

https://controlengineers.ir

@controlengineers

 اختصاصیسایت

 کنترلمهندسی

https://controlengineers.ir/

A MATLAB Approach to study different types of

Ziegler-Nichols P-I-D Controller Tuning Algorithm.

co
nt

ro
len

gin
ee

rs
.ir

CONTENTS:
1. Introduction .. 4

I. SCOPE AND OBJECTIVE: ... 4

II. EVOLUTION OF PID CONTROLLER ... 4

III. ON-OFF CONTROL/TWO POSITION CONTROLLER ... 4

IV. THE THREE ACTIONS OF PID CONTROL .. 5

V. P CONTROLLER .. 5

VI. I CONTROLLER ... 6

VII. D CONTROLLER ... 7

VIII. COMBINED CONTROL AND CHOICE OF CONTROLLER. ... 7

a. Pi controller .. 7

b. Pd controller ... 8

c. Pid controller.. 9

2. P-i-d tuning algorithms: ... 10

i. Controller performance .. 10

ii. Empirical ziegler-nichols tuning algorithm: .. 12

a) step response (open loop) method. .. 12

b) closed loop (sustain oscillation) method .. 13

iii. The cohen-coon tuning algorithm ... 13

iv. The chien, hrones and reswick tuning algorithm: ... 14

v. The wang–juang–chan tuning algorithm:.. 14

3. Experimentation and observation: .. 15

 EXPERIMENT – 1(INDIVIDUAL CONTROLLER RESPONSE) ON A PLANT) .. 16

 EXPERIMENT – 2 (EMPIRICAL ZIEGLER-NICHOLS TUNING ALGORITHM) .. 18

 EXPERIMENT – 3 (COHEN-COON PID CONTROLLER TUNING ALGORITHM).. 21

 EXPERIMENT – 4 (CHIEN, HRONES AND RESWICK TUNING ALGORITHM) ... 22

 EXPERIMENT – 5 (WANG–JUANG–CHAN TUNING ALGORITHM) .. 22

4. Conclusion and future works: .. 23

references: ... 23

appendix: ... 24

APPENDIX A: MATLAB FUNCTIONS FOR PID TUNING. .. 24

co
nt

ro
len

gin
ee

rs
.ir

List of figures:
FIGURE 1: STATIC CHARACTERISTIC OF ON-OFF CONTROLLER .. 5

FIGURE 2: STATIC CHARACTERISTIC OF P CONTROLLER ... 6

FIGURE 3: INTEGRAL WINDUP ... 8

FIGURE 4: PID CONTROL WITH DERIVATIVE ON OUTPUT SIGNAL. .. 9

FIGURE 5: FEEDBACK CONTROL SYSTEM ARCHITECTURE SHOWING DISTURBANCE INPUT. ... 10

FIGURE 6 PID CONTROL OF A PLANT .. 12

FIGURE 7: S SHAPED RESPONSE CURVE FOR ZIEGLER-NICHOLS TUNING ALGORITHM. ... 12

FIGURE 8: SUSTAINED OSCILLATION METHOD FOR ZIEGLER-NICHOLS TUNING ... 13

FIGURE 9: OPEN LOOP RESPONSE OF THE PLANT (GP) ... 16

FIGURE 10: SYSTEM RESPONSE WITH PROPORTIONAL CONTROLLER. ... 16

FIGURE 11: SYSTEM RESPONSE WITH P-INTEGRAL CONTROLLER. ... 17

FIGURE 12: SYSTEM RESPONSE WITH P-I-DERIVATIVE CONTROLLER .. 17

FIGURE 13: SYSTEM RESPONSE WITH DERIVATIVE CONTROLLER IN FEEDBACK PATH. .. 18

FIGURE 14: FINDING THE K, L AND T FROM ‘S’ SHAPED STEP RESPONSE CURVE. .. 18

FIGURE 15: OBTAIN THE CRITICAL GAIN (KCR) AND PERIOD (PCR) FROM SUSTAINED OSCILLATION CURVE. 19

FIGURE 16: MATHEMATICAL CALCULATION OF (KCR) AND (PCR) ... 19

FIGURE 17: SYSTEM RESPONSE OF P,PI & PID CONTROLLER TUNED WITH PROCESS REACTION CURVE METHOD 20

FIGURE 18: SYSTEM RESPONSE OF P,PI & PID CONTROLLER TUNED WITH SUSTAINED OSCILLATION METHOD. 20

FIGURE 19: COMPARISON OF PID AND PID WITH DERIVATIVE FILTER CONTROLLER (PROCESS REACTIVE CURVE METHOD) 21

FIGURE 20: COMPARISON OF PID AND PID WITH DERIVATIVE FILTER CONTROLLER (SUSTAINED OSCILLATION METHOD) 21

FIGURE 21: CLOSED LOOP SYSTEM RESPONSE WITH COHENCOON TUNED CONTROLLERS (P,PI,PD,PID,PID-WITH FILTER) .. 21

FIGURE 22: SYSTEM RESPONSE TO CHIEN, HRONES AND RESWICK TUNING ALGORITHM BASED PID CONTROLLER (SETPOINT
REGULATION) ... 22

FIGURE 23: SYSTEM RESPONSE TO CHIEN, HRONES AND RESWICK TUNING ALGORITHM BASED PID CONTROLLER
(DISTURBANCE REJECTION) ... 22

FIGURE 24: WANG-JUNG-CHAN TUNED PID CONTROLLER RESPONSE OF A SYSTEM WITH DERIVATIVE FILTER. 23

List of tables:
TABLE 1: SUMMARY OF CONTROLLER PERFORMANCE ON SYSTEM DYNAMICS. ... 11
TABLE 2: SUMMARY CONTROLLER MODES AND APPLICATIONS ... 11
TABLE 3: ZIEGLER–NICHOLS TUNING FORMULAE – STEP RESPONSE METHOD ... 12
TABLE 4: ZIEGLER–NICHOLS TUNING FORMULAE – SUSTAIN OSCILLATION METHOD ... 13
TABLE 5: COHEN–COON TUNING FORMULAE .. 13
TABLE 6: CHR TUNING FORMULAE FOR SET-POINT REGULATION. ... 14
TABLE 7: CHR TUNING FORMULAE FOR DISTURBANCE REJECTION. ... 14
TABLE 8: WANG–JUANG–CHAN TUNING FORMULAE ... 15

co
nt

ro
len

gin
ee

rs
.ir

1. Introduction
Today, a number of different controllers are used in industry and in many other fields. In quite
general way those controllers can be divided into two main groups:

 Conventional controllers
 Unconventional controllers

As conventional controllers we can count a controllers known for years now, such as ON-OFF, P,
PI, PD, PID all their different types and realization. It is a characteristic of all conventional
controllers that one has to know a mathematical model of the process in order to design a
controller.
A Proportional–Integral–Derivative (PID) controller is a three-term controller that has a long
history in the automatic control field, starting from the beginning of the last century. Owing to
its intuitiveness and its relative simplicity, in addition to satisfactory performance which it is able
to provide with a wide range of processes, it has become in practice the standard controller in
industrial settings.
The success of the PID controllers is also enhanced by the fact that they often represent the
fundamental component for more sophisticated control schemes that can be implemented when
the basic control law is not sufficient to obtain the required performance or a more complicated
control task is of concern.
Unconventional controllers utilize a new approaches to the controller design in which
knowledge of a mathematical model of a process generally is not required. Examples of
unconventional controller are a fuzzy controller and neuro or neuro-fuzzy controllers.

I. Scope and Objective:
The scope of this report is to provide a MATLAB approach to understand and simulate
conventional type PID controller and its various realizations with different tuning algorithms.
The Objective of This work is to learn about the PID Controller and A Few Basic Tuning Rules of
It.

 To Learn Basic Concepts of MATLAB.
 Study the various PID Controller fundamental Parameters and its Characteristics.
 Apply the Famous Ziegler-Nichols Tuning Method of PID Tuning.
 Study some modifications of Ziegler-Nichols Tuning Method and implement in MATLAB

script.

II. Evolution Of PID Controller

III. ON-OFF Control/Two Position Controller
One of the most adopted (and one of the simplest) controllers is undoubtedly the On–Off
controller, where the ()u t (control signal/variable) can assume only possible two values, maxU
and minU , depending on the control error sign.
On-Off Controller algorithm is defined as:

co
nt

ro
len

gin
ee

rs
.ir

max

min

; () 0
()

; () 0

()

() ()

U e t
u t

U e t

e t Control Error

u t Control Signal Controller Output

 1

Figure 1: Static characteristic of On-off controller
Draw Backs:
 On-off controller is very simple since there are only two possible control signal values, no

matter what is the value of control error. So, process is forced to a persistent oscillation
around the set-point value since ()u t is never zero (it is either maxU or minU).

