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Preface

Why this book now?
A key direction for research in systems and control involves engineering systems. These are
highly distributed collective systems with humans in the loop. Highly distributed means
that decisions, information, and objectives are distributed throughout the system. Hu-
mans in the loop implies that the players have bounded rationality and limited computa-
tion capabilities. In addition, decisions may also be influenced by societal and cultural
habits. Engineering systems emphasize the potential of control and games beyond tradi-
tional applications.

The reason why I chose to write this book now is that, within the realm of engineering
systems, a key point is the use of game theory to design incentives to obtain socially desir-
able behaviors on the part of the players. As an example, in demand side management, an
increase of the electricity price on the part of the network operator may induce a change in
the consumption patterns on the part the prosumers (producers-consumers). In opinion
dynamics, sophisticated marketing campaigns may influence the market share, assuming
that the customers are susceptible players sharing opinions with their neighbors. In pedes-
trian flow, informing the pedestrians on the congestion at different locations may lead to
a better redistribution of the traffic. These are only some of the applications discussed in
this book.

In this context, game theory offers a rich set of model elements, solution concepts,
and evolutionary notions. The model elements are the players, the action sets, and the
payoffs; the solution concepts include the Nash equilibrium, the Stackelberg equilibrium,
and Pareto and social optimality; evolutionary notions shed light on the fact that equilib-
ria are relevant only if the players can converge to such solutions in a dynamic setting.
Evolutionary notions essentially turn the game into a kind of dynamic feedback system.

However, a game theory model is more than just a dynamic feedback system, as each
player learns the environment, which in turn learns the player, and so forth. Such a cou-
pled learning introduces a higher level of difficulty to the feedback structure.

A large portion of this book is dedicated to games with a large number of players. Here
each player uses an aggregate description of the environment based on a distribution func-
tion on actions or states, which is the main idea in a mean-field game. Thus, in most ex-
amples the game is a mapping from distributions (congestion levels) to payoffs (think of
the replicator dynamics).

If a game is a mapping from congestion levels to payoffs, the evolution model is a dy-
namic model that operates in the opposite direction: it maps flows of payoffs to flows of
congestion levels. Here, systems and control theory provides a set of sophisticated stabiliz-
ability tools to design self-organizing and resilient systems characterized by cooperation

xxiii
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xxiv Preface

and competition. This book will mainly use the Lyapunov approach both in a determin-
istic and a stochastic setting.

Goal of this book
This book’s goal is to bring together game theory and systems and control theory in the
unconventional framework of engineering systems. The goal of Part I is to cover the foun-
dations of the theory of noncooperative and cooperative games, both static and dynamic.
Part I also highlights new trends in cooperative differential games, learning, approacha-
bility (games with vector payoffs), and mean-field games (large number of homogeneous
players). The treatment emphasizes theoretical foundations, mathematical tools, model-
ing, and equilibrium notions in different environments.

The goal of Part II is to illustrate stylized models of engineered and societal situations.
These models aim at providing fundamental insights on several aspects, including the in-
dividuals’ strategic behaviors, scalability and stability of the collective behavior, and the
influence of heterogeneity and local interactions. Other relevant issues discussed through-
out the book are uncertainty and model misspecification. Remarkably, the framework of
robust mean-field games is developed with an eye to grand engineering challenges such as
resilience and big data.

What this book is not
This book is not an encyclopedia of game theory, and the material covered reflects my
personal taste. More importantly, this book is not a collection of takeaway models and
solutions to specific applications. These models need not be interpreted literally but are
guidelines towards a better understanding and an efficient design of collective systems.

Structure of this book
This book is organized in two parts. Part I follows [24] and goes from Chapter 1 to 12.
Chapters 1 to 4 review the foundations of noncooperative games. Chapters 5 to 6 deal
with cooperative games. Chapter 7 surveys evolutionary games. Chapter 8 analyzes the
replicator dynamics and provides a brief overview of learning in games. Chapter 9 deals
with differential games. Chapter 10 discusses stochastic games. Chapter 11 pinpoints
basics and trends in games with vector payoffs, such as approachability and attainability.
Chapter 12 provides an overview of mean-field games.

Part II builds upon articles of the author and goes from Chapters 13 to 21. In par-
ticular, under the umbrella of power systems, Chapters 14 to 15 analyze demand side
management and synchronization of power generators, respectively. Within the realm of
sociophysical systems, Chapter 13 discusses consensus in multi-agent systems, and Chap-
ters 16 to 18 illustrate, in order, opinion dynamics, bargaining, and pedestrian flow appli-
cations. Within the context of production/distribution systems, Chapters 19 to 21 deal
with supply chain, population of producers, and cyber-physical systems.

At the end of each chapter a section entitled “Notes and references” acknowledges the
work on which the chapter is based and related works.

Audience
The primary audience is students, practitioners, and researchers in different areas of En-
gineering such as Industrial, Aeronautical, Manufacturing, Civil, Mechanical, and Elec-
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Preface xxv

trical Engineering. However, the topic also interests scientists in Computer Science, Eco-
nomics, Physics, and Biology. Young researchers may benefit from reading Part II. The
comprehensive reference list enables further research. The book is self-contained and
makes the path from undergraduate students to young researchers short.

Using this book in courses
This book can be used as a textbook, especially Part I. This part covers material that can
be taught in first-year graduate courses. I use a tutorial style to illustrate the major points
so that the reader can quickly grasp the basics of each concept.

Part I assembles the material of three graduate courses given at the Department of
Mathematics of the University of Trento, at the Department of Engineering Science of
the University of Oxford, and at the Department of Electrical and Electronic Engineering
of Imperial College in 2013. The material has also been used for the short course given at
the Bertinoro International Spring School 2015 held in Bertinoro, Forlì, Italy.

The book can also be used for an undergraduate course. To this purpose, the book is
complemented with Appendix sections on mathematical review, optimization, Lyapunov
stability, basics of probability theory, and stochastic stability theory. Part II shows a
number of simulation algorithms and numerical examples that may help improve the
coding skills of the students. The software used for the simulations is MATLAB . Prior
knowledge includes the material discussed in the Appendix sections.

Acknowledgments
A large part of this book is based on my research over the past 10 years. I was honored
to have a number of brilliant co-authors, and I would like to mention those with whom I
have worked extensively. The collaboration with Tamer Başar and Hamidou Tembine is
the origin of many ideas in robust mean-field games. The collaboration with Ehud Leher,
Eilon Solan, and Xavier Venel has inspired research on attainability (cf. Chapter 11). The
joint work with Franco Blanchini is the source of several ideas on robust stabilizability of
network flows appearing throughout the book. Raffaele Pesenti and Laura Giarré have
helped me develop the ideas discussed in the multi-agent consensus application in Chap-
ter 13. The bargaining model in Chapter 17 has been developed in a joint work with
Angelia Nedić. The supply-chain model in Chapter 18 has been studied in a collabora-
tion with Judith Timmer. The collaboration with Fabio Bagagiolo has inspired the design
of objective functions in differential and mean-field games.

More recently, the approximation technique based on state space extension to com-
pute mean-field equilibria has resulted from the fruitful interactions with Alessandro As-
tolfi and Thulasi Mylvaganam during my sabbatical at Imperial College London in 2013.
The collaboration with Antonis Papachristodoulou and Xuan Zhang has inspired the
pedestrian flow model in Chapter 18. My special thanks to Xuan, who has contributed
the simulations in Chapter 18. I really enjoyed sharing thoughts with Mark Cannon, and
the resulting ideas combining games and receding horizon are discussed in Chapter 16
in the context of opinion dynamics. The collaborations with Antonis, Xuan, and Mark
started during my sabbatical period in Oxford in 2013.

Many thanks are due to the several PhD students, postdocs, and fellows who have
attended the courses and have contributed to the improvement of the material with their
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List of Notation

We use the following abbreviations and symbols throughout the book.

� set of real numbers
�n n-dimensional vector space over �
�+ set of nonnegative real numbers
xT transpose of a vector x
AT transpose of a matrix A

xi or [x]i ith coordinate component of a vector x
ai j or [A]i j or ai

j i j th entry of a given matrix A
x < y (x ≤ y) xi < yi (xi ≤ yi ) for all coordinate indices i of two vectors x and y
[ξ ]+ positive part of real ξ ∈�
‖x‖ Euclidean norm of a vector x
‖x‖2

A weighted two-norm xT Ax of given vector x ∈�n and matrix a ∈�n×n

Δn simplex in �n

ΠX [x] projection of a vector x on a set X , i.e., ΠX [x] = argminy∈X ‖x − y‖
dist(x,X ) distance from vector x to set X , i.e., dist(x,X ) = ‖x −ΠX [x]‖

U ⊂ S U is a proper subset of S
|S| cardinality of a given finite set S
∂x first partial derivative with respect to x or gradient with respect to x

∇x or∇ gradient
∂ 2

x x second derivative with respect to x
∇2 Hessian matrix
� expectation
� probability

m̄(.) mean of a given density function m(.)
s t d (m(.)) standard deviation of a given density function m(.)
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Chapter 1

Introduction to Games

1.1 Introduction
This chapter is an introduction to the foundations of game theory, i.e., the theory of strate-
gic thinking.

Game theory intersects several disciplines. From Table 1.1, we understand that game
theory conventionally involves multiple players and multiple payoffs. From this perspec-
tive, game theory is a generalization of optimization theory, which deals with one player,
the optimizer, and one payoff, called objective function. Game theory also differs from
multi-objective optimization, which deals with one player and multiple payoffs. Likewise,
game theory differs from team theory, which considers multiple decision makers and one
payoff.

Table 1.1. Connections of game theory with other disciplines.

1 payoff n payoffs
1 player Optimization Multi-objective optimization
n players Team theory Game theory

In Section 1.2, we browse applications. In Section 1.3, we introduce different types
of games, such as simultaneous and sequential games. Different types of games admit
different game formulations as, for instance, the strategic or normal representation and
the extensive or tree representation. We also distinguish between cooperative and nonco-
operative games. We continue with the introduction of basic concepts such as pure and
mixed strategy, Nash equilibrium, and dominant strategy, in Section 1.4. Furthermore,
we streamline seminal results on the existence of equilibria. Section 1.5 discusses the it-
erated dominance algorithm. We also introduce the Cournot duopoly as an example of an
infinite game and illustrate the aforementioned algorithm on it. We conclude with the
presentation of some stylized finite games, such as the Coordination game, the Hawk and
Dove game, or the Stag-Hunt game, in Section 1.6. Finally, in Section 1.7 we provide notes
and references for this chapter.

1.2 Applications
Game-theoretic models arise in several application domains, and below is a partial list of
them.

3
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4 Chapter 1. Introduction to Games

Field and board games. In field games such as football or rugby or board games like
chess or draughts, we can review the players’ decisions as elements of a given set, called a
decisions set, and the probability of a win is the payoff that every player seeks to maxi-
mize. Thus, such games admit a mathematical description via game theory. It is known,
for instance, that certain tactics in rugby are successful only under the assumption that
the opponent is playing a certain tactic. A common perspective is the one of assimilat-
ing the tactic choice to a play of the Rock-Paper-Scissors game. Algorithmic game theory
provides theoretical foundations for this. Algorithmic game theory overlaps algorithm
design, game theory, and artificial intelligence.

Commercial and business operations. When firms operate in the same market they
usually are competitors. Survival is sometimes related to their ability to predict the impact
of a new product on the market and how such a new product will change the competitor’s
strategic operations. This involves a strategic analysis of the current market demand and
of the reactions of the potential competitors in consequence of the introduction of the
new product.

Politics. Game theory is used in politics to produce indices to measure the power of
parties involved in a governing coalition. Game theory is also useful for analyzing voting
methods. In social policymaking, game theory provides tools to governmental agencies
for a better understanding of the impact of specific social policy choices, such as pension
rules, education, or labor reforms.

Military and civil defense. It is in defense that game theory first contributed the notion
of strategic thinking. This is about putting ourselves in the place of the opponent before
making a decision. Such a role-playing game is a milestone of the theory. In military ap-
plications, as, for instance, the one involving missile pursuing fighter airplanes, missions
are usually developed on game-theoretic models.

Engineering applications, robotics, and multi-agent systems. Within the broad area of
engineering applications, game theory develops models for the movement of automated
robot vehicles with distributed task assignment. Robotic manipulation and path planning
in the presence of moving obstacles is also a classical game theory application.

Networks. In social networks, one deals with the analysis of the spread of innovation,
or the propagation of opinions. Here, game theory provides fundamental insights on
why certain behaviors or opinions emerge. In communication networks, game theory is
commonly used to design band allocation policies, improve security, and reduce threats.

1.3 Overview on different types of games
In this section, we survey different types of games. For each type we have a corresponding
representation. We start by providing a formal description of a game in generic terms.
Then, we introduce two distinct classes: cooperative and noncooperative games. After
doing this, a second distinction we highlight is between simultaneous and sequential games.
Finally, we illustrate the strategic or normal representation used for simultaneous games
and the extensive or tree representation used for sequential games.

1.3.1 Ingredients for a game

A game in strategic form involves a tuple 〈N , (	i )i∈N , (ui )i∈N 〉, where

• the set N = {1,2, . . . , n} is the set of players, which we assume to be maximizers if
not specified differently;
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1.3. Overview on different types of games 5

• the set	i is the set of actions of player i for all i ∈N ;

• the set A := {a|a = (ai )i∈N , ai ∈ 	i , ∀i ∈ N} is the set of action profiles, where an
action profile (also called outcome) is an n-tuple of actions;

• the function ui : A→� is the payoff function of player i , i.e.,

(a1, . . . ,an) → ui (a1, . . . ,an).

Here the payoff ui is conventionally assumed to be a profit, and therefore it has to be
maximized. In other circumstances it can also be a cost to be minimized.

Action profiles can be equivalently written in order to isolate player i’s action as

(aj ) j∈N = (a1, . . . ,an) = (ai ,a−i ),

where a−i = (aj ) j∈N , j �=i is the action profile of all players except i .

1.3.2 A first distinction: Noncooperative and cooperative games

The theory of noncooperative games differs substantially from the one of cooperative
games. The two theories have given rise to two independent literatures. To understand
the main differences, in noncooperative games

(i) every player maximizes his own payoff by choosing his best response on the basis of
what he knows about others’ actions;

(ii) the players have no binding agreements on joint actions that are optimal for the
group;

(iii) the players are not involved in any pre-play communication stage.

Cooperative games admit two different formulations. One formulation is about games
with transferable utility (TU games), whereas the second formulation deals with games with
nontransferable utility (NTU games). Differently from noncooperative games, in coopera-
tive games

(i) the players look for joint actions which may turn optimal for the group, which is
the case in NTU games, or seek reasonable cost or reward sharing rules that make
the coalitions stable, as in TU games;

(ii) the players may be involved in a pre-play communication stage;

(iii) the players are allowed to use side payments in order to stabilize the coalition as in
TU games.

It is well known that noncooperative game theory plays a dominant role in most text-
books on game theory. Also, noncooperative game theory is to some extent more com-
mon than cooperative game theory among scientists of disciplines other than economics.
However, there are controversial opinions about the fact that cooperative game theory
may have a broader range of applications.

The next example is a milestone of the theory of noncooperative games.
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6 Chapter 1. Introduction to Games

Example 1.1 (Prisoner’s dilemma). The Prisoner’s dilemma represents one of the most
common stylized noncooperative games. The underlying story involves two criminals
who are arrested under the suspicion of having committed a crime. The maximal sentence
for the crime is four years. Each fellow has two possibilities: to cooperate with the other
fellow, denoted by C , or to defect the other fellow, denoted by D. If the fellows play
(D, D), the sentence is mitigated to three years, which corresponds to saying that each
one gets one year of freedom. If the fellows play (C ,C ), both are released after one year
due to lack of evidence, which corresponds to each one getting three years of freedom. If
only one fellow cooperates, namely (C , D) or (D,C ), the fellow who plays D is released
immediately, which corresponds to four years of freedom, whereas the other fellow is
sentenced to the maximal punishment; that is, he gets zero years of freedom. Such a
strategic scenario can be represented in bimatrix form, as displayed in Fig. 1.1.

C D
C (3,3) (0,4)

D (4,0) (1,1)

noncooperative

cooperative

Figure 1.1. Prisoner’s dilemma: cooperative vs. noncooperative solutions.

The above scenario describes a noncooperative context, where every player, having no
guarantee on the opponent’s play, is better off by playing D. The corresponding outcome
is then (D, D) depicted in light gray in Fig. 1.1. The above scenario can be reviewed also
in a cooperative context. Here we assume that both players can collude and negotiate on
joint actions. In this case, a better solution for the group requires that both cooperate,
i.e., (C ,C ), and this is depicted in dark gray in Fig. 1.1.

1.3.3 A second distinction: Simultaneous and sequential games

A second distinction is between simultaneous and sequential games. Simultaneous games
are characterized as follows:

(i) players take actions or make decisions once and for all and at the same time;

(ii) just because the game is played in one shot, there is no variable that summarizes
the state of the game, and consequently the actions cannot depend on states, which
implies that there is no need to build strategies (this can be better understood after
we introduce the notion of strategy as a map from states to decisions in sequential
games);

(iii) there exists a common representation in normal form, which is also called strategic
form or, in the case of two players, bimatrix form.

The Prisoner’s dilemma introduced earlier is an example of simultaneous game in
strategic form; see Fig. 1.1. In the bimatrix representation the rows and the columns
scan the actions or decisions of the two players, also called row and column players, and
each entry of the bimatrix involves two elements which are the payoffs of the players.
Note that this kind of representation does not carry any inbuilt information structure.
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1.3. Overview on different types of games 7

Differently from simultaneous games, in sequential games we find the following as-
pects:

(i) there exists a specific order of events which establishes “who makes decisions when”;

(ii) at each stage a state variable collects information on earlier decisions;

(iii) at each stage the player who is in turn to make a decision may have perfect or im-
perfect information on the actual state (earlier decisions);

(iv) the players make decisions based on the state; in other words, they build a map from
states to decisions, and such a map is called strategy;

(v) the sequential nature of the game is conveniently represented in extensive or tree
form, as displayed in Fig. 1.2.

In an extensive or tree representation, the nodes indicate the states and the correspond-
ing labels identify the players who are to act. The edges are the actions that can be taken in
a given state. The end of the game is represented by leaf nodes which indicate the payoffs
resulting from the whole history of actions taken. Such a representation has an inbuilt
information structure.

The example in Fig. 1.2 shows a two-player extensive game where in stage 1, player 1
can play left, L, or right, R. Then, in stage 2, player 2 can play left, l , or right, r . In stage
2, player 2 is in one of the two states, indicated as state 1 (light gray node) or state 2 (dark
gray node), which yields four possible actions: l1, r1, l2, r2 (the index indicates the state;
for instance, r1 means right in state 1, and l2 means left in state 2).

1 stage 1

stage 2

L R

2
state 1 state 2

2
l1 r1

2 2

l2 r2

2 2
(5,1) (3,2) (4,8) (6,3)

Figure 1.2. Example of extensive/tree form representation: (stage 1) player 1 can play L or
R; (stage 2) player 2 can play l1 or r1 in state 1 (light gray node), and l2 or r2 in state 2 (dark gray node).
Reprinted with permission from Hindustan Book Agency [239].

It is worth noting that it is possible to have a strategic form representation also for an
extensive game. To do this, we need to substitute decisions with strategies for some of the
players. This is illustrated later in Example 1.5 and Fig. 1.5. There we have four strategies
for player 2, i.e., l1 l2 (always left), l1 r2 (left only in state 1, that is, when player 1 plays
L), l2 r1 (left only in state 2, that is, when player 1 plays R), and r1 r2 (always right). Thus,
the set of “actions” for player 2 is	2 = {l1 l2, l1 r2, r1 l2, r1 r2}, while the one for player 1 is
simply	1 = {L, R}.

When simultaneous games are played repeatedly in time, the game is called repeated
game. A natural representation for these games is in extensive form. Fig. 1.3 shows this
for the Prisoner’s dilemma example. Here we consider streams of instantaneous payoffs,
which are summed up over the rounds of a finite horizon or an infinite horizon. This
can be done by considering a discounted sum or a long-term average over the horizon
window.
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8 Chapter 1. Introduction to Games

1,2

(C , D) (D,C )(C ,C ) (D, D)

1,2 1,21,2 1,2

Figure 1.3. Extensive or tree form representation of the Prisoner’s dilemma. Reprinted with
permission from Hindustan Book Agency [239].

1.4 Nash equilibrium and dominant strategy
The concepts of Nash equilibrium and dominant strategy are among the foundations of
game theory. In this section we review both concepts, which will accompany the reader
through the whole book.

1.4.1 Nash equilibrium

A Nash equilibrium is an action profile such that no player can be better off by deviating
from it, assuming that the other players do not change their actions. This leads to the
notion of unilateral deviations, namely, situations where only one player changes his own
decision while the others stick to their current choices, actions, or decisions. Thus we
can say shortly that, in a Nash equilibrium, unilateral deviations do not benefit any of
the players.

Definition 1.2 (Nash equilibrium). The action profile/outcome (a∗1 ,a∗2 , . . . ,a∗n) is a Nash
equilibrium if none of the players by deviating from it can gain anything, i.e.,

ui (a
∗
i ,a∗−i )≥ ui (ai ,a∗−i ) ∀ai ∈	i , ∀i ∈N .

A Nash equilibrium can be equivalently defined using best-response sets.

Definition 1.3 (Best-response set). The best-response set for player i is the set

�i (a−i ) := {a∗i ∈	i | ui (a
∗
i ,a−i ) = max

ai∈	i

ui (ai ,a−i )}.

Then in a Nash equilibrium all players play a best response, namely

a∗i ∈�i (a
∗−i ) ∀i ∈N .

Example 1.4. In the Prisoner’s dilemma (see Fig. 1.4) the solution (D, D) is a Nash equi-
librium, as player 1 by deviating from it would get 0 years of freedom rather than 1 (stick
to 2nd column and move vertically to 1st row) and therefore would be worse off. Likewise
for player 2. Note that the Nash equilibrium corresponds to the noncooperative solution
introduced earlier (see Fig. 1.1) for the same example.
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1.4. Nash equilibrium and dominant strategy 9

C D
C (3,3) (0,4)
D (4,0) (1,1)

Figure 1.4. Prisoner’s dilemma: (D, D) is a Nash equilibrium.

Example 1.5. In the extensive game of Fig. 1.5, player 2 has four strategies, i.e.,

• l1 l2 (always left),

• l1 r2 (left only in state 1, that is, when player 1 plays L),

• l2 r1 (left only in state 2, that is, when player 1 plays R), and

• r1 r2 (always right).

Thus, the set of “actions” for player 2 is 	2 = {l1 l2, l1 r2, r1 l2, r1 r2}, while the one for
player 1 is 	1 = {L, R}. There exists one Nash equilibrium (R, r1 l2). This can be com-
puted via dynamic programming backwards. To see this, in state 1 (light gray node),
player 2’s rational choice is r1 (dashed line), as he gets 2, while by playing l1 he would
get 1. In state 2 (dark gray node), player 2 could play l2 and get 8 or play r2 and get 3; then
his rational choice is l2 (dashed line). In stage 1 (top node), player 1 gets 4 by playing R,
and 3 by playing L, so his best response is R (dashed line). The equilibrium payoffs are
then (4,8).

l1 l2 l1 r2 r1 l2 r1 r2
L (5,1) (5,1) (3,2) (3,2)
R (4,8) (6,3) (4,8)∗ (6,3)

1
L R

2 2
l1 r1

2 2

l2 r2

2 2
(5,1) (3,2) (4,8)∗ (6,3)

state 1 state 2

Figure 1.5. Example of normal representation of a sequential game. Reprinted with permis-
sion from Hindustan Book Agency [239].

The representation in normal form of the game (left) shows another solution, (R, l1 l2),
returning the same payoffs as the equilibrium payoffs. Note that this solution is not a
Nash equilibrium, as player 2 would benefit from changing from l1 to r1. So, in principle
there may exist solutions that are not equilibria and which are equivalent to equilibria in
terms of payoffs.

The literature provides a weaker equilibrium solution, called ε-Nash equilibrium.

Definition 1.6 (ε-Nash equilibrium). For a given ε≥ 0, the action profile (aε1 ,aε2 , . . . ,aεn )
is an ε-Nash equilibrium if no player by deviating from it can gain more than ε, i.e.,

ui (a
ε
i ,aε−i )≥ ui (ai ,aε−i )− ε ∀ai ∈	i , ∀i ∈N .

The ε-Nash equilibrium is a generalization of the Nash equilibrium. Actually, the
ε-Nash equilibrium coincides with the Nash equilibrium for ε= 0.
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10 Chapter 1. Introduction to Games

1.4.2 On the existence of equilibria in mixed strategies

A milestone in the theory of games is the equilibrium point theorem by Nash (1950) [183].
The theorem establishes the existence of equilibrium solutions for nonzero-sum games.

The equilibrium point theorem makes use of the notion of mixed strategy.

Definition 1.7 (Mixed strategy). A mixed strategy is a strategy defined by a probability
distribution over the finite set of the feasible strategies.

In the parlance of game theory, one uses the term pure strategy in contrast to mixed
strategy. In plain words, a mixed strategy is a randomization on pure strategies.

The equilibrium point theorem builds on Kakutani’s (fixed point) theorem (1941). Kaku-
tani’s theorem provides sufficient conditions for a set-valued function, defined on a convex
and compact subset of a Euclidean space, to have a fixed point, i.e., a point which is mapped
to a set containing it.

Theorem 1.8 (Kakutani’s (fixed point) theorem (1941)). Let K be a nonempty subset of
a finite-dimensional Euclidean space. Let f : K → K be a correspondence, with x ∈ K →
f (x)⊆K, satisfying the following conditions:

• K is a compact and convex set;

• f (x) is nonempty for all x ∈K;

• f (x) is a convex-valued correspondence: for all x ∈K, f (x) is a convex set;

• f (x) has a closed graph; that is, if {xn , yn}→ {x, y} with yn ∈ f (xn), then y ∈ f (x).

Then, f has a fixed point; that is, there exists some x ∈K such that x ∈ f (x).

Kakutani’s theorem is a generalization of Brouwer’s (fixed point) theorem. This fixed
point theorem says that if S is a compact and convex subset of �n and f is a continuous
function mapping S into itself, then there exists at least one x ∈ S such that f (x) = x.

Rather than the formal proof of Kakutani’s theorem, we provide a graphical illustra-
tion for a simple scalar case of the main ideas used in the proof. Let x be plotted in the
horizontal axis and f (x) in the vertical axis, as in Fig. 1.6. Fixed points, if they exist, must
solve f (x) = x and therefore can be found at the intersection between the function f (x)
and the dotted line. On the left, the function f (x) is not convex valued, and therefore
it does not admit a fixed point. On the right, the function f (x) does not have a closed
graph, which again implies that there exists no fixed point.

Nash used Kakutani’s theorem to prove the existence of a Nash equilibrium for nonzero-
sum games. In plain words, Nash’s equilibrium theorem establishes the existence of at
least one Nash equilibrium under the following conditions:

(i) the set of actions	i consists of compact and convex subsets of �n , as it occurs in
continuous (infinite) games, or games in mixed extension (we will expand more on
it later);

(ii) the payoffs ui (ai ,a−i ) are continuous and concave in ai for fixed strategy a−i of the
opponents.

In the following we provide a formal statement of the equilibrium point theorem.

Theorem 1.9 (Equilibrium point theorem). Each finite bimatrix game has a Nash equilib-
rium in the mixed strategies.
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1.4. Nash equilibrium and dominant strategy 11

f (x) = x f (x) = x

Figure 1.6. Graphical illustration of Kakutani’s theorem. Function f (x) is not convex
valued (left), and f (x) has no closed graph (right). Reprinted with permission from Asuman Ozdaglar
and Morgan and Claypool [197, 178].

Proof (Sketch). We here provide only a sketch of the proof. Let us introduce the best-
response set,

�i (a−i ) := {a∗i ∈	i | ui (a
∗
i ,a−i ) = max

ai∈	i

ui (ai ,a−i )}.

We can then apply Kakutani’s (fixed point) theorem to the best-response correspondence
� :Δ⇒Δ,Δ=

∏
i∈N Δi (Δi is the simplex in the �|	i |):

�(a) =
�
�i (a−i )

�
i∈N

.

In other words the theorem is proved once we show that the correspondence�(a) satisfies
the conditions of Kakutani’s theorem.

A relevant characteristic of Nash equilibria in mixed strategies is that every action
in the support of any player’s equilibrium mixed strategy is a best response and yields
that player the same payoff. Such a property is commonly referred to as the Indifference
Principle and will be used extensively in the remainder of this book.

In Chapter 3 we will see that the computation of Nash equilibrium solutions for
nonzero-sum games can be performed via linear complementarity programming (see also
[239, Chap. 7]).

Example 1.10. This example describes a two-player continuous infinite game. We say
that the game is an infinite game, as the set of actions consists of segments in � (see hor-
izontal and vertical axes in Fig. 1.7), and therefore each player has an infinite number of
available actions. From looking at the level curves, we see that the maxima are attained at
points P and Q for players 1 and 2, respectively. The Nash equilibrium is point R, which
has horizontal and vertical tangents to the level curves of players 1 and 2 passing through
it. Indeed, from belonging to a horizontal tangent, the horizontal coordinate of point R
is the best response of player 1 to player 2. Similarly, from belonging to a vertical tangent,
the vertical coordinate of R is the best response of player 2 to player 1.
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12 Chapter 1. Introduction to Games

R

P

Q

a1

a2

Figure 1.7. Two-player continuous infinite game. Level curves of player 1 (solid) and player 2
(dashed); action spaces of player 1 (horizontal axis) and player 2 (vertical axis). Global maximum is P
for player 1 and Q for player 2, while the Nash equilibrium is point R. Reprinted with permission from
A. Bressan and Springer Science+Business Media [65, 66].

1.4.3 Dominant strategy

We saw that the concept of equilibrium refers to action profiles. In this section we intro-
duce the concept of dominant strategy, which is a characteristic related to a single action.

Dominance is a strong property, in that we will see that an action profile made by
dominant strategies is a Nash equilibrium but that the converse is not true, i.e., we can
have a Nash equilibrium that does not involve dominant strategies. We state in the fol-
lowing the definition of weak dominance.

Definition 1.11 (Weak dominance). Given two strategies, a∗i ,ai ∈ 	i , we say that a∗i
weakly dominates ai if it is at least as good as ai for all choices of the other players a−i ∈	−i ,

ui (a
∗
i ,a−i )≥ ui (ai ,a−i ) ∀a−i ∈	−i .

If the above inequality holds strictly, then we say that a∗i (strictly) dominates ai .

Example 1.12. In the Prisoner’s dilemma, illustrated in Fig. 1.8, strategy D is a dominant
strategy.

C D
C (3,3) (0,4)
D (4,0) (1,1)

Figure 1.8. D is a dominant strategy in the Prisoner’s dilemma.

We say that a strategy is (weakly) dominant if it (weakly) dominates all other strategies.
It turns out that a profile of dominant strategies is a Nash equilibrium. However, the
converse is not true.
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1.5. Cournot duopoly and iterated dominance algorithm 13

1(a2)

2(a1)

a1

a2

15 30

15

30

(10,10)

Figure 1.9. Best-response curves for the Cournot duopoly.

The property of dominance is used in the renowned iterated dominance algorithm.
The algorithm, at each iteration, eliminates subsets of dominated solutions. This can
be visualized in an exploration tree by “pruning” the corresponding node. This is a tech-
nique used in combinatorial optimization. Here the search for the optimum is graphically
represented by an exploration tree. The nodes describe families of solutions. If, based on
estimates, a family does not contain the optimum, the corresponding node is pruned. The
iterated dominance algorithm builds on the property that an undominated strategy sur-
vives to the algorithm pruning. We illustrate this in the context of the Cournot duopoly.

1.5 Cournot duopoly and iterated dominance algorithm
Two manufacturers i = 1,2 compete on a same market and must decide their production
quantities. The production quantity of manufacturer i is qi . From the law of demand,
the sale price of manufacturer i decreases with the total production quantity (q1+ q2). In
particular, for the sale price we take the expression

ci = 30− (q1+ q2).

As a consequence, the income (payoff) of manufacturer i obtained by selling the produced
quantity qi at the price ci is given by

ui (qi , qj ) = ci qi = 30qi − q2
i − qi qj .

As the payoff is concave in qi , the maximum is obtained by imposing the derivative of the
payoff with respect qi equal to zero, namely, ∂ ui

qi
= 0. This yields the best-response curve

of player i :
q∗i =�i (qj ) = 15− qj /2.

The Nash equilibrium is at the intersection between the best-response curves of both
manufacturers, which is point (10,10) (see Fig. 1.9).

1.5.1 Iterated dominance algorithm

We apply the iterated dominance algorithm to a normalized version of the Cournot duop-
oly model to find the Nash equilibrium. The first two steps of the algorithm are illustrated
in Fig. 1.10. Every iteration involves one round of elimination of dominated strategies.
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14 Chapter 1. Introduction to Games

1(a2)

2(a1)

1
2

1
4

1(a2)

2(a1)

1
2

1
4

1
2

1
4

Figure 1.10. The iterated dominance algorithm illustrated on the Cournot duopoly.
Reprinted with permission from Asuman Ozdaglar and Morgan and Claypool [197, 178].

Let S j
i be the set of actions of player i that have survived to the elimination rounds up to

iteration j . Then, the first round of elimination returns S1
1 = [0, 1

2 ], S1
2 = [0, 1

2 ] (left). To
see this, consider that any production rate greater than 1

2 is a dominated action for player 1
as �1(a2) lives in the range [0, 1

2]. The same reasoning applies to player 2 as the game
is symmetric. As a consequence, the equilibrium must be searched in the new domain
[0, 1

2] for both players (dotted square on the left plot). In a second round of elimination,
we obtain S2

1 = [
1
4 , 1

2 ], S2
2 = [

1
4 , 1

2 ] (right). Actually, after restricting the best responses to
the dotted square (left), every player knows that his best response lives in the range [ 1

4 , 1
2 ].

In other words any production rate less than 1
4 is a dominated strategy. Thus the search

concentrates to the new domain [ 1
4 , 1

2 ] for both players. This corresponds to the square
(solid line) on the right plot. By replicating the same iterative procedure, the algorithm is
shown to converge to the Nash equilibrium.

1.6 Stylized strategic models
In the last part of this chapter, we present some stereotypical models of strategic games,
such as the Battle of the Sexes, the Coordination or Typewriter game, the Hawk and Dove
or Chicken game, and the Stag-Hunt game.

Example 1.13 (Battle of the Sexes). The game is described by the bimatrix in Fig. 1.11.
A couple decides to meet in the evening to go shopping (this action is indicated by S) or to
attend a cricket match (this action is indicated by C ). Preferences are different for the two
players. The column player prefers to go to the cricket game, while the row player prefers
to go shopping. However, both prefer to go to the same place, rather than to split and
to go to different places. Here, the payoffs represent a measure of the “happiness” of the
two players. In a first scenario, both go shopping, i.e., (S, S), which implies that the row
player has a payoff equal to 2 while the column player has a payoff equal to 1. In a second
scenario, both go to the cricket game, in which case the payoffs of the two players swap,
namely 2 for the column player and 1 for the row player. In the other two scenarios, the
players go to different places and both payoffs are 0. The action profiles (S, S) and (C ,C )
are both Nash equilibrium solutions. There exist no dominant strategies.
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1.6. Stylized strategic models 15

S C
S (2,1) (0,0)
C (0,0) (1,2)

Figure 1.11. Battle of the Sexes: (S, S) and (C , D) are Nash equilibrium solutions; there are
no dominant strategies.

Example 1.14 (Coordination or Typewriter game). This game is usually presented as a
stylized model for the diffusion of innovation. The game is described by the bimatrix
in Fig. 1.12. It provides insights on when it is convenient to adopt a new technology.
The game involves a couple who agrees to meet in the evening to go to a Mozart or a
Mahler concert. Both players have a small preference for Mozart, and if they both se-
lect (M ozar t , M ozar t ), then the payoffs of both players (think of the payoff as the level
of happiness) are 2. The payoffs are a bit lower, say 1, if both players go to a Mahler
concert, i.e., (Mah l e r, Mah l e r ). The other two scenarios are about going to two dif-
ferent concerts, which returns payoffs equal to 0 to both players. The action profiles
(M ozar t , M oza r t ) and (Mah l e r, Mah l e r ) are both Nash equilibrium solutions. There
exist no dominant strategies.

M ozar t Mah l e r
M ozar t (2,2) (0,0)
Mah l e r (0,0) (1,1)

Figure 1.12. Coordination game: (M oza r t , M oza r t ) and (M ah l e r, M ah l e r ) are Nash
equilibrium solutions; there are no dominant strategies.

Example 1.15 (Hawk and Dove or Chicken game). This game builds on the idea that
while each player prefers not to give in to the other, the worst possible outcome occurs
when both players do not yield. The game describes a situation where two drivers drive
towards each other and the one who swerves at the last moment is the “chicken,” as he
lacks courage. The same game is also known as Hawk and Dove game. Here the game de-
scribes a scenario where two contestants may choose between a nonaggressive or aggres-
sive behavior. The game was used during the Cold War to analyze the strategic scenario on
the occasion of the Cuban Missile Crisis. The game is particularly meaningful if the cost
of fighting exceeds the prize of victory, i.e., C > V > 0. The model is described by the
bimatrix in Fig. 1.13. In a first scenario, both players opt for a nonaggressive behavior and
share the prey. This corresponds to the outcome (Dove , Dove), and each player’s payoff
is half of the prize of victory, V /2. In a second scenario, both players behave aggressively
and end up fighting, which corresponds to the outcome (Hawk , Hawk). In this case each
player will pay a cost equal to half of the prize of victory subtracted to the cost of fighting.
The other two scenarios are about one player yielding and the other player getting the en-
tire prey. This is described by the outcomes (Hawk , Dove) and (Dove , Hawk). The
winner gets the prize of victory, which is V , while the loser is left with zero reward. For
this game, we have two Nash equilibrium solutions, (Hawk , Dove) and (Dove , Hawk).
There exist no dominant strategies.

Example 1.16 (Stag-Hunt game). This game is used to analyze and predict social coop-
eration. The model illustrates situations where two individuals can go out on a hunt and
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16 Chapter 1. Introduction to Games

Hawk Dove

Hawk V−C
2 , V−C

2 (V , 0)

Dove (0,V ) V
2 , V

2

Figure 1.13. Hawk and Dove or Chicken game: (Dove , H awk) and (H awk, Dove) are
Nash equilibrium solutions; there are no dominant strategies.

collaborate or not collaborate. Both hunters must decide whether to hunt a stag or a hare,
but without knowing a priori what the other hunter has decided. Here the challenging
aspect is that hunting a stag alone is not possible. The model is described by the bimatrix
in Fig. 1.14. Thus, a first scenario contemplates both players cooperating and going for a
stag, which yields the outcome (St a g , St a g ). In this case both players share the large prey
and each payoff is 3

2 . In a second scenario, both players hunt a hare, which corresponds
to the outcome (Har e , Har e). The payoff is lower for both players, say equal to 1. The
other two scenarios consider both players going for different preys, that is, (St a g , Har e)
or (Har e , St a g ). Then, the hunter who goes for the smaller prey (the hare) gets the en-
tire prey for himself, while the other hunter is left with nothing, as he cannot get a stag
by himself. For this game (St a g , Har e) and (Har e , St a g ) are two Nash equilibrium
solutions. There are no dominant strategies.

