices to avoid index of 0
for	 j=N-1:-1:0

i=j+1; % shift indices to avoid index of 0

F(i)=inv(R+B’*P(i+1)*B)*B’*P(i+1)*A;

P(i)=(A-B*F(i))’*P(i+1)*(A-B*F(i))+F(i)’*R*F(i)+Q;

end

% what if we used a fixed gain of F(0), which stabilizes

S(N+1)=H; % shift indices to avoid index of 0

for j=N-1:-1:0

i=j+1; % shift indices to avoid index of 0

G(i)=F(1);

S(i)=(A-B*G(i))’*S(i+1)*(A-B*G(i))+G(i)’*R*G(i)+Q;

end

time=[0:1:N];

figure(1);clf

plot(time,P,’ks’,’MarkerSize’,12,’MarkerFaceColor’,’k’)

hold on

plot(time,S,’rd’,’MarkerSize’,12,’MarkerFaceColor’,’r’)

plot(time(1:N),F,’bo’,’MarkerSize’,12,’MarkerFaceColor’,’b’)

hold off

legend(’Optimal P’,’Suboptimal S with G=F(0)’,’Optimal F’,’Location’,’SouthWest’)

xlabel(’Time’)

ylabel(’P/S/F’)

text(2,1,[’S(0)-P(0) = ’,num2str(S(1)-P(1))])

axis([-.1 N -1 max(max(P),max(S))+.5])

print -dpng -r300 integ.png

% what if we used a fixed gain of G=0.25, which stabilizes

S(N+1)=H; % shift indices to avoid index of 0

for j=N-1:-1:0

i=j+1; % shift indices to avoid index of 0

G(i)=.25;

S(i)=(A-B*G(i))’*S(i+1)*(A-B*G(i))+G(i)’*R*G(i)+Q;

end

figure(2)

%plot(time,P,’ks’,time,S,’rd’,time(1:N),F,’bo’,’MarkerSize’,12)

plot(time,P,’ks’,’MarkerSize’,12,’MarkerFaceColor’,’k’)

hold on

plot(time,S,’rd’,’MarkerSize’,12,’MarkerFaceColor’,’r’)

plot(time(1:N),F,’bo’,’MarkerSize’,12,’MarkerFaceColor’,’b’)

hold off

legend(’Optimal P’,’Suboptimal S with G=0.25’,’Optimal F’,’Location’,’SouthWest’)

text(2,1,[’S(0)-P(0) = ’,num2str(S(1)-P(1))])

axis([-.1 N -1 max(max(P),max(S))+.5])

ylabel(’P/S/F’)

xlabel(’Time’)

print -dpng -r300 integ2

% state response

x0=1;xo=x0;xs1=x0;xs2=x0;

for j=0:N-1;

k=j+1;

xo(k+1)=(A-B*F(k))*xo(k);

xs1(k+1)=(A-B*F(1))*xs1(k);

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 3–24

67 xs2(k+1)=(A-B*G(1))*xs2(k);
68 end
69 figure(3)
70 plot(time,xo,’bo’,’MarkerSize’,12,’MarkerFaceColor’,’b’)
71 hold on
72 plot(time,xs1,’ks’,’MarkerSize’,9,’MarkerFaceColor’,’k’)
73 plot(time,xs2,’rd’,’MarkerSize’,12,’MarkerFaceColor’,’r’)
74 hold off
75 legend(’Optimal’,’Suboptimal with G=F(0)’,’Suboptimal with G=0.25’,’Location’,’North’)
76 %axis([-.1 5 -1 3])
77 ylabel(’x(t)’)
78 xlabel(’Time’)
79 print -dpng -r300 integ3.png;
80

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

Spr 2008	 16.323 3–25 Appendix

•	 Def: LTI system is controllable if, for every x�(t) and every finite
T > 0, there exists an input function u(t), 0 < t ≤ T , such that the
system state goes from x(0) = 0 to x(T) = x� .

– Starting at 0 is not a special case – if we can get to any state
in finite time from the origin, then we can get from any initial
condition to that state in finite time as well. 5

•	 Thm: LTI system is controllable iff it has no uncontrollable states.

– Necessary and sufficient condition for controllability is that

rank Mc
 � rank

�
B
 AB A2B An−1B· · · = n

•	 Def: LTI system is observable if the initial state x(0) can be
uniquely deduced from the knowledge of the input u(t) and output
y(t) for all t between 0 and any finite T > 0.

– If x(0) can be deduced, then we can reconstruct x(t) exactly be

cause we know u(t) � we can find x(t) ∀ t.

•	 Thm: LTI system is observable iff it has no unobservable states.

– We normally just say that the pair (A,C) is observable.

– Necessary and sufficient condition for observability is that ⎤⎡

rank Mo
 � rank

⎢⎢⎢⎢⎢⎣

C

CA

CA2

...
CAn−1

⎥⎥⎥⎥⎥⎦

= n

5This controllability from the origin is often called reachability.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

16.323 Lecture 4

HJB Equation

DP in continuous time •

• HJB Equation

• Continuous LQR

Factoids: for symmetric R

∂uT Ru

= 2u T R

∂u

∂Ru
= R

∂u co
nt

ro
len

gin
ee

rs
.ir

�

�

Spr 2008	 16.323 4–1
DP in Continuous Time

•	 Have analyzed a couple of approximate solutions to the classic control
problem of minimizing:

tf

min J = h(x(tf), tf) + g(x(t), u(t), t) dt
t0

subject to

ẋ = a(x, u, t)

x(t0) = given

m(x(tf), tf) = 0 set of terminal conditions

u(t) ∈ U set of possible constraints

•	 Previous approaches discretized in time, state, and control actions

– Useful for implementation on a computer, but now want to consider
the exact solution in continuous time

– Result will be a nonlinear partial differential equation called the
Hamilton-Jacobi-Bellman equation (HJB) – a key result.

•	 First step: consider cost over the interval [t, tf], where t ≤ tf of any
control sequence u(τ), t ≤ τ ≤ tf

tf

J(x(t), t, u(τ)) = h(x(tf), tf) + g(x(τ), u(τ), τ) dτ
t

– Clearly the goal is to pick u(τ), t ≤ τ ≤ tf to minimize this cost.

J�(x(t), t) = min J(x(t), t, u(τ))
u(τ)∈U
t≤τ≤tf

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� � �

� � � �

Spr 2008 16.323 4–2

• Approach:

– Split time interval [t, tf] into [t, t + Δt] and [t + Δt, tf], and are
specifically interested in the case where Δt 0→

– Identify the optimal cost-to-go J�(x(t + Δt), t + Δt)

– Determine the “stage cost” in time [t, t + Δt]

– Combine above to find best strategy from time t.

– Manipulate result into HJB equation.

• Split:
tf

J�(x(t), t) = min h(x(tf), tf) + g(x(τ), u(τ), τ)) dτ
tu(τ)∈U

t≤τ≤tf

t+Δt tf

= min h(x(tf), tf) + g(x, u, τ) dτ + g(x, u, τ) dτ
t t+Δtu(τ)∈U

t≤τ ≤tf

• Implicit here that at time t+Δt, the system will be at state x(t+Δt).

– But from the principle of optimality, we can write that the
optimal cost-to-go from this state is:

J�(x(t + Δt), t + Δt)

Thus can rewrite the cost calculation as: • �� t+Δt �

J�(x(t), t) = min g(x, u, τ) dτ + J�(x(t + Δt), t + Δt)
tu(τ)∈U

t≤τ≤t+Δt

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�	 �

�	 �

Spr 2008	 16.323 4–3

•	 Assuming J�(x(t + Δt), t + Δt) has bounded second derivatives in
both arguments, can expand this cost as a Taylor series about x(t), t

∂J�

J�(x(t + Δt), t + Δt) ≈ J�(x(t), t) + (x(t), t) Δt
∂t

∂J�

+ (x(t), t) (x(t + Δt) − x(t))
∂x

– Which for small Δt can be compactly written as:

J�(x(t + Δt), t + Δt) ≈ J�(x(t), t) + J�(x(t), t)Δtt

+Jx
�(x(t), t)a(x(t), u(t), t)Δt

•	 Substitute this into the cost calculation with a small Δt to get

J�(x(t), t) =
u(t)∈U

{g(x(t), u(t), t)Δt + J�(x(t), t)min

+J�(x(t), t)Δt + J�(x(t), t)a(x(t), u(t), t)Δt}t	 x

•	 Extract the terms that are independent of u(t) and cancel

0 = J�(x(t), t)+ min (x(t), t)a(x(t), u(t), t)}
u(t)∈U

{g(x(t), u(t), t) + J�
t	 x

– This is a partial differential equation in J�(x(t), t) that is solved
backwards in time with an initial condition that

J�(x(tf), tf) = h(x(tf))

for x(tf) and tf combinations that satisfy m(x(tf), tf) = 0

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 4–4 HJB Equation

For simplicity, define the Hamiltonian •

H(x, u, Jx
�, t) = g(x(t), u(t), t) + Jx

�(x(t), t)a(x(t), u(t), t)

then the HJB equation is

−J�
t (x(t), t) = min

u(t)∈U
H(x(t), u(t), J�

x(x(t), t), t)

– A very powerful result, that is both a necessary and sufficient
condition for optimality

– But one that is hard to solve/use in general.

Some references on numerical solution methods: •

– M. G. Crandall, L. C. Evans, and P.-L. Lions, ”Some properties of
viscosity solutions of Hamilton-Jacobi equations,” Transactions of
the American Mathematical Society, vol. 282, no. 2, pp. 487–502,
1984.

– M. Bardi and I. Capuzzo-Dolcetta (1997), “Optimal Control and
Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,” Sys

tems & Control: Foundations & Applications, Birkhauser, Boston.

Can use it to directly solve the continuous LQR problem •

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

Spr 2008	 16.323 4–5 HJB Simple Example

•	 Consider the system with dynamics

ẋ = Ax + u

for which A + AT = 0 and �u� ≤ 1, and the cost function

tf

J = dt = tf

0

Then the Hamiltonian is •

H = 1 + J�(Ax + u)x

and the constrained minimization of H with respect to u gives

u � = −(Jx
�)T/�Jx

��

•	 Thus the HJB equation is:

−Jt� = 1 + Jx
�(Ax) − �Jx

��

•	 As a candidate solution, take J�(x) = xT x/�x� = �x�, which is not
an explicit function of t, so

T

Jx
� =

x
and Jt

� = 0
�x�

which gives:
T

0 = 1 +	
x

(Ax) − �x�
�x� �x�

1
= (x TAx)
�x�
1	 1

= x T (A + AT)x = 0
�x� 2

so that the HJB is satisfied and the optimal control is:

� x
u = −

�x�

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

Spr 2008 16.323 4–6 Continuous LQR

• Specialize to a linear system model and a quadratic cost function

ẋ(t) = A(t)x(t) + B(t)u(t)

J =
1
x(tf)

THx(tf)+
1 tf �

x(t)TRxx(t)x(t) + u(t)TRuu(t)u(t)
�
dt

2 2 t0

– Assume that tf fixed and there are no bounds on u,

– Assume H,Rxx(t) ≥ 0 and Ruu(t) > 0, then

1 � �
H(x, u, Jx

�, t) = x(t)TRxx(t)x(t) + u(t)TRuu(t)u(t)
2

+Jx
�(x(t), t) [A(t)x(t) + B(t)u(t)]

• Now need to find the minimum of H with respect to u, which will
occur at a stationary point that we can find using (no constraints)

∂H
= u(t)TRuu(t) + J�(x(t), t)B(t) = 0

∂u x

– Which gives the optimal control law:

u �(t) = −R−1(t)B(t)TJ�(x(t), t)T
uu x

– Since
∂2H

= Ruu(t) > 0
∂u2

then this defines a global minimum.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�	 �

Spr 2008	 16.323 4–7

•	 Given this control law, can rewrite the Hamiltonian as:

H(x, u �, J�, t) =
x

1 � �
2	

x(t)TRxx(t)x(t) + J�(x(t), t)B(t)R−1(t)Ruu(t)R
−1(t)B(t)TJx uu uu

�(x(t), t)T
x

+J�(x(t), t) A(t)x(t) − B(t)R−1(t)B(t)TJ�(x(t), t)T

x	 uu x

1

= x(t)TRxx(t)x(t) + Jx

�(x(t), t)A(t)x(t)
2

1
−
2
Jx
�(x(t), t)B(t)Ru

−
u
1(t)B(t)TJx

�(x(t), t)T

•	 Might be difficult to see where this is heading, but note that the
boundary condition for this PDE is:

J�(x(tf), tf) =
1
x T (tf)Hx(tf)

2

– So a candidate solution to investigate is to maintain a quadratic

form for this cost for all time t. So could assume that
1

J�(x(t), t) = x T (t)P (t)x(t), P (t) = PT (t)
2

and see what conditions we must impose on P (t). 6

– Note that in this case, J� is a function of the variables x and t7

∂J�

= x T (t)P (t)
∂x

∂J� 1

= x T (t)Ṗ (t)x(t)

∂t 2

•	 To use HJB equation need to evaluate:

−J�(x(t), t) = min	 , t)

u(t)∈U

H(x(t), u(t), J�
t	 x

6See AM, pg. 21 on how to avoid having to make this assumption.

7Partial derivatives taken wrt one variable assuming the other is fixed. Note that there are 2 independent variables in this problem
x and t. x is time-varying, but it is not a function of t.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 4–8

Substitute candidate solution into HJB: •
1	 1 −
2
x(t)T Ṗ (t)x(t) =

2
x(t)TRxx(t)x(t) + x TP (t)A(t)x(t)

1 −
2
x T (t)P (t)B(t)R−1(t)B(t)TP (t)x(t)uu

=	
1
x(t)TRxx(t)x(t) +

1
x T (t){P (t)A(t) + A(t)TP (t)}x(t)

2	 2
1 −
2
x T (t)P (t)B(t)R−1(t)B(t)TP (t)x(t)uu

which must be true for all x(t), so we require that P (t) solve

−Ṗ (t) = P (t)A(t) + A(t)T P (t) + Rxx(t) − P (t)B(t)R−1
uu (t)B(t)T P (t)

P (tf) = H

•	 If P (t) solves this Differential Riccati Equation, then the HJB
equation is satisfied by the candidate J�(x(t), t) and the resulting
control is optimal.

•	 Key thing about this J� solution is that, since Jx
� = xT (t)P (t), then

u �(t) = −R−1(t)B(t)TJ�(x(t), t)T
uu x

=	 −R−1(t)B(t)TP (t)x(t)uu

– Thus optimal feedback control is a linear state feedback
with gain

F (t) = R−1(t)B(t)TP (t) ⇒ u(t) = −F (t)x(t)uu

�	Can be solved for ahead of time.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 4–9

•	 As before, can evaluate the performance of some arbitrary time-

varying feedback gain u = −G(t)x(t), and the result is that

1

JG = x TS(t)x

2

where S(t) solves

−Ṡ(t) = {A(t) − B(t)G(t)}TS(t) + S(t){A(t) − B(t)G(t)}

+ Rxx(t) + G(t)TRuu(t)G(t)

S(tf) = H

– Since this must be true for arbitrary G, then would expect that this
reduces to Riccati Equation if G(t) ≡ R−1(t)BT (t)S(t)uu

•	 If we assume LTI dynamics and let tf → ∞, then at any finite time
t, would expect the Differential Riccati Equation to settle down to a
steady state value (if it exists) which is the solution of

PA + ATP + Rxx − PBR−1BTP = 0 uu

– Called the (Control) Algebraic Riccati Equation (CARE)

– Typically assume that Rxx = Cz
TRzzCz, Rzz > 0 associated with

performance output variable z(t) = Czx(t)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 4–10 LQR Observations
•	 With terminal penalty, H = 0, the solution to the differential Riccati

Equation (DRE) approaches a constant iff the system has no poles
that are unstable, uncontrollable8, and observable9 by z(t)

– If a constant steady state solution to the DRE exists, then it is a
positive semi-definite, symmetric solution of the CARE.

•	 If [A,B,Cz] is both stabilizable and detectable (i.e. all modes are
stable or seen in the cost function), then:

– Independent of H ≥ 0, the steady state solution Pss of the DRE
approaches the unique PSD symmetric solution of the CARE.

•	 If a steady state solution exists Pss to the DRE, then the closed-loop
system using the static form of the feedback

u(t) = −R−1BTPssx(t) = −Fssx(t)uu

is asymptotically stable if and only if the system [A,B,Cz] is
stabilizable and detectable.

– This steady state control minimizes the infinite horizon cost func

tion lim J for all H ≥ 0
tf →∞

•	 The solution Pss is positive definite if and only if the system
[A,B,Cz] is stabilizable and completely observable.

•	 See Kwakernaak and Sivan, page 237, Section 3.4.3.

816.31 Notes on Controllability

916.31 Notes on Observability

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

http://ocw.mit.edu/NR/rdonlyres/Aeronautics-and-Astronautics/16-31Feedback-Control-SystemsFall2001/9973D8E9-E2F2-4A7D-BBC4-8BDDE96F465F/0/1631_topic12.pdf
http://ocw.mit.edu/NR/rdonlyres/Aeronautics-and-Astronautics/16-31Feedback-Control-SystemsFall2001/B3F3A18E-F5EF-4B8C-829E-4B45ECB066C0/0/1631_topic11.pdf

�

�

�	 � �

Spr 2008	 16.323 4–11 Scalar LQR Example

•	 A scalar system with dynamics ẋ = ax + bu and with cost (Rxx > 0
and Ruu > 0)

J =
∞

(Rxxx 2(t) + Ruuu 2(t)) dt
0

•	 This simple system represents one of the few cases for which the
differential Riccati equation can be solved analytically:

(aPtf + Rxx) sinh(βτ) + βPtf cosh(βτ)
P (τ) =

(b2Ptf /Ruu − a) sinh(βτ) + β cosh(βτ)

where τ = tf − t, β = a2 + b2(Rxx/Ruu).

– Note that for given a and b, ratio Rxx/Ruu determines the time
constant of the transient in P (t) (determined by β).

•	 The steady-state P solves the CARE:

2aPss + Rxx − P 2 b2/Ruu = 0 ss

which gives (take positive one) that

a + a2 + b2Rxx/Ruu a + β a + β −a + β
Pss = = = > 0

b2/Ruu b2/Ruu b2/Ruu −a + β

•	 With Ptf = 0, the solution of the differential equation reduces to:

Rxx sinh(βτ)
P (τ) =

(−a) sinh(βτ) + β cosh(βτ)

where as τ → tf (→∞) then sinh(βτ) → cosh(βτ) → eβτ /2, so

Rxx sinh(βτ) Rxx
P (τ) =	 = Pss

(−a) sinh(βτ) + β cosh(βτ)
→

(−a) + β

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

�	 �

�

�

Spr 2008	 16.323 4–12

•	 Then the steady state feedback controller is u(t) = −Kx(t) where

= R−1bPss =
a + a2 + b2Rxx/Ruu

Kss uu b

•	 The closed-loop dynamics are

ẋ	 = (a − bKss)x = Aclx(t)
b �

= a − (a + a2 + b2Rxx/Ruu) x
b

= a2 + b2Rxx/Ruu x−

which are clearly stable.

•	 As Rxx/Ruu →∞, Acl ≈ −|b| Rxx/Ruu

– Cheap control problem

– Note that smaller Ruu leads to much faster response.

•	 As Rxx/Ruu → 0, K ≈ (a + |a|)/b
– Expensive control problem

– If a < 0 (open-loop stable), K ≈ 0 and Acl = a − bK ≈ a

– If a > 0 (OL unstable), K ≈ 2a/b and Acl = a − bK ≈ −a

•	 Note that in the expensive control case, the controller tries to do as
little as possible, but it must stabilize the unstable open-loop system.

– Observation: optimal definition of “as little as possible” is to put
the closed-loop pole at the reflection of the open-loop pole about
the imaginary axis.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 4–13 Numerical P Integration

• To numerically integrate solution of P , note that we can use standard
Matlab integration tools if we can rewrite the DRE in vector form.

– Define a vec operator so that ⎤
⎡

vec(P) =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P11

P12

...
P1n

P22

P23

...
Pnn

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡ y

– The unvec(y) operation is the straightforward

– Can now write the DRE as differential equation in the variable y

• Note that with τ = tf − t, then dτ = −dt,
– t = tf corresponds to τ = 0, t = 0 corresponds to τ = tf

– Can do the integration forward in time variable τ : 0 tf→

Then define a Matlab function as •

doty = function(y);

global A B Rxx Ruu %

P=unvec(y); %

% assumes that P derivative wrt to tau (so no negative)

dot P = (P*A + A^T*P+Rxx-P*B*Ruu^{-1}*B^T*P);%

doty = vec(dotP); %

return

– Which is integrated from τ = 0 with initial condition H

– Code uses a more crude form of integration

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 4–14

Figure 4.1: Comparison of numerical and analytical P

Figure 4.2: Comparison showing response with much larger Rxx/Ruu

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 4–15

Figure 4.3: State response with high and low Ruu. State response with time-
varying gain almost indistinguishable – highly dynamic part of x response ends before
significant variation in P .

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 4–16

Figure 4.4: Comparison of numerical and analytical P using a better integration
scheme

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

Spr 2008 16.323 4–17

Numerical Calculation of P

% Simple LQR example showing time varying P and gains
% 16.323 Spring 2008
% Jonathan How
% reg2.m
clear all;close all;
set(0, ’DefaultAxesFontSize’, 14, ’DefaultAxesFontWeight’,’demi’)
set(0, ’DefaultTextFontSize’, 14, ’DefaultTextFontWeight’,’demi’)
global A B Rxx Ruu

A=3;B=11;Rxx=7;Ptf=13;tf=2;dt=.0001;

Ruu=20^2;

Ruu=2^2;

% integrate the P backwards (crude form)

time=[0:dt:tf];

P=zeros(1,length(time));K=zeros(1,length(time));Pcurr=Ptf;

for kk=0:length(time)-1

P(length(time)-kk)=Pcurr;
K(length(time)-kk)=inv(Ruu)*B’*Pcurr;
Pdot=-Pcurr*A-A’*Pcurr-Rxx+Pcurr*B*inv(Ruu)*B’*Pcurr;
Pcurr=Pcurr-dt*Pdot;

end

options=odeset(’RelTol’,1e-6,’AbsTol’,1e-6)

[tau,y]=ode45(@doty,[0 tf],vec(Ptf));

Tnum=[];Pnum=[];Fnum=[];

for i=1:length(tau)

Tnum(length(tau)-i+1)=tf-tau(i);

temp=unvec(y(i,:));

Pnum(length(tau)-i+1,:,:)=temp;

Fnum(length(tau)-i+1,:)=-inv(Ruu)*B’*temp;

end

% get the SS result from LQR

[klqr,Plqr]=lqr(A,B,Rxx,Ruu);

% Analytical pred

beta=sqrt(A^2+Rxx/Ruu*B^2);

t=tf-time;

Pan=((A*Ptf+Rxx)*sinh(beta*t)+beta*Ptf*cosh(beta*t))./...

((B^2*Ptf/Ruu-A)*sinh(beta*t)+beta*cosh(beta*t));
Pan2=((A*Ptf+Rxx)*sinh(beta*(tf-Tnum))+beta*Ptf*cosh(beta*(tf-Tnum)))./...

((B^2*Ptf/Ruu-A)*sinh(beta*(tf-Tnum))+beta*cosh(beta*(tf-Tnum)));

figure(1);clf

plot(time,P,’bs’,time,Pan,’r.’,[0 tf],[1 1]*Plqr,’m--’)

title([’A = ’,num2str(A),’ B = ’,num2str(B),’ R_{xx} = ’,num2str(Rxx),...

’ R_{uu} = ’,num2str(Ruu),’ P_{tf} = ’,num2str(Ptf)])
legend(’Numerical’,’Analytic’,’Pss’,’Location’,’West’)
xlabel(’time’);ylabel(’P’)
if Ruu > 10

print -r300 -dpng reg2_1.png;

else

print -r300 -dpng reg2_2.png;

end

figure(3);clf

plot(Tnum,Pnum,’bs’,Tnum,Pan2,’r.’,[0 tf],[1 1]*Plqr,’m--’)

title([’A = ’,num2str(A),’ B = ’,num2str(B),’ R_{xx} = ’,num2str(Rxx),...

’ R_{uu} = ’,num2str(Ruu),’ P_{tf} = ’,num2str(Ptf)])
legend(’Numerical’,’Analytic’,’Pss’,’Location’,’West’)
xlabel(’time’);ylabel(’P’)
if Ruu > 10

print -r300 -dpng reg2_13.png;

else

print -r300 -dpng reg2_23.png;

end

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

1

2

3

4

5

6

7

8

9

10

11

Spr 2008 16.323 4–18

68

69 Pan2=inline(’((A*Ptf+Rxx)*sinh(beta*t)+beta*Ptf*cosh(beta*t))/((B^2*Ptf/Ruu-A)*sinh(beta*t)+beta*cosh(beta*t))’);
70 x1=zeros(1,length(time));x2=zeros(1,length(time));
71 xcurr1=[1]’;xcurr2=[1]’;
72 for kk=1:length(time)-1
73 x1(:,kk)=xcurr1; x2(:,kk)=xcurr2;
74 xdot1=(A-B*Ruu^(-1)*B’*Pan2(A,B,Ptf,Ruu,Rxx,beta,tf-(kk-1)*dt))*x1(:,kk);
75 xdot2=(A-B*klqr)*x2(:,kk);
76 xcurr1=xcurr1+xdot1*dt;
77 xcurr2=xcurr2+xdot2*dt;
78 end
79

80 figure(2);clf
81 plot(time,x2,’bs’,time,x1,’r.’);xlabel(’time’);ylabel(’x’)
82 title([’A = ’,num2str(A),’ B = ’,num2str(B),’ R_{xx} = ’,num2str(Rxx),...
83 ’ R_{uu} = ’,num2str(Ruu),’ P_{tf} = ’,num2str(Ptf)])
84 legend(’K_{ss}’,’K_{analytic}’,’Location’,’NorthEast’)
85 if Ruu > 10
86 print -r300 -dpng reg2_11.png;
87 else
88 print -r300 -dpng reg2_22.png;
89 end

1 function [doy]=doty(t,y);
2 global A B Rxx Ruu;
3 P=unvec(y);
4 dotP=P*A+A’*P+Rxx-P*B*Ruu^(-1)*B’*P;
5 doy=vec(dotP);
6 return

1 function y=vec(P);
2

3 y=[];
4 for ii=1:length(P);
5 y=[y;P(ii,ii:end)’];
6 end
7

8 return

function P=unvec(y);

N=max(roots([1 1 -2*length(y)]));

P=[];kk=N;kk0=1;

for ii=1:N;

P(ii,ii:N)=[y(kk0+[0:kk-1])]’;

kk0=kk0+kk;

kk=kk-1;

end
P=(P+P’)-diag(diag(P));
return

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� � � �

Spr 2008 Finite Time LQR Example16.323 4–19

• Simple system with t0 = 0 and tf = 10sec.

0 1 0
ẋ = x + u

0 1 1 � �	 � 10 � � � �

2J = xT (10)	
0 0

x(10) + xT (t)
q 0

x(t) + ru 2(t) dt
0 h 0 0 0

• Compute gains using both time-varying P (t) and steady-state value.

Figure 4.5: Set q = 1, r = 3, h = 4

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 4–20

•	 Find state solution x(0) = [1 1]T using both sets of gains

Figure 4.6: Time-varying and constant gains - Klqr = [0.5774 2.4679]

Figure 4.7: State response - Constant gain and time-varying gain almost indistin
guishable because the transient dies out before the time at which the gains start to
change – effectively a steady state problem.

•	 For most applications, the static gains are more than adequate - it
is only when the terminal conditions are important in a short-time
horizon problem that the time-varying gains should be used.

– Significant savings in implementation complexity & computa

tion.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

Spr 2008 16.323 4–21

Finite Time LQR Example

% Simple LQR example showing time varying P and gains
% 16.323 Spring 2008
% Jonathan How
% reg1.m
%
clear all;%close all;
set(0, ’DefaultAxesFontSize’, 14, ’DefaultAxesFontWeight’,’demi’)
set(0, ’DefaultTextFontSize’, 14, ’DefaultTextFontWeight’,’demi’)
global A B Rxx Ruu
jprint = 0;

h=4;q=1;r=3;

A=[0 1;0 1];B=[0 1]’;tf=10;dt=.01;

Ptf=[0 0;0 h];Rxx=[q 0;0 0];Ruu=r;

Ptf=[0 0;0 1];Rxx=[q 0;0 100];Ruu=r;

% alternative calc of Ricc solution

H=[A -B*B’/r ; -Rxx -A’];

[V,D]=eig(H); % check order of eigenvalues

Psi11=V(1:2,1:2);

Psi21=V(3:4,1:2);

Ptest=Psi21*inv(Psi11);

if 0

% integrate the P backwards (crude)

time=[0:dt:tf];

P=zeros(2,2,length(time));

K=zeros(1,2,length(time));

Pcurr=Ptf;

for kk=0:length(time)-1

P(:,:,length(time)-kk)=Pcurr;
K(:,:,length(time)-kk)=inv(Ruu)*B’*Pcurr;
Pdot=-Pcurr*A-A’*Pcurr-Rxx+Pcurr*B*inv(Ruu)*B’*Pcurr;
Pcurr=Pcurr-dt*Pdot;

end

else

% integrate forwards (ODE)

options=odeset(’RelTol’,1e-6,’AbsTol’,1e-6)

[tau,y]=ode45(@doty,[0 tf],vec(Ptf),options);

Tnum=[];Pnum=[];Fnum=[];

for i=1:length(tau)

time(length(tau)-i+1)=tf-tau(i);
temp=unvec(y(i,:));
P(:,:,length(tau)-i+1)=temp;
K(:,:,length(tau)-i+1)=inv(Ruu)*B’*temp;

end

end % if 0

% get the SS result from LQR

[klqr,Plqr]=lqr(A,B,Rxx,Ruu);

x1=zeros(2,1,length(time));

x2=zeros(2,1,length(time));

xcurr1=[1 1]’;

xcurr2=[1 1]’;

for kk=1:length(time)-1

dt=time(kk+1)-time(kk);

x1(:,:,kk)=xcurr1;

x2(:,:,kk)=xcurr2;

xdot1=(A-B*K(:,:,kk))*x1(:,:,kk);

xdot2=(A-B*klqr)*x2(:,:,kk);

xcurr1=xcurr1+xdot1*dt;

xcurr2=xcurr2+xdot2*dt;

end

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 4–22

68 x1(:,:,length(time))=xcurr1;

69 x2(:,:,length(time))=xcurr2;

70

71 figure(5);clf

72 subplot(221)

73 plot(time,squeeze(K(1,1,:)),[0 10],[1 1]*klqr(1),’m--’,’LineWidth’,2)

74 legend(’K_1(t)’,’K_1’)

75 xlabel(’Time (sec)’);ylabel(’Gains’)

76 title([’q = ’,num2str(1),’ r = ’,num2str(r),’ h = ’,num2str(h)])

77 subplot(222)

78 plot(time,squeeze(K(1,2,:)),[0 10],[1 1]*klqr(2),’m--’,’LineWidth’,2)

79 legend(’K_2(t)’,’K_2’)

80 xlabel(’Time (sec)’);ylabel(’Gains’)

81 subplot(223)

82 plot(time,squeeze(x1(1,1,:)),time,squeeze(x1(2,1,:)),’m--’,’LineWidth’,2),

83 legend(’x_1’,’x_2’)

84 xlabel(’Time (sec)’);ylabel(’States’);title(’Dynamic Gains’)

85 subplot(224)

86 plot(time,squeeze(x2(1,1,:)),time,squeeze(x2(2,1,:)),’m--’,’LineWidth’,2),

87 legend(’x_1’,’x_2’)

88 xlabel(’Time (sec)’);ylabel(’States’);title(’Static Gains’)

89

90 figure(6);clf

91 subplot(221)

92 plot(time,squeeze(P(1,1,:)),[0 10],[1 1]*Plqr(1,1),’m--’,’LineWidth’,2)

93 legend(’P(t)(1,1)’,’P_{lqr}(1,1)’,’Location’,’SouthWest’)

94 xlabel(’Time (sec)’);ylabel(’P’)

95 title([’q = ’,num2str(1),’ r = ’,num2str(r),’ h = ’,num2str(h)])

96 subplot(222)

97 plot(time,squeeze(P(1,2,:)),[0 10],[1 1]*Plqr(1,2),’m--’,’LineWidth’,2)

98 legend(’P(t)(1,2)’,’P_{lqr}(1,2)’,’Location’,’SouthWest’)

99 xlabel(’Time (sec)’);ylabel(’P’)

100 subplot(223)
101 plot(time,squeeze(P(2,1,:)),[0 10],[1 1]*squeeze(Plqr(2,1)),’m--’,’LineWidth’,2),
102 legend(’P(t)(2,1)’,’P_{lqr}(2,1)’,’Location’,’SouthWest’)
103 xlabel(’Time (sec)’);ylabel(’P’)
104 subplot(224)
105 plot(time,squeeze(P(2,2,:)),[0 10],[1 1]*squeeze(Plqr(2,2)),’m--’,’LineWidth’,2),
106 legend(’P(t)(2,2)’,’P_{lqr}(2,2)’,’Location’,’SouthWest’)
107 xlabel(’Time (sec)’);ylabel(’P’)
108 axis([0 10 0 8])
109 if jprint; print -dpng -r300 reg1_6.png
110 end
111

112 figure(1);clf
113 plot(time,squeeze(K(1,1,:)),[0 10],[1 1]*klqr(1),’r--’,’LineWidth’,3)
114 legend(’K_1(t)(1,1)’,’K_1(1,1)’,’Location’,’SouthWest’)
115 xlabel(’Time (sec)’);ylabel(’Gains’)
116 title([’q = ’,num2str(1),’ r = ’,num2str(r),’ h = ’,num2str(h)])
117 print -dpng -r300 reg1_1.png
118 figure(2);clf
119 plot(time,squeeze(K(1,2,:)),[0 10],[1 1]*klqr(2),’r--’,’LineWidth’,3)
120 legend(’K_2(t)(1,2)’,’K_2(1,2)’,’Location’,’SouthWest’)
121 xlabel(’Time (sec)’);ylabel(’Gains’)
122 if jprint; print -dpng -r300 reg1_2.png
123 end
124

125 figure(3);clf
126 plot(time,squeeze(x1(1,1,:)),time,squeeze(x1(2,1,:)),’r--’,’LineWidth’,3),
127 legend(’x_1’,’x_2’)
128 xlabel(’Time (sec)’);ylabel(’States’);title(’Dynamic Gains’)
129 if jprint; print -dpng -r300 reg1_3.png
130 end
131

132 figure(4);clf
133 plot(time,squeeze(x2(1,1,:)),time,squeeze(x2(2,1,:)),’r--’,’LineWidth’,3),
134 legend(’x_1’,’x_2’)
135 xlabel(’Time (sec)’);ylabel(’States’);title(’Static Gains’);
136 if jprint; print -dpng -r300 reg1_4.png
137 end

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�
 �

Spr 2008 Weighting Matrix Selection 16.323 4–23

•	 A good rule of thumb when selecting the weighting matrices Rxx and
Ruu is to normalize the signals:

⎡
 ⎤

α2

1 ⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(x1)2
max

α2
2

(x2)2
max Rxx =

. . .
α2
n

(xn)2
max

β2
1

(u1)2
max

β2
2

⎡
 ⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ruu = ρ
 (u2)2
max . . .

β2
m

(um)max
2

• The (xi)max and (ui)max represent the largest desired response/control
input for that component of the state/actuator signal.

i
α
2
i = 1 and
 i
β

2
i = 1 are used to add an additional relative
The
•

weighting on the various components of the state/control

•	 ρ is used as the last relative weighting between the control and state
penalties gives us a relatively concrete way to discuss the relative ⇒
size of Rxx and Ruu and their ratio Rxx/Ruu

•	 Note: to directly compare the continuous and discrete LQR, you
must modify the weighting matrices for the discrete case, as outlined
here using lqrd.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

http://www.mathworks.com/access/helpdesk/help/toolbox/control/index.html?/access/helpdesk/help/toolbox/control/ref/lqrd.html&http://www.google.com/search?hl=en&q=lqrd&btnG=Google+Search

16.323 Lecture 5

Calculus of Variations

Calculus of Variations
•

• Most books cover this material well, but Kirk Chapter 4 does a particularly nice
job.

See here for online reference.
•

x*
x*+ αδx(1) x*- αδx(1)

t
tft0

x(t)

αδx(1) −αδx(1)

Figure by MIT OpenCourseWare.

co
nt

ro
len

gin
ee

rs
.ir

http://mathworld.wolfram.com/CalculusofVariations.html

�

Spr 2008	 16.323 5–1
Calculus of Variations

•	 Goal: Develop alternative approach to solve general optimization
problems for continuous systems – variational calculus

– Formal approach will provide new insights for constrained solutions,
and a more direct path to the solution for other problems.

•	 Main issue – General control problem, the cost is a function of
functions x(t) and u(t).

tf

min J = h(x(tf)) + g(x(t), u(t), t)) dt
t0

subject to

ẋ = f(x, u, t)

x(t0), t0 given

m(x(tf), tf) = 0

– Call J(x(t), u(t)) a functional.

•	 Need to investigate how to find the optimal values of a functional.

– For a function, we found the gradient, and set it to zero to find the
stationary points, and then investigated the higher order derivatives
to determine if it is a maximum or minimum.

– Will investigate something similar for functionals.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 5–2

Maximum and Minimum of a Function •

– A function f(x) has a local minimum at x� if

f(x) ≥ f(x �)

for all admissible x in �x − x�� ≤ �

– Minimum can occur at (i) stationary point, (ii) at a boundary, or
(iii) a point of discontinuous derivative.

– If only consider stationary points of the differentiable function f(x),
then statement equivalent to requiring that differential of f satisfy:

∂f
df	= dx = 0

∂x
for all small dx, which gives the same necessary condition from
Lecture 1

∂f
= 0

∂x

•	 Note that this definition used norms to compare two vectors. Can do
the same thing with functions distance between two functions ⇒

d = �x2(t) − x1(t)�

where

1. �x(t)� ≥ 0 for all x(t), and �x(t)� = 0 only if x(t) = 0 for all t
in the interval of definition.

2.	�ax(t)� = |a|�x(t)� for all real scalars a.
3.	�x1(t) + x2(t)� ≤ �x1(t)� + �x2(t)�

Common function norm: • �� tf	
�1/2

�x(t)�2 = x(t)T x(t)dt
t0

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 5–3

Maximum and Minimum of a Functional •

– A functional J(x(t)) has a local minimum at x�(t) if

J(x(t)) ≥ J(x �(t))

for all admissible x(t) in �x(t) − x�(t)� ≤ �

•	 Now define something equivalent to the differential of a function
called a variation of a functional.

– An increment of a functional

ΔJ(x(t), δx(t)) = J(x(t) + δx(t)) − J(x(t))

– A variation of the functional is a linear approximation of this
increment:

ΔJ(x(t), δx(t)) = δJ(x(t), δx(t)) + H.O.T.

i.e. δJ(x(t), δx(t)) is linear in δx(t).

Figure 5.1: Differential df versus increment Δf shown for a function, but the same
difference holds for a functional.

June 18, 2008

Figure by MIT OpenCourseWare.

co
nt

ro
len

gin
ee

rs
.ir

�
� � �

Spr 2008	 16.323 5–4

Figure 5.2: Visualization of perturbations to function x(t) by δx(t) – it is a potential
change in the value of x over the entire time period of interest. Typically require
that if x(t) is in some class (i.e., continuous), that x(t) + δx(t) is also in that class.