 Despite its simple function and action, there are no parameters to adjust the controller values
according to process.

Actually, in practical cases, the On–Off controller characteristic is modified by inserting a dead
zone (this result a three Position control) or hysteresis in order to cope with measurement noise
and to limit the wear and tear of the actuating device.
On–Off controller is indeed suitable for adoption when no tight performance is required, since it
is very cost-effective in these cases. For this reason it is generally available in commercial
industrial controllers.
IV. The Three Actions of PID Control
PID controllers use a 3 basic behaviour types or modes: P - proportional, I - integrative and D -
derivative. While proportional and integrative modes are also used as single control modes, a
derivative mode is rarely used on it’s own in control systems. Combinations such as PI and PD
control are very often in practical systems. It can be also shown that PID controller is a natural
generalization of a simplest possible controller - On-off controller
V. P Controller
The proportional control action is proportional to the current control error, according to the
expression

() () (() ()),

() (int)

() /

p p

p

u t K e t K r t y t

K Proportional Gain

r t Reference Signal SetPo

y t Process Output Signal

 2

P controller control algorithm is given with:

minU

maxU

()u t

()e t

co
nt

ro
len

gin
ee

rs
.ir

max 0

0 0 0

min 0

0

; ()

() () , ()

; ()

 0

p

U e t e

u t u K e t for e e t e

U e t e

u Amplitude of Control Signal whem Error

 3

It is worth noting that in commercial products the proportional gain is often replaced by the
proportional band, PB, that is the range of error that causes a full range change of the control
variable,

100
PB=

pK

Figure 2: Static characteristic of P controller

As shown in Figure 2, it is observed that the P controller has associated with some offset (0u),
which never makes the error to zero. There is always a steady state error with the controller.

There are some modifications required to make () 0,e t in 0()
()

p

u t u
e t

K

 Keeping, pK , which makes PB=0 and will serve as a On-Off Control.
 The offset values should be correctly chosen at every time, i.e. 0()u t u
 Manual Reset of offset value changes to automatically.

This introduces an integral action to perform automatically reset the offset values.
VI. I Controller
While the Proportional term considers the current size of ()e t only at the time of the controller
calculation, the integral term considers the history of the error, or how long and how far the
measured process variable has been from the set point over time, and can be expressed as,

0

() () ,

t

i

i

u t K e d

K Integral Gain

 4

Integration is a continual summing. Integration of error over time means that we sum up the
complete controller error history up to the present time, starting from when the controller was
first switched to automatic.

()u t

()e t

minU

maxU

0u

0e
0e

co
nt

ro
len

gin
ee

rs
.ir

VII. D Controller
While the proportional action is based on the current value of the control error and the integral
action is based on the past values of the control error, the derivative action is based on the
predicted future values of the control error. An ideal derivative control law can be expressed as:

()

() ,

d

i

de t
u t K

dt

K Derivative Gain

 5

The control variable at time t is therefore based on the predicted value of the control error at
time ()dt t . For this reason the derivative action is also called anticipatory control, or rate
action, or pre-act.
A derivative describes how steep a curve is. More properly, a derivative describes the slope or the
rate of change of a signal trace at a particular point in time.

VIII. Combined Control and Choice of Controller.
Insofar was described individuality of proportional, integrative and derivative modes of the
controllers. An introductory concept behind their use was also explained. However, an attention
towards the practical implementation and choice of use different types of controllers yet to be
explained. The following section will add some focus on that particular topic.
PID Controller itself consists of three individual concepts like Proportional, Integral, and
derivative, but the real practical implementations includes combined action of these like, PI,
PD,PI-PD,PID and many more. In whole among these different combinations PID is the best and
mostly used controller in (almost 95%) industrial processes, where PI, PD and other
combinations are perform with a special consideration or use to deal with any extra requirement
needed to a process control.
a. PI Controller
As discussed in earlier section P Controller can only reduce, the steady state error(SSE) to a
extend, beyond that it cannot eliminate SSE due to the Offset(Bias) at control signal. An
automatic reset of this bias value can completely eliminate SSE which is provided by an Integral-
I Controller.
The combined structure of Proportional-Integral (PI) Controller is expressed mathematically by:

 0

() () () ,

 ()

t
p

p

i

p

i i

i

K
u t K e t e d

T

K
K and T Integral Reset Time

T

 6

Concept of Integrator windup:
A PI controller may create a situation in which it saturates the control variable output.
Saturation occurs when the control variable output remains pegged at its maximum value
(100%). The Control Signal (()u t) will remain saturated even if the error starts to come down
(see Figure 3). The integral action will not change direction until the overall error becomes zero.

co
nt

ro
len

gin
ee

rs
.ir

This situation is called integral windup, or reset windup, and it can be damaging to the process.
It occurs when a large error is present in a system with a slow response. In this situation, the
controller will keep increasing the control variable value because the error remains constant due
to the lag’s effect on the integral corrective action. Eventually, the control variable will saturate
at 100%. In other words, the controller’s corrective action continues to occur when the process
takes too long to respond.

Figure 3: Integral Windup

Disadvantages:
 PI controller will not increase the speed of response.
 It can be expected since PI controller does not have means to predict what will happen

with the error in near future.
Usage:
PI controllers are very often used in industry, especially when speed of the response is not an
issue.
b. PD Controller
As discussed above, this problem associated in PI Controller can be solved by introducing
derivative mode (D Controller) along with a Proportional (P) controller, which has ability to
predict what will happen with the error in near future and thus to decrease a reaction time of
the controller.
The combined structure of Proportional- Derivative (PD) Controller is expressed mathematically
by:

()

() ()

 ()

p d

d p d d

de t
u t K e t K

dt

K K T and T Derivative Preset Time

 7

co
nt

ro
len

gin
ee

rs
.ir

Derivative mode is used when prediction of the error can improve control or when it necessary
to stabilize the system. Derivative action has a great potentiality in improving the control
performance as it can anticipate an incorrect trend of the control error and counteract for it.
Derivative Kick:
This problem is evidently caused by the derivative action. Indeed, the high frequency gain of the
pure derivative action is responsible for the amplification of the measurement noise in the
manipulated variable resulting vertical spikes known as derivative Kick.
The problems outlined above can be solved by filtering the derivative action with (at least) a
first-order low-pass filter. The filter time constant should be selected in order to filter suitably
the noise and to avoid influencing significantly the dominant dynamics of the controller.
Often derivative is not taken from the error signal (()e t), but from the system output variable (

()y t). This is done to avoid effects of the sudden change of the reference input that will cause
sudden change in the value of error signal.
Mathematically Derivative of ()e t equals the negative derivative of Output Variable (()y t),
when Set Point / Reference Signal (()r t) is constant, considers that, since error signal (

() () ()e t r t y t), as shown in (eq.8).

() () ()

, if () is constant

() (() ()) (())

e t r t y t

then r t

de t d r t y t d y t

dt dt dt

 8

So it is a good practice to use derivative controller with a first order filter and also in system
output path as shown in Figure 4.

Figure 4: PID control with derivative on output signal.

Usage:
Derivative mode should be used only when noise is not significant or when controlled process
reacts slowly on the change of error.
c. PID Controller
The combination of the proportional, integral, and derivative action is known as, PID controller
and is described in mathematically by:

co
nt

ro
len

gin
ee

rs
.ir

0

0

1 ()
() () ()

()
() () ()

,

Proportional gain, =Integral gain , Integral Time Constant.

and

=Derivative gain

t

p d

i

t

p i d

p

p i i

i

d p d

de t
u t K e t e d T

T dt

can be written as

de t
u t K e t K e d K

dt

where

K
K K where T

T

K K T w

, Derivative time Constant.dhere T

9

PID Controller is almost practically used in every process control industry.

2. P-I-D Tuning Algorithms:
I. Controller Performance

The principal objective of a feedback controller as shown in Figure 5: Feedback Control system
Architecture showing disturbance input. is typically either disturbance rejection or set point
tracking. A controller designed to reject disturbances will take action to force the process
variable backward the desired set point whenever a disturbance or load on the process causes a
deviation.