St a g Har e

St a g 3
2 , 3

2 (0,1)

Har e (1,0) 1,1

Figure 1.14. Stag-Hunt game: (S t a g , H a r e) and (H a r e , St a g ) are Nash equilibrium so-
lutions; there are no dominant strategies.

1.7 Notes and references
Game theory has its origins in the book by the mathematician von Neumann and the
economist Morgenstern [248]. The book develops ideas already available in [247]. Quot-
ing from [15], Morgenstern was the first economist clearly and explicitly to recognize that
economic agents must take the interactive nature of economics into account when making
their decisions. He and von Neumann met at Princeton in the late Thirties, and started the
collaboration that culminated in the Theory of Games.

Precursors are the French philosopher and mathematician Cournot, who first intro-
duced the duopoly model in 1838, and the German economist von Stackelberg, who for-
mulated the equilibrium concept named after him in 1934 [249].

There are different formal definitions of game theory in the literature. Maschler,
Solan, and Zamir define game theory as a methodology using mathematical tools to model
and analyze situations involving several decision makers (DMs), called players [173]. Os-
borne and Rubinstein say that game theory is a bag of analytical tools designed to help us
understand the phenomena that we observe when DMs interact (DMs are rational and reason
strategically) [196]. Here, by (individual) rationality and strategic reasoning one means
that every DM is aware of his alternatives, forms expectations about any unknowns, has
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1.7. Notes and references 17

clear preferences, and chooses his action deliberately after some process of optimization [196].
Tijs in his book introduces game theory as a mathematical theory dealing with models of
conflict and cooperation [239].

In the introductory paragraph we pointed out that game theory has connections with
team theory, which considers multiple DMs with a common payoff. Seminal papers on
team theory are [118, 172]. Team theory with binary decisions is studied in [38].

In Section 1.2 we discuss applications. Field and board games are discussed in [54].
Algorithmic game theory is the main topic in [190]. More details on the use of game
theory in commercial and business operations are available in [195, 101]. Game theory
applied to politics is examined in [182]. Game-theoretic approaches to military and civil
defense are presented in [106]. For engineering applications, robotics, and multi-agent
systems, we refer the reader to [222]. A survey on game theory and distributed control
is provided in [170]. Games and networks are the main focus of [86, 209].

The Prisoner’s dilemma was developed by Flood and Dresher of the RAND Corpora-
tion in 1950. The interpretation in terms of prison sentence and the corresponding name
is due to Tucker.

A detailed analysis of cooperative game theory applied to communication networks
is in [209].

The original works by John Nash where the Nash equilibrium was first formulated
are [183, 184]. The example in Fig. 1.2 and Example 1.5 are borrowed from [239]. The
definition of ε-Nash equilibrium is adapted from [23, Chap. 4.2]. Kakutani’s theorem is
a generalization of the Brouwer fixed point theorem, for which several proofs exist, one
of the most elementary ones being given in [141]. Fig. 1.6 on Kakutani’s theorem is cour-
tesy of Ozdaglar, slides of the course 6.254 Game Theory with Engineering Applications,
MIT OpenCourseWare (2010). The equilibrium point theorem by Nash is a landmark in
the literature of game theory, and we refer the reader to the original work [183]. The
Indifference Principle is discussed in [196, Lemma 33.2]. Example 1.10 and Fig. 1.7 are
courtesy of Alberto Bressan, Noncooperative Differential Games: A Tutorial (2010) [65].

The iterated dominance algorithm illustrated on the Cournot duopoly in Fig. 1.10 is
courtesy of Ozdaglar, slides of the course 6.254 Game Theory with Engineering Appli-
cations, MIT OpenCourseWare (2010).
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Chapter 2

Two-Person Zero-Sum
Games

2.1 Introduction
After the general introduction to noncooperative games provided in the previous chapter,
we now turn to a special class of such games: two-person zero-sum games. Two-person
zero-sum games constitute the purest form of noncooperative games, by this meaning
that there is no margin for cooperation between the players. The essence of such games
is contained in the Latin expression

“Mors tua vita mea.”

In brief, an improvement for one player always comes at a cost for the other player. If one
player wins 1 dollar, the other loses 1 dollar and vice versa. These games are also called
minimax games.

The relevance of two-person zero-sum games derives from the tractability of the exis-
tence conditions of Nash equilibrium solutions, now assuming the form of saddle-points.
Furthermore, in case of multiple saddle-points, they are proven to be interchangeable and
to have equal payoffs. These two properties are known as (i) interchangeability property
and (ii) equal payoff property. It is in the context of two-person zero-sum games that we
have the fundamental result known as the minimax theorem. The theorem uses the no-
tion of a mixed extension of a two-person zero-sum game. Mixed extension means that the
players play mixed strategies (cf. Definition 1.7); namely, they choose probabilities over
their action spaces and randomize their actions based on such probabilities.

In Section 2.2 we formulate two-person zero-sum games as matrix games. Section 2.3
is the core of this chapter. Here we introduce the minimax theorem. Before doing this,
we survey notions like conservative strategies and saddle-points and establish existence con-
ditions. Also, we state the aforementioned properties of interchangeability equal payoff
and introduce the notion of mixed strategy. In Section 2.4 we discuss links with robust
control and in particular with H∞-optimal control. Section 2.5 offers a few examples.
Finally, Section 2.6 provides some concluding remarks and references for this chapter.

2.2 Formalization as matrix games
Two-person zero-sum games can be formulated as matrix games. In this section we show
that this is possible due to the special structure of the payoffs.

19
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20 Chapter 2. Two-Person Zero-Sum Games

In two-person zero-sum games the sum of the payoffs resulting from any action profile
is always zero, namely

u1(a1,a2) =−u2(a1,a2) ∀ (a1,a2) ∈	1×	2,

where (a1,a2) is the action profile and	1 and	2 are the sets of actions of players 1 and
2, respectively. As one payoff is the opposite of the other payoff, we can simply use a
matrix rather than a bimatrix, and we can call such games matrix games. Conventionally,
we assume that the scalar entry represents the payoff u2 that player 2 wishes to maximize
and player 1 wishes to minimize. Note that when player 1 tries to maximize u1, he is
indeed trying to minimize u2.

(1,−1) (3,−3) . . . A1n
(5,−5) A22 . . . A2n

...
...

. . .
...

Am1 Am2 . . . Amn

P1 (max)
min

P2 (max)

Figure 2.1. Two-person zero-sum game: matrix game representation.

Let us denote by A the matrix of the game, and let Ai j be its i j th entry. Entry Ai j

is the payoff corresponding to player 1 playing the ith row and player 2 playing the j th
column. Based on what we have said, the row player, call him P1, is the minimizer, and the
column player, call him P2, is the maximizer. The whole procedure to turn the bimatrix
into a matrix is illustrated in Fig. 2.1 for a two-person zero-sum game where P1 has m
actions and P2 has n actions. The game is then represented by an (m× n)-matrix.

2.3 From conservative strategies to saddle-points
Because of the special structure of the payoffs, in two-person zero-sum games the Nash
equilibrium solutions take the form of saddle-points. Keeping in mind the matrix game
formulation mentioned earlier, we now introduce conservative strategies and build on
them existence conditions of saddle-points. Before doing this, observe that any best op-
ponent’s response yields the worst own payoff. Thus a conservative strategy is obtained
by considering the best among the possible worst-case scenarios. This reasoning implies
the resolution of a minimax problem for the minimizer and of a maximin problem for the
maximizer. This leads to the characterization of conservative strategies (i∗, j ∗) as follows:�

J (A) :=mini max j ai j (loss ceiling),
J (A) :=max j mini ai j (gain floor).

(2.1)

The loss ceiling J (A)—which is a different way of calling the upper bound—is obtained
by maximizing over the columns thus obtaining the worst payoffs for every choice of
player 1, and then taking the minimum over the rows (best worst payoff). This returns
the conservative strategy i∗ for player 1. Similarly, the gain floor J (A)—which is a different
way of calling the upper bound—is obtained by minimizing over the rows and then taking
the maximum over the columns. This returns the conservative strategy j ∗ for player 2.

The following existence result for saddle-points applies to the case when both players
play pure strategies. That the players play pure strategies means that the players’ actions
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2.3. From conservative strategies to saddle-points 21

are in general discrete, as illustrated in the two examples provided below the theorem. Let
us first state the result.

Theorem 2.1. A saddle-point exists if the gain floor is equal to the loss ceiling, i.e.,

J (A) = ai∗ j ∗ = J (A). (2.2)

Furthermore, if a saddle-point exists, this corresponds to both players playing conservative,
and the equilibrium payoff is then ai∗ j ∗ .

Example 2.2. Fig. 2.2 depicts a matrix game for which no saddle-point exists. Indeed, the
loss ceiling J (A) = 2 and the gain floor J (A) = −1, and therefore the existence condition
(2.2) is violated. To see this more in detail, consider all of player 1’s actions and the cor-
responding best responses of player 2. In the example, P1 can go Top, Center, or Bottom.
His strategy or action set is denoted by A1 = {T ,C ,B}. The actions available to P2 are
Left, Middle, or Right, and the corresponding set of actions is denoted by A2 = {L, M , R}.

L M R
T −2 −1 4

C 2 0 2

B 4 −1 −2

P1 (min) J (A)

P2 (max)
J (A)

Figure 2.2. Loss ceiling and gain floor; this game has no saddle-point.

Now, to understand the procedure that leads to the conservative strategy for P1, the
minimizer, let us consider the following scenarios:

• If P1 plays T (1st row), P2 responds R (3rd column), which yields the payoff a13 = 4
(light gray cell in 1st row).

• Differently, if P1 plays C (2nd row), then P2 responds either L or R (1st or 3rd
column), which yields the payoff a21 = a23 = 2 (light gray cell in 2nd row). Note
that P2 can play equivalently L or R, as the payoffs in the two cases are equal.

• Finally, if P1 plays B (3rd row), then P2 responds L (1st column), which produces
the payoff a31 = 4 (light gray cell in 3rd row).

After comparing the three different scenarios and corresponding payoffs, P1 selects C
(2nd row), which returns the minimum payoff (both a21 or a23 are less than a13 and a31).
We can conclude that the conservative strategy of player 1 is i∗ = 2 (2nd row). Conse-
quently, the gain floor is J (A) = 2. To understand that this represents an upper bound,
note that if P1 plays conservatively, then the payoff cannot exceed such a value for any
choice of P2 (fix the 2nd row, and compare the payoffs over the columns). Furthermore,
note that the whole procedure is exactly described by the minimax expression delineated
in the first line of (2.1).

By reiterating the procedure for P2, we get that the conservative strategy for him is
j ∗ = 2 (2nd column) and the gain floor is J (A) =−1. It is clear that this is a lower bound,
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22 Chapter 2. Two-Person Zero-Sum Games

as if P2 plays conservatively, then the payoff can never be lower than such a value whatever
P1 picks (fix the 2nd column, and span across the rows). In conclusion, the payoff corre-
sponding to both players playing conservative strategies is ai∗ j ∗ = a22 = 0. From condition
(2.2) in Theorem 2.1, the analysis culminates in the result that (i∗, j ∗) is not a saddle-point
as the loss ceiling and the gain floor are different. More generally, no saddle-point exists
for this game.

Example 2.3. This second example shows a matrix game for which a saddle-point exists;
see Fig. 2.3. Briefly, for any choice of P1 (any row), P2 reacts by playing M (2nd column);
see the light gray cells in each row. In other words, M is a dominant action for P2. As a
consequence, the conservative strategy of P1 is i∗ = 2 and the gain floor is J (A) = 10. Let
us now consider the game from the perspective of P2.

• If P2 plays L (1st column), then P1 responds T (1st row), which yields the payoff
a11 =−40 (dark gray cell in 1st column).

• Differently, if P2 plays M (2nd column), then P1 responds C (2nd row), which yields
the payoff a22 = 10 (dark gray cell in 2nd column).

• Finally, if P2 plays R (3rd column), then P1 responds B (3rd row), which yields the
payoff a33 =−2 (dark gray cell in 3rd column).

L M R
T −40 20 8

C 5 10 4

B 4 30 −2

P1 (min)

J (A)

P2 (max)
J (A)

Figure 2.3. Loss ceiling and gain floor; this game admits a saddle-point.

After comparing the three scenarios and the corresponding payoffs, P2 selects M (2nd
row), which returns the maximum payoff a22 (both a11 or a33 are less than a22). Thus
the conservative strategy of P2 is j ∗ = 2 (2nd column) and the gain floor is J (A) = 10.
Therefore the payoff obtained when both players play conservatively is ai∗ j ∗ = a22 = 0.
As loss ceiling and gain floor coincide, one can see that condition (2.2) in Theorem 2.1 is
satisfied, and therefore (i∗, j ∗) = (2,2) is a saddle-point and ai∗ j ∗ = a22 is an equilibrium
payoff. Observe that a22 is the maximum over the columns and the minimum over the
rows, i.e.,

a22 ≥ a21,a23, a22 ≤ a12,a32.

For a general two-person zero-sum game, there may exist multiple saddle-points. How-
ever, such points satisfy the following two properties.

Given two saddle-points (i , j ) and (k , l ) we have that

• (interchangebility) (i , l ) and (k , j ) are also saddle-points;

• (equal payoff ) ai j = ak l = ai l = ak j .
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2.4. From two-person zero-sum games to H∞-optimal control 23

As anticipated in the introduction of this chapter, the first breakthrough in the theory of
games is the minimax theorem, which reads as follows.

Theorem 2.4 (Minimax theorem). Each matrix game has a saddle-point in the mixed
strategies.

We will see in the next chapter that the computation of saddle-points involves solv-
ing linear programs (see also [239, Chap. 6]). We conclude this chapter with a classical
application of zero-sum games to robust H∞-optimal control borrowed from [22].

2.4 From two-person zero-sum games to H∞-optimal control
This section follows [22] and provides fundamental insights on the relation between two-
person zero-sum games and H∞-optimal control. The latter is the theory supporting
the design of controllers in the presence of worst-case uncertainty. The name H∞ de-
rives from the Hardy space, which is the space of the operator whose ∞-norm has to be
minimized. This operator is the transfer function from the disturbance to the controlled
output. The classical setup of an H∞-optimal control problem is as follows. Let the block
diagram in Fig. 2.4 be given. Block G is the plant, and K is a feedback controller. Let us de-
note by u the controlled input (control in short), by w the uncontrolled disturbance (think
of it as an exogenous input), by y the measured output, and by z the controlled output
(this is the variable that we wish to keep as small as possible independently of the effects
of the disturbance). All variables live in measurable Hilbert spaces �u ,�w ,�z ,�y . A
mathematical representation of the dynamics of the system is given by

⎧⎨
⎩

z =G11(w)+G12(u),
y =G21(w)+G22(u),
u =K(y).

(2.3)

The operators Gi j and the controller K ∈ � are assumed to be bounded, causal, and
linear. Here we denote by� the controller space. That an operator is causal means that
all subsystems are nonanticipative, i.e., that the output cannot depend on future inputs; it
can rely only on past and current inputs. An operator is bounded if bounded inputs imply
bounded outputs. Finally, an operator is linear if we can apply the superimposition of the
effects.

G
w z

K

u y

Figure 2.4. Block diagram of plant and feedback controller. Reprinted with permission from
Springer Science+Business Media [22].
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24 Chapter 2. Two-Person Zero-Sum Games

In plain words, the main goal in H∞-optimal control is to design the controller so that
the closed-loop system may absorb the energy injected by the disturbance, thus avoiding
that this energy is transmitted to the controlled output. In other words, we wish that the
controlled plant will be able to attenuate the effects of the disturbance. This property is
referred to as disturbance attenuation. Such a problem is known to be describable in terms
of a two-person zero-sum game between the controller and the disturbance. To see this,
for every fixed K ∈� , let us introduce bounded causal linear operators TK :�w →�z :

TK (w) =G11(w)+G12(I −KG22)
−1(KG21)(w).

Let us concentrate on the worst-case infimum of the operator norm given by	
infK∈� 〈〈TK 〉〉=: γ ∗,
〈〈TK 〉〉= supw∈�w

‖TK (w)‖z‖w‖w
. (2.4)

Then the problem turns into the following two-person zero-sum game, where player 1
(the minimizer) is the controller and player 2 (the maximizer) is the uncontrolled distur-
bance. The game takes the form

upper bound︷ ︸︸ ︷
inf

K∈� sup
w∈�w

‖TK (w)‖z

‖w‖w
≥

lower bound︷ ︸︸ ︷
sup

w∈�w

inf
K∈�

‖TK (w)‖z

‖w‖w
.

It can be shown that the above game can be rewritten using a so-called soft-constrained
representation as follows. Let us denote by γ ∗ the attenuation level, for which it holds
that

inf
K∈� sup

w∈�w

‖TK (w)‖2
z − γ ∗2‖w‖2

w ≤ 0.

Let us introduce the parameter γ ≥ 0 and consider the parametrized cost

Jγ (K , w) := ‖TK (w)‖2
z − γ 2‖w‖2

w .

The soft-constrained game turns into finding the smallest value of γ ≥ 0 under which the
upper value is bounded by zero. H∞-optimal control formulations will be used exten-
sively in the chapter on mean-field games and in a few applications mentioned in Part II
of this book.

2.5 Examples of two-person zero-sum games
We conclude the chapter with a series of examples. For each of them we compute the
loss ceiling J (A), the gain floor J (A), and the saddle-points (i∗, j ∗) in pure strategies if any
exist.

Example 2.5. This example shows a game that has no saddle-point. This is due to the fact
that the existence condition in Theorem 2.1 is not verified.

Consider the matrix game

P2

P1

L R
T 6 0
B −3 3
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2.5. Examples of two-person zero-sum games 25

To see why the existence condition fails, note that if P1 plays T (top), then P2 responds L
(left), and the resulting payoff is 6. Conversely, if P1 plays B (bottom), then P2 responds
R (right), and the resulting payoff is 3. Comparing the two scenarios, the conservative
strategy of P1 is B , and the loss ceiling is J (A) = a22 = 3.

For P2 we have that if he plays L, then P1 responds B . Alternatively, if he plays R,
then P1 responds T . Then, after comparison of the two payoffs, the conservative strategy
of P2 is R and the gain floor is J (A) = a12 = 0. By noting that the loss ceiling and gain
floor are different, we can conclude that there exists no saddle-point for this game.

Example 2.6. As a second example, we consider a game for which the existence condition
in Theorem 2.1 is verified. In particular, we will see that (B , R) is a saddle-point.

Consider the matrix game

P2

P1

L R
T −3 8
B 4 4

Let us start by observing that if P1 plays T (top), then P2 responds R (right) and the payoff
is 8. Alternatively, if P1 plays B (bottom), then P2 responds equivalently L (left) or R (right)
and the resulting payoff is 4. After comparison of the two payoffs, the conservative choice
of P1 is B , and therefore the loss ceiling is J (A) = a21 = a22 = 4.

Repeating the analysis for P2 we obtain that if he plays L, then P1 responds T , whereas
if he plays R, then P1 responds B . The conservative strategy of P2 is then R and the gain
floor is J (A) = a22 = 4. Note that here P2 can indifferently deviate unilaterally from R to
L. The loss ceiling being equal to the gain floor, the existence condition is satisfied and
the game has a saddle-point, which is (B , R).

Example 2.7. We show next a third example for which there is no saddle-point, as the
existence condition in Theorem 2.1 is not verified.

Consider the matrix game

P2

P1

L R
T −6 7
B 2 1

Actually, if P1 plays T (top), then P2 plays R (right) and the payoff is 7. Conversely, if P1
plays B (bottom), then P2 plays L (left) and the payoff is 2. The conservative strategy of
P1 is B , and the loss ceiling is J (A) = a21 = 2. Reiterating the analysis for P2 we obtain
that if he plays L, then P1 plays T , whereas if he plays R, then P1 plays B . By comparing
the two payoffs, the conservative strategy of P2 is R and the gain floor is J (A) = a22 = 1.
The loss ceiling and the gain floor are different, and therefore the game has no saddle-
point.

Example 2.8. This fourth and last example deals with a game for which the existence
condition in Theorem 2.1 is matched and (B , R) is a saddle-point.
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26 Chapter 2. Two-Person Zero-Sum Games

Consider the matrix game

P2

P1

L R
T −3 8
B 2 4

To see this, note that if P1 plays T (top), then P2 responds R (right) and the payoff is 8.
Differently, if P1 plays B (bottom), then P2 responds again R and the payoff is 4. Note
that R is a dominant strategy for P2. As a consequence, the conservative strategy of P1 is
B and the corresponding loss ceiling is J (A) = a22 = 4.

Replicating the analysis for P2 we get that if he plays L (left), then P1 plays T . Con-
versely, if he plays R, then P1 plays B . As a result, the conservative strategy of P2 is R and
the gain floor is J (A) = a22 = 4. As the loss ceiling and the gain floor coincide, there exists
a saddle-point, which is (B , R).

2.6 Notes and references
Two-person zero-sum games occupy an important place in the history and literature of
game theory. Indeed, a primary breakthrough in the theory of games is the minimax
theorem by von Neumann (1928) [247, 248]. In this chapter, we simply state the theorem
and refer the reader to the original work [248] for the proof.

Section 2.3 grew out of my notes taken during a short course on game theory given
by Debasish Ghose at the University of California, Los Angeles in 2002. Section 2.4 is
strongly based on the introductory chapter of [22].
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Chapter 3

Computation of
Saddle-Points and Nash
Equilibrium Solutions

3.1 Introduction
In this chapter, we deal with the computation of saddle-points and Nash equilibrium so-
lutions. In preparation for the general formulation of these mathematical optimization
problems, we mention some examples that can be solved graphically.

In Section 3.2, we illustrate the computation approach on a simple example. In Sec-
tion 3.3, we formulate the problem of computing saddle-points via linear programming.
Computing Nash equilibrium solutions requires solving linear complementarity program-
ming problems, and this is discussed in Section 3.4. Section 3.5 provides notes and refer-
ences for this chapter.

3.2 Graphical resolution: An example
Let us consider the following two-person zero-sum game, for which we wish to compute
the saddle-point in mixed strategies:

P2

P1

L R
T 6 0
B −3 3

P1 can play T (top) or B (bottom). P2 can play L (left) or R (right). Thus, the mixed
strategies for both players is a probability distribution over a discrete set of two actions.
In particular, for P1 the mixed strategy is

yT = [y1 y2] ∈ Y, where Y =
	

y ∈�2 :
2∑

i=1

yi = 1, yi ≥ 0,∀i = 1,2

�
.

Similarly, the mixed strategy of P2 is

zT = [z1 z2] ∈ Z , where Z =

�
z ∈�2 :

2∑
j=1

zj = 1, zj ≥ 0,∀ j = 1,2

�
.

The mean payoff corresponding to P1 playing y and P2 playing z is given by

Jm(A) =
∑

i

∑
j

ai j yi z j = yT Az.

27
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28 Chapter 3. Computation of Saddle-Points and Nash Equilibrium Solutions

The expression is a weighted sum of each payoff ai j multiplied by the probabilities that
P1 plays the ith row and P2 the j th column.

3.2.1 Conservative strategy of P1 via minimax

To compute the conservative strategy of P1, the first step is to consider the two pure
actions of the opponent separately. This yields the following two possible mean payoffs,
one obtained when P2 plays the 1st column, namely z1 = 1, and the other when P2 plays
the 2nd column, namely z2 = 1:�

Jm(A) = yT Az = 6y1− 3y2, z1 = 1,
Jm(A) = yT Az = 0y1+ 3y2, z2 = 1.

(3.1)

Note that the above payoffs depend only on y, as we have fixed z. This is clear in Fig. 3.1,
which plots the mean payoff as a function of the mixed strategy of P1 for the two cases of
P2 playing the 1st column (z1 = 1) or 2nd column (z2 = 1).

In order to identify the worst-case scenario for P1, let us consider that the worst pay-
off for P1 (the minimizer) is given by the point-wise maximum, whose expression is as
follows:

max
z

yT Az =max
z1,z2

z1(6y1− 3y2)+ z2(0y1+ 3y2).

The above expression corresponds to the line drawn in boldface. After comparing the
worst payoffs we select the best worst case, which is obtained for

y∗ = argmin
y

max
z

yT Az, y∗T
= [0.5 0.5].

Actually, the above point identifies the minimum of the line drawn in boldface. In other
words this is the minimum of the point-wise maximum plot. It is now clear that to find
the conservative strategy y∗ of P1 (the minimizer) we need to solve a minimax problem.
In the next section we replicate the same analysis for P2 (the maximizer) in order to find
his conservative strategy. This will involve the formulation and solution of a maximin
optimization problem.

5.00 1

0

−3

3

6

1.5

y2

Jm(A)

Figure 3.1. Graphical resolution for P1: average payoff Jm(A) (vertical axis) as a function of
y2 (horizontal axis).
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3.2. Graphical resolution: An example 29

3.2.2 Conservative strategy of P2 via maximin

In order to calculate the conservative strategy of P2, let us start by fixing the strategy for
P1 to one of the two alternative pure actions. Then, we have two possible values for the
mean payoff as follows:�

Jm(A) = yT Az = 6z1+ 0z2, y1 = 1,
Jm(A) = yT Az =−3z1+ 3z2, y2 = 1.

(3.2)

Note that, once we fix y, the above expressions return a function of the only z. This is
illustrated in Fig. 3.2, which plots the mean payoff as a function of the mixed strategy of
P2 for the two cases of P1 playing the 1st row (y1 = 1) or the 2nd row (y2 = 1).

The worst payoff for P2, which is a maximizer, is given by the point-wise minimum
curve. This is the line emphasized in boldface and which is given by the expression

min
y

yT Az =min
y1,y2

y1(6z1+ 0z2)+ y2(−3z1+ 3z2).

We need to isolate the best among the worst cases, which corresponds to the maximum
of the boldface line:

z∗ = argmax
z

min
y

yT Az, z∗T
= [0.25 0.75].

From the procedure illustrated in this section, it should be clear that the computation of
the conservative strategy of the maximizer requires the solution of a maximin problem.

5.00 0.75 1

0

−3

3

6

1.5

z2

Jm(A)

Figure 3.2. Graphical resolution for P2: average payoff Jm(A) (vertical axis) as a function of
z2 (horizontal axis).

Example 3.1. This example presents a two-person zero-sum game possessing two inter-
esting characteristics. First, the conservative strategy for the minimizer is indeed a pure
strategy. This is not surprising, as we can always think of a pure strategy as a special case
of mixed strategy. Second, the conservative strategy for the maximizer admits infinite
solutions.

Let the following game be given:

P2

P1

L R
T −3 8
B 4 4
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30 Chapter 3. Computation of Saddle-Points and Nash Equilibrium Solutions

Let us compute the saddle-point strategies of both players. In particular, let us apply the
same procedure as in the previous example. For P1, we have the following two payoff
expressions related to P2 playing z1 = 1 or z2 = 1:�

Jm(A) = yT Az =−3y1+ 4y2, z1 = 1,
Jm(A) = yT Az = 8y1+ 4y2, z2 = 1.

(3.3)

It is worth noting that the above expressions are obtained for fixed z, and therefore
they express the payoff as a function of y. This is illustrated in Fig. 3.3, where we plot the
mean payoff as a function of the mixed strategy of P1 for the two cases of P2 playing the 1st
column (z1 = 1) or the 2nd column (z2 = 1). The worst payoffs for P1 (the minimizer) are
given by the point-wise maximum, which is emphasized in boldface and whose expression
is

max
z

yT Az =max
z1,z2

z1(−3y1+ 4y2)+ z2(8y1+ 4y2).

The point-wise maximum is the line drawn in boldface. The best payoff for P1 is the
minimum among the point-wise maximum solutions, which is obtained for

y∗ = argmin
y

max
z

yT Az, y∗T
= [0 1].

Thus, we have found the conservative strategy y∗ of P1 (the minimizer) by solving a min-
imax problem.

Note that the 2nd column is weak dominant for P2, from which we have that the
point-wise maximum corresponds to the case z2 = 1 (see the boldface line in Fig. 3.3) and
is monotonic decreasing. Also note that the intersection between the two lines capturing
the plot of the average payoff for z1 = 1 and z2 = 1 is at the extreme point y2 = 1 and that
this is also the minimum of the point-wise maximum plot.

Let us replicate the same analysis for P2 (the maximizer) and find his conservative
strategy. Depending on whether y1 = 1 or y2 = 1, we have the following values for the
mean payoff: �

Jm(A) = yT Az =−3z1+ 8z2, y1 = 1,
Jm(A) = yT Az = 4z1+ 4z2, y2 = 1.

(3.4)

Note that, once we fix y, the above expressions return a function of the only z. This is
illustrated in Fig. 3.4, which plots the mean payoff as a function of the mixed strategy of
P2 for the two cases of P1 playing the first row (y1 = 1) or the second row (y2 = 1).

Actually, the worst payoff for P2, which is a maximizer, is given by the point-wise
minimum curve. This is the line emphasized in boldface and which is given by the ex-
pression

min
y

yT Az =min
y1,y2

y1(−3z1+ 8z2)+ y2(4z1+ 4z2).

We need to isolate the best among the worst cases, which corresponds to the maximum
of the boldface line. Remarkably, the point-wise minimum returns infinite local maxima,
i.e., all the points in the segment from z2 = 0.65 to z2 = 1. Therefore we have an infinite
number of saddle-points. One saddle-point is, for instance,

z∗ = argmax
z

min
y

yT Az, z∗T
= [0.35 0.65].

Then, we have computed the conservative strategy for the maximizer via a maximin prob-
lem.
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3.2. Graphical resolution: An example 31

5.00 1

0

−3

4

8

y2

Jm(A)

Figure 3.3. Graphical resolution for P1: average payoff Jm(A) (vertical axis) as a function of
y2 (horizontal axis).

5.00 0.65 1

0

−3

4

8

z2

Jm(A)

Figure 3.4. Graphical resolution for P2: average payoff Jm(A) (vertical axis) as a function of
z2 (horizontal axis).

Example 3.2. This third example presents a two-person zero-sum game whose conserva-
tive strategies are pure strategies. As a consequence the saddle-point is in pure strategies
as well. We apply the same procedure illustrated at the beginning of this chapter. Let the
following matrix game be given:

P2

P1

L R
T −3 8
B 2 4

For this game we wish to find the saddle-point. To do this, let us start by computing the
conservative strategy for the minimizer P1. Depending on whether P2 plays z1 = 1 or
z2 = 1, we get two payoff expressions:�

Jm(A) = yT Az =−3y1+ 2y2, z1 = 1,
Jm(A) = yT Az = 8y1+ 4y2, z2 = 1.

(3.5)
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32 Chapter 3. Computation of Saddle-Points and Nash Equilibrium Solutions

The above expressions represent the payoff as a function of y and for fixed z. The corre-
sponding plot is available in Fig. 3.5, where the mean payoff is drawn as function of the
mixed strategy of P1 in the cases of P2 playing the left column (z1 = 1) or the right col-
umn (z2 = 1). The worst payoff for P1, which is the minimizer, is given by the point-wise
maximum, which we highlight in boldface. Such a point is obtained by solving

max
z

yT Az =max
z1,z2

z1(−3y1+ 2y2)+ z2(8y1+ 4y2).

Now, the best payoff for P1 is the minimum among the point-wise maximum solutions,
namely

y∗ = argmin
y

max
z

yT Az, y∗T
= [0 1].

This completes the minimax procedure leading to the conservative strategy y∗ for P1.
That the point-wise maximum corresponds to the case z2 = 1 depends on the fact that

the 2nd column is dominant for P2 (see the boldface line in Fig. 3.5), which is monotonic
decreasing. Also note that the intersection between the two lines falls outside the interval
[0,1] in the y2 axis.

By reiterating the same analysis for P2 (the maximizer) we can find his conservative
strategy. In particular, assuming first y1 = 1 and then y2 = 1, we have the following two
values for the mean payoff:

�
Jm(A) = yT Az =−3z1+ 8z2, y1 = 1,
Jm(A) = yT Az = 2z1+ 4z2, y2 = 1.

(3.6)

Fig. 3.6 plots the mean payoff as a function of the mixed strategy of P2 for the two cases
of P1 playing the top row (y1 = 1) or the down row (y2 = 1).

Observe that the worst payoff for P2, which is a maximizer, is given by the point-wise
minimum plot. This is the line emphasized in boldface, obtained by solving

min
y

yT Az =min
y1,y2

y1(−3z1+ 8z2)+ y2(2z1+ 4z2).

We need to isolate the best among the worst cases, which corresponds to the maximum
of the boldface line. The point-wise minimum returns a unique maximum for z2 = 1:

z∗ = argmax
z

min
y

yT Az, z∗T
= [0 1].

This concludes the search of the conservative strategy for the maximizer via a maximin
problem. The saddle-point is obtained when both players play conservatively.

So far, we have discussed the minimax and maximin procedures that lead to saddle-
points and have illustrated such procedures on simple examples that can be solved graph-
ically. In the next section we adapt the procedure to a more general example involving
a 3 × 4 matrix game. After doing this, we present a general formulation of the linear
program leading to the computation of saddle-points.
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3.3. Saddle-points via linear programming 33

5.00

2

1

0

−3

4

8

y2

Jm(A)

Figure 3.5. Graphical resolution for P1: average payoff Jm(A) (vertical axis) as a function of
y2 (horizontal axis).
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4

8

z2

Jm(A)

Figure 3.6. Graphical resolution for P2: average payoff Jm(A) (vertical axis) as a function of
z2 (horizontal axis).

3.3 Saddle-points via linear programming
Let the following two-player zero-sum game be given, where the minimizer P1 has three
strategies and the maximizer P2 has four strategies:

P2

P1

6 0 5 6
−3 3 −4 3
8 1 2 2

The mixed strategy for P1 is a probability distribution over a support set involving
three actions, namely yT = [y1 y2 y3] ∈Y , where

Y =
	

y ∈�3 :
3∑

i=1

yi = 1, yi ≥ 0,∀i = 1, . . . , 3

�
.
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34 Chapter 3. Computation of Saddle-Points and Nash Equilibrium Solutions

Analogously, the mixed strategy for P2 is a probability distribution over a support set
involving four strategies, i.e., zT = [z1 z2 z3 z4] ∈ Z , where

Z =

�
z ∈�4 :

4∑
j=1

zj = 1, zj ≥ 0,∀ j = 1, . . . , 4

�
.

Recall that in a saddle-point both players play conservative strategies, which yields the
following equivalence between the minimax and maximin payoffs:

Jm(A) =min
y∈Y

max
z∈Z

yT Az =max
z∈Z

min
y∈Y

yT Az.

Let us recall that the two payoffs must be equal as the duality gap in a linear program is
zero (see the strong duality property on p. 236, Chap. 6 of [117]).

3.3.1 Saddle-point computation via linear programming

Let us consider the following objective function for P1:

v1(y) =max
z∈Z

yT Az.

The above function represents the set of worst-case payoffs for P1 as a function of his
strategy y. To find the best payoff among the worst-case payoffs, P1 must solve the mini-
mization problem

min
y∈Y

v1(y).

From the maximization part, it must hold that

v1(y) =max
z∈Z

yT Az ≥ yT Az ∀z ∈ Z ,

which will constitute the constraints of the problem. Let us now transpose the above
inequality, and we get

zT AT y ≤ v1(y) =⇒ [z1 z2 z3 z4]

⎡
⎢⎢⎣

6y1− 3y2+ 8y3
0y1+ 3y2+ 1y3
5y1− 4y2+ 2y3
6y1+ 3y2+ 2y3

⎤
⎥⎥⎦≤ v1(y),

which must hold for every z ∈ Z . For the latter to be true it suffices that the above holds
in each vertex of Z . Thus, by setting one component of z equal to one and the rest equal
to zero, we obtain the following set of inequalities:⎡

⎢⎢⎣
6y1− 3y2+ 8y3
0y1+ 3y2+ 1y3
5y1− 4y2+ 2y3
6y1+ 3y2+ 2y3

⎤
⎥⎥⎦≤

⎡
⎢⎢⎣

v1(y)
v1(y)
v1(y)
v1(y)

⎤
⎥⎥⎦ .

Let us now normalize the variables with respect to v1(y) and take

ỹ =
1

v1(y)
y.
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3.4. Nash equilibrium via linear complementarity programming 35

We can do this, as we can suppose v1(y) > 0 without loss of generality. We can rewrite
the above set of inequalities by using ỹ rather than y, and we obtain⎡

⎢⎢⎣
6ỹ1− 3ỹ2+ 8ỹ3
0ỹ1+ 3ỹ2+ 1ỹ3
5ỹ1− 4ỹ2+ 2ỹ3
6ỹ1+ 3ỹ2+ 2ỹ3

⎤
⎥⎥⎦≤

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ .

From the constraint ỹ1 + ỹ2+ ỹ3 =
1

v1(y)
, which holds true as yi are probabilities, we

note that minimizing v1(y) is equivalent to maximizing ỹ1 + ỹ2 + ỹ3. Then, the latter
problem turns into the following linear programming problem:

max ỹ1+ ỹ2+ ỹ3⎡
⎢⎢⎣

6ỹ1− 3ỹ2+ 8ỹ3
0ỹ1+ 3ỹ2+ 1ỹ3
5ỹ1− 4ỹ2+ 2ỹ3
6ỹ1+ 3ỹ2+ 2ỹ3

⎤
⎥⎥⎦≤

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ ,

ỹ1 ≥ 0, ỹ2 ≥ 0, ỹ3 ≥ 0.

Analogously, by replicating the analysis for P2, we have the dual problem

min z̃1+ z̃2+ z̃3+ z̃4⎡
⎣ 6z̃1+ 0z̃2+ 5z̃3+ 6z̃4−3z̃1+ 3z̃2− 4z̃3+ 3z̃4

8z̃1+ 1z̃2+ 2z̃3+ 2z̃4

⎤
⎦≥

⎡
⎣ 1

1
1

⎤
⎦ ,

z̃1 ≥ 0, z̃2 ≥ 0, z̃3 ≥ 0, z̃4 ≥ 0.

In conclusion, the saddle-point computation involves the formulation and solution of
two linear programming problems of the form

max1T ỹ
(P1) AT ỹ ≤ 1,

ỹ ≥ 0.

min1T z̃
(P2) Az̃ ≥ 1,

z̃ ≥ 0.
(3.7)

This concludes the treatment on the computation of saddle-points for two-person zero-
sum games. In the next section we address the computation of Nash equilibrium solutions
via linear complementarity programming for nonzero-sum games.