Fundamental Theorem of the Calculus of Variations •

– Let x be a function of t in the class Ω, and J(x) be a differentiable
functional of x. Assume that the functions in Ω are not constrained
by any boundaries.

– If x� is an extremal function, then the variation of J must vanish
on x�, i.e. for all admissible δx,

δJ(x(t), δx(t)) = 0

– Proof is in Kirk, page 121, but it is relatively straightforward.

•	 How compute the variation? If J(x(t)) = t

t

0

f f(x(t))dt where f has
cts first and second derivatives with respect to x, then

tf ∂f (x(t))
δJ(x(t), δx) =	 δxdt + f(x(tf))δtf − f(x(t0))δt0 �t0

∂x(t)
tf

= fx(x(t))δxdt + f(x(tf))δtf − f(x(t0))δt0
t0

June 18, 2008

x*
x*+ αδx(1) x*- αδx(1)

t
tft0

x(t)

αδx(1) −αδx(1)

Figure by MIT OpenCourseWare.

co
nt

ro
len

gin
ee

rs
.ir

�

�

�

�

� �	 �

Spr 2008	 16.323 5–5 Variation Examples: Scalar

•	 For more general problems, first consider the cost evaluated on a
scalar function x(t) with t0, tf and the curve endpoints fixed.

tf

J(x(t)) = g(x(t), ẋ(t), t)dt
t0

tf

⇒ δJ(x(t), δx) = [gx(x(t), ẋ(t), t)δx + gẋ(x(t), ẋ(t), t)δẋ] dt
t0

– Note that
d

δẋ	 = δx
dt

so δx and δẋ are not independent.

•	 Integrate by parts: � �
udv ≡ uv − vdu

with u = gẋ and dv = δ ẋdt to get:
tf

δJ(x(t), δx) = gx(x(t), ẋ(t), t)δxdt + [gẋ(x(t), ẋ(t), t)δx]
t
t
f

0
t0

tf	 d −
dt
gẋ(x(t), ẋ(t), t)δxdt � t0� �tf d

= gx(x(t), ẋ(t), t) − gẋ(x(t), ẋ(t), t) δx(t)dt
dtt0

+ [gẋ(x(t), ẋ(t), t)δx]t
t

0

f

•	 Since x(t0), x(tf) given, then δx(t0) = δx(tf) = 0, yielding
tf	 d

δJ(x(t), δx) = gx(x(t), ẋ(t), t) − gẋ(x(t), ẋ(t), t) δx(t)dt
dtt0

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �

� � � �

� �

Spr 2008 16.323 5–6

Recall need δJ = 0 for all admissible δx(t), which are arbitrary within •
(t0, tf) the (first order) necessary condition for a maximum or ⇒
minimum is called Euler Equation:

∂g(x(t), ẋ(t), t)
∂x

−
d
dt

�
∂g(x(t), ẋ(t), t)

∂ ẋ

�

= 0

Example: Find the curve that gives the shortest distance between 2 •
points in a plane (x0, y0) and (xf, yf).

– Cost function – sum of differential arc lengths: � xf
� xf �

J = ds = (dx)2 + (dy)2

x0 � xf

� x0 �
dy
�2

= 1 + dx
x0

dx

– Take y as dependent variable, and x as independent one

dy
dx
→ ẏ

– New form of the cost:
xf � xf

J = 1 + ẏ2 dx g(ẏ)dx→
x0 x0

– Take partials: ∂g/∂y = 0, and

d ∂g d ∂g dẏ
=

dx ∂ẏ dẏ ∂ẏ dx
d ẏ ÿ

= ÿ = = 0
dẏ (1 + ẏ2)1/2 (1 + ẏ2)3/2

which implies that ÿ = 0

– Most general curve with ÿ = 0 is a line y = c1x + c2

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

�

� �	 �

Spr 2008	 16.323 5–7 Vector Functions
•	 Can generalize the problem by including several (N) functions xi(t)

and possibly free endpoints
tf

J(x(t)) = g(x(t), ẋ(t), t)dt
t0

with t0, tf , x(t0) fixed.

•	 Then (drop the arguments for brevity)
tf

δJ(x(t), δx) = [gxδx(t) + gẋδẋ(t)] dt
t0

– Integrate by parts to get:
tf d

δJ(x(t), δx) =	 gẋ δx(t)dt + gẋ(x(tf), ẋ(tf), tf)δx(tf)gx −
dtt0

• The requirement then is that for t ∈ (t0, tf), x(t) must satisfy

∂g d ∂g
∂x

−
dt∂ẋ

= 0

where x(t0) = x0 which are the given N boundary conditions, and
the remaining N more BC follow from:

– x(tf) = xf if xf is given as fixed,
– If x(tf) are free, then

∂g(x(t), ẋ(t), t)

= 0

∂ẋ(tf)

•	 Note that we could also have a mixture, where parts of x(tf) are given
as fixed, and other parts are free – just use the rules above on each
component of xi(tf)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

�

� � �

Spr 2008 16.323 5–8 Free Terminal Time
• Now consider a slight variation: the goal is to minimize

tf

J(x(t)) = g(x(t), ẋ(t), t)dt
t0

with t0, x(t0) fixed, tf free, and various constraints on x(tf)

• Compute variation of the functional considering 2 candidate solutions:

– x(t), which we consider to be a perturbation of the optimal x�(t)
(that we need to find)

tf

δJ(x �(t), δx) = [gxδx(t) + gẋδẋ(t)] dt + g(x �(tf), ẋ
�(tf), tf)δtf

t0

– Integrate by parts to get:
tf d

δJ(x �(t), δx) = gx −
dt
gẋ δx(t)dt

t0

+ gẋ(x �(tf), ẋ
�(tf), tf)δx(tf)

+ g(x �(tf), ẋ
�(tf), tf)δtf

• Looks standard so far, but we have to be careful how we handle the
terminal conditions

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

� �	 �

Spr 2008	 16.323 5–9

Figure 5.3: Comparison of possible changes to function at end time when tf is free.

•	 By definition, δx(tf) is the difference between two admissible func

tions at time tf (in this case the optimal solution x� and another
candidate x).

– But in this case, must also account for possible changes to δtf .

– Define δxf as being the difference between the ends of the two
possible functions – total possible change in the final state:

δxf ≈ δx(tf) + ẋ�(tf)δtf

so	δx(tf) = δxf in general.

•	 Substitute to get
tf d

δJ(x �(t), δx) = gx − gẋ δx(t)dt + gẋ(x �(tf), ẋ
�(tf), tf)δxf

dtt0

+	 [g(x �(tf), ẋ
�(tf), tf) − gẋ(x �(tf), ẋ

�(tf), tf)ẋ
�(tf)] δtf

June 18, 2008

Figure by MIT OpenCourseWare.

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 5–10

Independent of the terminal constraint, the conditions on the solution •
x�(t) to be an extremal for this case are that it satisfy the Euler
equations

gx(x �(t), ẋ �(t), t) −
d
dt
gẋ(x �(t), ẋ �(t), t) = 0

– Now consider the additional constraints on the individual elements
of x�(tf) and tf to find the other boundary conditions

•	 Type of terminal constraints determines how we treat δxf and δtf

1. Unrelated

2. Related by a simple function x(tf) = Θ(tf)

3. Specified by a more complex constraint m(x(tf), tf) = 0

•	 Type 1: If tf and x(tf) are free but unrelated, then δxf and δtf are
independent and arbitrary their coefficients must both be zero. ⇒

gx(x �(t), ẋ �(t), t) −
d
dt
gẋ(x �(t), ẋ �(t), t) = 0

g(x �(tf), ẋ �(tf), tf) − gẋ(x �(tf), ẋ �(tf), tf) ̇x �(tf) = 0

gẋ(x �(tf), ẋ �(tf), tf) = 0

– Which makes it clear that this is a two-point boundary
value problem, as we now have conditions at both t0 and tf

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� � � �

�

Spr 2008 16.323 5–11

• Type 2: If tf and x(tf) are free but related as x(tf) = Θ(tf), then

dΘ
δxf = (tf)δtf

dt

– Substitute and collect terms gives
tf d dΘ

δJ = gx − gẋ δxdt + gẋ(x �(tf), ẋ
�(tf), tf) (tf)

dt dtt0

+ g(x �(tf), ẋ
�(tf), tf) − gẋ(x �(tf), ẋ

�(tf), tf)ẋ
�(tf) δtf

– Set coefficient of δtf to zero (it is arbitrary) full conditions ⇒

gx(x �(t), ẋ �(t), t) −
d
dt
gẋ(x �(t), ẋ �(t), t) = 0

gẋ(x �(tf), ẋ �(tf), tf)

�
dΘ
dt

(tf) − ẋ �(tf)

�

+ g(x �(tf), ẋ �(tf), tf) = 0

– Last equation called the Transversality Condition

To handle third type of terminal condition, must address solution of •
constrained problems.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 5–12

Figure 5.4: Summary of possible terminal constraints (Kirk, page 151)

June 18, 2008

Image removed due to copyright restrictions.

co
nt

ro
len

gin
ee

rs
.ir

�

� �

� �

Spr 2008 16.323 5–13 Example: 5–1

• Find the shortest curve from the origin to a specified line.

• Goal: minimize the cost functional (See page 5–6)
tf �

J = 1 + ẋ2(t) dt
t0

given that t0 = 0, x(0) = 0, and tf and x(tf) are free, but x(tf)
must line on the line

θ(t) = −5t + 15

• Since g(x, ˙ x, Euler equation reduces to x, t) is only a function of ˙

d ẋ�(t)
= 0

dt [1 + ẋ�(t)2]1/2

which after differentiating and simplifying, gives ẍ�(t) = 0 answer ⇒
is a straight line

x�(t) = c1t + c0

but since x(0) = 0, then c0 = 0

• Transversality condition gives

[1 + ˙
x

x

˙ �

�

(

(

t

t
f

f

)

)2]1/2
[−5 − ẋ�(tf)] + [1 + ẋ�(tf)

2]1/2 = 0

that simplifies to

[ẋ�(tf)] [−5 − ẋ�(tf)] + [1 + ẋ�(tf)
2] = −5ẋ�(tf) + 1 = 0

so that ẋ�(tf) = c1 = 1/5

– Not a surprise, as this gives the slope of a line orthogonal to the
constraint line.

• To find final time: x(tf) = −5tf + 15 = tf/5 which gives tf ≈ 2.88

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �

Spr 2008 16.323 5–14 Example: 5–2

• Had the terminal constraint been a bit more challenging, such as

1 dΘ
Θ(t) =

2
([t − 5]2 − 1) ⇒

dt
= t − 5

• Then the transversality condition gives

ẋ�(tf)
[tf − 5 − ẋ�(tf)] + [1 + ẋ�(tf)

2]1/2 = 0
[1 + ẋ�(tf)2]1/2

[ẋ�(tf)] [tf − 5 − ẋ�(tf)] + [1 + ẋ�(tf)
2] = 0

c1 [tf − 5] + 1 = 0

• Now look at x�(t) and Θ(t) at tf

x�(tf) = −
(tf

t

−
f

5)
=

1

2
([tf − 5]2 − 1)

which gives tf = 3, c1 = 1/2 and x�(tf) = t/2

Figure 5.5: Quadratic terminal constraint.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

�	 �

� �	 �

� �	 �

Spr 2008	 16.323 5–15
Corner Conditions

•	 Key generalization of the preceding is to allow the possibility that the
solutions not be as smooth

– Assume that x(t) cts, but allow discontinuities in ẋ(t), which occur
at corners.

– Naturally occur when intermediate state constraints imposed, or
with jumps in the control signal.

•	 Goal: with t0, tf , x(t0), and x(tf) fixed, minimize cost functional
tf

J(x(t), t) = g(x(t), ẋ(t), t)dt
t0

– Assume g has cts first/second derivatives wrt all arguments

– Even so, ẋ discontinuity could lead to a discontinuity in g.

•	 Assume that ẋ has a discontinuity at some time t1 ∈ (t0, tf), which
is not fixed (or typically known). Divide cost into 2 regions:

t1	 tf

J(x(t), t) = g(x(t), ẋ(t), t)dt + g(x(t), ẋ(t), t)dt
t0	 t1

•	 Expand as before – note that t1 is not fixed
t1	 ∂g ∂g

δJ = δx + δẋ 1)δt1dt + g(t−
∂x ∂ẋt0

tf	 ∂g ∂g ++ δx + δẋ dt − g(t1)δt1∂x ∂ẋt1

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

• � � �

� � �

• � � �

Spr 2008 16.323 5–16

Now IBP
t1 d

δJ = gx − x) 1)δt1 + gẋ 1)δx(t−1)(g ˙ δxdt + g(t− (t−
dtt0

tf d + + ++ gx − (gẋ) δxdt − g(t1)δt1 − gẋ(t1)δx(t1)dtt1

As on 5–9, must constrain δx1, which is the total variation in the •
solution at time t1

from lefthand side δx1 = δx(t1
−) + ẋ(t1

−)δt1
+ +from righthand side δx1 = δx(t1) + ẋ(t1)δt1

– Continuity requires that these two expressions for δx1 be equal

– Already know that it is possible that ẋ(t−1) =� ẋ(t+1), so possible
that δx(t−1) =� δx(t+1) as well.

Substitute:
t1 d � �

δJ = gx − (gẋ) δxdt + g(t−1) − gẋ(t−1)ẋ(t−1) δt1 + gẋ(t−1)δx1
dt � t0 � �tf d � �

+ + + ++ gx − (gẋ) δxdt − g(t1) − gẋ(t1)ẋ(t1) δt1 − gẋ(t1)δx1
dtt1

Necessary conditions are then: •

gx −
d
dt

(gẋ) = 0 t ∈ (t0, tf)

gẋ(t−1) = gẋ(t+
1)

g(t−1) − gẋ(t−1) ̇x(t−1) = g(t+
1) − gẋ(t

+
1) ̇x(t+

1)

– Last two are the Weierstrass-Erdmann conditions

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �	 � �

Spr 2008	 16.323 5–17

•	 Necessary conditions given for a special set of the terminal conditions,
but the form of the internal conditions unchanged by different terminal
constraints

– With several corners, there are a set of constraints for each

– Can be used to demonstrate that there isn’t a corner

•	 Typical instance that induces corners is intermediate time constraints
of the form x(t1) = θ(t1).

– i.e., the solution must touch a specified curve at some point in time
during the solution.

•	 Slightly complicated in this case, because the constraint couples the
allowable variations in δx1 and δt since

δx1 =
dθ
δt1 = θ̇δt1

dt
– But can eliminate δx1 in favor of δt1 in the expression for δJ to

get new corner condition:

+ + + + g(t−1)+gẋ(t
−
1) θ̇(t−1) − ẋ(t−1) = g(t1)+gẋ(t1) θ̇(t1) − ẋ(t1)

(t+ – So now gẋ(t−1) = gẋ 1) no longer needed, but have x(t1) = θ(t1)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

=	� = �

Spr 2008	 16.323 5–18 Corner Example

•	 Find shortest length path joining the points x = 0, t = −2 and
x = 0, t = 1 that touches the curve x = t2 + 3 at some point

In this case, J =
� 1 √

1 + ẋ2dt with x(1) = x(−2) = 0 •	
and x(t1) = t21 + 3

−2

•	 Note that since g is only a function of ẋ, then solution x(t) will only
be linear in each segment (see 5–13)

segment 1 x(t) = a + bt

segment 2 x(t) = c + dt

– Terminal conditions: x(−2) = a − 2b = 0 and x(1) = c + d = 0

•	 Apply corner condition:

1 + ẋ(t−1)
2 + �

ẋ(t−1) �
2t−1 − ẋ(t1

−)
�

1 + ẋ(t−1)
2

1 + 2t1
−ẋ(t1

−) 1 + 2t1
+ ẋ(t1

+)

1 + ẋ(t−1)
2 1 + ẋ(t+1)

2

which gives:
1 + 2bt1 1 + 2dt1

=
√
1 + b2

√
1 + d2

•	 Solve using fsolve to get:

a = 3.0947, b = 1.5474, c = 2.8362, d = −2.8362, t1 = −0.0590
function F=myfunc(x); %

% x=[a b c d t1]; %

F=[x(1)-2*x(2);

x(3)+x(4);

(1+2*x(2)*x(5))/(1+x(2)^2)^(1/2) - (1+2*x(4)*x(5))/(1+x(4)^2)^(1/2);

x(1)+x(2)*x(5) - (x(5)^2+3);

x(3)+x(4)*x(5) - (x(5)^2+3)];

return %

x = fsolve(’myfunc’,[2 1 2 -2 0]’)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

�

Spr 2008	 16.323 5–19
Constrained Solutions

•	 Now consider variations of the basic problem that include constraints.

•	 For example, if the goal is to find the extremal function x� that
minimizes � tf

J(x(t), t) = g(x(t), ẋ(t), t)dt
t0

subject to the constraint that a given set of n differential equations
be satisfied

f(x(t), ẋ(t), t) = 0

where we assume that x ∈ Rn+m (take tf and x(tf) to be fixed)

•	 As with the basic optimization problems in Lecture 2, proceed by
augmenting cost with the constraints using Lagrange multipliers

– Since the constraints must be satisfied at all time, these multipliers
are also assumed to be functions of time.

tf �	 �
Ja(x(t), t) = g(x, ẋ, t) + p(t)T f(x, ẋ, t) dt

t0

– Does not change the cost if the constraints are satisfied.

– Time varying Lagrange multipliers give more degrees of freedom in
specifying how the constraints are added.

•	 Take variation of augmented functional considering perturbations to
both x(t) and p(t)

δJ(x(t), δx(t), p(t), δp(t))
tf �� � � � �

= gx + p T fx δx(t) + gẋ + p T fẋ δẋ(t) + fTδp(t) dt
t0

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 5–20

As before, integrate by parts to get: •

δJ(x(t), δx(t), p(t), δp(t))� �� � �tf � � d � �
= gx + p T fx −

dt
gẋ + p T fẋ δx(t) + fTδp(t) dt

t0

To simplify things a bit, define •

ga(x(t), ẋ(t), t) ≡ g(x(t), ẋ(t), t) + p(t)T f(x(t), ẋ(t), t)

On the extremal, the variation must be zero, but since δx(t) and•
δp(t) can be arbitrary, can only occur if

∂ga(x(t), ẋ(t), t)
∂x

−
d
dt

�
∂ga(x(t), ẋ(t), t)

∂ ẋ

�

= 0

f(x(t), ẋ(t), t) = 0

– which are obviously a generalized version of the Euler equations
obtained before.

Note similarity of the definition of ga here with the Hamiltonian on •
page 4–4.

Will find that this generalization carries over to future optimizations •
as well.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

�

�	 �

�

� � �	 �
� � �

�	 � �	 �
� � �

Spr 2008	 16.323 5–21
General Terminal Conditions

•	 Now consider Type 3 constraints on 5–10, which are a very general
form with tf free and x(tf) given by a condition:

m(x(tf), tf) = 0

•	 Constrained optimization, so as before, augment the cost functional
tf

J(x(t), t) = h(x(tf), tf) + g(x(t), ẋ(t), t)dt
t0

with the constraint using Lagrange multipliers:
tf

Ja(x(t), ν, t) = h(x(tf), tf)+νT m(x(tf), tf)+ g(x(t), ẋ(t), t)dt

t0

•	 Considering changes to x(t), tf , x(tf) and ν, the variation for Ja is

δJa = hx(tf)δxf + htf δtf + m T (tf)δν + νT mx(tf)δxf + mtf (tf)δtf

tf

+ [gxδx + gẋδẋ] dt + g(tf)δtf
t0

= hx(tf) + νT mx(tf) δxf + htf + νT mtf (tf) + g(tf) δtf

tf d
+m T (tf)δν + gx −

dt
gẋ δxdt + gẋ(tf)δx(tf)

t0

– Now use that δxf = δx(tf) + ẋ(tf)δtf as before to get

δJa = hx(tf) + νT mx(tf) + gẋ(tf) δxf

+ htf + νT mtf (tf) + g(tf) − gẋ(tf)ẋ(tf) δtf + m T (tf)δν
tf d

+	 gẋ δxdtgx −
dtt0

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� � �

Spr 2008 16.323 5–22

Looks like a bit of a mess, but we can clean it up a bit using •

w(x(tf), ν, tf) = h(x(tf), tf) + νT m(x(tf), tf)

to get

δJa = [wx(tf) + g ˙ (tf)] δxf� x �
+ wtf + g(tf) − gẋ(tf)ẋ(tf) δtf + m T (tf)δν

tf d
+ gx − gẋ δxdt

dtt0

– Given the extra degrees of freedom in the multipliers, can treat all
of the variations as independent all coefficients must be zero to ⇒
achieve δJa = 0

So the necessary conditions are •

gx −
d
dt
gẋ = 0 (dim n)

wx(tf) + gẋ(tf) = 0 (dim n)

wtf + g(tf) − gẋ(tf) ̇x(tf) = 0 (dim 1)

– With x(t0) = x0 (dim n) and m(x(tf), tf) = 0 (dim m) combined
with last 2 conditions 2n + m + 1 constraints ⇒

– Solution of Eulers equation has 2n constants of integration for x(t),
and must find ν (dim m) and tf 2n + m + 1 unknowns ⇒

Some special cases: •

– If tf is fixed, h = h(x(tf)), m m(x(tf)) and we lose the last →
condition in box – others remain unchanged

– If tf is fixed, x(tf) free, then there is no m, no ν and w reduces
to h.

Kirk’s book also considers several other type of constraints. •

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

16.323 Lecture 6

Calculus of Variations applied to Optimal Control

ẋ = a(x, u, t)
ṗ = −HT

x
Hu = 0

co
nt

ro
len

gin
ee

rs
.ir

�

�

•	 �

� �	 �

Spr 2008	 16.323 6–1
Optimal Control Problems

•	 Are now ready to tackle the optimal control problem

– Start with simple terminal constraints
tf

J	= h(x(tf), tf) + g(x(t), u(t), t)dt
t0

with the system dynamics

ẋ(t) = a(x(t), u(t), t)

– t0, x(t0) fixed

– tf free

– x(tf) are fixed or free by element

•	 Note that this looks a bit different because we have u(t) in the inte

grand, but consider that with a simple substitution, we get

ẋ=a(x,u,t)
g̃(x, ẋ, t) ĝ(x, u, t)→

•	 Note that the differential equation of the dynamics acts as a constraint
that we must adjoin using a Lagrange multiplier, as before:

tf �	 �
Ja = h(x(tf), tf)+ g(x(t), u(t), t) + p T {a(x(t), u(t), t) − ẋ} dt

t0

Find the variation:10

tf �
δJa = hxδxf + htf δtf + gxδx + guδu + (a − ẋ)Tδp(t)

t0

+p T (t){axδx + auδu − δẋ} dt + g + p T (a − ẋ) (tf)δtf

•	 Clean this up by defining the Hamiltonian: (See 4–4)

H(x, u, p, t) = g(x(t), u(t), t) + p T (t)a(x(t), u(t), t)

10Take partials wrt each of the variables that the integrand is a function of.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

•	 � �
�

�	 �

�

�

• �	 �
�	 �

� � �	 �
�

� �

Spr 2008	 16.323 6–2

Then

δJa = hxδxf + htf + g + p T (a − ẋ) (tf)δtf

tf �	 �
+ Hxδx + Huδu + (a − ẋ)Tδp(t) − p T (t)δẋ dt

t0

• To proceed, note that by integrating by parts 11 we get:
tf tf

−
t0

p T (t)δẋdt = −
t0

p T (t)dδx
� � �T

= −p Tδx��
t

t

0

f +
tf dp(t)

δxdt
dtt0
tf

= −p T (tf)δx(tf) + ṗT (t)δxdt
t0

tf

= −p T (tf) (δxf − ẋ(tf)δtf) + ṗT (t)δxdt
t0

So now can rewrite the variation as:

δJa = hxδxf + htf + g + p T (a − ẋ) (tf)δtf

tf �	 � tf

+ Hxδx + Huδu + (a − ẋ)Tδp(t) dt − p T (t)δẋdt
t0	 t0

= hx − p T (tf) δxf + htf + g + p T (a − ẋ) + p T ẋ (tf)δtf

tf �� �	 �
+	 Hx + ṗT δx + Huδu + (a − ẋ)Tδp(t) dt

t0

udv ≡ uv − vdu

June 18, 2008

11

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 6–3

• So necessary conditions for δJa = 0 are that for t ∈ [t0, tf]

ẋ = a(x, u, t) (dim n)

ṗ = −HT
x (dim n)

Hu = 0 (dim m)

– With the boundary condition (lost if tf is fixed) that

htf + g + p T a = htf + H(tf) = 0

– Add the boundary constraints that x(t0) = x0 (dim n)

– If xi(tf) is fixed, then xi(tf) = xif

∂h

– If xi(tf) is free, then pi(tf) = (tf) for a total (dim n)

∂xi

These necessary conditions have 2n differential and m algebraic equa•
tions with 2n+1 unknowns (if tf free), found by imposing the (2n+1)
boundary conditions.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 6–4

• Note the symmetry in the differential equations: � �T
∂H

ẋ = a(x, u, t) =
∂p� �T T

∂H ∂(g + pT a)
ṗ = −

∂x
= −

∂x � �T � �T
∂a ∂g

= −
∂x

p −
∂x

– So the dynamics of p, called the costate, are linearized system
dynamics (negative transpose – dual) ⎡ ⎤ � � ∂a1 . . . ∂a1

∂a ⎢ ∂x1 ∂xn ⎥
= ⎣ . . . ⎦

∂x ∂an ∂an . . . ∂x1 ∂xn

• These necessary conditions are extremely important, and we will be
using them for the rest of the term.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 6–5

Control with General Terminal Conditions
Can develop similar conditions in the case of more general terminal •
conditions with tf free and

m(x(tf), tf) = 0

Follow the same procedure on 6–1 using the insights provided on 5–21 •
(using the ga form on 5–20) to form

w(x(tf), ν, tf) = h(x(tf), tf) + νT m(x(tf), tf)

Work through the math, and get the necessary conditions are •

ẋ = a(x, u, t) (dim n) (6.22)

ṗ = −HT
x (dim n) (6.23)

Hu = 0 (dim m) (6.24)

– With the boundary condition (lost if tf fixed)

H(tf) + wtf (tf) = 0

– And m(x(tf), tf) = 0, with x(t0) and t0 given.

– With (since x(tf) is not directly given) � �T
∂w

p(tf) = (tf)
∂x

• Collapses to form on 6–3 if m not present – i.e., does not constrain
x(tf)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

� �	 � �

Spr 2008	 16.323 6–6 Example 6–1

•	 Simple double integrator system starting at y(0) = 10, ẏ(0) = 0,
must drive to origin y(tf) = ẏ(tf) = 0 to minimize the cost (b > 0)

1 1 tf

J = αt2
f + bu2(t)dt

2 2 0

•	 Define the dynamics with x1 = y, x2 = ẏ so that

0	 1 0
ẋ(t) = Ax(t) + Bu(t) A =	 B =

0	 0 1

•	 With p(t) = [p1(t) p2(t)]
T , define the Hamiltonian

H = g + p T (t)a =
1
bu2 + p T (t) (Ax(t) + Bu(t))

2

•	 The necessary conditions are then that:

ṗ1
∂H	 = 0 p1(t) = c1 = −∂x1

→
ṗ	 = −HT, →

∂H
x

ṗ2 = −∂x2	
= −p1 → p2(t) = −c1t + c2

p2 c2 c1
Hu = bu + p2 = 0 u = − = − + t→

b b b

•	 Now impose the boundary conditions:

1
H(tf) + ht(tf) = bu2(tf) + p1(tf)x2(tf) + p2(tf)u(tf) + αtf = 0

2

1

= bu2(tf) + (−bu(tf))u(tf) + αtf
2

1 1
=	 −

2
bu2(tf) + αtf = 0 → tf =

2bα
(−c2 + c1tf)

2

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 6–7

• Now go back to the state equations:

ẋ2(t) = −
c2

+
c1
t x2(t) = c3 −

c2
t +

c1
t2

b b
→

b 2b

and since x2(0) = 0, c3 = 0, and

ẋ1(t) = x2(t) x1(t) = c4 −
c2
t2 +

c1
t3 →

2b 6b
and since x1(0) = 10, c4 = 10

Now note that
•

x2(tf) = −
c

b
2
tf +

2

c

b
1
t2
f = 0

x1(tf) = 10 −
c2
tf
2 +

c1
tf
3 = 0

2b 6b
c2 2 60b 120b

= 10 − tf = 0 c2 = , c1 =
6b

→
t2
f t3

f

– But that gives us: � �2
1 60b 120b (60b)2

tf = + tf =
2bα

−
tf
2 tf

3 2bαtf
4

so that t5 = 1800b/α or tf ≈ 4.48(b/α)1/5, which makes sense f

because tf goes down as α goes up.

– Finally, c2 = 2.99b3/5α2/5 and c1 = 1.33b2/5α3/5

Figure 6.1: Example 6–1

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Spr 2008 16.323 6–8

Example 6–1

%

% Simple opt example showing impact of weight on t_f

% 16.323 Spring 2008

% Jonathan How

% opt1.m

%

clear all;close all;

set(0, ’DefaultAxesFontSize’, 14, ’DefaultAxesFontWeight’,’demi’)

set(0, ’DefaultTextFontSize’, 14, ’DefaultTextFontWeight’,’demi’)

%

A=[0 1;0 0];B=[0 1]’;C=eye(2);D=zeros(2,1);

G=ss(A,B,C,D);

X0=[10 0]’;

b=0.1;

alp=1;

tf=(1800*b/alp)^0.2;

c1=120*b/tf^3;

c2=60*b/tf^2;

time=[0:1e-2:tf];

u=(-c2+c1*time)/b;

[y1,t1]=lsim(G,u,time,X0);

figure(1);clg

plot(time,u,’k-’,’LineWidth’,2);hold on

alp=10;

tf=(1800*b/alp)^0.2;

c1=120*b/tf^3;

c2=60*b/tf^2;

time=[0:1e-2:tf];

u=(-c2+c1*time)/b;

[y2,t2]=lsim(G,u,time,X0);

plot(time,u,’b--’,’LineWidth’,2);

alp=0.10;

tf=(1800*b/alp)^0.2;

c1=120*b/tf^3;

c2=60*b/tf^2;

time=[0:1e-2:tf];

u=(-c2+c1*time)/b;

[y3,t3]=lsim(G,u,time,X0);

plot(time,u,’g-.’,’LineWidth’,2);hold off

legend(’\alpha=1’,’\alpha=10’,’\alpha=0.1’)

xlabel(’Time (sec)’)

ylabel(’u(t)’)

title([’b= ’,num2str(b)])

figure(2);clg

plot(t1,y1(:,1),’k-’,’LineWidth’,2);

hold on

plot(t2,y2(:,1),’b--’,’LineWidth’,2);

plot(t3,y3(:,1),’g-.’,’LineWidth’,2);

hold off

legend(’\alpha=1’,’\alpha=10’,’\alpha=0.1’)

xlabel(’Time (sec)’)

ylabel(’y(t)’)

title([’b= ’,num2str(b)])

print -dpng -r300 -f1 opt11.png

print -dpng -r300 -f2 opt12.png

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 6–9 LQR Variational Solution

•	 Deterministic Linear Quadratic Regulator

Plant:

ẋ(t) = A(t)x(t) + Bu(t)u(t), x(t0) = x0

z(t) = Cz(t)x(t)

Cost:� tf � �
2JLQR = z T (t)Rzz(t)z(t) + u T (t)Ruu(t)u(t) dt + x(tf)

TPtf x(tf)
t0

– Where Ptf ≥ 0, Rzz(t) > 0 and Ruu(t) > 0

– Define Rxx = Cz
TRzzCz ≥ 0

– A(t) is a continuous function of time.

– Bu(t), Cz(t), Rzz(t), Ruu(t) are piecewise continuous functions of
time, and all are bounded.

•	 Problem Statement: Find input u(t) ∀t ∈ [t0, tf] to min JLQR

– This is not necessarily specified to be a feedback controller.

•	 To optimize the cost, we follow the procedure of augmenting the con

straints in the problem (the system dynamics) to the cost (integrand)
to form the Hamiltonian:

1 � �
H = x T (t)Rxxx(t) + u T (t)Ruuu(t) + p T (t) (Ax(t) + Buu(t))

2

– p(t) ∈ Rn×1 is called the Adjoint variable or Costate

– It is the Lagrange multiplier in the problem.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �� �

Spr 2008 16.323 6–10

• The necessary conditions (see 6–3) for optimality are that:

1. ẋ(t) = ∂H T
= Ax(t) + B(t)u(t) with x(t0) = x0

∂p

2. ṗ(t) = −∂H T
= −Rxxx(t) − AT p(t) with p(tf) = Ptf x(tf)

∂x

3. ∂H = 0 Ruuu + Bu
T p(t) = 0, so u� = −R−1Bu

T p(t)

∂u

⇒ uu

4. As before, we can check for a minimum by looking at ∂
2H

2 ≥ 0
∂u

(need to check that Ruu ≥ 0)

Note that p(t) plays the same role as J�(x(t), t)T in previous solutions • x

to the continuous LQR problem (see 4–8).

– Main difference is there is no need to guess a solution for J�(x(t), t)

Now have: •

ẋ(t) = Ax(t) + Bu �(t) = Ax(t) − BuR
−1Bu

T p(t)uu

which can be combined with equation for the adjoint variable

ṗ(t) = −Rxxx(t) − AT p(t) = −CzTRzzCzx(t) − AT p(t) � � � � � �
A R−1BT

ẋ(t) −Bu uu u x(t)
= ⇒

ṗ(t) −CzTRzzCz −AT p(t)

H

where H is called the Hamiltonian Matrix.

– Matrix describes coupled closed loop dynamics for both x and p.

– Dynamics of x(t) and p(t) are coupled, but x(t) known initially
and p(t) known at terminal time, since p(tf) = Ptf x(tf)

– Two point boundary value problem typically hard to solve. ⇒

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�	 �

�	 �
�	 �

Spr 2008	 16.323 6–11

•	 However, in this case, we can introduce a new matrix variable P (t)
and show that:

1.	p(t) = P (t)x(t)

2. It is relatively easy to find P (t).

•	 How proceed?

1. For the 2n system � � �	 � � �
A	 R−1BT

ẋ(t)	 −Bu uu u x(t)
=

ṗ(t) −CzTRzzCz −AT p(t)

define a transition matrix

F11(t1, t0) F12(t1, t0)
F (t1, t0) =

F21(t1, t0) F22(t1, t0)

and use this to relate x(t) to x(tf) and p(tf) � � �	 � � �
x(t) F11(t, tf) F12(t, tf) x(tf) =
p(t) F21(t, tf) F22(t, tf) p(tf)

so

x(t) = F11(t, tf)x(tf) + F12(t, tf)p(tf)

= F11(t, tf) + F12(t, tf)Ptf x(tf)

2. Now find p(t) in terms of x(tf)

p(t) = F21(t, tf) + F22(t, tf)Ptf x(tf)

3. Eliminate x(tf) to get: �	 � � �−1
p(t) = F21(t, tf) + F22(t, tf)Ptf F11(t, tf) + F12(t, tf)Ptf x(t)

�	 P (t)x(t)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�	 �

Spr 2008	 16.323 6–12

•	 Now have p(t) = P (t)x(t), must find the equation for P (t)

ṗ(t) = Ṗ (t)x(t) + P (t)ẋ(t)

⇒	 − Cz
TRzzCzx(t) − AT p(t) =

−Ṗ (t)x(t) = Cz
TRzzCzx(t) + AT p(t) + P (t)ẋ(t)

= CT Czx(t) + AT p(t) + P (t)(Ax(t) − BuR
−1BT p(t))z Rzz	 uu u

= (CTRzzCz + P (t)A)x(t) + (AT − P (t)BuR
−1BT)p(t)z uu u

(CT R−1BT = z RzzCz + P (t)A)x(t) + (AT	− P (t)Bu uu u)P (t)x(t)

= ATP (t) + P (t)A + CT	 R−1BTP (t) x(t)z RzzCz − P (t)Bu uu u

•	 This must be true for arbitrary x(t), so P (t) must satisfy

−Ṗ (t) = ATP (t) + P (t)A + Cz
TRzzCz − P (t)Bu uu u P (t)R−1BT

– Which, of course, is the matrix differential Riccati Equation.

– Optimal value of P (t) is found by solving this equation backwards
in time from tf with P (tf) = Ptf

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 6–13

•	 The control gains are then

= −R−1 p(t) = −R−1 P (t)x(t) = −K(t)x(t)uopt	 uu Bu
T

uu Bu
T

•	 Optimal control inputs can in fact be computed using linear
feedback on the full system state

– Find optimal steady state feedback gains u(t) = −Kx(t) using

K	= lqr(A,B,Cz
TRzzCz,Ruu)

•	 Key point: This controller works equally well for MISO and MIMO
regulator designs.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� � �	 � � �

Spr 2008	 16.323 6–14

Alternate Derivation of DRE
On 6-10 we showed that: • �	 � � �−1
P (t) = F21(t, tf) + F22(t, tf)Ptf F11(t, tf) + F12(t, tf)Ptf

• To find the Riccati equation, note that

d
M−1(t) =	−M−1(t)Ṁ(t)M−1(t)

dt
which gives

Ṗ (t) =
�
Ḟ21(t, tf) + Ḟ22(t, tf)Ptf

� �
F11(t, tf) + F12(t, tf)Ptf

�−1

�	 � � �−1
− F21(t, tf) + F22(t, tf)Ptf F11(t, tf) + F12(t, tf)Ptf · �	 � � �
Ḟ11(t, tf) + Ḟ12(t, tf)Ptf F11(t, tf) + F12(t, tf)Ptf

−1

•	 Since F is the transition matrix 12 for the system (see 6–10), then

d
F (t, tf) =	 HF (t, tf)

dt

˙	 A R−1BTF11 Ḟ
12 (t, tf) =

−Bu uu u (t, tf)
F11 F12 (t, tf)

Ḟ21 Ḟ
22 −Rxx −AT F21 F22

12Consider homogeneous system ẋ(t) = A(t)x(t) with initial condition x(t0) = x0. The general solution to this differential
equation is given by x(t) = Φ(t, t0)x(t0) where Φ(t1, t1) = I. Can show the following properties of the state transition matrix Φ:

1. Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0), regardless of the order of the ti

2. Φ(t, τ) = Φ(τ, t)−1

3. d Φ(t, t0) = A(t)Φ(t, t0)dt

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �

�� �

� ��

Spr 2008 16.323 6–15

• Now substitute and re-arrange:

Ṗ = [Ḟ21 + Ḟ
22Ptf] − P [Ḟ11 + Ḟ

12Ptf] [F11 + F12Ptf]
−1

˙ R−1BTF11 = AF11 − Bu uu u F21

˙ R−1BT
F12 = AF12 − Bu uu u F22

Ḟ21 = −RxxF11 − ATF21

Ḟ22 = −RxxF12 − ATF22

Ṗ = −RxxF11 − ATF21 + (−RxxF12 − ATF22)Ptf

AF11 − BuR
−1BTF21 + (AF12 − BuR

−1BT]−1−P uu u uu u F22)Ptf [F11 + F12Ptf

There are four terms: •

−Rxx(F11 + F12Ptf)[F11 + F12Ptf]
−1 = −Rxx

−AT (F21 + F22Ptf)[F11 + F12Ptf]
−1 = −ATP

−PA(F11 + F12Ptf)[F11 + F12Ptf]
−1 = −PA

PBuR
−1BT (F21 + F22Ptf)[F11 + F12Ptf]

−1 = PBuR
−1BTPuu u uu u

• Which, as expected, gives that

−Ṗ = ATP + PA + Rxx − PBuR
−1Bu

TPuu

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� � � � � � � �

� �	 � �

Spr 2008	 16.323 6–16

CARE Solution Algorithm

•	 Recall from (6–10) that � � �
A	 R−1BT

� � �
ẋ(t)	 −Bu uu u x(t)

=
ṗ(t) −CzTRzzCz −AT p(t)

•	 Assuming that the eigenvalues of H are unique, the Hamiltonian can
be diagonalized into the form: � � � � � �

ż1(t) −Λ 0 z1(t) =
ż2(t) 0 Λ z2(t)

where diagonal matrix Λ is comprised of RHP eigenvalues of H.