Figure 5: Feedback Control system Architecture showing disturbance input.

In contrast, a setpoint-tracking controller is appropriate when the setpoint is expected to change
frequently and the controller is required to raise or lower the process variable accordingly. A
luxury car equipped with an automatic temperature controller will track a changing setpoint by
adjusting the heater’s output whenever a new driver calls for a new interior temperature.
Disturbance-rejection and setpoint-tracking controllers can each do the job of the other,
but optimal performance generally requires that a controller be designed or tuned for one role
or the other. So far, the concern of this report we assume to achieve a disturbance rejection
controller as we are using a step signal as reference. Though we never add any external
disturbance to the control system it is assumed that there are disturbances previously with the
system. We are most interested in four major characteristics of the closed-loop step response.
They are

 Rise Time: the time it takes for the plant output y to rise beyond 90% of the desired level
for the first time.

co
nt

ro
len

gin
ee

rs
.ir

 Overshoot: how much the peak level is higher than the steady state, normalized against
the steady state.

 Settling Time: the time it takes for the system to converge to its steady state.
 Steady-state Error: the difference between the steady-state output and the desired output.

Summarized performances of the different controllers on above parameters are described as
follows:

Response/Controller Action Rise Time Overshoot Settling Time Steady State Error
Kp-Proportional Controller Decrease Increase No Effect Decrease
Ki-Integral Controller Decrease Increase Increase Eliminate
Kd-Derivative Controller No Effect Decrease Decrease No Effect

 Table 1: Summary of Controller Performance on System Dynamics.
Controller Modes Response Applications

Proportional - P Control Signal Changes in proportion
to Error.

System with small
load change, small
moderate lag times.

Integral - I Control Signal Changes how Error
changes over time.

Processes with small
process lags.

Derivative – D Control Signal Changes in accordance
with rate of change of Error.

Never used Alone.

Proportional - Integral
– (P–I)

Control signal responds in a
combination of P & I actions.

System with large
load change.

Proportional -
Derivative – (P–D)

Control signal responds in a
combination of P & D actions.

System with Fast load
Changes.

Proportional- Integral
- Derivative – (P-I-D)

Control signal responds in a
combination of all P, I & D actions.

Practically can be
used in all process
control applications.

Table 2: Summary Controller Modes and Applications
A PID control of a plant as shown in Figure 6, is necessarily required a mathematical model of a
plant. The process of selecting controller parameters to meet the optimized plant performance
with optimal plant parameters (Table 1), is known as controller tuning. John Ziegler and
Nathaniel Nichols, the fathers of PID loop tuning [1] suggested rules for tuning of PID
controllers based on experimental step response and based on Proportional Value in marginal
Stability (Sustained Oscillation) of a system.
This report assumes to have a plant’s mathematical model is available and the controllers design
is carried out by the given formula. We’ll start with The Empirical Ziegler-Nichols Tuning
Algorithm followed by some modified tuning algorithms based on Ziegler-Nichols’s Step
Response Tuning Algorithm.

co
nt

ro
len

gin
ee

rs
.ir

Figure 6 PID Control of a Plant

II. Empirical Ziegler-Nichols Tuning Algorithm:
a) Step Response (Open Loop) Method.

Figure 7: S Shaped Response Curve for Ziegler-Nichols Tuning Algorithm.

The procedure is as follows: -
 Find out the unit-step response of the open loop plant, and analyse weather the response

curve look S-shaped, as shown in Figure 7.
 This method applies if the response to a step input exhibits an S-shaped curve.
 Find out the delay time (L) and time (T) constant by drawing a tangent line at the

inflection point of the curve (Figure 7).
 Find out the steady state gain of the system (K) from the intersection of the tangent line

with the time axis (Figure 7).
 After calculating K, L and T , the Controller parameter can be evaluated by using Table 3.

Controller Type pK iT dT
P T

L

PI 0.9T
L

0.3

L
PID 1.2T

L

2L 0.5L
Table 3: Ziegler–Nichols tuning formulae – Step Response Method

co
nt

ro
len

gin
ee

rs
.ir

b) Closed Loop (Sustain Oscillation) Method
The procedure is as follows: -
 Select proportional control (pK) alone .
 Increase the value of the proportional gain (pK) until the point of instability is reached

(sustained oscillations), the critical value of gain(crK), is reached.
 Measure the period of oscillation to obtain the critical time constant (crP).
 Once the values for crK and crP are obtained, the PID parameters can be calculated,

according to the design specifications as shown in (Table 4).

Figure 8: Sustained Oscillation Method for Ziegler-Nichols Tuning

Controller Type pK iT dT
P

0.5 crK
PI

0.45 crK 1

1.2
crP

PID
0.6 crK 0.5 crP 0.125 crP

Table 4: Ziegler–Nichols tuning formulae – Sustain Oscillation Method

III. The Cohen-Coon Tuning Algorithm
Another Ziegler–Nichols type tuning algorithm is the Cohen–Coon [2] tuning formula. Referring
to the Experiments performed in Ziegler–Nichols Step response Method and denoting,

 and = ()KLa L L T
T

 , the different controllers can be designed by the using of Table 5.
Controller Type pK iT dT
P 1 0.35

(1)
1a

PI 0.9 0.92
(1)

1a

 3.3 3

()
1 1.2

L

PD 1 0.13
(1)

1a

 0.27 0.36

()
1 0.87

L

PID 1 0.18
(1)

1a

 2.5 2

()
1 0.39

L

 0.37 0.37

()
1 0.81

L

Table 5: Cohen–Coon tuning formulae

co
nt

ro
len

gin
ee

rs
.ir

IV. The Chien, Hrones and Reswick Tuning Algorithm:
There has been many suggestions of modifications of the Ziegler-Nichols methods. Chien,
Hrones and Reswick (CHR) [4] changed the step response method to give better damped closed-
loop systems. They proposed to use "quickest response without overshoot" or "quickest response
with 20% overshoot" as design criteria. They also made the important observation that tuning for
set point response or load disturbance response are different. To tune the controller according to
the CHR method, the parameters a and L of the process model are first determined in the same
way as for the Ziegler-Nichols step response method.
The Chien–Hrones–Reswick (CHR) method emphasizes the set-point regulation or disturbance
rejection. In addition one qualitative specification on the response speed and overshoot can be
accommodated. Compared with the traditional Ziegler–Nichols tuning formula, the CHR method
uses the time constant T of the plant explicitly.
Referring to the Experiments performed in Ziegler–Nichols Step response Method, and choice of
either Set point regulation or Disturbance Rejection, the different controllers can be designed by
the using of Table 6 and Table 7 .

Controller
Type

0% Overshoot 20% Overshoot
pK iT dT

pK iT dT
P 0.3

a
 0.7

a

PI 0.35

a
 1.2T 0.6

a
 T

PID 0.6

a
 T 0.5L 0.95

a
 1.4T 0.47L

Table 6: CHR Tuning Formulae for Set-Point Regulation.

Controller
Type

0% Overshoot 20% Overshoot
pK iT dT pK iT dT

P 0.3

a
 0.7

a

PI 0.35

a
 4L 0.7

a
 2.3L

PID 0.95

a
 2.4L 0.42L 1.2

a
 2L 0.42L

Table 7: CHR Tuning Formulae for Disturbance Rejection.

V. The Wang–Juang–Chan Tuning Algorithm:
Based on the optimum ITAE criterion, the tuning algorithm `proposed by Wang, Juang, and
Chan [], is a simple and efficient method for selecting the PID parameters. If the K, L, T
parameters of the plant model are known from the Experiments performed in Ziegler–Nichols
Step response Method, the controller parameters are given by:

co
nt

ro
len

gin
ee

rs
.ir

Controller Type pK iT dT

PID (0.7303 0.5307)(0.5)

()

T T L
L

K T L

 0.5T L 0.5

0.5

LT

T L

Table 8: Wang–Juang–Chan Tuning Formulae

3. Experimentation and Observation:
The system in Eq.10, is assumed as the transfer function of our plant. However any system with a
transfer function can be used as a process to be controlled.

 10

(1)(2)(3)(4)
Plant

s s s s

 10

The PID controller shown in Eq.11, is known as the ideal or non interacting form of PID
controller. This form of PID Controller is used in this report and also in MATLAB Scripts used
here.