3.4 Nash equilibrium via linear complementarity
programming

First, we elucidate the computation of Nash equilibrium solutions using three simple
examples introduced in Section 1.6. Then, we generalize the discussion and derive the
linear complementarity program in abstract terms.

3.4.1 The Indifference Principle illustrated on simple examples

The whole procedure to find Nash equilibrium solutions is based on the Indifference Prin-
ciple, which we have already mentioned below Theorem 1.9 in Chapter 1.
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36 Chapter 3. Computation of Saddle-Points and Nash Equilibrium Solutions

1(z2)

2(y2)

11
3

2
3

1
z2

y2

Figure 3.7. Best-response curves for the Battle of the Sexes.

Consider the Battle of the Sexes game, and let us compute the Nash equilibrium solu-
tions in mixed strategy. Recall that the game is described by the bimatrix

S C
S (2,1) (0,0)
C (0,0) (1,2)

To start with, let us also recall that the mixed Nash equilibrium lies at the intersection
of the best-response curves. Such curves are depicted in Fig. 3.7, where in the horizontal
axis we plot the action set of player 1 and in the vertical axis the one of player 2. Note
that the value on the horizontal axis is y2 (probability of 2nd row), while the value on the
vertical axis is z2 (probability of 2nd column). The two points (0,0) and (1,1) (circles) are
the Nash equilibrium solutions in pure strategies, (S, S) and (C ,C ), respectively. The best-
response curve of player 1�1(z2) is S (probability y2 = 0) for any probability z2 ∈ [0, 2

3 ]
and is C (probability y2 = 1) for any probability z2 ∈ ( 23 ,1] (see the solid curve). In
accordance with the Indifference Principle, when z2 =

2
3 , player 1 can indifferently play

S or C , as the payoff is 2
3 in both cases. Conversely, the best-response curve of player 2

�2(y2) is S (probability z2 = 0) for any probability y2 ∈ [0, 1
3 ] and is C (probability z2 = 1)

for any probability y2 ∈ ( 13 ,1] (see the dashed curve). In accordance with the Indifference
Principle, when y2 =

1
3 , player 2 can indifferently play S or C , as the payoff is 2

3 in both
cases. The action profile at the intersection between the two reaction curves is y∗ = [ 2

3 , 1
3 ]

and z∗ = [ 1
3 , 2

3 ]. Finally, note also that for player 1 playing the mixed strategy y∗ = [ 2
3 , 1

3 ]
or any action in the support, namely S or C , is indifferent if player 2 is playing the mixed
strategy z∗ = [ 1

3 , 2
3 ] (the payoff is 2

3 in all three cases).
More formally the Indifference Principle says that at a Nash equilibrium, playing mixed

or changing to any strategy in the support is equivalent, namely,

u1(S, z∗) = u1(C , z∗) = u1(y
∗, z∗),

where S and C are the two strategies in the support of y∗. We revisit now two examples
introduced in Section 1.6 before developing the linear complementarity program.
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3.4. Nash equilibrium via linear complementarity programming 37

2(y2)

1(z2)

11
3

1
3

1
z2

y2

Figure 3.8. Best-response curves for the Hawk and Dove game.

Example 3.3. In this first example we consider the Hawk and Dove or Chicken game:

Hawk Dove

Hawk
�

V−C
2 , V−C

2

�
(V,0)

Dove (0,V)
�

V
2 , V

2

�

For the sake of simplicity we set C = 6>V = 4> 0; then we have

Hawk Dove

Hawk
�
− 1,−1

�
(4,0)

Dove (0,4)
�
2,2
�

The best-response curves�1(z2) (solid) of P1 and�2(y2) (dashed) of P2 are displayed
in Fig. 3.8, where in the horizontal axis we plot the action set of player 1 and in the vertical
axis the one of player 2. Note that the value on the horizontal axis is y2 (probability of
2nd row), while the value on the vertical axis is z2 (probability of 2nd column). The
two points (0,1) and (1,0) (circles) are the Nash equilibrium solutions in pure strategies,
(Hawk , Dove) and (Dove , Hawk), respectively. The best-response curve of player 1
�1(z2) returns Hawk (probability y2 = 0) if the probability z2 ∈ ( 13 ,1] and yields Dove
(probability y2 = 1) for any probability z2 ∈ [0, 1

3 ] (see the solid curve). In accordance with
the Indifference Principle, when z2 =

1
3 , player 1 can indifferently play Hawk or Dove ,

as the payoff is 2
3 in both cases. Likewise, the best-response curve of player 2 �2(y2) is

Hawk (probability z2 = 0) for any probability y2 ∈ ( 13 ,1] and is Dove (probability z2 = 1)
for any probability y2 ∈ [0, 1

3 ] (see the dashed curve). In accordance with the Indifference
Principle, when y2 =

1
3 , then player 2 can indifferently play Hawk or Dove , as the payoff

is 2
3 in both cases. The action profile at the intersection between the two reaction curves

is y∗ = [ 2
3 , 1

3 ] and z∗ = [ 2
3 , 1

3 ].
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2(y2)

1(z2)

11
3

1
3

1
z2

y2

Figure 3.9. Best-response curves for the Stag-Hunt game.

Example 3.4. This example is about the Stag-Hunt game, which is described by the fol-
lowing bimatrix:

St a g Har e

St a g
�

3
2 , 3

2

�
(0,1)

Har e (1,0)
�
1,1
�

The best-response curves �1(z2) (solid) of P1 and�2(y2) (dashed) of P2 are displayed in
Fig. 3.9, where the horizontal axis is y2 (probability of 2nd row) and the vertical axis is z2
(probability of 2nd column). The two points (0,0) and (1,1) (circles) are the Nash equi-
librium solutions in pure strategies, (St a g , St a g ) and (Har e , Har e), respectively. The
best-response curve of player 1�1(z2) yields St a g (probability y2 = 0) if the probability
z2 ∈ [0, 1

3 ] and yields Har e (probability y2 = 1) for any probability z2 ∈ ( 13 ,1] (see the
solid curve). In accordance with the Indifference Principle, when z2 =

1
3 , player 1 can indif-

ferently play St a g or Har e , as the payoff is 1 in both cases. Likewise, the best-response
curve of player 2�2(y2) is St a g (probability z2 = 0) for any probability y2 ∈ [0, 1

3 ] and is
Har e (probability z2 = 1) for any probability y2 ∈ ( 13 ,1] (see the dashed curve). In accor-
dance with the Indifference Principle, when y2 =

1
3 , player 2 can indifferently play St a g

or Har e , as the payoff is 1 in both cases. The action profile at the intersection between
the two reaction curves is y∗ = [ 2

3 , 1
3 ] and z∗ = [ 2

3 , 1
3 ].

Next we extend our discussion to any bimatrix game and derive the linear comple-
mentarity program in its abstract form.

3.4.2 Linear complementarity programming

In this section we generalize the procedure illustrated in the previous section. To do this,
consider a bimatrix game (A,B) where player 1 has m strategies and player 2 has n strate-
gies. Here A∈�m×n is the matrix collecting the payoffs of player 1 and B ∈�m×n is the
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3.4. Nash equilibrium via linear complementarity programming 39

matrix involving the payoffs of player 2. For any Nash equilibrium (y∗, z∗), we have

y∗T
Az∗ ≥ yT Az∗ ∀y ⇒ y∗T

Az∗ ≥∑n
j=1 ai j z∗j ∀i = 1, . . . , m,

y∗T
B z∗ ≥ y∗T

B z ∀z ⇒ y∗T
B z∗ ≥∑m

i=1 bi j y
∗
i ∀ j = 1, . . . , n.

The inequalities on the left derive from both players being maximizers. Therefore, y∗
solves maxy yT Az∗ and z∗ solves maxz y∗T

B z. The inequalities on the right are obtained
by specializing the inequalities on the left in each vertex of the simplex for y (top) and
for z (bottom). In other words, the inequality y∗T

Az∗ ≥ yT Az∗∀y holds true if the same
inequality is satisfied in each vertex of the simplex in�m , namely for any y such that yi = 1
and yj = 0 for all j �= i (one component of y is one, and the other components are zeros).
Essentially, we are restricting the inequality to the pure strategies of player 1. We can
replicate the same reasoning for player 2 and rewrite the inequality y∗T

B z∗ ≥ y∗T
B z ∀z

only considering the pure strategies of player 2.
With the above inequalities in mind, from the Indifference Principle we have that for

any pure strategy in the support of y∗ and in the support of z∗, the corresponding payoff
must be equal to the one at the equilibrium. This corresponds to the conditions

y∗i > 0⇒
n∑

j=1

ai j z∗j = y∗T
Az∗; z∗j > 0⇒

m∑
i=1

bi j y
∗
i = y∗T

B z∗.

Now, let us normalize the strategies of both players and take uj =
z∗j

y∗T Az∗ and vi =
y∗i

y∗T B z∗ .

Then we have ⎧⎪⎪⎨
⎪⎪⎩
∑n

j=1 ai j u j ≤ 1 ∀i = 1, . . . , m,∑m
i=1 bi j vi ≤ 1 ∀ j = 1, . . . , n,

∀i vi > 0 ⇒ ∑n
j=1 ai j u j = 1,

∀ j u j > 0 ⇒ ∑m
i=1 bi j vi = 1.

(3.8)

To turn the inequalities into equalities, let us introduce the slack variables r ∈�m and
t ∈�n and rewrite the problem above as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Au + r = 1,
BT v + t = 1,
vT r = 0,
uT t = 0,
r ≥ 0, t ≥ 0,

or

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H︷ ︸︸ ︷�
0 A

BT 0

� x︷ ︸︸ ︷�
v
u

�
+

s︷ ︸︸ ︷�
r
t

�
= 1,�

vT uT
�� r

t

�
= 0,

�
r
t

�
≥ 0.

(3.9)

The above problem is a linear complementarity program because of the complementarity
relationships that either vi = 0 or ri = 0 (or both) for each i = 1,2, . . . , m and uj = 0 or
t j = 0 (or both) for each j = 1,2, . . . , n (see Section B.2.2 in the Appendix, Chapter B).
Finally, from setting s := [r T t T ]T ≥ 0, the above problem is equivalent to⎧⎨

⎩
1−H x ≥ 0,
xT (1−H x) = 0,
x ≥ 0.

A solution to the above problem can be obtained via the following quadratic bilinear
program: ⎧⎨

⎩
minx xT (1−H x)
1−H x ≥ 0,
x ≥ 0,

and this concludes our discussion on the computation of Nash equilibrium solutions.

D
ow

nl
oa

de
d 

05
/2

4/
16

 to
 1

31
.1

70
.6

.5
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

co
nt

ro
len

gin
ee

rs
.ir



40 Chapter 3. Computation of Saddle-Points and Nash Equilibrium Solutions

3.5 Notes and references
For a complete treatment of linear programming we refer the reader to [117, Chap. 3].
Duality theory is developed in [117, Chap. 6]. Linear complementarity programming is
examined in [117, Sect. 13.3, p. 670]. The computation approach for saddle-points and
Nash equilibrium solutions presented in this chapter is based on [239, Chaps. 6 and 7]
and on [23, Sects. 2.3 and 3.4]. Computation approaches are studied in algorithmic game
theory, for which we refer the reader to [190].
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Chapter 4

Refinement on Nash
Equilibrium Solutions,
Stackelberg Equilibrium,
and Pareto Optimality

4.1 Introduction
This chapter analyzes properties of Nash equilibrium solutions such as payoff dominance,
risk dominance, or subgame perfectness. These properties may help a game designer distin-
guish between socially desirable and not desirable Nash equilibria. Such a distinction is
particularly important in the design of incentives that may enforce the agents or players
to converge to certain equilibria rather than others. The analysis of Nash equilibrium
solutions and their properties is generally referred to as refinement on Nash equilibrium
solutions. The second part of this chapter deals with another equilibrium concept, known
as Stackelberg equilibrium, which arises when there is a hierarchy between the players or
asynchrony in the learning process. This chapter also examines Pareto optimality and so-
cial optimality.

This chapter is organized as follows. Section 4.2 deals with refinement on Nash equi-
librium solutions. Section 4.3 introduces the Stackelberg equilibrium. Section 4.4 exam-
ines Pareto optimality. Finally, Section 4.5 provides concluding remarks and references
for this chapter.

4.2 Refinement on Nash equilibrium solutions
Nash equilibrium solutions may enjoy several properties, which can make some equilibria
more interesting than others in terms of their impact on the global welfare of the system.
Let us look at two main characteristics of Nash equilibrium solutions, payoff dominance
and risk dominance.

4.2.1 Payoff dominant Nash equilibrium

Payoff dominant Nash equilibrium solutions, also called admissible equilibria, produce
higher payoffs for all the players.

Definition 4.1. A Nash equilibrium strategy pair is admissible or payoff dominant if there
exists no better (for all players) Nash equilibrium strategy pair.

The above concept is elucidated in the following example.

41
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42 Chapter 4. Equilibrium Solutions, Stackelberg, and Pareto Optimality

Example 4.2. Consider the two-player game in Fig. 4.1. Player 1 can play T (top) or B
(bottom), while player 2 can play L (left), M (middle), or R (right). There exist three Nash
equilibrium solutions: (T , L), (T , M ), and (B , R). The Nash equilibrium (B , R) is payoff
dominant, as both players get more than what they would get if they played one of the
other two Nash equilibrium solutions, namely (T , L) or (T , M ). Actually, (B , R) produces
a payoff of 1 to both players which exceeds what both players get in (T , L), that is, 0, and
also what both players get in (T , M ), namely −1 for player 1 and 0 for player 2.

L M R
T (0,0)∗ (−1,0)∗ (−3,−1)
B (−2,1) (−2,0) (1,1)∗

Figure 4.1. Payoff dominant (or admissible) Nash equilibrium (gray).

4.2.2 Risk dominant Nash equilibrium

Another interesting property of a Nash equilibrium is known as risk dominance. Let us
look at the parametrized Coordination game shown below:

H G
H (A,a) (C , b )
G (B , c) (D, d )

Here we assume that A> B , D >C and that a > b , d > c . With the above game in mind,
the formal definition of risk dominance is given as follows.

Definition 4.3 (Risk dominance). A Nash equilibrium strategy pair (G,G) risk dominates
the other Nash equilibrium strategy pair (H , H ) if the product of the deviation losses is highest
for (G,G), namely if the following inequality holds:

(C −D)(c − d )≥ (B −A)(b − a).

Evolutionary biologists have noticed that while payoff dominance is in principle more
convenient to all the players, in most experimental situations in nature, animals or in-
dividuals usually converge to risk dominant equilibria [138, 254]. In other words, risk
dominance arises in nature more often than payoff dominance. The difference between
risk and payoff dominance is discussed further in the Stag-Hunt game.

Example 4.4. Consider the Stag-Hunt game described by the bimatrix

Stag Hare

Stag
�

3
2 , 3

2

�
(0,1)

Hare (1,0) (1,1)

The action profile (Har e , Har e) is risk dominant, while (St a g , St a g ) is payoff domi-
nant.

It is worth noting that if one player assumes that the other player plays the two avail-
able actions with equal probability, namely ( 12 , 1

2 ), then the action Har e has a higher
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4.2. Refinement on Nash equilibrium solutions 43

expected payoff. This introduces an alternative and equivalent way to identify risk dom-
inant Nash equilibrium solutions.

4.2.3 Subgame perfect Nash equilibrium

Subgame perfect Nash equilibrium solutions arise in extensive games, where there is an
explicit order of events. Subgame perfectness accounts for credible threats or robust so-
lutions. The definition of subgame perfect Nash equilibrium makes use of the concept of
subgame, which we explain next.

Definition 4.5 (Subgame). A subgame is a subset of nodes that still forms a game.

With the above definition in mind, a subgame perfect Nash equilibrium is a Nash
equilibrium for the subgame.

Definition 4.6 (Subgame perfect Nash equilibrium). A Nash equilibrium is subgame
perfect if when played from any point in the game, such a solution is a Nash equilibrium.

To compute subgame perfect Nash equilibrium solutions one can use backwards dy-
namic programming. This is illustrated in the following examples.

Example 4.7. This example involves a two-player extensive game. Fig. 4.2 depicts its ex-
tensive representation (left) and its normal form representation (right). Both players have
two actions: A or B for player 1 and C or D for player 2.

A typical dynamic programming algorithm proceeds as follows. Let us consider the
last stage, namely stage 2. Here the rational choice of player 2 is (D), as it produces a
payoff of 1, which is better than the payoff 0 corresponding to the other choice, C . We
use a dashed line to store in memory that D is the rational choice of player 2 in stage 2.
Going back to stage 1 and using backwards induction, we infer for player 1 that his best
choice is B , where he gets 5 rather than 4 if he played A. Obviously, this is valid as long as
player 2 is rational and plays D in stage 2. If we look at the normal form representation,
we note that (A,C ) is also a Nash equilibrium. Indeed, if player 1 deviates and plays B ,
he is not better off. Analogously, if player 2 deviates and plays D, he is not better off.
However, such a Nash equilibrium is not subgame perfect, as player 2 playing C is not a
credible choice. Subgame perfectness gives a measure of how robust a Nash equilibrium
is. Indeed, being a Nash equilibrium for any subgame implies that if the past actions have
not been rational, the solution continues to be a Nash equilibrium. Nash equilibrium
solutions that are not subgame perfect do not guarantee to still be equilibrium solutions
when some of the past actions have not been rational. We can put it differently and say
that Nash equilibria that are not subgame perfect involve noncredible threats.

Example 4.8. This example deals with a three-stage two-player extensive game. Fig. 4.3
depicts its extensive representation (left) and its normal form representation (right). The
game is played in three stages, it has four different states, and the players always have two
actions in each state. Using dynamic programming backwards, let us start with the last
stage, stage 3. Here we have one state, state 4 (node at level three), in which the rational
choice for P1 is R4, which produces a payoff of 8 (greater than 7 produced by L4). Note
that the index refers to the label of the state. We draw a dotted line to store in memory
the rational choice R4. At stage 2, we have two states, states 2 and 3. In state 2 (left
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44 Chapter 4. Equilibrium Solutions, Stackelberg, and Pareto Optimality

1
A B

2 2
C D

2 2

(4,2)

(0,0)∗ (5,1)

C D
A (4,2)∗ (4,2)
B (0,0) (5,1)∗

Figure 4.2. (B , D) is a subgame perfect Nash equilibrium obtained via dynamic program-
ming (see the dashed lines in the tree and the gray solution in the bimatrix).

node, second level) the rational choice of P2 is L2 (dotted line, left, level two). This is
obtained by backwards induction comparing the payoff of player 2 given by L2, which is
7, to the one associated to R2, which is 6. In state 3 (right node, level two), both actions
are equivalently rational, namely L3 (dotted line, right, level two) or R3 (dashed line, level
two). Actually the payoff for P2 is 5 in both cases. Going back to stage 1, the best response
of P1 when P2 plays L3 is L1 (dotted line, level one). Conversely, the best response to R3 is
R1 (dashed line, level one). Both (L1R4, L2L3) and (R1R4, L2R3) are subgame perfect Nash
equilibrium solutions. From the normal form representation we have several other Nash
equilibrium solutions which are not subgame perfect.

1
L1 R1

2 2
L2 R2

1
L4 R4

2 2

2

L3 R3

2 2

(7,5) (8,7)

(4,6) (6,5) (9,5)

L2L3 L2R3 R2L3 R2R3
L1L4 (7,5) (7,5) (4,6) (4,6)
L1R4 (8,7)∗ (8,7) (4,6) (4,6)

R1L4 (6,5) (9,5)∗ (6,5)∗ (9,5)∗
R1R4 (6,5) (9,5)∗ (6,5)∗ (9,5)∗

Figure 4.3. Two subgame perfect Nash equilibrium solutions: (L1R4, L2L3) (dotted edges in
the tree and light gray cell in the bimatrix) and (R1R4, L2R3) (dashed edges in the tree and dark gray cell
in the bimatrix). Both can be computed via dynamic programming.

4.3 Stackelberg equilibrium
The Stackelberg equilibrium refers to a game with a hierarchical structure. That the game
admits a hierarchical structure means that a leader announces and enforces his best strat-
egy by taking into account the rational reactions of the followers. The game is played in
one shot. The formal definition of Stackelberg equilibrium builds upon the concept of
best-response set, as in Definition 1.3, which is reiterated as

�i (a−i ) := {a∗i ∈	i | ui (a
∗
i ,a−i ) = max

ai∈	i

ui (ai ,a−i )}.

Having introduced the best-response set, the definition of Stackelberg equilibrium is given
as follows.
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4.3. Stackelberg equilibrium 45

Definition 4.9. An action profile (aS
1 ,aS

2 ) is a Stackelberg equilibrium (SE) for player 1 if
aS

2 ∈�2(a
S
1 ) and

u1(a
S
1 ,aS

2 )≥ u1(a1,a2) ∀a1 ∈	1, a2 ∈�2(a1).

In the following we analyze a few examples that shed light on the relation between
Nash equilibrium solutions and Stackelberg equilibrium solutions. It turns out that occa-
sionally a Stackelberg equilibrium is better than a Nash equilibrium, though this is not a
rule. In general, a Stackelberg equilibrium differs from a Nash equilibrium and may yield
better payoffs for all the players or for only a subset of players.

Example 4.10. The first example is the Prisoner’s dilemma, as displayed in Fig. 4.4. First,
assume that P1 is the leader. Then P1 knows that

• if he plays C , then P2 (follower) will respond D (light gray cell) and the payoff of
P1 will be 0;

• if he plays D, then P2 will still respond D and the payoff of P1 will be 1.

We conclude that D is the rational choice of P1. In summary, the Stackelberg equilibrium,
denoted by SE1 when P1 is the leader, is (D, D). The game is symmetric, so if we repeat
the same analysis for P2, we arrive at the same result. To see this, consider P2 as the leader.
Then P2 knows that

• if he plays C , then P1 (follower) will respond D (dark gray cell) and the payoff of
P2 will be 0;

• if he plays D, then P1 will still respond D (dark gray cell) and the payoff of P2 will
be 1.

We conclude that D is the rational choice of P2. The Stackelberg equilibrium SE2 when
P2 is the leader is (D, D), as in the previous case. Note that in this example the two Stack-
elberg equilibria are the same and also coincide with the unique pure Nash equilibrium
solution of the game.

C D
C (3,3) (0,4)∗

D (4,0)∗ (1,1)∗

SE1

SE2

Figure 4.4. Stackelberg equilibrium for the Prisoner’s dilemma.

Example 4.11. This example deals with the two-player nonzero-sum game whose bima-
trix is in Fig. 4.5. Both players have three actions. First, consider P1 as the leader. P1
knows that

• if he plays L, then P2 (follower) will respond L (light gray cell, 1st row) and the
payoff of P1 will be 0;

• if he plays M , then P2 will respond M (light gray cell, 2nd row) and the payoff of
P1 will be −1;
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46 Chapter 4. Equilibrium Solutions, Stackelberg, and Pareto Optimality

• if he plays R, then P2 will respond R (light gray cell, 3rd row) and the payoff of P1
will be −2.

Then L is the rational choice of P1. The Stackelberg equilibrium SE1 when P1 is the leader
is then (L, L). Analogously, if the leader is P2, then he knows that

• if he plays L, then P1 (follower) will respond R (dark gray cell, 1st column) and the
payoff of P2 will be 0;

• if he plays L, then P1 will respond M (dark gray cell, 2nd column) and the payoff
of P2 will be 0;

• if he plays R, then P1 will respond L (dark gray cell, 3rd column) and the payoff of
P2 will be 2

3 .

Then R is the rational choice of P2. The Stackelberg equilibrium SE2 when P2 is the leader
is again (L, R). In this example, SE1 is better than the Nash equilibrium for both players,
and SE2 is better than the Nash equilibrium only for P2 (leader). The Nash equilibrium
is not a Stackelberg equilibrium.

L M R
L (0,1) (−2,−1) (− 3

2 , 2
3 )

M (−1,−2) (−1,0)∗ (−3,−1)

R (1,0) (−2,−1) (−2, 1
2 )

SE1 SE2

Figure 4.5. Example of Stackelberg equilibrium.

Example 4.12. A last example involves the infinite game whose level curves are as in
Fig. 4.6. The horizontal coordinate is the action of player 1, while the vertical coordi-
nate is the action of player 2. From the graph we understand that point P is the global
maximum for player 1 and point Q the global maximum for player 2. The best-response
curve of player 2 to player 1 is the curve β(a) (dash-dot). Given this, the Stackelberg
equilibrium when player 1 is the leader is (as , bs ). Note that this point is crossed by the
tangent to player 1’s level curves.

4.3.1 Nonuniqueness

Similarly to what we saw for the Nash equilibrium, the Stackelberg equilibrium may also
not be unique. A way to deal with such a case is to introduce additional criteria. A possible
idea is to select the equilibrium that minimizes the risk. The following example elaborates
this idea in detail.

Example 4.13. The example of Fig. 4.7 shows that when the leader is P1, he knows that

• if he plays L, then P2 (follower) will respond indifferently L or M (light gray cell,
1st row) and the payoff of P1 will be 0 or −1, respectively;

• if he plays R, then P2 will respond indifferently L or R (light gray cell, 2nd row)
and the payoff of P1 will be −2 or 1, respectively.

D
ow

nl
oa

de
d 

05
/2

4/
16

 to
 1

31
.1

70
.6

.5
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

co
nt

ro
len

gin
ee

rs
.ir



4.4. Pareto optimality 47

R

P

Q

a1

a2

S

Figure 4.6. Two-player continuous infinite game. Level curves of player 1 (solid) and player 2
(dashed); action spaces of player 1 (horizontal axis) and player 2 (vertical axis). Global maximum is P
for player 1 and Q for player 2, while the Nash equilibrium is point R and the Stackelberg equilibrium
is point S. Reprinted with permission from A. Bressan and Springer Science+Business Media [65, 66].

L M R
L (0,0) (−1,0)∗ (−3,−1)

R (−2,1) (−2,0) (1,1)∗

SE1

Figure 4.7. Nonunique Stackelberg equilibrium and risk minimization.

Note that the expected payoff by playing L or R of P1 is − 1
2 . However, the worst

payoff is better in the first case (L), so minimizing the risk yields (L, M ) as SE1. Also note
that SE1 is worse than the Nash equilibrium for both players.

4.4 Pareto optimality
The last part of this chapter deals with Pareto optimality. Equilibria that are also Pareto
optimal represent stable solutions in that not only is no player better off by changing
actions, but also no players can be better off by jointly deviating without causing a loss
for at least one player. The definition of Pareto optimality for a two-player game is as
follows.

Definition 4.14. A pair of strategies (aPO
1 ,aPO

2 ) is said to be Pareto optimal if there exists
no other pair (a1,a2) such that for i = 1,2

ui (a1,a2)> ui (a
PO
1 ,aPO

2 ) and u−i (a1,a2)≥ u−i (a
PO
1 ,aPO

2 ).
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48 Chapter 4. Equilibrium Solutions, Stackelberg, and Pareto Optimality

In other words, given a Pareto optimal solution, it is not possible to strictly increase
the payoff of one player without strictly decreasing the payoff of the other. We analyze
Pareto optimality in a few examples, which are already familiar to the reader.

Example 4.15. This example answers the following question: What solutions are Pareto
optimal in the Prisoner’s dilemma? Recall that this game is described by the bimatrix
displayed in Fig. 4.8. There, we have three different Pareto optimal solutions: (C , D),
(D,C ), and (C ,C ). Indeed, for each of these action profiles, any deviation causes a loss
for at least one of the players.

C D
C (3,3) (0,4)
D (4,0) (1,1)

Figure 4.8. In the Prisoner’s dilemma (C , D), (D,C ), and (C ,C ) are all Pareto optimal solutions.

In the following we explore Stackelberg equilibria and Pareto optimal solutions for
a few classical games introduced earlier, such as the Battle of the Sexes, the Coordination
game, and the Hawk and Dove game.

Example 4.16 (Battle of the Sexes). If player 1 is leader, then he knows that

• if he plays S, then player 2 will respond S and the payoff of player 1 will be 2;

• if he plays C , then player 2 will respond C and the payoff of player 1 will be 1.

Then, the Stackelberg equilibrium when player 1 is leader is (S, S).
Reiterating for player 2 leader, we have that

• if he plays S, then player 1 will respond S and the payoff of player 2 will be 1;

• if he plays C , then player 1 will respond C and the payoff of player 2 will be 2.

The Stackelberg equilibrium when player 2 is the leader is (C ,C ). The two Stackelberg
equilibria are also the only Pareto optimal solutions of the game.

S C
S (2,1) (0,0)
C (0,0) (1,2)

Example 4.17 (Coordination game). This example deals with the Coordination game. If
player 1 is leader, then he knows that

• if he plays M ozar t , then player 2 will respond M ozar t and the payoff of player 1
will be 2;

• if he plays Mah l e r , then player 2 will respond Mah l e r and the payoff of player 1
will be 1.
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4.5. Notes and references 49

Then, the Stackelberg equilibrium when player 1 is leader is (M ozar t , M ozar t ). The
game is symmetric, so the latter is the Stackelberg equilibrium also when player 2 is leader.
Note that the Stackelberg equilibrium is also the only Pareto optimal solution of the game.

M ozar t Mah l e r
M ozar t (2, 2) (0, 0)
Mah l e r (0, 0) (1, 1)

Example 4.18 (Hawk and Dove game). This last example develops the analysis for the
Hawk and Dove game described by the following bimatrix:

Hawk Dove

Hawk
�

V−C
2 , V−C

2

�
(V , 0)

Dove (0,V )
�

V
2 , V

2

�
Under the assumption that the cost of fighting exceeds the prize of victory, we have C >
V > 0. To find the Stackelberg equilibrium when player 1 is leader we apply the following
reasoning. Player 1 knows that

• if he plays Hawk, then player 2 will respond Dove and the payoff of player 1 will
be V ;

• if he plays Dove , then player 2 will respond Hawk and the payoff of player 1 will
be 0.

When player 1 is the leader the Stackelberg equilibrium is (Hawk , Dove), whereas when
player 2 is the leader the Stackelberg equilibrium is (Dove , Hawk). All solutions are
Pareto optimal except (Hawk , Hawk).

4.5 Notes and references
The definition of admissible or payoff dominant Nash equilibrium is presented in [23,
Def. 3.3, p. 69]. Risk dominance was formulated by Harsanyi and Selten [107, Lemma
5.4.4]. Risk dominant equilibria in biology and nature are analyzed in [138, 254]. For
more details on subgame perfect equilibria we refer the reader to [196, Sect. 6.2]. The
Stackelberg equilibrium was first introduced in [249]. Example 4.8 is borrowed from [239,
Exercise 1.1, p. 7]. Fig. 4.6 is courtesy of Bressan, Noncooperative Differential Games: A
Tutorial (2010) [65].
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Chapter 5

Coalitional Games

5.1 Introduction
This chapter develops the theory of coalitional games with transferable utility, also known
as TU games. After formulating such games, the chapter presents some examples of opera-
tions research games, such as the minimum spanning tree game, the permutation game, and
the max-flow game. The discussion proceeds with the definition of imputation set. The
chapter concludes with the formalization of cooperative differential games. In this context,
we review the notion of dynamic stability or time consistency.

In Section 5.2 we formulate coalitional games with transferable utility. In Section 5.3
we present the operations research examples. In Section 5.4 we introduce the imputa-
tion set. In Section 5.5 we examine properties of coalitional games. In Section 5.6 we
reframe coalitional games in a dynamic context. Finally, in Section 5.7 we provide notes,
conclusions, and references.

5.2 Coalitional games with transferable utility (TU games)
A coalitional game with transferable utility, in short TU game, is defined by a tuple 〈N , v〉,
where

• N = {1, . . . , n} is the set of players, and

• v : 2N →� is the characteristic function.

For any coalition S ⊆ 2N of players, the characteristic function v(S) returns the value
of that coalition. To compute such a value we assume that all the players that do not join
the coalition will play joint actions against the coalition. This corresponds to solving a
maximin optimization problem. In other words, the (worst-case) value of a coalition is
computed as the maximum over the set of joint actions of all the players of the coalition
and as the minimum over the set of joint actions of all the players who are not in the
coalition. We can think of this value as the amount of money that the players of the
coalition can get by themselves with no help from people outside the coalition.

Example 5.1. Let the Prisoner’s dilemma be given as in Fig. 5.1. We can construct a TU
game version of the Prisoner’s dilemma as follows. The value of a coalition is given by the
total years of freedom that the players of a coalition can get against any possible play of
the players who are not in the coalition. Having said this, every player alone can get at

51
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52 Chapter 5. Coalitional Games

least 1 year of freedom by playing D. At the same time, the two players playing jointly
can get a total of 6 years of freedom, which is the total payoff of (C ,C ). Thus, the TU
game formulation is given by the set N = {1,2}, and the characteristic function is given
by

v({1}) = v({2}) = 1, v({1,2}) = 6.

C D
C (3,3) (0,4)
D (4,0) (1,1)

Figure 5.1. The Prisoner’s dilemma as a TU game. Reprinted with permission from Hin-
dustan Book Agency [239].

Example 5.2. A second example involves the two-player extensive game in Fig. 5.2. The
game involves two stages, and both players can go left or right. This game can be turned
into a TU game as follows. The set of players is N = {1,2}, and the characteristic function
is given by

v({1}) = 4, v({2}) = 2, v({1,2}) = 12.

To see why we get the above values, consider v(S) as the money that each coalition can
get in the worst case. Actually, if player 1 plays R, he will get 4 in the worst case (when
P2 responds l2). Player 2 can get at least 2 by choosing r1 in state 1 (light gray node, stage
2) and can get at least 8 by playing l2 in state 2 (dark gray node, stage 2). The state in stage
2 depends on the action taken by player 1 in stage 1. So in the worst case, player 2 can
get 2. If both players form a coalition, they can select the joint actions (R, l2) and obtain
a total payoff of 12. This explains why we get the above values of the coalitions.

1 stage 1

stage 2

L R

2
state 1 state 2

2
l1 r1

2 2

l2 r2

2 2
(5,1) (3,2) (4,8) (6,3)

Figure 5.2. Two-person extensive game as a TU game. Reprinted with permission from
Hindustan Book Agency [239].

Example 5.3. This example develops a TU game formulation for the three-player exten-
sive game displayed in Fig. 5.3. The example admits a TU game formulation as follows:
the set of players is N = {1,2,3}, and the characteristic function is given by

v({1}) = 10, v({2}) = 0, v({3}) = 0,
v({1,2}) = 14, v({1,3}) = 11, v({2,3}) = 0,

v({1,2,3}) = 16.

To see why we obtain the above values, consider that player 1 can play M1 and get 10
and the game terminates. In this case, players 2 and 3 do not take any actions. This also
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5.3. Game-theoretic examples of operations research problems 53

justifies why the same players can get by themselves no more than 0. The same result
applies to the coalition made by players 2 and 3. Differently, if players 1 and 2 form a
coalition, they will agree on player 1 playing R1, which yields a total payoff equal to 14.
This is the sum of payoffs 8 and 6 produced by (R1, L3). Note that this is the worst-case
payoff, as in the other scenario, that is, (R1, R3), the total payoff of coalition {1,2} is 15,
which is obtained by summing 11 and 4. For the coalition {1,3}, we know that players 1
and 3 can select the joint actions (R1, R3), which yield a total payoff of 11. This is obtained
as the sum of 11 and 0. Finally, all players forming a grand coalition can agree on (R1, L3)
and get a total of 16, which results from 6+ 8+ 2.

1

L1 R1

2 3
L2 R2

2 2

L3 R3

2 2
(8,3,0) (5,4,1) (6,8,2) (11,4,0)2

(10,0,0)

M1

Figure 5.3. Three-person extensive game as a TU game. Reprinted with permission from
Hindustan Book Agency [239].

5.3 Game-theoretic examples of operations research
problems

We browse here three stylized operations research problems. The idea is to reformulate
them as game-theoretic examples involving multiple decision makers. The decision mak-
ers now turn into players. When all the players join in a grand coalition, the solution
collapses into the optimal solution of the operational research counterpart problem.

5.3.1 Minimum spanning tree game

This game involves three communities and a power source. The communities are labeled
1, 2, and 3, and the power source is labeled s . They wish to have a direct or indirect
connection to the power source, and for this there are a few alternatives. Fig. 5.4 sum-
marizes the available transmission links and the corresponding costs. In particular, direct
transmission links to the source costs 100, 90, and 80, respectively. If communities 1 and
2 team up, they can use the transmission links that correspond to the edges of the tree
{(s , 2), (2,1)} and both be connected to the source. This yields a minimum total cost of
130 obtained by summing the payoffs 90 of edge (s , 2) and 40 of edge (2,1). Analogously,
communities 1 and 3 can form a coalition and use the links that correspond to the edges
of the tree {(s , 3), (3,1)}. Both communities are then connected to the source at the min-
imum total cost of 110 obtained by summing the payoff 80 of edge (s , 3) and the payoff
30 of edge (3,1). Replicating the same analysis for communities 2 and 3, we get that both
can connect to the source using the edges of the tree {(s , 3), (3,2)}. This solution has a
minimum total cost of 110, this being the sum of 80 for the edge (s , 3) and 30 for the edge
(3,2). If the three communities team up in a grand coalition, the minimum total cost is
140 corresponding to the spanning tree {(s , 3), (3,1), (3,2)}. This cost is obtained as the
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54 Chapter 5. Coalitional Games

sum of 80 for edge (s , 3), 30 for edge (3,1), and 30 for edge (3,2). The resulting cost game is
given by 〈N , c〉, where N = {1,2,3} is the set of players, and c is the characteristic function
(here this function represents a cost and not a value) which satisfies

c({1}) = 100, c({2}) = 90, c({3}) = 80,
c({1,2}) = 130, c({1,3}) = 110, c({2,3}) = 110,

c({1,2,3}) = 140.

s

1

2

3

100

90

40
80

30

30

Figure 5.4. Minimum spanning tree problem as a TU game. Reprinted with permission
from Hindustan Book Agency [239].

To derive the values of the coalitions, we need to consider the money saved by all the
players of a coalition when they team up. This is given by the expression

v(S) =
∑
i∈S

c({i})− c(S).

Then, the cost game mentioned above can be turned into a cost-savings game. The
latter is defined by the tuple 〈N , v〉, where N = {1,2,3} is the set of players, and v is the
new characteristic function representing the values of the coalitions and satisfying

v({1}) = 0, v({2}) = 0, v({3}) = 0,
v({1,2}) = 60, v({1,3}) = 70, v({2,3}) = 60,

v({1,2,3}) = 130.

It is worth noting that when all the players form the grand coalition, the problem coin-
cides with the classical minimum spanning tree problem [117, Chap. 9.4], which is among
the foundations of network flow optimization [117, Chap. 9].