•	 A similarity transformation exists between the states z1, z2 and x, p:

x(t)
= Ψ

z1(t) z1(t) = Ψ−1 x(t)
p(t) z2(t)

⇔
z2(t)	 p(t)

where

(Ψ−1)12Ψ11Ψ =
Ψ12 and Ψ−1 =

(Ψ−1)11

Ψ21 (Ψ−1)22Ψ22	 (Ψ−1)21

and the columns of Ψ are the eigenvectors of H.

•	 Solving for z2(t) gives

z2(t) = e Λt z2(0) = [(Ψ−1)21x(t) + (Ψ−1)22p(t)]

=	 [(Ψ−1)21 + (Ψ−1)22P (t)]x(t)

– For the cost to be finite, need limt→∞ x(t) = 0, so can show that

lim z2(t) = 0
t→∞

– But given that the Λ dynamics in the RHP, this can only be true
if z2(0) = 0, which means that z2(t) = 0 ∀t

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 6–17

• With this fact, note that

x(t) = Ψ11z1(t)

p(t) = Ψ21z1(t)

which can be combined to give:

p(t) = Ψ21(Ψ11)
−1 x(t) ≡ Pssx(t)

• Summary of solution algorithm:

– Find the eigenvalues and eigenvectors of H

– Select the n eigenvectors associated with the n eigenvalues in the
LHP.

– Form Ψ11 and Ψ21.

– Compute the steady state solution of the Riccati equation using

Pss = Ψ21(Ψ11)
−1

% alternative calc of Riccati solution

H=[A -B*inv(Ruu)*B’ ; -Rxx -A’];

[V,D]=eig(H); % check order of eigenvalues

Psi11=V(1:2,1:2);

Psi21=V(3:4,1:2);

Ptest=Psi21*inv(Psi11);

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

�

� � �

�	 �

Spr 2008	 16.323 6–18

Optimal Cost

•	 Showed in earlier derivations that the optimal cost-to-go from the
initial (or any state) is of the form

1
J = x T (t0)P (t0)x(t0)

2
– Relatively clean way to show it for this derivation as well.

•	 Start with the standard cost and add zero (Ax + Buu − ẋ = 0)

1 tf � �
JLQR =

2
x TRxxx + u TRuuu + p T (Ax + Buu − ẋ) dt

t0

1
+	 x(tf)

TPtf x(tf)
2

•	 Now use the results of the necessary conditions to get:

ṗ = −Hx
T	 ⇒ p TA = −ṗT − x TRxx

Hu = 0	 ⇒ p TBu = −u TRuu

with p(tf) = Ptf x(tf)

•	 Substitute these terms to get

1	 1 tf � �
JLQR =

2
x(tf)

TPtf x(tf) −
2 t0

ṗT x + p T ẋ dt

1	 1 tf d T =	
2
x(tf)

TPtf x(tf) −
2 t0

dt
(p x) dt

1 1 �	 �
= x(tf)

TPtf x(tf) − p T (tf)x(tf) − p T (t0)x(t0)
2	 2

1	 1
= x(tf)

TPtf x(tf) − x T (tf)Ptf x(tf) − x T (t0)P (t0)x(t0)
2	 2

=	
1
x T (t0)P (t0)x(t0)

2

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�	 �

Spr 2008	 16.323 6–19

Pole Locations
• The closed-loop dynamics couple x(t) and p(t) and are given by
� � �

A	 R−1BT
� � �

ẋ(t)	 −Bu uu u x(t)
=

ṗ(t) −CzTRzzCz −AT p(t)

with the appropriate boundary conditions.

•	 OK, so where are the closed-loop poles of the system?

– Answer: must be eigenvalues of Hamiltonian matrix for the system:

A	 R−1BT

H �	
−Bu uu u

−CzTRzzCz −AT

so we must solve det(sI − H) = 0.

•	 Key point: For a SISO system, we can relate the closed-loop poles
to a Symmetric Root Locus (SRL) for the transfer function

Gzu(s) = Cz(sI − A)−1Bu =
N(s)
D(s)

– Poles and zeros of Gzu(s) play an integral role in determining SRL

– Note Gzu(s) is the transfer function from control inputs to perfor

mance variable.

•	 In fact, the closed-loop poles are given by the LHP roots of

Rzz
Δ(s) = D(s)D(−s) + N(s)N(−s) = 0

Ruu

– D(s)D(−s) + Rzz N(s)N(−s) is drawn using standard root locus Ruu

rules - but it is symmetric wrt to both the real and imaginary axes.

– For a stable system, we clearly just take the poles in the LHP.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�	 �

•	 � �

�	 �
�	 �

�	 �

�	 �
�	 �

Spr 2008	 16.323 6–20

Derivation of the SRL
•	 The closed-loop poles are given by the eigenvalues of

A −BuR
−1Bu

T
uuH � −CzTRzzCz −AT → det(sI − H) = 0

Note: if A is invertible:

A B
det = det(A) det(D − CA−1B)

C D

R−1BTdet(sI − H) = det(sI − A) det (sI + AT) − Cz
T RzzCz(sI − A)−1Bu uu u⇒

= det(sI − A) det(sI + AT) det I − CT RzzCz(sI − A)−1BuR
−1BT (sI + AT)−1

z	 uu u

•	 Also: det(I + ABC) = det(I + CAB), and if D(s) = det(sI − A),
then D(−s) = det(−sI − AT) = (−1)n det(sI + AT)

det(sI−H) = (−1)nD(s)D(−s) det I + Ruu
−1Bu

T (−sI − AT)−1CT RzzCz(sI − A)−1Buz

• If Gzu(s) = Cz(sI −A)−1Bu, then GT (−s) = BT (−sI −AT)−1CT ,zu u	 z

so for SISO systems

det(sI − H) = (−1)nD(s)D(−s) det I + R−1GT (−s)RzzGzu(s)� uu zu �
Rzz

= (−1)nD(s)D(−s) I + Gzu(−s)Gzu(s)
Ruu

Rzz
= (−1)n D(s)D(−s) + N(s)N(−s) = 0

Ruu

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

•	 �

�	 �

�

�

Spr 2008	 16.323 6–21

Example 6–2

Simple example from 4–12: A scalar system with ẋ = ax + bu with
cost (Rxx > 0 and Ruu > 0) J = 0

∞
(Rzzx

2(t) + Ruuu
2(t)) dt

•	 The steady-state P solves 2aP + Rzz − P 2b2/Ruu = 0 which gives
a+
√
a2+b2Rzz/Ruuthat P =
R−1 > 0

uu b2

a+
√
a2+b2Rzz/Ruu – So that u(t) = −Kx(t) where K = R−1bP = uu	 b

– and the closed-loop dynamics are

b �
ẋ	 = (a − bK)x = a − (a + a2 + b2Rzz/Ruu) x

b

= a2 + b2Rzz/Ruu x = Aclx(t)−

•	 In this case, Gzu(s) = b/(s−a) so that N(s) = b and D(s) = (s−a),
and the SRL is of the form:

Rzz
(s − a)(−s − a) + b2 = 0

Ruu

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Symmetric root locus

Real Axis

Im
ag

in
ar

y
A

xi
s

•	 SRL is the same whether a < 0 (OL stable) or a > 0 (OL unstable)

– But the CLP is always the one in the LHP

– Explains result on 4–12 about why gain K = 0 for OL unstable
systems, even for expensive control problem (Ruu →∞)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 6–22

SRL Interpretations

•	 For SISO case, define Rzz/Ruu = 1/r.

•	 Consider what happens as r � ∞ – high control cost case

Δ(s) = D(s)D(−s) + r−1N(s)N(−s) = 0 ⇒ D(s)D(-s)=0

– So the n closed-loop poles are:
�	Stable roots of the open-loop system (already in the LHP.)
�	Reflection about the jω-axis of the unstable open-loop poles.

•	 Consider what happens as r � 0 – low control cost case

Δ(s) = D(s)D(−s) + r−1N(s)N(−s) = 0 ⇒ N(s)N(-s)=0

– Assume order of N(s)N(−s) is 2m < 2n
– So the n closed-loop poles go to:

� The m finite zeros of the system that are in the LHP (or the
reflections of the system zeros in the RHP).

�	The system zeros at infinity (there are n − m of these).

•	 The poles tending to infinity do so along very specific paths so that
they form a Butterworth Pattern:

– At high frequency we can ignore all but the highest powers of s in
the expression for Δ(s) = 0

Δ(s) = 0 � (−1)ns 2n + r−1(−1)m(bos
m)2 = 0

b2
o ⇒	s2(n−m) = (−1)n−m+1

r

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 6–23

•	 The 2(n − m) solutions of this expression lie on a circle of radius

(b20/r)
1/2(n−m)

at the intersection of the radial lines with phase from the negative
real axis:

±
n −
lπ
m
, l = 0, 1, . . . ,

n − m
2
− 1

, (n-m) odd

±(l + 1/2)π
n − m

, l = 0, 1, . . . ,
n − m

2
− 1 , (n-m) even

n − m
1

Phase
0

2
3

±π/4
0, ±π/3

4 ±π/8, ±3π/8

•	 Note: Plot the SRL using the 180o rules (normal) if n − m is even
and the 0o rules if n − m is odd.

(s−2)(s−4)Figure 6.2: G(s) = (s−1)(s−3)(s2+0.8s+4)s2

−6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

8

Real Axis

Im
ag

 A
xi

s

Symmetric root locus

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�	 � � �

� �	 � �

Spr 2008	 16.323 6–24

•	 As noted previously, we are free to pick the state weighting matrices
Cz to penalize the parts of the motion we are most concerned with.

•	 Simple example – consider oscillator with x = [p , v]T

0 1 0
A = , B =

−2 −0.5	 1

but we choose two cases for z

z = p = 1 0 x and z = v = 0 1 x

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

SRL with Position Penalty

Real Axis

Im
ag

in
ar

y
A

xi
s

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

SRL with Velocity Penalty

Real Axis

Im
ag

in
ar

y
A

xi
s

Figure 6.3: SRL with position (left) and velocity penalties (right)

•	 Clearly, choosing a different Cz impacts the SRL because it completely
changes the zero-structure for the system.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 6–25

LQR Stability Margins

•	 LQR/SRL approach selects closed-loop poles that balance between
system errors and the control effort.

– Easy design iteration using r – poles move along the SRL.

– Sometimes difficult to relate the desired transient response to the
LQR cost function.

•	 Particularly nice thing about the LQR approach is that the designer
is focused on system performance issues

•	 Turns out that the news is even better than that, because LQR exhibits
very good stability margins

– Consider the LQR stability robustness.

J =
� ∞

z T z + ρu T u dt
0

ẋ = Ax + Bu

z = Czx, Rxx = CT
z Cz

B (sI − A)−1 K

Cz

� �
�

�

–

u

x

z

•	 Study robustness in the frequency domain.

– Loop transfer function L(s) = K(sI − A)−1B
– Cost transfer function C(s) = Cz(sI − A)−1B

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 6–26

•	 Can develop a relationship between the open-loop cost C(s) and the
closed-loop return difference I +L(s) called the Kalman Frequency
Domain Equality

1
[I + L(−s)]T [I + L(s)] = 1 + CT (−s)C(s)

ρ

Sketch of Proof •

– Start with u = −Kx,	K = 1BTP , where ρ

1
0 = −ATP − PA − Rxx + PBBTP

ρ

– Introduce Laplace variable s using ±sP

1
0 = (−sI − AT)P + P (sI − A) − Rxx + PBBTP

ρ

– Pre-multiply by BT (−sI − AT)−1, post-multiply by (sI − A)−1B
– Complete the square . . .

[I + L(−s)]T [I + L(s)] = 1 +
1
CT (−s)C(s)
ρ

•	 Can handle the MIMO case, but look at the SISO case to develop
further insights (s = jω)

[I + L(−s)]T [I + L(s)]	 = (I + Lr(ω) − jLi(ω))(I + Lr(ω) + jLi(ω))

≡ |1 + L(jω)|2

and
CT (−jω)C(jω) = Cr

2 + Ci
2 = |C(jω)|2 ≥ 0

Thus the KFE becomes •

|1 + L(jω)|2 = 1 +
ρ

1 |C(jω)|2 ≥ 1

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 6–27

•	 Implications: The Nyquist plot of L(jω) will always be outside the
unit circle centered at (-1,0).

−7 −6 −5 −4 −3 −2 −1 0 1
−4

−3

−2

−1

0

1

2

3

4

|L
N

(jω)|

(−1,0)

Real Part

|1+L
N

(jω)|

Im
ag

 P
ar

t

•	 Great, but why is this so significant? Recall the SISO form of the
Nyquist Stability Theorem:

If the loop transfer function L(s) has P poles in the RHP s-plane (and
lims→∞ L(s) is a constant), then for closed-loop stability, the locus
of L(jω) for ω : (−∞, ∞) must encircle the critical point (-1,0) P
times in the counterclockwise direction (Ogata528)

•	 So we can directly prove stability from the Nyquist plot of L(s).
But what if the model is wrong and it turns out that the actual loop
transfer function LA(s) is given by:

LA(s) = LN (s)[1 + Δ(s)], |Δ(jω)| ≤ 1, ∀ω

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 6–28

•	 We need to determine whether these perturbations to the loop TF
will change the decision about closed-loop stability

⇒	 can do this directly by determining if it is possible to change the
number of encirclements of the critical point

−2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

Im
ag

 P
ar

t

Real Part

stable OL

ω=0

|L|

|1+L|

ω

Figure 6.4: Example of LTF for an open-loop stable system

•	 Claim is that “since the LTF L(jω) is guaranteed to be far from the
critical point for all frequencies, then LQR is VERY robust.”

– Can study this by introducing a modification to the system, where
nominally β = 1, but we would like to consider:

�	The gain β ∈ R

�	The phase β ∈ ejφ

K(sI − A)−1B β� �
�–

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 6–29

•	 In fact, can be shown that:

– If open-loop system is stable, then any β ∈ (0, ∞) yields a stable
closed-loop system. For an unstable system, any β ∈ (1/2, ∞)
yields a stable closed-loop system gain margins are (1/2, ∞)⇒

– Phase margins of at least ±60◦

which are both huge.
⇒

Figure 6.5: Example loop transfer functions for open-loop stable system.

Figure 6.6: Example loop transfer functions for open-loop unstable system.

•	 While we have large margins, be careful because changes to some of
the parameters in A or B can have a very large change to L(s).

•	 Similar statements hold for the MIMO case, but it requires singular
value analysis tools.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

Spr 2008 16.323 6–30

LTF for KDE

% Simple example showing LTF for KDE
% 16.323 Spring 2007
% Jonathan How
% rs2.m
%
clear all;close all;
set(0, ’DefaultAxesFontSize’, 14, ’DefaultAxesFontWeight’,’demi’)
set(0, ’DefaultTextFontSize’, 14, ’DefaultTextFontWeight’,’demi’)

a=diag([-.75 -.75 -1 -1])+diag([-2 0 -4],1)+diag([2 0 4],-1);
b=[

0.8180

0.6602

0.3420

0.2897];

cz=[0.3412 0.5341 0.7271 0.3093];

r=1e-2;

eig(a)

k=lqr(a,b,cz’*cz,r)

w=logspace(-2,2,200)’;w2=-w(length(w):-1:1);

ww=[w2;0;w];

G=freqresp(a,b,k,0,1,sqrt(-1)*ww);

p=plot(G);

tt=[0:.1:2*pi]’;Z=cos(tt)+sqrt(-1)*sin(tt);

hold on;plot(-1+Z,’r--’);plot(Z,’r:’,’LineWidth’,2);

plot(-1+1e-9*sqrt(-1),’x’)

plot([0 0]’,[-3 3]’,’k-’,’LineWidth’,1.5)

plot([-3 6],[0 0]’,’k-’,’LineWidth’,1.5)

plot([0 -2*cos(pi/3)],[0 -2*sin(pi/3)]’,’g-’,’LineWidth’,2)

plot([0 -2*cos(pi/3)],[0 2*sin(pi/3)]’,’g-’,’LineWidth’,2)

hold off

set(p,’LineWidth’,2);

axis(’square’)

axis([-2 4 -3 3])

ylabel(’Imag Part’);xlabel(’Real Part’);title(’Stable OL’)

text(.25,-.5,’\infty’)

print -dpng -r300 tf.png

%%%%%%%%%%%%%%%%%%%%%%

a=diag([-.75 -.75 1 1])+diag([-2 0 -4],1)+diag([2 0 4],-1);

r=1e-1;

eig(a)

k=lqr(a,b,cz’*cz,r)

G=freqresp(a,b,k,0,1,sqrt(-1)*ww);

p=plot(G);

hold on;plot(-1+Z,’r--’);plot(Z,’r:’,’LineWidth’,2);

plot(-1+1e-9*sqrt(-1),’x’)

plot([0 0]’,[-3 3]’,’k-’,’LineWidth’,1.5)

plot([-3 6],[0 0]’,’k-’,’LineWidth’,1.5)

plot([0 -2*cos(pi/3)],[0 -2*sin(pi/3)]’,’g-’,’LineWidth’,2)

plot([0 -2*cos(pi/3)],[0 2*sin(pi/3)]’,’g-’,’LineWidth’,2)

hold off

set(p,’LineWidth’,2)

axis(’square’)

axis([-3 3 -3 3])

ylabel(’Imag Part’);xlabel(’Real Part’);title(’Unstable OL’)

print -dpng -r300 tf1.png

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

16.323 Lecture 7

Numerical Solution in Matlab

10
−2

10
−1

10
0

10
1

10
2

1

2

3

4

5

6

7

8

α

t f

Comparison with b=0.1

Analytic
Numerical

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 7–1
Simple Problem

•	 Performance � tf

J = (u − x)2dt
t0

with dynamics ẋ = u and BC t0 = 0, x0 = 1, tf = 1.

– So this is a fixed final time, free final state problem.

Form Hamiltonian
•
H = (u − x)2 + pu

• Necessary conditions become:

ẋ = u	 (7.25)

ṗ = −2(u − x)(−1)	 (7.26)

0 = 2(u − x) + p	 (7.27)

with BC that p(tf) = 0.
• Rearrange to get

ṗ = −p (7.28)

p(t) = c1e
−t (7.29) ⇒

But now impose BC to get

p(t) = 0	 (7.30)

• This implies that u = x is the optimal solution, and the closed-loop
dynamics are

ẋ = x

with solution x(t) = et .
– Clearly this would be an unstable response on a longer timescale,

but given the cost and the short time horizon, this control is the
best you can do.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

Spr 2008 Simple Zermelo’s Problem 16.323 7–2

•	 Consider ship that has to travel through a region of strong currents.
The ship is assumed to have constant speed V but its heading θ can
be varied. The current is assumed to be in the y direction with speed
of w.

•	 The motion of the boat is then given by the dynamics

ẋ = V cos θ (7.31)

ẏ = V sin θ + w (7.32)

•	 The goal is to minimize time, the performance index is
tf

J = 1dt = tf
0

– with BC x0 =	y0 = 0, xf = 1, yf = 0

– Final time is unspecified.

•	 Define costate p = [p1 p2]
T , and in this case the Hamiltonian is

H = 1 + p1(V cos θ) + p2(V sin θ + w)

•	 Now use the necessary conditions to get (ṗ = −HT)x

∂H
ṗ1	 = − = 0 p1 = c1 (7.33)

∂x
→

∂H
ṗ2	 = −

∂y
= 0 → p2 = c2 (7.34)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 7–3

•	 Control input θ(t) is unconstrained, so have (Hu = 0)

∂H
= −p1V sin θ + p2V cos θ = 0	 (7.35)

∂u
which gives the control law

tan θ =
p2

=
−p2

(7.36)
p1 −p1

– Since p1 and p2 are constants, then θ(t) is also a constant.

• Optimal control is constant, so can integrate the state equations:

x = V t cos θ (7.37)

y = V t(sin θ + w) (7.38)

– Now impose the BC to get x(tf) = 1, y(tf) = 0 to get

1 w
tf =

V cos θ
sin θ = −

V

• Rearrange to get √
V 2 − w2

cos θ =
V

which gives that

1	 w
tf = √

V 2 − w2
θ = − arcsin

V

– Does this make sense?

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 7–4 Numerical Solutions
•	 Most of the problems considered so far have been simple. Things get

more complicated by the need to solve a two-point boundary value
problem when the dynamics are nonlinear.

•	 Numerous solution techniques exist, including shooting methods13

and collocation

– Will discuss the details on these later, but for now, let us look at
how to solve these use existing codes

•	 Matlab code called BVP4C exists that is part of the standard package 14

– Solves problems of a “standard form”:

ẏ	 = f(y, t, p) a ≤ t ≤ b

where y are the variables of interest, and p are extra variables in
the problem that can also be optimized

– Where the system is subject to the boundary conditions:

g(y(a), y(b)) = 0

•	 The solution is an approximation S(t) which is a continuous function
that is a cubic polynomial on sub-intervals [tn, tn+1] of a mesh

a = t0 < t1 < . . . < tn−1 < tn = b

– This approximation satisfies the boundary conditions, so that:

g(S(a), S(b)) = 0

– And it satisfies the differential equations (collocates) at both ends
and the mid-point of each subinterval:

Ṡ(tn) = f(S(tn), tn)

Ṡ((tn + tn+1)/2) = f(S((tn + tn+1)/2), (tn + tn+1)/2)

Ṡ(tn+1) = f(S(tn+1), tn+1)

13Online reference

14Matlab help and BVP4C Tutorial

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

http://en.wikipedia.org/wiki/Shooting_method
http://www.mathworks.com/access/helpdesk/help/techdoc/index.html?/access/helpdesk/help/techdoc/ref/bvp4c.html&http://www.google.com/search?hl=en&q=bvp4c+matlab&btnG=Google+Search
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=3819&objectType=FILE

Spr 2008	 16.323 7–5

•	 Now constrain continuity in the solution at the mesh points ⇒ converts
problem to a series of nonlinear algebraic equations in the unknowns
– Becomes a “root finding problem” that can be solved iteratively

(Simpson’s method).

•	 Inputs to BVP4C are functions that evaluate the differential equation
ẏ = f(y, t) and the residual of the boundary condition (e.g. y1(a) =
1, y2(a) = y1(b), and y3(b) = 0):

function res = bvpbc(ya, yb)
res = [ya(1) − 1

ya(2) − yb(1)
yb(3)];

•	 Redo example on page 4–15 using numerical techniques
– Finite time LQR problem with tf = 10

Figure 7.1: Results suggest a good comparison with the dynamic LQR result

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Spr 2008 16.323 7–6

TPBVP for LQR

function m = TPBVPlqr(p1,p2,p3)

global A B x0 Rxx Ruu Ptf

t_f=10;x0=[1 1]’;

Rxx=p1;Ruu=p2;Ptf=p3;

solinit = bvpinit(linspace(0,t_f),@TPBVPlqrinit);

sol = bvp4c(@TPBVPlqrode,@TPBVPlqrbc,solinit);

time = sol.x;

state = sol.y([1 2],:);

adjoint = sol.y([3 4],:);

control = -inv(Ruu)*B’*sol.y([3 4],:);

m(1,:) = time;m([2 3],:) = state;m([4 5],:) = adjoint;m(6,:) = control;

%---

function dydt=TPBVPlqrode(t,y)

global A B x0 Rxx Ruu Ptf

dydt=[A -B/Ruu*B’; -Rxx -A’]*y;

%---

function res=TPBVPlqrbc(ya,yb)

global A B x0 Rxx Ruu Ptf

res=[ya(1) - x0(1);ya(2)-x0(2);yb(3:4)-Ptf*yb(1:2)];

%---

function v=TPBVPlqrinit(t)

global A B x0 b alp

v=[x0;1;0];

return

% 16.323 Spring 2007

% Jonathan How

% redo LQR example on page 4-15 using numerical approaches

clear all;close all;

set(0, ’DefaultAxesFontSize’, 14, ’DefaultAxesFontWeight’,’demi’)

set(0, ’DefaultTextFontSize’, 14, ’DefaultTextFontWeight’,’demi’)

%

global A B

Ptf=[0 0;0 4];Rxx=[1 0;0 0];Ruu=1;A=[0 1;0 -1];B=[0 1]’;

tf=10;dt=.01;time=[0:dt:tf];

m=TPBVPlqr(Rxx,Ruu,Ptf); % numerical result

% integrate the P backwards for LQR result

P=zeros(2,2,length(time));K=zeros(1,2,length(time));

Pcurr=Ptf;

for kk=0:length(time)-1

P(:,:,length(time)-kk)=Pcurr;

K(:,:,length(time)-kk)=inv(Ruu)*B’*Pcurr;

Pdot=-Pcurr*A-A’*Pcurr-Rxx+Pcurr*B*inv(Ruu)*B’*Pcurr;

Pcurr=Pcurr-dt*Pdot;

end

% simulate the state
x1=zeros(2,1,length(time));xcurr1=[1 1]’;
for kk=1:length(time)-1

x1(:,:,kk)=xcurr1;

xdot1=(A-B*K(:,:,kk))*x1(:,:,kk);

xcurr1=xcurr1+xdot1*dt;

end

figure(3);clf

plot(time,squeeze(x1(1,1,:)),time,squeeze(x1(2,1,:)),’--’,’LineWidth’,2),

xlabel(’Time (sec)’);ylabel(’States’);title(’Dynamic Gains’)

hold on;plot(m(1,:),m([2],:),’s’,m(1,:),m([3],:),’o’);hold off

legend(’LQR x_1’,’LQR x_2’,’Num x_1’,’Num x_2’)

print -dpng -r300 numreg2.png

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 Conversion 16.323 7–7

•	 BVP4C sounds good, but this standard form doesn’t match many of
the problems that we care about
– In particular, free end time problems are excluded, because the time

period is defined to be fixed t ∈ [a, b]

•	 Can convert our problems of interest into this standard form though
using some pretty handy tricks.
– U. Ascher and R. D. Russell, “Reformulation of Boundary Value

Problems into ”Standard” Form,” SIAM Review, Vol. 23, No. 2,
238-254. Apr., 1981.

•	 Key step is to re-scale time so that τ = t/tf , then τ ∈ [0, 1].
– Implications of this scaling are that the derivatives must be changed

since dτ = dt/tf
d d

=	tf
dτ dt

•	 Final step is to introduce a dummy state r that corresponds to tf with
the trivial dynamics ṙ = 0.
– Now replace all instances of tf in the necessary/boundary conditions

for state r.

– Optimizer will then just pick an appropriate constant for r = tf

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 7–8

Recall that our basic set of necessary conditions are, for t ∈ [t0, tf]•

ẋ = a(x, u, t)

ṗ = −HT
x

Hu = 0

And we considered various boundary conditions x(t0) = x0, and: •
– If tf is free: ht + g + pT a = ht + H(tf) = 0

– If xi(tf) is fixed, then xi(tf) = xif

∂h

– If xi(tf) is free, then pi(tf) = (tf)

∂xi

Then •
ẋ = a(x, u, t) x� = tf a(x, u, τ)⇒

and
ṗ = −Hx

T ⇒ p� = −tfHx
T

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �

Spr 2008	 Example: 7–1 16.323 7–9

• Revisit example on page 6–6

• Linear system with performance/time weighting and free end time

– Necessary conditions are:

ẋ = Ax + Bu

ṗ = −AT p

0 = bu + 0 1 p

with state conditions

x1(0) = 10

x2(0) = 0

x1(tf) = 0

x2(tf) = 0

−0.5bu2(tf) + αtf = 0

•	 Define the state of interest z = [xT pT r]T and note that

dz dz
= tf

dτ dt⎡ � � ⎤
A −B 0 1 /b 0

= z5 ⎣ 0 −AT 0 ⎦ z
0 0 0

z� = f(z) which is nonlinear ⇒

with BC:

z1(0) = 10

z2(0) = 0

z1(1) = 0

z2(1) = 0
−0.5

z 24(1) + αz5(1) = 0
b

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 7–10

• Code given on following pages
– Note – it is not particularly complicated

– Solution time/iteration count is a strong function of the initial so

lution – not a particularly good choice for p is used here

• Analytic solution gave tf = (1800b/α)1/5

– Numerical result give close agreement in prediction of the final time

10
−2

10
−1

10
0

10
1

10
2

1

2

3

4

5

6

7

8

α

t f

Comparison with b=0.1

Analytic
Numerical

Figure 7.2: Comparison of the predicted completion times for the maneuver

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 7–11

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−3

−2

−1

0

1

2

3

Time

u(
t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.5

1

1.5

2

2.5

3

3.5

4
x 10

−8

Time

u A
na

ly
tic

(t
)−

U
N

um
er

ic
al

Analytic

Figure 7.3: Control Inputs

0 1 2 3 4 5
0

2

4

6

8

10

Time

X
(t

)

Analytic
Numerical

0 1 2 3 4 5
−4

−3

−2

−1

0

1

Time

dX
(t

)/
dt

Analytic
Numerical

0 1 2 3 4 5
0

1

2

3

4

5

6

7
x 10

−8

Time

E
rr

or

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
x 10

−7

Time

E
rr

or

Figure 7.4: State response

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 7–12

TPBVP

1 function m = TPBVP(p1,p2)
2 % 16.323 Spring 2007
3 % Jonathan How
4 %
5 global A B x0 b alp
6

7 A=[0 1;0 0];
8 B=[0 1]’;
9 x0=[10 0]’;

10 b=p1;
11 alp=p2;
12

13 solinit = bvpinit(linspace(0,1),@TPBVPinit);
14 sol = bvp4c(@TPBVPode,@TPBVPbc,solinit);
15

16 time = sol.y(5)*sol.x;
17 state = sol.y([1 2],:);
18 adjoint = sol.y([3 4],:);
19 control = -(1/b)*sol.y(4,:);
20 m(1,:) = time;
21 m([2 3],:) = state;
22 m([4 5],:) = adjoint;
23 m(6,:) = control;
24

25 %---

26 function dydt=TPBVPode(t,y)
27 global A B x0 b alp
28 dydt=y(5)*[A -B*[0 1]/b zeros(2,1); zeros(2,2) -A’ zeros(2,1);zeros(1,5)]*y;
29

30 %---

31 function res=TPBVPbc(ya,yb)
32 global A B x0 b alp
33 res=[ya(1) - x0(1);ya(2)-x0(2);yb(1);yb(2);-0.5*yb(4)^2/b+ alp*yb(5)];
34

35 %---

36 function v=TPBVPinit(t)
37 global A B x0 b alp
38 v=[x0;1;0;1];
39

40 return
41

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Spr 2008 16.323 7–13

TPBVP Main

% 16.323 Spring 2007
% Jonathan How
% TPmain.m
%
b=0.1;
%alp=[.05 .1 1 10 20];
alp=logspace(-2,2,10);
t=[];
for alpha=alp

m=TPBVP(b,alpha);
t=[t;m(1,end)];

end

figure(1);clf

semilogx(alp,(1800*b./alp).^0.2,’-’,’Linewidth’,2)

hold on;semilogx(alp,t,’rs’);hold off

xlabel(’\alpha’,’FontSize’,12);ylabel(’t_f’,’FontSize’,12)

legend(’Analytic’,’Numerical’)

title(’Comparison with b=0.1’)

print -depsc -f1 TPBVP1.eps;jpdf(’TPBVP1’)

% code from opt1.m on the analytic solution

b=0.1;alpha=0.1;

m=TPBVP(b,alpha);

tf=(1800*b/alpha)^0.2;

c1=120*b/tf^3;

c2=60*b/tf^2;

u=(-c2+c1*m(1,:))/b;

A=[0 1;0 0];B=[0 1]’;C=eye(2);D=zeros(2,1);G=ss(A,B,C,D);X0=[10 0]’;

[y3,t3]=lsim(G,u,m(1,:),X0);

figure(2);clf

subplot(211)

plot(m(1,:),u,’g-’,’LineWidth’,2);

xlabel(’Time’,’FontSize’,12);ylabel(’u(t)’,’FontSize’,12)

hold on;plot(m(1,:),m(6,:),’--’);hold off

subplot(212)

plot(m(1,:),abs(u-m(6,:)),’-’)

xlabel(’Time’,’FontSize’,12)

ylabel(’u_{Analytic}(t)-U_{Numerical}’,’FontSize’,12)

legend(’Analytic’,’Numerical’)

print -depsc -f2 TPBVP2.eps;jpdf(’TPBVP2’)

figure(3);clf

subplot(221)

plot(m(1,:),y3(:,1),’c-’,’LineWidth’,2);

xlabel(’Time’,’FontSize’,12);ylabel(’X(t)’,’FontSize’,12)

hold on;plot(m(1,:),m([2],:),’k--’);hold off

legend(’Analytic’,’Numerical’)

subplot(222)

plot(m(1,:),y3(:,2),’c-’,’LineWidth’,2);

xlabel(’Time’,’FontSize’,12);ylabel(’dX(t)/dt’,’FontSize’,12)

hold on;plot(m(1,:),m([3],:),’k--’);hold off

legend(’Analytic’,’Numerical’)

subplot(223)

plot(m(1,:),abs(y3(:,1)-m(2,:)’),’k-’)

xlabel(’Time’,’FontSize’,12);ylabel(’Error’,’FontSize’,12)

subplot(224)

plot(m(1,:),abs(y3(:,2)-m(3,:)’),’k-’)

xlabel(’Time’,’FontSize’,12);ylabel(’Error’,’FontSize’,12)

print -depsc -f3 TPBVP3.eps;jpdf(’TPBVP3’)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

Spr 2008	 16.323 7–14 Zermelo’s Problem

•	 Simplified dynamics of a UAV flying in a horizontal plane can be mod

eled as:

ẋ(t) = V cos θ(t)

ẏ(t) = V sin θ(t) + w

where θ(t) is the heading angle (control input) with respect to the x
axis, V is the speed.

• Objective: fly from point A to B in minimum time:
tf

min J = (1)dt
0

where tf is free.

– Initial conditions are:

x(0) = x0	 y(0) = y0

– Final conditions are:

x(tf) = x1	 y(tf) = y1

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 7–15

Apply the standard necessary conditions with •

H = 1 + p1V (cos θ(t)) + p2(V sin θ(t) + w)

ẋ = a(x, u, t)

ṗ = −HT
x

Hu = 0

ẋ(t) = V cos θ(t)

ẏ(t) = V sin θ(t) + w

ṗ1(t) = 0

ṗ2(t) = 0

0 = −p1 sin θ(t) + p2 cos θ(t)

– Then add extra state for the time.
•	 Since tf is free, must add terminal condition that H(tf) = 0, which

gives a total of 5 conditions (2 initial, 3 terminal).

Figure 7.5: Zermelo examples

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

Spr 2008 16.323 7–16

TPBVPZermelo

function m = TPBVPzermelo(p1,p2)

global x0 x1 V w

solinit = bvpinit(linspace(0,1),@TPBVPinit);

sol = bvp6c(@TPBVPode,@TPBVPbc,solinit);

time = sol.y(5)*sol.x;

state = sol.y([1 2],:);

adjoint = sol.y([3 4],:);

control = atan2(-sol.y([4],:),-sol.y([3],:));

m(1,:) = time;

m([2 3],:) = state;

m([4 5],:) = adjoint;

m(6,:) = control;

return

%---

function dydt=TPBVPode(t,y)
global x0 x1 V w

% x y p1 p2 t

% minimizing form

sinth=-y(4)/sqrt(y(3)^2+y(4)^2);

costh=-y(3)/sqrt(y(3)^2+y(4)^2);

dydt=y(5)*[V*costh ; V*sinth+w;0;0;0];

%---

function res=TPBVPbc(ya,yb)

global x0 x1 V w

% x y p1 p2 t

% minimizing form

costhb=-yb(3)/sqrt(yb(3)^2+yb(4)^2);

sinthb=-yb(4)/sqrt(yb(3)^2+yb(4)^2);

res=[ya(1) - x0(1);ya(2)-x0(2);

yb(1) - x1(1);yb(2)-x1(2);

1+V*costhb*yb(3)+V*(sinthb+w)*yb(4)];

%---

function v=TPBVPinit(t)

global x0 x1 V w

%v=[x0;-1;-1;norm(x1-x0)/(V-w)];

v=[x0;1;1;norm(x1-x0)/(V-w)];

return

clear all

global x0 x1 V w

w=1/sqrt(2);

x0=[-1 0]’;x1=[0 0]’;V = 1;

mm=TPBVPzermelo;

figure(1);clf

plot(mm(2,:),mm([3],:),’LineWidth’,2);axis(’square’);grid on

axis([-2 5 -2 1.5])

xlabel(’x’,’FontSize’,12);ylabel(’y’,’FontSize’,12);

hold on;

plot(x0(1),x0(2),’rs’);plot(x1(1),x1(2),’bs’);

text(x0(1),x0(2),’Start’,’FontSize’,12)

text(x1(1),x1(2),’End’,’FontSize’,12)

hold off

figure(2);clf

plot(mm(1,:),180/pi*mm([6],:),’LineWidth’,2);grid on;axis(’square’)

xlabel(’t’,’FontSize’,12);ylabel(’u’,’FontSize’,12);

print -dpng -r300 -f1 BVP_zermelo.png;

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 7–17

68 print -dpng -r300 -f2 BVP_zermelo2.png;
69

70 clear all
71 global x0 x1 V w
72 w=1/sqrt(2);
73 x0=[0 1]’;x1=[0 0]’;V = 1;
74 mm=TPBVPzermelo;
75

76 figure(1);clf
77 plot(mm(2,:),mm([3],:),’LineWidth’,2);axis(’square’);grid on
78 axis([-2 5 -2 1.5])
79 xlabel(’x’,’FontSize’,12);ylabel(’y’,’FontSize’,12);
80 hold on;
81 plot(x0(1),x0(2),’rs’);plot(x1(1),x1(2),’bs’);
82 text(x0(1),x0(2),’Start’,’FontSize’,12)
83 text(x1(1),x1(2),’End’,’FontSize’,12)
84 hold off
85

86 figure(2);clf
87 plot(mm(1,:),180/pi*mm([6],:),’LineWidth’,2);grid on;axis(’square’)
88 xlabel(’t’,’FontSize’,12);ylabel(’u’,’FontSize’,12);
89

90 print -dpng -r300 -f1 BVP_zermelo3.png;
91 print -dpng -r300 -f2 BVP_zermelo4.png;
92

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

�

Spr 2008 Orbit Raising Example 16.323 7–18

• Goal: (Bryson page 66) determine the maximum radius orbit transfer
in a given time tf assuming a constant thrust rocket (thrust T).15

– Must find the thrust direction angle φ(t)

– Assume a circular orbit for the initial and final times

Nomenclature: •
– r – radial distance from attracting center, with gravitational con

stant µ

– v, u tangential, radial components of the velocity

– m mass of s/c, and ṁ is the fuel consumption rate (constant)

• Problem: find φ(t) to maximize r(tf) subject to:

Dynamics : ṙ = u

u̇ =
v2

r
−

uv

µ
r2

+
T sin φ

m0 − | ṁ|t
T cos φ

v̇ = −
r

+
m0 − | ṁ|t

with initial conditions

r(0) = r0 u(0) = 0 v(0) =
µ
r0

and terminal conditions
µ

u(tf) = 0 v(tf) −
r(tf)

= 0

• With pT = [p1 p2 p3] this gives the Hamiltonian (since g = 0) ⎤⎡
u

2 µ T sin φ
2 +H
= p
T
⎢⎣

v
 ⎥⎦
−
r
 r
 m0−|ṁ|t
T cos φ
m0−|ṁ|t

uv− + r

15Thanks to Geoff Huntington

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �

� � �

�

Spr 2008 16.323 7–19

– Then Hu = 0 with u(t) = φ(t) gives � � � �

p2
T cos φ

m0 − | ṁ|t
+ p3

−T sin φ
m0 − | ṁ|t

= 0

which gives that
p2(t)

tan φ =
p3(t)

that can be solved for the control input given the costates.