 1
() 1p d

i

u t K T s
T s

 11

Another form of PID Controller is parallel form Eq.12,

 () i
p d

K
u t K K s

s

 12
In this case the three actions are completely separated. Actually, the parallel form is the most
general of the different forms, as it allows to exactly switch off the integral action by fixing

0iK (in the other cases the value of the integral time constant should tend to infinity).
In practical applications, the pure derivative action is never used, due to the “Derivative Kick” as
discussed in paragraph, 1.VIII.b. It is usually replaced by a first-order low pass filter. Thus, the
transfer function representation of the approximate PID controller can be written as Eq.13.

 1
() 1 ()

1

d

di

sT
u t Kp e s

TT s
s

N

 13

But as discussed in paragraph 1.VIII.b and shown in Figure 4, corresponds to the Eq.8, using a
derivative controller with a first order filter in system output path, the PID controller with
feedback ()H s , can be described as Eq.14.

2(1)() ()

()

(1)(1)

p d
i d p i p

d
p i

K T
TT s K T K

N NH s
T s

K T s
N

 14

Considering the control Structure shown in Figure 4, the close loop response can be found by
calculating the PI Controller and Plant as open loop element with ()H s as Feedback Element.
This report works with Eq.10 as a plant, and we only used Eq. 9 and Eq.13, Controller, for
experimentation, however one can use other realizations of Plant and Controller.

co
nt

ro
len

gin
ee

rs
.ir

 Experiment – 1(Individual Controller response) on a Plant)
Aim: To identify the effects of system characteristics by using a Controller (Individual Controller
response) on a Plant described as in Eq.10.

Simulating The Open loop response of the Plant described as in Eq.10. It can be seen that
the step response output is close to 0.435. The steady state error = 1-0.435 = 0.565. That’s quite
high. Also observe that the settling time is around 6 (See Figure 9).
Proportional Controller Effects:
Now, to examine the effect of proportional element (pK) on the system output. Varying the
values of pK = 0.5 to 4 in a step of0.5, and Keeping the values of iK = 0, dK = 0 the step response
of the system is (see Figure 10).

Figure 9: Open Loop Response of the Plant (Gp)

Figure 10: System response with Proportional Controller.

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Step Response

Time (seconds)

A
m

p
li
tu

d
e

Step Response of Plant(Gp)

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Step Response

Time (seconds)

A
m

p
li
tu

d
e

co
nt

ro
len

gin
ee

rs
.ir

It can be observed that:
 Increasing pK will reduce the steady state error.
 After certain limit, increasing pK will only increase overshoot and Oscillation.
 pK Reduces rise time.

Integral Controller Effects:
Keeping the value of pK = 2, and dK = 0 , and Varying the values of iK = 0.7 to1.5 with a step of
0.1, the step response of the system is (see Figure 11)
It can be observed that:
 iK Eliminates the Steady State Error.
 After certain limit, increasing iK will result in increase of overshoot.
 iK Reduces rise time.
 iK Increases settling time.

Figure 11: System response with P-Integral Controller.
Derivative Controller Effects:
Keeping the value of pK = 2, and iK = 0.9 , and Varying the values of dK = 0.8 to2with a step of
2, the step response of the system is (see Figure 12)

Figure 12: System response with P-I-Derivative Controller

0 5 10 15 20 25
0

0.5

1

1.5

Step Response

Time (seconds)

A
m

p
lit

u
d

e

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step Response

Time (seconds)

A
m

p
li
tu

d
e co

nt
ro

len
gin

ee
rs

.ir

It can be observed that:
 dK Decreases the overshoot and oscillation.
 dK Reduces settling time.

Figure 13: System Response with Derivative Controller in Feedback Path.

Corresponds to the Figure 4, Control system Structure, where a Derivative Controller is in
Feedback loop to reduce noise amplification. The response of system with that configuration is
shown in Figure 13.
 Experiment – 2 (Empirical Ziegler-Nichols Tuning Algorithm)
Aim: To Study the Empirical Ziegler-Nichols Tuning Algorithm and designing the P,I and D
parameter for the Plant described as in Eq.10.
a. Step Response (‘S’ Shaped) Curve/Process Reaction Curve Method:
As described the procedure in paragraph (2.a) and shown in Figure 7, the Parameter for
evaluating the values of the PID Controller as given in Table 3, can be obtained from Figure 14.
The obtained parameters are: 0.4167, 0.76 2.72K L Sec and T Sec .

Figure 14: Finding the K, L and T from ‘S’ Shaped Step response Curve.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (seconds)

A
m

p
li
tu

d
e

ClosedLoop response with Normal Derivative Controller
ClosedLoop response with Derivative Controller in Feedback

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Step Response

Time (seconds)

A
m

p
li
tu

d
e

L=0.76 Sec

T=1.96 Sec

K=0.4167

T

K

L

co
nt

ro
len

gin
ee

rs
.ir

Using these values (0.4167, 0.76 2.72K L Sec and T Sec), the PID Controller can be obtained
using MATLAB function described in (Appendix A).
There is MATLAB function ‘dcgain (system)’, which can give the ‘K’ value of the system
described in transfer function.
b. Sustained Oscillation Method:

Figure 15: Obtain The Critical Gain (Kcr) and Period (Pcr) from Sustained Oscillation Curve.

Following the method described in Paragraph (2b) and simulating the system with various valus
of Kp, we obtain the above Figure 16, it can be seen that there is a sustained oscillation at
Kp=12.6, hence the Critical Gain (Kcr) =12.6 and Period (Pcr)=2.84 (approx.).
Another way to find the values of Critical Gain (Kcr) and Period (Pcr) is use of MATLAB Command
‘margin (system)’ function.
However a mathematical approach [7]can also be implemented to find the values as described in
fowling section.
Mathematically Calculation of Critical Gain (Kcr) and Period (Pcr):
Consider the Plant in Eq.10 and P Controller as alone shown in Figure 16.

Figure 16: Mathematical Calculation of (Kcr) and (Pcr)

The closed loop transfer function is shown as,

4 3 2

10()

() 10 35 50 (24 10)

p

p

KC s

Y s s s s s K

 15

Using the Routh-Horwitz stability criteria, the Vallue of Kp ,will give the marginal stability of the
system by the system characteristics equation,

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7.0 7.34 7.7 8 8.5 9 9.5 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Step Response

Time (seconds)

A
m

p
li
tu

d
e

Kp=12.2

Kp=12.4

Kp=12.6

Pcr

co
nt

ro
len

gin
ee

rs
.ir

 4 3 210 35 50 (24 10)ps s s s K 16
The Routh Array is shown as:

4s 1 35 (24 10)pK
3s 10 0
2s 30 (24 10)pK
1s (42 3.33)pK
0s (24 10)pK

From above Routh Array, the Value of 12.61pK , and the Value of 12.61crK . Next, to find the
Period of oscillation crP .
Substitute s jw , in the Characteristics Eq.16. we will get,

 4 3 2() 10() 35() 50() 24 0jw jw jw jw 17
As we know [7], Period of oscillation 2

crP
w

 , after solving the Eq.17, we calculate the 2.23crP ,
hence we used this Values (12.6 2.23cr crK and P)to calculate the Values of PID Controller
using the Table 4.
Observation1: Different Controller Response (P.PI and PID) tuned in Process reaction Curve
Method (Shown in Figure 17) and Sustained Oscillation Method (Shown in Figure 18).

Figure 17: System Response of P,PI & PID Controller tuned with Process Reaction Curve Method

Figure 18: System Response of P,PI & PID Controller Tuned with Sustained Oscillation Method.

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (seconds)

A
m

p
li
tu

d
e

Response of P Controller

Response of PI Controller

Response of PID Controller

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (seconds)

A
m

p
li
tu

d
e

Response of P Controller

Response of PI Controller

Response of PID Controller

co
nt

ro
len

gin
ee

rs
.ir

 Observation 2: Observing the difference between the closed loop response of the system when a
Derivative Controller is used along the Controller and with a derivative Filter (PID tuned in
Process reaction Curve Method (Figure 19) and Sustained Oscillation Method (Figure 20).)

Figure 19: Comparison of PID and PID with Derivative Filter Controller (Process Reactive Curve Method)

Figure 20: Comparison of PID and PID with Derivative Filter Controller (Sustained Oscillation Method)
 Experiment – 3 (Cohen-Coon PID Controller Tuning Algorithm)
Aim: To Study the Cohen-Coon PID Controller Tuning Algorithm and designing the P, I and D
parameter for the Plant described as in Eq.10.