5.3.2 Permutation game

In this example we have n players i = 1,2, . . . , n. Each one owns a machine Mi and has to
process a job Ji . Any machine M j can process any job Ji , but each machine can process at
most one job. Forming coalitions implies that the players can agree on processing other
players’ jobs. Thus, if a player does not form coalitions with other players, he will process
his job by himself, namely using his own machine. The cost ki j refers to job Ji processed
on machine M j . It turns out that, for each coalition S ∈ 2N \�, the cost of the coalition is
the minimum of the costs considering any possible permutation of the elements of that
coalition. This is given by the optimization problem

c(S) =min
σ

∑
i∈S

kiσ(i ), σ is any permutation of 1, . . . , n.
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5.3. Game-theoretic examples of operations research problems 55

Table 5.1. Coalition values for the permutation game.

S � {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
c(S) 0 1 6 12 5 7 17 13
v(S) 0 0 0 0 2 6 1 6

In the above expression, σ(i) is the ith element of the permutation. As an example, con-
sider the three-person permutation game represented by the cost matrix

Machine⎡
⎣ 1 2 3

3 6 9
4 8 12

⎤
⎦ Job, (5.1)

where the rows correspond to jobs and the columns correspond to machines. After some
calculations, the corresponding costs and coalition values are listed in Table 5.1. It is
worth noting that when all the players team up in a grand coalition, the problem takes
the form of a classical assignment problem [117, Chap. 8.3].

5.3.3 Max-flow game

This example explores a situation where we have a flow from a source to a sink. The flow
traverses the edges of a network. The topology of the network is displayed in Fig. 5.5.
Different owners (the players) possess different edges. Edges have capacity constraints. In
particular, edge 1 has a maximum capacity equal to 4, and the owner is player P1. Edge 2
has a maximum capacity of 5, and the owner is player P2. Edge 3 has a maximum capacity
equal to 10, and the owner is player P3. The maximum flow capable of flowing from the
source to the sink using the edges of the only members of a coalition gives the value of
that coalition.

We can reformulate the problem as a TU game 〈N , v〉, where N = {1,2,3} is the set
of players, and v is the characteristic function given by

v({1}) = 0, v({2}) = 0, v({3}) = 0,
v({1,2}) = 0, v({1,3}) = 4, v({2,3}) = 5,

v({1,2,3}) = 9.

sou r ce 1 s ink

4,1 P1

5,2 P2

10,3 P3

Figure 5.5. Max-flow problem as a TU game: the labels 4,1, and P1 on one of the edges mean
that this is edge 1 with maximum capacity equal to 4 and whose owner is player P1. Reprinted with
permission from Hindustan Book Agency [239].

Remarkably, the game turns into a max-flow optimization problem [117, Chap. 9.5]
when all the players join in a grand coalition and act as if there were just one single decision
maker.
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56 Chapter 5. Coalitional Games

5.4 Imputation set
Having formulated TU games in the first part of this chapter, we now turn to the solution
of such games. A first solution concept is the one of imputation set. The imputation set
answers the challenging question about how to divide the costs or rewards produced by a
coalition among the players of the same coalition.

The imputation set, denoted by I (v), is a convex polyhedral set. The set contains all
the allocations that satisfy the following properties:

• efficiency or Pareto optimality, that is, all the components of the allocation vector
sum up to the value of the grand coalition, and

• individual rationality, namely no player benefits from quitting the grand coalition
and playing alone.

A formal definition of the imputation set is as follows.

Definition 5.4 (Imputation set). Let a TU game 〈N , v〉 be given. The imputation set is
the set of allocations given by

I (v) =

⎧⎪⎪⎨
⎪⎪⎩x ∈�n |

efficiency︷ ︸︸ ︷∑
i∈N

xi = v(N ), xi ≥ v({i}), ∀i ∈N︸ ︷︷ ︸
individual rationality

⎫⎪⎪⎬
⎪⎪⎭ .

In general, the above set may be empty. This occurs when, for every efficient alloca-
tion, there is at least one player who benefits from quitting the grand coalition. It can be
shown that a necessary and sufficient condition for the imputation set to be nonempty
states that the sum of the values of the single players must not exceed the value of the
grand coalition. More formally,

I (v) �= � if and only if v(N )≥∑
i∈N

v({i}).

To compute the imputation set, one generally uses the property according to which the
imputation set I (v) is the convex hull of the points f 1, f 2, . . . , f n , where

f i
k =

�
v(N )−∑k∈N\{i} v({k}), k = i ,

v({k}), k �= i .
(5.2)

Here, the generic vector f i has a straightforward interpretation. Such a vector is a ten-
tative bid submitted by player i about how to allocate the revenue of the coalition. In
particular, the component f i

k is the revenue that player i suggests to allocate to player k.
The idea is the following: player i will allocate to the other players their own values and
will keep the rest for himself. In other words, for k �= i the revenue is f i

k = v({k}). For
k = i , f i

i = v(N )−∑k∈N\{i} v({k}). The computation of the imputation set based on
this procedure is elucidated further in the following example.

Example 5.5. Let a three-person game 〈N , v〉 be given, where the characteristic function
satisfies

v({1}) = v({3}) = 0, v({2}) = 3, v({1,2,3}) = 5.
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5.6. Cooperative differential games 57

x1

x2

x3

(5,0,0)

f 1 = (2,3,0)

f 2 = (0,5,0)

f 3 = (0,3,2)

(0,0,5)

Figure 5.6. The imputation set I (v) for the game in Example 5.5 is the convex hull of points
f 1, f 2, and f 3 computed according to (5.2). Reprinted with permission from Hindustan Book Agency
[239].

Based on what we have said in the previous section, the imputation set I (v) is the triangle
with vertices f 1 = (2,3,0), f 2 = (0,5,0), and f 3 = (0,3,2), as displayed in Fig. 5.6.

The vertices have the following interpretation. Vertex f 1 = (2,3,0) is the bid of
player 1, who says, “I will allocate to player 2 and 3 their own values, which are 3 and
0, respectively, and will keep the rest for me, namely 2.” The same approach can be reit-
erated for players 2 and 3 to obtain f 2 = (0,5,0) and f 3 = (0,3,2).

TU games can be classified in such a way that it is immediate to realize whether stable
allocation rules exist or not.

5.5 Properties
TU games can be assigned to each one of the following classes. A first class is the one of
superadditive games. These are games which satisfy the property

v(S ∪T )> v(S)+ v(T ) ∀S,T ∈ 2N : S ∩T = �.
A second class involves so-called subadditive games. These games are characterized by the
condition

v(S ∪T )< v(S)+ v(T ) ∀S,T ∈ 2N : S ∩T = �.
A third class of games is made by the additive games, for which it holds that

v(S ∪T ) = v(S)+ v(T ) ∀S,T ∈ 2N : S ∩T = �.
Additive games are also referred to as inessential games. The reason is that there exists a
unique policy to divide earnings in such games, which is straightforward. Such a policy
requires that every player gets exactly his own value.

5.6 Cooperative differential games
So far, we have mentioned TU games in a static framework. The discussion now turns to
dynamic scenarios where the values of the coalitions evolve as in differential games. Let
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58 Chapter 5. Coalitional Games

us start by considering the state dynamics

ẋ(s) = f [s , x(s), u1(s), u2(s), . . . , un (s)], x(t0) = x0.

In the above dynamics, ui is the control of player i ∈N .
As for the payoff of the generic player i ∈ N , we assume that this is given by the

following finite horizon integral:∫ T

t0

g i [s , x(s), u1(s), u2(s), . . . , un(s)]d s + qi (x(T )).

In a cooperative formulation of the game starting in state x0 at time t0, we assume that
the players agree on joint controls u∗1 (s), . . . , u∗n(s) that maximize the total payoff

v(N ; x0,T − t0) =
∑
i∈N

∫ T

t0

g i [s , x(s), u∗1 (s), . . . , u∗n(s)]d s + qi (x(T ))

and on a mechanism to distribute the total payoff among the players. We compactly refer
to such a game as cooperative differential game in characteristic function form and denote
it Γv (x0,T − t0). In this context we denote by ξi (x0,T − t0) the share of the players i ∈N
obtained from the total payoff v(N ; x0,T − t0).

Similarly to the static case, the value of a single player i ∈N , denoted by v({i}; x0,T −
t0), is the amount of money that the player can get for himself if all the others play against
him. This is formally given by the maximization problem

max
ui

min
uj , j �=i

∫ T

t0

g i [s , x(s), u1(s), u2(s), . . . , un(s)]d s + qi (x(T )).

The notion of imputation can be adapted to such a dynamic scenario, as shown next.

Definition 5.6 (Imputation in dynamic setting). A vector of shares

ξ (x0,T − t0) = [ξ1(x0,T − t0) . . .ξn(x0,T − t0)]

is called imputation if

(i) ξi (x0,T − t0)≥ v({i}; x0,T − t0) ∀ i ∈N (rational),
(ii)

∑
j∈N ξ j (x0,T − t0) = v(N ; x0,T − t0) (efficient). (5.3)

Now, given the optimal trajectory {x∗(s)}T
s=t0

, let the family of games along such a
trajectory be

{Γv (x∗(t ),T − t ), t0 ≤ t ≤ T }.
It is possible to separate the total share ξi in two parts: the current share ωi (the

amount allocated so far) and the future share ηi :

ηi [ξi (x0,T − t0); x∗(t ),T − t ]
= ξi (x0,T − t0)−ωi [ξi (x0,T − t0); x∗(·), t − t0].

(5.4)

This leads to the following property, which represents a landmark in the context of dy-
namic TU games.
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5.7. Notes and references 59

Definition 5.7 (Dynamic stability and time consistency). An imputation

ξ (x0,T − t0) = [ξ1(x0,T − t0) . . .ξn(x0,T − t0)]

is said to be dynamically stable or time consistent if

(i) ηi [ξi (x0,T − t0); x∗(t ),T − t ]≥ v({i}; x∗(t ),T − t ) ∀ i ∈N ,
(ii)

∑
j∈N η j [ξ j (x0,T − t0); x∗(t ),T − t ] = v(N ; x0,T − t ).

In a nutshell, we are dealing with a stream of infinite TU games. Each game is played
starting from time t , for any t in the interval [t0,T ). For each such game, we search
allocations that lie in the corresponding imputation set. This requires the computation
of the full Pareto curve.

In the next chapter we continue the exploration of other seminal solution concepts,
such as the core, the Shapley value, and the nucleolus.

5.7 Notes and references
The formulation of TU games in Section 5.2 and the operations research examples of
Section 5.3 are based on [239, Chap. 10]. Example 5.3 is discussed on p. 3 in [239]. For
the operations research counterpart problems we refer the reader to a classical textbook in
operations research [117]. The introduction of the imputation set in Section 5.4 is heavily
based on [239, Chap. 11]. The presentation of cooperative differential games in Section 5.6
is subsumed by [253].

For the computation of Pareto curves we refer the reader to [92] and [204]. The liter-
ature offers other formulations of dynamic cooperative games that involve also a detailed
analysis and design of robust allocation policies (see [44] and [45]). In addition, if the allo-
cation process is distributed, connections with consensus problems are explored in [185].
Further investigations on social optimal equilibria and their use in multi-inventory appli-
cations are available in [31, 32].

Connections between cooperative game theory and bargaining can be found in the
Kalai–Smorodinski solution in [137]. The egalitarian solution in bargaining is axioma-
tized in [133] and extended to games with nontransferable utility in [136].

The material of this chapter is integrated with some lecture notes taken by the author
during a Summer School on Game Theory and Operations Research held in Lavagna,
Italy, in September 2003, and organized by Fioravante Patrone and Vito Fragnelli.
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Chapter 6

Core, Shapley Value,
Nucleolus

6.1 Introduction
Following the formulation of TU games presented in the previous chapter, and with in
mind the definition of imputation set from Section 5.4, we now review other solution
concepts, such as the core, the Shapley value, and the nucleolus. As for the imputation
set, these solution concepts yield stable allocation rules. The chapter concludes with a
discussion on computational issues for the nucleolus.

This chapter is organized as follows. In Section 6.2 we introduce the core. In Sec-
tion 6.3 we present the Shapley value. In Section 6.4 we deal with convex coalitional
games. In Section 6.5 we discuss the nucleolus. Finally, in Section 6.6 we provide notes,
conclusions, and references.

6.2 Core
Given a TU game, a common solution concept is the one of core. The core provides al-
locations that are stable with respect to any sub-coalitions. In this sense, it represents a
refinement of the imputation set. To define the core, the conditions valid for the impu-
tation set are strengthened, as not only do the players have no incentives to split from
the grand coalition and play individually, but they also do not benefit from forming any
sub-coalition. As a consequence, the core is still a polyhedral set and is a subset of the
imputation set.

In particular, the core of a game is the set of allocations that satisfy

• efficiency,

• individual rationality, and

• stability with respect to sub-coalitions.

The three properties mentioned above lead to the following definition of core.

61
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62 Chapter 6. Core, Shapley Value, Nucleolus

Definition 6.1 (Core). Let a TU game 〈N , v〉 be given, and let I (v) be the imputation set.
The core is the set of allocations given by

C (v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ I (v)|∑
i∈S

xi ≥ v(S) ∀S ∈ 2N \ �︸ ︷︷ ︸
stability w.r.t. sub-coalitions

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

As an example of how the core can be described in matrix form, consider a three-player
game. Then, the following set of inequalities applies:

C (v) =
"

x ∈�3|

xT

⎡
⎣ 1 0 0 1 1 0 1 −1

0 1 0 1 0 1 1 −1
0 0 1 0 1 1 1 −1

⎤
⎦

≥ [v({1})v({2}) . . . v(N ) − v(N )]
#

.

(6.1)

We can interpret the above conditions by saying that if x ∈ C (v), then no coalition
has an incentive to split off.

As for the imputation set, there exist conditions that guarantee that such stable alloca-
tions exist. These are necessary and sufficient conditions for the core to be nonempty and
have been proved by Bondareva (1963) and Shapley (1967). We restate such conditions in
the following theorem.

Theorem 6.2 (Bondareva and Shapley theorem). Given a game 〈N , v〉, the following are
equivalent:

1. the core C (v) �= �;
2. 〈N , v〉 is a balanced game.

We omit the proof for the sake of conciseness and as a few versions of the proof are
available in other textbooks. We simply highlight that such a proof is based on the duality
theorem from linear programming theory.

In order to understand what is meant by balanced game, consider the characteristic
vector 1S of coalition S,

[1S]i =
$

1, i ∈ S,
0, i �∈ S, (6.2)

where [1S ]i denotes the ith component of the characteristic vector 1S . In essence, the
characteristic vector has as many components as the number of players. Given coalition
S, the ith component of the characteristic vector 1S is 1 if the corresponding player is
in the coalition and 0 otherwise. It is worth noting that the characteristic vectors are the
columns of the constraint matrix except for the last column in (6.1). Balanced games build
upon the notion of a balanced map, which we review below.

Definition 6.3 (Balanced map). A map λ : 2N \ �→� is balanced if∑
S⊆N ,S �=�

λ(S)1S = 1N .
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6.3. Shapley value 63

The interpretation of the concept of a balanced map is that it is a rule expressing the
portion of unitary time that a player dedicates to each coalition S to which he belongs.
We illustrate this idea in the following example.

Example 6.4. For a three-player game the map λ(S) = 1/2 if |S| = 2 and 0 otherwise is a
balanced map. Analogously, also the map λ(S) = 1 if |S|= 1 and 0 otherwise is a balanced
map. In other words, every single player can devote half of his time to any of the two two-
player coalitions he forms with the other players, or he could spend all his time working
in the grand coalition.

With in mind the notion of a balanced map as provided above, we are ready to define
balanced games.

Definition 6.5 (Balanced game). A game is balanced if for every balanced map λ∑
S⊆N ,S �=�

λ(S)v(S)≤ v(N ).

The following example shows that the core may coincide with the imputation set.

Example 6.6. Given the game 〈N , v〉, where v(S) = 0 for all S �= N , and V (N ) = 1, the
core coincides with the simplex,

C (v) =
	

x ∈�n | xi ≥ 0 ∀i ∈N ,
∑
i∈N

xi = 1

�
.

The next example is known as the Gloves game. It simulates the scenario where one
player owns a left glove and two other players own a right glove. Obviously, this attributes
a higher contractual power to the player with the left glove (player 3 in the example). This
example shows that the core may include only one point.

Example 6.7 (Gloves game). Given the Gloves game 〈N , v〉, where N = {1,2,3} is the set
of players and v is the characteristic function given by

v({1}) = v({2}) = v({3}) = v({1,2}) = 0,
v({1,3}) = v({2,3}) = v({1,2,3}) = 1,

the core is a singleton and is obtained by solving

C (v) = {x ∈�3
+| x1+ x3 ≥ 1, x2+ x3 ≥ 1,

∑
i∈N xi = 1}

= (0,0,1). (6.3)

6.3 Shapley value
The Shapley value was first formalized by Lloyd Shapley in 1953. It is based on an ex-
tremely simple idea which has contributed to its popularity even among nonexperts of
cooperative game theory. The Shapley value is also very intuitive and enjoys useful prop-
erties. As a drawback it does not always provide stable allocations. We use a simple story
to introduce the Shapley value.
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64 Chapter 6. Core, Shapley Value, Nucleolus

Imagine a group of players that enter a room according to a predefined sequence. In-
dicate by σ : N → N the ordering of the entries. By this we mean that σ(k) is the player
who enters as kth, and σ−1(i) is the entry number of player i . As an example, if we have
σ = (3,2,1), then this means that

σ(1) = 3, σ(2) = 2, σ(3) = 1,
σ−1(1) = 3, σ−1(2) = 2, σ−1(3) = 1.

Given a predefined ordering, we can define the set of predecessors of i . Let us denote
it by

Pσ (i) = {k ∈N |σ−1(k)< σ−1(i)}.
Once we know the predecessors, we also know the marginal value of player i . This is

obtained as
mσ

i (v) = v(Pσ (i)∪ {i})− v(Pσ (i)).

In other words, the marginal value captures the value added to a coalition by a player.
After storing the marginal values in a vector, we obtain the marginal vector

mσ (v) = {mσ
i (v), i ∈N}.

It is worth noting that there exist n! marginal values for player i . This is the exact number
of permutations of n objects.

The above preamble takes us to the following definition of Shapley value.

Definition 6.8 (Shapley value). The Shapley value is the average of the marginal vector
over all possible permutations, namely

Φ(v) =
1
n!

∑
σ

mσ (v).

In the following example we mention the steps necessary to compute the Shapley
vector.

Example 6.9. Let the game 〈N , v〉 be given where the characteristic function satisfies

v({1}) = v({2}) = v({3}) = 0,
v({1,2}) = 4, v({1,3}) = 7, v({2,3}) = 15, v({1,2,3}) = 20.

Fig. 6.1 lists the marginal values and the resulting Shapley vector. This is given by Φ(v) =
1
6 (21,45,54) ∈C (v). To understand the computation of the Shapley vector, let us look at
the column of mσ

1 (v) (1st column). Consider the ordering (1,2,3) (1st row). According
to this, player 1 enters first. The marginal value of player 1 is zero, as the value of the
coalition {1} is zero. A similar consideration applies if we consider the ordering (1,3,2)
(2nd row). Consider now the ordering (2,1,3) (3rd row). Here, player 1 enters after
player 2. The coalition {2} turns into {1,2}, and the value increases from 0 to 4. This
scenario yields a marginal value of player 1 equal to 4. Consider the ordering (2,3,1) (4th
row). Here, player 1 enters the room last. Actually, coalition {2,3} turns into the grand
coalition, and the value increases from 15 to 20. This scenario yields a marginal value of
player 1 equal to 5. Consider the ordering (3,1,2) (5th row). Here, player 1 enters the
room after player 3. Coalition {3} turns into {1,3}, and the value increases from 0 to 7.
This scenario yields a marginal value of player 1 equal to 7. Finally, the last row considers
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6.4. Convex games 65

the ordering (3,2,1). In this case, player 1 enters the room last. The coalition {2,3} turns
into the grand coalition, and the value goes from 15 to 20, which yields a marginal value of
5. The interpretation of the values in columns 2 and 3 is analogous. The columns collect
the marginal values mσ

2 (v) and mσ
3 (v) of players 2 and 3, respectively. These are obtained

by repeating the same procedure for these players.

σ mσ
1 (v) mσ

2 (v) mσ
3 (v)

(1,2,3) 0 4 16
(1,3,2) 0 13 7
(2,1,3) 4 0 16
(2,3,1) 5 0 15
(3,1,2) 7 13 0
(3,2,1) 5 15 0

Figure 6.1. Marginal values. Reprinted with permission from Hindustan Book Agency [239].

There are a few reasons why the Shapley value has become popular; it is intuitive, and
it verifies properties like (i) the efficiency property and (ii) the dummy player property. A
player is dummy if the marginal contribution he adds to any coalition is equal to v({i}).
The dummy player property deals with the fact that each dummy player i is rewarded
with a value Φ(v)i = v({i}). In other words he receives a reward which is equal to the
marginal contribution he adds to any coalition. The drawback of using the Shapley value
is that such a value is not always in the core of the game. A solution concept which is
always in the core of the game is the nucleolus. In the rest of this chapter we introduce
this concept and show that, despite its computation being a bit troublesome, it provides
allocation in the core, provided that the latter is nonempty. However, before introducing
the nucleolus, we wish to discuss an interesting category of games known as convex games.

6.4 Convex games
There exists a category of games for which computing the core is simple. This is the
category of convex games.

Definition 6.10 (Convex games). We say that a TU game is convex if it satisfies the property

v(S ∪T )+ v(S ∩T )> v(S)+ v(T ) ∀S,T ∈ 2N .

Recall the category of superadditive games introduced in Section 5.5. Superadditive
games are characterized by the following property:

v(S ∪T )> v(S)+ v(T ) ∀S,T ∈ 2N : S ∩T = �.
Then convex games constitute a subset of superadditive games. This is clear by noting
that in convex games the marginal contribution of any player i or coalition of players T
to coalition S increases with the number of players in S. It can be shown that, given a
convex game, any allocation which gives each player a reward equal to his marginal value
is in the core. The resulting allocation vector x is constituted by the components xi =mσ

i
for any σ . Such a vector yields a point in the core. We are ready to illustrate the nucleolus
in the remaining part of this chapter.
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6.5 Nucleolus
Let the following lexicographic order ≤L be given. For instance, let us think of the order
used to store words in a dictionary. We say that x ∈ �p is lexicographically smaller than
y ∈�P if x = y or there exists an s = 1,2, . . . , p such that xi = yi for all i < s and xs < ys .
As an example, we have that (0,100,100)≤L (1,−10,−10), and (10,4,100)≤L (10,5,6).

Definition 6.11 (Excess vector). Given an allocation x ∈ I (v), we define excess vector as
the vector

θ(x) =
	

e(S, x) := v(S)−∑
i∈S

xi ∀S ∈ 2N \ �
�

.

Furthermore, the quantity e(S, x) := v(S)−∑i∈S xi is said to be the excess of coalition S.

Based on the above definition, the excess vector has a number of components equal to
the number of coalitions. For each coalition the excess vector captures the discrepancy
between the value of the coalition and the total amount given to the members of the
coalition. Then, the coalition is stable if such a difference is negative. In other words
stability arises when the total amount exceeds the value of the coalition. With in mind
the lexicographic ordering defined above, the nucleolus is defined as the solution that
minimizes such an excess vector. This is formalized in the next definition.

Definition 6.12 (Nucleolus). The nucleolus is the lexicographic minimizer of any excess
vector:

θ(N u(v))≤L θ(x) ∀x ∈ I (v).

It can be proved that the nucleolus is always in the core of the game whenever the
latter is nonempty, as established in the next theorem.

Theorem 6.13. If C (v) �= �, then N u(v) ∈C (v).

From a different perspective, we can say that the nucleolus minimizes the maximal
excess. We can also say that if the core is nonempty, the nucleolus always belongs to it.

As an example, for the Gloves game introduced in Example 6.7, we saw that the core
is a singleton, and therefore the nucleolus corresponds to the core. We repropose the
example in the following.

Example 6.14. Given the Gloves game 〈N , v〉, where

v({1}) = v({2}) = v({3}) = v({1,2}) = 0,
v({1,3}) = v({2,3}) = v({1,2,3}) = 1,

the nucleolus is N u(v) = (0,0,1) =C (v).

If the game admits a symmetric structure, the computation of the nucleolus can be
enormously simplified, as shown next.

Example 6.15. Given the game 〈N , v〉, N = {1,2,3,4} and v(S) = |S|2 for all S ∈ 2N :

C (v) = {x ∈�4
+| xi + xj ≥ 4 ∀i , j , xi + xj + xk ≥ 9, ∀i , j , k ,

x1+ x2 + x3+ x4 = 16}. (6.4)
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6.6. Notes and references 67

Note that the constraints are symmetric; thus N u(v) = (a,a,a,a). The only solution
verifying efficiency is then N u(v) = (4,4,4,4).

6.5.1 Computation through sequence of linear programs

This chapter concludes with a description of a computational technique to compute the
nucleolus. This technique is based on a sequence of linear programming problems. The
technique is recursive, and we comment next only on the first two steps. The first step
involves minimizing the maximal excess. This corresponds to solving the following linear
programming problem:

θ1 :=min t
e(S, x)≤ t ∀S ⊆N ,
1T x(N ) = v(N ),
xi ≥ v({i}) ∀i ∈N .

(6.5)

Let us denote X1 = {x|e(S, x) ≤ θ1 ∀S ⊆ N}. In other words, X1 is the set of allocations
that attain the minimum for the maximal excess. In addition to this, let us denote Σ1 ={S ⊆ N |e(S, x) = θ1 ∀x ∈ X1}. Set Σ1 is the set of all coalitions at which the maximal
excess is attained at all x ∈X1.

In the second step we wish to minimize the second-largest excess. This boils down to
the following linear programming problem:

θ2 :=min t
e(S, x) = θ1 ∀S ∈Σ1,
e(S, x)≤ t ∀S �∈Σ1,
1T x(N ) = v(N ),
xi ≥ v({i}) ∀i ∈N , and so forth.

(6.6)

The algorithm for the computation of the nucleolus continues recursively until a solution
is obtained. Note that the computation procedure that leads to the nucleolus is more
cumbersome than the one which leads to the Shapley value. This probably justifies the
large popularity of the Shapley value among the nonexperts of game theory.

6.6 Notes and references
The material of this chapter is inspired by [239, Chap. 11], [196, Chaps. 13–14] and [173,
Chaps. 16–18].

For a formal proof of the Bondareva and Shapley theorem we refer the reader to the
original works [63, 221] as well as to [196, Sect. 13.3]. The introduction of the core
in Section 6.2 is heavily based on [239, Chap. 11] and [196, Chap. 13]. The Shapley
value were first formulated in [219], and it is also discussed in [196, Chap. 14] and [108].
Example 6.9 is borrowed from [239, Chap. 14]. More details on the nucleolus can be
found in [196, Chap. 14].

The material of this chapter is also integrated with some lecture notes taken by the au-
thor during a Summer School on Game Theory and Operations Research held in Lavagna,
Italy, in September 2003, and organized by Fioravante Patrone and Vito Fragnelli.

For a tutorial on the use of coalitional game theory in communication we refer the
reader to [209].
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Chapter 7

Evolutionary Game
Theory

7.1 Introduction
This chapter covers basic concepts in evolutionary game theory. In a nutshell, the theory
of evolutionary games deals with the study of cooperation and competition in evolution-
ary biology. The theory goes further and studies the impact that evolutionary biology
has on social science. This is illustrated in the classical model delineated throughout this
chapter.

A fundamental concept is the one of evolutionarily stable strategy, which we develop
at the beginning of the chapter. Different perspectives will lead to two equivalent defini-
tions of evolutionarily stable strategies. The first definition is developed in the context of
evolutionary biology. The second definition arises in economics and presents similarities
with the notion of Nash equilibrium. Evolutionarily stable strategies are explored in the
context of prototypical games like the Prisoner’s dilemma, the Hawk and Dove game, and
the Coordination game, just to name a few.

This chapter is organized as follows. Section 7.2 introduces the model involving a
population of incumbents and mutants. Section 7.3 examines relations between evolu-
tionarily stable strategies, dominance, and equilibrium solutions. Section 7.4 introduces
the two equivalent definitions of evolutionarily stable strategies. Section 7.5 discusses
implications of stability and illustrates the latter on a number of examples. Finally, Sec-
tion 7.6 provides notes, conclusions, and references.

7.2 Population of incumbents and mutants
Imagine a population of individuals, henceforth called incumbents. These individuals are
“designed” so that they can play a given strategy. Individuals are subjected to random
matchings at every time. Such a scenario can be described using a two-player symmet-
ric game. Here a single individual, the row player, seeks to maximize his average payoff
based on the distribution of the population behavior. The population is fictitiously rep-
resented by the column player, and the distribution of the population is modeled by the
mixed strategy of the column player. Furthermore, the strategies represent the genes; and
the payoffs indicate the fitness of the individuals, i.e., the expected number of offsprings.
Together with the incumbents, in the population there may also be mutants. These are
offsprings that play randomly any feasible strategy in the set of strategies. We call successful
those strategies that tend to grow and unsuccessful those strategies that tend to extinguish.
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70 Chapter 7. Evolutionary Game Theory

This preamble takes us to the following main question: What conditions guarantee
that the given strategy is robust against mutations? Under what circumstances will the
mutants die or thrive? The theory of evolutionary games essentially gives an answer to
the above questions.

Example 7.1 (Prisoner’s dilemma). This example reframes the Prisoner’s dilemma in an
evolutionary game-theoretic context. Recall that the Prisoner’s dilemma is described by
the bimatrix displayed in Fig. 7.1. The scenario we are considering is as follows. There is
a group of lions on a hunt. Every lion can cooperate (C ) and go on a hunt together with
the group or can defect (D) and go on a hunt alone. Likewise, we can think of a group of
ants defending a nest. Every ant can cooperate in defending the nest from a spider or can
defect and flee away from the danger.

C D
C (3,3) (0,4)
D (4,0) (1,1)

Figure 7.1. Prisoner’s dilemma as an evolutionary game. Reprinted with permission from
Benjamin Polak and Yale University [202].

Fig. 7.1 displays the bimatrix containing the payoff of each individual—think of it as
the row player—when such an individual plays against a random opponent extracted from
the population. Here the opponent is the column player, which plays a mixed strategy
that simulates the distribution of the population. Given the setup as illustrated above,
let us consider a mixed strategy (1− ε,ε) for the column player. This strategy admits
the following interpretation: a small portion ε of mutants play D, while the rest of the
population, constituted by the incumbents, plays C . The question we wish to answer
is whether the strategy cooperation is an evolutionarily stable strategy or not. We will
see that cooperation is not evolutionarily stable. To obtain an answer, note that the mu-
tant performs better than the incumbent on a random matching. To see this, we need
to consider two different scenarios: one contemplates an incumbent playing against the
population, and the other involves a mutant playing against the population.

• Case 1: Incumbent against the population. When an incumbent (row player)
meets an opponent (column player) randomly extracted from the population, the
opponent plays C with probability 1− ε and D with probability ε. This corre-
sponds to saying that the column player adopts a mixed strategy (1− ε,ε). For
the expected payoff we then obtain (1 − ε)3 + ε0 = 3(1 − ε). To indicate the
random matching between an incumbent and an individual from the population
we shortly write C vs. [(1− ε)C + εD]. The expected payoff computation yields
(1−ε)[3]+ε0= 3(1−ε). Such a scenario is shortly described in one line as shown
below:

C vs. [(1− ε)C + εD]→ (1− ε)[3]+ ε0= 3(1− ε),
where vs. means versus.

• Case 2: Mutant against the population. Differently, imagine that a mutant (row
player) fights against an opponent (column player), which is randomly extracted
from the population. The opponent plays C with probability 1− ε and plays D
with probability ε. As a result, the expected payoff is (1− ε)4+ ε = 4(1− ε) + ε.
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7.3. Evolutionarily stable strategy, dominance, and equilibrium 71

Briefly, we can indicate such a scenario in one line as displayed below:

D vs. [(1− ε)C + εD]→ (1− ε)[4]+ ε1= 4(1− ε)+ ε.
Given both scenarios, we need to compare the expected payoffs of incumbents and mu-
tants when involved in random matchings with other individuals. It is clear that the mu-
tant performs better than the incumbent, from which we conclude that cooperation is not
an evolutionarily stable strategy. In addition to this, it is worth noting that cooperation is
a strictly dominated strategy. The challenge now is about generalizing the result provided
by the example under study. We do this in the next section.

7.3 Evolutionarily stable strategy, dominance, and equilibrium
In this section we highlight connections between evolutionarily stable strategies, domi-
nance, and equilibrium solutions.

7.3.1 A strictly dominated strategy is not an evolutionarily stable
strategy

From the analysis of the Prisoner’s dilemma in the preceding section, we understand that
cooperation, which is a strictly dominated strategy, is not evolutionarily stable. The idea
now is to generalize this result. Actually, the main message of this section is essentially
that strictly dominated strategies are not evolutionarily stable. To understand this, let us go
back to the Prisoner’s dilemma example. Imagine that the population is now “designed”
so that most individuals defect, while there is a minority who plays C . This corresponds
to assuming a mixed strategy (ε, 1− ε) for the column player. We can interpret such a
mixed strategy as if a small percentage ε of mutants will play C within a population of
incumbents that play D. We see here that the strategy defection is evolutionarily stable,
as a mutant performs worse than an incumbent on a random matching. This is clear once
we analyze the two scenarios involving first an incumbent playing against the population
and then a mutant playing against the population. Both scenarios are discussed next.

• Case 1: Incumbent against the population. Let us suppose that an incumbent
(row player) plays against an opponent (column player) randomly extracted from
the population. We shortly indicate such a scenario as D vs. [(1− ε)D + εC ]. The
incumbent’s expected payoff is given by (1− ε)[1]+ ε[4] = (1− ε) + 4ε. In short,
we have

D vs. [(1− ε)D + εC ]→ (1− ε)[1]+ ε[4] = (1− ε)+ 4ε.

• Case 2: Mutant against the population. Now, suppose that a mutant (row player)
faces an opponent (column player) randomly extracted from the population, namely
C vs. [(1−ε)D+εC ]. The mutant’s expected payoff is then (1−ε)[0]+ε[3] = 3ε.
More compactly, we have

C vs. [(1− ε)D + εC ]→ (1− ε)[0]+ ε[3] = 3ε.

We infer that the incumbent is more successful than the mutant on random matchings.
This implies that mutations from D tend to extinguish. In general, we can state that a
strictly dominated strategy is not evolutionarily stable. This is easily proven by showing
that the strictly dominant strategy turns out to be a successful mutation.
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72 Chapter 7. Evolutionary Game Theory

7.3.2 From evolutionarily stable strategy to symmetric Nash equilibrium

This section develops another general consideration, namely that evolutionarily stable
strategies yield symmetric Nash equilibrium solutions. Recall that strategies represent
genes, and therefore a symmetric Nash equilibrium corresponds to a so-called monomor-
phic population. This is a population with a unique gene. We develop further this concept
in the bimatrix example provided in Fig. 7.2. The example shows a two-player nonzero-
sum game where both players can play b or c . The game represents a variant of the Co-
ordination game where one player is better off by playing b if the other player is playing
c and vice versa.

b c
b (0,0) (1,1)
c (1,1) (0,0)

Figure 7.2. Example showing that an evolutionarily stable strategy yields a Nash equilib-
rium. Reprinted with permission from Benjamin Polak and Yale University [202].

Given the above games, we wish to analyze strategy c and answer the question of
whether such a strategy is evolutionarily stable or not. We anticipate that the answer is
negative, as we will see that the mutants who select b perform better than the incumbents
who are programmed to play c . The two scenarios and the corresponding average payoffs
are summarized in the next two lines:

c vs. [(1− ε)c + εb ]→ (1− ε)[0]+ ε[1] = ε,
b vs. [(1− ε)c + εb ]→ (1− ε)[1]+ ε[0] = 1− ε.

The first line above contemplates the case where an incumbent picking strategy c faces an
opponent who plays the mixed strategy [(1− ε)c + εb ]. As a result the expected payoff
is (1− ε)[0] + ε[1] = ε. Analogously, the second line simulates the case where a mutant
selecting strategy b fights against an opponent from the population who plays the mixed
strategy [(1− ε)c + εb ]. The expected payoff is then (1− ε)[1] + ε[0] = 1− ε. We can
conclude that the mutant’s payoff is better than the incumbent’s payoff, and therefore c
is not an evolutionarily stable strategy.

From a deeper exploration, we also observe that the mutants who play b , as a conse-
quence of their being more successful than the incumbents playing c , grow from a smaller
percentage of ε to 1

2 . In addition to this, observe that strategy b , which is the mutant gene
or the invader, is itself not evolutionarily stable. Despite this, strategy b still avoids dying
out.

Another question we can pose at this point is whether strategy c is a Nash equilibrium
or not. To put it differently, we wish to know whether the symmetric profile (c , c) is a
symmetric Nash equilibrium. Again, we see that this is not the case, since strategy b
turns out to be a strict profitable deviation. The conclusion is that, given a strategy s ,
if such a strategy does not yield a symmetric Nash equilibrium, then the same strategy
is not evolutionarily stable. From a different angle, this is equivalent to saying that a
necessary condition for a strategy to be evolutionarily stable is that such a strategy is a
Nash equilibrium strategy. This is stated shortly in the following implication:

If s is evolutionarily stable ⇒ (s , s) is a Nash equilibrium.
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7.4. Formal definition of evolutionarily stable strategy 73

7.3.3 A Nash equilibrium strategy is not necessarily an evolutionarily
stable strategy

The fundamental message of the previous section is that an evolutionarily stable strategy
yields a symmetric Nash equilibrium. In this section, we turn to analyze the opposite
case and show that the converse is not true. Actually, we show that a Nash equilibrium
strategy is not necessarily evolutionarily stable. To see this, let us look at the example
displayed in Fig. 7.3. The example is a two-player nonzero-sum game where both play-
ers can play a or b . The example shows two Nash equilibrium solutions, namely (a,a)
and (b , b ). However, it is worth noting that strategy b , which is a Nash equilibrium
strategy as it appears in the Nash equilibrium (b , b ), is not evolutionarily stable. To un-
derstand this, let us observe that the mutants who play the strategy a perform better than
the incumbents who are programmed to play b . This is evident by considering the two
scenarios summarized below:

b vs. [(1− ε)b + εa]→ (1− ε)[0]+ ε[0] = 0,
a vs. [(1− ε)b + εa]→ (1− ε)[0]+ ε[1] = ε.

The first line represents the case where an incumbent playing b fights against an oppo-
nent randomly extracted from the population and therefore is playing the mixed strategy
[(1− ε)b + εa]. The resulting expected payoff is (1− ε)[0] + ε[0] = 0. The second line
describes another scenario, where a mutant who plays strategy a faces an opponent ran-
domly extracted from the population and therefore is characterized by a mixed strategy
[(1−ε)b+εa]. As a consequence, the expected payoff is given by (1−ε)[0]+ε[1] = ε. We
conclude that the mutant performs better than the incumbent, and therefore the strategy
b is not evolutionarily stable. This is true despite the symmetric profile (b , b ) being a
Nash equilibrium. The main justification for this is that the symmetric profile (b , b ) is
not a strict Nash equilibrium. In conclusion, we can observe the following fact: If (s , s)
is a strict Nash equilibrium, then s is an evolutionarily stable strategy.

a b
a (1,1) (0,0)
b (0,0) (0,0)

Figure 7.3. Example showing that a Nash equilibrium strategy is not necessarily evolution-
arily stable. Reprinted with permission from Benjamin Polak and Yale University [202].