• Note that this is a problem of the form on 6–6, with

u(tf�) m = µ = 0
v(tf) − r(tf)

which gives

µ
w = −r + ν1u(tf) + ν2 v(tf) −

r(tf)

• Since the first state r is not specified at the final time, must have that

∂w ν2 µ
p1(tf) =

∂r
(tf) = −1 +

2 r(tf)3

– And note that
∂w

p3(tf) = (tf) = ν2
∂v

which gives ν2 in terms of the costate.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 7–20

Figure 7.6: Orbit raising examples

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 7–21

Figure 7.7: Orbit raising examples

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

Spr 2008 16.323 7–22

Orbit Raising

%orbit_bvp_how created by Geoff Huntington 2/21/07
%Solves the Hamiltonian Boundary Value Problem for the orbit-raising optimal
%control problem (p.66 Bryson & Ho). Computes the solution using BVP4C
%Invokes subroutines orbit_ivp and orbit_bound
clear all;%close all;
set(0, ’DefaultAxesFontSize’, 14, ’DefaultAxesFontWeight’,’demi’)
set(0, ’DefaultTextFontSize’, 14, ’DefaultTextFontWeight’,’demi’)

%Fixed final time %Tf = 3.3155;

Tf = 4;

four=0; % not four means use bvp6c

%Constants

global mu m0 m1 T

mu=1; m0=1; m1=-0.07485; T= 0.1405;

%mu=1; m0=1; m1=-.2; T= 0.1405;

%Create initial Guess

n=100;

y = [ones(1,n); %r

zeros(1,n); %vr
ones(1,n); %vt

-ones(1,n); %lambda_r

-ones(1,n); %lambda_vr

-ones(1,n)]; %lambda_vt

x = linspace(0,Tf,n); %time

solinit.x = x;solinit.y = y;

%Set optimizer options

tol = 1E-10;

options = bvpset(’RelTol’,tol,’AbsTol’,[tol tol tol tol tol tol],’Nmax’, 2000);

%Solve

if four

sol = bvp4c(@orbit_ivp,@orbit_bound,solinit,options);

Nstep=40;

else

sol = bvp6c(@orbit_ivp,@orbit_bound,solinit,options);

Nstep=30;

end

%Plot results

figure(1);clf

plot(sol.x,sol.y(1:3,:),’LineWidth’,2)

legend(’r’,’v_r’,’v_t’,’Location’,’NorthWest’)

grid on;

axis([0 4 0 2])

title(’HBVP Solution’)

xlabel(’Time’);ylabel(’States’)

figure(2);clf

plot(sol.x,sol.y(4:6,:),’LineWidth’,2)

legend(’p_1(t)’,’p_2(t)’,’p_3(t)’,’Location’,’NorthWest’)

grid on;

axis([0 4 -3 2])

title(’HBVP Solution’)

xlabel(’Time’);ylabel(’Costates’)

ang2=atan2(sol.y([5],:),sol.y([6],:))+pi;

figure(3);clf

plot(sol.x,180/pi*ang2’,’LineWidth’,2)

grid on;

axis([0 4 0 360])

title(’HBVP Solution’)

xlabel(’Time’);ylabel(’Control input angle \phi(t)’)

norm([tan(ang2’)-(sol.y([5],:)./sol.y([6],:))’])

print -f1 -dpng -r300 orbit1.png

print -f2 -dpng -r300 orbit2.png

print -f3 -dpng -r300 orbit3.png

% Code below adapted inpart from Bryson "Dynamic Optimization"

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 7–23

72

73 dt=diff(sol.x);
74 dth=(sol.y(3,1:end-1)./sol.y(1,1:end-1)).*dt; % \dot \theta = v_t/r
75 th=0+cumsum(dth’);
76 pathloc=[sol.y(1,1:end-1)’.*cos(th) sol.y(1,1:end-1)’.*sin(th)];
77

78 figure(4);clf
79 plot(pathloc(:,1),pathloc(:,2),’k-’,’LineWidth’,2)
80 hold on
81 zz=exp(sqrt(-1)*[0:.01:pi]’);
82 r0=sol.y(1,1);rf=sol.y(1,end);
83 plot(r0*real(zz),r0*imag(zz),’r--’,’LineWidth’,2)
84 plot(rf*real(zz),rf*imag(zz),’b--’,’LineWidth’,2)
85 plot(r0,0,’ro’,’MarkerFace’,’r’)
86 plot(rf*cos(th(end)),rf*sin(th(end)),’bo’,’MarkerFace’,’b’)
87 fact=0.2;ep=ones(size(th,1),1)*pi/2+th-ang2(1:end-1)’;
88 xt=pathloc(:,1)+fact*cos(ep); yt=pathloc(:,2)+fact*sin(ep);
89 for i=1:Nstep:size(th,1),
90 pltarrow([pathloc(i,1);xt(i)],[pathloc(i,2);yt(i)],.05,’m’,’-’);
91 end;
92 %axis([-1.6 1.6 -.1 1.8]);
93 axis([-2 2 -.1 1.8]);
94 axis(’equal’)
95 hold off
96

97 print -f4 -dpng -r300 orbit4.png;

1 function [dx] = orbit_ivp(t,x)

2 global mu m0 m1 T

3

4 %State

5 r = x(1);u = x(2);v = x(3);

6 lamr = x(4);lamu = x(5);lamv = x(6);

7

8 %Substitution for control

9 sinphi = -lamu./sqrt(lamu.^2+lamv.^2);

10 cosphi = -lamv./sqrt(lamu.^2+lamv.^2);
11

12 %Dynamic Equations
13 dr = u;
14 du = v^2/r - mu/r^2 + T*sinphi/(m0 + m1*t);
15 dv = -u*v/r + T*cosphi/(m0 + m1*t);
16

17 dlamr = -lamu*(-v^2/r^2 + 2*mu/r^3) - lamv*(u*v/r^2);
18 dlamu = -lamr + lamv*v/r;
19 dlamv = -lamu*2*v/r + lamv*u/r;
20

21 dx = [dr; du; dv; dlamr; dlamu; dlamv];

1 function [res] = orbit_bound(x,x2)
2 global mu m0 m1 T
3

4 %Initial State
5 r = x(1);u = x(2);v = x(3);
6 lamr = x(4);lamu = x(5);lamv = x(6);
7

8 %Final State
9 r2 = x2(1);u2 = x2(2);v2 = x2(3);

10 lamr2 = x2(4);lamu2 = x2(5);lamv2 = x2(6);
11

12 %Boundary Constraints
13 b1 = r - 1;
14 b2 = u;
15 b3 = v - sqrt(mu/r);
16 b4 = u2;
17 b5 = v2 - sqrt(mu/r2);
18 b6 = lamr2 + 1 - lamv2*sqrt(mu)/2/r2^(3/2);
19

20 %Residual
21 res = [b1;b2;b3;b4;b5;b6];

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

16.323 Lecture 8

Properties of Optimal Control Solution

Bryson and Ho – Section 3.5 and Kirk – Section 4.4

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 8–
Properties of Optimal Control

•	 If g = g(x, u) and a = a(x, u) do not explicitly depend on time t,
then the Hamiltonian H is at least piecewise constant.

H	= g(x, u) + p T a(x, u) (8.1)

then
0 � � � � � �

dH ∂H��� ∂H dx ∂H du ∂H dp
=	 �

� + + + (8.2)
dt �∂t ∂x dt ∂u dt ∂p dt

=	Hxa + Huu̇ + Hpṗ (8.3)

Now use the necessary conditions:

ẋ = a = Hp
T	 (8.4)

ṗ	 = −HT (8.5)x

to get that
dH

=	−ṗT a + a T ṗ + Huu̇ = Huu̇
dt

Third necessary condition requires Hu = 0, so clearly dH = 0, which•	 dt
suggests H is a constant,
– Note that it might be possible for the value of this constant to

change at a discontinuity of u, since then u̇ would be infinite, and
0 · ∞ is not defined.

– Thus H is at least piecewise constant

•	 For free final time problems, transversality condition gives,

ht + H(tf) = 0.

– If h is not a function of time, then ht = 0 so H(tf) = 0

– With no jumps in u, H is constant H = 0 for all time.⇒

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

�

�

Spr 2008	 16.323 8–2

•	 If solution has a corner that is not induced by an intermediate state
variable constraint, then H, p, and Hu are all continuous across the
corner.

•	 To see, this, write augmented cost functional on 6–1 in the form
tf �	 �

J = terminal terms + g + p T (a − ẋ) dt
t0

and recall definition of Hamiltonian H = g + pT a, so that

tf � �

J = terminal terms + H − p T ẋ dt
t0

•	 Looks similar to the classical form analyzed on 5–16
tf

J̃ = x, t) dtg (x, ˙
t0

which led to two Weierstrass-Erdmann corner conditions

+ gẋ(t1
−) = gẋ(t1) (8.6)

+ + + g(t1
−) − gẋ(t1

−)ẋ(t−1) = g(t1) − gẋ(t1)ẋ(t1) (8.7)

•	 With g (x, ˙ ⇒ H − pT ẋ, equivalent continuity conditions are: x, t)

∂(H − pT ẋ) T

∂ẋ
= −p must be cts at corner

and

(H	− p T ẋ) −
∂(H − pT ẋ)

ẋ
∂ẋ

= (H − p T ẋ) + p T ẋ

= H must be cts at corner (8.8)

•	 So both p(t) and H must be continuous across a corner that is not
induced by a state variable equality/inequality constraint.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

� +

�

�

Spr 2008 Point State Constraint 16.323 8–3

•	 Consider what happens with an interior point state constraint (Bryson,
section 3.5) of the form that

N(x(t1), t1) = 0

where t0 < t1 < tf and N is a vector of q < n constraints.
– Assume that x(t0), x(tf), t0, and tf all specified.

•	 Augment constraint to cost (6–1) using multiplier π
tf � �

Ja = h(x(tf), tf) + πT N + H − p T ẋ dt
t0

•	 Proceed as before with the corner conditions (5–15), and split cost
integral into 2 parts � � �tf t1 tf

t0 t0 t1

and form the variation (drop terms associated with t0 and tf):

δJa = NT (t1)δπ + πT (Nx(t1)δx1 + Nt(t1)δt1) (8.9)
t1 �	 �

+ Hxδx + Huδu + (Hp − ẋT)δp − p Tδẋ dt �t0
tf �	 �

+ Hxδx + Huδu + (Hp − ẋT)δp − p Tδẋ dt
t1 � ���t− � ��

+ H − p T ẋ 1 δt1 + H − p T ẋ � + δt1t1

Collect:

=	NT (t1)δπ + πT (Nx(t1)δx1 + Nt(t1)δt1) (8.10)
t1 �	 �

+ Hxδx + Huδu + (Hp − ẋT)δp − p Tδẋ dt �t0
tf �	 �

+ Hxδx + Huδu + (Hp − ẋT)δp − p Tδẋ dt � t1 �	 � �
++ H − p T ẋ (t1

−)δt1 − H − p T ẋ (t1)δt1

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�	 �

�	 �

�

�

�	 �

Spr 2008	 16.323 8–4

•	 On 6–2 showed that the IBP will give:
t1 � � t1

−
t0

p Tδẋdt = −p T (t−1) δx1 − ẋ(t−1)δt1 +
t0

ṗTδxdt

tf � � tf

−
t1

p Tδẋdt = p T (t+1) δx1 − ẋ(t+1)δt1 +
t1

ṗTδxdt

•	 Substitute into (13) to get

δJa = NT (t1)δπ + πT (Nx(t1)δx1 + Nt(t1)δt1) (8.11)
tf �	 �

+	 (Hx + ṗT)δx + Huδu + (Hp − ẋT)δp dt � t0 � � �
T ˙ (t−	 T ˙ ++ H − p� x 1)δt1 − H � − p x (� t1)δt1 �

+	 +T (t−) δx1 − ẋ(t−)δt1 + p T (t1) δx1 − ẋ(t1)δt1− p 1	 1

•	 Rearrange and cancel terms
tf � �

δJa = NT (t1)δπ + (Hx + ṗT)δx + Huδu + (Hp − ẋT)δp dt � t0	 �
T (t++	 p 1) − p T (t1

−) + πT Nx(t1) δx1 (8.12)
++	 H(t−1) − H(t1) + πT Nt(t1) δt1

So choose H(t−) & H(t+) and pT (t−) & pT (t+) to ensure that the •	 1 1 1 1

coefficients of δx1 and t1 vanish in (15), giving:

+ p T (t1
−) = p T (t1) + πT Nx(t1)

+H(t−1) = H(t1) − πT Nt(t1)

•	 These explicitly show that p(t1) and H(t1) are discontinuous across
the state constraint induced corner, but Hu will be continuous.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

16.323 Lecture 9

Constrained Optimal Control

Bryson and Ho – Section 3.x and Kirk – Section 5.3

co
nt

ro
len

gin
ee

rs
.ir

�

� �	 �
• �	 �

�

�

Spr 2008	 16.323 9–1
Constrained Optimal Control

•	 First consider cases with constrained control inputs so that u(t) ∈ U
where U is some bounded set.
– Example: inequality constraints of the form C(x, u, t) ≤ 0

– Much of what we had on 6–3 remains the same, but algebraic con

dition that Hu = 0 must be replaced

– Note that C(x, t) ≤ 0 is a much harder case

•	 Augment constraint to cost (along with differential equation con

straints) � tf � �
Ja = h(x(tf), tf) + H − p T ẋ + νT C dt

t0

•	 Find the variation (assume t0 and x(t0) fixed):
tf �

δJa = hxδxf + htf δtf + Hxδx + Huδu + (Hp − ẋT)δp(t)
t0

−p T (t)δẋ + CTδν + νT {Cxδx + Cuδu} dt

+	 H − p T ẋ + νT C (tf)δtf

Now IBP
tf tf

−
t0

p T (t)δẋdt = −p T (tf) (δxf − ẋ(tf)δtf) +
t0

ṗT (t)δxdt

then combine and drop terminal conditions for simplicity:
tf �� � � �

δJa = Hx + ṗT + νT Cx δx + Hu + νT Cu δu
t0

+(Hp − ẋT)δp(t) + CTδν dt

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 9–2

Clean up by defining augmented Hamiltonian •

Ha(x, u, p, t) = g + p T (t)a + νT (t)C

where (see 2–12) �

νi(t)
≥ 0 if Ci = 0 active
= 0 if Ci < 0 inactive

– So that νiCi = 0 ∀ i.

• So necessary conditions for δJa = 0 are that for t ∈ [t0, tf]

ẋ = a(x, u, t)

ṗ = −(Ha)
T
x

(Ha)u = 0

– With appropriate boundary conditions and νiCi(x, u, t) = 0

Complexity here is that typically will have sub-arcs to the solution •
where the inequality constraints are active (so Ci(x, u, t) = 0) and
then not (so νi = 0).
– Transitions between the sub-arcs must be treated as corners that

are at unspecified times - need to impose the equivalent of the
Erdmann-Weirstrass corner conditions for the control problem, as
in Lecture 8.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 Constrained Example 16.323 9–3

•	 Design the control inputs that minimize the cost functional �	 4

min J = −x(4) + u 2(t)dt
u 0

with ẋ = x + u, x(0) = 0, and u(t) ≤ 5.

•	 Form augmented Hamiltonian:

H = u 2 + p(x + u) + ν(u − 5)

•	 Note that, independent of whether the constraint is active or not, we
have that

ṗ = −Hx = −p � p(t) = ce−t

and from transversality BC, know that p(4) = ∂h/∂x = −1, so have
that c = −e4 and thus p(t) = −e4−t

•	 Now let us assume that the control constraint is initially active for
some period of time, then ν ≥ 0, u = 5, and

Hu = 2u + p + ν = 0

so we have that
ν = −10 − p = −10 + e 4−t

– Question: for what values of t will ν ≥ 0?

ν = −10 + e 4−t ≥ 0

→ e 4−t ≥ 10

→ 4 − t ≥ ln(10)

→ 4 − ln(10) ≥ t

– So provided t ≤ tc = 4 − ln(10) then ν ≥ 0 and the assumptions
are consistent.

Now consider the inactive constraint case:
•
1

Hu = 2u + p = 0 � u(t) = − p(t)
2

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

�

Spr 2008	 16.323 9–4

•	 The control inputs then are

5 t ≤ tc
u(t) =
 1
2e

4−t
 t ≥ tc

which is continuous at tc.

•	 To finish the solution, find the state in the two arcs x(t) and enforce
continuity at tc, which gives that:

5et − 5 t ≤ tc
4−t + (5 − 25e−4)e

x(t) =
 −
1
4

t)
e
 t ≥ tc

•	 Note that since the corner condition was not specified by a state con

straint, continuity of λ and H at the corner is required – but we did
not need to use that in this solution, it will occur naturally.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�	 � � �
�

�

�

Spr 2008	 16.323 9–5

Pontryagin’s Minimum Principle
•	 For an alternate perspective, consider general control problem state

ment on 6–1 (free end time and state). Then on 6–2,

δJa = hx − p T (tf) δxf + htf + H (tf)δtf (9.13)
tf �� �	 �

+ Hx + ṗT δx + Huδu + (Hp − ẋT)δp(t) dt
t0

now assume we have a trajectory that satisfies all other differential
equation and terminal constraints, then all remains is

tf

⇒	δJa =
t0

[Hu(t)δu(t)] dt (9.14)

•	 For the control to be minimizing, need δJa ≥ 0 for all admissible
variations in u (i.e., δu for which Cuδu ≤ 0)
– Equivalently, need δH = Hu(t)δu(t) ≥ 0 for all time and for all

admissible δu

– Gives condition that Hu = 0 if control constraints not active

– However, at the constraint boundary, could have Hu = 0 and
whether we need Hu > 0 or Hu < 0 depends on the direction
(sign) of the admissible δu.

Figure 9.1: Examples of options for δH = Hu(t)δu(t). Left: unconstrained min,
so need Hu = 0. Middle: constraint on left, so at min value, must have δu ≥ 0
⇒ need Hu ≥ 0 so that δH ≥ 0. Right: constraint on right, so at min value, must
have δu ≤ 0 need Hu ≤ 0 so that δH ≥ 0.⇒

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�	 �

Spr 2008	 16.323 9–6

•	 The requirement that δH ≥ 0 says that δH must be non-improving
to the cost (recall trying to minimize the cost) over the set of possible
δu.
– Can actually state a stronger condition: H must be minimized over

the set of all possible u

•	 Thus for control constrained problems, third necessary condition

Hu = 0

must be replaced with a more general necessary condition

u �(t) = arg min H(x, u, p, t)
u(t)∈U

– So must look at H and explicitly find the minimizing control inputs
given the constraints - not as simple as just solving Hu = 0

– Known as Pontryagin’s Minimum Principle

– Handles “edges” as well, where the admissible values of δu are
“inwards”

•	 PMP is very general and applies to all constrained control problems –
will now apply it to a special case in which the performance and the
constraints are linear in the control variables.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

� �

Spr 2008 16.323 9–7

PMP Example: Control Constraints
• Consider simple system y = G(s)u, G(s) = 1/s2 with |u(t)| ≤ um

– Motion of a rigid body with limited control inputs – can be used to
model many different things

• Want to solve the minimum time-fuel problem
tf

min J = (1 + b|u(t)|)dt
0

– The goal is to drive the state to the origin with minimum cost.

– Typical of many spacecraft problems – |u(t)|dt sums up the fuel
used, as opposed to u2(t)dt that sums up the power used.

• Define x1 = y, x2 = ẏ ⇒ dynamics are ẋ1 = x2, ẋ2 = u

• First consider the response if we apply ±1 as the input. Note:
– If u = 1, x2(t) = t + c1 and

x1(t) = 0.5t2 + c1t + c2 = 0.5(t + c1)
2 + c3 = 0.5x2(t)

2 + c3

– If u = −1, x2(t) = −t + c4 and

x1(t) = −0.5t2 + c4t + c5 = −0.5(t + c4)
2 + c6 = −0.5x2(t)

2 + c6

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

u = +1
u = −1

Figure 9.2: Possible response curves – what is the direction of motion?

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

Spr 2008 16.323 9–8

• Hamiltonian for the system is: �� � � � � � � � � 0 1 x1 0
H = 1 + b u + p1 p2 + u| |

0 0 x2 1

= 1 + b|u| + p1x2 + p2u

• First find the equations for the co-state:

ṗ1 = −Hx1 = 0 p1 = c1
xṗ = −HT ⇒

ṗ2 = −Hx2 = −p1

→
p2 = −c1t + c2→

– So p2 is linear in time

• To find optimal control, look at the parts of H that depend on u:

H̃ = b|u| + p2u

– Recall PMP: given constraints, goal is to find u that minimizes
H (or H̃)

– Sum of two functions |u| and u - sign of which depends on sign and
relative size of p2 compared to b > 0

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 9–9

• Three cases to consider (plots use um = 1.5):

1. p2 > b > 0 → choose u�(t) = −um

Figure 9.3: b = 1, p2 = 2, so p2 > b > 0
fopt1

2. p2 < −b → choose u�(t) = um

Figure 9.4: b = 1, p2 = −2, so p2 < −b

3. −b < p2 < b → choose u�(t) = 0

Figure 9.5: b = 1, p2 = 1, so −b < p2 < b

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 9–10

•	 The resulting control law is: ⎧ ⎨ −um b < p2(t)
u(t) = ⎩

0 −b < p2(t) < b
um p2(t) < −b

•	 So the control depends on p2(t) - but since it is a linear function of
time, it is only possible to get at most 2 switches
– Also, since ẋ2(t) = u, and since we must stop at tf , then must

have that u = ±um at tf

•	 To complete the solution, impose the boundary conditions (transver

sality condition), with x2(tf) = 0

H(tf) + ht(tf) = 0 → 1 + b|u(tf)| + p2(tf)u(tf) = 0

– If u = um, then 1 + bum + p2(tf)um = 0 implies that

1
p2(tf) = −(b +) < −b

um

which is consistent with the selection rules.

– And if u = −um, then 1 + bum − p2(tf)um = 0 implies that

1
p2(tf) = (b +) > b

um

which is also consistent.

– So the terminal condition does not help us determine if u = ±um,
since it could be either

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 9–11

So first look at the case where u(tf) = um. Know that •

p2(t) = c2 − c1t

and p2(tf) = −(b + 1) < −b.
um

– Assume that c1 > 0 so that we get some switching.

Figure 9.6: Possible switching case, but both tf and c1 are unknown at this point.

– Then set p2(t1) = −b to get that t1 = tf − 1/(umc1)

– And p2(t2) = b gives t2 = tf − (2b + 1/um)/c1

Now look at the state response:
•

– Starting at the end: ÿ = um, gives y(t) = um/2t2 + c3t + c4, where
ẏ = y = 0 at tf gives us that c3 = −umtf and c4 = um/2tf

2 , so

y(t) =
um
t2 um

t2 =
um

(t − tf)
2− umtft + f2 2 2

– But since ẏ(t) = umt + c3 = um(t − tf), then
 y(t) =
ẏ(t)2

2um

– State response associated with u = um is in lower right quadrant
of the y/ẏ phase plot

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�	 �

Spr 2008	 16.323 9–12

•	 Between times t2 –t1, control input is zero ⇒ coasting phase.

– Terminal condition for coast same as the start of the next one:

y(t1) =
u

2
m

(t1 − tf)
2 =

2u

1

mc1
2

and ẏ(t1) = −1/c1

– On a coasting arc, ẏ is a constant (so ẏ(t2) = −1/c1), and thus

y(t2) −
(t1

c

−

1

t2)

2u

1

mc
= 2

1

which gives that

1 1 1	 2b 1
y(t2) = 2 + tf − − (tf − (+))

2umc1 c1 umc1 c1 umc1

1 1 1
= (2b +) = (2b +)ẏ(t2)

2

2um c1
2 2um

• So the first transition occurs along the curve
 y(t) = (2b +
1

2um
) ̇y(t)2

•	 For the first arc, things get a bit more complicated.
Clearly u(t) = −um, with IC y0, ẏ0 so

ẏ(t) = −umt + c5 = −umt + ẏ0

y(t) = −
u

2
m
t2 + c5t + c6 = −

u

2
m
t2 + ẏ0t + y0

– Now project forward to t2

1 2(b + 1/um)
ẏ(t2) = −umt2 + ẏ0 = ẏ(t1) = −

c1
→ c1 =

tf − ẏ0/um
um 2 y(t2) = t2 + ẏ0t2 + y0−	
2

and use these expressions in the quadratic for the switching curve
to solve for c1, t1, t2

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 9–13

•	 The solutions have a very distinctive Bang–Off–Bang pattern
– Two parabolic curves define switching from +um to 0 to −um

Figure 9.7: y0 = 2 ẏ0 = 3 b = 0.75 um = 1.5

•	 Switching control was derived using a detailed evaluation of the state
and costate
– But final result is a switching law that can be written wholly in

terms of the system states.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 9–14

Figure 9.8: y0 = 2 ẏ0 = 3 b = 2 um = 1.5

Figure 9.9: y0 = 2 ẏ0 = 3 b = 0.1 um = 1.5

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �

Spr 2008 16.323 9–15

• Clearly get a special result as b → 0, which is the solution to the
minimum time problem
– Control inputs are now just Bang–Bang

– One parabolic curve defines switching from +um to −um

Figure 9.10: Min time: y0 = 2 ẏ0 = 3 b = 0 um = 1.5

• Can show that the switching and final times are given by

t1 = ẏ(0) + y(0) + 0.5ẏ2(0) tf = ẏ(0) + 2 y(0) + 0.5ẏ2(0)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 9–16

• Trade-off: coasting is fuel efficient, but it takes a long time.

10−3 10−2 10−1 100 101
2

4

6

8

10

12

14

T 1, T
2, T

f

b

On

On

Coast

T

1
T

2
T

f
Fuel

Figure 9.11: Summary of switching times for various fuel weights

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

Spr 2008 16.323 9–17

Min time fuel

% Min time fuel for double integrator

% 16.323 Spring 2008

% Jonathan How

figure(1);clf;%

if jcase==1;y0=2;yd0=3; b=.75;u_m=1.5;% baseline

elseif jcase==2;y0=2;yd0=3; b=2;u_m=1.5;% fuel exp

elseif jcase==3;y0=2;yd0=3; b=.1;u_m=1.5;% fuel cheap

elseif jcase==4;y0=2;yd0=3; b=0;u_m=1.5;% min time

elseif jcase==5;y0=-4;yd0=4; b=1;u_m=1.5;% min time

end

% Tf is unknown - put together the equations to solve for it

alp=(1/2/u_m+2*b) % switching line

% middle of 8--6: t_2 as a ftn of t_f

T2=[1/u_m (2*b+1/u_m)*yd0/u_m]/(2*b+2/u_m);%

% bottom of 8--7: quadratic for y(t_2) in terms of t_2

% converted into quad in t_f

T_f=roots(-u_m/2*conv(T2,T2)+yd0*[0 T2]+[0 0 y0] - ...

alp*conv(-u_m*T2+[0 yd0],-u_m*T2+[0 yd0]));%

t_f=max(T_f);t=[0:.01:t_f]’; %

c_1=(2*b+2/u_m)/(t_f-yd0/u_m);% key parameters for p(t)

c_2=c_1*t_f-(b+1/u_m);% key parameters for p(t)

t_1=t_f-1/(u_m*c_1); t_2=t_f-(2*b+1/u_m)/c_1;%switching times

G=ss([0 1;0 0],[0 1]’,eye(2),zeros(2,1));

arc1=[0:.001:t_2]’; arc2=[t_2:.001:t_1]’;arc3=[t_1:.001:t_f]’; %

if jcase==4;arc2=[t_2 t_2+1e-6]’;end

[Y1,T1,X1]=lsim(G,-u_m*ones(length(arc1),1),arc1,[y0 yd0]’); %

[Y2,T2,X2]=lsim(G,0*ones(length(arc2),1),arc2,Y1(end,:)’); %

[Y3,T3,X3]=lsim(G,u_m*ones(length(arc3),1),arc3,Y2(end,:)’); %

plot(Y1(:,1),Y1(:,2),’Linewidth’,2); hold on%

plot(Y2(:,1),Y2(:,2),’Linewidth’,2); plot(Y3(:,1),Y3(:,2),’Linewidth’,2);%

ylabel(’dy/dt’,’Fontsize’,18); xlabel(’y(t)’,’Fontsize’,12);%

text(-4,3,’y=-1/(2u_m)(dy/dt)^2’,’Fontsize’,12)%

if jcase ~= 4; text(-5,0,’y=-(1/(2u_m)+2b)(dy/dt)^2’,’Fontsize’,12);end

text(4,4,’-’,’Fontsize’,18);text(-4,-4,’+’,’Fontsize’,18);grid;hold off

title([’t_f = ’,mat2str(t_f)],’Fontsize’,12)%

hold on;% plot the switching curves

if jcase ~= 4;kk=[0:.1:5]’; plot(-alp*kk.^2,kk,’k--’,’Linewidth’,2);plot(alp*kk.^2,-kk,’k--’,’Linewidth’,2);end

kk=[0:.1:5]’;plot(-(1/(2*u_m))*kk.^2,kk,’k--’,’Linewidth’,2);plot((1/(2*u_m))*kk.^2,-kk,’k--’,’Linewidth’,2);%

hold off;axis([-4 4 -4 4]/4*6);

figure(2);p2=c_2-c_1*t;%

plot(t,p2,’Linewidth’,4);%

hold on; plot([0 max(t)],[b b],’k--’,’Linewidth’,2);hold off; %

hold on; plot([0 max(t)],-[b b],’k--’,’Linewidth’,2);hold off; %

hold on; plot([t_1 t_1],[-2 2],’k:’,’Linewidth’,3);hold off; %

text(t_1+.1,1.5,’t_1’,’Fontsize’,12)%

hold on; plot([t_2 t_2],[-2 2],’k:’,’Linewidth’,3);hold off; %

text(t_2+.1,-1.5,’t_2’,’Fontsize’,12)%

title([’b = ’,mat2str(b),’ u_m = ’,mat2str(u_m)],’Fontsize’,12);%

ylabel(’p_2(t)’,’Fontsize’,12); xlabel(’t’,’Fontsize’,12);%

text(1,b+.1,’b’,’Fontsize’,12);text(1,-b+.1,’-b’,’Fontsize’,12)%

axis([0 t_f -3 3]);grid on; %

%

if jcase==1

print -f1 -dpng -r300 fopt5a.png;;print -f2 -dpng -r300 fopt5b.png;

elseif jcase==2

print -f1 -dpng -r300 fopt6a.png;print -f2 -dpng -r300 fopt6b.png;

elseif jcase==3

print -f1 -dpng -r300 fopt7a.png;print -f2 -dpng -r300 fopt7b.png;

elseif jcase==4

print -f1 -dpng -r300 fopt8a.png;print -f2 -dpng -r300 fopt8b.png;

end

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

�	 �
�

Spr 2008	 16.323 9–18 Minimum Time Problems

•	 Can repeat this analysis for minimum time and energy problems using

the PMP
– Issue is that the process of a developing a solution by analytic con

struction is laborious and very hard to extend to anything nonlinear
and/or linear with more than 2 states

•	 Need to revisit the problem statement and develop a new approach.
•	 Goal: develop the control input sequence

Mi
− ≤ ui(t) ≤ Mi

+

that drives the system (nonlinear, but linear control inputs)

ẋ = A(x, t) + B(x, t)u

from an arbitrary state x0 to the origin to minimize maneuver time
tf

min J = dt
t0

Solution: form the Hamiltonian •

H	 = 1 + p T (t){A(x, t) + B(x, t)u}

=	 1 + p T (t){A(x, t) + b1(x, t) b2(x, t) · · · bm(x, t) u}
m

= 1 + p T (t)A(x, t) + p T (t)bi(x, t)ui(t)

i=1

Now use the PMP: select ui(t) to minimize H, which gives •	 ⎧ ⎨ Mi
+ if pT (t)bi(x, t) < 0

ui(t) = ⎩ Mi
− if pT (t)bi(x, t) > 0

which gives us the expected Bang-Bang control

Then solve for the costate
•	 � �T

∂A ∂B
ṗ = −Hx

T = − + u p
∂x ∂x

– Could be very complicated for a nonlinear system.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

•	 �

Spr 2008	 16.323 9–19

Note: shown how to pick u(t) given that pT (t)bi(x, t) = 0

– Not obvious what to do if pT (t)bi(x, t) = 0 for some finite time
interval.

– In this case the coefficient of ui(t) is zero, and PMP provides no
information on how to pick the control inputs.

– Will analyze this singular condition in more detail later.

• To develop further insights, restrict the system model further to LTI,
so that

A(x, t) Ax B(x, t) B→	 →

– Assume that [A,B] controllable

– Set Mi
+ = −Mi

− = umi

•	 Just showed that if a solution exists, it is Bang-Bang

– Existence: if R(λi(A)) ≤ 0, then an optimal control exists that
transfers any initial state x0 to the origin.

� Must eliminate unstable plants from this statement because the
control is bounded.

– Uniqueness: If an extremal control exists (i.e. solves the necessary
condition and satisfies the boundary conditions), then it is unique.

� Satisfaction of the PMP is both necessary and sufficient for time-

optimal control of a LTI system.

•	 If the eigenvalues of A are all real, and a unique optimal control exists,
then each control input can switch at most n − 1 times.
– Still need to find the costates to determine the switching times –

but much easier in the linear case.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

�

� � �

Spr 2008 16.323 9–20 Min Fuel Problems
• Goal: develop the control input sequence

Mi
− ≤ ui(t) ≤ Mi

+

that drives the system

ẋ = A(x, t) + B(x, t)u

from an arbitrary state x0 to the origin in a fixed time tf and optimizes
the cost � m
tf �

min J = ci|ui(t)|dt

t0 i=1

Solution: form the Hamiltonian •
m

H = ci|ui(t)| + p T (t){A(x, t) + B(x, t)u}
i=1 �m m

= ci|ui(t)| + p T (t)A(x, t) + p T (t)bi(x, t)ui(t)
i=1 i=1
m

= ci|ui(t)| + p T (t)bi(x, t)ui(t) + p T (t)A(x, t)
i=1

• Use the PMP, which requires that we select ui(t) to ensure that for
all admissible ui(t)

m m
�� � �� �

ci|ui�(t)| + p T (t)bi(x, t)ui
�(t) ≤ ci|ui(t)| + p T (t)bi(x, t)ui(t)

i=1 i=1

• If the components of u are independent, then can just look at

ci|u�i (t)| + p T (t)bi(x, t)u
�
i (t) ≤ ci|ui(t)| + p T (t)bi(x, t)ui(t)

– As before, this boils down to a comparison of ci and pT (t)bi

– Resulting control law is: ⎧ ⎨ Mi
− if ci < pT (t)bi

u�i (t) = ⎩
0 if −ci < pT (t)bi < ci
Mi

+ if pT (t)bi < −ci

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� � � �

�

Spr 2008	 Example: 9–1 16.323 9–21

0 1 0
Consider G(s) = 1/s2 A = B = •	 ⇒

0 0 1

tf

min J = |u(t)|dt
t0

– Drive state to the origin with tf fixed.

•	 Gives H = |u| + p1x2 + p2u
– Final control u(tf) = um p2(tf) < −1 p2(t) = c2 − c1t⇒

•	 As before, integrate EOM forward from 0 to t2 using −um, then from
t2 to t1 using u = 0, and from t1 to tf using um

– Apply terminal conditions and solve for c1 and c2

Figure 9.12: Min Fuel for varying final
times

Figure 9.13: Min fuel for fixed final
time, varying IC’s

•	 First switch depends on IC and tf ⇒ no clean closed-form solution for
switching curve
– Larger tf leads to longer coast.

– For given tf , there is a limit to the IC from which we can reach the
origin.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

� �	 �

� �	 �

Spr 2008	 16.323 9–22

•	 If specified completion time tf > Tmin = ẏ(0) + 2 y(0) + 0.5ẏ2(0),
then

t2 = 0.5 (ẏ(0) + tf) − (ẏ(0) − tf)2 − (4y(0) + 2 ̇y2(0))

t1 = 0.5 (ẏ(0) + tf) + (ẏ(0) − tf)2 − (4y(0) + 2 ̇y2(0))

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

• � �

� �

Spr 2008 Minimum Energy Problem16.323 9–23

Goal: for a fixed final time and terminal constraints •

1 tf

min J = u TRu dt R > 0
2 0

• Again use special dynamics:

ẋ = A(x, t) + B(x, t)u

H =
1
u TRu + p T { A(x, t) + B(x, t)u}

2
• Obviously with no constraints on u, solve Hu = 0, to get

u = −R−1BT p(t)

But with bounded controls, must solve:

1
u �(t) = arg min u TRu + p TB(x, t)u

u(t)∈U 2

which is a constrained quadratic program in general
– However, for diagonal R, the effects of the controls are independent

m

u �(t) = arg min
� 1

Riiu 2
i + p T biui

u(t)∈U
i=1

2

– In the unconstrained case, each ui(t) can easily be determined by
minimizing

1 2

2
Riiui + p T biui → ũi = −Rii

−1 p T bi

• The resulting controller inputs are ui(t) = sat(ũi(t)) ⎧ ⎨ Mi
− if ũi < Mi

−

ui(t) = ũi if Mi
− < ũi < Mi

+ ⎩
Mi

+ if Mi
+ < ũi

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Spr 2008 16.323 9–24

Min Fuel

% Min fuel for double integrator

% 16.323 Spring 2008

% Jonathan How

%

c=1;

t=[0:.01:t_f];

alp=(1/2/u_m) % switching line

T_2=roots([-u_m/2 yd0 y0] + conv([-u_m yd0],[-2 t_f+yd0/u_m])-alp*conv([-u_m yd0],[-u_m yd0]));%

t_2=min(T_2);

yd2=-u_m*t_2+yd0;yd1=yd2;

t_1=t_f+yd1/u_m;

c_1=2/(t_1-t_2);c_2=c_1*t_1-1;

G=ss([0 1;0 0],[0 1]’,eye(2),zeros(2,1));

arc1=[0:.001:t_2]’; arc2=[t_2:.001:t_1]’;arc3=[t_1:.001:t_f]’; %

[Y1,T1,X1]=lsim(G,-u_m*ones(length(arc1),1),arc1,[y0 yd0]’); %

[Y2,T2,X2]=lsim(G,0*ones(length(arc2),1),arc2,Y1(end,:)’); %

[Y3,T3,X3]=lsim(G,u_m*ones(length(arc3),1),arc3,Y2(end,:)’); %

plot(Y1(:,1),Y1(:,2),zzz,’Linewidth’,2); hold on%

plot(Y2(:,1),Y2(:,2),zzz,’Linewidth’,2); plot(Y3(:,1),Y3(:,2),zzz,’Linewidth’,2);%

ylabel(’dy/dt’,’Fontsize’,18); xlabel(’y(t)’,’Fontsize’,12);%

text(-4,3,’y=-1/(2u_m)(dy/dt)^2’,’Fontsize’,12)%

text(4,4,’-’,’Fontsize’,18);text(-4,-4,’+’,’Fontsize’,18);grid on;hold off

title([’t_f = ’,mat2str(t_f)],’Fontsize’,12)%

hold on;% plot the switching curves

kk=[0:.1:8]’; plot(-alp*kk.^2,kk,’k--’);plot(alp*kk.^2,-kk,’k--’);

hold off;axis([-4 4 -4 4]/4*6);

figure(2);%

p2=c_2-c_1*t;%

plot(t,p2,’Linewidth’,4);%

hold on; plot([0 t_f],[c c],’k--’,’Linewidth’,2);hold off; %

hold on; plot([0 t_f],-[c c],’k--’,’Linewidth’,2);hold off; %

hold on; plot([t_1 t_1],[-2 2],’k:’,’Linewidth’,3);hold off; %

text(t_1+.1,1.5,’t_1’,’Fontsize’,12)%

hold on; plot([t_2 t_2],[-2 2],’k:’,’Linewidth’,3);hold off; %

text(t_2+.1,-1.5,’t_2’,’Fontsize’,12)%

title([’c = ’,mat2str(c),’ u_m = ’,mat2str(u_m)],’Fontsize’,12);%

ylabel(’p_2(t)’,’Fontsize’,12); xlabel(’t’,’Fontsize’,12);%

text(1,c+.1,’c’,’Fontsize’,12);text(1,-c+.1,’-c’,’Fontsize’,12)%

axis([0 t_f -3 3]);grid on; %

return

figure(1);clf

y0=2;yd0=3;t_f=5.8;u_m=1.5;zzz=’-’;minu;

figure(1);hold on

y0=2;yd0=3;t_f=16;u_m=1.5;zzz=’k--’;minu;

figure(1);hold on

y0=2;yd0=3;t_f=32;u_m=1.5;zzz=’r:’;minu;

figure(1);

axis([-6 6 -6 6])

legend(’5.8’,’16’,’32’)

print -f1 -dpng -r300 uopt1.png;

figure(1);clf

y0=2;yd0=2;t_f=8;u_m=1.5;zzz=’-’;minu

figure(1);hold on

y0=6;yd0=2;t_f=8;u_m=1.5;zzz=’k--’;minu

figure(1);hold on

y0=15.3;yd0=2;t_f=8;u_m=1.5;zzz=’r:’;minu

figure(1);axis([-2 25 -6 6])

print -f1 -dpng -r300 uopt2.png;

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

16.323 Lecture 10

Singular Arcs

•	 Bryson Chapter 8
Kirk Section 5.6 •

co
nt

ro
len

gin
ee

rs
.ir

•	 � �

�� � �

Spr 2008	 16.323 10–1
Singular Problems

There are occasions when the PMP

u �(t) = arg min H(x, u, p, t)
u(t)∈U

fails to define u�(t) can an extremal control still exist?
⇒
– Typically occurs when the Hamiltonian is linear in the control, and

the coefficient of the control term equals zero.