Figure 21: Closed Loop System response with CohenCoon Tuned Controllers (P,PI,PD,PID,PID-With Filter)
Taking the values of 0.4167, 0.76 2.72K L Sec and T Sec , and using the Table 5 for tuning the
PID Controller, we performed the closed loop response of the system shown in Figure 21.

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (seconds)

A
m

p
li
tu

d
e

Response of PID Controller

Response of PID (With Filter)Controller

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (seconds)

A
m

p
li
tu

d
e

Response of PID Controller

Response of PID (With Filter)Controller

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (seconds)

A
m

p
li
tu

d
e

Response of P Controller

Response of PI Controller

Response of PD Controller

Response of PID Controller

Response of PID(With Filter) Controller

co
nt

ro
len

gin
ee

rs
.ir

 Experiment – 4 (Chien, Hrones and Reswick Tuning Algorithm)
Aim: To Study the Chien, Hrones and Reswick Tuning Algorithm and designing the P, I and D
parameter for the Plant described as in Eq.10.
Taking the values of 0.4167, 0.76 2.72K L Sec and T Sec , and using the Table 6 for Set Point
regulation tuning method of PID Controller, we performed the closed loop response of the
system shown in Figure 22, similarly using Table 7, for disturbance rejection method the
corresponding closed loop response is shown in Figure 23.

Figure 22: System response to Chien, Hrones and Reswick Tuning Algorithm based PID Controller

(Setpoint Regulation)

Figure 23: System response to Chien, Hrones and Reswick Tuning Algorithm based PID Controller

(Disturbance Rejection)
 Experiment – 5 (Wang–Juang–Chan Tuning Algorithm)
Aim: To Study the Wang–Juang–Chan Tuning Algorithm and designing the P, I and D parameter
for the Plant described as in Eq.10.
Using the values of 0.4167, 0.76 2.72K L Sec and T Sec , and using the Table 8 for wang-jung-
chan tuning method of PID Controller, we performed the closed loop response of the system
shown in Figure 24,

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Set Point Regulation With 0% Overshoot

Time (seconds)

A
m

p
li
tu

d
e

Response of P Controller

Response of PI Controller

Response of PID Controller

Response of PID(With Filter) Controller

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Set Point Regulation With 20% Overshoot

Time (seconds)

A
m

p
li
tu

d
e

Response of P Controller

Response of PI Controller

Response of PID Controller

Response of PID(With Filter) Controller

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Distrubance Rejection with 0% Overshoot

Time (seconds)

A
m

p
lit

u
d

e

Response of P Controller

Response of PI Controller

Response of PID Controller

Response of PID(With Filter) Controller

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Distrubance Rejection with 20% Overshoot

Time (seconds)

A
m

p
lit

u
d

e

Response of P Controller

Response of PI Controller

Response of PID Controller

Response of PID(With Filter) Controller

co
nt

ro
len

gin
ee

rs
.ir

Figure 24: Wang-Jung-Chan Tuned PID Controller response of a system with derivative filter.

4. Conclusion and Future Works:
This report aims to provide primilary concepts of P, I and D Controllers, tuning and simulation.
Some Ziegler-Nichols tuning methods were presented and simulated using MATLAB Functions.
For each tuning algorithm a MATLB script file was written to calculate the Controller
parameters and closed loop response of the system. Indivusal controller effects of the system
characteristics are also simulated.
Considering this work as primary stage of this project, there are following modifications are
sought to be implemented in future.
 Developing a PC controlled Motor Control setup.
 Discretization of PID Controller to use it in digital domain (in embedded controllers)

platform.
 Implementing different forms of PID controller to control the setup.
 To practically verify of Derivative Kick and Integral wind up effects and compensation

techniques.

References:
[1] Ziegler, J.G, Nichols, N.B., "Optimum settings for automatic controllers", Trans.ASME, vol. 64,
pp. 759-768, 1942.
[2] Cohen, G.H., Coon, G.A. "Theoretical consideration of retarded control", Trans. ASME vol. 75,
pp.827-834, 1953.
[3] Netushil at al. Theory of Automatic Control, Mir, Moscow 1978.
[4] Chien, K.L., Hrones, J.A., Reswick, J.B., "On the automatic control of generalized passive
systems", Trans. ASME, 74, 175, 1952.
[5] Åström, K.J., Hägglund, T., PID Control – Theory, Design and Tuning, Instrument Society of
America, Research Triangle Park, NC, 2nd ed., 1995.
[6] Levine, W.S. ed., The control handbook, CRC Press, 1995.
[7] Ogata, K., Third ed, Modern Control Engineering, Prentice-Hall Inc, 1997.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (seconds)

A
m

p
lit

u
d

e
Response of PID Controller

Response of PID(With Filter) Controller

co
nt

ro
len

gin
ee

rs
.ir

Appendix:
Appendix A: MATLAB Functions for PID Tuning.
function [Gc,Kp,Ti,Td] = myzntune(Ch, data, method)
%% Please Enter a Valid Choice from, P, PI, PID or PIDF Where,
% P="PROPORTIONAL" PI="PROPORTIONAL + INTEGRAL"
% PID="PROPORTIONAL + INTEGRAL + DERIVATIVE"
% PIDF="PROPORTIONAL + INTEGRAL + DERIVATIVE(WITH FILTER)"

%% PLANT DESCRIPTION %%
s=tf('s');
Gp=10/(s+1)/(s+2)/(s+3)/(s+4);

%% PreDefinations %%
s=tf('s');
if length(data)==4
 k=data(1); L=data(2); T=data(3); N=data(4);
Y=(k*L);
a=Y/T;
% N=10;
else if length(data)==3
 Kcr=data(1);Pcr=data(2);N=data(3);
 end
end

%% CONTROLLER METHOD AND TYPE SELECTION %%
switch method
%% OPENLOOP/PROCESS REACTION CURVE METHOD %%
 case 'openloop'
 if Ch=='P'
 disp('You Have Choosen "PROPORTIONAL" Controller Only')
 Kp=1/a;Ti='Not Reqired';Td='Not Reqired';
 Gc=Kp;
% subplot(4,2,1)
 step(feedback(series(Gc,Gp),1))

 elseif strcmp(Ch,'PI')==1
 disp('You Have Choosen "PROPORTIONAL + INTEGRAL" Controller')
 Kp=0.9/a;
 Ti=3.33*L;
 Td='Not Reqired';
 Gc=Kp*(1+(1/(Ti*s)));
% subplot(4,2,2)
 step(feedback(series(Gc,Gp),1))

 elseif strcmp(Ch,'PID')==1
 disp('You Have Choosen "PROPORTIONAL + INTEGRAL + DERIVATIVE"

Controller')
 Kp=1.2/a;
 Ti=2*L;
 Td=L/2;
 Gc=Kp*(1+(1/(Ti*s))+(Td*s));
% subplot(4,2,3)
 step(feedback(series(Gc,Gp),1))

 elseif strcmp(Ch,'PIDF')==1
 disp('You Have Choosen "PROPORTIONAL + INTEGRAL + DERIVATIVE(WITH

FILTER)" Controller')
 Kp=1.2/a;

co
nt

ro
len

gin
ee

rs
.ir

 Ti=2*L;
 Td=L/2;
 Gc=Kp*(1+1/Ti/s+Td*s/(1+Td*s/N));
% subplot(4,2,4)
 step(feedback(series(Gc,Gp),1))

% elseif strcmp(Ch,'PIDFF')==1
% disp('You Have Choosen "PROPORTIONAL + INTEGRAL + DERIVATIVE(WITH

FILTER) IN FEEDBACK PATH" Controller')
% Kp=1.2/a;
% Ti=2*L;
% Td=L/2;
% Gc=Kp*(1+1/s/Ti);
% Hs=((1+Kp/N)*Ti*Td*s^2+Kp*(Ti+Td/N)*s+Kp)/(Kp*(Ti*s+1)*(Td/N*s+1));
% step(feedback(series(Gc,Gp),Hs))

 else
 error('Please Enter a Valid Choice, P, PI, PID or PIDF')
 end
%% CLOSED LOOP - SUSTAINED OSCILLATION METHOD %%
 case 'closeloop'

 if Ch=='P'
 disp('You Have Choosen "PROPORTIONAL" Controller Only')
 Kp=0.5*Kcr;Ti='Not Reqired';Td='Not Reqired';
 Gc=Kp;
% subplot(4,2,5)
 step(feedback(series(Gc,Gp),1))

 elseif strcmp(Ch,'PI')==1
 disp('You Have Choosen "PROPORTIONAL + INTEGRAL" Controller')
 Kp=0.45*Kcr;
 Ti=(1/1.2)*Pcr;Ki=Kp/Ti;
 Td='Not Reqired';
 Gc=Kp*(1+(1/(Ti*s)));
% subplot(4,2,6)
 step(feedback(series(Gc,Gp),1))

 elseif strcmp(Ch,'PID')==1
 disp('You Have Choosen "PROPORTIONAL + INTEGRAL + DERIVATIVE"