7.4 Formal definition of evolutionarily stable strategy
There exist two equivalent definitions of evolutionarily stable strategies: the first one has
been developed in Evolutionary Biology, while the second one arises in the Economics
literature. The first definition uses the notion of “small” perturbation ε, and this makes
the conditions stated in the first definition difficult to be checked. The verification of the
second definition, the one developed in the Economics literature, is more straightforward
and simpler.

7.4.1 A first definition in Biology

The setup is as follows. Let a two-player symmetric game be given, where Δ is the set of
mixed strategies for the row player, and u(a, b ) is his payoff resulting from the row player
playing the strategy a ∈Δ against a population playing the strategy b ∈Δ.
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Definition 7.2. A mixed strategy s∗ ∈ Δ is evolutionarily stable if there exists ε̄ > 0 such
that for any s ∈Δ and ε≤ ε̄, we have

u(s∗,εs +(1− ε)s∗)︸ ︷︷ ︸
payoff to incumbent s∗

> u(s ,εs +(1− ε)s∗)︸ ︷︷ ︸
payoff to mutant s

.

Two interpretations are available for the above definition. According to a first inter-
pretation, we can state that the incumbents perform better than the mutants on random
matchings. Another interpretation is that the strategy s∗ cannot be invaded by s .

7.4.2 A second definition in Economics

Evolutionarily stable strategies have also been studied by economists, who provide for
them an equivalent definition. Such a definition reminds us of the first and second opti-
mality conditions.

Definition 7.3. A mixed strategy s∗ ∈Δ is evolutionarily stable if for any s ∈Δ the following
two conditions hold:

(a) u(s∗, s∗)≥ u(s , s∗);
(b) if u(s∗, s∗) = u(s , s∗), then u(s∗, s)> u(s , s).

Condition (a) in the above definition states essentially that the symmetric profile (s∗ , s∗)
is a symmetric Nash equilibrium. This condition contemplates two possibilities, namely
that (s∗, s∗) be a strict Nash equilibrium or not. Condition (b) says that if the symmet-
ric profile (s∗, s∗) is not a strict Nash equilibrium, then the mutant must perform poorly
when playing against another mutant.

In plain words, condition (a) requires that the mutant perform poorly against the
masses. In addition, condition (b) states that the mutant performs reasonably well against
the masses but poorly against itself. The two definitions are proven to be equivalent.

7.5 Implications and examples
After introducing the formal definition of evolutionarily stable strategy, we are in a posi-
tion to comment on a few direct consequences of such a definition. We also illustrate the
aforementioned stability concept on a number of examples.

7.5.1 A nonstrict Nash equilibrium can be an evolutionarily stable
strategy

This section examines condition (b) in Definition 7.3. In particular we show that such
a condition implies that a nonstrict Nash equilibrium can be evolutionarily stable. We
illustrate this in the example provided in Fig. 7.4. The example deals with a two-player

a b
a (1,1) (1,1)
b (1,1) (0,0)

Figure 7.4. Example showing that a nonstrict Nash equilibrium can be evolutionarily stable.
Reprinted with permission from Benjamin Polak and Yale University [202].
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7.5. Implications and examples 75

nonzero-sum game where both players can play a or b . We immediately note that the
symmetric profile (a,a) is a symmetric Nash equilibrium. However, such an equilib-
rium is not a strict Nash equilibrium, as player 1, by deviating, is not worse off, namely,
u(a,a) = u(b ,a) = 1. The point we wish to develop here is about strategy a being evo-
lutionarily stable or not. A possible way to proceed to provide an answer is to check
condition (b) in Definition 7.3. To do this, let us compare u(a, b ) and u(b , b ), and so we
have

u(a, b )> u(b , b ).

The conclusion is that strategy a is evolutionarily stable.

Example 7.4 (Evolution of social convention). This example deals with a game that pre-
sents multiple evolutionarily stable strategies. The example builds on the well-known Co-
ordination game. This game, whose bimatrix is displayed in Fig. 7.5, is useful to describe
the evolution of social conventions. The setup of the game involves two players that can
drive left or right. In an evolutionary context, the row player is an individual, and the
column player is a fictitious opponent whose mixed strategy simulates the distribution of
the population.

L R
L (2,2) (0,0)
R (0,0) (1,1)

Figure 7.5. Coordination game describing the evolution of social convention. Reprinted
with permission from Benjamin Polak and Yale University [202].

The profiles (L, L) (both players driving left) and (R, R) (both players driving right)
are two strict Nash equilibrium solutions. From what we have said so far, both L and
R are evolutionarily stable strategies. Then we can infer that there may exist multiple
evolutionarily stable strategies. It turns out that these strategies need not be equally good.
As an example, the profile (L, L) returns better payoffs than the profile (R, R).

Example 7.5 (Battle of the Sexes). In this example we show that there may exist evolu-
tionarily stable mixed strategies. Recall that strategies correspond to genes. Then mixed
strategies correspond to a polymorphic population. In the parlance of evolutionary biol-
ogy, this is a population with multiple genes. To illustrate this idea let us introduce the
bimatrix in Fig. 7.6. The game is obtained by swapping the columns of the Battle of the
Sexes’ bimatrix. In the above game, both players have two strategies. A first strategy is a,
which corresponds to playing aggressively, and a second strategy is b , which corresponds
to playing nonaggressively. There exist no symmetric pure Nash equilibrium solutions
for this game. This means that we have no monomorphic population.

a b
a (0,0) (2,1)
b (1,2) (0,0)

Figure 7.6. Battle of the Sexes showing evolutionarily stable mixed strategies. Reprinted
with permission from Benjamin Polak and Yale University [202].
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76 Chapter 7. Evolutionary Game Theory

Despite the above considerations, we note that the solution [( 23 , 1
3 ), (

2
3 , 1

3 )] is a sym-
metric mixed-strategy Nash equilibrium, which yields a polymorphic population. Such
an equilibrium cannot be strict, as it is a mixed Nash equilibrium, and therefore from the
Indifference Principle we know that any strategy in the support returns a same payoff.

From condition (b) in Definition 7.3, we have that u(s∗, s) > u(s , s) for all possible
mutations s ∈Δ. Actually, let us take s = a and s = b and obtain for the row player

u(s∗,a) = 1/3> u(a,a) = 0, u(s∗, b ) = 4/3> u(b , b ) = 0.

Example 7.6 (Monomorphic evolutionarily stable strategy (case 1)). In this example
we develop a game characterized by monomorphic evolutionarily stable strategies. Consider
a two-player nonzero-sum game whose bimatrix is shown in Fig. 7.7. The game is the
classical Hawk and Dove game.

Hawk Dove

Hawk V−C
2 , V−C

2 (V , 0)

Dove (0,V ) V
2 , V

2

Figure 7.7. The Hawk and Dove game where V > C shows monomorphic evolutionarily
stable strategies. Reprinted with permission from Benjamin Polak and Yale University [202].

Recall that V is essentially the prize of victory and that C is the cost of fight. If we
take V > C , then the game can be assimilated to the Prisoner’s dilemma for which there
exists a unique strict Nash equilibrium, which is (Hawk , Hawk). Consequently, Hawk
is also an evolutionarily stable strategy. Under the assumption that the prize of victory
is higher than the cost of fighting, then the evolutionary interpretation of the game sug-
gests that all individuals will end up selecting an aggressive behavior, namely strategy
Hawk.

Example 7.7 (Monomorphic evolutionarily stable strategy (case 2)). The same exam-
ple as in the previous section but with different parameters shows that behaving aggres-
sively, namely the strategy Hawk, leads to a monomorphic evolutionarily stable strat-
egy. The bimatrix is displayed in Fig. 7.8. Differently from the previous section, let
us assume now that the prize of victory is equal to the cost of fighting. This is equiv-
alent to setting V = C . In this case, we have that (Hawk , Hawk) is still a Nash equi-
librium solution but not strict, as deviations lead to a same payoff. To see this, note
that u(D, H ) = u(H , H ) = 0. In this context, we are interested in answering the ques-
tion of whether Hawk is an evolutionarily stable strategy or not. After noting that

Hawk Dove

Hawk V−C
2 , V−C

2 (V , 0)

Dove (0,V ) V
2 , V

2

Figure 7.8. The Hawk and Dove game where V = C shows monomorphic evolutionarily
stable strategies. Reprinted with permission from Benjamin Polak and Yale University [202].
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7.5. Implications and examples 77

u(H , D) = V > u(D, D) = V
2 for any mutation D, we can conclude with a positive

answer, namely Hawk is evolutionarily stable. In conclusion, if the prize of victory is
equal to the cost of fighting, then the whole population will end up fighting.

Example 7.8 (Polymorphic evolutionarily stable strategy (case 3)). As in the previous
two cases, this example develops the Hawk and Dove game but under a further different
assumption on the parameters. The example, whose bimatrix is as in Fig. 7.9, shows that
we can have polymorphic evolutionarily stable strategies. To understand this, note that
if the prize of victory is less than the cost of fight, namely V < C , then the profiles
(Hawk , Dove) and (Dove , Hawk) are two nonsymmetric Nash equilibrium solutions.
In addition to these pure Nash equilibrium solutions, we also have a mixed Nash equilib-
rium, which is given by [(VC , 1− V

C ), (
V
C , 1− V

C )]. We also realize that the strategy Hawk is
not evolutionarily stable, and that the strategy Dove is not evolutionarily stable as well.
The question is then whether the mixed strategy s∗ = (VC , 1− V

C ) is evolutionarily sta-
ble. As [(VC , 1− V

C ), (
V
C , 1− V

C )] is a mixed Nash equilibrium, then such an equilibrium
cannot be strict. Indeed from the Indifference Principle we have that the mixed strategy
or any strategy in the support must return the same payoff. This corresponds to saying
that u(D, s∗) = u(H , s∗) = u(s∗, s∗). Given this, we then need to check condition (b)
in Definition 7.3. By doing this we have that u(s∗, H ) > u(H , H ) for a mutant H , and
also that u(s∗, D) > u(D, D) for a mutant D. We conclude that s∗ = (VC , 1− V

C ) is evo-
lutionarily stable. Furthermore, as V increases, more players playing Hawk are in the
evolutionarily stable strategy. This is in accordance with the intuition that says that the
higher the prize of victory the higher the percentage of individuals who play aggressively
at the equilibrium.

Hawk Dove

Hawk V−C
2 , V−C

2 (V,0)

Dove (0,V) V
2 , V

2

Figure 7.9. The Hawk and Dove game where V < C shows monomorphic evolutionarily
stable strategies. Reprinted with permission from Benjamin Polak and Yale University [202].

Example 7.9 (Rock-Paper-Scissors: No evolutionarily stable strategy). In this last ex-
ample, we present a game for which there exist no evolutionarily stable strategies. The
game is the well-known Rock-Paper-Scissors game, which is modeled by the bimatrix in
Fig. 7.10. In accordance with what we saw earlier, the game is a further example that

R P S
R (γ ,γ ) (−1,1) (1,−1)
P (1,−1) (γ ,γ ) (−1,1)
S (−1,1) (1,−1) (γ ,γ )

Figure 7.10. The Rock-Paper-Scissors game shows no evolutionarily stable strategies.
Reprinted with permission from Benjamin Polak and Yale University [202].
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78 Chapter 7. Evolutionary Game Theory

Nash equilibrium strategies are not necessarily evolutionarily stable strategies. In partic-
ular, for this game we have one mixed Nash equilibrium, which is s∗ = ( 13 , 1

3 , 1
3 ). From the

Indifference Principle such an equilibrium cannot be a strict Nash equilibrium. Indeed, it
must hold that any strategy in the support is equivalent in terms of payoffs to the mixed
strategy. This is captured by the equalities below:

u(R, s∗) = u(P, s∗) = u(S, s∗) = u(s∗, s∗).

With the above consideration in mind, we proceed with the verification that the mu-
tant R is successful. In other words we check the condition

u(s∗, R) =
γ

3
< u(R, R) = γ .

As the above inequality holds, we conclude that there exists no evolutionarily stable strat-
egy. What happens in an evolutionarily dynamic scenario is that the strategies keep cy-
cling around. The theory of learning in games makes use of such an example to introduce
the concept of uncoupled dynamics and to prove that convergence through learning is not
always possible. This is the subject of the next chapter.

7.6 Notes and references
The layout of this chapter follows the open course by Polak at Yale [202]. The roots of
evolutionary games can be traced back to the work of Smith, Game Theory and the Evo-
lution of Fighting (1972) [223]. This paper was followed one year later by the article “The
Logic of Animal Conflict” (1973) in Nature, coauthored by Price [225]. The foundations
of the theory are also in the book Evolution and the Theory of Games (1982) [224]. Fur-
ther results on mixed evolutionarily stable strategy are provided in the Bishop–Cannings
theorem in [55]. For a comprehensive treatment of the topic we refer the reader to the
classical books by Weibull [250] and Sandholm [211].
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Chapter 8

Replicator Dynamics and
Learning in Games

8.1 Introduction
All the different types of equilibria we have encountered so far represent stationary so-
lutions. This chapter turns the attention to the dynamics that can lead to some of such
equilibria. It is in this chapter that we introduce for the first time the replicator dynamics.
Such a dynamics describes the evolution of the strategies under the assumption that the
players are reactive to the environment. By that we mean that the players observe the
population behavior and adopt their best-response strategies. The replicator dynamics
provides also an opportunity to look into asymptotic stability and to analyze the link
with the evolutionarily stable strategies defined in the previous chapter. In the second
part of this chapter, we focus on learning in games. A comprehension of the different tech-
niques in learning in games involves a few dynamic aspects that we borrow from systems
theory. A classical situation we will consider is the one in which the players construct an
empirical frequency distribution from observations of the past opponents’ plays. By em-
pirical frequency we mean a probability distribution over the opponents’ action spaces
that says how many times in the past a given choice has been played by a player. Empirical
frequency introduces to the reader the broad area of fictitious games.

Section 8.2 introduces the replicator dynamics. Section 8.3 deals with stationarity,
Nash equilibrium solutions, and stability. Section 8.4 introduces learning in games and
fictitious play. Section 8.5 provides notes and references.

8.2 Replicator dynamics
The evolutionary models encountered in the previous chapter do not consider any explicit
dynamics. In contrast to this, we here focus on how the players change dynamically their
strategies. The first evolution dynamics we consider is known as replicator dynamics. Let
us enumerate the strategies using an index s = 1,2, . . . ,K . Let us indicate with xs the
percentage of the population playing a strategy s . Obviously, it must hold that the sum
of the percentages over the whole action space must sum up to one, i.e.,

K∑
s=1

xs = 1.

Also, let us use the symbol x = (xs )s∈1,2,...,K to denote the population distribution. From
the previous chapter, we know that this corresponds to a polymorphic strategy profile in

79
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80 Chapter 8. Replicator Dynamics and Learning in Games

the language of evolutionary biology. At the same time, from a game-theoretic perspec-
tive, x can also be viewed as a mixed strategy over 1,2, . . . ,K . Now, let us suppose that
individuals are subjected to random matchings. Consider the expected fitness of playing
a generic strategy s against a population playing x. In the previous chapter the fitness
resulting from such strategies has been denoted by u(s , x).

We are ready to introduce the replicator dynamics in its generic form.

Definition 8.1 (Replicator dynamics). For each s = 1,2, . . . ,K and for all t and τ the
replicator dynamics is given by

xs (t +τ)− xs (t ) = xs (t )
τ[u(s , x(t ))− ū(x(t ))]

ū(x(t ))
,

where ū(x(t )) is the average fitness at time t resulting from a population distribution given
by x(t ). Such an average fitness is given by

ū(x(t )) :=
K∑

s=1

xs u(s , x(t )).

The replicator dynamics concedes the following interpretation: The greater the fitness
of a strategy relative to the average fitness, the greater its relative increase in the population.
It is worth noting that from the conservation of the mass we have

∑K
s=1 xs (t +τ) = 1. In

addition, we also note that by setting τ = 1, we find the well-known discrete-time replicator
equation.

To derive the replicator dynamics in continuous time we need to divide both sides of
the equation by τ. By taking the limit as τ→ 0 we obtain

lim
τ→0

xs (t +τ)− xs (t )
τ

= xs (t )
[u(s , x(t ))− ū(x(t ))]

ū(x(t ))
.

Definition 8.2 (Continuous-time replicator dynamics). The continuous-time version of
the dynamics takes the form

ẋs (t ) = xs (t )
[u(s , x(t ))− ū(x(t ))]

ū(x(t ))
.

The above dynamics is also referred to as the continuous replicator.
Introducing the replicator dynamics paves the way to a few questions, such as the

following:

• Given a vector of distribution x∗, is such a vector a stationary state? Recall that
from systems theory a stationary state is a state for which the first-order derivative
is null, namely ẋ∗(t ) = 0.

• Is a given vector of distribution x∗ asymptotically stable? This is equivalent to saying
that there exists a neighborhood of x∗ such that any trajectory starting from any
x0 in this neighborhood is such that the continuous replicator dynamics provides a
trajectory that converges to x∗.

In the next section, we shall deal with stationarity for the continuous replicator dynamics.
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8.3. Stationarity, equilibria, and asymptotic stability 81

8.3 Stationarity, equilibria, and asymptotic stability
This section deals with stationarity, Nash equilibrium solutions, and stability. In par-
ticular we show that a Nash equilibrium is a stationary state. Then, we highlight that
asymptotic stable solutions are Nash equilibria. Finally, we point out that evolutionarily
stable strategies imply asymptotic stable solutions.

8.3.1 A Nash equilibrium is a stationary state

The core message of this section is that a Nash equilibrium is a stationary state for the
replicator dynamics. This is stated in the following theorem.

Theorem 8.3. If the vector x∗ is a Nash equilibrium, then it is a stationary state.

Proof (Sketch). A possible proof of the above theorem builds upon the following reason-
ing. Assume that x∗ is a Nash equilibrium. Consequently, x∗ must also be a best-response
to itself. This is equivalent to saying that

u(s , x(t ))− ū(x(t ))≤ 0 ∀s
u(s , x(t ))− ū(x(t )) = 0 ∀ s in the support of x∗.

From the above inequalities we derive that for any s , either u(s , x(t ))− ū(x(t )) = 0 or
xs (t ) = 0, and hence ẋs (t ) = 0 for all s .

Remarkably, the converse is not true. To see this, let x∗ be a non-Nash pure strategy.
Consequently, xs (t ) = 0 for all s other than the pure strategy in question. This implies
that x∗ is stationary.

8.3.2 Asymptotic stable solutions are Nash equilibria

This section shows another important fact; that is, if a solution is asymptotic stable, then
such a solution is also a Nash equilibrium. We state this formally in the next theorem.

Theorem 8.4. If x∗ is asymptotically stable, then it is a Nash equilibrium.

Proof (Sketch). For a monomorphic population, namely when x∗ yields a pure strat-
egy, the proof is straightforward. In the other case, in which x∗ corresponds to a mixed-
strategy Nash equilibrium, the proof is also straightforward but a bit longer. We mention
the underlying idea briefly. The continuous replicator equation implies that the pop-
ulation distribution is evolving along the direction of the better responses, these being
computed looking at the average fitness. If the resulting dynamics converges, then there
cannot exist any other strict better responses at the point of convergence. This means that
we must be at a Nash equilibrium.

Again, the converse is not true. To see that the converse is not true, consider the
following example.

Example 8.5. (A Nash equilibrium is not necessarily an asymptotically stable solu-
tion). Let the bimatrix game be given as in Fig. 8.1. The pair (b , b ) is a Nash equilibrium,
but such an equilibrium is not asymptotically stable. Indeed, any perturbation away from
(b , b ) will start a process in which the fraction of agents playing a steadily increases. To
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82 Chapter 8. Replicator Dynamics and Learning in Games

a b
a (1,1) (0,0)
b (0,0) (0,0)

Figure 8.1. Example showing that a Nash equilibrium is not necessarily asymptotically stable.

see this, take x(t ) = (ε, 1− ε); then

xa = ε, u(a, x(t ))− ū(x(t )) = ε− ε2 > 0.

From the above we understand that playing a returns a payoff higher than the average
payoff computed over the population, and therefore the percentage of people playing a
increases.

8.3.3 Evolutionarily stable strategies imply asymptotic stable solutions

Next we turn our attention to the following fact. Strategies that are evolutionarily stable
lead to asymptotical stable solutions. This is formally stated as follows.

Theorem 8.6. If the strategy x∗ is evolutionarily stable, then it is asymptotically stable.

Proof (Sketch). The proof builds upon the definition itself of evolutionarily stable strat-
egy which we recall next.

A mixed strategy s∗ ∈Δ is evolutionarily stable if there exists ε̄ > 0 such that for any
s ∈Δ and ε≤ ε̄, we have

u(s∗,εs +(1− ε)s∗)︸ ︷︷ ︸
payoff to incumbent s∗

> u(s ,εs +(1− ε)s∗)︸ ︷︷ ︸
payoff to mutant s

.

Now, let us denote by A the first matrix of the game. By this we mean the matrix
collecting the payoffs of the row player. Recall that in this chapter we consider only
symmetric games if not differently specified. The basic idea is then as follows. We can
rewrite the above condition as

x∗T
Ax > xT Ax ∀x in neighborhood of x∗.

The above condition implies that (x∗ − x)︸ ︷︷ ︸
z

A(x − x∗) > 0 or V (z) = zAz < 0, where

∑
i zi = 0. In this case we call the game a negative definite game. The thesis derives from

observing that V̇ (z) = zAż > 0 for all z �= 0 when ż is as in the left-hand side of the
replicator dynamics.

8.4 Learning in games
The topic of learning in games exploits several aspects of systems theory and stability
theory. Actually, learning presumes that the game is repeated in time and that the players
respond to what they have observed in the past. A main issue is about the convergence
properties of the game to a Nash equilibrium or to any other type of solution, such as
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8.4. Learning in games 83

St a g Har e
St a g (10,×) (0,×)
Har e (2,×) (3,×)

Figure 8.2. Stag-Hunt game simulating a learning process.

Pareto optimal solutions, social optimal solutions, and Stackelberg equilibrium solutions,
just to name a few. The underlying assumption is that the players have no knowledge
of the opponents’ payoffs. This takes us to a second type of dynamics (other than the
replicator dynamics) which is known in the literature as uncoupled dynamics. Roughly
speaking, in the uncoupled dynamics, the updates of a player do not depend on others’
payoffs. We cannot stress enough at this point that in the replicator dynamics, the players
need to know the average payoff. The example below replicates a typical learning process
in the context of the Stag-Hunt game introduced in the first chapter.

Example 8.7 (How would you play?). Consider the Stag-Hunt game whose bimatrix is
copied in part in Fig. 8.2. Imagine that the row player has to select an action knowing his
payoffs but ignoring the payoffs and the next action of his opponent. Suppose that the
game has a past history. In particular, in the previous 10 iterations the column player has
played St a g for 7 times and the same player has played Har e for 3 times. Past observa-
tions lead the row player to assume that the column player is playing the mixed strategy
z = (0.7,0.3). The values 0.7 and 0.3 are essentially the empirical frequency distribution of
the column player. Based on such an empirical frequency distribution, the best response
of the row player is given by

u1(St a g , z) = 0.7 · 10+ 0.3 · 0 = 7,
u1(Har e , z) = 0.7 · 2+ 0.3 · 3 = 2.3. (8.1)

Under the hypothesis that the column player is playing the stationary mixed strat-
egy z = (0.7,0.3), then for the row player the action St a g is better than the action
Har e .

8.4.1 Fictitious play

Fictitious play occupies a relevant part in the theory of learning in games. In fictitious
play, the players are assumed to be myopic. This means that they use their best responses
to their best guesses of the opponent’s mixed strategy. This assumption raises the question
of what the best guess must be. A partial answer exploits the concept of stationarity. By
stationarity we mean that every player takes his opponent’s action as the result of a ran-
domization starting from a time-invariant mixed strategy. Roughly speaking, the players
assume that their opponents’ strategies do not change with time.

Let us now derive a mathematical model for the learning process that fits well with
the setup. To this purpose, let the tuple 〈N , (	i )i∈N , (ui )i∈N 〉 be given, where N is the
set of players, and 	i is the set of pure actions of player i . The set of action profiles
is A := {a = (ai )i∈N , ai ∈ 	i (s)}. The players play repeatedly in time, and the time is
indexed by t = 1,2, . . .. For each time, player i has a payoff function given by ui : A→�.
For each a−i ∈A−i , let κt

i (a−i ) be the number of iterations in which player i has observed
his opponent playing a−i . Furthermore, let κ0

i (a−i ) be the starting point, also called the
fictitious past.
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L R
U (3,3) (0,0)
D (4,0) (1,1)

Figure 8.3. Example of a learning process in fictitious play.

Example 8.8. As an example, let us consider a two-player game, where 	2 = {L, R}.
Assuming that κ0

1(L) = 3 and κ0
1(R) = 5, and that player 2 plays L, L, R in the first three

periods, then we have κ3
1(L) = 5 and κ3

1(R) = 6.

The core concept in fictitious play is about each player modeling his opponent’s strat-
egy as a stationary mixed strategy. Each player then updates his beliefs at each step when
new information becomes available. Players use their prediction on their opponent’s
strategies in order to choose their best responses. Formally, in each period (or stage) they
maximize the period’s expected payoff, which they form according to

μt
i (a−i ) =

κt
i (a−i )∑

a−i∈	−i
κt

i (a−i )
.

For instance, given a two-player game, player i forecasts player −i ’s strategy at time
t using the empirical frequency distribution of past play. Then, player i selects his best
response to μt

i (a−i ), which is given by

at
i = arg max

ai∈	i

ui (ai ,μ
t
i (a−i )) ∈�i (μ

t
i (a−i )).

For this example, the beliefs’ iteration are as follows:

μt
i (a−i ) =

κt
i (a−i )

t =
κt−1

i (a−i )+1{at−i=a−i }
t

=
�

t−1
t

�
κt−1

i (a−i )
t−1 +

1{at−i=a−i }
t

=
�

t−1
t

�
μt−1

i (a−i )+
1{at−i=a−i }

t .

(8.2)

Remarkably, it is not necessary to keep in memory all past plays. Furthermore, it is worth
noting that the entire learning process can be run online, as the current belief depends on
the previous belief and the current observation. In the following example we illustrate
the few steps of a learning process, arising in a fictitious play context.

Example 8.9. Let a two-person nonzero-sum game be given, and let this game have the
payoffs as in the bimatrix illustrated in Fig. 8.3. Imagine that the game is played repeatedly
and that the players adopt a classical fictitious play model. A first thing to observe is that
this game is dominant solvable. In other words, D is a strictly dominant strategy for the
row player. Furthermore, there exists a unique Nash equilibrium which is (D, R). After
the above preamble, let us set κ0

1 = (3,0) and κ0
2 = (1,2.5). As a result, the fictitious play

proceeds as follows:

• Period 1: Then, μ0
1 = (1,0) and μ0

2 = (1/3.5,2.5/3.5), so play follows a0
1 = D and

a0
2 = L.

• Period 2: We have κ1
1 = (4,0) and κ1

2 = (1,3.5), so play follows a1
1 =D and a1

2 = R.

• Period 3: We have κ2
1 = (4,1) and κ2

2 = (1,4.5), so play follows a2
1 = D and a2

2 = R,
and so forth.

D
ow

nl
oa

de
d 

08
/1

9/
16

 to
 1

31
.1

56
.2

24
.6

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

co
nt

ro
len

gin
ee

rs
.ir
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The example above shows that convergence may occur. In the above example, the row
player always plays D, as D is a dominant strategy for him. Consequently, μt

2 converges
to (0,1)with probability 1. This also implies that player 2 will eventually converge to the
action R. Remarkably, fictitious play does not require that the players know anything
about their opponents’ payoffs. The players only form beliefs about how their opponents
will play.

In general, we can say that convergence occurs if μt = (μt
i )i∈N → μ∗. It is worth

noting that if convergence occurs, then μ∗ must be a Nash equilibrium. Games in which
convergence must occur are said to have the fictitious play property. However, in general,
convergence is not guaranteed.

8.5 Notes and references
The replicator dynamics is analyzed in detail in the classical books by Weibull [250] and
Sandholm [211]. Convergence in negative definite games is discussed in [119].

We present the topic of learning in games following the open MIT course Game Theory
with Engineering Applications by Ozdaglar [197]. A comprehensive treatment of learning
in games is provided in the classical book by Fudenberg and Levine [99]. Uncoupled dy-
namics is studied in [109, 110, 111]. For further details on convergence in fictitious play
we refer the reader to [220] and [130]. Fictitious play in multi-agent systems is studied in
[217] and [218]. Fictitious play in potential games is discussed in [168]. Convergence of
aspiration learning in coordination games is studied in [77]. Log-linear learning, originally
introduced in [62], is studied further in [169]. Learning in potential games and cooper-
ative control is investigated in [167]. Learning in weakly acyclic games is investigated in
[171]. For a brief discussion on multi-agent learning for engineers we highlight the paper
[166]. Convergence for several classes of reinforcement learning schemes is explored in
[78].

The reader is referred to the Kalai–Lehrer model of rational learning in repeated games
[135] to better understand how rational players with truth-compatible beliefs eventually
learn to play Nash equilibria.
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Chapter 9

Differential Games

9.1 Introduction
This chapter deals with noncooperative differential games. In short, differential games are
characterized by a state variable, whose evolution follows a differential equation. Such
a differential equation is subject to controlled inputs representing the players’ actions.
The players’ payoffs are then influenced not only by the players’ actions but also by the
state. Differential games can be reviewed as a generalization of optimal control problems.
Having said this, we shall first survey the basics of optimal control theory. More specif-
ically, we shall introduce the Pontryagin Maximum Principle and the Hamilton–Jacobi–
Bellman equation. After introducing these concepts, we present differential games under
open-loop or closed-loop strategies. We then mention the Hamilton–Jacobi–Isaacs equa-
tion. The chapter concludes with a survey on linear-quadratic differential games and H∞-
optimal control.

The structure of this chapter is as follows. Section 9.2 introduces the optimal control
problem, the Pontryagin Maximum Principle, and the Hamilton–Jacobi–Bellman equation.
Section 9.3 deals with differential games, as well as open-loop and closed-loop Nash equi-
librium solutions. Section 9.4 discusses linear-quadratic differential games. Section 9.5
casts H∞-optimal control within the framework of differential games. Section 9.6 pro-
vides notes and references for this chapter.

9.2 Optimal control problem
Let vector x(t ) ∈�m be the state and vector u(t ) ∈ U be the control, where U ⊆�m is a
compact set. Compactness is necessary to guarantee the existence of an optimal solution;
see [159, Chap. 4.5]. Also, let function f be continuous with respect to (x, u, t ) and
differentiable with respect to x. Consider the controlled dynamics

ẋ(t ) = f (t , x(t ), u(t )), u(t ) ∈U .

Let us make the assumption that the solutions in finite time are not unbounded. Such
an assumption is described by the condition

| f (t , x, u)| ≤C (1+ |x|) ∀ (t , x, u) ∈ [0,T ]×�m ×U .
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88 Chapter 9. Differential Games

x0

p(t )

f (t , x∗(t ), u(t ))

x∗(T )

p(T ) =∇ψ

Figure 9.1. Graphical illustration of the PMP when the running cost is null. Reprinted with
permission from AIMS [67].

For any initial state x(t0) = x0, let us indicate by

t → x(t ) = (t ; t0, x0, u)

the trajectory starting from state x0 at time t0.
Given the above preamble, let us formulate the optimization problem:

max J (u; t0, x0) :=ψ(x(T ))−
∫ T

t0

L(t , x(t ), u(t ))d t ,

where the “max” operation is over measurable functions u : [t0,T ] → U . The integrand
function L(·) is called running cost, and function −ψ(·) is called terminal penalty.

9.2.1 Pontryagin Maximum Principle

A first breakthrough in the theory of differential games is the result available in the Rus-
sian literature of the 1950s known as the Pontryagin Maximum Principle (PMP). This prin-
ciple, which provides a necessary condition for a control to be optimal, is illustrated next.

Let a problem with a free terminal point be given. This is a problem where there are
no constraints on the final state. Also, let us denote by u∗(t ) the optimal control; let us
use the symbol x∗(t ) to mean the corresponding trajectory, and let us define p(t ) as the
adjoint variable, sometimes also referred to as co-state. The adjoint variable satisfies the
differential equation

ṗ(t ) =−p(t )
∂ f
∂ x
(t , x∗(t ), u∗(t ))+ ∂ L

∂ x
(t , x∗(t ), u∗(t )), p(T ) =∇ψ(x∗(T )).

Let us indicate with∇ the gradient operator. The maximality condition for the problem
under study is given by

u∗(t ) = argmax
u∈U

"
p(t ) · f (t , x∗(t ), u(t ))− L(t , x∗(t ), u(t ))

#
︸ ︷︷ ︸

H (t , x, p) is the maximized Hamiltonian

.

To gain insights on the meaning of the PMP, Fig. 9.1 provides a graphical illustration
under the assumption of null running cost. The maximality condition yields essentially
the control corresponding to the maximal inner product between the right-hand side of
the dynamics and the adjoint variable at every time.
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9.2. Optimal control problem 89

9.2.2 Two-point boundary value problem

A stronger result can be obtained if the maximized Hamiltonian is concave in x, where
the maximized Hamiltonian is given by

H (t , x, p) :=max
u∈U

"
p(t ) · f (t , x(t ), u(t ))− L(t , x(t ), u(t ))

#
.

In this case, the PMP provides also a sufficient condition for a control to be optimal. With
this in mind, one can formulate the problem in two steps. We shall first solve

ũ(t , x, p) = argmax
u∈U

"
p(t ) · f (t , x(t ), u(t ))− L(t , x(t ), u(t ))

#
.

Then we turn to the two-point boundary value problem⎧⎨
⎩

ẋ = f (t , x, ũ(t , x, p)), x(t0) = x0,

ṗ =−p ∂ f
∂ x (t , x, ũ(t , x, p))+ ∂ L

∂ x (t , x, ũ(t , x, p)), p(T ) =∇ψ(x(T )).
A common technique to solve two-point boundary value problems makes use of shooting
methods. These methods involve two steps as follows:

(i) guess an initial p and solve the Cauchy problem involving the above set of differ-
ential equations where the boundary condition at final time p(T ) = ∇ψ(x(T )) is
replaced by the boundary condition at the initial time p(t0) = p ;

(ii) readjust p so to minimize Λ(p) := p(T )−∇ψ(x(T )).
The next section develops a parallel approach to the one provided by Pontryagin.

9.2.3 Hamilton–Jacobi–Bellman equation

The Hamilton–Jacobi–Bellman (HJB) equation constitutes a milestone in the theory of dif-
ferential games. This equation was published in the American literature on optimal con-
trol theory back in the 1950s. The equation builds on the dynamic programming (DP)
principle. A graphical illustration of the DP principle, also known as Principle of Op-
timality, is shown in Fig. 9.2. According to the DP principle, an optimal policy has the
property that whatever the initial state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting from the first decision (see [47,
Chap. III.3]). That is to say that given an optimal trajectory, any subtrajectory must be
optimal as well. The importance of the DP principle lies in the fact that it allows the
decomposition of the original problem into infinite subproblems, one for each time t .

To decompose the problem let us define the function

V (t0, x0) := sup
u(·)

J (u; t0, x0),

which is commonly referred to as the value function. Roughly speaking, the DP principle
states that the value function today is the optimal running cost until tomorrow plus the value
function tomorrow. By translating this into a mathematical expression we get

V (t0, x0) = sup
u(·)

	
V (t1, x(t1; t0, x0, u))−

∫ t1

t0

L(t , x(t ; t0, x0, u), u(t ))d t

�
. (9.1)
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0 t0 t1 T

x0

V =V (t1, x) V =ψ

Figure 9.2. Graphical illustration of the HJB equation and the DP principle. Reprinted with
permission from AIMS [67].

Let us now expand according to Taylor function V (·) around point (t0, x0). Then, we
get the following expression for V (t1, x(t1)):

V (t1, x(t1)) =V (t0, x0)+
∫ t1

t0

∂t V (t , x(t ))+∇V · f (t , x(t ), u(t )).

In the above expression, V (t1, x(t1)) is essentially expressed in terms of V (t0, x0) and of
the first-order derivatives of V (·). By substituting V (t1, x(t1)) in (9.1), we arrive at the
following equation in [0,T ]×�m :

∂t V (t , x)+ sup
u∈U

"
∇V · f (t , x, u)− L(t , x, u)

#
= 0.

The above equation is referred to as the HJB equation.

9.3 Differential game
In this section, we show that a differential game is a generalization of an optimal control
problem involving multiple decision makers, the players. Let x ∈ �m be the state, ui be
the control of player i = 1,2, and Ui ⊆�m be compact. Also, let the following controlled
dynamics be given:

ẋ(t ) = f (t , x(t ), u1(t ), u2(t )), ui (t ) ∈Ui .

With the above in mind, the optimization problem for player i takes the form

max
ui

Ji (u1, u2) := ψi (x(T ))−
∫ T

0
Li (t , x(t ), u1(t ), u2(t ))d t .

In a differential game, one usually makes the following distinction between open-loop
and closed-loop strategies. In the case of open-loop strategies, the players know only the
initial state x0. Conversely, in the case of closed-loop strategies, the players have knowl-
edge of the current state x(t ). Closed-loop strategies are also referred to as Markovian
strategies.
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9.3. Differential game 91

9.3.1 Open-loop Nash equilibrium

This section deals with the case where the players use open-loop strategies. These strate-
gies are functions of only two variables: the time and the initial state. Once the initial
state is given, these strategies are only functions of time. The concept of nonprofitable
unilateral deviations which has characterized the Nash equilibrium in sequential and si-
multaneous games can be extended to open-loop strategies in differential games. The
following definition formalizes open-loop Nash equilibrium strategies.

Definition 9.1 (Open-loop Nash equilibrium). The pair (u∗1 (t ), u∗2 (t )) is a Nash equilib-
rium if u∗i (·), i = 1,2, is a maximizer of the following cost functional problem:

⎧⎨
⎩

Ji (ui , u∗−i ) :=ψi (x(T ))−
∫ T

0 Li (t , x(t ), ui (t ), u∗−i (t ))d t ,

x(0) = x0, ẋ(t ) = f (t , x(t ), ui (t ), u∗−i (t )), t ∈ [0,T ].
(9.2)

That is to say, u∗1 (t ) is the best response to u∗2 (t ) and vice versa. Recall the PMP,
and consider the following one-shot game: for every (t , x) ∈ [0,T ] × �m and vectors
q1, q2 ∈�m ,

ũ1 = arg max
ω∈U1

{q1 · f (t , x,ω, ũ2)− L1(t , x,ω, ũ2)},

ũ2 = arg max
ω∈U2

{q2 · f (t , x, ũ1,ω)− L2(t , x, ũ1,ω)}.
(9.3)

Under the assumption that the above problem admits a unique solution (cf. Assumption
A2 on p. 26 in [65]), the map below is continuous:

(t , x, q1, q2) →
�

ũ1(t , x, q1, q2), ũ2(t , x, q1, q2)
�
.