•	 Example: on page 9-10 we wrote the control law: ⎧ ⎨ −um b < p2(t)
u(t) = ⎩

0 −b < p2(t) < b
um p2(t) < −b

but we do not know what happens if p2 = b for an interval of time.
– Called a singular arc.

– Bottom line is that the straightforward solution approach does not
work, and we need to investigate the PMP conditions in more detail.

•	 Key point: depending on the system and the cost, singular arcs might
exist, and we must determine their existence to fully characterize the
set of possible control solutions.

•	 Note: control on the singular arc is determined by the requirements
that the coefficient of the linear control terms in Hu remain zero on
the singular arc and so must the time derivatives of Hu.
– Necessary condition for scalar u can be stated as

∂ d2k

(−1)k

∂u dt2k
Hu ≥ 0 k = 0, 1, 2 . . .

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 Singular Arc Example 1 16.323 10–2

•	 With ẋ = u, x(0) = 1 and 0 ≤ u(t) ≤ 4, consider objective �	 2

min (x(t) − t2)2dt
0

First form standard Hamiltonian •

H = (x(t) − t2)2 + p(t)u(t)

which gives Hu = p(t) and

ṗ(t) = −Hx = −2(x − t2), with p(2) = 0 (10.15)

•	 Note that if p(t) > 0, then PMP indicates that we should take the
minimum possible value of u(t) = 0.
– Similarly, if p(t) < 0, we should take u(t) = 4.

•	 Question: can we get that Hu ≡ 0 for some interval of time?
– Note: Hu ≡ 0 implies p(t) ≡ 0, which means ṗ(t) ≡ 0, and thus

ṗ(t) ≡ 0 ⇒ x(t) = t2 , u(t) = ẋ = 2t

•	 Thus we get the control law that ⎧ ⎨ 0 p(t) > 0
u(t) = 2t when p(t) = 0 ⎩

4 p(t) < 0

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

•	 �

�

Spr 2008	 16.323 10–3

•	 Can show by contradiction that optimal solution has x(t) ≥ t2 for
t ∈ [0, 2].
– And thus we know that ṗ(t) ≤ 0 for t ∈ [0, 2]

– But p(2) = 0 and ṗ(t) ≤ 0 imply that p(t) ≥ 0 for t ∈ [0, 2]

•	 So there must be a point in time k ∈ [0, 2] after which p(t) = 0 (some
steps skipped here...)
– Check options: k = 0? contradiction ⇒

– Check options: k = 2? contradiction ⇒

So must have 0 < k < 2. How find it? Control law will be

u(t) =	
0 when 0 ≤ t < k
2t k ≤ t < 2

apply this control to the state equations and get:

x(t) =
t

1
2 + (1 − k2)

when
k
0 ≤
≤
t

t
≤
≤
k
2

To find k, note that must have p(t) ≡ 0 for t ∈ [k, 2], so in this time
range

ṗ(t) ≡ 0 = −2(1 − k2) ⇒ k = 1

– So now both u(t) and x(t) are known, and the optimal solution is
to “bang off” and then follow a singular arc.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� � � �

�

Spr 2008 Singular Arc Example 2 16.323 10–4

•	 LTI system, x1(0), x2(0), tf given; x1(tf) = x2(tf) = 0

0 1 1
A = B =

0 0 −1

tf

and J = 1
2 x1

2dt (see Bryson and Ho, p. 248)

0

•	 So H = 1 x1(t)
2 + p1(t)x2(t) + p1(t)u(t) − p2(t)u(t)2

⇒ ṗ1(t) = −x1(t), ṗ2(t) = −p1(t)

•	 For a singular arc, we must have Hu = 0 for a finite time interval

Hu = p1(t) − p2(t) = 0?

•	 Thus, during that interval

d
Hu = ṗ1(t) − ṗ2(t)

dt
= −x1(t) + p1(t) = 0

•	 Note that H is not an explicit function of time, so H is a constant
for all time

H =
1
x1(t)

2 + p1(t)x2(t) + [p1(t) − p2(t)] u(t) = C
2

but can now substitute from above along the singular arc

1
x1(t)

2 + x1(t)x2(t) = C
2

which gives a family of singular arcs in the state x1, x2

•	 To find the appropriate control to stay on the arc, use

d2

dt2
(Hu) = −ẋ1 + ṗ1 = −(x2(t) + u(t)) − x1(t) = 0

or that u(t) = −(x1(t) + x2(t)) which is a linear feedback law to use
along the singular arc.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

�

Spr 2008 Details for LTI Systems 16.323 10–5

• Consider the min time-fuel problem for the general system

ẋ = Ax + Bu

with M− ≤ ui ≤ M+ and
� tf m

J = (1 + ci|ui|)dt
0 i=1

tf is free and we want to drive the state to the origin

• We studied this case before, and showed that
m

H = 1 + (ci|ui| + p TBiui) + p TAx
i=1

• On a singular arc,
dt
dk

k (Hu) = 0 ⇒ coefficient of u in H is zero

⇒ p T (t)Bi = ±ci
for non-zero period of time and � �T

dk

(p T (t)Bi) =
dkp(t)

Bi = 0 ∀ k ≥ 1

dtk	 dtk

•	 Recall the necessary conditions ṗT = −Hx = −pTA, which imply

p̈T = −ṗTA = p TA2

...
pT = −p̈TA = −p TA3

...� �T
dkp(t) ≡ (−1)k p TAk

dtk

and combining with the above gives � �T
dkp(t)

Bi = (−1)k p TAkBi = 0
dtk

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�	 �
�	 �

•	 �

�	 �

Spr 2008	 16.323 10–6

•	 Rewriting these equations yields the conditions that

p TABi = 0, p TA2Bi = 0, · · ·

⇒ p TA Bi ABi · · · An−1Bi = 0

•	 There are three ways to get:

p TA Bi ABi An−1Bi = 0 · · ·

On a singular arc, we know that p(t) = 0 so this does not cause the
condition to be zero.

•	 What if A singular, and p(t)TA = 0 on the arc?
– Then ṗT = −pTA = 0. In this case, p(t) is constant over [t0, tf]

– Indicates that if the problem is singular at any time, it is singular
for all time.

– This also indicates that u is a constant.

– A possible case, but would be unusual since it is very restrictive set
of control inputs.

•	 Third possibility is that Bi ABi · · · An−1Bi is singular, meaning
that the system is not controllable by the individual control inputs.
– Very likely scenario – most common cause of singularity conditions.

– Lack of controllability by a control input does not necessarily mean
that a singular arc has to exist, but it is a possibility.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�	 �

Spr 2008	 16.323 10–7

• For Min Time problems, now ci = 0, so things are a bit different

•	 In this case the switchings are at pTBi = 0 and a similar analysis as
before gives the condition that

p T Bi ABi An−1Bi = 0 · · ·

•	 Now there are only 2 possibilities
– p = 0 is one, but in that case,

H	= 1 + p T (Ax + Bu) = 1

but we would expect that H = 0

– Second condition is obviously the lack of controllability again.

•	 Summary (Min time):
– If the system is completely controllable by Bi, then ui can have no

singular intervals

– Not shown, but if the system is not completely controllable by Bi,
then ui must have a singular interval.

•	 Summary (Min time-fuel):
– If the system is completely controllable by Bi and A is non-singular,

then there can be no singular intervals

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

Spr 2008	 Nonlinear Systems 16.323 10–8

•	 Consider systems that are nonlinear in the state, but linear in the
control

ẋ(t) = a(x(t)) + b(x(t))u(t)

with cost	 � tf

J = g(x(t))dt
t0

•	 For a singular arc, in general you will find that

dk

dtk
(Hui

) = 0 k = 0, . . . , r − 1

but these conditions provide no indication of the control required to
keep the system on the singular arc
– i.e. the coefficient of the control terms is zero.

But then for some r and i, dt
dr

r (Hui
) = 0 does retain ui.•

– So if uj(x, p) are the other control inputs, then

dr
(Hui

) = C(x, p, uj(x, p)) + D(x, p, uj(x, p))ui = 0
dtr

with D = 0, so the condition does depend on ui.

•	 Then can define the appropriate control law to stay on the singular
arc as

C(x, p, uj(x, p,))
ui = −

D(x, p, uj(x, p,))

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �

Spr 2008 16.323 10–9

• Properties of this solution are:
– r ≥ 2 is even

– Singular surface of dimension 2n − r in space of (x, p) in general,
but 2n − r − 1 if tf is free (additional constraint that H(t) = 0)

– Additional necessary condition for the singular arc to be extremal is
that: � �

∂ dr
(−1)r/2 Hu ≥ 0

∂ui dtr

– Note that in the example above,

∂ dr
Hu ∼ D

∂ui dtr

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �

Spr 2008	 Last Example 16.323 10–10

•	 Goddard problem: thrust program for maximum altitude of a sounding
rocket [Bryson and Ho, p. 253]. Given the EOM:

1
v̇ = [F (t) − D(v, h)] − g

m
ḣ = v

−F (t)
ṁ	 =

c

where g is a constant, and drag model is D(v, h) = 1
2ρv

2CdSe
−βh

•	 Problem: Find 0 ≤ F (t) ≤ Fmax to maximize h(tf) with v(0) =
h(0) = 0 and m(0),m(tf) are given

The Hamiltonian is •

1	 F (t)
H = p1 [F (t) − D(v, h)] − g + p2v − p3

m c

and since v(tf) is not specified and we are maximizing h(tf),

p2(tf) = −1 p1(tf) = 0

– Note that H(t) = 0 since the final time is not specified.

The costate EOM are: •
 ⎤⎡
1 ∂D
m ∂v −1 0
1 ∂D

⎢⎢⎣

⎥⎥⎦
ṗ =
 0 0
 p

m ∂h

F −
2
D 0 0

m

•	 H is linear in the controls, and the minimum is found by minimizing
(pm

1 − pc
3)F (t), which clearly has 3 possible solutions:

F = Fmax (pm
1 − pc

3) < 0
0 < F < Fmax if (pm

1 − pc
3) = 0

F = 0 (pm
1 − pc

3) > 0

– Middle expression corresponds to a singular arc.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �

� �

Spr 2008	 16.323 10–11

•	 Note: on a singular arc, must have Hu = p1c − p3m = 0 for finite
interval, so then Ḣu = 0 and Ḧ

u = 0, which means

∂D D
+ p1 − mp2 = 0

∂v c

and
m

F = D + mg + (10.16)
D + 2c∂D + c2 ∂2D

· � ∂v ∂v2 �
∂D	 ∂D ∂2D −g(D + c) + c(c − v)

∂h
− vc 2

∂v	 ∂v∂h

which is a nonlinear feedback control law for thrust on a singular arc.
– For this particular drag model, the feedback law simplifies to:

mg
�
βc2 � v � c

�

F = D + mg +
1 + 4(c/v) + 2(c/v)2 g

1 +
c
− 1 − 2

v

and the singular surface is: mg = 1 + vc D

•	 Constraints H(t) = 0, Hu = 0, and Ḣu = 0 provide a condition that
defines a surface for the singular arc in v, h,m space:

v ∂D
D + mg − D − v = 0	 (10.17)

c ∂v

•	 It can then be shown that the solution typically consists of 3 arcs:
1.	F = Fmax until 10.17 is satisfied.
2. Follow singular arc using 10.16 feedback law until m(t) = m(tf).
3. F = 0 until v = 0.

which is of the form “bang-singular-bang”

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 10–12

Figure 10.1: Goddard Problem

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 10–13

Figure 10.2: Goddard Problem

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 10–14

Figure 10.3: Goddard Problem

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

16.323 Lecture 11

Estimators/Observers

• Bryson Chapter 12

• Gelb – Optimal Estimation

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 11–1
Estimators/Observers

Problem: So far we have assumed that we have full access to the •
state x(t) when we designed our controllers.
– Most often all of this information is not available.

– And certainly there is usually error in our knowledge of x.

•	 Usually can only feedback information that is developed from the sen

sors measurements.
– Could try “output feedback” u = Kx u = K̂y⇒

– But this is type of controller is hard to design.

•	 Alternative approach: Develop a replica of the dynamic system that
provides an “estimate” of the system states based on the measured
output of the system.

•	 New plan: called a “separation principle”
1. Develop estimate of x(t), called x̂(t).

2. Then switch from u = −Kx(t) to u = −Kx̂(t).

•	 Two key questions:
– How do we find x̂(t)?

– Will this new plan work? (yes, and very well)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

Spr 2008 Estimation Schemes 16.323 11–2

• Assume that the system model is of the form:

ẋ = Ax + Bu , x(0) unknown

y = Cyx

where
– A, B, and Cy are known – possibly time-varying, but that is sup

pressed here.
– u(t) is known
– Measurable outputs are y(t) from Cy = I

• Goal: Develop a dynamic system whose state

x̂(t) = x(t) ∀t ≥ 0

Two primary approaches:
– Open-loop.
– Closed-loop.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 Open-loop Estimator 16.323 11–3

•	 Given that we know the plant matrices and the inputs, we can just
perform a simulation that runs in parallel with the system

ẋ̂(t) = Ax̂ + Bu(t)

– Then x̂(t) ≡ x(t) ∀ t provided that x̂(0) = x(0)

System A,B,Cy

⇒ x(t)

y(t)
��

u(t)

��

��
Observer A,B,Cy

⇒ x̂(t)

ŷ(t)
��

•	 To analyze this case, start with:

ẋ(t) = Ax(t) + Bu(t)

ẋ̂(t) = Ax̂(t) + Bu(t)

•	 Define the estimation error: x̃(t) = x(t) − x̂(t).
– Now want x̃(t) = 0 ∀ t, but is this realistic?

• Major Problem: We do not know x(0)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

Spr 2008	 16.323 11–4

•	 Subtract to get:

d
dt

(x − x̂) = A(x − x̂) ⇒ ẋ̃(t) = Ax̃

which has the solution

x̃(t) = eAt x̃(0)

– Gives the estimation error in terms of the initial error.

•	 Does this guarantee that x̃ = 0 ∀ t?
Or even that x̃ 0 as t →∞? (which is a more realistic goal). →

– Response is fine if x̃(0) = 0. But what if x̃(0) = 0?

•	 If A stable, then x̃ → 0 as t →∞, but the dynamics of the estimation
error are completely determined by the open-loop dynamics of the
system (eigenvalues of A).
– Could be very slow.

– No obvious way to modify the estimation error dynamics.

•	 Open-loop estimation is not a very good idea.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 Closed-loop Estimator 16.323 11–5

Obvious fix to problem: use the additional information available:•
– How well does the estimated output match the measured output?

Compare: y = Cyx with ŷ = Cyx̂

– Then form ỹ = y − ŷ ≡ Cy ̃x

System A,B,Cy

→ x(t)

y(t)
��

+����

��

u(t)

��

��

L

Observer A,B,Cy

→ x̂(t)

ŷ(t)
��

−

•	 Approach: Feedback ỹ to improve our estimate of the state. Basic
form of the estimator is:

ẋ̂(t) = Ax̂(t) + Bu(t) + Lỹ(t)

ŷ(t) = Cyx̂(t)

where L is a user selectable gain matrix.

Analysis:•

ẋ̃ = ẋ− ẋ̂ = [Ax + Bu] − [Ax̂ + Bu + L(y − ŷ)]

= A(x − x̂) − L(Cx − Cyx̂)

= Ax̃− LCyx̃ = (A − LCy)x̃

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 11–6

•	 So the closed-loop estimation error dynamics are now

ẋ̃ = (A − LCy)x̃ with solution x̃(t) = e(A−LCy)t x̃(0)

•	 Bottom line: Can select the gain L to attempt to improve the
convergence of the estimation error (and/or speed it up).
– But now must worry about observability of the system [A,Cy].

•	 Note the similarity:
– Regulator Problem: pick K for A − BK
�	Choose K ∈ R1×n (SISO) such that the closed-loop poles

det(sI − A + BK) = Φc(s)

are in the desired locations.
– Estimator Problem: pick L for A − LCy

�	Choose L ∈ Rn×1 (SISO) such that the closed-loop poles

det(sI − A + LCy) = Φo(s)

are in the desired locations.

•	 These problems are obviously very similar – in fact they are called
dual problems

– Note: poles of (A − LCy) and (A − LCy)T are identical.

– Also have that (A − LCy)T = AT − CTLT
y

– So designing LT for this transposed system looks like a standard
regulator problem (A − BK) where

A AT ⇒
B CT ⇒ y

K LT ⇒

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �

� � � �

• � �

Spr 2008 16.323 11–7
Estimator Example 10–1

• Simple system (see page 11-23) � � � � � � −1 1.5 1 −0.5
A = , B = , x(0) =

1 −2 0 −1

Cy = 1 0 , D = 0

– Assume that the initial conditions are not well known.

– System stable, but λmax(A) = −0.18

– Test observability:

Cy 1 0
rank = rank

CyA −1 1.5

Use open and closed-loop estimators. Since the initial conditions are
0

not well known, use x̂(0) =
0

• Open-loop estimator:

ẋ̂ = Ax̂ + Bu

ŷ = Cyx̂

• Closed-loop estimator:

ẋ̂ = Ax̂ + Bu + Lỹ = Ax̂ + Bu + L(y − ŷ)

= (A − LCy)x̂ + Bu + Ly

ŷ = Cyx̂

– Dynamic system with poles λi(A − LCy) that takes the measured
plant outputs as an input and generates an estimate of x.

– Use place command to set closed-loop pole locations

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 11–8

• Typically simulate both systems together for simplicity

• Open-loop case:

ẋ = Ax + Bu

y = Cyx

ẋ̂ = Ax̂ + Bu

ŷ = Cyx̂ ⎡ ⎤ � � � � � � � � � � ⎢
−0.5 ⎥ ẋ

=
A 0 x

+
B

u ,
x(0)

= ⎢ −1 ⎥ ⇒	
ẋ̂ 0 A x̂ B x̂(0)

⎢⎣ 0
⎥⎦

0 � � � � � �
y Cy 0 x

=
ŷ	 0 Cy x̂

• Closed-loop case:

ẋ = Ax + Bu

ẋ̂ = (A − LCy)x̂ + Bu + LCyx � � �	 � � � � �
ẋ A 0 x B ⇒
ẋ̂

=
LCy A − LCy x̂

+
B

u

• Example uses a strong u(t) to shake things up

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 11–9

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1
Open loop estimator

st
at

es

time

x
1 x

2

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

es
tim

at
io

n
er

ro
r

time

Figure 11.1: Open-loop estimator. Estimation error converges to zero, but very

slowly.

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1
Closed−loop estimator

st
at

es

time

x
1 x

2

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

es
tim

at
io

n
er

ro
r

time

Figure 11.2: Closed-loop estimator. Convergence looks much better.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 11–10 Estimator Poles?
•	 Location heuristics for poles still apply – use Bessel, ITAE, . . .

– Main difference: probably want to make the estimator faster than
you intend to make the regulator – should enhance the control,
which is based on x̂(t).

– ROT: Factor of 2–3 in the time constant ζωn associated with the
regulator poles.

•	 Note: When designing a regulator, were concerned with “bandwidth”
of the control getting too high often results in control commands ⇒
that saturate the actuators and/or change rapidly.

Different concerns for the estimator: •
– Loop closed inside computer, so saturation not a problem.

– However, the measurements y are often “noisy”, and we need to
be careful how we use them to develop our state estimates.

⇒ High bandwidth estimators tend to accentuate the effect of sens

ing noise in the estimate.
– State estimates tend to “track” the measurements, which are fluc

tuating randomly due to the noise.

⇒ Low bandwidth estimators have lower gains and tend to rely more
heavily on the plant model
– Essentially an open-loop estimator – tends to ignore the measure

ments and just uses the plant model.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 Optimal Estimator 16.323 11–11

•	 Can also develop an optimal estimator for this type of system.

– Given duality of regulator and estimator, would expect to see close
connection between optimal estimator and regulator (LQR)

•	 Key step is to balance the effect of the various types of random noise
in the system on the estimator:

ẋ = Ax + Bu + Bww

y = Cyx + v

– w: “process noise” – models uncertainty in the system model.
– v: “sensor noise” – models uncertainty in the measurements.

•	 Typically assume that w(t) and v(t) are zero mean E[w(t)] = 0 and
– Uncorrelated Gaussian white random noises: no correlation between

the noise at one time instant and another

E[w(t1)w(t2)
T] =Rww(t1)δ(t1 − t2) ⇒ w(t) ∼ N (0, Rww)

E[v(t1)v(t2)
T] =Rvv(t1)δ(t1 − t2) ⇒ v(t) ∼ N (0, Rvv)

E[w(t1)v(t2)
T] =0

−20 −15 −10 −5 0 5 10 15 20

10
−2

10
−1

10
0

X

P
(X

)

Gaussian for various Sigma

0.25

0.5

1

5

10

25

Figure 11.3: Example of impact of covariance = σ2 on the distribution of the PDF
– wide distribution corresponds to large uncertainty in the variable

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 Analysis 16.323 11–12

•	 With noise in the system, the model is of the form:

ẋ = Ax + Bu + Bww , y = Cyx + v

– And the estimator is of the form:

ẋ̂ = Ax̂ + Bu + L(y − ŷ) , ŷ = Cyx̂

•	 Analysis: in this case:

ẋ̃ = ẋ− ẋ̂ = [Ax + Bu + Bww] − [Ax̂ + Bu + L(y − ŷ)]

=	 A(x − x̂) − L(Cyx − Cyx̂) + Bww − Lv

=	 Ax̃− LCyx̃ + Bww − Lv

=	 (A − LCy)x̃ + Bww − Lv (11.18)

•	 This equation of the estimation error explicitly shows the conflict in
the estimator design process. Must balance between:
– Speed of the estimator decay rate, which is governed by

Re[λi(A − LCy)]

– Impact of the sensing noise v through the gain L

•	 Fast state reconstruction requires rapid decay rate – typically requires
a large L, but that tends to magnify the effect of v on the estimation
process.
– The effect of the process noise is always there, but the choice of L

will tend to mitigate/accentuate the effect of v on x̃(t).

•	 Kalman Filter needs to provide an optimal balance between the
two conflicting problems for a given “size” of the process and sensing
noises.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 Optimization 16.323 11–13

•	 Note that Eq. 11.18 is of the form of a linear time-varying system
driven by white Gaussian noise
– Can predict the mean square value of the state (estimation error

in this case) Q(t) = E[x̃(t)x̃(t)T] over time using Q(0) = Q0 and

Q̇(t) = [A − LCy] Q(t) + Q(t) [�A − LCy]
T � � � � � Rww 0 BT

+	 wBw −L
0 Rvv −LT

= [A − LCy] Q(t) + Q(t) [A − LCy]
T + BwRwwBw

T + LRvvL
T

– Called a matrix differential Lyapunov Equation16

•	 Note that ideally would like to minimize Q(t) or trace Q(t), but that
is difficult to do & describe easily17 .

Instead, consider option of trying to minimize trace Q̇(t), the argu•	
ment being that then

�
0
t
trace Q̇(τ)dτ is small.

– Not quite right, but good enough to develop some insights

•	 To proceed note that

∂	 ∂
trace[AXB] = trace[BTXTAT] = ATBT

∂X	 ∂X
and

∂
trace[AXBXTC] = ATCTXBT + CAXB

∂X

•	 So for minimum we require that

∂
trace Q̇ = −2QTCT + 2LRvv = 0

∂L	 y

which implies that
L = Q(t)CTR−1

y vv

16See K+S, chapter 1.11 for details.

17My 16.324 discuss how to pose the problem in discrete time and then let Δt 0 to recover the continuous time results. →

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 11–14

•	 Note that if we use this expression for L in the original differential
Lyapunov Equation, we obtain:

Q̇(t) = [A − LCy] Q(t) + Q(t) [A − LCy]
T + BwRwwB

T + LRvvL
T

w

=
�
A − Q(t)CTR−1Cy

�
Q(t) + Q(t)

�
A − Q(t)CTR−1Cy

�T
y vv y vv

+BwRwwB
T + Q(t)CTR−1Rvv(Q(t)CTR−1)T
w y vv	 y vv

= AQ(t) + Q(t)AT − 2Q(t)CTR−1CyQ(t) + BwRwwB
T

y vv w

+Q(t)Cy
T

vv CyQ(t)R−1

Q̇(t) = AQ(t) + Q(t)AT BT	 R−1 Q(t)+ BwRww w − Q(t)Cy
T

vv Cy

which is obviously a matrix differential Riccati equation.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�	 �

Spr 2008 Optimal Kalman Filter 16.323 11–15

•	 Goal: develop an estimator x̂(t) which is a linear function of the
measurements y(τ) (0 ≤ τ ≤ t) and minimizes the function

J	 = trace(Q(t))

Q(t) = E {x(t) − x̂(t)}{x(t) − x̂(t)}T

which is the covariance for the estimation error.

•	 Solution: is a closed-loop estimator 18

ẋ̂(t) = Ax̂ + L(t)(y(t) − Cyx̂(t))

where L(t) = Q(t)CTR−1 and Q(t) ≥ 0 solves y	 vv

Q̇(t) = AQ(t) + Q(t)AT + Bw BT − Q(t)CTR−1 Q(t)Rww w y vv Cy

– Note that x̂(0) and Q(0) are known

– Differential equation for Q(t) solved forward in time.

– Filter form of the differential matrix Riccati equation for the
error covariance.

– Note that the AQ(t) + Q(t)AT . . . is different than with the regu

lator which had P (t)A + ATP (t) . . .

•	 Called Kalman-Bucy Filter – linear quadratic estimator (LQE)

18See OCW notes for 16.322 “Stochastic Estimation and Control” for the details of this derivation.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

http://ocw.mit.edu/NR/rdonlyres/Aeronautics-and-Astronautics/16-322Fall-2004/051195EC-64BB-41CB-A3D0-91EE96758A3C/0/lecture24.pdf

Spr 2008	 16.323 11–16

•	 Note that an increase in Q(t) corresponds to increased uncertainty
in the state estimate. Q̇(t) has several contributions:
– AQ(t) + Q(t)AT is the homogeneous part

– BwRwwBw
T increase due to the process measurements

– Q(t)CTR−1CyQ(t) decrease due to measurements y	 vv

•	 The estimator gain is L(t) = Q(t)CTR−1
y	 vv

– Feedback on the innovation, y − ŷ

– If the uncertainty about the state is high, then Q(t) is large, and
so the innovation y − Cyx̂ is weighted heavily (L)↑

– If the measurements are very accurate Rvv , then the measure↓
ments are heavily weighted

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 Steady State 16.323 11–17

Assume that 19 •
1. Rvv > 0, Rww > 0

2. All plant dynamics are constant in time

3. [A,Cy] detectable

4. [A,Bw] stabilizable

• Then, as with the LQR problem, the covariance of the LQE quickly
settles down to a constant Qss independent of Q(0), as t →∞ where

AT BT CTR−1AQss + Qss + BwRww w − Qss y vv CyQss = 0

– Stabilizable/detectable gives a unique Qss ≥ 0

– Qss > 0 iff [A,Bw] controllable

– Lss = QssC
TR−1
y vv

• If Qss exists, the steady state filter

ẋ̂(t) = Ax̂ + Lss(y(t) − Cyx̂(t))

= (A − LssCy)x̂(t) + Lssy(t)

is asymptotically stable iff (1)–(4) above hold.

19Compare this with 4–10

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 Filter Interpretation 16.323 11–18

Given that ẋ̂ = (A − LCy)x̂ + Ly•

•	 Consider a scalar system, and take the Laplace transform of both sides
to get:

X̂(s)	 L
=

Y (s) sI − (A − LCy)

This is the transfer function from the “measurement” to the “esti•
mated state”
– It looks like a low-pass filter.

•	 Clearly, by lowering Rvv, and thus increasing L, we are pushing out
the pole.
– DC gain asymptotes to 1/Cy as L →∞

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−2

10
−1

10
0

Scalar TF from Y to \hat X for larger L

Freq (rad/sec)

|\h
at

 X
 /

Y
|

Increasing L

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 Example 10–2 16.323 11–19

•	 Lightly Damped Harmonic Oscillator � � � � � � � �
ẋ1	 0 1 x1 0

=	 + w
ẋ2 −ω2 0 x2 1

0

and y = x1 + v, where Rww = 1 and Rvv = r.

– Can sense the position state of the oscillator, but want to develop
an estimator to reconstruct the velocity state.

•	 Symmetric root locus exists for the optimal estimator. Can find
location of the optimal poles using a SRL based on the TF

� � �
s −1

�−1 �
0
�

1 N(s)
Gyw(s) = 1 0

ω0
2 s 1

=
s2 + ω0

2 =
D(s)

– SRL for the closed-loop poles λi(A − LC) of the estimator which
are the LHP roots of:

Rww
D(s)D(−s) ± N(s)N(−s) = 0

Rvv

– Pick sign to ensure that there are no poles on the jω-axis (other
than for a gain of zero)

– So we must find the LHP roots of � � � � 1 1
s 2 + ω2 (−s)2 + ω2 + = (s 2 + ω0

2)2 + = 0 0	 0 r	 r

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

Real Axis

Im
ag

 A
xi

s

Symmetric root locus

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�
 � � �
�
 �
 � �

� �
 �

�

Spr 2008	 16.323 11–20

•	 Note that as r → 0 (clean sensor), the estimator poles tend to ∞
along the ±45 deg asymptotes, so the poles are approximately

s ≈ −1 √±
r

j
 ⇒
 Φe(s) = s
2
 2 2

+ s + = 0
√

r
 r

•	 Can use these estimate pole locations in acker, to get that ⎛	 ⎞� �2 � � � �−1 � �
0 1 2 0 1 2 C 0

L = ⎝ + + I⎠√
r
 r CA 1
2

0
 −ω
20
−ω
 0
 0

2√
r

� �−1 � �
0

2

r

− ω

2√
r

2
0

2
0
− ω

2√
r

1 0

=
 =
 2
− ω
20

2

r

2
0

0 1 1
ω
−
 r

22

•	 Given L, A, and C, we can develop the estimator transfer function
from the measurement y to the x̂2 � � � � � �

√
r	

√
r

−1 �
� �	 0 1
x̂2

0 1 sI −
 1 0
+
=
 2
 2
2

0
−ω
20

−�
ω
 − ω
y
 0

2

r

√
r

r
�−1 �

rr� ��
2

2√
r

s

√
r

−1
� � s +

= 0 1
 2
 2

0

2
 − ω�
� � s 1

2

1
√
r

2

= 0 1 −2
r

√
r

2

r
− ω
 2
2

0

2√
r

− ω

s
2 +
 s +

2

s +

√
r

r

22

s −
√
rω

√
r r	

√
r r

•	 Filter zero asymptotes to s = 0 as r → 0 and the two poles →∞

•	 Resulting estimator looks like a “band-limited” differentiator.
– Expected because we measure position and want to estimate veloc

ity.

– Frequency band over which filter performs differentiation deter

mined by the “relative cleanliness” of the measurements.

June 18, 2008

−2
r)(2

r

2
0
+ (s +
)
 2

0
≈
=
 2
 2
s2 +
 s2 +
s +
 s +

2
0

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 11–21

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Freq (rad/sec)

M
ag

Vel sens to Pos state, sen noise r=1e−008

r=10−2

r=10−4

r=10−6

r=10−8

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0

20

40

60

80

100

120

140

160

180

200

Freq (rad/sec)

P
ha

se
 (

de
g)

r=10−2

r=10−4

r=10−6

r=10−8

Figure 11.4: Bandlimited differentiation of the position measurement from LQE:
r = 10−2 , r = 10−4 , r = 10−6, and r = 10−8

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 11–22
Final Thoughts

•	 Note that the feedback gain L in the estimator only stabilizes the
estimation error.
– If the system is unstable, then the state estimates will also go to
∞, with zero error from the actual states.

•	 Estimation is an important concept of its own.
– Not always just “part of the control system”

– Critical issue for guidance and navigation system

•	 More complete discussion requires that we study stochastic processes
and optimization theory.

•	 Estimation is all about which do you trust more: your
measurements or your model.