Controller')
 Kp=0.6*Kcr;
 Ti=0.5*Pcr;Ki=Kp/Ti;
 Td=0.125*Pcr;Kd=Kp*Td;
 Gc=Kp*(1+(1/(Ti*s))+(Td*s));
% subplot(4,2,7)
 step(feedback(series(Gc,Gp),1))

 elseif strcmp(Ch,'PIDF')==1
 disp('You Have Choosen "PROPORTIONAL + INTEGRAL + DERIVATIVE(WITH

FILTER)" Controller')
 Kp=0.6*Kcr;
 Ti=0.5*Pcr;
 Td=0.125*Pcr;
 Gc=Kp*(1+1/Ti/s+Td*s/(1+Td*s/N));
% subplot(4,2,8)
 step(feedback(series(Gc,Gp),1))

% elseif strcmp(Ch,'PIDFF')==1
% disp('You Have Choosen "PROPORTIONAL + INTEGRAL + DERIVATIVE(WITH

FILTER) IN FEEDBACK PATH" Controller')

co
nt

ro
len

gin
ee

rs
.ir

% Kp=0.6*Kcr;
% Ti=0.5*Pcr;
% Td=0.125*Pcr;
% Gc=((1+Kp/N)*Ti*Td*s^2+Kp*(Ti+Td/N)*s+Kp)/(Kp*(Ti*s+1)*(Td/N*s+1));
% step(feedback(series(Gc,Gp),1))
 else
 error('Please Enter a Valid Choice, P, PI, PID or PIDF')
 end
end
end
%% END OF THE FUNCTION %%

%%

function[Gc,Kp,Ti,Td]=myCohenCoon(type,data)
%% Please Enter a Valid Choice from, P, PI, PID or PIDF Where,
% P="PROPORTIONAL" PI="PROPORTIONAL + INTEGRAL"
% PID="PROPORTIONAL + INTEGRAL + DERIVATIVE"
% PIDF="PROPORTIONAL + INTEGRAL + DERIVATIVE(WITH FILTER)"

%% PLANT DESCRIPTION %%
s=tf('s');
Gp=10/(s+1)/(s+2)/(s+3)/(s+4);
% num=input('Please Enter the Numenators of the Plant');
% num=input('Please Enter the Denominators of the Plant');
% Gp=tf([num],[den]);
%%
%% Cohen Coon PID Controller Tuning %%
K=data(1);L=data(2);T=data(3);N=data(4);
Y=(K*L);a=Y/T;
N=10;
tau=L/(L+T);tmo=tau-1;
 if type=='P'
 disp('You Have Choosen "PROPORTIONAL" Controller Only')
 Kp=(1/a)*(1+((0.35*tau)/tmo));
 Ti='Not Reqired';Td='Not Reqired';
 Gc=Kp;
 step(feedback(series(Gc,Gp),1))

 elseif strcmp(type,'PI')==1
 disp('You Have Choosen "PROPORTIONAL + INTEGRAL" Controller')
 Kp=(0.9/a)*(1+((0.92*tau)/tmo));
 Ti=((3.33-3*tau)/(1+1.2*tau))*L;
 Td='Not Reqired';
% Ki=Kp/Ti;
 Gc=Kp*(1+(1/(Ti*s)));
 step(feedback(series(Gc,Gp),1))

 elseif strcmp(type,'PD')==1
 disp('You Have Choosen "PROPORTIONAL + DERIVATIVE" Controller')
 Kp=(1.24/a)*(1+((0.13*tau)/tmo));
 Td=((0.27-0.36*tau)/(1-0.87*tau))*L;
 Ti='Not Reqired';
% Kd=Kp*Td;
 Gc=Kp*(1+Td*s);
 step(feedback(series(Gc,Gp),1))

 elseif strcmp(type,'PID')==1
 disp('You Have Choosen "PROPORTIONAL + INTEGRAL + DERIVATIVE"

Controller')
 Kp=(1.35/a)*(1+((0.18*tau)/tmo));

co
nt

ro
len

gin
ee

rs
.ir

 Ti=((2.59-2*tau)/(1-0.39*tau))*L;
 Td=((0.37-0.37*tau)/(1-0.81*tau))*L;
% Ki=Kp/Ti;
% Kd=Kp*Td;
 Gc=Kp*(1+(1/(Ti*s))+(Td*s));
 step(feedback(series(Gc,Gp),1))

 elseif strcmp(type,'PIDF')==1
 disp('You Have Choosen "PROPORTIONAL + INTEGRAL + DERIVATIVE(WITH

FILTER)" Controller')
 Kp=(1.35/a)*(1+((0.18*tau)/tmo));
 Ti=((2.59-2*tau)/(1-0.39*tau))*L;
 Td=((0.37-0.37*tau)/(1-0.81*tau))*L;
 Gc=Kp*(1+1/Ti/s+Td*s/(1+Td*s/N));
 step(feedback(series(Gc,Gp),1))

 else
 error('Please Enter a Valid Choice, P, PI, PD, PID or PIDF')
 end
%%
end
%% Function Completed %%

%%

function [Gc,Kp,Ti,Td] = mychrtune(type,data,method,overshoot)
%% Please Enter a Valid Choice from, P, PI, PID or PIDF Where,
% type (P="PROPORTIONAL" PI="PROPORTIONAL + INTEGRAL"
% PID="PROPORTIONAL + INTEGRAL + DERIVATIVE"
% PIDF="PROPORTIONAL + INTEGRAL + DERIVATIVE(WITH FILTER)")
% data(enter the step response data in [K, L, T])
% method(is a string input can tahe either 'set' for Set Point Variation and or

'distrub' for Distrubance Rejection)
% overshoot(is a numeric input can be set to 0 or 20 for 0% and 20% overshoot)

%% PLANT DESCRIPTION %%
s=tf('s');
Gp=10/(s+1)/(s+2)/(s+3)/(s+4);
%% PRE-CALCULATIONS %%
K=data(1);
L=data(2);
T=data(3);
N=data(4);
a=((K*L)/T);

%%
switch method
 case 'set'
 if strcmp(type,'P')==1 && overshoot==0
 disp('You Have Choosen "PROPORTIONAL" Controller of 0% Overshoot')
 Kp=0.3/a;
 Ti='Not Reqired';
 Td='Not Reqired';
 Gc=Kp;
 step(feedback(series(Gc,Gp),1))
 elseif strcmp(type,'P')==1 && overshoot==20
 disp('You Have Choosen "PROPORTIONAL" Controller of 20%

Overshoot')
 Kp=0.7/a;

co
nt

ro
len

gin
ee

rs
.ir

 Ti='Not Reqired';
 Td='Not Reqired';
 Gc=Kp;
 step(feedback(series(Gc,Gp),1))

 elseif strcmp(type,'PI')==1 && overshoot==0
 disp('You Have Choosen "PROPORTIONAL + INTEGRAL" Controller

with 0% Overshoot')
 Kp=0.35/a;
 Ti=1.2*L;
 Td='Not Reqired';
 Gc=Kp*(1+(1/(Ti*s)));
 step(feedback(series(Gc,Gp),1))
 elseif strcmp(type,'PI')==1 && overshoot==20
 disp('You Have Choosen "PROPORTIONAL + INTEGRAL" Controller

with 20% Overshoot')
 Kp=0.6/a;
 Ti=T;
 Td='Not Reqired';
 Gc=Kp*(1+(1/(Ti*s)));
 step(feedback(series(Gc,Gp),1))

 elseif strcmp(type,'PID')==1 && overshoot==0
 disp('You Have Choosen "PROPORTIONAL + INTEGRAL +

DERIVATIVE" Controller with 0% Overshoot')
 Kp=0.6/a;
 Ti=T;
 Td=0.5*L;
 Gc=Kp*(1+(1/(Ti*s))+(Td*s));
 step(feedback(series(Gc,Gp),1))
 elseif strcmp(type,'PID')==1 && overshoot==20
 disp('You Have Choosen "PROPORTIONAL + INTEGRAL +