Now, assuming that the pair (ũ1(t ), ũ2(t )) is a Nash equilibrium, such a pair must
solve the two-point boundary value problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = f (t , x, ũ1, ũ2), x(t0) = x0,

q̇1 =−q1
∂ f
∂ x (t , x, ũ1, ũ2)+

∂ L1
∂ x (t , x, ũ1, ũ2), q1(T ) =∇ψ1(x(T )),

q̇2 =−q2
∂ f
∂ x (t , x, ũ1, ũ2)+

∂ L2
∂ x (t , x, ũ1, ũ2), q2(T ) =∇ψ2(x(T )).

(9.4)

In addition to this, if x → H (t , x, q , ũ−i ) and x → ψi (x) are concave, then the condi-
tion illustrated above is also sufficient. In the following example, we analyze a marketing
competition scenario using a differential game-theoretic approach.

Example 9.2 (Duopolistic competition). This example presents the renowned Lanch-
ester model. This model is commonly used to describe a duopolistic competition scenario.
The scenario involves two manufacturers that operate in a same market. The manufac-
turers produce and sell the same product. Let us use a first variable x1(t ) = x(t ) ∈ [0,1]
to represent the market share of manufacturer 1 at time t . Similarly, let us denote by
x2(t ) = 1− x(t ) the market share of manufacturer 2 at time t . The manufacturers have
different advertising efforts, which enter the problem as controlled inputs ui (t ), i = 1,2 at
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92 Chapter 9. Differential Games

time t . The Lanchester model simulates the evolution of the market share of manufacturer
1 using the differential equation

ẋ(t ) = (1− x)u1− xu2, x(0) = x0 ∈ [0,1].

After introducing the above dynamics, let us look at the strategies of the manufacturers.
In particular, manufacturer i plays t → ui (t ) with the aim of maximizing

Ji =
∫ T

0

&
ai xi (t )− ci

u2
i (t )
2

'
d t + Si xi (T )

for given parameters ai , ci , Si > 0. The optimization method is organized in two steps.
First, we compute the optimal controls as functions of the adjoint variables. This leads to
the following problem:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
ũ1(x, q1, q2) = argmax

ω≥0

�
q1 · (1− x)ω− c1

ω2

2

(
= (1− x)

q1

c1
,

ũ2(x, q1, q2) = argmax
ω≥0

�
q2 · xω− c2

ω2

2

(
= x

q2

c2
.

Second, we need to solve the two-point boundary value problem displayed below:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ = (1− x)ũ1+ x ũ2 = (1− x)2 q1
c1
+ x2 q2

c2
, x(0) = x0,

q̇1 =−q1(ũ1+ ũ2)− a1 =−q1

)
(1− x) q1

c1
+ x q2

c2

*− a1, q1(T ) = S1,

q̇2 =−q2(ũ1+ ũ2)− a2 =−q2

)
(1− x) q1

c1
+ x q2

c2

*− a2, q2(T ) = S2.

From the above problem we obtain optimal trajectories and optimal strategies (advertising
efforts) for both manufacturers.

9.3.2 Closed-loop Nash equilibrium

Let us now turn to closed-loop strategies. Recall that the strategies are now functions of
time and state. As for the open-loop case, we need first to define closed-loop strategies at
a Nash equilibrium.

Definition 9.3 (Closed-loop Nash equilibrium). The pair (u∗1 (t , x), u∗2 (t , x)) is a Nash
equilibrium if (t , x) → u∗i (t , x) maximizes the following cost functional problem:⎧⎨

⎩
Ji (ui , u∗−i (t , x)) :=ψi (x(T ))−

∫ T
0 Li (t , x(t ), ui (t ), u∗−i (t , x))d t ,

x(0) = x0, ẋ(t ) = f (t , x(t ), ui (t ), u∗−i (t , x)), t ∈ [0,T ].
(9.5)

It turns out that to compute Nash equilibrium closed-loop strategies, we need to solve
the corresponding HJB equations. These yield a system of partial differential equations
in [0,T ]×�m of the form⎧⎨

⎩
∂t V1+∇V1 · f (t , x, ũ1, ũ2) = L1(t , x, ũ1, ũ2),

∂t V2+∇V2 · f (t , x, ũ1, ũ2) = L2(t , x, ũ1, ũ2).
(9.6)
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9.4. Linear-quadratic differential games 93

In the above problem, from the PMP, we have that (ũ1, ũ2) solve the one-shot game: for
every (t , x) ∈ [0,T ]×�m and value functions V1,V2 ∈�m ,

ũ1 = arg max
ω∈U1

{∇V1 · f (t , x,ω, ũ2)− L1(t , x,ω, ũ2)},
ũ2 = arg max

ω∈U2

{∇V2 · f (t , x, ũ1,ω)− L2(t , x, ũ1,ω)}. (9.7)

Remarkably, if the game is a zero-sum differential game, then the above system of partial
differential equations collapses into a single partial differential equation:

∂t V1+max
ω1

min
ω2

"
∇V1 · f (t , x,ω1,ω2)− L1(t , x,ω1,ω2)

#
= 0.

This equation is referred to as the Hamilton–Jacobi–Isaacs equation.

9.4 Linear-quadratic differential games
Linear-quadratic differential games are very popular, as they admit explicit solutions in
terms of optimal control strategies. To see this, let x ∈�m be the state, ui be the control
of player i = 1,2, and Ui ≡�mi be compact sets. Let us consider a linear dynamics of the
form

ẋ(t ) =A(t )x(t )+B1(t )u1(t )+B2(t )u2(t ), ui (t ) ∈�mi .
For each player i , the optimization problem is given by

max
ui

Ji (u1, u2) := ψi (x(T ))−
∫ T

0
Li (t , x(t ), u1(t ), u2(t ))d t .

Linear-quadratic differential games are such that the terminal penalty is quadratic,

ψi (x(T )) =
1
2

xT M i x,

and the running cost is quadratic as well, namely

Li (t , x(t ), u1(t ), u2(t )) =
|ui |2

2
+

1
2

xT Pi x +
∑
1,2

xT Qi j u j .

To obtain optimal control strategies ũi in closed form, let us proceed as follows. Let us
introduce the following expression for ũi (t , x, qi ):

ũi (t , x, qi ) = arg max
ω∈�mi

"
qi Bi (t )ω− |ω|

2

2
− xT Qii (t )ω

#
= (qi Bi (t )− xT Qii (t ))

T .
(9.8)

Now, let us take for the value function the expression Vi (t , x) = 1
2 xT Mi (t )x so that

∇Vi (t , x) = xT Mi (t ), ∂t Vi (t , x) =
1
2

xT Ṁi (t )x.

Using the condition ∂tVi (t , x) = Li − ∇Vi · f , we can write the HJB equation in
compact form as

1
2 xT Ṁi (t )x =

1
2 (x

T Mi Bi − xT Qii )(xT Mi Bi − xT Qii )T +
1
2 xT Pi x

+
∑

j=1,2 xT Qi j (x
T M j Bj − xT Qj j )

T

− xT Mi (Ax +
∑

j=1,2 Bj (x
T M j Bj − xT Qj j )

T ).

(9.9)
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94 Chapter 9. Differential Games

From the HJB equation, we can derive the well-known Riccati differential equation as
follows:

1
2 xT Ṁi (t )x =

1
2 (x

T Mi Bi − xT Qii )(x
T Mi Bi − xT Qii )

T + 1
2 xT Pi x

+
∑

j=1,2 xT Qi j (xT M j Bj − xT Qj j )T

− xT Mi (Ax+
∑

j=1,2 Bj (x
T M j Bj − xT Qj j )

T ).

(9.10)

Observe that as the HJB equation above must hold for every x, we can drop dependence
on x, which yields the following Riccati equation:

1
2 Ṁi (t ) =

1
2 (Mi Bi −Qii )(Mi Bi −Qii )

T + 1
2 Pi

+ 1
2

∑
j=1,2[Qi j (M j Bj −Qj j )

T +(M j Bj −Qj j )Q
T
i j ]

− 1
2 (Mi A+AT Mi )− 1

2

∑
j=1,2[Mi Bj (M j Bj −Qj j )T

+ (M j Bj −Qj j )BT
j Mi ].

(9.11)

Linear-quadratic differential games play a crucial role in robust control and in partic-
ular in H∞-optimal control. We elaborate more on this in the next section.

9.5 H∞-optimal control as linear-quadratic differential game
The relation between two-person zero-sum games and H∞-optimal control, first intro-
duced in [22], has already been discussed in Section 2.4. Recall that this problem deals
with the design of a controller that guarantees a good performance even under the worst-
case disturbance. A schematic representation of the system is depicted in Fig. 9.3.

G
w z

K

u y

Figure 9.3. Schematic representation of an H∞-optimal control problem. Reprinted with
permission from Springer Science+Business Media [22].

In the block system, u is the control input, w is the uncontrolled input referred to
as disturbance, and z and y are the controlled and measured outputs, respectively. We
assume that all variables are measurable in Hilbert spaces�u ,�w ,�z ,�y . The variables
are mutually dependent, and such dependencies are captured by the system of equations⎧⎨

⎩
z =G11(w)+G12(u),
y =G21(w)+G22(u),
u =K(y).

(9.12)
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9.5. H∞-optimal control as linear-quadratic differential game 95

We assume that the operators Gi j and the controller K ∈� are bounded causal linear
operators. Here� denotes the controller space.

The main objective, known as disturbance attenuation, consists in maintaining the
controlled output small despite the presence of the disturbance. In preparation to the for-
mulation of the disturbance attenuation problem, let us introduce bounded causal linear
operators TK :�w →�z for every fixed K ∈� , namely

TK (w) =G11(w)+G12(I −KG22)
−1(KG21)(w).

Recall that causal means that the system is nonanticipative. That is to say that the
output depends on past and current inputs but not on future inputs.

The problem consists in finding the worst-case infimum of the operator norm⎧⎪⎨
⎪⎩

inf
K∈� 〈〈TK 〉〉=: γ ∗,

〈〈TK 〉〉= sup
w∈�w

‖TK (w)‖z

‖w‖w
.

(9.13)

It turns out that the above problem turns into a two-person zero-sum game between the
controller and the disturbance:

upper bound︷ ︸︸ ︷
inf

K∈� sup
w∈�w

‖TK (w)‖z

‖w‖w
≥

lower bound︷ ︸︸ ︷
sup

w∈�w

inf
K∈�

‖TK (w)‖z

‖w‖w
.

Given the above problem, it is possible to derive a so-called soft-constrained game. To this
purpose, consider the attenuation level γ ∗, which satisfies

inf
K∈� sup

w∈�w

‖TK (w)‖2
z − γ ∗2‖w‖2

w ≤ 0.

Let us define the parametrized cost (in γ ≥ 0)

Jγ (K , w) := ‖TK (w)‖2
z − γ 2‖w‖2

w .

Consequently, the problem is the one of finding the smallest value of γ ≥ 0 under which
the upper value is bounded (by zero).

Furthermore, the above problem can be turned into a linear-quadratic zero-sum dif-
ferential game. To see this, consider the state space representation⎧⎨

⎩
ẋ(t ) =A(t )x(t )+B(t )u(t )+D(t )w(t ), x(0) = x0,
z(t ) =H (t )x(t )+G(t )u(t ),
y(t ) =C (t )x(t )+ E(t )w(t ),

(9.14)

and for γ ≥ 0 and QT > 0, let the following cost be given:

Lγ (u, w) := x(T )T QT x(T )+
∫ T

0
z(t )T z(t )d t − γ 2

∫ T

0
w(t )T w(t )d t .

The zero-sum linear-quadratic differential game is given by

min
u(·) max

w(·) Lγ (u, w).

Given the above game, we only need to solve it using the methods surveyed in the previous
sections.
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96 Chapter 9. Differential Games

9.6 Notes and references
This chapter is inspired by the tutorial written by Bressan, Noncooperative Differential
Games, in 2010 [65]. A comprehensive treatment of dynamic programming is available in
the classical book [47]. The Pontryagin Maximum Principle is in [203]. The Hamilton–
Jacobi–Isaacs equation is due to Isaacs back in 1965 [126]. Section 9.5 is based on the in-
troductory chapter of [22]. Minimax optimal control is developed in [245]. A compre-
hensive treatment of nonsmooth optimal control is in [246].
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Chapter 10

Stochastic Games

10.1 Introduction
This chapter deals with stochastic games. As for differential games, even in stochastic games
we have a state variable. However, the state dynamics now is given by a controlled Markov
chain rather than by a differential equation. Stochastic games represent a generalization
of Markov decision problems involving multiple decision makers. This chapter covers the
basics of the theory on stochastic games. In particular, after streamlining the game model
in general terms, we survey the fundamental results of two-player stochastic zero-sum
games. We conclude the chapter with open questions and future directions.

In Section 10.2 we introduce the main ingredients of a stochastic game, define pure
and mixed stationary strategies, and discuss alternative formulations involving finite and
infinite horizon payoffs. In Section 10.3 we discuss applications. In Section 10.4 we focus
on two-player zero-sum stochastic games. In Sections 10.5 and 10.6 we formulate and
solve two classical examples. Seminal results and further developments are discussed in
Section 10.7. Finally, in Section 10.8 we provide notes and references for this chapter.

10.2 The model
In stochastic games the environment configuration, captured by the state variable, changes
in response to the players’ behaviors. These games model the repeated interactions among
the players over a time horizon window. We introduce a stage payoff, which is the payoff
produced at a given stage. The stage payoffs of the players depend on the current behaviors
of the players, described through their actions or decisions, and on the environment, the
latter described through a state variable.

Let t denote the time, and let S be the state space. The latter can be countable or
uncountable, in which case it is supplemented with a σ -algebra of measurable sets. The
mathematical formulation of a stochastic game makes use of the following ingredients:

• the set of players N ;

• the set of actions	i of player i ;

• the valued function Ai : S →	i representing the available actions to player i in a
given state;

• the set of action profiles SA := {(s ,a) : s ∈ S, a = (ai )i∈N , ai ∈Ai (s), ∀i ∈N};
97
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98 Chapter 10. Stochastic Games

• for every player i , the stage payoff function defined as ui : SA→�;

• the transition function by q : SA→ Δ(S), where Δ(S) is the space of probability
distributions over S.

Keeping in mind the above model, we observe that the class of stochastic games rep-
resents a generalization of a few other games or optimization problems as listed below:

(i) games with finite interactions; this occurs if the state of the game reaches at time t
an absorbing state with null payoff;

(ii) static matrix games if we set t = 1;

(iii) repeated games if the game admits only one state;

(iv) stopping games if the stage payoff is null until a player decides to quit the game; in
consequence of this, the state of the game reaches an absorbing state with nonnull
payoff;

(v) Markov decision problems if the game involves only one single player.

As for all the types of games encountered so far, the payoff ui is a profit (to maximize) but
can also be a cost (to minimize). Furthermore, note that the actions decide the current
payoffs and the future states, and consequently they influence the future payoffs as well.
It is worth noting that actions, payoffs, and transitions derive only from the current state.

10.2.1 Pure and mixed strategies and stationarity

We saw that in extensive games and differential games, the history of the game is captured
by a state variable. We also saw that different actions perform differently depending on the
state of the game. To capture the connection between state and actions we have introduced
a mapping from states to actions which we have defined as strategy. We find strategies also
in stochastic games. To see this, let us denote by

(s1,a1, s2,a2, . . . , s t )

the past play at stage t , where (s k ,ak ) is the action profile at time k. Then, we call (pure)
stationary strategy a strategy that depends only on the current state, that is,

σi (s
1,a1, s2,a2, . . . , s t ) ∈Ai (s

t ).

That is to say that the past play σi (s1,a1, s2,a2, . . . ,at−1) plays no role in the selection of
the current action.

The above definition can be extended to include also mixed strategies. These strategies
consist of probability distributions over the action spaces, which we now indicate by

σi (s
1,a1, s2,a2, . . . , s t ) ∈Δ(Ai (s

t )),

where Δ(Ai (s
t )) is the probability distribution on set Ai (s

t ).
With this in mind, we introduce the space of stationary mixed strategies for player i

given by
Xi =×s∈SΔ(Ai (s)).

Collecting the strategies of all the players, we obtain the following profile of mixed strate-
gies:

σ = (σi )i∈N , σi ∈Xi .
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10.2. The model 99

Given that the players play repeatedly in time, the game is characterized by the space
of infinite plays H∞ = SA�. Such a space involves the set of all possible infinite sequences
and is given by

(s1,a1, s2,a2, . . . , s t ,at , . . .).

Now, it is clear that every profile of mixed strategies σ = (σi )i∈N and every initial state
s1 induce a probability distribution Ps1,σ on H∞ = SA�. With this in mind, the game
results in a finite or infinite (T →∞) stream of payoffs:

ui (s
t ,at ), t = 1,2, . . . ,T .

Depending on how we combine the above payoffs, we obtain different types of formula-
tions. Three possible formulations are mentioned in the next section.

10.2.2 Finite and infinite horizon formulations

An element in common between stochastic games and optimal control is that there exist
different formulations involving finite or infinite horizons on the one hand, and myopic
(also called shortsighted) players or patient (also called farsighted) players on the other hand.
More specifically, the formulation involving a finite horizon implies that the interaction
lasts exactly a finite number, say T > 0, of stages. Conversely, the formulation involving
an infinite horizon calls for a discounted evaluation. That is to say that the interaction
lasts many stages, and the players discount their stage payoffs. As a result we have that
for the players it is better to receive “1 dollar” today than the same dollar tomorrow. This
formulation wishes to capture the greedy or shortsighted behavior of the players.

The formulation involving an infinite horizon contemplates another way to combine
the payoffs, referred to as limsup evaluation. This is the case where the interaction between
the players lasts many stages, and the players do not discount their stage payoffs. As a
consequence of this, the stage payoff at time t is not relevant when compared with the
total payoffs over all the other stages. The scenario at hand sees the players as patient or
farsighted decision makers. The instantaneous fluctuations of the payoffs are not relevant.
We derive next the formal definition of payoff in each of the above formulations.

The payoff in the finite horizon case is here called T -stage payoff. For it we have the
expression

γT
i (s1,σ) :=�s1,σ

+ 1
T

T∑
t=1

ui (s
t ,at )

,
.

The formulation involving the infinite horizon with discounted evaluation yields a
so-called λ-discounted payoff, which is given by

γλi (s1,σ) :=�s1,σ

+
λ
∞∑

t=1

(1−λ)t−1ui (s
t ,at )

,
.

Finally, for the infinite horizon case with limsup evaluation, the payoff, which we here
refer to as limsup payoff, is defined by

γ∞i (s1,σ) := �s1,σ

+
lim sup

T→∞
1
T

T∑
t=1

ui (s
t ,at )

,
.

After introducing the above formations, let us turn to the analysis of equilibria. De-
pending on the formulation, we have different definitions of equilibria. We shall hence-
forth consider the following types of equilibrium solutions.
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100 Chapter 10. Stochastic Games

Definition 10.1. We say that σ is a T -stage ε-equilibrium if

γT
i (s1,σ)≥ γT

i (s1,σ ′i ,σ−i )− ε ∀ s1 ∈ S, ∀ i ∈N , ∀σ ′i ∈Xi .

Differently, σ is a λ-discounted ε-equilibrium if

γλi (s1,σ)≥ γλi (s1,σ ′i ,σ−i )− ε ∀ s1 ∈ S, ∀ i ∈N , ∀σ ′i ∈Xi .

Finally, σ is a limsup ε-equilibrium if

γ∞i (s1,σ)≥ γ∞i (s1,σ ′i ,σ−i )− ε ∀ s1 ∈ S, ∀ i ∈N , ∀σ ′i ∈Xi .

Note that, from the above definitions, the players cannot benefit more than ε by de-
viating unilaterally from the equilibrium.

10.3 A brief overview on applications
This section provides a brief overview on application domains. The following list, far
from complete, mentions examples of applications that can be described by and studied
using stochastic games.

Example 10.2 (Capital accumulation or fishery). The first example deals with capital
accumulation. The example admits an interpretation also in the context of fishery. The
game involves two players, who jointly own a natural resource or a productive asset. The
players have to choose the amount of resource to consume at every period. The residual
amount, namely the quantity that is not consumed, grows by a fraction. This fraction can
be known or unknown. The state of the game is the current amount of resource. The set
of actions involves the quantity of resource that can be exploited in the current period.
The decisions of all the players determine the transition between consecutive states. The
transition is also a function of the random growth of the resource.

Example 10.3 (Taxation). In this example, we develop a taxation application. The appli-
cation involves a government that has to set a tax rate at every period. The other players
are the citizens who can decide how much to work and how much money to consume at
every period. The money that is not consumed grows by a known interest rate at the next
period. The game has a state which represents the amount of savings of the citizens. The
citizens incur in stage payoffs that depend on (i) the amount of money that they consume,
(ii) the free time available to them (free time is a measure of the quality of life), and (iii)
the total amount collected by the government from taxes.

Evidently, also the government has a stage payoff which accounts for (i) the average
stage payoff of the citizens and (ii) the total amount of tax collected.

Example 10.4 (Communication network). Game theory has a long tradition in com-
munication networks. Here we consider a single-cell system involving one receiver and
multiple uplink transmitters who share a single, slotted, synchronous classical collision
channel. The players of the game are the transmitters, who decide if and which packet to
transmit at each time. The dropped packets are backlogged. The game has a state which
is the level of congestion in the channel. The stage payoff includes the probability of
successful transmission and the cost of transmission.
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10.4. Two-player zero-sum stochastic games 101

Example 10.5 (Queues). Queues is another application where stochastic games can be
used. In this example, we have individuals that can opt for a private slow service provider
or for a powerful public service provider. The game has a state which describes the current
load of public and private service providers. The payoff of the individuals accounts for
the time to be served, which the players wish to minimize.

10.4 Two-player zero-sum stochastic games
This section illustrates two-person zero-sum stochastic games. In particular, it presents
solution techniques based on dynamic programming on two classical examples.

In a two-player zero-sum stochastic game the sum of payoffs is zero. That is to say
that the following condition holds:

u1(s ,a)+ u2(s ,a) = 0 ∀(s ,a) ∈ SA.

There exists at most one equilibrium payoff at every initial state s1. This equilibrium
payoff is termed the value of the game.

It turns out that if a player’s strategy σ1 is at an ε-equilibrium, then such a strategy
is ε-optimal. Namely, such a strategy guarantees the value up to a given tolerance ε, as
described by the following condition:

γT
1 (s1,σ1,σ2)≥ vT (s1)︸ ︷︷ ︸

value at s1

−ε ∀σ2 ∈X2.

As for zero-sum static games where we have existence results of equilibria provided by
von Neumann (cf. Theorem 2.4), even for zero-sum stochastic games there exist existence
results provided by Shapley in 1953 [219]. These results have then been extended to multi-
player nonzero-sum games by Fink in 1964 [97]. We state below the theorem by Shapley.

Theorem 10.6 (Shapley 1953 [219]). If all sets are finite, then for every λ there exists an
equilibrium in stationary strategies.

Proof. We provide here only a sketch of the proof and refer the reader to the original work
for a detailed derivation. First, define � the space of all functions v : S → �. Consider
the zero-sum matrix game Gλ

s (v) for all v. Denote by A1(s) and A2(s) the space of actions
at state s . Here it is useful to think of the payoff as money that player 2 pays to player 1.
This payoff is given by

λu1(s ,a)+ (1−λ)∑
s ′∈S

q(s ′|s ,a)v(s ′).

Let the value operatorφs (v) = val (Gλ
s (v)) be given. Nonexpansiveness given by ‖φ(v)−

φ(w)‖∞ ≤ (1−λ)‖v −w‖∞ yields a unique fixed point v̂λ.

The optimal mixed action σi in the matrix game Gλ
s t (v̂λ) is also a λ-discounted 0-

optimal strategy. It is worth noting that the aforementioned proof is constructive. We
will make use of it later to solve the two classical games presented next.
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102 Chapter 10. Stochastic Games

10.5 The Big Match: “Work hard” or “enjoy life”
The Big Match describes a nice, simple fairy tale involving a king and his trusted minister.
One day, the king has to leave for an undefined time and therefore decides to put his
trusted minister in charge of the kingdom. The day before leaving, the king informs the
minister that he will not hear from the king until his return. On the day the king will
return, if the minister will be found working hard, the king will award the minister by
abducting in favor of him. On the other hand, if on that day the king will find the minister
enjoying life, the king will put the minister in prison, where he will be tormented for ever
and ever. The king is powerful and has informers. Therefore he knows every day whether
the minister was at work or not in the past days.

The challenge here is about what the best strategies for the king and ministers are.
Obviously, both the king and the minister pursue their own interests. In particular, the
minister knows that if he worked hard every day, the king, being informed of this, would
not come back. This would mean an everlasting miserable life. The minister also knows
that if he did not work at all, the king would come very soon and the minister would be
imprisoned.

Evidently, such a fairy tale is a stylized example of competition between two individ-
uals with contrasting goals. We can analyze the optimal strategies of the king and the
minister using a stochastic game. To formulate the game, let us introduce the following
matrices:

L R
T 0 s2 1 s2
B 1 s1 0 s0

State s2

L
T 1 s1

State s1

L
T 0 s0

State s0

In the above matrices, the row player is the king, and the column player is the minister.
The decision of the king not to come back corresponds to action T . Thus, for every day
that the king plays T , the state of the game transitions to the same state s2. This occurs
independently of the choice of the minister to be at work, denoted by L, or to rest, denoted
by R. The choice of the king of coming back is denoted by the action B . If the king plays B
and the minister plays L (the minister is hardworking), the game jumps to state s1, which
implies an everlasting reward for the minister. Conversely, if the king plays B and the
minister plays R (the minister is found enjoying life), then the state of the game jumps
to state s0, which implies an everlasting punishment for the minister. With the above
game in mind, let us analyze the equilibria. To this purpose, let us apply the dynamic
programming principle used in the proof of the theorem exposed earlier. By doing this,
we have that for every v = (v1, v2, v3) ∈ � =�3 the games Gλ

s2
(v), Gλ

s1
(v), and Gλ

s0
(v) are

given by
L R

T (1−λ)v2 λ+(1−λ)v2
B λ+(1−λ)v1 (1−λ)v0

Game Gλ
s2

L
T λ+(1−λ)v1

Game Gλ
s1

L
T (1−λ)v0

Game Gλ
s0

By imposing the fixed point condition on both states 0 and 1, we obtain

• v̂λ0 = val (Gλ
s0
(v̂)), which yields v̂λs0

= 0;
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10.6. The Absorbing game: A variant of the Big Match 103

• v̂λ1 = val (Gλ
s1
(v̂)), which yields v̂λs1

= 1.

After replacing the aforementioned values for state 2 we obtain

L R
T (1−λ)v2 λ+(1−λ)v2
B 1 0

State s2

From the Indifference Principle, the saddle-point of this game is obtained by solving

v2 = y(1−λ)v2+(1− y)[λ+(1−λ)v2] = y,
v2 = x(1−λ)v2+(1− x) = x[λ+(1−λ)v2],

where y is the probability that player 2 plays L and x the probability that player 1 plays T .
Consequently, we obtain v̂λ2 = val (Gλ

s2
(v̂)), which yields v̂λs2

= 1
2 . For the best-

response strategies we finally obtain

σ2 = [
1
2 (L),

1
2 (R)], σ1 = [

1
1+λ (T ),

λ
1+λ (B)].

The interpretation of the above result is as follows. The best strategy for the minister is to
work every two days on average. This is equivalent to saying that every day the minister
will toss a coin and depending on the result he will work hard or not. The interpretation
of the best strategy for the king is as follows. First note that his optimal strategy will
depend on the discount factor, that is, on how farsighted he is. The king will return
with a probability that increases with the discount factor. That is to say that the more
myopic the king is, the sooner he will come back. Conversely, if the king is farsighted,
the discount factor is small and tends to zero, and consequently the probability of coming
back approaches zero. Note that the discount factor influences only the strategy of the
king. The strategy of the minister does not depend on the discount factor. This derives
from the fact that only the king can force the state of the game to jump to an absorbing
state.

10.6 The Absorbing game: A variant of the Big Match
This example represents a variant of the Big Match where not only the king but also the
minister can force the game to jump to an absorbing state. As a consequence, we will
see that the strategy of the minister will also be influenced by the discount factor. The
formulation of the game is as follows:

L R
T 0 s2 1 s1
B 1 s1 0 s0

State s2

L
T 1 s1

State s1

L
T 0 s0

State s0

Differently from the Big Match, the action profile (T , R) makes the state of the game
transition to the absorbing state s1. Using the same approach as for the Big Match, for
every v = (v1, v2, v3) ∈ � =�3 the games Gλ

s2
(v), Gλ

s1
(v), and Gλ

s0
(v) take the form
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104 Chapter 10. Stochastic Games

L R
T (1−λ)v2 λ+(1−λ)v1
B λ+(1−λ)v1 (1−λ)v0

Game Gλ
s2

L
T λ+(1−λ)v1

Game Gλ
s1

L
T (1−λ)v0

Game Gλ
s0

From the fixed point condition on the states, we obtain

• v̂λ0 = val (Gλ
s0
(v̂)) yields v̂λs0

= 0,

• v̂λ1 = val (Gλ
s1
(v̂)) yields v̂λs1

= 1,

• v̂λ2 = val (Gλ
s2
(v̂)) yields v̂λs2

= 1−�λ
1−λ .

The third equation above derives from

v2 = y(1−λ)v2+(1− y) = y,
v2 = x(1−λ)v2+(1− x) = x,

where we denote by y the probability that player 2 plays L and by x the probability that
player 1 plays T .

For the best-response strategies, we obtain

σ2 = [
1−�λ
1−λ (L),

�
λ−λ

1−λ (R)], σ1 = [
1−�λ
1−λ (T ),

�
λ−λ

1−λ (B)].

In accordance with our intuition, now the discount factor affects the strategies of the
minister and of the king.

10.7 Other seminal results and further developments
This section mentions other seminal results and further developments for stochastic games.
A first result is due to Mertens and Neyman back in 1981 [179]. This result is about the
existence of a uniform equilibrium for two-player zero-sum games. We state the result in
the following.

Theorem 10.7 (Mertens and Neyman 1981 [179]). For two-player zero-sum games, each
player has a strategy that is ε-optimal for every discount factor sufficiently small.

Vieille extended the above result to nonzero-sum games in 2000.

Theorem 10.8 (Vieille 2000 [244]). For every two-player nonzero-sum stochastic game there
is a strategy profile that is an ε-equilibrium for every discount factor sufficiently small.

There are several open questions in the study of stochastic games. A first one is about
the search of a strategy profile that is an ε-equilibrium for every discount factor suffi-
ciently small and for every stochastic game.

Other open problems involve the selection of categories of games characterized by a
simple strategy profile that is an ε-equilibrium for every discount factor sufficiently small.
For instance, let us think of stationary strategy, or periodic strategy.
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10.8. Notes and references 105

The study of stochastic games may also involve the development of numerical schemes
and algorithms for the computation of equilibria. This is particularly relevant for those
games for which explicit solutions are not known. In particular, in the case of two-player
zero-sum games, a variety of algorithms are available that use linear programming. Such
algorithms have also been extended to nonzero-sum games. Let us think, for instance, of
the well-known Lemke–Howson algorithm. In addition to this, there are other algorithms
that are based on fictitious play, value iterates, and policy improvement.

There are several future directions in the study of stochastic games. These may in-
volve, among other things,

• approximation schemes based on finite games of games with infinite state and action
spaces;

• the development of the theory of stochastic games in continuous time;

• the study of existence conditions for uniform equilibrium solutions and limsup
equilibrium solutions in multiplayer stochastic games with finite state spaces and
action spaces;

• the design of algorithms that efficiently compute the value of two-player zero-sum
games;

• the investigation of approachable and excludable sets in stochastic games with vec-
tor payoffs.

The last topic in the above list is developed further in the following chapter.

10.8 Notes and references
This chapter is heavily based on the survey written by Solan in Stochastic Games in 2009
[226]. The interested reader is referred to [96, 179, 189, 244] for further reading on the
topic. Capital accumulation or fishery applications are discussed in [8, 90, 157, 191]. An
example of stochastic games applied to taxation is developed in [76, 200]. Communication
networks are the main focus in [210]. Stochastic games to model queues are examined in
[7]. Existence results for zero-sum stochastic games were provided by Shapley in 1953
[219]. These results have been extended to multiplayer nonzero-sum games by Fink in
1964 [97]. More details on the Big Match model are in [244]. We refer the reader to
[179] for a comprehensive treatment of existence conditions of a uniform equilibrium for
two-player zero-sum games by Mertens and Neyman. Extensions of the above results to
nonzero-sum games by Vieille are in [244].
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Chapter 11

Games with Vector
Payoffs: Approachability
and Attainability

11.1 Introduction
This chapter covers the fundamentals of the theory of games with vector payoffs. The
theory is known as Approachability Theory.

Imagine a game where the outcomes produce multiple noninterchangeable items. As
an example, in a job interview the employer and the candidate usually bargain over salary,
career perspectives, benefits, days off, and several other items. Intuitively, the repetition
of such a bargaining process over time produces a flow of instantaneous payoffs. Thus,
both the employer and the candidate may wish to regulate the flow of payoffs to their
advantage. In case of a lengthy interaction it is reasonable to focus on the average payoff
so that it can approach a predetermined set. Think of this set as the set of conditions on
which the employer and the candidate may find agreement and the contract can be signed.
Conditions for this to happen are established in Blackwell’s Approachability Principle.

The principle is used in several areas of game theory, such as allocation processes in
coalitional games, regret minimization, adaptive learning, excludability and bounded re-
call, and weak approachability, to name just a few. For instance, in coalitional games, one
asks whether the core is an approachable set and which allocation processes can drive the
excess vector to that set. In regret minimization, we consider the nonpositive orthant in
the space of regrets as approachable; then a single player tries to adjust his strategy based
on the current regret so as to make that set approachable by the regret vector. It is proven
that once the set is reached and the players’ regret vectors are nonpositive, the resulting
outcome is an equilibrium for the repeated game. This idea of adapting the new action
to the current state of the game is common to adaptive learning as well. Still, the ap-
proachability principle is behind the notion of excludability; along this line some authors
investigate which sets are approachable and which ones are excludable under imperfect
information (bounded recall, delayed and/or stochastic monitoring).

When dealing with vector payoffs, given a preassigned set in the space of vector pay-
offs, the challenge is to understand the conditions that guarantee that there exists a strategy
for player 1 such that the average payoff “converges” to that set independently of the strategy
used by player 2. More recently, a new notion has been coined, called attainability, which
focuses on convergence of the cumulative rather than the average payoff. Convergence
has to be intended here in the limsup sense.

After providing an illustrative example, Section 11.2 introduces a formal definition of
approachable set, discusses Blackwell’s Approachability Principle, and points out further

107
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108 Chapter 11. Games with Vector Payoffs: Approachability and Attainability

results. Section 11.3 highlights connections with control theory. Section 11.4 introduces
the new notion of attainability and recent results. Section 11.5 points out key research
directions. Finally, in Section 11.6 we provide notes and references for this chapter.

11.2 Approachability theory
This section deals with approachability theory. We shall start with an illustrative example,
before providing a formal statement of approachable set and discussing seminal results.

11.2.1 Illustrative example

Consider a two-player discrete-time repeated game with vector payoffs. Both players have
four actions available. Specifically, player 1 can play A, B , C , or D, and player 2 can play
a, b , c , or d . Payoffs are three-dimensional vectors, as depicted in Fig. 11.1.

a b c d
A (6,7,3) (1,7,2) (6,2,2) (1,2,4)

B (6,−4,2) (1,−4,−1) (6,−9,−2) (1,−9,−3)
C (−3,−1,3) (−8,−1,−3) (−3,−6,1) (−8,−6,−4)
D (−3,10,−2) (−8,10,−1) (−3,5,2) (−8,5,−2)

t = 1

t = 2

t = 3

Figure 11.1. Two-player repeated game with vector payoffs.

Let x(t ) be the cumulative payoff up to time t . Furthermore, let x̄(t ) be the average
payoff up to time t . Assume that at t = 1, player 1 plays A and player 2 plays a. The
action profile is then (A,a), and the cumulative payoff, which for t = 1 corresponds to
the average payoff, is given by x(1) = x̄(1) = (6,7,3). Such a payoff is highlighted using a
light gray cell in the bimatrix.

The game proceeds, and at time t = 2, player 1 plays B and player 2 plays d . The ac-
tion profile (B , d ) yields an instantaneous payoff of (1,−9,3), a cumulative payoff x(2) =
(7,−2,0), and an average payoff x̄(2) = ( 72 ,−1,0). The instantaneous payoff at t = 2 is
emphasized using a gray cell in the bimatrix.

At the successive iteration, for t = 3, we suppose that player 1 plays D and player 2
plays d . Then we have that the instantaneous payoff is (−8,5,−2), while for the cumula-
tive payoff and the average payoff we have (−1,3,−2) and (− 1

3 ,1,− 2
3 ), respectively. The

instantaneous payoff at t = 3 is emphasized using a dark gray cell in the bimatrix.
Clearly, in a continuous-time setting, the payoffs in the bimatrix would indicate the

integrand and the cumulative payoff would be the integral of the instantaneous payoffs.

11.2.2 Definition of approachable set

In the following, we introduce Blackwell’s definition of approachable set.

Definition 11.1 (Approachable set). A set of payoff vectors A is approachable by player 1
if he has a strategy such that the average payoff up to stage t , x̄(t ) := x(t )

t , converges to A,
regardless of the strategy of player 2.
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11.2. Approachability theory 109

L R
T (0,0) (0,0)
B (1,1) (1,0)

Figure 11.2. Approachability example.

(0,0)
(1,0)

(1,1)

C1

(0,0)
(1,0)

(1,1)

C2

(0,0)
(1,0)

(1,1)

C3

Figure 11.3. Example of approachable sets (C1, C2, and C3). Reprinted with permission from
CUP [173].

Example 11.2. This example shows different approachable sets for a two-player game
with bidimensional payoff. Let the bimatrix in Fig. 11.2 be given. For this game, sets
C1, C2, and C3 shown in Fig. 11.3 are approachable sets. Specifically, set C1 contains one
single point, which is the origin (0,0). Set C1 is approachable, as player 1 can select action
T at any time, and this produces the vector payoff (0,0). Also, set C2 is approachable. To
see this, imagine player 1 playing action B at every time. This produces the vector payoff
(1,$), where the second component of the payoff is any value in the interval [0,1]. This
value will depend on how player 2 will play. Finally, a third approachable set is C3. This
is evident if we think of player 1 playing the strategy illustrated below:$

B if x̄1(t − 1)+ x̄2(t − 1)< 1,
T otherwise.