•	 Strong duality between LQR and LQE problems

A	 AT ↔
B	 CT ↔ y

Cz ↔ Bw
T

Rzz	 Rww↔
Ruu	 Rvv↔
K(t) ↔ LT (tf − t)

P (t) ↔ Q(tf − t)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 11–23

Basic Estimator (examp1.m) (See page 11-7)

1 % Examples of estimator performance
2 % Jonathan How, MIT
3 % 16.333 Fall 2005
4 %
5 % plant dynamics
6 %
7 a=[-1 1.5;1 -2];b=[1 0]’;c=[1 0];d=0;
8 %
9 % estimator gain calc

10 %
11 l=place(a’,c’,[-3 -4]);l=l’
12 %
13 % plant initial cond
14 xo=[-.5;-1];
15 % extimator initial cond
16 xe=[0 0]’;
17 t=[0:.1:10];
18 %
19 % inputs
20 %
21 u=0;u=[ones(15,1);-ones(15,1);ones(15,1)/2;-ones(15,1)/2;zeros(41,1)];
22 %
23 % open-loop extimator
24 %
25 A_ol=[a zeros(size(a));zeros(size(a)) a];
26 B_ol=[b;b];
27 C_ol=[c zeros(size(c));zeros(size(c)) c];
28 D_ol=zeros(2,1);
29 %
30 % closed-loop extimator
31 %
32 A_cl=[a zeros(size(a));l*c a-l*c];B_cl=[b;b];
33 C_cl=[c zeros(size(c));zeros(size(c)) c];D_cl=zeros(2,1);
34

35 [y_cl,x_cl]=lsim(A_cl,B_cl,C_cl,D_cl,u,t,[xo;xe]);
36 [y_ol,x_ol]=lsim(A_ol,B_ol,C_ol,D_ol,u,t,[xo;xe]);
37

38 figure(1);clf;subplot(211)
39 plot(t,x_cl(:,[1 2]),t,x_cl(:,[3 4]),’--’,’LineWidth’,2);axis([0 4 -1 1]);
40 title(’Closed-loop estimator’);ylabel(’states’);xlabel(’time’)
41 text(.25,-.4,’x_1’);text(.5,-.55,’x_2’);subplot(212)
42 plot(t,x_cl(:,[1 2])-x_cl(:,[3 4]),’LineWidth’,2)
43 %setlines;
44 axis([0 4 -1 1]);grid on
45 ylabel(’estimation error’);xlabel(’time’)
46

47 figure(2);clf;subplot(211)
48 plot(t,x_ol(:,[1 2]),t,x_ol(:,[3 4]),’--’,’LineWidth’,2);axis([0 4 -1 1])
49 title(’Open loop estimator’);ylabel(’states’);xlabel(’time’)
50 text(.25,-.4,’x_1’);text(.5,-.55,’x_2’);subplot(212)
51 plot(t,x_ol(:,[1 2])-x_ol(:,[3 4]),’LineWidth’,2)
52 %setlines;
53 axis([0 4 -1 1]);grid on
54 ylabel(’estimation error’);xlabel(’time’)
55

56 print -depsc -f1 est11.eps; jpdf(’est11’)
57 print -depsc -f2 est12.eps; jpdf(’est12’)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

Spr 2008 16.323 11–24

Filter Interpretation

% Simple LQE example showing SRL

% 16.323 Spring 2007

% Jonathan How

%

a=[0 1;-4 0];

c=[1 0]; % pos sensor

c2=[0 1]; % vel state out

f=logspace(-4,4,800);

r=1e-2;

l=polyvalm([1 2/sqrt(r) 2/r],a)*inv([c;c*a])*[0 1]’

[nn,dd]=ss2tf(a-l*c,l,c2,0); % to the vel estimate

g=freqresp(nn,dd,f*j);

[r roots(nn)]

figure(1)

subplot(211)

f1=f;g1=g;

loglog(f,abs(g))

%hold on;fill([5e2 5e2 1e3 1e3 5e2]’,[1e4 1e-4 1e-4 1e4 1e4]’,’c’);hold off

xlabel(’Freq (rad/sec)’)

ylabel(’Mag’)

title([’Vel sens to Pos state, sen noise r=’,num2str(r)])

axis([1e-3 1e3 1e-4 1e4])

subplot(212)

semilogx(f,unwrap(angle(g))*180/pi)

xlabel(’Freq (rad/sec)’)

ylabel(’Phase (deg)’)

axis([1e-3 1e3 0 200])

figure(2)

r=1e-4;

l=polyvalm([1 2/sqrt(r) 2/r],a)*inv([c;c*a])*[0 1]’

[nn,dd]=ss2tf(a-l*c,l,c2,0); % to the vel estimate

g=freqresp(nn,dd,f*j);

[r roots(nn)]

subplot(211)

f2=f;g2=g;

loglog(f,abs(g))

%hold on;fill([5e2 5e2 1e3 1e3 5e2]’,[1e4 1e-4 1e-4 1e4 1e4]’,’c’);hold off

xlabel(’Freq (rad/sec)’)

ylabel(’Mag’)

title([’Vel sens to Pos state, sen noise r=’,num2str(r)])

axis([1e-3 1e3 1e-4 1e4])

subplot(212)

semilogx(f,unwrap(angle(g))*180/pi)

xlabel(’Freq (rad/sec)’)

ylabel(’Phase (deg)’)

%bode(nn,dd);

axis([1e-3 1e3 0 200])

figure(3)

r=1e-6;

l=polyvalm([1 2/sqrt(r) 2/r],a)*inv([c;c*a])*[0 1]’

[nn,dd]=ss2tf(a-l*c,l,c2,0); % to the vel estimate

g=freqresp(nn,dd,f*j);

[r roots(nn)]

subplot(211)

f3=f;g3=g;

loglog(f,abs(g))

%hold on;fill([5e2 5e2 1e3 1e3 5e2]’,[1e4 1e-4 1e-4 1e4 1e4]’,’c’);hold off

xlabel(’Freq (rad/sec)’)

ylabel(’Mag’)

title([’Vel sens to Pos state, sen noise r=’,num2str(r)])

axis([1e-3 1e3 1e-4 1e4])

subplot(212)

semilogx(f,unwrap(angle(g))*180/pi)

xlabel(’Freq (rad/sec)’)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 11–25

68 ylabel(’Phase (deg)’)

69 %bode(nn,dd);

70 title([’Vel sens to Pos state, sen noise r=’,num2str(r)])

71 axis([1e-3 1e3 0 200])

72

73 figure(4)

74 r=1e-8;

75 l=polyvalm([1 2/sqrt(r) 2/r],a)*inv([c;c*a])*[0 1]’

76 [nn,dd]=ss2tf(a-l*c,l,c2,0); % to the vel estimate

77 g=freqresp(nn,dd,f*j);

78 [r roots(nn)]

79 f4=f;g4=g;

80 subplot(211)

81 loglog(f,abs(g))

82 %hold on;fill([5e2 5e2 1e3 1e3 5e2]’,[1e4 1e-4 1e-4 1e4 1e4]’,’c’);hold off

83 xlabel(’Freq (rad/sec)’)

84 ylabel(’Mag’)

85 title([’Vel sens to Pos state, sen noise r=’,num2str(r)])

86 axis([1e-3 1e3 1e-4 1e4])

87 title([’Vel sens to Pos state, sen noise r=’,num2str(r)])

88 subplot(212)

89 semilogx(f,unwrap(angle(g))*180/pi)

90 xlabel(’Freq (rad/sec)’)

91 ylabel(’Phase (deg)’)

92 %bode(nn,dd);

93 axis([1e-3 1e3 0 200])

94

95 print -depsc -f1 filt1.eps; jpdf(’filt1’)

96 print -depsc -f2 filt2.eps;jpdf(’filt2’)

97 print -depsc -f3 filt3.eps;jpdf(’filt3’)

98 print -depsc -f4 filt4.eps;jpdf(’filt4’)

99

100 figure(5);clf
101 %subplot(211)
102 loglog(f1,abs(g1),f2,abs(g2),f3,abs(g3),f4,abs(g4),’Linewidth’,2)
103 %hold on;fill([5e2 5e2 1e3 1e3 5e2]’,[1e4 1e-4 1e-4 1e4 1e4]’,’c’);hold off
104 xlabel(’Freq (rad/sec)’)
105 ylabel(’Mag’)
106 title([’Vel sens to Pos state, sen noise r=’,num2str(r)])
107 axis([1e-4 1e4 1e-4 1e4])
108 title([’Vel sens to Pos state, sen noise r=’,num2str(r)])
109 legend(’r=10^{-2}’,’r=10^{-4}’,’r=10^{-6}’,’r=10^{-8}’,’Location’,’NorthWest’)
110 %subplot(212)
111 figure(6);clf
112 semilogx(f1,unwrap(angle(g1))*180/pi,f2,unwrap(angle(g2))*180/pi,...
113 f3,unwrap(angle(g3))*180/pi,f4,unwrap(angle(g4))*180/pi,’Linewidth’,2);hold off
114 xlabel(’Freq (rad/sec)’)
115 ylabel(’Phase (deg)’)
116 legend(’r=10^{-2}’,’r=10^{-4}’,’r=10^{-6}’,’r=10^{-8}’)
117 %bode(nn,dd);
118 axis([1e-4 1e4 0 200])
119 print -depsc -f5 filt5.eps;jpdf(’filt5’)
120 print -depsc -f6 filt6.eps;jpdf(’filt6’)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

16.323 Lecture 12

Stochastic Optimal Control

• Kwaknernaak and Sivan Chapter 3.6, 5

• Bryson Chapter 14

• Stengel Chapter 5

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 12–1
Stochastic Optimal Control

•	 Goal: design optimal compensators for systems with incomplete and
noisy measurements

– Consider this first simplified step: assume that we have noisy system
with perfect measurement of the state.

•	 System dynamics:

ẋ(t) = A(t)x(t) + Bu(t)u(t) + Bw(t)w(t)

– Assume that w(t) is a white Gaussian noise 20 ⇒ N (0, Rww)

– The initial conditions are random variables too, with

E[x(t0)] = 0, and E[x(t0)x T (t0)] = X0

– Assume that a perfect measure of x(t) is available for feedback.

•	 Given the noise in the system, need to modify our cost functions from
before consider the average response of the closed-loop system ⇒� �	 �

1	 1 tf

Js	 = E x T (tf)Ptf x(tf) + (x T (t)Rxx(t)x(t) + u T (t)Ruu(t)u(t))dt
2	 2 t0

– Average over all possible realizations of the disturbances.

•	 Key observation: since w(t) is white, then by definition, the corre
lation times-scales are very short compared to the system dynamics
– Impossible to predict w(τ) for τ > t, even with perfect knowledge

of the state for τ ≤ t

– Furthermore, by definition, the system state x(t) encapsulates all
past information about the system

– Then the optimal controller for this case is identical to the deter

ministic one considered before.

2016.322 Notes

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

http://ocw.mit.edu/NR/rdonlyres/Aeronautics-and-Astronautics/16-322Fall-2004/5F91856E-1EEC-4A3C-89A8-BAD18EF384DD/0/lecture11.pdf

�

�

Spr 2008	 16.323 12–2 Spectral Factorization
Had the process noise w(t) had “color” (i.e., not white), then we need •
to include a shaping filter that captures the spectral content (i.e.,
temporal correlation) of the noise Φ(s)

– Previous picture: system is y = G(s)w1, with white noise input

yw1
� G(s)

– New picture: system is y = G(s)w2, with shaped noise input

yw2
� G(s)

Account for the spectral content using a shaping filter H(s), so that •
the picture now is of a system y = G(s)H(s)w1, with a white noise
input

G(s)H(s) ���
w1 w̃2 y

– Then must design filter H(s) so that the output is a noise w̃2 that
has the frequency content that we need

•	 How design H(s)? Spectral Factorization – design a stable mini

mum phase linear transfer function that replicates the desired spectrum
of w2.
– Basis of approach: If e2 = H(s)e1 and e1 is white, then the spec

trum of e2 is given by

Φe2(jω) = H(jω)H(−jω)Φe1(jω)

where Φe1(jω) = 1 because it is white.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �

Spr 2008	 16.323 12–3

•	 Typically Φw2(jω) will be given as an expression in ω2, and we factor
that into two parts, one of which is stable minimum phase, so if

2σ2α2

Φw2(jω) =
ω2 + α2 √

2σα
√

2σα
=	

α + jω
·
α − jω

= H(jω)H(−jω)

√
2σα so clearly H(s) = s+α which we write in state space form as

ẋH = −αxH +
√

2ασw1

w2 = xH

•	 More generally, the shaping filter will be

ẋH = AH xH + BH w1

w2 = CH xH

which we then augment to the plant dynamics, to get: � � �	 � � � � � � �
ẋ A BwCH x Bu 0

= + u + w1 ẋH 0 AH xH 0 BH � � x

y = Cy 0

xH

where the noise input w1 is a white Gaussian noise.

•	 Clearly this augmented system has the same form as the original system
that we analyzed - there are just more states to capture the spectral
content of the original shaped noise.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �

� �

Spr 2008 Disturbance Feedforward 16.323 12–4

•	 Now consider the stochastic LQR problem for this case.
– Modify the state weighting matrix so that

Rxx 0
R̃xx =

0 0

⇒ i.e. no weighting on the filter states – Why is that allowed?

– Then, as before, the stochastic LQR solution for the augmented
system is the same as the deterministic LQR solution (6–9) � � x

u = − K Kd xH

– So the full state feedback controller requires access to the state in
the shaping filter, which is fictitious and needs to be estimated

•	 Interesting result is that the gain K on the system states is com
pletely independent of the properties of the disturbance
– In fact, if the solution of the steady state Riccati equation in this

case is partitioned as � �

Paug =
Pxx

PxHx

PxxH

PxHxH

it is easy to show that
�	Pxx can be solved for independently, and

� Is the same as it would be in the deterministic case with the dis

turbances omitted 21

– Of course the control inputs that are also based on xH will improve
the performance of the system disturbance feedforward.⇒

21K+S pg 262

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 Performance Analysis 16.323 12–5

•	 Recall that the specific initial conditions do not effect the LQR con

troller, but they do impact the cost-to-go from t0

– Consider the stochastic LQR problem, but with w(t) ≡ 0 so that
the only uncertainty is in the initial conditions

– Have already shown that LQR cost can be written in terms of the
solution of the Riccati equation (4–7):

1
JLQR = x T (t0)P (t0)x(t0)

2 �	 �
1

Js = E x T (t0)P (t0)x(t0)⇒	
2

1	 � �
= E trace[P (t0)x(t0)x T (t0)]

2
1

= trace[P (t0)X0]
2

which gives expected cost-to-go with uncertain IC.

•	 Now return to case with w �= 0 – consider the average performance
of the stochastic LQR controller.

•	 To do this, recognize that if we apply the LQR control, we have a
system where the cost is based on zTRzzz = xTRxxx for the closed-

loop system:

ẋ(t) = (A(t) − Bu(t)K(t))x(t) + Bw(t)w(t)

z(t) = Cz(t)x(t)

•	 This is of the form of a linear time-varying system driven by white
Gaussian noise – called a Gauss-Markov Random process22 .

22Bryson 11.4

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �	 �

� �	 �

� �	 �

Spr 2008	 16.323 12–6

• For a Gauss-Markov system we can predict the mean square value
of the state X(t) = E[x(t)x(t)T] over time using X(0) = X0 and

Ẋ(t) = [A(t) − Bu(t)K(t)] X(t) + X(t) [A(t) − Bu(t)K(t)]T + BwRwwBw
T

– Matrix differential Lyapunov Equation.

•	 Can also extract the mean square control values using

E[u(t)u(t)T] = K(t)X(t)K(t)T

•	 Now write performance evaluation as:

1	 tf

Js	 = E x T (tf)Ptf x(tf) + (x T (t)Rxx(t)x(t) + u T (t)Ruu(t)u(t))dt
2 � � t0 � ��
1 tf

= E trace Ptf x(tf)x T (tf) + (Rxx(t)x(t)x T (t) + Ruu(t)u(t)u T (t))dt
2	 t0

1	 tf

= trace Ptf X(tf) + (Rxx(t)X(t) + Ruu(t)K(t)X(t)K(t)T)dt
2	 t0

•	 Not too useful in this form, but if P (t) is the solution of the LQR
Riccati equation, then can show that the cost can be written as:

1	 tf

Js = trace P (t0)X(t0) + (P (t)BwRwwBw
T)dt

2	 t0

– First part, 1trace {P (t0)X(t0)} is the same cost-to-go from the 2

uncertain initial condition that we identified on 11–5

– Second part shows that the cost increases as a result of the process
noise acting on the system.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

•	 �

�	 �

��	 �

Spr 2008	 16.323 12–7

Sketch of Proof: first note that
tf	 d

P (t0)X(t0) − Ptf X(tf) + (P (t)X(t))dt = 0
dtt0

1
Js = trace Ptf X(tf) + P (t0)X(t0) − Ptf X(tf)

2 �� �
1	 tf

+
2
trace

t0

{Rxx(t)X(t) + Ruu(t)K(t)X(t)K(t)T }dt

1	 tf

+ trace {Ṗ (t)X(t) + P (t)Ẋ(t)}dt
2 t0

and (first reduces to standard CARE if K(t) = R−1BTP (t))uu u

−Ṗ (t)X(t) = (A − BuK(t))TP (t)X(t) + P (t)(A − BuK(t))X(t)

+RxxX(t) + K(t)TRuuK(t)X(t)

P (t)Ẋ(t) =	 P (t)(A − BuK(t))X(t) + P (t)X(t)(A − BuK(t))T

+P (t)BwRwwBw
T

•	 Rearrange terms within the trace and then cancel terms to get final
result.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 Steady State Values 16.323 12–8

•	 Problems exist if we set t0 = 0 and tf →∞ because performance will
be infinite
– Modify the cost to consider the time-average

1
Ja = lim Js

tf →∞ tf − t0

– No impact on necessary conditions since this is still a fixed end-time
problem.

– But now the initial conditions become irrelevant, and we only need
focus on the integral part of the cost.

•	 For LTI system with stationary process noise (constant Rww) and well-

posed time-invariant control problem (steady gain u(t) = −Kssx(t))
mean square value of state settles down to a constant

lim X(t) = Xss
tf →∞

0 = (A − BuKss) Xss + Xss (A − BuKss)
T + BwRwwBw

T

– Can show that time-averaged mean square performance is

1 �	 �
Ja = trace [Rxx + KT RuuKss]Xss

2	 ss

1 ≡
2
trace[PssBwRwwBw

T]

•	 Main point: this gives a direct path to computing the expected
performance of a closed-loop system
– Process noise enters into computation of Xss

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

�

Spr 2008	 Missile Example 16.323 12–9

•	 Consider a missile roll attitude control system with ω the roll angular
velocity, δ the aileron deflection, Q the aileron effectiveness, and φ
the roll angle, then

δ̇ = u ω̇ = −
τ
1
ω +

Q

τ
δ + n(t) φ̇ = ω

where n(t) is a noise input.

Then this can be written as:
• ⎡ ⎤ ⎡	 ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤

δ̇ 0 0 0 δ 1 0
⎣ ω̇ ⎦ = ⎣ −1/τ Q/τ 0 ⎦⎣ ω ⎦ + ⎣ 0 ⎦ u + ⎣ 1 ⎦ n

φ̇ 0 1 0 φ 0 0

•	 Use τ = 1, Q = 10, Ruu = 1/(π)2 and ⎡	 ⎤
(π/12)2 0 0

Rxx = ⎣ 0 0 0 ⎦

0 0 (π/180)2

then solve LQR problem to get feedback gains:
K=lqr(A,B,Rxx,Ruu)
K = [26.9 29.0 180.0]

•	 Then if n(t) has a spectral density of 1000 (deg/sec2)2 · sec 23

•	 Find RMS response of the system from
X=lyap(A-B*K,Bw*Rww*Bw’) ⎡	 ⎤

95 −42 −7
X = ⎣ −42 73 0 ⎦

−7 0 0.87

and that E[φ2] ≈ 0.93deg

23Process noise input to a derivative of ω, so the units of n(t) must be deg/sec2 , but since E[n(t)n(τ)] = Rwwδ(t − τ) and
δ(t)dt = 1, then the units of δ(t) are 1/sec and thus the units of Rww are (rad/sec2)2 sec=rad2/sec3 ·

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

• � �	 �

Spr 2008	 Full Control Problem 16.323 12–10

•	 Goal: design an optimal controller for a system with incomplete
and noisy measurements

•	 Setup: for the system (possibly time-varying)

ẋ = Ax + Buu + Bww

z = Czx

y = Cyx + v

with
– White, Gaussian noises w ∼ N (0, Rww) and v ∼ N (0, Rvv), with
Rww > 0 and Rvv > 0

– Initial conditions x(t0), a stochastic vector with E[x(t0)] = x̄0 and
E[(x(t0) − x̄0)(x(t0) − x̄0)

T] = Q0 so that

x(t0) ∼ N(x̄0, Q0)

Cost:

1	 1 tf

J = E x T (tf)Ptf x(tf) + (z T (t)Rzzz(t) + u T (t)Ruuu(t))dt
2	 2 t0

with Rzz > 0, Ruu > 0, Ptf ≥ 0

•	 Stochastic Optimal Output Feedback Problem: Find

u(t) = f [y(τ), t0 ≤ τ ≤ t] t0 ≤ t ≤ tf

that minimizes J

•	 The solution is the Linear Quadratic Gaussian Controller, which uses
– LQE (10–15) to get optimal state estimates x̂(t) from y(t) using

gain L(t)

– LQR to get the optimal feedback control u(t) = −K(t)x

– Separation principle to implement u(t) = −K(t)x̂(t)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 Solution: LQG 16.323 12–11

•	 Regulator: u(t) = −K(t)x̂(t)

K(t) = R−1BTP (t)uu u

−Ṗ (t) = ATP (t) + P (t)A + Cz
TRzzCz − P (t)BuR

−1Bu
TP (t)uu

P (tf)	 = Ptf

Estimator from: •

ẋ̂(t) = Ax̂ + Buu + L(t)(y(t) − Cyx̂(t))

where x̂(t0) = x̄0 and Q(t0) = Q0

Q̇(t) = AQ(t) + Q(t)AT BT R−1 Q(t)+ BwRww w − Q(t)Cy
T

vv Cy

L(t) = y vvQ(t)CTR−1

•	 A compact form of the compensator is:

ẋc = Acxc + Bcy

u = −Ccxc
with xc ≡ x̂ and

Ac = A − BuK(t) − L(t)Cy

Bc = L(t)

Cc = K(t)

•	 Valid for SISO and MIMO systems. Plant dynamics can also be time-

varying, but suppressed for simplicity.
– Obviously compensator is constant if we use the steady state regu

lator and estimator gains for an LTI system.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�
�
�

Spr 2008	 Infinite Horizon LQG 16.323 12–12

•	 Assuming LTI plant
•	 As with the stochastic LQR case, use time averaged cost

– To ensure that estimator settles down, must take t0 → −∞ and
tf	→∞, so that for any t, t0 � t � tf

1
J̄	= lim J

tf →∞ tf − t0
t0→−∞

– Again, this changes the cost, but not the optimality conditions

¯•	 Analysis of J shows that it can be evaluated as

J̄ = E[z T (t)Rzzz(t) + u T (t)Ruuu(t)]

=	 LT CT]Tr[PssLssRvv ss + Qss z RzzCz

= Tr[PssBw BT KT]Rww w + Qss ssRuuKss

where Pss and Qss are the steady state solutions of

ATPss + PssA + CTRzzCz − PssBuR
−1BTPss = 0z uu u

AQss AT + Bw BT CTR−1Cy = 0+ Qss Rww w − Qss y vv Qss

with
= R−1BT and	 CTR−1Kss uu u Pss Lss = Qss y vv

•	 Can evaluate the steady state performance from the solution of 2
Riccati equations

¯– More complicated than stochastic LQR because J must account for
performance degradation associated with estimation error.

– Since in general x̂(t) = x(t), have two contributions to the cost
�	Regulation error x = 0

�	Estimation error x̃ = 0

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 Interpretations 16.323 12–13

Note that •

J̄ = Tr[PssLssRvvL
T
ss + QssCz

TRzzCz]

BT KT =	 Tr[PssBwRww w + Qss ssRuuKss]

both of which contain terms that are functions of the control and
estimation problems.

•	 To see how both terms contribute, let the regulator get very fast
Ruu 0. A full analysis requires that we then determine what ⇒ →	

¯happens to Pss and thus J . But what is clear is that:

lim J̄ ≥ Tr[QssCz
TRzzCz]

Ruu→0

which is independent of Ruu

– Thus even in the limit of no control penalty, the performance is
lower bounded by term associated with estimation error Qss.

Similarly, can see that limRvv→0 J̄ ≥ Tr[PssBwRwwB
T] which is re•	 w

lated to the regulation error and provides a lower bound on the per

formance with a fast estimator
– Note that this is the average cost for the stochastic LQR problem.

Both cases illustrate that it is futile to make either the estimator or •
regulator much “faster” than the other

– The ultimate performance is limited, and you quickly reach the
“knee in the curve” for which further increases in the authority of
one over the other provide diminishing returns.

– Also suggests that it is not obvious that either one of them should
be faster than the other.

•	 Rule of Thumb: for given Rzz and Rww, select Ruu and Rvv so that
the performance contributions due to the estimation and regulation
error are comparable.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �	 � � � �

�	 �

Spr 2008	 Separation Theorem 16.323 12–14

•	 Now consider what happens when the control u = −Kx is changed
to the new control u = −Kx̂ (same K).
– Assume steady state values here, but not needed.

– Previous looks at this would have analyzed the closed-loop stability,
as follows, but we also want to analyze performance.

plant :	 ẋ = Ax + Buu + Bww

z = Czx

y = Cyx + v

compensator : ẋc = Acxc + Bcy

u = −Ccxc

•	 Which give the closed-loop dynamics � � � � � � � � � �
ẋ
ẋc

=

�
A −BuCc

BcCy Ac � �
x
�

x
xc

+
Bw

0
0
Bc

w
v

z = Cz 0

� xc � �
x
�

y = Cy 0
xc

+ v

•	 It is not obvious that this system will even be stable: λi(Acl) < 0?
– To analyze, introduce n = x − xc, and the similarity transform

T	 =
I 0

= T −1 x
= T

x
I	 −I ⇒

n xc

so that Acl ⇒ TAclT −1 ≡ Acl and when you work through the
math, you get

Acl =
A − BuK BuK

0 A − LCy

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 12–15

• Absolutely key points:
1. λi(Acl) ≡ λi(Acl)
2. Acl is block upper triangular, so can find poles by inspection:

det(sI − Acl) = det(sI − (A − BuK)) det(sI − (A − LCy))·

The closed-loop poles of the system consist of the
union of the regulator and estimator poles

– This shows that we can design any estimator and regulator sepa

rately with confidence that the combination will stabilize the system.
� Also means that the LQR/LQE problems decouple in terms of

being able to predict the stability of the overall closed-loop system.

• Let Gc(s) be the compensator transfer function (matrix) where

u = −Cc(sI − Ac)
−1Bcy = −Gc(s)y

– Reason for this is that when implementing the controller, we often
do not just feedback −y(t), but instead have to include a reference
command r(t)

– Use servo approach and feed back e(t) = r(t) − y(t) instead

r
��
e

�� Gc(s)
u

�� G(s)
y

��

−

��

– So now u = Gce = Gc(r−y), and if r = 0, then have u = Gc(−y)

• Important points:
– Closed-loop system will be stable, but the compensator dynamics

need not be.
– Often very simple and useful to provide classical interpretations of

the compensator dynamics Gc(s).

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 Performance Optimality 16.323 12–16

•	 Performance optimality of this strategy is a little harder to establish
– Now saying more than just that the separation principle is a “good”

idea are trying to say that it is the “best” possible solution ⇒

•	 Approach:
– Rewrite cost and system in terms of the estimator states and dy

namics recall we have access to these ⇒

– Design a stochastic LQR for this revised system full state feed⇒
back on x̂(t)

•	 Start with the cost (use a similar process for the terminal cost)

E[z TRzzz] = E[x TRxxx] {±x̂}

= E[(x − x̂ + x̂)TRxx(x − x̂ + x̂)] {x̃ = x − x̂}

= E[x̃TRxxx̃] + 2E[x̃TRxxx̂] + E[x̂TRxxx̂]

•	 Note that x̂(t) is the minimum mean square estimate of x(t) given
y(τ), u(τ), t0 ≤ τ ≤ t.
– Key property of that estimate is that x̂ and x̃ are uncorrelated24

E[x̃TRxxx̂] = trace[E{x̃x̂T }Rxx] = 0

•	 Also,

E[x̃TRxxx̃] = E[trace(Rxxx̃x̃T)] = trace(RxxQ)

where Q is the solution of the LQE Riccati equation (11–11)

•	 So, in summary we have:

E[x TRxxx] = trace(RxxQ) + E[x̂TRxxx̂]

24Gelb, pg 112

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� � �

� � �

�

Spr 2008 16.323 12–17

• Now the main part of the cost function can be rewritten as

1 tf

J = E (z T (t)Rzzz(t) + u T (t)Ruuu(t))dt
2 t0

1 tf

= E (x̂T (t)Rxxx̂(t) + u T (t)Ruuu(t))dt
2 t0

1 tf

+ (trace(RxxQ))dt
2 t0

– The last term is independent of the control u(t) it is only a ⇒
function of the estimation error

– Objective now is to choose the control u(t) to minimize the first
term

• But first we need another key fact25: If the optimal estimator is

ẋ̂(t) = Ax̂(t) + Buu(t) + L(t)(y(t) − Cyx̂(t))

then by definition, the innovations process

i(t) ≡ y(t) − Cyx̂(t)

is a white Gaussian process, so that i(t) ∼ N (0, Rvv + CyQCT)y

Then we can rewrite the estimator as •

ẋ̂(t) = Ax̂(t) + Buu(t) + L(t)i(t)

which is an LTI system with i(t) acting as the process noise through
a computable L(t).

25Gelb, pg 317

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� � �

Spr 2008 16.323 12–18

• So combining the above, we must pick u(t) to minimize

1 tf

J = E (x̂T (t)Rxxx̂(t) + u T (t)Ruuu(t))dt +term ind. of u(t)
2 t0

subject to the dynamics

ẋ̂(t) = Ax̂(t) + Buu(t) + L(t)i(t)

– Which is a strange looking Stochastic LQR problem

– As we saw before, the solution is independent of the driving process
noise

u(t) = −K(t)x̂(t)

– Where K(t) is found from the LQR with the data A, Bu, Rxx, and
Ruu, and thus will be identical to the original problem.

• Combination of LQE/LQR gives performance optimal result.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �

� �
� �

� �

� �

Spr 2008	 Simple Example 16.323 12–19

�
0 1

� �
0
� �

0
�

ẋ = x + u + w
0 0 1 1

1 0
z = x

0 1

y	 = 1 0 x + v

where in the LQG problem we have

1 0
Rzz = Ruu = 1 Rvv = 1 Rww = 1

0 1

•	 Solve the SS LQG problem to find that

Tr[PssLssRvvL
T
ss] = 8.0 Tr[QssCz

TRzzCz] = 2.8

BT KT
Tr[PssBwRww w] = 1.7 Tr[Qss ssRuuKss] = 9.1

•	 Suggests to me that we need to improve the estimation error ⇒ that
Rvv is too large. Repeat with

1 0
Rzz = Ruu = 1 Rvv = 0.1 Rww = 1

0 1

Tr[PssLssRvvL
T
ss] = 4.1 Tr[QssCz

TRzzCz] = 1.0

BT KT
Tr[PssBwRww w] = 1.7 Tr[Qss ssRuuKss] = 3.7

and

1	 0
Rzz = Ruu = 1 Rvv = 0.01 Rww = 1

0 1

Tr[PssLssRvvLss
T] = 3.0 Tr[QssCz

TRzzCz] = 0.5

BT KTTr[PssBwRww w] = 1.7 Tr[Qss ssRuuKss] = 1.7

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 12–20

• LQG analysis code
A=[0 1;0 0];%

Bu=[0 1]’;%

Bw=[0 1]’; %

Cy=[1 0];%

Cz=[1 0;0 1];%

Rww=1;%

Rvv=1;%

Rzz=diag([1 1]);%

Ruu=1;%

[K,P]=lqr(A,Bu,Cz*Rzz*Cz’,Ruu);%

[L,Q]=lqr(A’,Cy’,Bw*Rww*Bw’,Rvv);L=L’;%

N1=trace(P*(L*Rvv*L’))%

N2=trace(Q*(Cz’*Rzz*Cz))%

N3=trace(P*(Bw*Rww*Bw’))%

N4=trace(Q*(K’*Ruu*K))%

[N1 N2;N3 N4]

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 Stochastic Simulation 16.323 12–21

• Consider the linearized longitudinal dynamics of a hypothetical heli

copter. The model of the helicopter requires four state variables:
– θ(t):fuselage pitch angle (radians)
– q(t):pitch rate (radians/second)
– u(t):horizontal velocity of CG (meters/second)
– x(t):horizontal distance of CG from desired hover (meters)

The control variable is:

– δ (t): tilt angle of rotor thrust vector (radians)

Figure 12.1: Helicopter in Hover

• The linearized equation of motion are:

θ̇(t) = q(t)

q̇(t) = −0.415q(t) − 0.011u(t) + 6.27δ(t) − 0.011w(t)

u̇(t) = 9.8θ(t) − 1.43q(t) − .0198u(t) + 9.8δ(t) − 0.0198w(t)

ẋ(t) = u(t)

– w(t) represents a horizontal wind disturbance

– Model w(t) as the output of a first order system driven by zero
mean, continuous time, unit intensity Gaussian white noise ξ(t):

ẇ(t) = −0.2w(t) + 6ξ(t)

June 18, 2008

Figure by MIT OpenCourseWare.

co
nt

ro
len

gin
ee

rs
.ir

�	 �

�	 �

Spr 2008	 16.323 12–22

•	 First, treat original (non-augmented) plant dynamics.
– Design LQR controller so that an initial hover position error, x(0) =

1 m is reduced to zero (to within 5%) in approximately 4 sec.

Figure 12.2: Results show that Ruu = 5 gives reasonable performance.

•	 Augment the noise model, and using the same control gains, form the
closed-loop system which includes the wind disturbance w(t) as part
of the state vector.

•	 Solve necessary Lyapunov equations to determine the (steady-state)
variance of the position hover error, x(t) and rotor angle δ(t).
– Without feedforward:

E[x2] = 0.048 E[δ2] = 0.017

•	 Then design a LQR for the augmented system and repeat the process.
– With feedforward:

E[x2] = 0.0019 E[δ2] = 0.0168

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 12–23

• Now do stochastic simulation of closed-loop system using Δt = 0.1.

– Note the subtly here that the design was for a continuous system,
but the simulation will be discrete

– Are assuming that the integration step is constant.

– Need to create ζ using the randn function, which gives zero mean
unit variance Gaussian noise.

– To scale it correctly for a discrete simulation, multiply the output
of randn by 1/

√
Δt, where Δt is the integration step size.26

– Could also just convert the entire system to its discrete time equiv

alent, and then use a process noise that has a covariance

Qd = Rww/Δt

26Franklin and Powell, Digital Control of Dynamic Systems

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 12–24

Figure 12.3: Stochastic Simulations with and without disturbance feedforward.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

Spr 2008 16.323 12–25

Helicopter stochastic simulation

% 16.323 Spring 2008

% Stochastic Simulation of Helicopter LQR

% Jon How

%

clear all, clf, randn(’seed’,sum(100*clock));

% linearized dynamics of the system

A = [0 1 0 0; 0 -0.415 -0.011 0;9.8 -1.43 -0.0198 0;0 0 1 0];

Bw = [0 -0.011 -0.0198 0]’;

Bu = [0 6.27 9.8 0]’;

Cz = [0 0 0 1];

Rxx = Cz’*Cz;

rho = 5;

Rww=1;

% lqr control

[K,S,E]=lqr(A,Bu,Rxx,rho);

[K2,S,E]=lqr(A,Bu,Rxx,10*rho);

[K3,S,E]=lqr(A,Bu,Rxx,rho/10);

% initial response with given x0

x0 = [0 0 0 1]’;

Ts=0.1; % small discrete step to simulate the cts dynamics

tf=8;t=0:Ts:tf;

[y,x] = initial(A-Bu*K,zeros(4,1),Cz,0,x0,t);

[y2,x2] = initial(A-Bu*K2,zeros(4,1),Cz,0,x0,t);

[y3,x3] = initial(A-Bu*K3,zeros(4,1),Cz,0,x0,t);

subplot(211), plot(t,[y y2 y3],[0 8],.05*[1 1],’:’,[0 8],.05*[-1 -1],’:’,’LineWidth’,2)

ylabel(’x’);title(’Initial response of the closed loop system with x(0) = 1’)

h = legend([’LQR: \rho = ’,num2str(rho)],[’LQR: \rho = ’,num2str(rho*10)],[’LQR: \rho = ’,num2str(rho/10)]);

axes(h)

subplot(212), plot(t,[(K*x’)’ (K2*x2’)’ (K3*x3’)’],’LineWidth’,2);grid on

xlabel(’Time’), ylabel(’\delta’)

print -r300 -dpng heli1.png

% shaping filter

Ah=-0.2;Bh=6;Ch=1;

% augment the filter dyanmics

Aa = [A Bw*Ch; zeros(1,4) Ah];

Bua = [Bu;0];

Bwa = [zeros(4,1); Bh];

Cza = [Cz 0];

Ka = [K 0]; % i.e. no dist FF

Acla = Aa-Bua*Ka; % close the loop using NO dist FF

Pass = lyap(Acla,Bwa*Rww*Bwa’); % compute SS response to the dist

vx = Cza*Pass*Cza’; % state resp

vd = Ka*Pass*Ka’; % control resp

zeta = sqrt(Rww/Ts)*randn(length(t),1); % discrete equivalent noise

[y,x] = lsim(Acla,Bwa,Cza,0,zeta,t,[x0;0]); % cts closed-loop sim

%

% second simulation approach: discrete time

%

Fa=c2d(ss(Acla,Bwa,Cza,0),Ts); % discretize the closed-loop dynamics

[dy,dx] = lsim(Fa,zeta,[],[x0;0]); % stochastic sim in discrete time

u = Ka*x’; % find control commands given the state response

% disturbance FF

[KK,SS,EE]=lqr(Aa,Bua,Cza’*Cza,rho); % now K will have dist FF

Acl=Aa-Bua*KK;

PP=lyap(Acl,Bwa*Rww*Bwa’);

vxa = Cza*PP*Cza’;

vda = KK*PP*KK’;

[ya,xa] = lsim(Acl,Bwa,Cza,0,zeta,t,[x0;0]); % cts sim

F=c2d(ss(Acl,Bwa,Cza,0),Ts); % discretize the closed-loop dynamics

[dya,dxa] = lsim(F,zeta,[],[x0;0]); % stochastic sim in discrete time

ua = KK*xa’; % find control commands given the state response

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 12–26

68 figure(2);

69 subplot(211)

70 plot(t,y,’LineWidth’,2)

71 hold on;

72 plot(t,dy,’r-.’,’LineWidth’,1.5)

73 plot([0 max(t)],sqrt(vx)*[1 1],’m--’,[0 max(t)],-sqrt(vx)*[1 1],’m--’,’LineWidth’,1.5);

74 hold off

75 xlabel(’Time’);ylabel(’y(t)’);legend(’cts’,’disc’)

76 title(’Stochastic Simulation of Helicopter Response: No FF’)

77 subplot(212)

78 plot(t,u,’LineWidth’,2)

79 xlabel(’Time’);ylabel(’u(t)’);legend(’No FF’)

80 hold on;

81 plot([0 max(t)],sqrt(vd)*[1 1],’m--’,[0 max(t)],-sqrt(vd)*[1 1],’m--’,’LineWidth’,1.5);

82 hold off

83

84 figure(3);

85 subplot(211)

86 plot(t,ya,’LineWidth’,2)

87 hold on;

88 plot(t,dya,’r-.’,’LineWidth’,1.5)

89 plot([0 max(t)],sqrt(vxa)*[1 1],’m--’,[0 max(t)],-sqrt(vxa)*[1 1],’m--’,’LineWidth’,1.5);

90 hold off

91 xlabel(’Time’);ylabel(’y(t)’);legend(’cts’,’disc’)

92 title(’Stochastic Simulation of Helicopter Response: with FF’)

93 subplot(212)

94 plot(t,ua,’LineWidth’,2)

95 xlabel(’Time’);ylabel(’u(t)’);legend(’with FF’)

96 hold on;

97 plot([0 max(t)],sqrt(vda)*[1 1],’m--’,[0 max(t)],-sqrt(vda)*[1 1],’m--’,’LineWidth’,1.5);

98 hold off

99

100 print -f2 -r300 -dpng heli2.png
101 print -f3 -r300 -dpng heli3.png

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�	 �

Spr 2008	 LQG for Helicopter 16.323 12–27

•	 Now consider what happens if we reduce the measurable states and
use LQG for the helicopter control/simulation

•	 Consider full vehicle state measurement (i.e., not the disturbance
state)

Cy = [I4 0]

•	 Consider only partial vehicle state measurement

0	 1 0 0 0
Cy	 =

0	 0 0 1 0

•	 Set Rvv small.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 12–28

Figure 12.4: LQR with disturbance feedforward compared to LQG

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 12–29

Figure 12.5: Second LQR with disturbance feedforward compared to LQG

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

Spr 2008 16.323 12–30

Helicopter LQG

% 16.323 Spring 2008

% Stochastic Simulation of Helicopter LQR - from Bryson’s Book

% Jon How

%

clear all, clf, randn(’seed’,sum(100*clock));

set(0,’DefaultAxesFontName’,’arial’)

set(0,’DefaultAxesFontSize’,12)

set(0,’DefaultTextFontName’,’arial’)

% linearized dynamics of the system state=[theta q dotx x]

A = [0 1 0 0; 0 -0.415 -0.011 0;9.8 -1.43 -0.0198 0;0 0 1 0];

Bw = [0 -0.011 -0.0198 0]’;

Bu = [0 6.27 9.8 0]’;

Cz = [0 0 0 1];

Rxx = Cz’*Cz; Rww=1;

rho = 5;

% lqr control

[K,S,E]=lqr(A,Bu,Rxx,rho);

% initial response with given x0

x0 = [0 0 0 1]’;

Ts=0.01; % small discrete step to simulate the cts dynamics

tf=20;t=0:Ts:tf;nt=length(t);

% Now consider shaped noise with shaping filter

Ah=-0.2;Bh=6;Ch=1;

% augment the filter dyanmics

Aa = [A Bw*Ch; zeros(1,4) Ah];

Bua = [Bu;0];

Bwa = [zeros(4,1); Bh];

Cza = [Cz 0];

x0a=[x0;0];

%zeta = Rww/sqrt(Ts)*randn(length(t),1); % discrete equivalent noise

zeta = sqrt(Rww/Ts)*randn(length(t),1); % discrete equivalent noise

%%%% Now consider disturbance FF

[KK,SS,EE]=lqr(Aa,Bua,Cza’*Cza,rho); % now K will have dist FF

Acl=Aa-Bua*KK;

PP=lyap(Acl,Bwa*Rww*Bwa’);

vxa = Cza*PP*Cza’; %state

vda = KK*PP*KK’; %control

%

[ya,xa] = lsim(Acl,Bwa,Cza,0,zeta,t,x0a); % cts sim

F=c2d(ss(Acl,Bwa,Cza,0),Ts); % discretize the closed-loop dynamics

[dya,dxa] = lsim(F,zeta,[],x0a); % stochastic sim in discrete time

ua = KK*xa’; % find control commands given the state response

%%%% Now consider Output Feedback Case

% Assume that we can only measure the system states

% and not the dist one

FULL=1;

if FULL

Cya=eye(4,5); % full veh state
else

Cy=[0 1 0 0;0 0 0 1]; % only meas some states

Cya=[Cy [0;0]];

end

Ncy=size(Cya,1);Rvv=(1e-2)^2*eye(Ncy);

[L,Q,FF]=lqr(Aa’,Cya’,Bwa*Rww*Bwa’,Rvv);L=L’;% LQE calc

%closed loop dyn

Acl_lqg=[Aa -Bua*KK;L*Cya Aa-Bua*KK-L*Cya];