DERIVATIVE" Controller with 20% Overshoot')
 Kp=0.95/a;
 Ti=1.4*T;
 Td=0.47*L;
 Gc=Kp*(1+(1/(Ti*s))+(Td*s));
 step(feedback(series(Gc,Gp),1))

 elseif strcmp(type,'PIDF')==1 && overshoot==0
 disp('You Have Choosen "PROPORTIONAL + INTEGRAL +

DERIVATIVE(WITH FILTER)" Controller with 0% Overshoot')
 Kp=0.6/a;
 Ti=T;
 Td=0.5*L;
 Gc=Kp*(1+1/Ti/s+Td*s/(1+Td*s/N));
 step(feedback(series(Gc,Gp),1))
 elseif strcmp(type,'PIDF')==1 && overshoot==20
 disp('You Have Choosen "PROPORTIONAL + INTEGRAL +

DERIVATIVE(WITH FILTER)" Controller with 20% Overshoot')
 Kp=0.95/a;
 Ti=1.4*T;
 Td=0.47*L;
 Gc=Kp*(1+1/Ti/s+Td*s/(1+Td*s/N));
 step(feedback(series(Gc,Gp),1))
 else
 error('Please Enter a Valid Choice, P, PI, PID or PIDF')
 end
 %%
 case 'distrub'
 %%
 if strcmp(type,'P')==1 && overshoot==0

co
nt

ro
len

gin
ee

rs
.ir

 disp('You Have Choosen "PROPORTIONAL" Controller of 0% Overshoot')
 Kp=0.3/a;
 Ti='Not Reqired';
 Td='Not Reqired';
 Gc=Kp;
 step(feedback(series(Gc,Gp),1))
 elseif strcmp(type,'P')==1 && overshoot==20
 disp('You Have Choosen "PROPORTIONAL" Controller of 20%

Overshoot')
 Kp=0.7/a;
 Ti='Not Reqired';
 Td='Not Reqired';
 Gc=Kp;
 step(feedback(series(Gc,Gp),1))

 elseif strcmp(type,'PI')==1 && overshoot==0
 disp('You Have Choosen "PROPORTIONAL + INTEGRAL" Controller

with 0% Overshoot')
 Kp=0.35/a;
 Ti=4*L;
 Td='Not Reqired';
 Gc=Kp*(1+(1/(Ti*s)));
 step(feedback(series(Gc,Gp),1))
 elseif strcmp(type,'PI')==1 && overshoot==20
 disp('You Have Choosen "PROPORTIONAL + INTEGRAL" Controller

with 20% Overshoot')
 Kp=0.7/a;
 Ti=2.3*L;
 Td='Not Reqired';
 Gc=Kp*(1+(1/(Ti*s)));
 step(feedback(series(Gc,Gp),1))

 elseif strcmp(type,'PID')==1 && overshoot==0
 disp('You Have Choosen "PROPORTIONAL + INTEGRAL +

DERIVATIVE" Controller with 0% Overshoot')
 Kp=0.95/a;
 Ti=2.4*L;
 Td=0.42*L;
 Gc=Kp*(1+(1/(Ti*s))+(Td*s));
 step(feedback(series(Gc,Gp),1))
 elseif strcmp(type,'PID')==1 && overshoot==20
 disp('You Have Choosen "PROPORTIONAL + INTEGRAL +

DERIVATIVE" Controller with 20% Overshoot')
 Kp=1.2/a;
 Ti=2*T;
 Td=2.3*L;
 Gc=Kp*(1+(1/(Ti*s))+(Td*s));
 step(feedback(series(Gc,Gp),1))

 elseif strcmp(type,'PIDF')==1 && overshoot==0
 disp('You Have Choosen "PROPORTIONAL + INTEGRAL +

DERIVATIVE(WITH FILTER)" Controller with 0% Overshoot')
 Kp=0.95/a;
 Ti=2.4*L;
 Td=0.42*L;
 Gc=Kp*(1+1/Ti/s+Td*s/(1+Td*s/N));
 step(feedback(series(Gc,Gp),1))
 elseif strcmp(type,'PIDF')==1 && overshoot==20
 disp('You Have Choosen "PROPORTIONAL + INTEGRAL +

DERIVATIVE(WITH FILTER)" Controller with 20% Overshoot')
 Kp=1.2/a;
 Ti=2*T;

co
nt

ro
len

gin
ee

rs
.ir

 Td=0.42*L;
 Gc=Kp*(1+1/Ti/s+Td*s/(1+Td*s/N));
 step(feedback(series(Gc,Gp),1))
 else
 error('Please Enter a Valid Choice, P, PI, PID or PIDF')
 end
end
%%
end

%% Function Completed %%

%%

function[Gc,Kp,Ti,Td]=mywjc(type,data)
%% Please Enter a Valid Choice from, P, PI, PID or PIDF Where,
% P="PROPORTIONAL" PI="PROPORTIONAL + INTEGRAL"
% PID="PROPORTIONAL + INTEGRAL + DERIVATIVE"
% PIDF="PROPORTIONAL + INTEGRAL + DERIVATIVE(WITH FILTER)"

%% PLANT DESCRIPTION %%
s=tf('s');
Gp=10/(s+1)/(s+2)/(s+3)/(s+4)

s=tf('s');
K=data(1); L=data(2); T=data(3); N=data(4);
Y=(K*L);
a=Y/T;b=T/L;c=T+0.5*L;

%%
 if strcmp(type,'PID')==1
 disp('You Have Choosen PID "PROPORTIONAL + INTEGRAL + DERIVATIVE"

Controller')
 Kp=((0.7303+0.5307*b)*c)/(K*(T+L));
 Ti=c;
 Td=(0.5*L*T)/(c);
 Kd=Kp*Td;
 Ki=((Kp)/(Ti));

 Gc=Kp*(1+Ki/s+Kd*s);
 step(feedback(series(Gc,Gp),1))

 elseif strcmp(type,'PIDF')==1
 disp('You Have Choosen "PROPORTIONAL + INTEGRAL + DERIVATIVE(WITH

FILTER)" Controller')
 Kp=((0.7303+0.5307*b)*c)/(K*(T+L));
 Ti=c;
 Td=(0.5*L*T)/(c);

 Gc=Kp*(1+1/Ti/s+Td*s/(1+Td*s/N));
 step(feedback(series(Gc,Gp),1))

 else
 error('Please Enter a Valid Choice PID or PIDF')
 end
end
%% Function Completed %%

co
nt

ro
len

gin
ee

rs
.ir

%% IN ORDER TO EXECUTE THESE, PUT ALL THIS FILES IN TO SEPARATE MATLAN FUNCTION

FILES WITH APPROPRIATE FILE NAME AND RUN THE BELOW CODE IN A NEW SCRIPT
%% FILE. REMEMBER TO PULL ALL THESE FILES IN A SINGLE FOLDER.
%% Start The Plot %%
%% Plant
s=tf('s');
Gp=10/(s+1)/(s+2)/(s+3)/(s+4);
%% Step Response Method %%
%% Figure One %%
figure
[Gc_p,Kp_p,Ti_p,Td_p]=myzntune('P',[0.4167,0.76,1.96,10],'openloop')
[Gc_pi,Kp_pi,Ti_pi,Td_pi]=myzntune('PI',[0.4167,0.76,1.96,10],'openloop')
[Gc_pid,Kp_pid,Ti_pid,Td_pid]=myzntune('PID',[0.4167,0.76,1.96,10],'openloop')

step(feedback(series(Gc_p,Gp),1),feedback(series(Gc_pi,Gp),1),feedback(series(G

c_pid,Gp),1))
 title('Comparision of P,PI and PID Controllers

(Tuned by Step Response Method)')
 legend('Response of P Controller', 'Response of

PI Controller', 'Response of PID Controller')
%% Figure Two %%
figure
% title('Comparision of PID and PID (With Filter)Controllers (Tuned by Step

Response Method)')
[Gc_f,Kp_f,Ti_f,Td_f]=myzntune('PIDF',[0.4167,0.76,1.96,10],'openloop')
[Gcpid,Kppid,Tipid,Tdpid]=myzntune('PID',[0.4167,0.76,1.96,10],'openloop')
% subplot(1,2,2)

step(feedback(series(Gcpid,Gp),1),feedback(series(Gc_f,Gp),1))
 title('Comparision of PID and PID (With Filter