In other words, if the current average lies in the half-space x̄1(t − 1) + x̄2(t − 1) < 1, he
will play B so that the new payoff will be a point in C2. Geometrically, this corresponds
to the current average being a point on the left of the segment from (1,0) to ( 12 , 1

2 ) and the
new payoff lying in the segment from (1,0) to (1,1). Conversely, if the current average
lies in the half-space x̄1(t − 1) + x̄2(t − 1) ≥ 1, then player 1 will play T so that the new
payoff will be a point in C1. In the graphical illustration, this corresponds to the current
average lying on the right of the segment from (1,0) to ( 12 , 1

2 ) and the new payoff being
(0,0).

11.2.3 Blackwell’s Approachability Principle

After introducing the definition of approachable set, let us discuss Blackwell’s Approacha-
bility Principle. This states conditions for a set to be approachable.

A graphical illustration of such conditions is as in Fig. 11.4. There, we have set A,
which is the set player 1 wishes to approach. Assume that the payoffs are d -dimensional
vectors. Define y(t ) as the projection of x̄(t ) on set A. Recall that x̄(t ) is the current
average payoff. Let us draw the supporting hyperplane (dashed line) to A at point y(t ).
The supporting hyperplane is the set of points satisfying

H = {z ∈�d | 〈z − y(t ), x̄(t )− y(t )〉= 0}.
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110 Chapter 11. Games with Vector Payoffs: Approachability and Attainability

y(t ) A

H−

H+

x̄(t )

x(t + 1)

R1(p)

x̄(t + 1)

Figure 11.4. Geometric illustration of Blackwell’s Approachability Principle.

Given the supporting hyperplane H , let us denote by H+ and H− the positive and nega-
tive half-spaces. That is to say that for H+ and H− it holds that

H+ = {z ∈�d | 〈z − y(t ), x̄(t )− y(t )〉 ≥ 0},
H− = {z ∈�d | 〈z − y(t ), x̄(t )− y(t )〉 ≤ 0}.

We are ready to state Blackwell’s Approachability Principle.

Theorem 11.3 (Blackwell’s Approachability Principle). Set A is approachable if for any
point x̄(t ) ∈ H+, there exists a p such that R1(p) ⊂ H−, where R1(p) is the set of payoffs
when player 1 plays the mixed action p and for all possible actions of player 2.

Proof (Sketch). The proof plays around the idea that if the instantaneous payoff lies
in the opposite half-space than the one containing the current average payoff, then the
distance of the average payoff from the approachable set decreases monotonically. Recall
that the instantaneous payoff is a point in R1(p). Therefore the existence of a strategy
p for player 1 such that R1(p) is in H− guarantees that the instantaneous payoff lies in
the opposite half-space. The reader familiar with Lyapunov stability may find it useful to
interpret the distance as a Lyapunov function.

11.2.4 Further results on approachability

Approachability theory has produced further results. We comment on three of them in
order.

• Approachability in infinite-dimensional spaces. A first finding deals with the
adaptation of Blackwell’s Approachability Principle to infinite-dimensional vector
payoffs. While Blackwell’s convergence results make use of the Euclidean distance,
the new setup plays with a measure defined in an infinite-dimensional space [151].
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11.3. A dual perspective: Connection with robust control 111

• Approachability and differential games. Another result investigates the nature
of the approachability problem as a differential game [229] (see also [156]). Specifi-
cally, [229] explains how to turn the approachability problem into a zero-sum differ-
ential game. To do this, one has to introduce a differential dynamics describing the
time evolution of the average payoff. This dynamics is subjected to (i) a controlled
input, which is the strategy of player 1, and (ii) an uncontrolled input, which is the
strategy of player 2. The problem can be manipulated and turned into an uncertain
dynamic system with multiplicative uncertainty. The problem has now the same
nature of a reachability control problem [53].

• Approachability in regret learning. A further result deals with the application
of approachability in regret minimization [109, 110, 111]. Regret minimization is
essentially the topic of learning from previous errors. The learning process is driven
by a posteriori observations. Specifically, the players construct their strategy on
the basis of a regret vector. This vector describes the advantage for a player derived
from the same player constantly playing each of his pure strategies rather than the
current strategy (this is in general a mixed strategy). Evidently, the regret vector of
a player has as many components as the pure strategies of that player. It turns out
that if the player is playing his best response, then his regret vector is nonpositive,
component-wise. That is to say that at a Nash equilibrium, as all players are playing
their best responses, all regret vectors are nonpositive. Clearly, convergence to a
Nash equilibrium is equivalent to steering the regret vectors to the negative orthant.

11.3 A dual perspective: Connection with robust control
This section presents a dual perspective on games with vector payoffs. In particular it
throws light on connections with robust control. This dual perspective occupies an im-
portant place in the history of attainability. Indeed, the definition of attainability finds
its roots in the robust control problems formulated in [26, 27]. The robust control prob-
lems we have in mind deal with a flow over a network. For instance, the topology of the
network may be as the one depicted in Fig.11.5.

u1 u2 u3

u4 u5 u6

u7 u8 u9 u10

u11 u12
w1 w2 w3

Figure 11.5. Network robust control problem. Reprinted with permission from IEEE [27].

The problem involves the following main elements:

• uncontrolled flows w(t ) ∈ � for all t ; for instance, the uncertain demand in a
market;

• controlled flows u(t ) ∈� for all t ; for instance, the supply in a market.
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112 Chapter 11. Games with Vector Payoffs: Approachability and Attainability

The excess supply at the nodes accumulates in a buffer. The time evolution of the
supply follows a first-order differential equation of type$

ẋ(t ) = B u(t )−w(t ),
x(0) = ζ .

In the dynamics mentioned above, B denotes the incidence matrix of the network and ζ
is the initial state. The initial state is essentially the initial configuration of the excesses at
the nodes. The interpretation of the above dynamics is that at each time the discrepancy
between the incoming flow and the outgoing flow accumulates in the buffer.

x

T t

Figure 11.6. Tube reachability and robustness.

The robust control problem is about synthesizing a state-feedback control strategy to
steer the vector of excesses to zero. This is illustrated in Fig. 11.6. Here, the trajectory
of the state is driven to a neighborhood of zero in finite time T and is kept within that
neighborhood for the rest of the time. We use the term “robust” to mean the capability to
accomplish this task even if the current and future values of the demand w are not known.
The only assumption is that such values belong to a predefined set. The knowledge of
the only bounding set reframes the problem within the literature on robust control with
unknown but bounded disturbances [53]. The problem is also known as tube reachability.

We can look at this problem from an alternative angle, which provides a dual perspec-
tive in terms of repeated games with vector payoffs. To see this, let us suppose that the
control input u(t ) is selected by player 1. At the same time the demand w(t ) is selected
by player 2. Review the excess derivative ẋ(t ) as the instantaneous payoff of the game.
Evidently, it turns out that the cumulative payoff at time t is exactly the state variable
x(t ).

Example 11.4. In this example we shed light on a method to turn a network flow control
problem as the one introduced earlier into an attainability problem for a repeated game
with vector payoffs.

Consider the topology depicted in Fig. 11.7. Assume that the controlled input u(t )
can take a value in a given discrete set, namely

u(t ) ∈
⎧⎨
⎩
⎡
⎣ 1
−2
6

⎤
⎦ ,

⎡
⎣ 1
−2
−5

⎤
⎦ ,

⎡
⎣ −5

1
−5

⎤
⎦ ,

⎡
⎣ −5

1
6

⎤
⎦
⎫⎬
⎭ .
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11.3. A dual perspective: Connection with robust control 113

u1

u3

u2

w1

w2

Figure 11.7. An example of a network flow control problem turned into an attainability
problem [155].

That is to say that the material flows in batches. At the same time, let us assume that for
the uncontrolled input w(t ) it holds that

w(t ) ∈
$� −3
−3

�
,
�

2
−3

�
,
� −3

2

�
,
�

2
2

�-
.

In other words, both flows, controlled and uncontrolled, take values in predetermined
discrete sets, which we now reinterpret as discrete action sets. Having said this, the evo-
lution of the excesses is given by

�
ẋ1(t )
ẋ2(t )

�
=
�

1 −1 0
0 1 1

�⎡⎣ u1(t )
u2(t )
u3(t )

⎤
⎦− � w1(t )

w2(t )

�
.

We immediately note that if we substitute for u(t ) and w(t ) the values available in the
discrete sets, then we essentially obtain the bimatrix illustrated in Fig. 11.8.

a b c d
A (6,7) (1,7) (6,2) (1,2)
B (6,−4) (1,−4) (6,−9) (1,−9)
C (−3,−1) (−8,−1) (−3,−6) (−8,−6)
D (−3,10) (−8,10) (−3,5) (−8,5)

Figure 11.8. Bimatrix derived from a network flow control problem.

It is worth noting that the above bimatrix involves the first two payoffs of the three-
dimensional payoff matrix introduced at the beginning of this chapter.

In the bimatrix of Fig. 11.8, each entry describes the bidimensional payoff resulting
from any feasible action profile. As an example, the entry (6,7) which we find in the 1st
row and 1st column can be obtained by substituting

u(t ) =

⎡
⎣ 1
−2
6

⎤
⎦ and w(t ) =

� −3
−3

�
.

After introducing the dual perspective, we are in a position to present the notion of
attainability.
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114 Chapter 11. Games with Vector Payoffs: Approachability and Attainability

11.4 The concept of attainability
We saw that in the theory of repeated games with vector payoffs, approachability deals
with the study of the average payoffs and their convergence properties. We also said in
the introductory section that attainability does the same but with focus on the cumulative
payoffs rather than average payoffs [155]. This is formalized in the definition provided
below.

Definition 11.5 (Attainability [40, 155]). A set of payoff vectors A is attainable by player 1
if he has a strategy such that the total payoff up to stage t , x(t ), “converges” to A, regardless of
the strategy of player 2.

There is apparently only a subtle distinction between approachability and attainabil-
ity. However, in what follows we show that such a distinction has deep implications in
terms of convergence conditions.

11.4.1 Attainability in continuous time

In this section we explore attainability in continuous time. In particular, we present the
continuous-time repeated game model. After presenting the model, we review the at-
tainability conditions available in the literature. Consider a two-player repeated game
(A1,A2,g), where we denote by Ai the action space of player i and by g : A1 × A2 →
[−1,1]d the d -dimensional payoff. Define (at

i )t∈�+ as the nonanticipative behavior strat-
egy for player i . This strategy has the following characteristics:

• (at
i )t∈�+ takes values inΔ(Ai );

• there exists an increasing sequence of times τ1
i < τ2

i < τ3
i < · · · such that at

i is
measurable with respect to the information available at τk

i , τk
i ≤ t < τk+1

i .

An example of nonanticipative behavior strategy is the one depicted in Fig. 11.9. At time
τ0

i (this corresponds to the origin of the axes), player i chooses the next time τ1
i and

plays the mixed strategy ( 12 , 1
2 ). That is to say, player i plays the two actions T or B with

uniform probability. He plays this strategy all over the entire interval from τ0
i to τ1

i .
At time τ1

i , player i receives an update on the past play of the opponent. Based on this
new information, he selects time τ2

i and plays a new mixed strategy, say, for instance,
(1,0). In other words, he plays T all over the interval from τ1

i to τ2
i . At time τ2

i , there is

T

B

Δ(Ai )
( 12 , 1

2 )

τ1
i

(1,0)

τ2
i

( 13 , 2
3 )

τ3
i

Figure 11.9. Nonanticipative strategy for player i : ( 1
2 , 1

2 ) in the first interval, (1,0) in the
second interval, and ( 1

3 , 2
3 ) in the third interval.
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11.4. The concept of attainability 115

new information available, and therefore player i selects time τ3
i and plays a new mixed

strategy, say ( 13 , 2
3 ). This means that he plays T with probability 1

3 and B with probability
2
3 . He keeps playing this strategy during the entire interval from τ2

i to τ3
i and so forth.

To complete the model, let us consider the payoff at time t , denoted by gt , resulting
from the mixed actions of the players. The integral describes the cumulative payoff and
is given by x(t ) =

∫ t
τ=0 gτ(mixed action pairs at time τ)dτ. With the above in mind, we

are in a position to introduce a formal definition of attainable set.

Definition 11.6 (Attainable set). A set A in �d is attainable by player 1 if there exists a
time T > 0 such that for every tolerance ε > 0, there exists a strategy σ1 for player 1 such that

dist(x(t )[σ1,σ2],A)≤ ε ∀t ≥ T ,∀σ2.

A geometric illustration of an attainable set is in Fig. 11.10.

A

B(A,ε)

ε

Figure 11.10. Epsilon ball of attainable set A.

There, we have a set A, which is the set that player 1 wishes to attain. The set B(A,ε)
is the set of points whose distance from the set A does not exceed the tolerance ε. This
corresponds to saying that

B(A,ε) := {z : dist(z,A)≤ ε}.
After the formal definition of attainable set, in the next section we turn to investigating
attainability conditions.

11.4.2 Main results on attainability

This section illustrates three main attainability conditions. The first one is a condition
for the attainability of the origin in the space of the payoffs. The second result deals with
attainability of a predefined point different from the origin in the space of the payoffs.
Finally, the third result provides conditions for the attainability of any point in the space
of the payoffs.

The above results are all centered around the notion of projected game and value of the
projected game.

In particular, the above conditions require that the value of the projected game, which
we denote by vλ, be bounded in sign. That is to say that it must hold that vλ > 0 or
alternatively vλ ≥ 0. To see this, consider the game with vector payoffs described by the
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116 Chapter 11. Games with Vector Payoffs: Approachability and Attainability

bimatrix in Fig. 11.11(left). In the matrix the symbol 〈·, ·〉 indicates the inner product
in �d . Having a game with vector payoffs, one can construct a matrix game by simple
premultiplication of the entries by a given vector λ ∈ �d . Let us think of λ as a specific
direction in the space of the payoffs. By doing this, one obtains the matrix game on the
right. The matrix game represents now a two-player zero-sum game, and for it we can
calculate the equilibrium payoff vλ. Recall that such an equilibrium payoff is the value of
the game. Obviously, such a value is a function of the direction λ. We highlight this by
adding the index λ. With in mind the definition of value of the projected game mentioned
above, and recalling that we can project the game along any direction λ, we can establish
the following main theorems.

(#,#) (#,#)
(#,#) (#,#) ⇒ 〈λ, (#,#)〉 〈λ, (#,#)〉

〈λ, (#,#)〉 〈λ, (#,#)〉 .

Figure 11.11. Game with vector payoffs (left) and its projected game (right).

The first theorem deals with attainability of the origin �0 in �d .

Theorem 11.7. The following conditions are equivalent.

B1 vector �0 ∈�d is attainable by player 1;

B2 vλ ≥ 0 for every λ ∈�d .

Proof (Sketch). The first part of the proof shows that for the origin �0 ∈�d attainability
and approachability are equivalent. In other words, �0 ∈�d is attainable, namely condition
B1 holds, if and only if the same vector is approachable. We cannot stress enough that
such an equivalence is true only for the origin. The second part of the proof makes use
of Blackwell’s Approachability Principle. Actually, from Blackwell’s principle, if �0 ∈ �d

is approachable, then condition B2 holds true and vice versa. Consequently, we have the
equivalence between conditions B1 and B2.

We can interpret the result mentioned above by saying that for the �0 in �d to be
attainable, the value of the projected game along any direction λ ∈�d must be bounded in
sign.

Note that the first condition, referred to as condition B1, recalls in spirit Blackwell’s
Approachability Principle. This should become clearer by looking at the graph displayed
in Fig. 11.12. The graph depicts the above condition when the attainable set coincides
with the singleton �0 in �d . At time τk

1 , let the cumulative payoff x(τk
1 ) be given. Let us

project x(τk
1 ) on �0 in�d . By doing this we find the direction λ=− 1

‖x(τk
1 )‖ x(τk

1 ). Consider

any feasible payoff in the set R1(p). Recall that R1(p) is the set of payoffs when player 1
plays the mixed action p and for all possible actions of player 2. If the inner product
between the payoff and the direction λ turns to be nonnegative, then we know that the
payoff and λ are confined within the nonpositive half-space H−.

The above condition is a necessary condition also if we are interested in the attain-
ability of a given point in the space of payoffs which is not the origin �0 in �d . This is
established in the following theorem.
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11.4. The concept of attainability 117

λ
0

H−

H+

x(τk
1 )

R1(p)

x(τk+1
1 )

Figure 11.12. Geometric illustration of the condition for the attainability of �0.

Theorem 11.8. Vector z ∈�d ( �= �0) is attainable by player 1⇔.

B1 the vector �0 ∈�d is attainable by player 1;

B3 for every function f :Δ(A1)→Δ(A2), vector z is in

C one( f ) :=
"

y ∈�d | y =∑
p∈A1

αp g (p, f (p)) : αp ≥ 0∀p
#

.

Proof (Sketch). To understand the role of condition B3 for the attainability of z, assume
that player 1 plays the mixed strategy p ∈ Δ({T ,B}). Here Δ({T ,B}) denotes the set of
probability distributions over the set of pure actions {T ,B}. Furthermore, assume that
player 2 responds with the strategy f (p). Consequently, the payoff x(τ1

1) lives in the
segment ab , as depicted in Fig. 11.13.

If player 1 plays B all over the interval 0 ≤ t ≤ τ1
1 , the payoff x(τ1

1) is the extreme
point of the segment in boldface in Fig. 11.14. From this we understand that given all
feasible mixed strategies in the second interval the payoff x(τ2

1) lies on the segment cd .
Now, assume that player 1 switches to strategy T in the interval τ1

1 ≤ t ≤ τ2
1 . As

a consequence, the payoff x(τ2
1) coincides with the extreme point of the new segment

in boldface in Fig. 11.15. Whatever the mixed strategy of player 2 will be, in the third
interval the payoff x(τ3

1 ) lies on the segment e f .
At time τ3

1 , under the assumption that player 1 opts for a mixed strategy ( 12 , 1
2 ) all over

the interval τ2
1 ≤ t ≤ τ3

1 , the corresponding payoff x(τ3
1) coincides with the extreme point

of the third segment in boldface in Fig. 11.16.
Given that x(τ3

1) is approximately close to the point we wish to attain, namely point
z, we infer that the cumulative payoff in the interval τ3

1 to ∞ must necessarily be close
to zero. Obviously, this is possible only if �0 is attainable.

It is worth noting that we have constructed the trajectory in such a way that ex-
plains also the reason why the feasible trajectories {x(τk

1 )}k=0,...,∞ are contained in the
C one( f ).
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C one( f )
b

a

B

T

z

Figure 11.13. Geometric illustration of Theorem 11.8. Player 1 selects a time τ1
1 and plays

any mixed action p in the set Δ({T ,B}). Player 2 plays f (p). At time τ1
1 the cumulative payoff is a

point in the segment ab .

C one( f )

x(τ1
1)

z

d

c

Figure 11.14. Geometric illustration of Theorem 11.8. Assume that player 1 plays p(t ) = B
in the interval [0,τ1

1]. At time τ1
1 the cumulative payoff x(τ1

1) coincides with the extreme point b of the
segment ab . Then player 1 selects a new time τ2

1 and the corresponding x(τ2
1) lies on segment c d .

We conclude this section by stressing that when the value of the projected game is
strictly positive for every direction λ ∈�d , any vector in the space of payoffs is attainable.

Theorem 11.9. The following statements are equivalent:

C1 vλ > 0 for every λ ∈�d ;

C2 every vector z ∈�d is attainable by player 1.

Proof (Sketch). One way to conduct this proof is by showing that condition C1 is equiv-
alent to the existence of a Lyapunov function in the space of the payoffs. Actually, let
us take as a candidate Lyapunov function the distance of the current cumulative payoff
from the attainable point z ∈�d . It can be proven that condition C1 holds if the deriva-
tive of such a function is strictly negative and vice versa. This corresponds to saying that
the distance is a Lyapunov function, and therefore it tends to decrease monotonically
to zero.
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11.5. Conclusions and future directions 119

C one( f )

x(τ1
1)

z

x(τ2
1) f

e

Figure 11.15. Geometric illustration of Theorem 11.8. Assume that player 1 plays p(t ) = T
in the interval [τ1

1 ,τ2
1]. At time τ2

1 the cumulative payoff x(τ2
1 ) coincides with the extreme point c of

the segment c d . Then player 1 selects a new time τ3
1 and the corresponding x(τ3

1 ) lies on segment e f .

C one( f )

x(τ1
1)

z

x(τ2
1)

x(τ3
1)

Figure 11.16. Geometric illustration of Theorem 11.8. At time τ3
1 , under the assumption

that player 1 plays the mixed strategy ( 1
2 , 1

2 ) all over the interval τ2
1 ≤ t ≤ τ3

1 , the corresponding payoff
x(τ3

1 ) coincides with the extreme point of the third segment in boldface.

11.5 Conclusions and future directions
This chapter has developed the theory of repeated games with vector payoffs. After in-
troducing approachability and attainability, the latter being a new concept developed in
[40, 155], we have surveyed the main results available in the literature.

Future directions involve in order the following:

• The study of continuous-time attainability from the point of view of differential
game theory [229]. Specifically, one could start from the formal definition of at-
tainability for a continuous-time repeated game available in [40, 155].

• The study of analogies between a main attainability condition (positiveness of the
value of any projected game) and the subtangentiality conditions characterizing
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120 Chapter 11. Games with Vector Payoffs: Approachability and Attainability

discriminating sets in viability theory [11, 71], set-valued analysis [12, 13], and set
invariance theory [58].

• The investigation of the main attainability condition in connection with the ro-
bust stabilizability conditions derived in network flow control [33, 27, 60, 59]. We
exploit the analogy with network flow control to characterize attainable sets and
associated strategies.

• The study of attainability with infinite horizon discounted payoffs to show that
the main condition derived for the undiscounted case (positiveness of the value of
any projected game) no longer implies that every point is attainable. Indeed, at-
tainability can be guaranteed only for a small neighborhood of the initial payoff
value.

11.6 Notes and references
The rudiments of Approachability Theory are in the seminal work by Blackwell in the
1950s [57]. A detailed description of Blackwell’s Approachability Theorem and its use
in prediction and learning is also available in the book by Cesa-Bianchi and Lugosi [73,
Chap. 7.7]. Examples 11.2 and Fig. 11.3 are borrowed from the book by Mashler, Solan,
and Zamir [173]. The topic shares striking similarities with Lyapunov stability (see the
Appendix, Chapter C).

Approachability applied to allocation processes in coalitional games is the main focus
of [150]. Approachability and regret minimization are discussed in [152, 111]. Approach-
ability in adaptive learning is examined in [73, 98, 109, 110]. Excludability and bounded
recall are illustrated in [153]. Weak approachability is presented in [243]. For further
reading on approachable sets we refer the reader to [57, 121, 151, 154, 155, 156, 208, 229,
230].

Despite its discrete-time nature in the original Blackwell formulation, approachabil-
ity has also been extended to continuous-time repeated games, thus showing common el-
ements with Lyapunov theory [111]. Though formalized in a finite-dimensional space, a
definition of approachability in an infinite-dimensional space was first proposed by Lehrer
in [151].

Approachability can be reframed within differential games and as such can be stud-
ied using differential calculus and stability theory [156, 229]. In particular, in [156] the
authors show that, beyond the approachability principle being an extension (to a vector
space) of the von Neumann minimax theorem, it also has elements in common with dif-
ferential inclusion [12]. In addition to this, [229] establishes connections with viability
theory [11], set-valued analysis [13] (see the comparison of an approachable set with a
discriminating set), and set invariance theory [58].

Still within the realm of differential games, it is worth noting that the notion of nonan-
ticipative behavior strategy has a long history [16, 91, 208, 229, 242]. Actually, it turns out
that classical feedback strategies in differential games are special nonanticipative strategies.

More recently, approachability conditions have been reviewed and extended to the
case where the quantity to regulate is not the average but the cumulative payoff. A new
term has been coined to address such a scenario: attainability [40, 155].

In [40, 155], attainability conditions are studied for two-player continuous-time re-
peated games with vector payoffs. The authors show that attainability arises in several
application domains, including transportation, distribution, and production networks.
For a formal proof of Theorem 11.8 we refer the reader to [40].
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Chapter 12

Mean-Field Games

12.1 Introduction
This chapter provides an overview of the theory of games with many negligible agents.
The theory was first developed within the area of Engineering Mathematics, but it has
recently attracted the attention of econophysists and sociophysists (see Fig. 12.1). After
presenting the main setup we shall discuss a few stylized examples borrowed from [105].
The last part skims through some available results on existence and uniqueness of solu-
tions, linear-quadratic mean-field games, and robustness.

Engineering
Mathematics

Econophysics

Sociophysics

Mean-field
games

Figure 12.1. Mean-field games were first formulated within the area of Engineering Mathe-
matics, but the topic shows overlaps with econophysics and sociophysics.

Section 12.2 introduces first- and second-order mean-field games and highlights differ-
ent formulations involving finite and infinite horizon cost functionals.

Section 12.3 explores seminal results on existence and uniqueness conditions. Sec-
tion 12.4 provides examples. Section 12.5 introduces robust mean-field games, exam-
ines a general solution, and discusses the new equilibrium concept of robust mean-field
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122 Chapter 12. Mean-Field Games

equilibrium. Section 12.6 provides conclusions and points out open problems. Finally,
Section 12.7 provides notes and references on the topic.

12.2 Formulating mean-field games
In this section, we shall start with formulating first- and second-order mean-field games.
Then we consider finite and infinite horizon models.

12.2.1 First-order mean-field game

In a mean-field game we have N homogeneous players, and we let N →∞. The term homo-
geneous players means that all the players who share the same state x ∈�n behave exactly
in the same way. That is to say, these players play the same state-feedback strategy, denoted
by u(x(t ), t ). Suppose that the state dynamics is given by the first-order differential equa-
tion

ẋ(t ) = u(x(t ), t ), x(0) ∈�n . (12.1)

It is worth noting that, as the right-hand side is a function of x, the state dynamics (12.1)
defines a vector field in �n . To put dynamics (12.1) in context, imagine that the players
represent particles of salt which flow on the bed of a river. Then, the state space is the
bidimensional Euclidean space, the variable x(t ) ∈�2 denotes the position of the particle
at a given time t , and u(x(t ), t ) is the speed of the particle. Needless to say, we can play
with our imagination and see the state variable as any abstract entity, such as an opinion in
the space of opinions, or the characteristic of an individual (aggressive or nonaggressive)
in the space of social behaviors (think, for instance, of the Hawk and Dove game in an
evolutionary context). The vector field is then a description of how opinions or individual
behaviors progress over time.

Let us think again of the salt particles, and let us describe the concentration of particles
in a point x at a time t . This requires the use of a density function, denoted by m(x, t ),
which depends on both space x and time t . From calculus and in particular from the
definition itself of divergence operator, we know that if a scalar function is immersed in
a vector field, the time evolution of the scalar function follows the so-called advection
equation. For a generic n-dimensional vector variable x and a finite horizon [0,T ], such
an equation is a partial differential equation of the form

∂t m(x, t )+ div(m(x, t ) · u(x, t )) = 0 in �n × [0,T ]. (12.2)

The above partial differential equation, which is also referred to as transport equation, is
essentially a mass conservation law. This law states that if we take the partial derivative
of the density with respect to time, the result must be equal to the divergence of the scalar
function m(x, t ) subjected to the vector field u(x, t ). Fig. 12.2 explains the nature of this
equation as a mass conservation law. Let us freeze time t and look at point x. If point x
is a source, then the vector field u(x, t ) describes an outgoing flow from x. Recall that the
divergence operator yields the flow traversing the spherical surface surrounding point x
when, in the limit, the radius of the sphere tends asymptotically to zero. In this context,
a mass flow which departs from point x is equivalent to a divergence term div(m(x, t ) ·
u(x, t )) > 0. To counterbalance such a positive term, the first term in (12.2), namely
∂t m(x, t ), is negative. That is to say that the concentration of particles diminishes with
time. Conversely, if point x is a sink, the second term in (12.2), namely div(m(x, t ) ·
u(x, t ))< 0, and the partial derivative ∂t m(x, t ) must be positive. This means that more
and more particles accumulate in point x.

D
ow

nl
oa

de
d 

08
/1

9/
16

 to
 1

31
.1

56
.2

24
.6

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

co
nt

ro
len

gin
ee

rs
.ir



12.2. Formulating mean-field games 123

x

u(x, t )

x

u(x, t )

Figure 12.2. Physical interpretation of the divergence operator used in the advection equa-
tion. If the divergence is positive, point x is a source (left); if the divergence is negative, point x is a sink
(right).

After explaining the physical interpretation of the advection equation in (12.2), let us
assume that the particles are rational. As such they select their velocities u(x, t ) in order
to minimize a cost functional of the form∫ T

0

+ 1
2
|u(x(t ), t )|2︸ ︷︷ ︸
penalty on control

+ g (x(t ), m(·, t ))︸ ︷︷ ︸
...on state & distribution

,
d t +G(x(T ), m(·,T ))︸ ︷︷ ︸

...on final state

.

Remarkably, the cost functional introduced above presents the same structure of a classical
optimal control functional except for the density function m(.) appearing in the integrand
and in the terminal penalty. In particular, the first term 1

2 |u(x(t ), t )|2 is a penalty term
on control, representing the energy necessary to control the particle. The second term
g (x(t ), m(·, t )) is the running cost and represents a penalty term depending on the current
state and distribution. Finally, the third term G(x(T ), m(·,T )) is the terminal penalty.

From the theory of optimal control, it turns out that the optimal state-feedback con-
trol is along the anti-gradient of a well-known function v(.), namely

u(x(t ), t ) =−∇x v(x(t ), t ). (12.3)

Function v(.) is known in the literature as the value function. The value function is noth-
ing but the minimum cost achievable, and such a function will intuitively depend on the
initial position of the player. The value function v(.) is the solution of the Hamilton–
Jacobi–Bellman (HJB) equation (cf. Section 9.2.3). We shall reiterate later how to derive
the HJB equation.

In summary, the model of a mean-field game takes the form of two coupled partial
differential equations in �n × [0,T ]:

−∂t v(x, t )+ 1
2 |∇x v(x, t )|2 = g (x, m(.))

u(.)
��

(HJB)—backwards

∂t m(x, t )+ div(m(x, t ) · u(x, t )) = 0

m(.)

��

(advection)—forwards

The two coupled partial differential equations mentioned above have to be solved impos-
ing the boundary conditions at time 0 for the density function, i.e., m(·, 0) = m0, and at
time T for the value function v(x,T ) =G(x, m(·,T )).

This corresponds to saying that the HJB equation must be solved using dynamic pro-
gramming backwards. In this equation we can see the density m(.) as a parameter and
the value function v(.) as the variable. Once we obtain the value function, we get the
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124 Chapter 12. Mean-Field Games

optimal control u(.) from (12.3). Put differently, solving the HJB equation means finding
the best response of a single player u(.) to the population behavior, the latter captured by
the density m(.). We say that u(.) is a best response, as it is obtained as optimal control
for a given assumption on m(.); therefore, u(.) is the best response to m(.).

Analogously, in the advection equation, we can interpret the best response u(.) as a
parameter and the density m(.) as the variable. This equation describes the evolution of
the population as a whole under the assumption that all players are rational.

Solving a mean-field game as the one mentioned above means to study existence and
uniqueness and eventually to compute a fixed point. The computation may be carried
out iteratively as follows. Let us first assume a given density m(.). Based on the given
m(.), let us solve the HJB equation to obtain a best response u(.). Let us substitute u(.)
in the advection equation and compute the density m(.). At a fixed point such a density
coincides with the one we had used in the HJB equation at the beginning of the last cycle.
If a fixed point exists, it is called mean-field equilibrium. Remarkably, this equilibrium
is the asymptotic solution of a Nash equilibrium when we take the number of players
tending to infinity.

Let us now turn our attention to the computation of the HJB equation for the example
at hand. The derivation of the aforementioned equation consists in the following steps.

• In step 1, we shall consider the Bellman Principle (cf. Section 9.2.3). That is to say
that the value function v(x, t ), which represents today’s cost, can be decomposed
as the sum of a stage cost, denoted by minu[

1
2 |u|2 + g (x, m(.))], and a future cost-

to-go, denoted by v(x + d x, t + d t ), depending on the future state x + d x, which
we reach by applying the optimal u. In other words we get

v(x, t )︸ ︷︷ ︸
today’s cost

=min
u
[ 1

2 |u|2+ g (x, m(.))]d t︸ ︷︷ ︸
stage cost

+v(x + d x, t + d t )︸ ︷︷ ︸
future cost

.

• In step 2, we shall perform the Taylor expansion of the future cost. By doing this
we obtain that

v(x + d x, t + d t ) = v(x, t )+ ∂t v(x, t )d t +∇x v(x, t )ẋd t .

• In step 3, we shall set the gradient of a convex function equal to zero, as it is typ-
ical to find the minimizer of a convex function. Actually, after computing for the
Hamiltonian we have

min
u
[ 1

2 |u|2+ g (x, m(.))+ ∂t v(x, t )+∇x v(x, t )
u︷︸︸︷
ẋ ]︸ ︷︷ ︸

Hamiltonian

= 0,

where we have dropped the index 0. We note that the optimal control is given by
u =−∇x v(x, t ), which in turn yields

−∂t v(x, t )+
1
2
|∇x v(x, t )|2 = g (x, m(.)) (HJB).

12.2.2 Second-order mean-field game and chaos

If the particles evolve in a chaotic way, then the state dynamics can be described by a
stochastic differential equation of type

d x(t ) = u(x(t ), t )d t +σdB(t ),

where dB(t ) is the infinitesimal Brownian motion.
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12.2. Formulating mean-field games 125

As for the deterministic case introduced in the previous sections, the corresponding
mean-field game model involves two coupled partial differential equations. The difference
is that now we have second-order derivatives of the value function v(.) and of the density
m(.) appearing in the equations as displayed below:

−∂t v(x, t )+ 1
2 |∇x v(x, t )|2− σ2

2 Δv(x, t ) = g (x, m(.))

u(.)
��

(HJB)—backwards

∂t m(x, t )+ div(m(x, t ) · u(x, t ))− σ2

2 Δm(x, t ) = 0.

m(.)

��

(KFP)—forwards

In the above equations, Δ is the Laplacian operator, which is given by

Δ=
n∑

i=1

∂ 2

∂ x2
i

.

Consequently, the above model is called second-order mean-field game. The advection
equation is now replaced by the well-known Kolmogorov–Fokker–Planck (KFP) equation.
This equation usually models diffusion processes and constitutes a fundamental in statis-
tical mechanics.

12.2.3 Average and discounted infinite horizon formulations

Mean-field games can also be formulated as infinite horizon problems. In this case we
have two alternative formulations. If the players are patient or farsighted, the formulation
involves the average infinite horizon cost functional. Differently, if the players are myopic
or shortsighted, the formulation involves a discounted cost functional. We elaborate on
the two cases in order.

• (Average cost) First, in the case of shortsighted players, the cost functional is of the
form

J =� limsup
T→∞

1
T

∫ T

0

+1
2
|u(x)|2+ g (x(t ), m(·, t ))

,
d t .

Then the mean-field game requires solving in �n the system

λ̄+ 1
2 |∇x v̄|2− σ2

2 Δv̄ = g (x, m̄)

u
��

(HJB)

div(m̄ · u(x))− σ2

2 Δm̄ = 0

m̄

��

(KFP)

The formulations mentioned above are such that instantaneous fluctuations of the
cost are meaningless. The importance is entirely on the long-term average cost.
Note that the problem has the same structure as the other mean-field game for-
mulations with the only difference that now we consider the average stage cost λ̄,
the long-run average value function v̄(.), and the long-run average density func-
tion m̄(.).
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126 Chapter 12. Mean-Field Games

• (Discounted cost) In case of farsighted players, the cost functional involves a dis-
count factor as illustrated below:

J =�
∫ ∞

0
e−ρt

+1
2
|u(x(t ), t )|2+ g (x(t ), m(·, t ))

,
d t .

Solving the above mean-field game means to find a fixed point in�n× [0,T ] of the
following two partial differential equations:

−∂t v(x, t )+ 1
2 |∇x v(x, t )|2− σ2

2 Δv(x, t )+ρv = g (x, m(.))

u(.)
��

(HJB)

∂t m(x, t )+ div(m(x, t ) · u(x, t ))− σ2

2 Δm(x, t ) = 0

m(.)

��

(KFP)

12.3 Existence and uniqueness
The formulation of mean-field games in the seminal paper by Lasry and Lions [149] is
accompanied by some results on existence and uniqueness of mean-field equilibria. These
results are also discussed in the lecture notes by Cardaliaguet taken during a course given
by Lions at the College de France [70]. For the existence of a solution, we generally refer
to the assumptions enumerated below (see Theorem 3.1 in [70]):

• uniformly boundedness of running and terminal cost in the space of states and dis-
tribution;

• Lipschitz continuity of running and terminal cost in the space of states and distribu-
tion;

• absolute continuity of the initial probability measure with respect to the Lebesgue
measure.

Under the aforementioned conditions, we have guarantees that the value function and
the distribution are “regular.” From the third condition, we can also exclude the concen-
tration of masses in specific points. In other words, the distribution cannot have Dirac
impulses. Remarkably, under the above conditions we have guarantees that a solution ex-
ists in the classical sense. On the contrary, proving existence of weak solutions is still a
challenging problem. Let us now turn to consider uniqueness conditions.

Uniqueness of a solution is shown to depend on the monotonicity of the cost (see
Theorem 3.6 in [70]). Actually, the running cost must satisfy the condition∫

�d

�
g (x, m1)− g (x, m2)

�
d (m1−m2)(x)> 0 ∀m1, m2 ∈ , m1 �= m2.

Likewise, for the terminal penalty it must hold that∫
�d

�
G(x, m1)−G(x, m2)

�
d (m1−m2)(x)> 0 ∀m1, m2 ∈ .

In the above condition, we denote by the space of probability distributions. The above
inequalities essentially describe situations where a higher density of particles at a given
point yields a higher cost for the particles. We use the term crowd aversion to mean such
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12.4. Examples 127

a scenario. Crowd aversion is a characteristic of several transportation or pedestrian flow
problems [146].

In analogy with the theory of differential games, if the problem is linear-quadratic,
then we can compute explicitly the equilibrium strategies. More details on linear-quadratic
mean-field games and explicit solutions can be found in the work by Bardi [20].

12.4 Examples
In this section we develop some examples taken from [105]. These examples are stylized
models capable of explaining the generality of the theory and its versatility. These models
intersect social science, economics, and production engineering.

Example 12.1 (Mexican wave). This model describes phenomena like mimicry and em-
ulation. The game has a state, denoted by x = [y, z], where the first component y ∈ [0, L)
represents the horizontal coordinate, and the second component z represents the vertical
position, which we henceforth call posture. Consider a continuum of players distributed
over the interval [0, L), as illustrated in Fig. 12.3. The horizontal coordinate of every
player is fixed. The posture lives in the interval from 0 to 1. That is to say,

z =
$

1 standing
0 seated , z ∈ (0,1) intermediate.