Bcl_lqg=[Bwa zeros(5,Ncy);zeros(5,1) L];

Ccl_lqg=[Cza zeros(1,5)];Dcl_lqg=zeros(1,1+Ncy);

x0_lqg=[x0a;zeros(5,1)];

zeta_lqg=zeta;

% now just treat this as a system with more sensor noise acting as more

% process noise

for ii=1:Ncy

zeta_lqg = [zeta_lqg sqrt(Rvv(ii,ii)/Ts)*randn(nt,1)];% discrete equivalent noise

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 12–31

68 end

69 [ya_lqg,xa_lqg] = lsim(Acl_lqg,Bcl_lqg,Ccl_lqg,Dcl_lqg,zeta_lqg,t,x0_lqg); % cts sim

70 F_lqg=c2d(ss(Acl_lqg,Bcl_lqg,Ccl_lqg,Dcl_lqg),Ts); % discretize the closed-loop dynamics

71 [dya_lqg,dxa_lqg] = lsim(F_lqg,zeta_lqg,[],x0_lqg); % stochastic sim in discrete time

72 ua_lqg = [zeros(1,5) KK]*xa_lqg’; % find control commands given the state estimate

73

74 %LQG State Perf Prediction

75 X_lqg=lyap(Acl_lqg,Bcl_lqg*[Rww zeros(1,Ncy);zeros(Ncy,1) Rvv]*Bcl_lqg’);

76 vx_lqg=Ccl_lqg*X_lqg*Ccl_lqg’;

77 vu_lqg=[zeros(1,5) KK]*X_lqg*[zeros(1,5) KK]’;

78

79 figure(3);clf

80 subplot(211)

81 plot(t,ya,’LineWidth’,3)

82 hold on;

83 plot(t,dya,’r-.’,’LineWidth’,2)

84 plot([0 max(t)],sqrt(vxa)*[1 1],’m--’,[0 max(t)],-sqrt(vxa)*[1 1],’m--’,’LineWidth’,1);

85 hold off

86 xlabel(’Time’);ylabel(’y(t)’);legend(’cts’,’disc’)

87 title(’Stochastic Simulation of Helicopter Response: with FF’)

88 subplot(212)

89 plot(t,ua,’LineWidth’,2)

90 xlabel(’Time’);ylabel(’u(t)’);legend(’with FF’)

91 hold on;

92 plot([0 max(t)],sqrt(vda)*[1 1],’m--’,[0 max(t)],-sqrt(vda)*[1 1],’m--’,’LineWidth’,1);

93 axis([0 tf -0.2 .6])

94 hold off

95 print -f3 -r300 -dpng heli_lqg_1.png;

96

97 figure(4);clf

98 subplot(211)

99 plot(t,ya_lqg,’LineWidth’,3)

100 hold on;
101 plot(t,dya_lqg,’r-.’,’LineWidth’,2)
102 plot([0 max(t)],sqrt(vx_lqg)*[1 1],’m--’,[0 max(t)],-sqrt(vx_lqg)*[1 1],’m--’,’LineWidth’,1);
103 hold off
104 xlabel(’Time’);ylabel(’y(t)’);legend(’cts’,’disc’)
105 title([’Stochastic Simulation of Helicopter Response: LQG R_{v v} = ’,num2str(Rvv(1,1))])
106 subplot(212)
107 plot(t,ua_lqg,’LineWidth’,2)
108 xlabel(’Time’);ylabel(’u(t)’);%legend(’with FF’)
109 if FULL
110 legend(’Full veh state’)
111 else
112 legend(’Pitch rate, Horiz Pos’)
113 end
114 hold on;
115 plot([0 max(t)],sqrt(vu_lqg)*[1 1],’m--’,[0 max(t)],-sqrt(vu_lqg)*[1 1],’m--’,’LineWidth’,1);
116 axis([0 tf -0.2 .6])
117 hold off
118 if FULL
119 print -f4 -r300 -dpng heli_lqg_2.png;
120 else
121 print -f4 -r300 -dpng heli_lqg_3.png;
122 end

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 Example: 747 16.323 12–32

•	 Bryson, page 209 Consider the stabilization of a 747 at 40,000 ft
and Mach number of 0.80. The perturbation dynamics from elevator
angle to pitch angle are given by

θ(s) 1.16(s + 0.0113)(s + 0.295)
δe(s)

= G(s) =
[s2 + (0.0676)2][(s + 0.375)2 + (0.882)2]

1. Note that these aircraft dynamics can be stabilized with a simple
lead compensator

δe(s) s + 0.6
= 3.50

θ(s) s + 3.6

2. Can also design an LQG controller for this system by assuming that
Bw = Bu and Cz = Cy, and then tuning Ruu and Rvv to get a
reasonably balanced performance.
– Took Rww = 0.1 and tuned Rvv

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−4

−3

−2

−1

0

1

2

3

4

Pole−Zero Map

Real Axis

Im
ag

in
ar

y
A

xi
s

lead
LQG

Figure 12.6: B747: Compensators

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 12–33

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

RL of B747 system with the given Lead Comp

Real Axis

Im
ag

in
ar

y
A

xi
s

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

RL of B747 system with the LQG Comp

Real Axis

Im
ag

in
ar

y
A

xi
s

Figure 12.7: B747: root locus (Lead on left, LQG on right shown as a function of
the overall compensator gain)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 12–34

3. Compare the Bode plots of the lead compensator and LQG designs

10
−3

10
−2

10
−1

10
0

10
1

10
−2

10
0

10
2

Freq (rad/sec)

G
Gc

lead

Gc
lqg

10
−3

10
−2

10
−1

10
0

10
1

−200

−100

0

100

Freq (rad/sec)

G
Gc

lead

Gc
lqg

10
−3

10
−2

10
−1

10
0

10
1

10
−2

10
0

10
2

Freq (rad/sec)

G
Loop

lead

Loop
lqg

10
−3

10
−2

10
−1

10
0

10
1

−300

−200

−100

0

100

Freq (rad/sec)

G
Loop

lead

Loop
lqg

Figure 12.8: B747: Compensators and loop TF

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 12–35

4. Consider the closed-loop TF for the system

10
−3

10
−2

10
−1

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Freq (rad/sec)

G
Gcl

lead

Gcl
lqg

Figure 12.9: B747: closed-loop TF

5. Compare impulse response of two closed-loop systems.

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

Time

y(
t)

G
Gcl

lead

Gcl
lqg

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

Time

u(
t)

Gc
lead

Gc
lqg

Figure 12.10: B747: Impulse response

6. So while LQG controllers might appear to be glamorous, they are
actually quite ordinary for SISO systems.
– Where they really shine is that it this simple to design a MIMO

controller.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

Spr 2008 16.323 12–36

B747 LQG

% 16.323 B747 example

% Jon How, MIT, Spring 2007

%

clear all

set(0,’DefaultAxesFontName’,’arial’)

set(0,’DefaultAxesFontSize’,12)

set(0,’DefaultTextFontName’,’arial’)

gn=1.16*conv([1 .0113],[1 .295]);

gd=conv([1 0 .0676^2],[1 2*.375 .375^2+.882^2]);

% lead comp given

kn=3.5*[1 .6];kd=[1 3.6];

f=logspace(-3,1,300);

g=freqresp(gn,gd,2*pi*f*sqrt(-1));

[nc,dc]=cloop(conv(gn,kn),conv(gd,kd)); % CLP with lead

gc=freqresp(nc,dc,2*pi*f*sqrt(-1)); % CLP with lead

%roots(dc)

%loglog(f,abs([g gc]))

%get state space model

[a,b,c,d]=tf2ss(gn,gd);

% assume that Bu and Bw are the same

% take y=z

Rzz=1;Ruu=0.01;Rww=0.1;Rvv=0.01;

[k,P,e1] = lqr(a,b,c’*Rzz*c,Ruu);

[l,Q,e2] = lqe(a,b,c,Rww,Rvv);

[ac,bc,cc,tdc] = reg(a,b,c,d,k,l);

[knl,kdl]=ss2tf(ac,bc,cc,tdc);

N1=trace(P*(l*Rvv*l’))%

N2=trace(Q*(c’*Rzz*c))%

N3=trace(P*(b*Rww*b’))%

N4=trace(Q*(k’*Ruu*k))%

N=[N1 N2 N1+N2;N3 N4 N3+N4]

[ncl,dcl]=cloop(conv(gn,knl),conv(gd,kdl)); % CLP with lqg

gcl=freqresp(ncl,dcl,2*pi*f*sqrt(-1)); % CLP with lqg

[[roots(dc);0;0;0] roots(dcl)]

figure(2);clf;

loglog(f,abs([g gc gcl])) % mag plot of closed loop system

setlines(2)

legend(’G’,’Gcl_{lead}’,’Gcl_{lqg}’)

xlabel(’Freq (rad/sec)’)

Gclead=freqresp(kn,kd,2*pi*f*sqrt(-1));

Gclqg=freqresp(knl,kdl,2*pi*f*sqrt(-1));

figure(3);clf;

subplot(211)

loglog(f,abs([g Gclead Gclqg])) % Bode of compesantors

setlines(2)

legend(’G’,’Gc_{lead}’,’Gc_{lqg}’)

xlabel(’Freq (rad/sec)’)

axis([1e-3 10 1e-2 1e2])

subplot(212)

semilogx(f,180/pi*unwrap(phase([g])));hold on

semilogx(f,180/pi*unwrap(phase([Gclead])),’g’)

semilogx(f,180/pi*unwrap(phase([Gclqg])),’r’)

xlabel(’Freq (rad/sec)’)

hold off

setlines(2)

legend(’G’,’Gc_{lead}’,’Gc_{lqg}’)

figure(6);clf;

subplot(211)

loglog(f,abs([g g.*Gclead g.*Gclqg])) % Bode of Loop transfer function

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 12–37

68 setlines(2)

69 legend(’G’,’Loop_{lead}’,’Loop_{lqg}’)

70 xlabel(’Freq (rad/sec)’)

71 axis([1e-3 10 1e-2 1e2])

72 subplot(212)

73 semilogx(f,180/pi*unwrap(phase([g])));hold on

74 semilogx(f,180/pi*unwrap(phase([g.*Gclead])),’g’)

75 semilogx(f,180/pi*unwrap(phase([g.*Gclqg])),’r’)

76 xlabel(’Freq (rad/sec)’)

77 hold off

78 setlines(2)

79 legend(’G’,’Loop_{lead}’,’Loop_{lqg}’)

80

81 % RL of 2 closed-loop systems

82 figure(1);clf;rlocus(conv(gn,kn),conv(gd,kd));axis(2*[-2.4 0.1 -0.1 2.4])

83 hold on;plot(roots(dc)+sqrt(-1)*eps,’md’,’MarkerFaceColor’,’m’);hold off

84 title(’RL of B747 system with the given Lead Comp’)

85 figure(4);clf;rlocus(conv(gn,knl),conv(gd,kdl));axis(2*[-2.4 0.1 -0.1 2.4])

86 hold on;plot(roots(dcl)+sqrt(-1)*eps,’md’,’MarkerFaceColor’,’m’);hold off

87 title(’RL of B747 system with the LQG Comp’)

88

89 % time simulations

90 Ts=0.01;

91 [y1,x,t]=impulse(gn,gd,[0:Ts:10]);

92 [y2]=impulse(nc,dc,t);

93 [y3]=impulse(ncl,dcl,t);

94 [ulead]=lsim(kn,kd,y2,t); % noise free sim

95 [ulqg]=lsim(knl,kdl,y3,t); % noise free sim

96

97 figure(5);clf;

98 subplot(211)

99 plot(t,[y1 y2 y3])

100 xlabel(’Time’)
101 ylabel(’y(t)’)
102 setlines(2)
103 legend(’G’,’Gcl_{lead}’,’Gcl_{lqg}’)
104 subplot(212)
105 plot(t,[ulead ulqg])
106 xlabel(’Time’)
107 ylabel(’u(t)’)
108 setlines(2)
109 legend(’Gc_{lead}’,’Gc_{lqg}’)
110

111 figure(7)
112 pzmap(tf(kn,kd),’g’,tf(knl,kdl),’r’)
113 legend(’lead’,’LQG’)
114

115 print -depsc -f1 b747_1.eps;jpdf(’b747_1’)
116 print -depsc -f2 b747_2.eps;jpdf(’b747_2’)
117 print -depsc -f3 b747_3.eps;jpdf(’b747_3’)
118 print -depsc -f4 b747_4.eps;jpdf(’b747_4’)
119 print -depsc -f5 b747_5.eps;jpdf(’b747_5’)
120 print -depsc -f6 b747_6.eps;jpdf(’b747_6’)
121 print -depsc -f7 b747_7.eps;jpdf(’b747_7’)
122

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

16.323 Lecture 13

LQG Robustness

•	 Stengel Chapter 6
•	 Question: how well do the large gain and phase margins discussed for LQR (6–29)

map over to LQG?

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 13–1
LQG

•	 When we use the combination of an optimal estimator and an optimal
regulator to design the controller, the compensator is called

Linear Quadratic Gaussian (LQG)

– Special case of the controllers that can be designed using the sep

aration principle.

•	 The great news about an LQG design is that stability of the closed-loop
system is guaranteed.
– The designer is freed from having to perform any detailed mechanics

- the entire process is fast and can be automated.

•	 So the designer can focus on the “performance” related issues, being
confident that the LQG design will produce a controller that stabilizes
the system.

– How to specify the state cost function (i.e. selecting z = Czx) and
what values of Rzz, Ruu to use.

– Determine how the process and sensor noise enter into the system
and what their relative sizes are (i.e. select Rww & Rvv)

•	 This sounds great – so what is the catch??

•	 The remaining issue is that sometimes the controllers designed using
these state-space tools are very sensitive to errors in the knowledge of
the model.

– i.e., the compensator might work very well if the plant gain α = 1,
but be unstable if it is α = 0.9 or α = 1.1.

– LQG is also prone to plant–pole/compensator–zero cancelation,
which tends to be sensitive to modeling errors.

– J. Doyle, ”Guaranteed Margins for LQG Regulators”, IEEE Trans

actions on Automatic Control, Vol. 23, No. 4, pp. 756-757, 1978.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

756 JEEE TRANSACTIONS ON AUTOMA~C CONTROL, VOL. AC-23, NO. 4, AUGUST 1978

ity of the desired transfer-function matrix T,(s) is that the matrix
equation (9) is consistent for m > 3 m (i.e., for the case where there are
more equations than unknowns). However, as it is seen below, t h i s
condition is not sufficient.

Suppose that it is required to test the admissibility of a desired
transfer-function matrix TAs). Also consider another transfer-function
matrix Tu@), for which

Td(s) and T&) give rise to the same values for the matrices Jp and 4.
Now, if these matrices make (9) consistent, only one of the transfer-func-
tion matrices need be admissible. And thus the condition that (9) is
consistent for r = p is not sufficient for admissibility of Td(s).

However, since the elements of Tds) are ratios of finite-order poly-
nomials in s, there is an upper limit on the value of “p“ for which the
above equality (11) holds for distinct Td(s) and T,(s). The closed-loop
system with the PID controller is of order (n + mXsee [lOD. The numera-
tor of the elements of TAs) are polynomials of maximal order (n + m - l)
and denominators are polynomials of maximal order (n+m). Hence,

T,(s) if

if and

[5] B. C. Moore and L. M. Silverman, “Model matching by state feedback and
dynamic mmpensation,” IEEE Trans. Auromar. Confr.. vol. AC-17. pp. 491-497,

161 H. H. Rosenbrock, Stare-&puce und Mdtiwriuble Theory. Camden, NJ: Nelson,
Aug. 1972.

1970.
171 E. J. Davison and A. Goldenberg, “Robust control of a general servomechanism

problem,” Automaricu, vol. 11. pp. 461-471, 1975.
[SI E. J. Davison, “The robust control of a servomecbanism problem for linear time-in-

variant multivariable systems,” IEEE Truns. Aufomz. Contr., vol. AG21, pp.
25-34, Feb. 1976.

[91 G. Bengtsson, “Output regulation and internal models-a frequency domain a p
proach,” Auromfico, vol. 13, pp. 333-345, 1977.

[IO] H. Seraji and M. Tarokh, “Design of PID controllers for multivariable s y s a ”
Inr. J. Conrr.. vol. 26, July 1977.

[I I] A. Ben-Israel and T. N. E. Greville, GeneruIised Inoprser. New York: Wdey, 1973.

Spr 2008 16.323 13–2

June 18, 2008

Excerpt from document by John Doyle. Removed due to copyright restrictions.

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 13–3

•	 The good news is that the state-space techniques will give you a con

troller very easily.
– You should use the time saved to verify that the one you

designed is a “good” controller.

•	 There are, of course, different definitions of what makes a controller
good, but one important criterion is whether there is a reasonable
chance that it would work on the real system as well as it
does in Matlab. Robustness.⇒
– The controller must be able to tolerate some modeling error, be

cause our models in Matlab are typically inaccurate.
�	Linearized model
�	Some parameters poorly known
�	Ignores some higher frequency dynamics

•	 Need to develop tools that will give us some insight on how well a
controller can tolerate modeling errors.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 LQG Example 16.323 13–4

•	 Consider the “cart on a stick” system, with the dynamics as given in
the following pages. Define � � � �

q =
θ
x

, x =
q
q̇

Then with y = x

ẋ = Ax + Buu

y = Cyx

•	 For the parameters given in the notes, the system has an unstable pole
at +5.6 and one at s = 0. There are plant zeros at ±5.

•	 Very simple LQG design - main result is fairly independent of the choice
of the weighting matrices.

•	 The resulting compensator is unstable (+23!!)
– This is somewhat expected. (why?)

10−2 10−1 100 101 102
10−4

10−2

100

102

104

Freq (rad/sec)

M
ag

Plant G
Compensator Gc

10−2 10−1 100 101 102
0

50

100

150

200

Freq (rad/sec)

P
ha

se
 (d

eg
)

Plant G
Compensator Gc

Figure 13.1: Plant and Controller

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Example: cart with an inverted pendulum.

θ

F

m, l

L

M

x

• Nonlinear equations of motion can be developed for
large angle motion (see 30-32)

Force actuator, θ sensor •

Linearize for small θ
 (I+mL2) - mgL θ = mL

 (M+m) + g -mL = F

⎡ ⎤()I m+ −L2 2s mgL −mLs2 ⎡Θ()s ⎤ ⎡0 ⎤
⎢ ⎥ =

mLs2 2 ⎢ ⎥ ⎢ ⎥
⎣ ⎦− +()M m s +Gs ⎣x()s F⎦ ⎣ ()s ⎦

Θ mLs2

=
2 2

F ⎡ ⎤()I + −mL s mgL ⎡(M + 2 + ⎤ − 2 2

⎣ ⎦ ⎣ m)s Gs⎦ (mLs)

Cannot say too much more

Let M= 0.5, m=0.2, G=0.1, I=0.006, L=0.3

 gives

Figure by MIT OpenCourseWare.

Θ 4.54s2

=
F s4 3+ −0.1818s 31.18s2

− 4.45s

therefore has an unstable pole (as expected)
s=± 5.6,-0.14,0

Spr 2008 16.323
13-5

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Figure by MIT OpenCourseWare.

10

8

6

4

2

0

-2

-4

-6

86420-2-4-6

-8

-10

Near Origin

Real Axis

Im
ag

 A
xi

s
Spr 2008 16.323
13-6

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 13–7

10−2 10−1 100 101 102
10−2

10−1

100

101

102

Freq (rad/sec)

M
ag

Loop L

10−2 10−1 100 101 102
−300

−250

−200

−150

−100

−50

Freq (rad/sec)

P
ha

se
 (d

eg
)

Figure 13.2: Loop and Margins

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 13–8

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10
0.160.340.50.64

0.76

0.86

0.94

0.985

0.160.340.50.64

0.76

0.86

0.94

0.985

2

4

6

8

10

2

4

6

8

10

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

Figure 13.3: Root Locus with frozen compensator dynamics. Shows sensi

tivity to overall gain – symbols are a gain of [0.995:.0001:1.005].

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2 0.50.64

0.76

0.86

0.94

0.985

0.160.340.50.64

0.76

0.86

0.94

0.985

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0.160.34

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 13–9

•	 Looking at both the Loop TF plots and the root locus, it is clear this
system is stable with a gain of 1, but
– Unstable for a gain of 1 ± � and/or a slight change in the system

phase (possibly due to some unmodeled delays)

– Very limited chance that this would work on the real system.

•	 Of course, this is an extreme example and not all systems are like this,
but you must analyze to determine what robustness margins your
controller really has.

•	 Question: what analysis tools should we use?

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�	 � � �

�	 � � �

Spr 2008 Analysis Tools to Use? 16.323 13–10

•	 Eigenvalues give a definite answer on the stability (or not) of the
closed-loop system.
– Problem is that it is very hard to predict where the closed-loop poles

will go as a function of errors in the plant model.

•	 Consider the case were the model of the system is

ẋ = A0x + Bu

– Controller also based on A0, so nominal closed-loop dynamics:
A0 −BK	 A0 − BK BK

LC A0 − BK − LC
⇒

0 A0 − LC

•	 But what if the actual system has dynamics

ẋ = (A0 + ΔA)x + Bu

– Then perturbed closed-loop system dynamics are:
A0 + ΔA −BK A0 + ΔA − BK BK

LC A0 − BK − LC
⇒

ΔA A0 − LC

¯•	 Transformed Acl not upper-block triangular, so perturbed closed-loop
eigenvalues are NOT the union of regulator & estimator poles.
– Can find the closed-loop poles for a specific ΔA, but

– Hard to predict change in location of closed-loop poles for a range
of possible modeling errors.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 Frequency Domain Tests 16.323 13–11

•	 Frequency domain stability tests provide further insights on the sta
bility margins.

•	 Recall from the Nyquist Stability Theorem:
– If the loop transfer function L(s) has P poles in the RHP s-plane

(and lims→∞ L(s) is a constant), then for closed-loop stability, the
locus of L(jω) for ω ∈ (−∞, ∞) must encircle the critical point
(−1, 0) P times in the counterclockwise direction [Ogata 528].

– This provides a binary measure of stability, or not.

•	 Can use “closeness” of L(s) to the critical point as a measure of
“closeness” to changing the number of encirclements.
– Premise is that the system is stable for the nominal system
⇒	has the right number of encirclements.

•	 Goal of the robustness test is to see if the possible perturbations to
our system model (due to modeling errors) can change the number
of encirclements

– In this case, say that the perturbations can destabilize the system.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 13–12

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Im
ag

 P
ar

t

Real Part

stable OL

L
N

(jω)

L
A
(jω)

ω
1

ω
2

Figure 13.4: Plot of Loop TF LN (jω) = GN (jω)Gc(jω) and perturbation (ω1 → ω2)
that changes the number of encirclements.

•	 Model error in frequency range ω1 ≤ ω ≤ ω2 causes a change in the
number of encirclements of the critical point (−1, 0)
– Nominal closed-loop system stable LN (s) = GN (s)Gc(s)
– Actual closed-loop system unstable LA(s) = GA(s)Gc(s)

•	 Bottom line: Large model errors when LN ≈ −1 are very dangerous.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 13–13

−260 −240 −220 −200 −180 −160 −140 −120 −100
10−1

100

101
Nichols: Unstable Open−loop System

M
ag

Phase (deg)

−180.5 −180 −179.5 −179 −178.5
0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

Phase (deg)

M
ag

Nichols: Unstable Open−loop System

1
0.99
1.01

Figure 13.5: Nichols Plot (|L((jω))| vs. arg L((jω))) for the cart example
which clearly shows the sensitivity to the overall gain and/or phase lag.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 Frequency Domain Test 16.323 13–14

−1.5 −1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

stable OL

Real Part

|L
N

(jω)|
|d(jω)|Im

ag
 P

ar
t

Figure 13.6: Geometric interpretation from Nyquist Plot of Loop TF.

• |d(jω)| measures distance of nominal Nyquist locus to critical point.

• But vector addition gives −1 + d(jω) = LN (jω)

⇒ d(jω) = 1 + LN (jω)

• Actually more convenient to plot

1 1
|d(jω)|

=
|1 + LN (jω)|

� |S(jω)|

the magnitude of the sensitivity transfer function S(s).

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 13–15

•	 So high sensitivity corresponds to LN (jω) being very close to the
critical point.

10−2 10−1 100 101 102
10−2

10−1

100

101

102

103
Sensitivity Plot

Freq (rad/sec)

M
ag

|S|
|L|

Figure 13.7: Sensitivity plot of the cart problem.

•	 Ideally you would want the sensitivity to be much lower than this.
– Same as saying that you want L(jω) to be far from the critical

point.

– Difficulty in this example is that the open-loop system is unstable,
so L(jω) must encircle the critical point hard for L(jω) to get ⇒
too far away from the critical point.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 Summary 16.323 13–16

•	 LQG gives you a great way to design a controller for the nominal
system.

•	 But there are no guarantees about the stability/performance if the
actual system is slightly different.
– Basic analysis tool is the Sensitivity Plot

•	 No obvious ways to tailor the specification of the LQG controller to
improve any lack of robustness
– Apart from the obvious “lower the controller bandwidth” approach.

– And sometimes you need the bandwidth just to stabilize the system.

•	 Very hard to include additional robustness constraints into LQG
– See my Ph.D. thesis in 1992.

•	 Other tools have been developed that allow you to directly shape the
sensitivity plot |S(jω)|
– Called H∞ and µ

•	 Good news: Lack of robustness is something you should look for,
but it is not always an issue.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Topic #14

16.31 Feedback Control Systems

MIMO Systems
• Singular Value Decomposition

co
nt

ro
len

gin
ee

rs
.ir

�	 �

Spr 2008
	

16.323 14–1

Multivariable Frequency Response

•	 In the MIMO case, the system G(s) is described by a p × m transfer
function matrix (TFM)
– Still have that G(s) = C(sI − A)−1B + D
– But G(s) A,B,C,D MUCH less obvious than in SISO case. →
– Also seen that the discussion of poles and zeros of MIMO systems

is much more complicated.

•	 In SISO case we use the Bode plot to develop a measure of the system
“size”.
– Given z = Gw, where G(jω) = |G(jω)|ejφ(w)

– Then w = |w|ej(ω1t+ψ) applied to |G(jω)|ejφ(w) yields

|w||G(jω1)| j(ω1t+ψ+φ(ω1)) | | j(ω1t+ψo) ≡ z
e	 = z e

– Amplification and phase shift of the input signal obvious in the SISO
case.

MIMO extension? •
– Is the response of the system large or small?

103/s 0
G(s) =

0 10−3/s

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

Spr 2008	 16.323 14–2

•	 For MIMO systems, cannot just plot all of the gij elements of G
– Ignores the coupling that might exist between them.

– So not enlightening.

•	 Basic MIMO frequency response:
– Restrict all inputs to be at the same frequency
– Determine how the system responds at that frequency
– See how this response changes with frequency

•	 So inputs are w = wce
jωt, where wc ∈ Cm

– Then we get z = G(s)|s=jω w, ⇒ z = zcejωt and zc ∈ Cp

– We need only analyze zc = G(jω)wc

•	 As in the SISO case, we need a way to establish if the system response
is large or small.
– How much amplification we can get with a bounded input.

•	 Consider zc = G(jω)wc and set �wc�2 = wc
H wc ≤ 1. What can

we say about the �zc�2?
– Answer depends on ω and on the direction of the input wc

– Best found using singular values.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�	 �

Spr 2008	 16.323 14–3
Singular Value Decomposition

•	 Must perform SVD of the matrix G(s) at each frequency s = jω

G(jω) ∈ Cp×m U ∈ Cp×p Σ ∈ Rp×m V ∈ Cm×m

G = UΣV H

– UHU = I, UUH = I, V HV = I, V V H = I, and Σ is diagonal.

– Diagonal elements σk ≥ 0 of Σ are the singular values of G.

σi	 = λi(GHG) or σi = λi(GGH)

the positive ones are the same from both formulas.

– Columns of matrices U and V (ui and vj) are the associated eigen

vectors

GHGvj = σj
2 vj

GGHui = σi
2 ui

Gvi = σiui

•	 If the rank(G) = r ≤ min(p,m), then
– σk > 0, k = 1, . . . , r
– σk = 0, k = r + 1, . . . , min(p,m)
– Singular values are sorted so that σ1 ≥ σ2 ≥ . . . ≥ σr

•	 An SVD gives a very detailed description of how a matrix (the
system G) acts on a vector (the input w) at a particular frequency.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

Spr 2008	 16.323 14–4

So how can we use this result? •
– Fix the size �wc�2 = 1 of the input, and see how large we can make

the output.
– Since we are working at a single frequency, we just analyze the

relation
zc = Gwwc, Gw ≡ G(s = jω)

•	 Define the maximum and minimum amplifications as:

σ max≡
�wc�2=1

�zc�2

σ min≡
�wc�2=1

�zc�2

•	 Then we have that (let q = min(p,m))

σ	 = σ1

σ =
σq p ≥ m “tall”
0 p < m “wide”

•	 Can use σ and σ to determine the possible amplification and attenu

ation of the input signals.

• Since G(s) changes with frequency, so will σ and σ

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 14–5
SVD Example

• Consider (wide case) ⎡ ⎤ � � � � � � 1 0 0
Gw =

5 0 0
=

1 0 5 0 0 ⎣ 0 1 0 ⎦
0 0.5 0 0 1 0 0.5 0

0 0 1

= UΣV H

so that σ1 = 5 and σ2 = 0.5

σ max≡
�wc�2=1

�Gwwc�2 = 5 = σ1

σ min = σ2≡
�wc�2=1

�Gwwc�2 = 0 �

• But now consider (tall case)
⎡ ⎤ ⎡ ⎤⎡ ⎤
5 0 1 0 0 5 0 � �

G̃w = ⎣ 0 0.5 ⎦ = ⎣ 0 1 0 ⎦⎣ 0 0.5 ⎦ 1 0
0 1

0 0 0 0 1 0 0

= UΣV H

so that σ1 = 5 and σ2 = 0.5 still.

σ max≡
�wc�2=1

�Gwwc�2 = 5 = σ1

σ min≡
�wc�2=1

�Gwwc�2 = 0.5 = σ2

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �

Spr 2008	 16.323 14–6

•	 For MIMO systems, the gains (or σ’s) are only part of the story, as
we must also consider the input direction.

•	 To analyze this point further, note that we can rewrite ⎤⎡ ⎡
 ⎤
σ1
 Hv1⎢⎢⎢⎣
 σm

⎥⎥⎥⎦

. . .

Gw
 =
 UΣV H
 ⎣
 ⎦
..= u1 . . . up
 .

Hvm0

m

= σiuivi
H

�

i=1

– Assumed tall case for simplicity, so p > m and q = m

•	 Can now analyze impact of various alternatives for the input
– Only looking at one frequency, so the basic signal is harmonic.
– But, we are free to pick the relative sizes and phases of each of

the components of the input vector wc.
�	These define the input direction

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�	 � �

Spr 2008	 16.323 14–7

•	 For example, we could pick wc = v1, then
m

zc = Gwwc = σiuivi
H v1 = σ1u1

i=1

since vi
Hvj = δij.

– Output amplified by σ1. The relative sizes and phases of each of
the components of the output are given by the vector zc.

•	 By selecting other input directions (at the same frequency), we can
get quite different amplifications of the input signal

σ ≤ �Gwwc�2 ≤ σ
�wc�2

•	 Thus we say that
– Gw is large if σ(Gw) � 1

– Gw is small if σ(Gw) � 1

•	 MIMO frequency response are plots of σ(jω) and σ(jω).
– Then use the singular value vectors to analyze the response at a

particular frequency.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

16.323 Lecture 15

Signals and System Norms

H∞ Synthesis

Different type of optimal controller

SP Skogestad and Postlethwaite(1996) Multivariable Feedback Control Wiley.
JB Burl (2000). Linear Optimal Control Addison-Wesley.

ZDG Zhou, Doyle, and Glover (1996). Robust and Optimal Control Prentice Hall.
MAC Maciejowski (1989) Multivariable Feedback Design Addison Wesley.

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 15–1
Mathematical Background

• Signal norms we use norms to measure the size of a signal.
– Three key properties of a norm:
1. �u� ≥ 0, and �u� = 0 iff u = 0

2. �αu� = |α|�u� ∀ scalars α

3. �u + v� ≤ �u� + �v�

• Key signal norms

– 2-norm of u(t) – Energy of the signal �� �1/2∞

�u(t)�2 ≡ u 2(t)dt
−∞

– ∞-norm of u(t) – maximum value over time

�u(t)�∞ = max u(t)
t
| |

– Other useful measures include the Average power � � T �1/2

pow(u(t)) = lim
1

u 2(t)dt
T →∞ 2T −T

u(t) is called a power signal if pow(u(t)) < ∞

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

�

Spr 2008	 16.323 15–2

• System norms Consider the system with dynamics y = G(s)u
– Assume G(s) stable, LTI transfer function matrix
– g(t) is the associated impulse response matrix (causal).

•	 H2 norm for the system: (LQG problem) � � �1/2

�G�2 =
2

1
π

∞

trace[GH (jω)G(jω)]dω ��
−∞	 �1/2

=
∞

trace[gT (τ)g(τ)]dτ
0

Two interpretations:
– For SISO: energy in the output y(t) for a unit impulse input u(t).
– For MIMO 27: apply an impulsive input separately to each actuator

and measure the response zi, then

=�G�2
2 �zi�2

2

i

– Can also interpret as the expected RMS value of the output in
response to unit-intensity white noise input excitation.

• Key point: Can show that � � �1/2
1 ∞ �

�G�2 =	 σi
2[G(jω)]dω

2π −∞ i

– Where σi[G(jω)] is the ith singular value28 29 of the system G(s)
evaluated at s = jω

– H2 norm concerned with overall performance (σi
2) over all i

frequencies

27ZDG114

28http://mathworld.wolfram.com/SingularValueDecomposition.html

29http://en.wikipedia.org/wiki/Singular_value_decomposition

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

http://mathworld.wolfram.com/SingularValueDecomposition.html
http://en.wikipedia.org/wiki/Singular_value_decomposition

�

Spr 2008 16.323 15–3

• H∞ norm for the system:

�G(s)�∞ = sup σ[G(jω)]
ω

Interpretation:
– �G(s)�∞ is the “energy gain” from the input u to output y

∞

yT (t)y(t)dt
�G(s)�∞ �0 = max

u(t)=0�
∞

uT (t)u(t)dt
0

– Achieve this maximum gain using a worst case input signal that
is essentially a sinusoid at frequency ω� with input direction that
yields σ[G(jω�)] as the amplification.

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

σ
max

[G(jω)] = 0.16683

Freq rad/sec

σ m
ax

[G
]

Figure 15.1: Graphical test for the �G�∞.

Note that we now have •
1. Signal norm �u(t)�∞ = max u(t)

t
| |

2. Vector norm �x�∞ = max xi
i
| |

3. System norm �G(s)�∞ = max σ[G(jω)]
ω

We use the same symbol � · �∞ for all three, but there is typically no
confusion, as the norm to be used is always clear by the context.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 Key Points / Summary 16.323 15–4

• So H∞ is concerned primarily with the peaks in the frequency re
sponse, and the H2 norm is concerned with the overall response.

•	 The H∞ norm satisfies the submultiplicative property

�GH�∞ ≤ �G�∞ · �H�∞

– Will see that this is an essential property for the robustness tests
– Does not hold in general for �GH�2

•	 Reference to H∞ control is that we would like to design a stabilizing
controller that ensures that the peaks in the transfer function matrix
of interest are knocked down.

e.g. want max
ω	
σ[T (jω)] ≡ �T (s)�∞ < 0.75

•	 Reference to H2 control is that we would like to design a stabilizing
controller that reduces the �T (s)�2 as much as possible.
– Note that H2 control and LQG are the same thing.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

�

� � � �

�

Spr 2008	 16.323 15–5
Computation

•	 Assume that G(s) = C(sI − A)−1B + D with Rλ(A) < 0, i.e. G(s)
stable.

•	 H2 norm: requires a strictly proper system D = 0

ẋ = Ax + Bu

y = Cx

– Define:
Observability Gramian Po

ATPo + PoA + CTC = 0 Po =
∞

eA
T tCTCeAtdt⇔

0

Controllability Gramian Pc

APc + PcA
T + BBT = 0 Pc =

∞

eAtBBTeA
T tdt⇔

0

then
�G�2 =	trace BTPoB = trace CPcC

T
2

Proof: use the impulse response of the system G(s) and evaluate the
time-domain version of the norm.

•	 H∞ norm: Define the Hamiltonian matrix

B(γ2I − DT D)−1BT �
A + B(γ2I − DT D)−1DT C

H =

− CT (I + D(γ2I − DT D)−1DT)C
 −(A + B(γ2I − DT D)−1DT C)T

– Then �G(s)�∞ < γ iff σ(D) < γ and H has no eigenvalues on
the jω-axis.

– Graphical test maxω σ[G(jω)] < γ replaced with eigenvalue test.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 Issues 16.323 15–6

•	 Note that it is not easy to find �G�∞ directly using the state space
techniques
– It is easy to check if �G�∞ < γ
– So we just keep changing γ to find the smallest value for which we

can show that �G�∞ < γ (called γmin)

⇒	Bisection search algorithm.

•	 Bisection search algorithm
1. Select γu, γl so that γl ≤ �G�∞ ≤ γu

2. Test (γu − γl)/γl < TOL.

Yes ⇒ Stop (�G�∞ ≈ 1(γu + γl))
2

No go to step 3. ⇒

3. With γ = 1(γl + γu), test if �G�∞ < γ using λi(H)2

4. If λi(H) ∈ jR, then set γl = γ (test value too low), otherwise set
γu = γ and go to step 2.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 Application 16.323 15–7

•	 Note that we can use the state space tests to analyze the weighted
tests that we developed for robust stability

– For example, we have seen the value in ensuring that the sensitivity
remains smaller than a particular value

σ[WiS(jω)] < 1 ω∀

•	 We can test this by determining if �Wi(s)S(s)�∞ < 1
– Use state space models of Gc(s) and G(s) to develop a state space

model of � �

S(s) :=
As

Cs

Bs

0

– Augment these dynamics with the (stable, min phase) Wi(s) to get
a model of Wi(s)S(s)

Wi(s)

Wi(s)S(s)

� �

:=
Aw Bw

Cw 0 ⎡
As 0 Bs

⎤

:= ⎣ BwCs Aw 0 ⎦

0 Cw 0

– Now compute the H∞ norm of the combined system Wi(s)S(s).

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 Riccati Equation Tests 16.323 15–8

• Note that, with D = 0, the H∞ Hamiltonian matrix becomes � �

H =
A

−CT C

1
γ2 BB

T

−AT

– Know that �G�∞ < γ iff H has no eigenvalues on the jω-axis.

– Equivalent test is if there exists a X ≥ 0 such that

1
ATX + XA + CTC + XBBTX = 0

γ2

and A +
γ
1
2 BB

TX is stable.

– So there is a direction relationship between the Hamiltonian matrix
H and the algebraic Riccati Equation (ARE)

•	 Aside: Compare this ARE with the one that we would get if we used
this system in an LQR problem:

1
ATP + PA + CTC − PBBTP = 0

ρ

– If (A,B,C) stabilizable/detectable, then will always get a solution
for the LQR ARE.