)Controllers (Tuned by Step Response Method)')
 legend('Response of PID Controller', 'Response

of PID (With Filter)Controller')

%% Sustained Oscillation Method %%
%% Figure Three %%
figure
[Gcp,Kpp,Tip,Tdp]=myzntune('P',[12.60,2.80,10],'closeloop')
[Gcpi,Kppi,Tipi,Tdpi]=myzntune('PI',[12.60,2.80,10],'closeloop')
[Gcpid1,Kppid1,Tipid1,Tdpid1]=myzntune('PID',[12.60,2.80,10],'closeloop')

step(feedback(series(Gcp,Gp),1),feedback(series(Gcpi,Gp),1),feedback(series(Gcp

id1,Gp),1))
 title('Comparision of P,PI and PID Controllers

(Tuned by Sustained Oscillation Method)')
 legend('Response of P Controller', 'Response of

PI Controller', 'Response of PID Controller')

%% Figure Four %%
figure
[Gcf,Kpf,Tif,Tdf]=myzntune('PIDF',[12.60,2.80,10],'closeloop')

step(feedback(series(Gcpid1,Gp),1),feedback(series(Gcf,Gp),1))
 title('Comparision of PID and PID (With Filter

)Controllers (Tuned by Sustained Oscillation Method)')
 legend('Response of PID Controller', 'Response

of PID (With Filter)Controller')

%% Cohen Coon %%
%% Figure Five %%
figure
[Gcp_cc,Kpp_cc,Tip_cc,Tdp_cc]=myCohenCoon('P',[0.4167,0.76,1.96,10]);

co
nt

ro
len

gin
ee

rs
.ir

[Gcpi_cc,Kppi_cc,Tipi_cc,Tdpi_cc]=myCohenCoon('PI',[0.4167,0.76,1.96,10]);
[Gcpd_cc,Kppd_cc,Tipd_cc,Tdpd_cc]=myCohenCoon('PD',[0.4167,0.76,1.96,10]);
[Gcpid_cc,Kppid_cc,Tipid_cc,Tdpid_cc]=myCohenCoon('PID',[0.4167,0.76,1.96,10]);
[Gcpidf_cc,Kppidf_cc,Tipidf_cc,Tdpidf_cc]=myCohenCoon('PIDF',[0.4167,0.76,1.96,

10]);

step(feedback(series(Gcp_cc,Gp),1),feedback(series(Gcpi_cc,Gp),1),feedback(seri

es(Gcpd_cc,Gp),1),feedback(series(Gcpid_cc,Gp),1),feedback(series(Gcpidf_cc,Gp)

,1))
title('System Response with Cohen Coon Tuned PID Controllers')
legend('Response of P Controller', 'Response of PI Controller', 'Response of PD

Controller','Response of PID Controller','Response of PID(With Filter)

Controller')

%% The Chien, Hrones and Reswick Tuning Algorithm %%
%%[Gc,Kp,Ti,Td] = mychrtune(type,data,method,overshoot)
%% Figure Six %%
figure
[Gcp0,Kpp0,Tip0,Tdp0]=mychrtune('P',[0.4167,0.76,1.96,10],'set',0)
[Gcp20,Kpp20,Tip20,Tdp20]=mychrtune('P',[0.4167,0.76,1.96,10],'set',20)

[Gcpi0,Kppi0,Tipi0,Tdpi0]=mychrtune('PI',[0.4167,0.76,1.96,10],'set',0)
[Gcpi20,Kppi20,Tipi20,Tdpi20]=mychrtune('PI',[0.4167,0.76,1.96,10],'set',20)

[Gcpid0,Kppid0,Tipid0,Tdpid0]=mychrtune('PID',[0.4167,0.76,1.96,10],'set',0)
[Gcpid20,Kppid20,Tipid20,Tdpid20]=mychrtune('PID',[0.4167,0.76,1.96,10],'set',2

0)

[Gcpidf0,Kppidf0,Tipidf0,Tdpidf0]=mychrtune('PIDF',[0.4167,0.76,1.96,10],'set',

0)
[Gcpidf20,Kppidf20,Tipidf20,Tdpidf20]=mychrtune('PIDF',[0.4167,0.76,1.96,10],'s

et',20)

subplot(1,2,1)
% title('Set Point Regulation with 0% Overshoot ')
step(feedback(series(Gcp0,Gp),1),feedback(series(Gcpi0,Gp),1),feedback(series(G

cpid0,Gp),1),feedback(series(Gcpidf0,Gp),1))
title('System Response with Setpoint Regulation with 0% Overshoot by CHR tune

PID Controller')
legend('Response of P Controller', 'Response of PI Controller','Response of PID

Controller','Response of PID(With Filter) Controller')

subplot(1,2,2)
% title('Set Point Regulation with 20% Overshoot ')
% figure
step(feedback(series(Gcp20,Gp),1),feedback(series(Gcpi20,Gp),1),feedback(series

(Gcpid20,Gp),1),feedback(series(Gcpidf20,Gp),1))
title('System Response with Setpoint Regulation with 20% Overshoot by CHR tune

PID Controller')
legend('Response of P 20%Controller', 'Response of PI Controller','Response of

PID Controller','Response of PID(With Filter) Controller')
%% FIgure Seven %%%
figure
[Gcp_d0,Kpp_d0,Tip_d0,Tdp_d0]=mychrtune('P',[0.4167,0.76,1.96,10],'distrub',0)
[Gcp_d20,Kpp_d20,Tip_d20,Tdp_d20]=mychrtune('P',[0.4167,0.76,1.96,10],'distrub'

,20)

[Gcpi_d0,Kppi_d0,Tipi_d0,Tdpi_d0]=mychrtune('PI',[0.4167,0.76,1.96,10],'distrub

',0)
[Gcpi_d20,Kppi_d20,Tipi_d20,Tdpi_d20]=mychrtune('PI',[0.4167,0.76,1.96,10],'dis

trub',20)

co
nt

ro
len

gin
ee

rs
.ir

[Gcpid_d0,Kppid_d0,Tipid_d0,Tdpid_d0]=mychrtune('PID',[0.4167,0.76,1.96,10],'di

strub',0)
[Gcpid_d20,Kppid_d20,Tipid_d20,Tdpid_d20]=mychrtune('PID',[0.4167,0.76,1.96,10]

,'distrub',20)

[Gcpidf_d0,Kppidf_d0,Tipidf_d0,Tdpidf_d0]=

mychrtune('PIDF',[0.4167,0.76,1.96,10],'distrub',0)
[Gcpidf_d20,Kppidf_d20,Tipidf_d20,Tdpidf_d20]=mychrtune('PIDF',[0.4167,0.76,1.9

6,10],'distrub',20)

subplot(1,2,1)
step(feedback(series(Gcp_d0,Gp),1),feedback(series(Gcpi_d0,Gp),1),feedback(seri

es(Gcpid_d0,Gp),1),feedback(series(Gcpidf_d0,Gp),1))
title('System Response with Distrubance Rejection with 0% Overshoot by CHR tune

PID Controller')
legend('Response of P Controller', 'Response of PI Controller','Response of PID

Controller','Response of PID(With Filter) Controller')

subplot(1,2,2)
step(feedback(series(Gcp_d20,Gp),1),feedback(series(Gcpi_d20,Gp),1),feedback(se

ries(Gcpid_d20,Gp),1),feedback(series(Gcpidf_d20,Gp),1))
title('System Response with Distrubance Rejection with 20% Overshoot by CHR

tune PID Controller')
legend('Response of P Controller', 'Response of PI Controller','Response of PID

Controller','Response of PID(With Filter) Controller')

%% The Wang–Juang–Chan Tuning Algorithm %%
%% Figure Eight %%
figure
[Gc_wjc,Kp_wjc,Ti_wjc,Td_wjc]=mywjc('PID',[0.4167,0.76,1.96,10])
[Gcf_wjc,Kpf_wjc,Tif_wjc,Tdf_wjc]=mywjc('PIDF',[0.4167,0.76,1.96,10])

step(feedback(series(Gc_wjc,Gp),1),feedback(series(Gcf_wjc,Gp),1))
title('System Response with Wang–Juang–Chan Tuned PID Controllers')
legend('Response of PID Controller','Response of PID(With Filter) Controller')

%% Complete %%

co
nt

ro
len

gin
ee

rs
.ir