– Sign difference in quadratic term of the H∞ ARE makes this equa

tion harder to satisfy. Consistent with the fact that we could have
�G�∞ > γ no solution to the H∞ ARE.⇒

– The two Riccati equations look similar, but with the sign change,
the solutions can behave very differently.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �

Spr 2008	 Synthesis 16.323 15–9

•	 For the synthesis problem, we typically define a generalized version of
the system dynamics

�
Pzw(s) Pzu(s)
Pyw(s) Pyu(s)

�

Gc

�

�

�

w

u

z

y

Signals:	 Generalized plant:
– z Performance output �

Pzw(s) Pzu(s)
�

P (s) =
– w Disturbance/ref inputs	 Pyw(s) Pyu(s)

– y Sensor outputs	 contains the plant G(s) and all per

– u Actuator inputs	 formance and uncertainty weights

•	 With the loop closed (u = Gcy), can show that
z

= Pzw + PzuGc(I − PyuGc)
−1Pyw

w CL

≡	 Fl(P,Gc)

called a (lower) Linear Fractional Transformation (LFT).

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 15–10

•	 Design Objective: Find Gc(s) to stabilize the closed-loop system
and minimize �Fl(P,Gc)�∞.

•	 Hard problem to solve, so we typically consider a suboptimal problem:
– Find Gc(s) to satisfy �Fl(P,Gc)�∞ < γ
– Then use bisection (called a γ iteration) to find the smallest value

(γopt) for which �Fl(P,Gc)�∞ < γopt

hopefully get that Gc approaches Gopt
c⇒

•	 Consider the suboptimal H∞ synthesis problem: 30

Find Gc(s) to satisfy �Fl(P,Gc)�∞ < γ ⎤⎡ �	 � A Bw Bu

P (s) =
Pzw(s) Pzu(s) := ⎣ Cz 0	 Dzu ⎦
Pyw(s) Pyu(s) Cy Dyw 0

where we assume that:
1.	(A,Bu, Cy) is stabilizable/detectable (essential)
2.	(A,Bw, Cz) is stabilizable/detectable (essential)
3.	DT] = [0 I] (simplify/essential) � zu[Cz� Dzu � �

4.	
Bw DT =

0
(simplify/essential)

Dyw
yw I

Note that we will not cover all the details of the solution to this •
problem – it is well covered in the texts.

30SP367

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�	 �

�	 �

� �

Spr 2008	 16.323 15–11

•	 There exists a stabilizing Gc(s) such that �Fl(P,Gc)�∞ < γ iff

(1) ∃X ≥ 0 that solves the ARE

ATX + XA + Cz
TCz + X(γ−2BwBw

T − BuBu
T)X = 0

and Rλi A + (γ−2BwBw
T − BuBu

T)X < 0 ∀ i

(2) ∃Y ≥ 0 that solves the ARE

AY + Y AT + BTBw + Y (γ−2Cz
TCz − CTCy)Y = 0 w	 y

and Rλi A + Y (γ−2Cz
TCz − Cy

TCy) < 0 ∀ i

(3) ρ(XY) < γ2

ρ is the spectral radius (ρ(A) = maxi |λi(A)|).

•	 Given these solutions, the central H∞ controller is given by

A + (γ−2BwBw
T − BuBu

T)X − ZY Cy
TCy ZY CT

yGc(s) :=
X 0−Bu

T

where Z = (I − γ−2Y X)−1

– Central controller has as many states as the generalized plant.

•	 Note that this design does not decouple as well as the regulator/estimator
for LQG

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

• �	 �

�	 �

Spr 2008	 Observations 16.323 15–12

• Basic assumptions:

(A1) (A,Bu, Cy) is stabilizable/detectable

(A2) (A,Bw, Cz) is stabilizable/detectable

(A3) DT] = [0 I] (scaling and no cross-coupling)
� zu[Cz� Dzu � �

Bw DT 0

(A4) yw = (scaling and no cross-coupling)

Dyw I

•	 The restrictions that Dzw = 0 and Dyu = 0 are weak, and can easily
be removed (the codes handle the more general D case).

•	 (A1) is required to ensure that it is even possible to get a stabilizing
controller.

•	 Need Dzu and Dyw to have full rank to ensure that we penalize control
effort (A3) and include sensor noise (A4)
⇒	Avoids singular case with infinite bandwidth controllers.
⇒	Often where you will have the most difficulties initially.

Typically will see two of the assumptions written as:

(Ai)	
A − jωI Bu has full column rank ∀ ω

Cz Dzu

(Aii)
A − jωI Bw has full row rank ∀ ω
Cy Dyw

– These ensure that there are no jω-axis zeros in the Pzu or Pyw TF’s
– cannot have the controller canceling these, because that design
would not internally stabilize the closed-loop system.

– But with assumptions (A3) and (A4) given above, can show that
A(i) and A(ii) are equivalent to our assumption (A2).

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� � � �

Spr 2008	 16.323 15–13
Simple Design Example

Gc(s) G(s)

Ws Wu

�
�

� � � �

–

r e u ỹ

z1 z2

where
200

G	=
(0.05s + 1)2(10s + 1)

•	 Note that we have 1 input (r) and two performance outputs - one
that penalizes the sensitivity S(s) of the system, and the other that
penalizes the control effort used.

•	 Easy to show (see next page) that the closed-loop is:

z1 WsS
=	 r

z2 WuGcS

where, in this case, the input r acts as the “disturbance input” w to
the generalized system.

•	 To achieve good low frequency tracking and a crossover frequency of
about 10 rad/sec, pick

s/1.5 + 10
Ws =	 Wu = 1

s + (10) (0.0001) ·

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� � � �

� � � �

Spr 2008 16.323 15–14

• Generalized system in this case:

Figure 15.2: Rearrangement of original picture in the generalized plant format.

• Derive P (s) as ⎡ ⎤
Ws(s) −Ws(s)G(s)

z1 = Ws(s)(r − Gu) P (s) = ⎣ 0 Wu(s) ⎦
z2 = Wuu 1
e = r − Gu �

(s)

−
(s

G

)

(�
s)

Pzw Pzu= u = Gce Pyw(s) Pyu(s)

PCL = Fl(P,Gc)

=
Ws +

−WsG
Gc(I + GGc)

−11
0 Wu

Ws − WsGGcS WsS
= =

WuGcS WuGcS

June 18, 2008

+
_G

Gc

Wu

Ws z1
z

y

rW

P

u
z2

e

}
}

}

Figure by MIT OpenCourseWare.

co
nt

ro
len

gin
ee

rs
.ir

� � � �

Spr 2008	 16.323 15–15

•	 In state space form, let

A B	 Aw BwG(s) := Ws(s) := Wu = 1
C 0	 Cw Dw

ẋ	 = Ax + Bu

ẋw = Awxw + Bwe = Awxw + Bwr − BwCx

z1 = Cwxw + Dwe = Cwxw + Dwr − DwCx

z2 = Wuu

e	 = r − Cx ⎤⎡

P (s)
 :=

⎢⎢⎢⎢⎢⎣

A 0 0 B
−BwC Aw 0Bw

−DwC Cw 0Dw

0 0 0 Wu

−C 0 1 0

⎥⎥⎥⎥⎥⎦

•	 Now use the mu-tools code to solve for the controller. (Could also
have used the robust control toolbox code).
A=[Ag zeros(n1,n2);-Bsw*Cg Asw];

Bw=[zeros(n1,1);Bsw];

Bu=[Bg;zeros(n2,1)];

Cz=[-Dsw*Cg Csw;zeros(1,n1+n2)];

Cy=[-Cg zeros(1,n2)];

Dzw=[Dsw;0];

Dzu=[0;1];

Dyw=[1];

Dyu=0;

P=pck(A,[Bw Bu],[Cz;Cy],[Dzw Dzu;Dyw Dyu]);

% call hinf to find Gc (mu toolbox)

[Gc,G,gamma]=hinfsyn(P,1,1,0.1,20,.001);

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 15–16

•	 Results from the γ-iteration showing whether we pass or fail the various
X, Y , ρ(XY) tests as we keep searching over γ, starting at the initial
bound of 20.
Resetting value of Gamma min based on D_11, D_12, D_21 terms

Test bounds: 0.6667 < gamma <= 20.0000

gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f
20.000 9.6e+000 6.2e-008 1.0e-003 0.0e+000 0.0000 p
10.333 9.6e+000 6.3e-008 1.0e-003 0.0e+000 0.0000 p
5.500 9.5e+000 6.3e-008 1.0e-003 0.0e+000 0.0000 p
3.083 9.5e+000 6.5e-008 1.0e-003 0.0e+000 0.0000 p
1.875 9.4e+000 6.9e-008 1.0e-003 0.0e+000 0.0000 p

>> 1.271 9.1e+000 -1.2e+004# 1.0e-003 -4.5e-010 0.0000 f

1.573 9.3e+000 7.3e-008 1.0e-003 0.0e+000 0.0000 p
1.422 9.2e+000 7.6e-008 1.0e-003 0.0e+000 0.0000 p

>> 1.346 9.2e+000 -6.4e+004# 1.0e-003 0.0e+000 0.0000 f

1.384 9.2e+000 7.7e-008 1.0e-003 0.0e+000 0.0000 p

>> 1.365 9.2e+000 -1.9e+006# 1.0e-003 0.0e+000 0.0000 f

1.375 9.2e+000 7.7e-008 1.0e-003 -4.5e-010 0.0000 p
1.370 9.2e+000 7.7e-008 1.0e-003 0.0e+000 0.0000 p
1.368 9.2e+000 7.7e-008 1.0e-003 0.0e+000 0.0000 p
1.366 9.2e+000 7.7e-008 1.0e-003 0.0e+000 0.0000 p

>> 1.366 9.2e+000 -1.3e+007# 1.0e-003 0.0e+000 0.0000 f

Gamma value achieved: 1.3664

•	 Since γmin = 1.3664, this indicates that we did not meet the desired
goal of |S| < 1/|Ws| (can only say that |S| < 1.3664/|Ws|).
– Confirmed by the plot, which shows that we just fail the test (blue

line passes above magenta)

•	 But note that, even though this design fails the sensitivity weight - we
still get pretty good performance
– For performance problems, can think of the objective of getting
γmin < 1 as a “design goal” � it is “not crucial”

– Use Wu to tune the control design

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 15–17

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

Freq (rad/sec)

M
ag

itu
de

S
1/W

s

W
s
S

Figure 15.3: Visualization of the weighted sensitivity tests.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time sec

S
te

p
re

sp
on

se

Figure 15.4: Time response of controller that yields γmin = 1.3664.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 15–18 General LQG Problem
• Can also put LQG (H2) design into this generalized framework 31 .

• Define the dynamics

ẋ = Ax + Bu + wd

y = Cx + wn

where �� � � � �

E
w

w

n

d(

(

t

t

)

)

�
wd
T (τ) wn

T (τ)
�

=
W
0 V

0
δ(t − τ)

•	 LQG problem is to find controller u = Gc(s)y that minimizes � � T �
1

J = E lim (xTRxxx + uTRuuu)dt
T →∞ T 0

• To put this problem in the general framework, define � � � � � � �	 �1/2	
W 1/2Rxx 0 x wd	 0

z =	 and = w1/2 u	 wn 0 V 1/20 Ruu

where w is a unit intensity white noise process.

•	 With z = Fl(P,Gc)w, the LQG cost function can be rewritten as � � T �

J = E lim
1

zT (t)z(t)dt = �Fl(P,Gc
2

0T →∞ T	
)�2

• In this case the generalized plant matrix is
⎡
A ⎢ 1/2 ⎢ Rxx

P (s) := ⎢ ⎣ 0
C

W 1/2 0

0 0

0 0

0 V 1/2

⎤
B ⎥
0 ⎥ ⎥1/2

Ruu ⎦

0

31SP365

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

� �

�	 � � �
�	 �

0

Spr 2008 Controller Interpretations16.323 15–19

•	 Given these solutions, the central H∞ controller is given by

A + (γ−2BwBw
T − BuBu

T)X − ZY Cy
TCy ZY CT

yGc(s) := −BTXu

where Z = (I − γ−2Y X)−1

•	 Can develop a further interpretation of this controller if we rewrite the
dynamics as:

ẋ̂	 = Ax̂ + γ−2BwBw
TXx̂− BuBu

TXx̂− ZY Cy
TCyx̂ + ZY Cy

Ty

u	 = −Bu
TXx̂

⇒ ẋ̂ = Ax̂ + Bw γ
−2Bw

TXx̂ + Bu −Bu
TXx̂ + ZY Cy

T [y − Cyx̂]

ẋ̂	 = Ax̂ + Bw γ
−2BTXx̂ + Buu + L [y − Cyx̂]⇒	 w

looks very similar to Kalman Filter developed for LQG controller.

The difference is that we have an additional input ŵworst = γ−2BTXx̂•	 w

that enters through Bw.
– wworst is an estimate of worst-case disturbance to the system.

•	 Finally, note that a separation rule does exist for the H∞ controller.
But we will not discuss it.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

Spr 2008	 16.323 15–20

Code: H∞ Synthesis

% Hinf example

% 16.323 MIT Spring 2007

% Jon How

%

set(0,’DefaultAxesFontName’,’arial’)

set(0,’DefaultAxesFontSize’,16)

set(0,’DefaultTextFontName’,’arial’)

set(0,’DefaultTextFontSize’,20)

clear all
if	 ~exist(’yprev’)

yprev=[1 1]’;

tprev=[0 1]’;

Sensprev=[1 1];

fprev=[.1 100];

end

%Wu=1/1e9;

Wu=1;

% define plant

[Ag,Bg,Cg,Dg]=tf2ss(200,conv(conv([0.05 1],[0.05 1]),[10 1]));

Gol=ss(Ag,Bg,Cg,Dg);

% define sensitivity weight

M=1.5;wB=10;A=1e-4;

[Asw,Bsw,Csw,Dsw]=tf2ss([1/M wB],[1 wB*A]);

Ws=ss(Asw,Bsw,Csw,Dsw);

% form augmented P dynamics

n1=size(Ag,1);

n2=size(Asw,1);

A=[Ag zeros(n1,n2);-Bsw*Cg Asw];

Bw=[zeros(n1,1);Bsw];

Bu=[Bg;zeros(n2,1)];

Cz=[-Dsw*Cg Csw;zeros(1,n1+n2)];

Cy=[-Cg zeros(1,n2)];

Dzw=[Dsw;0];

Dzu=[0;Wu];

Dyw=[1];

Dyu=0;

P=pck(A,[Bw Bu],[Cz;Cy],[Dzw Dzu;Dyw Dyu]);

% call hinf to find Gc (mu toolbox)

diary hinf1_diary

[Gc,G,gamma]=hinfsyn(P,1,1,0.1,20,.001);

diary off

[ac,bc,cc,dc]=unpck(Gc);

ev=max(real(eig(ac)/2/pi))

PP=ss(A,[Bw Bu],[Cz;Cy],[Dzw Dzu;Dyw Dyu]);

GGc=ss(ac,bc,cc,dc);

CLsys = feedback(PP,GGc,[2],[3],1);

[acl,bcl,ccl,dcl]=ssdata(CLsys);

% reduce closed-loop system so that it only has

% 1 input and 2 outputs

bcl=bcl(:,1);ccl=ccl([1 2],:);dcl=dcl([1 2],1);

CLsys=ss(acl,bcl,ccl,dcl);

f=logspace(-1,2,400);

Pcl=freqresp(CLsys,f);

CLWS=squeeze(Pcl(1,1,:)); % closed loop weighted sens

WS=freqresp(Ws,f); % sens weight

SensW=squeeze(WS(1,1,:));

Sens=CLWS./SensW; % divide out weight to get closed-loop sens

figure(1);clf

loglog(f,abs(Sens),’b-’,’LineWidth’,2)

hold on

loglog(f,abs(1./SensW),’m--’,’LineWidth’,2)

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 15–21

68 loglog(f,abs(CLWS),’r-.’,’LineWidth’,2)
69 loglog(fprev,abs(Sensprev),’r.’)
70 legend(’S’,’1/W_s’,’W_sS’,’Location’,’SouthEast’)
71 hold off
72 xlabel(’Freq (rad/sec)’)
73 ylabel(’Magitude’)
74 grid
75

76 print -depsc hinf1.eps;jpdf(’hinf1’)
77

78 na=size(Ag,1);
79 nac=size(ac,1);
80 Acl=[Ag Bg*cc;-bc*Cg ac];Bcl=[zeros(na,1);bc];Ccl=[Cg zeros(1,nac)];Dcl=0;
81 Gcl=ss(Acl,Bcl,Ccl,Dcl);
82 [y,t]=step(Gcl,1);
83

84 figure(2);clf
85 plot(t,y,’LineWidth’,2)
86 hold on;plot(tprev,yprev,’r--’,’LineWidth’,2);hold off
87 xlabel(’Time sec’)
88 ylabel(’Step response’)
89

90 print -depsc hinf12.eps;jpdf(’hinf12’)
91

92 yprev=y;
93 tprev=t;
94 Sensprev=Sens;
95 fprev=f;

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

16.323 Lecture 16

Model Predictive Control

•	 Allgower, F., and A. Zheng, Nonlinear Model Predictive Control, Springer-Verlag,
2000.

•	 Camacho, E., and C. Bordons, Model Predictive Control, Springer-Verlag, 1999.
•	 Kouvaritakis, B., and M. Cannon, Non-Linear Predictive Control: Theory &

Practice, IEE Publishing, 2001.
•	 Maciejowski, J., Predictive Control with Constraints, Pearson Education POD,

2002.
•	 Rossiter, J. A., Model-Based Predictive Control: A Practical Approach, CRC

Press, 2003.

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008 16.323 16–1
MPC

• Planning in Lecture 8 was effectively “open-loop”
– Designed the control input sequence u(t) using an assumed model

and set of constraints.

– Issue is that with modeling error and/or disturbances, these inputs
will not necessarily generate the desired system response.

• Need a “closed-loop” strategy to compensate for these errors.

– Approach called Model Predictive Control

– Also known as receding horizon control

• Basic strategy:
– At time k, use knowledge of the system model to design an input

sequence

u(k|k), u(k + 1|k), u(k + 2|k), u(k + 3|k), . . . , u(k + N |k)

over a finite horizon N from the current state x(k)

– Implement a fraction of that input sequence, usually just first step.

– Repeat for time k + 1 at state x(k + 1)

June 18, 2008

Reference

"Optimal" future outputs

"Optimal" future inputs

Future outputs, no control

Future inputs, no control

Old outputs

Old inputs

Past Present Future Time

MPC: basic idea (from Bo Wahlberg)

Figure by MIT OpenCourseWare.

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 16–2

•	 Note that the control algorithm is based on numerically solving an
optimization problem at each step
– Typically a constrained optimization

•	 Main advantage of MPC:
– Explicitly accounts for system constraints.
� Doesn’t just design a controller to keep the system away from

them.

– Can easily handle nonlinear and time-varying plant dynamics, since
the controller is explicitly a function of the model that can be mod

ified in real-time (and plan time)

•	 Many commercial applications that date back to the early 1970’s, see
http://www.che.utexas.edu/~qin/cpcv/cpcv14.html
– Much of this work was in process control - very nonlinear dynamics,

but not particularly fast.

•	 As computer speed has increased, there has been renewed interest in
applying this approach to applications with faster time-scale: trajec

tory design for aerospace systems.

June 18, 2008

Ref

Plant
P

Trajectory
Generation

Noise

u
Ref

Output

Plant
P

Trajectory
Generation

Noise
uud

xd du

Output

Feedback
Compensation

Implementation architectures for MPC (from Mark Milam)

Figure by MIT OpenCourseWare.

co
nt

ro
len

gin
ee

rs
.ir

http://www.che.utexas.edu/~qin/cpcv/cpcv14.html

Basic Formulation

�

Spr 2008	 16.323 16–3

•	 Given a set of plant dynamics (assume linear for now)

x(k + 1) = Ax(k) + Bu(k)

z(k) = Cx(k)

and a cost function
N

J	= {�z(k + j|k)�Rzz + �u(k + j|k)�Ruu} + F (x(k + N |k))
j=0

– �z(k + j|k)�Rxx is just a short hand for a weighted norm of the
state, and to be consistent with earlier work, would take

�z(k + j|k)�Rzz = z(k + j|k)TRzzz(k + j|k)

– F (x(k + N |k)) is a terminal cost function

•	 Note that if N →∞, and there are no additional constraints on z or
u, then this is just the discrete LQR problem solved on page 3–14.

– Note that the original LQR result could have been written as just
an input control sequence (feedforward), but we choose to write
it as a linear state feedback.

– In the nominal case, there is no difference between these two im

plementation approaches (feedforward and feedback)

– But with modeling errors and disturbances, the state feedback form
is much less sensitive.

⇒ This is the main reason for using feedback.

•	 Issue: When limits on x and u are added, we can no longer find the
general solution in analytic form must solve it numerically. ⇒

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

Spr 2008	 16.323 16–4

•	 However, solving for a very long input sequence:
– Does not make sense if one expects that the model is wrong and/or

there are disturbances, because it is unlikely that the end of the
plan will be implemented (a new one will be made by then)

– Longer plans have more degrees of freedom and take much longer
to compute.

•	 Typically design using a small N ⇒ short plan that does not necessarily
achieve all of the goals.
– Classical hard question is how large should N be?

– If plan doesn’t reach the goal, then must develop an estimate of the
remaining cost-to-go

•	 Typical problem statement: for finite N (F = 0)

N

min J =	 k)�Rzz + �u(k + j k)�Ruu}u
{�z(k + j|	 |

j=0

s.t. x(k + j + 1|k) = Ax(k + j|k) + Bu(k + j|k)

x(k|k) ≡ x(k)

z(k + j|k) = Cx(k + j|k)

and |u(k + j|k)| ≤ um

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 16–5

• Consider converting this into a more standard optimization problem.

z(k|k) = Cx(k|k)

z(k + 1|k) = Cx(k + 1|k) = C(Ax(k|k) + Bu(k|k))

= CAx(k|k) + CBu(k|k)

z(k + 2|k) = Cx(k + 2|k)

= C(Ax(k + 1|k) + Bu(k + 1|k))

= CA(Ax(k|k) + Bu(k|k)) + CBu(k + 1|k)

= CA2 x(k|k) + CABu(k|k) + CBu(k + 1|k)
...

z(k + N |k) =	 CAN x(k|k) + CAN−1Bu(k|k) + · · ·
+CBu(k + (N − 1)|k)

• Combine these equations into the following:

⎤⎡⎤⎡
z(k k)
 C
|

z(k + 1⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎦

=

⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎦

x(k k)
|

|

|

k)

k)

CA

CA2
z(k + 2

.. ...
 .
CANz(k + N |k)
⎡
 ⎤⎡

⎤
0 0 0 · · · 0
CB 0 0 0
CAB CB 0 0

u(k|k)
u(k + 1

⎢⎢⎢⎢⎢⎣

⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎦
...

⎥⎥⎥⎦

|k)

+
 ...

CAN−1B CAN−2B CAN−3B CB
u(k + N − 1|k) · · ·

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

�

� �

Spr 2008 16.323 16–6

Now define • ⎡ ⎤ ⎡ ⎤
z(k k) u(k k)

Z(k) ≡ ⎣ ...
| ⎦ U(k) ≡ ⎣ ...

| ⎦

z(k + N |k) u(k + N − 1|k)

then, with x(k|k) = x(k)

Z(k) = Gx(k) + HU(k)

Note that •
N

z(k + j|k)TRzzz(k + j|k) = Z(k)TW1Z(k)
j=0

with an obvious definition of the weighting matrix W1

Thus •

Z(k)TW1Z(k) + U(k)TW2U(k)

= (Gx(k) + HU(k))TW1(Gx(k) + HU(k)) + U(k)TW2U(k)
1

= x(k)TH1x(k) + H2
TU(k) + U(k)TH3U(k)

2
where

H1 = GTW1G, H2 = 2(x(k)TGTW1H), H3 = 2(HTW1H + W2)

• Then the MPC problem can be written as:

min J̃ = H2
TU(k) +

1
U(k)TH3U(k)

U(k) 2

IN s.t. U(k) ≤ um −IN

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Toolboxes Spr 2008	 16.323 16–7

•	 Key point: the MPC problem is now in the form of a standard
quadratic program for which standard and efficient codes exist.

QUADPROG Quadratic programming. %

X=QUADPROG(H,f,A,b) attempts to solve the %

quadratic programming problem:

min 0.5*x’*H*x + f’*x subject to: A*x <= b

x

X=QUADPROG(H,f,A,b,Aeq,beq) solves the problem %
above while additionally satisfying the equality%
constraints Aeq*x = beq.

•	 Several Matlab toolboxes exist for testing these ideas
– MPC toolbox by Morari and Ricker – extensive analysis and design

tools.

– MPCtools 32 enables some MPC simulation and is free
www.control.lth.se/user/johan.akesson/mpctools/

32Johan Akesson: ”MPCtools 1.0 - Reference Manual”. Technical report ISRN LUTFD2/TFRT–7613–SE, Department of Auto
matic Control, Lund Institute of Technology, Sweden, January 2006.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

www.control.lth.se/user/johan.akesson/mpctools/

MPC Observations

�	 �

Spr 2008	 16.323 16–8

• Current form assumes that full state is available - can hookup with an
estimator

•	 Current form assumes that we can sense and apply corresponding con

trol immediately
– With most control systems, that is usually a reasonably safe as

sumption

– Given that we must re-run the optimization, probably need to ac
count for this computational delay - different form of the discrete
model - see F&P (chapter 2)

•	 If the constraints are not active, then the solution to the QP is that

U(K) = −H−1H23

which can be written as:

u(k|k) = − 1 0 . . . 0 (HTW1H + W2)
−1HTW1Gx(k)

= −Kx(k)

which is just a state feedback controller.
– Can apply this gain to the system and check the eigenvalues.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008	 16.323 16–9

•	 What can we say about the stability of MPC when the constraints are
active? 33

– Depends a lot on the terminal cost and the terminal constraints.34

•	 Classic result:35 Consider a MPC algorithm for a linear system with
constraints. Assume that there are terminal constraints:
– x(k + N |k) = 0 for predicted state x

– u(k + N |k) = 0 for computed future control u

Then if the optimization problem is feasible at time k, x = 0 is stable.

Proof: Can use the performance index J as a Lyapunov function.

– Assume there exists a feasible solution at time k and cost Jk

– Can use that solution to develop a feasible candidate at time k + 1,
by simply adding u(k + N + 1) = 0 and x(k + N + 1) = 0.

– Key point: can estimate the candidate controller performance

J̃k+1	 = Jk − {�z(k|k)�Rzz + �u(k|k)�Ruu}

≤ Jk − {�z(k|k)�Rzz}

– This candidate is suboptimal for the MPC algorithm, hence J de

creases even faster Jk+1 ≤ J̃
k+1

– Which says that J decreases if the state cost is non-zero (observ

ability assumptions) but J is lower bounded by zero. ⇒

•	 Mayne et al. [2000] provides excellent review of other strategies for
proving stability – different terminal cost and constraint sets

33“Tutorial: model predictive control technology,” Rawlings, J.B. American Control Conference, 1999. pp. 662-676

34Mayne, D.Q., J.B. Rawlings, C.V. Rao and P.O.M. Scokaert, ”Constrained Model Predictive Control: Stability and Optimality,”
Automatica, 36, 789-814 (2000).

35A. Bemporad, L. Chisci, E. Mosca: ”On the stabilizing property of SIORHC”, Automatica, vol. 30, n. 12, pp. 2013-2015, 1994.

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

Example: Helicopter Spr 2008 16.323 16–10

• Consider a system similar to the Quansar helicopter36

• There are 2 control inputs – voltage to each fan Vf , Vb
• A simple dynamics model is that:

¨ θe = K1(Vf + Vb) − Tg/Je
¨ θr = −K2 sin(θp)
¨ θp = K3(Vf − Vb)

and there are physical limits on the elevation and pitch:

−0.5 ≤ θe ≤ 0.6 − 1 ≤ θp ≤ 1

• Model can be linearized and then discretized Ts = 0.2sec.

0 5 10 15 20 25
0

2

4

6

8

10

12

N

State
Control
Time

Figure 16.3: Response Summary

36ISSN 02805316 ISRN LUTFD2/TFRT- -7613- -SE MPCtools 1.0 Reference Manual Johan Akesson Department of Automatic
Control Lund Institute of Technology January 2006

June 18, 2008

θp

θe

θr

θp

θe

θr

θp

θe

θr

Figure by MIT OpenCourseWare.

co
nt

ro
len

gin
ee

rs
.ir

Spr 2008

0 10 20 30
−0.1

0

0.1

0.2

0.3

0.4

E
le

va
tio

n
[ra

d]

0 10 20 30
−1

−0.5

0

0.5

1

t [s]

P
itc

h
[ra

d]

0 10 20 30
−1

0

1

2

3

4

R
ot

at
io

n
[ra

d]

0 10 20 30
−2

−1

0

1

2

3

4

V
f, V

b [V
]

t [s]

16.323 16–11

Figure 16.4: Response with N = 3

0 10 20 30
−0.1

0

0.1

0.2

0.3

0.4

E
le

va
tio

n
[ra

d]

0 10 20 30
−1

−0.5

0

0.5

1

t [s]

P
itc

h
[ra

d]

0 10 20 30
−1

0

1

2

3

4
R

ot
at

io
n

[ra
d]

0 10 20 30
−2

−1

0

1

2

3

4

V
f, V

b [V
]

t [s]

Figure 16.5: Response with N = 10

0 10 20 30
−0.1

0

0.1

0.2

0.3

0.4

E
le

va
tio

n
[ra

d]

0 10 20 30
−1

−0.5

0

0.5

1

t [s]

P
itc

h
[ra

d]

0 10 20 30
−1

0

1

2

3

4

R
ot

at
io

n
[ra

d]

0 10 20 30
−2

−1

0

1

2

3

4

V
f, V

b [V
]

t [s]

Figure 16.6: Response with N = 25

June 18, 2008

co
nt

ro
len

gin
ee

rs
.ir

	16.323 4.pdf
	16.323 5.pdf
	16.323 6.pdf
	16.323 7.pdf
	16.323 8.pdf
	16.323 9.pdf
	16.323 10.pdf
	16.323 11.pdf
	16.323 12.pdf
	16.323 13.pdf
	16.323 14.pdf
	16.323 15.pdf
	16.323 16.pdf
	16.323 17.pdf
	16.323 18.pdf
	16.323 19.pdf
	16.323 20.pdf
	lec2.pdf
	16.323: Principles of Optimal Control
	Lecture 2: Constrained Optimization
	Constrained Optimization
	Fig: Simple function minimization with constraint.

	Lagrange Multipliers
	Intuition
	Fig: Minimization with equality constraints: shows that function and cost gradients are nearly collinear near optimal point and clearly not far away.
	Fig: Zoomed in plot.
	Fig: Change constraint - note that the cost and constraint gradients are collinear, but now aligned

	Constrained Example
	Inequality Constraints
	Fig: Cost and constraint gradients shown
	Fig: Other cases of active and inactive constraints

	Cost Sensitivity
	Alternative Derivation of Cost Sensitivity
	Fig: Shows that changes to the constraint impact cost in a way that can be predicted from the Lagrange Multiplier.

	Simple Constrained Example
	Fig: Simple example

	Code for Figure 4
	Code for Simple Constrained Example

	Lecture 9: Constrained Optimal Control
	Constrained Example

	lec3.pdf
	16.323: Principles of Optimal Control
	Lecture 3: Dynamic Programming
	Dynamic Programming
	Classical Examples
	Example 2
	Fig: Classic picture of discrete time/quantized space grid with the linkages possible through the control commands. Again, it is hard to evaluate all options moving forward through the grid, but we can work backwards and use the principle of optimality to reduce this load.

	Classic Control Problem
	Other Considerations
	Fig: At any time tk, have a two dimensional array of grid points.

	DP Example
	Discrete LQR
	Algorithm
	Suboptimal Control
	Steady State
	Discrete LQR Example
	Fig: discrete LQR comparison to constant gain, G=-0.25
	Fig: discrete LQR comparison to constant gain, G=F(0)
	Fig: State response comparison

	Gain Insights
	Code: Discrete scalar LQR
	Appendix

	Lecture 11: Estimators/Observers
	Steady State

	lec4.pdf
	16.323: Principles of Optimal Control
	Lecture 4: HJB
	DP in Continuous Time
	HJB Equation
	HJB Simple Example
	Continuous LQR
	LQR Observations
	Scalar LQR Example
	Numerical P Integration
	Fig: Comparison of numerical and analytical P
	Fig: Comparison showing response with much larger Rxx/Ruu
	Fig: State response with high and low Ruu. State response with time-varying gain almost indistinguishable -- highly dynamic part of x response ends before significant variation in P.
	Fig: Comparison of numerical and analytical P using a better integration scheme

	Code: numerical P
	Finite Time LQR Example
	Fig: Set q=1, r=3, h=4
	Fig: Time-varying and constant gains - Klqr=[0.5774 2.4679]
	Fig: State response - Constant gain and time-varying gain almost indistinguishable because the transient dies out before the time at which the gains start to change -- effectively a steady state problem.

	Code: Finite Time LQR Example
	Weighting Matrix Selection

	lec5.pdf
	16.323: Principles of Optimal Control
	Lecture 5: Calculus of Variations
	Calculus of Variations
	Fig: Differential df versus increment f shown for a function, but the same difference holds for a functional.
	Fig: Visualization of perturbations to function x(t) by x(t) -- it is a potential change in the value of x over the entire time period of interest. Typically require that if x(t) is in some class (i.e., continuous), that x(t) + x(t) is also in that class.

	Variation Examples: Scalar
	Vector Functions
	Free Terminal Time
	Fig: Comparison of possible changes to function at end time when tf is free.
	Fig: Summary of possible terminal constraints (Kirk, page 151)

	Example: 5--1
	Example: 5--2
	Fig: Quadratic terminal constraint.

	Corner Conditions
	Corner Example
	Constrained Solutions
	General Terminal Conditions

	lec6.pdf
	16.323: Principles of Optimal Control
	Lecture 6: Calc of Variations applied to Optimal Control
	Optimal Control Problems
	Control with General Terminal Conditions
	Example 6--1
	Code: Example 6--1
	LQR Variational Solution
	Alternate Derivation of DRE
	CARE Solution Algorithm
	Optimal Cost
	Pole Locations
	Derivation of the SRL
	Example 6--2
	SRL Interpretations
	LQR Stability Margins
	Code: LTF for KDE

	lec7.pdf
	16.323: Principles of Optimal Control
	Lecture 7: Examples and Numerical Solution
	Simple Problem
	Simple Zermelo's Problem
	Numerical Solutions
	Fig: Results suggest a good comparison with the dynamic LQR result

	Code: TPBVP for LQR
	Conversion
	Example: 7--1
	Fig: Comparison of the predicted completion times for the maneuver
	Fig: Control Inputs
	Fig: State response

	Code: TPBVP
	Zermelo's Problem
	Fig: Zermelo examples

	Code: Zermelo
	Orbit Raising Example
	Fig: Orbit raising examples
	Fig: Orbit raising examples

	Code: Orbit

	lec8.pdf
	16.323: Principles of Optimal Control
	Lecture 8: Properties of Optimal Control Solution
	Properties of Optimal Control
	Point State Constraint

	lec9.pdf
	16.323: Principles of Optimal Control
	Lecture 9: Constrained Optimal Control
	Constrained Optimal Control
	Pontryagin's Minimum Principle
	Fig: Examples of options for H = Hu(t) u(t). Left: unconstrained min, so need Hu=0. Middle: constraint on left, so at min value, must have u 0 blue need Hu 0 so that H 0. Right: constraint on right, so at min value, must have u 0 blue need Hu 0 so that H 0.

	PMP Example: Control Constraints
	Fig: Possible response curves -- what is the direction of motion?
	Fig: b=1, p2=-2, so p2 < -b
	Fig: b=1, p2=1, so -b < p2 < b
	Fig: Possible switching case, but both tf and c1 are unknown at this point.
	Fig: y0=2 0=3 b=0.75 um=1.5
	Fig: y0=2 0=3 b=2 um=1.5
	Fig: y0=2 0=3 b=0.1 um=1.5
	Fig: Min time: y0=2 0=3 b=0 um=1.5
	Fig: Summary of switching times for various fuel weights

	Code: Min time fuel
	Minimum Time Problems
	Min Fuel Problems
	Example: 9--1
	Fig: Min Fuel for varying final times
	Fig: Min fuel for fixed final time, varying IC's

	Minimum Energy Problem
	Code: Min Fuel

	lec10.pdf
	16.323: Principles of Optimal Control
	Lecture 10: Singular Arcs
	Singular Problems
	Singular Arc Example 1
	Singular Arc Example 2
	Details for LTI Systems
	Nonlinear Systems
	Last Example
	Fig: Goddard Problem
	Fig: Goddard Problem
	Fig: Goddard Problem

	lec11.pdf
	16.323: Principles of Optimal Control
	Lecture 11: Estimators/Observers
	Estimators/Observers
	Estimation Schemes
	Open-loop Estimator
	Closed-loop Estimator
	Estimator Example 10--1
	Fig: Open-loop estimator. Estimation error converges to zero, but very slowly.
	Fig: Closed-loop estimator. Convergence looks much better.

	Estimator Poles?
	Optimal Estimator
	Fig: Example of impact of covariance =2 on the distribution of the PDF -- wide distribution corresponds to large uncertainty in the variable

	Analysis
	Optimization
	Optimal Kalman Filter
	Filter Interpretation
	Example 10--2
	Final Thoughts
	Basic Estimator
	Filter Interpretation

	lec12.pdf
	16.323: Principles of Optimal Control
	Lecture 12: Stochastic Optimal Control
	Stochastic Optimal Control
	Spectral Factorization
	Disturbance Feedforward
	Performance Analysis
	Steady State Values
	Missile Example
	Full Control Problem
	Solution: LQG
	Infinite Horizon LQG
	Interpretations
	Separation Theorem
	Performance Optimality
	Simple Example
	Stochastic Simulation
	Code: Helicopter stochastic simulation
	LQG for Helicopter
	Code: Helicopter LQG
	Example: 747
	Code: B747

	lec13.pdf
	16.323: Principles of Optimal Control
	Lecture 13: LQG Robustness
	LQG
	LQG Example
	Fig: Plant and Controller
	Fig: Loop and Margins
	Fig: Root Locus with frozen compensator dynamics. Shows sensitivity to overall gain -- symbols are a gain of [0.995:.0001:1.005].

	Analysis Tools to Use?
	Frequency Domain Tests
	Fig: Nichols Plot (|L((j))| vs. argL((j))) for the cart example which clearly shows the sensitivity to the overall gain and/or phase lag.

	Frequency Domain Test
	Fig: Geometric interpretation from Nyquist Plot of Loop TF.
	Fig: Sensitivity plot of the cart problem.

	Summary

	lec14.pdf
	16.323: Principles of Optimal Control
	MIMO Systems
	Multivariable Frequency Response
	Singular Value Decomposition
	SVD Example

	lec15.pdf
	16.323: Principles of Optimal Control
	Lecture 15: Hinf Synthesis
	Mathematical Background
	H2 system norm
	Hinf system norm
	Fig: Graphical test for the "026B30D G"026B30D .

	Key Points / Summary
	Computation
	Issues
	Application
	Riccati Equation Tests
	Synthesis
	Observations
	Simple Design Example
	Fig: Rearrangement of original picture in the generalized plant format.
	Fig: Visualization of the weighted sensitivity tests.
	Fig: Time response of controller that yields min=1.3664.

	General LQG Problem
	Controller Interpretations
	Code: Hinf Synthesis

	lec16.pdf
	16.323: Principles of Optimal Control
	Lecture 16: Model Predictive Control
	MPC
	Fig: MPC: basic idea (from Bo Wahlberg)
	Fig: Implementation architectures for MPC (from Mark Milam)

	Basic Formulation
	Toolboxes
	MPC Observations
	Example: Helicopter
	Fig: Response Summary
	Fig: Response with N=3
	Fig: Response with N=10
	Fig: Response with N=25