The posture varies in consequence of the input u selected by the players. The input es-
tablishes the rate of change of the posture. This is described by the first-order differential
equation

d z(t ) = u(z(t ), t )d t .

The control u is the variable that the players have to optimize. To obtain the well-known
Mexican wave, let us introduce a penalty on state and distribution given by

g (x, m) = K zα(1− z)β︸ ︷︷ ︸
comfort

+
1
ε2

∫
(z − z̃)2m(ỹ; t , z̃)

1
ε

s
. y − ỹ

ε

/
d z̃d ỹ︸ ︷︷ ︸

mimicry

,

where K , α, β, and ε are given parameters. Note that the above cost includes two terms.
The first one accounts for the comfort of the player. Evidently, the comfort is maximal
at the two extreme values of z, namely z = 0, which means that the player is seated, and
z = 1, which means that the player is standing.

Figure 12.3. Mexican wave: probability that player in position y takes on posture z.

To see this, note that the term zα(1− z)β is concave and that it is null for z = 0 and
z = 1. The second term accounts for the mimicry. This term considers the square devi-
ation (z − z̃)2 between the posture of the player and the posture of his neighbors. The
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128 Chapter 12. Mean-Field Games

penalty decreases with the distance of the player from his neighbor. Actually, note that
the term 1

ε s( y−ỹ
ε ) is a Gaussian kernel. This is equivalent to saying that “far neighbors”

are less influential than “close neighbors.” The penalty is also weighted by the probabil-
ity m(ỹ; t , z̃). The latter represents the probability that a given neighbor is in a specific
posture at a given time.

Example 12.2 (Meeting starting time). This second example deals with a model of co-
ordination among players in response to an externality. By externality we mean an ex-
ogenous input. Assume that a meeting is scheduled at time ts . The meeting takes place in
a meeting room which is located in the origin of the horizontal axis in Fig. 12.4. Consider
a continuum of players who are initially distributed over the negative axis. Players have
to choose their speeds when walking to the meeting room. Their speeds depend on their
expectations about the time when the meeting will actually start. Suppose the following
quorum rule: The meeting starts when θ percent of the participants have reached the
room. Thus, θ represents the quorum. Evidently, the optimal speed u for a single player
depends on the model he uses to predict the other players’ behaviors. If the other players
are expected to be punctual, then he will have to speed up. Differently, if the other players
are expected to be late, then he will slow down. The state evolution of a single player is
given by

d x(t ) = u(x(t ), t )d t +σdB(t ).

In the above dynamics, we use a Brownian motion to introduce a stochastic disturbance
in the way in which players approach the meeting room. Let τ̃ =mins (x(s) = 0) be given,
which represents the arrival time of the player. Let us also denote by t̄ the time when the
meeting will actually start, which is in general different from the scheduled time. Note
that the actual starting time is a variable of the problem, as it depends on the population
behavior.

−xmax 0 x

m(x, t )

Figure 12.4. Coordination under externality: the meeting starting time example.

Furthermore, consider a terminal penalty given by

G(x(τ̃), m(·,τ)) = c1[τ̃− ts ]+︸ ︷︷ ︸
reputation

+ c2[τ̃− t̄ ]+︸ ︷︷ ︸
inconvenience

+ c3[ t̄ − τ̃]+︸ ︷︷ ︸
waiting

,

where c1, c2, and c3 are given parameters. Actually, the cost mentioned above shows three
different contributions. The first term describes the cost of a bad reputation incurred
for arriving after the scheduled time. The second contribution accounts for the inconve-
nience of arriving late with respect to the actual starting time. Finally, the third contri-
bution is the cost paid if one arrives before the actual starting time and has to wait for the
other players to arrive.
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12.4. Examples 129

After introducing the model, for any time s we can compute how many players are
already in the meeting room. This quantity is obtained from the following equation:

F (s) =−
∫ s

0
∂x m(0, v)d v.

Consequently, the actual starting time is the inverse function, namely

t̄ = F −1(θ).

Example 12.3 (Herd behavior). In this example we present a model that describes herd
behavior in social science. To do this, let x be given, which describes the behavior of a sin-
gle player. For instance, the behavior of the player can describe his political opinion, his
social behavior, or his innovation openness. Let us suppose that such a behavior evolves
according to the following stochastic differential equation:

d x(t ) = u(x(t ), t )d t +σdB(t ).

The typical herd behavior arises when we set the running cost as

g (x, m) =β

⎛
⎜⎜⎜⎝x −

∫
y m(y, t )d y︸ ︷︷ ︸
average

⎞
⎟⎟⎟⎠

2

.

The above running cost involves the square difference between the behavior of the player
and the average behavior of the individuals in the population. We can use a discounted
infinite horizon formulation as the one introduced in the previous section, in which case
we have

J =�
∫ ∞

0
e−ρt

+1
2
|u(x(t ), t )|2+ g (x(t ), m(·, t ))

,
d t .

We then arrive at the following mean-field game:

−∂t v(x, t )+ 1
2 |∇x v(x, t )|2− σ2

2 Δv(x, t )+ρv(x, t ) = g (x, m(.))

u(.)
��

(HJB)

∂t m(x, t )+ div(m(x, t ) · u(x, t ))− σ2

2 Δm(x, t ) = 0

m(.)

��

(KFP)

Example 12.4 (Oil production). This example deals with a continuum of oil producers.
Every producer has an initial reserve of raw material. To model the stock market, we can
use the geometric Brownian motion given by

d x(t ) = [αx(t )+βu(x(t ), t )] d t +σ x(t )d�(t ),
where βu(t ) is the produced quantity. The running cost involves the production costs
and the total income, the latter with a negative sign. The cost takes the form

g (x, u, m) =−h(m̄)u +
+a

2
u2+ b u

,
,
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130 Chapter 12. Mean-Field Games

where h(m̄) is the sale price of oil. It is reasonable to assume that the sale price decreases
in m̄. That is to say, the higher the average stock still available among the producers, the
lower the current and future sale prices. Furthermore, the terms [ a

2 u2+b u] are quadratic
and linear production costs. The terminal penalty penalizes the unexploited reserve at the
end of the horizon:

G(x(T )) =φ|x(T )|2, φ> 0.

12.5 Robust mean-field games
We shall now consider robust mean-field games. First, we provide the model, and then
we analyze a general solution for it which yields a new equilibrium concept called robust
mean-field equilibrium. We discuss in more detail such a new equilibrium concept at the
end of this section.

12.5.1 The model

Robustness is here related to the presence of a deterministic adversarial disturbance in
addition to the classical stochastic disturbance given by the Brownian motion. Adversarial
means that of all possible realizations, we will consider the worst-case one, in the same
spirit as H∞-optimal control. Fig. 12.5 depicts a classical block system setting up an H∞-
optimal control problem (cf. Section 2.4 and [22]). Here we have a plant G, a feedback
controller K , a control u, a disturbance w, and controlled and measured outputs z and
y. Inputs and outputs are all measurable in Hilbert spaces, denoted by�u ,�w ,�z ,�y ,
respectively. A classical representation of the dynamics of the system is given by⎧⎨

⎩
z =G11(w)+G12(u),
y =G21(w)+G22(u),
u =K(y).

(12.4)

Here we assume that both the operators Gi j and the controller K ∈� are bounded causal
linear operators, where we denote by� the controller space. Recall that causal means that
all subsystems are nonanticipative, namely, the output may depend on past and current
inputs but not on future inputs.

G
w z

K

u y

Figure 12.5. Classical setup of H∞-optimal control.

A main issue in robust control is related to the capability of the controlled plant to
attenuate the effects of the disturbance, which is called disturbance attenuation. Such a

D
ow

nl
oa

de
d 

08
/1

9/
16

 to
 1

31
.1

56
.2

24
.6

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

co
nt

ro
len

gin
ee

rs
.ir



12.5. Robust mean-field games 131

problem can be converted into a zero-sum game between the controller and the distur-
bance. To see this, for every fixed K ∈ � , introduce bounded causal linear operators
TK :�w →�z :

TK (w) =G11(w)+G12(I −KG22)
−1(KG21)(w).

We then look for the worst-case infimum of the operator norm	
infK∈� 〈〈TK 〉〉=: γ ∗,
〈〈TK 〉〉= supw∈�w

‖TK (w)‖z‖w‖w
. (12.5)

This turns the problem into a two-person zero-sum game between the controller and
the disturbance given by

upper bound︷ ︸︸ ︷
inf

K∈� sup
w∈�w

‖TK (w)‖z

‖w‖w
≥

lower bound︷ ︸︸ ︷
sup

w∈�w

inf
K∈�

‖TK (w)‖z

‖w‖w
.

To move from an H∞-optimal control problem to a robust mean-field game, we need
to consider a large number of copies of the same plant asymptotically tending to infinity.
We then assume that the controlled output depends also on the probability distribution
of the states. This corresponds to saying that each plant plays “against” an adversarial
disturbance (as in H∞-optimal control) and at the same time “against” the rest of the
population. Such a scenario is illustrated in Fig. 12.6. In the following, we provide a
mathematical formulation of a robust mean-field game.

G
w z

K

u y

G

w z

K

u y

G
w z

K
u y

G
w z

K
u y

G
w z

K
u y

Figure 12.6. Infinite copies of the plant: the controlled output depends also on the probability
distribution of states.

Consider N copies of a same plant G. For each copy we have a first player, which is
essentially the controller selecting u, and a second player, namely the disturbance choos-
ing w. Let us denote the set of players by ! = {1, . . . ,N}. We shall first formulate the
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132 Chapter 12. Mean-Field Games

robust game for a finite but fixed N , and then we take N →∞. To distinguish the for-
mulation with a finite N from the formulation in the asymptotic case N →∞, we add
the index N to the variables in the former case. Given a finite horizon [0,T ], for every
player j ∈ ! the state, which we denote by xN

j (t ) ∈ �, evolves in accordance with the
following stochastic differential equation in �:

d xN
j (t ) = [αxN

j (t )+βuN
j (t )]d t +σ

)
xN

j (t )d� j (t )+wN
j (t )d t

*
, (12.6)

where α, β, and σ are opportune parameters in �:

• � j (t ), t ≥ 0, is a standard Brownian motion; it is independent of the initial state
xN

j (0) and independent across players; notation� j is henceforth sporadically used
to indicate the Brownian process over the interval [0,T ].

• xN
j (0) represents the initial state of player j . This is randomly extracted from the

distribution mN
j (0). It is assumed that such a distribution converges almost surely

to some distribution m0 for N →∞ and independently of j .

• uN
j (t ) denotes the control of player j at time t .

• wN
j (t ) : [0,T ]→� is the disturbance acting on player j at time t .

Dynamics (12.6) represents the dynamics of each player and therefore can be referred
to as microscopic dynamics. In order to derive the corresponding collective dynamics, which
we call macroscopic dynamics, let us introduce the Dirac measure δ, and let mN (t ) =
1
N
∑N

j=1δxN
j (t )

be the empirical measure of the states at time t . We occasionally use mN to

denote the empirical frequency for all time t ∈ [0,T ], i.e., mN := (mN (t ))t∈[0,T ].
After introducing the empirical frequency, consider the cost functional

J N (xN
j (0), uN

j , mN
j , wN

j ) =�
�

g (xN
j (T ))+

∫ T
0 c(xN

j (t ), uN
j (t ), mN

j (t ), t )d t

−γ 2
∫ T

0 |wN
j (t )|2d t

�
,

where mN
j = (m

N
j (t ))t∈[0,T ] and mN

j (t ) :=
1

N−1

∑
j ′ �= j δxN

j ′ (t )
, g (.) is the terminal penalty,

and c(.) is the running cost.
We assume that each player j plays a control uN

j (t ) which is adapted to the filtra-
tion generated by the initial state xN

j (0) and the Brownian motion� j , and possibly also
adapted to some aggregate filtration associated with other players’ dynamics. Specifi-
cally, let the following class of individual-and-aggregate state-feedback strategies be given:
uN

j (t ) =μ j (t , xN
j (t ), mN (t )).

Let us adapt the definition of feedback Nash equilibrium from [23] to the above class of
strategies. To do this, ignore the disturbance wj (t ) by setting wN

j (t ) = 0 for all t ∈ [0,T ].

Definition 12.5. A feedback Nash equilibrium is a feedback strategy profile

uN∗
j (t ) =μ

∗
j (t , xN

j (t ), mN (t )),

j ∈! , such that no player has incentive to deviate, i.e., for all j ∈! ,

J N (xN
j (0), uN∗

j , mN∗
j , 0) = inf

{uN
j (t )}t

J N (xN
j (0), uN

j , mN∗
j , 0),
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12.5. Robust mean-field games 133

where the dynamics of xN
j (t ) are given by

d xN
j (t ) =

)
αxN

j (t )+βuN
j (t )

*
d t +σ xN

j (t )d� j (t ), t ∈ (0,T ], x0 ∈�. (12.7)

In the above equation, mN∗
j = (m

N∗
j (t ))t∈[0,T ], and mN∗

j (t ) is the empirical measure 1
N δxN

j (t )
+

N−1
N

1
N−1

∑
j ′ �= j δyN

j ′ (t )
, where yN

j ′ (t ) is the optimal state trajectory for player j ′, i.e., the state

trajectory generated by the feedback best-response control of player j ′.

We can modify the above definition in order to consider the worst-case disturbance
wN

j . This leads to the notion of worst-case disturbance feedback Nash equilibrium. The
problem of computing such an equilibrium is formally stated in the following robust
stochastic differential game problem (cf. [21]).

Problem 12.1 (Robust stochastic game). Let� be a one-dimensional Brownian motion
process defined on (Ω," ,�), where" is the natural filtration generated by� , and xN

j (0) be
any random variable independent of� having distribution m0(x). Consider

inf
{uN

j (t )}t

sup
{wN

j (t )}t

J N (xN
j (0), uN

j , mN∗
j , wN

j ),

where the dynamics of xN
j (t ) are given by

d xN
j (t ) =

)
αxN

j (t )+βuN
j (t )+σwN

j (t )
*

d t

+ σ xN
j (t )d� j (t ), t ∈ (0,T ], x(0) ∈�. (12.8)

In the above equation, mN∗
j = (m

N∗
j (t ))t∈[0,T ], and mN∗

j (t ) is the empirical measure

1
N
δxN

j (t )
+

N − 1
N

1
N − 1

∑
j ′ �= j

δyN
j ′ (t )

,

where yN
j ′ (t ) is the optimal state trajectory for player j ′, i.e., the state trajectory generated by

the feedback best-response control of player j ′.

We are ready to adapt the formulation mentioned above to the asymptotic case, that is
to say, when N →∞. The formulation that we obtain is referred to as a robust mean-field
game and represents the core of this section.

To this purpose, note that the process mN (t ) has to be replaced by the limiting mea-
sure m(t ). Analogously, the cost functional J N has to be replaced by the limiting cost J∞.
Doing this is possible due to the indistinguishability of the processes and the convergence
results provided by the de Finetti–Hewitt–Savage theorem (see the Appendix, Chapter F).

It is worth noting that, in the robust mean-field game, each player responds to the
limiting measure of mN∗

j (t ). That is to say that the players will play their best responses
to the mean-field m∗(t ) := (m∗(t )) j∈! , which is the distribution of the equilibrium state
trajectory.

In the asymptotic case, as we are dealing with a continuum of players, the index j can
be dropped from all the variables.

Remarkably, for the problem at hand, the convergence of the empirical measure to
a limiting measure implies the convergence of the cost functionals and the optimal cost
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134 Chapter 12. Mean-Field Games

functionals. Furthermore, for the mean of the measure m(t ), denoted by m̄(t ), it holds
that

d
d t

m̄(t ) = αm̄(t )+β�[u(t )]+σ�[w(t )], t ∈ (0,T ], m̄0 ∈�. (12.9)

The above equation derives from taking the expectation in (12.8). Actually, we have

�
6∫ t

0
σ(s)xN

j (s)d� j (s)
7
= 0.

Computing the expectation requires that�[|xN
j (t )|]<∞ and

∫ t
0 �[|σ(s)xN

j (s)|]d s <∞.
We show later that the control u(t ) and the disturbance w(t ) are bounded, and therefore
the right-hand side is bounded as well. Then, in order to guarantee �[|xN

j (t )|]<∞ and∫ t
0 �[|σ(s)xN

j (s)|]d s <∞, it is sufficient to consider initial distributions with bounded
expected value, namely �[|xN

j ,0|]<∞.
We are in a position to give a precise formulation of a robust mean-field game.

Problem 12.2 (Robust mean-field game). Let� be a one-dimensional Brownian motion
process defined on (Ω," ,�), where" is the natural filtration generated by� . Let x(0) be any
random variable independent of� having distribution m0(x). We define robust mean-field
game by the problem

inf{u(x(t ),t )}t

sup
{w(x(t ),t )}t

J∞(x, u, m∗, w),

where the dynamics of x(t ) are given by

d x(t ) = [αx(t )+βu(x(t ), t )+σw(x(t ), t )] d t (12.10)
+ σ x(t )d�(t ), t ∈ (0,T ], x0 ∈�,

and m∗(t ) is the equilibrium mean-field trajectory obtained when any player at state x im-
plements the control

u∗(x(t ), t ) = arg inf{u(x(t ),t )}t

sup
{w(x(t ),t )}t

J∞(x, u, m∗, w).

12.5.2 A general solution for the robust mean-field game

Under the assumption that β �= 0,γ �= 0, let the robust Hamiltonian be defined as

H̃ (x, p, m, t )= inf
u

sup
w
{c(x, u, m)− γ 2 w2+ p(αx(t )+βu(t )+σζ (t ))}.

For the supremum part, note that the function w −→ −γ 2w2+ pσw is strictly concave
and has a maximum for

w∗(t ) = σ

2γ 2
p. (12.11)

Let v(x, t ) be the upper value of the problem with initial time t and initial state x. Con-
sequently, the worst-case disturbance takes the form

w∗(t ) = σ

2γ 2
∂x v(x, t ), (12.12)
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12.5. Robust mean-field games 135

where v(x, t ) satisfies the HJB equation

∂t v(x, t )+ H̃ (x,∂x v(x, t ), m, t )+
σ2x2

2
∂ 2

x x v(x, t ) = 0, (12.13)

v(x,T ) = g (x). (12.14)

Furthermore, the maximum value of the function −γ 2w2+ pσw is given by ( σ p
2γ )

2.
Then, for the robust Hamiltonian we obtain

H̃ (x, p, m, t ) = inf
u
{c(x, u, m)− γ 2(w∗(t ))2+ p(αx +βu +σw∗(t ))} (12.15)

= inf
u
{c(x, u, m)+ p(αx +βu)}+

8
σ p
2γ

92

. (12.16)

By ignoring the disturbance, we can define the standard Hamiltonian as

H (x, p, m, t ) = inf
u
{c(x, u, m)+ p(αx(t )+βu(t ))} .

Under the assumption that the cost c is strict convex in u, the derivative of H with respect
to p is given by

∂p H (x, p, m, t ) = αx(t )+βu∗(t ).
Consequently, we can formulate the optimal control as a function of the robust Hamil-

tonian as follows:

u∗(x(t ), t ) =
1
β

&
∂p H̃ (x, p, m, t )−αx(t )− 2

8
σ

2γ

92

p

'
.

Theorem 12.6. If the cost c is strictly convex in u, the optimal control is given by

u∗(x(t ), t ) =
1
β

)
∂p H (x(t ),∂x v(x, t ), m(t ), t )−αx(t )

*
,

where an equation generating v(x, t ) is yet to be introduced.

Proof. The underlying idea is that under strict convexity the Hamiltonian is well-posed
and the derivative of the Hamiltonian with respect to p provides the drift term of the
state from which we deduce the feedback optimal control of the player.

A direct consequence of the above result is stated in the following corollary.

Corollary 12.7. The optimal control u∗(x(t ), t ) depends on the worst-case disturbance w∗(t )
as follows:

u∗(x(t ), t ) =
1
β

6
∂p H (x(t ),

2γ 2

σ
w∗(x(t ), t ), m(t ), t )−αx(t )

7
. (12.17)

Proof. The result can be obtained from (12.11) by setting p = ∂x v(x, t ).

Now, for the drift term of the state at (u∗(x(t ), t ), w∗(x(t ), t )), we get

αx(t )+βu∗(t )+σw∗(t ) = ∂p H +σw∗(t ). (12.18)

We are then in a position to give a precise formulation of the robust mean-field game
in terms of two coupled partial differential equations.
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136 Chapter 12. Mean-Field Games

Theorem 12.8. The mean-field system of the robust mean-field game is given by

∂t v(x, t )+H (x,∂x v(x, t ), m(t ), t )+
8
σ

2γ

92

|∂x v(x, t )|2

+
1
2
σ2x2∂ 2

x x v(x, t ) = 0, (12.19)

v(x,T ) = g (x), (12.20)
m(x, 0) = m0(x), (12.21)

∂t m(x, t )+ ∂x

:
m(x, t )∂p H (x,∂x v(x, t ), m(t ), t )

;
+
σ2

2γ 2
∂x(m(x, t )∂x v(x, t ))− 1

2
σ2∂ 2

x x

�
x2m(x, t )

�
= 0, (12.22)

where m0 is the initial population state distribution and g is the terminal penalty.

Proof. The proof is straightforward after noting that the first equation is the HJB equa-
tion, which is solved backwards with boundary conditions at final time T > 0. The second
equation is the KFP equation, which accounts for the distribution evolution.

In what follows, we analyze sufficiency conditions for the existence of a classical so-
lution. In doing this we use a fixed point theorem argument, as in [149].

Consider an initial measure d which is absolutely continuous with a continuous den-
sity function with finite second moment, and the terminal function is smooth, bounded,
and Lipschitz continuous. Also suppose that the running cost c is convex in u. As the c is
concave in the disturbance w, we have that the running cost is a convex-concave function
for which the following coercivity condition holds:

c−γ 2‖w‖2

‖u‖ −→+∞ for ‖u‖→∞,

c−γ 2‖w‖2

‖w‖ −→−∞ for ‖w‖→∞.
(12.23)

Note that given that the coefficients are bounded, the drift is linear and therefore Lipschitz
continuous. Furthermore, let us assume that the Fenchel transform of the running cost
c is Lipschitz in (x, m), and that the function p −→ σ2

4γ 2 ‖p‖2 +H is strictly convex and

differentiable and that σ2

4γ 2 ‖p‖2+H is Lipschitz continuous. Note that this last condition
is weaker than the condition convexity assumption on H . Under the above assumptions,
the existence of a solution is established in Theorem 2.6 in [149]. See also Theorems 1
and 2 in [104] and Theorem 3.1 in [70].

Function (12.17) with m∗ (solution of (12.22)) in state of the generic m yields the
worst-case disturbance feedback mean-field equilibrium. The above result simplifies in the
deterministic case, as established in the following theorem.

Theorem 12.9. In the deterministic case, i.e., σ ≡ 0, the mean-field system reduces to

∂t v(x, t )+H (x,∂x v(x, t ), m(x, t ), t ) = 0, (12.24)
v(x,T ) = g (x), (12.25)

∂t m(x, t )+ ∂x

:
m(x, t )∂p H (x,∂x v(x, t ), m(x, t ), t )

;
= 0, (12.26)

m(x, 0) = m0(x), (12.27)

where m0(x) is a given initial distribution.
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12.5. Robust mean-field games 137

Proof. The proof follows from Theorem 12.8 by letting σ = 0, which eliminates the
disturbance term.

We specialize the above result to the oil production application introduced in Exam-
ple 12.4.

Example 12.10 (Oil production cont’d). For a continuum of oil producers, each one
being equipped with a given initial reserve or stock of raw material, consider the geometric
Brownian motion stochastic process

d x(t ) = [αx(t )+βu(x(t ), t )+σw(x(t ), t )] d t +σ x(t )d�(t ).
The above model describes the time evolution of the reserve. The new term σw(t ) rep-
resents taxation or inflation on the production.

The penalty involves the total income and the production costs and is given by

g (x, u, m, w) =−h(m̄, w)u +
+a

2
u2+ b u

,
,

where now the sale price of oil h(m̄, w) depends on the disturbance w. The idea is to
tackle the problem considering the worst-case disturbance, as in the book by Başar and
Bernhard [22]. This leads to the following inf-sup optimization:

inf{u}t

sup
{w}t

�
<

G(x(T ))+
∫ T

0
g (x, u, m, w)d t − γ 2

∫ T

0
|w|2d t

=
.

Essentially, we look for the infimum with respect to the control u and the supremum
with respect to the disturbance w. A crucial aspect is the selection of an opportune value
for γ which makes the problem not ill-posed.

12.5.3 Discussion on the new equilibrium concept

The considered setup leads to a new equilibrium concept, called worst-case disturbance feed-
back mean-field equilibrium (occasionally also robust mean-field equilibrium), which com-
bines two existing concepts. The first one is the worst-case disturbance feedback Nash
equilibrium derived in the H∞ literature [23], while the second one is the mean-field
equilibrium. Note that the worst-case disturbance feedback Nash equilibrium accounts
for adversarial disturbances but in the case of a finite number of players. On the con-
trary, the mean-field equilibrium involves an infinite number of players but in the absence
of adversarial disturbances. The worst-case disturbance feedback mean-field equilibrium
combines both elements: an adversarial disturbance and an infinite number of players.

As for the mean-field equilibrium, also the worst-case disturbance feedback mean-field
equilibrium requires the solution of the two coupled partial differential equations dis-
played in Fig. 12.7. The first block includes the HJI equation, which returns the value
function v(.) and with it also the optimal control u∗(.) and the worst-case disturbance
w∗(.). Both control and disturbance are then substituted into the KFP equation, as both
concur in defining the vector field from which we obtain the new density m(.). Again
the worst-case disturbance feedback mean-field equilibrium is the fixed point of such a
procedure. Fig. 12.7 sketches the iterative scheme for the computation of fixed points.
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138 Chapter 12. Mean-Field Games

The Hamilton–Jacobi–Isaacs equation

• it receives as input the density distribution m(.)

• it returns as output

– the value function v(.)

– the best response u∗(x(t ), t )

– the worst-case disturbance w∗(x(t ), t )

v(.), u∗ (x(t ),t ), w∗ (x(t ),t ) m(.)

The Kolmogorov–Fokker–Planck equation

• it receives as input

– the best response u∗(x(t ), t )

– the worst-case disturbance w∗(x(t ), t )

• it returns as output the density distribution m(.)

Figure 12.7. Iterative scheme for the computation of fixed points in robust mean-field games.

12.6 Conclusions and open problems
Mean-field games require solving coupled partial differential equations, the HJB equation
and the KFP equation. This chapter illustrates how robustness can be brought into the
picture, thus leading to the solution of the HJB equation under the worst-case distur-
bance. We have called such a new setup robust mean-field games and the corresponding
equilibrium solution as worst-case disturbance feedback mean-field equilibrium.

Key directions for current and future research are

• existence and uniqueness of mean-field equilibria in case of nondifferentiability of
the value function, of the probability distribution, and/or of the microscopic state
dynamics;

• numerical computation or approximation schemes for mean-field equilibria for non-
quadratic nonlinear mean-field games;

• multi-population mean-field games in the presence of heterogeneity of the players;

• applications in other domains, such as engineering, finance, transportation, biol-
ogy, and social science.

12.7 Notes and references
The mean-field theory of dynamic games with large but finite populations of asymptot-
ically negligible agents (as the population size goes to infinity) originated in the work of
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12.7. Notes and references 139

Huang, Caines, and Malhamé [122, 123, 124, 125] and independently in that of Lasry
and Lions [147, 148, 149], where the now standard terminology of mean-field games
was introduced. In addition to this, the closely related notion of oblivious equilibria for
large population dynamic games was introduced by Weintraub, Benkard, and Van Roy
in the framework of Markov decision processes [251]. The theory of mean-field games
builds upon the notion of nonatomic player introduced first by Aumann for a contin-
uum of traders [14] and successively by Jovanovic and Rosenthal for a sequential game
[131]. Large robust games are studied in [134]. Mean-field games arise in several appli-
cation domains, such as economics, physics, biology, and network engineering (see, e.g.,
[3, 39, 17, 105, 125, 145, 255]).

When the number of players tends to infinity and the players are homogeneous, they
exhibit identical behavior in a given similar state. In this case the game formulation goes
under the name of anonymous games. The class of anonymous games has been widely
studied in the literature (see [215, 236]). The concept of mass interaction has been used
also in evolutionary game theory. Actually, evolutionary games can be reviewed as sta-
tionary mean-field games. Preliminary attempts to formulate mean-field games are in
[131], where the system involves a value function and a mean-field evolution. The sys-
tem corresponds to a backward-forward system in the finite horizon case. The equation
satisfied by the value is essentially a Bellman equation, and the equation satisfied by the
mean-field term is a Kolmogorov equation. The work [131] has provided sufficiency con-
ditions for the existence of solutions. Mean-field games share striking similarities with
consensus problems as highlighted in [125]. A continuous-time version of the mean-
field game described in [131] was formulated in [50] in the context of optimal transport,
where the backward-forward system consists of a Hamilton–Jacobi–Bellman equation and
a Kolmogorov–Fokker–Planck equation.

Explicit solutions in terms of mean-field equilibria are available for linear-quadratic
mean-field games [20] and have been recently extended to more general cases in [104]. In
addition to explicit solutions, a variety of solution schemes have been recently proposed
based on myopic learning, discretization, or numerical approximations (see, e.g., [5, 3,
4, 199]). The idea of extending the state space, which originates in optimal control [212,
213], has also been used to approximate mean-field equilibria in [34] and [35]. In [4], for
instance, a fully discrete finite difference approximation scheme of a mean-field game has
been proposed and studied.

A mean-field approach in dynamic auctions is discussed in [18, 127]. For a survey on
mean-field games and applications we refer the reader to [105]. A first attempt to apply
mean-field games to demand side management is in [17].

Finally, based on previous works on H∞-optimal control [22], the authors in [237]
and [238] have established a relation between risk-sensitive games and risk-neutral games
via robust methods in the context of a large number of players. These works together
with [42, 43] have led to the formulation of robust mean-field games.
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Chapter 13

Consensus in
Multi-agent Systems

13.1 Introduction
This chapter brings together game theory and consensus in multi-agent systems. A multi-
agent system involves n dynamic agents; these can be vehicles, employees, or computers,
each one described by a differential or difference equation. The interaction is modeled
through a communication graph. In a consensus problem the agents implement a dis-
tributed consensus protocol, i.e., distributed control policies based on local information.
The goal of a consensus problem is to make the agents’ reach consensus, that is, to converge
to a same value, called a consensus value.

The core message in this chapter is that the consensus problem can be turned into a
noncooperative differential game, where the dynamic agents are the players. To do this, we
formulate a mechanism design problem where a supervisor “designs” the objective func-
tions such that if the agents are rational and use their best-response strategies, then they
converge to a consensus value. We illustrate the results by simulating the vertical align-
ment maneuver of a team of unmanned aerial vehicles (UAVs).

Unfortunately, solving the mechanism design problem is a difficult task, unless the
problem can be modeled as an affine quadratic game. Given such a game, the main idea
is then to translate it into a sequence of more tractable receding horizon problems. At
each discrete time tk , each agent optimizes over an infinite planning horizon T → ∞
and executes the controls over a one-step action horizon δ = tk+1 − tk . The neighbors’
states are kept constant over the planning horizon. At time tk+1 each agent reoptimizes its
controls based on the new information on neighbors’ states which have become available.
We then take the limit for δ→ 0.

This chapter is organized as follows. Section 13.2 formulates the consensus problem
(Problem 13.1) and the mechanism design problem (Problem 13.2). Section 13.3 provides
a solution to the consensus problem. Section 13.4 addresses the mechanism design prob-
lem. Section 13.5 illustrates the results on a study case involving a team of UAVs perform-
ing a vertical alignment maneuver. Finally, Section 13.6 provides notes and references on
the topic.

13.2 Consensus via mechanism design
Let a set Γ = {1, . . . , n} of dynamic agents be given. Let G = (Γ , E) be a time-invariant
undirected connected network, where Γ is the vertexset and E ⊆ Γ×Γ is the edgeset. Such

143
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144 Chapter 13. Consensus in Multi-agent Systems

a network describes the interactions between pairs of agents. By undirected we mean that
if (i , j ) ∈ E , then ( j , i) ∈ E . By connected we mean that for any vertex i ∈ Γ there exists
a path in E that connects i with any other vertex j ∈ Γ . Recall that a path from i to j is
a sequence of edges (i , k1)(k1, k2) . . . (kr , j ) in E . Note that in general, the network G is
not complete; that is to say that each vertex i has a direct link only to a subset of other
vertices, denoted by Ni = { j : (i , j ) ∈ E}. This subset is referred to as neighborhood of i .

The interpretation of an edge (i , j ) in the edgeset E is that the state of vertex j is
available to vertex i . As the network is undirected, then communication is bidirectional;
namely, the state of agent i is available to agent j .

Let xi be the state of agent i . The evolution of xi is determined by the following
first-order differential equation driven by a distributed and stationary control policy:

ẋi = ui (xi , x(i )) ∀i ∈ Γ , (13.1)

where x(i ) represents the vector collecting the states of the only neighbors of i . In other
words, for the j the component of x(i ) we have

x(i )j =
�

xj if j ∈Ni ,
0 otherwise.

The control policy is distributed, as the control ui depends only on xi and x(i ). The
control policy is stationary, as there is no explicit dependence of ui on time t . Occasion-
ally, we also call such a control policy time invariant. Let the state of the collective system
be defined by the vector x(t ) = {xi (t ), i ∈ Γ }, and let the initial state be x(0). Similarly,
denote by u(x) = {ui (xi , x(i )) : i ∈ Γ } the collective control vector, which we occasionally
call simply protocol. Fig. 13.1 depicts a possible network of dynamic agents. In the graph,
for some of the vertices, we indicate the corresponding dynamics.

ẋ2(t ) = u2(x2(t ), x(2)(t ))

ẋ1(t ) = u1(x1(t ), x(1)(t ))

ẋi (t ) = ui (xi (t ), x(i )(t ))

Figure 13.1. Network of dynamic agents.

The consensus problem consists in determining how to make the players reach agree-
ment on a so-called consensus value. To give a precise definition of such a value, consider
a function χ̂ :�n →�. This function is a generic continuous and differentiable function
of n variables x1, . . . , xn which is permutation invariant. In other words, for any permu-
tation σ(.) from the set Γ to the set Γ , the function satisfies

χ̂ (x1, x2, . . . , xn ) = χ̂ (xσ(1), xσ(2), . . . , xσ(n)).

Sporadically, we refer to χ̂ as agreement function.
From [194, 206, 252], a protocol u(.)makes the agents reach asymptotically consensus

on a consensus value χ̂ (x(0)) if

‖xi − χ̂ (x(0))‖ −→ 0 for t −→∞.
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13.2. Consensus via mechanism design 145

The above means that the collective system converges to χ̂ (x(0))1, where 1 denotes
the vector (1,1, . . . , 1)T .

In the rest of this chapter we focus on agreement functions satisfying

min
i∈Γ {yi } ≤ χ̂ (y)≤max

i∈Γ {yi } ∀ y ∈�n . (13.2)

In other words, the consensus value is a point in the interval from the minimum to the
maximum values of the agents’ initial states.

In preparation for the formulation of the consensus problem as a game, let us also
introduce a cost functional for agent i as the one displayed below:

Ji (xi , x(i ) , ui ) = lim
T−→∞

∫ T

0

:
F (xi , x(i )) +ρu2

i

;
d t , (13.3)

where ρ > 0 and F : � ×�n → � is a nonnegative penalty function. This penalty ac-
counts for the deviation of player i from his neighbors. With the above cost functional
in mind, a protocol is said to be optimal if each control ui minimizes the corresponding
cost functional Ji . Fig. 13.2 depicts a network of dynamic agents and the cost functionals
corresponding to different agents.

J2(x2(t ), x(2)(t ), u2(t ))

J1(x1(t ), x(1)(t ), u1(t ))

Ji (xi (t ), x(i )(t ), ui (t ))

Figure 13.2. Network of dynamic agents with the cost functionals assigned to the players.

After this preamble, the problem under study can be stated as follows.

Problem 13.1 (Consensus problem). Let a network of dynamic agents G = (Γ , E) be
given. Assume that the agents evolve according to the first-order differential equations (13.1).
For any agreement function χ̂ verifying (13.2), design a distributed and stationary protocol
as in (13.1) that makes the agents reach asymptotically consensus on χ̂ (x(0)) for any initial
state x(0).

We say that a protocol is a consensus protocol if it is solution of the above consensus
problem. Furthermore, we say that a consensus protocol is optimal if the controls ui (.)
minimize (13.3). We are in a position to give a precise definition of the mechanism design
problem.

Problem 13.2 (Mechanism design problem). Let a network of dynamic agents G = (Γ , E)
be given. Assume that the agents evolve according to the first-order differential equations
(13.1). For any agreement function χ̂ (.) design a penalty function F (.) such that there exists
an optimal consensus protocol u(.) with respect to χ̂ (x(0)) for any initial state x(0).

Note that a pair (F (.), u(.)) which is solution to Problem 13.2 must guarantee that
all cost functionals in (13.3) converge to a finite value. For this to be true, the integrand
in (13.3) must be null in χ 1.
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146 Chapter 13. Consensus in Multi-agent Systems

Table 13.1. Means and corresponding functions f and g .

Mean χ̂ (x) f (y) g (z)
Arithmetic

∑
i∈Γ

1
n xi

1
n y z

Geometric n
>∏

i∈Γ xi e
1
n y log z

Harmonic 1∑
i∈Γ

n
xi

n
y

1
z

Mean of order p p
?∑

i∈Γ
1
n x p

i
q
?

1
n y z p

13.3 A solution to the Consensus Problem
This section deals with the solution of Problem 13.1, namely the Consensus Problem. To
this purpose, let us start by considering the following family of agreement function χ̂ (x).

Assumption 13.1 (Structure of χ̂ (.)). Assume that the agreement function χ̂ (.) verifies
(13.2) and it is such that χ̂ (x) = f (

∑
i∈Γ g (xi )) for some f , g :�→� with d g (xi )

d xi
�= 0 for all

xi .

It is worth noting that the class of agreement functions contemplated in the above
assumption involves any value in the range between the minimum and the maximum of
the initial states. This is clear if we look at Table 13.1 and note that to span the whole
interval we simply consider the mean of order p and let p vary between −∞ and∞.

Theorem 13.1 (Solution to the Consensus Problem). The following protocol is solution
to the consensus problem:

ui (xi , x(i )) = α
1

d g
d xi

∑
j∈Ni

φ̂(ϑ(xj )−ϑ(xi )) ∀i ∈ Γ , (13.4)

where

• the parameter α > 0, and the function φ̂ :�→� is continuous, locally Lipschitz, odd,
and strictly increasing;

• the function ϑ : �→ � is differentiable with dϑ(xi )
d xi

locally Lipschitz and strictly posi-
tive;

• the function g (.) is strictly increasing, that is, d g (y)
d y > 0 for all y ∈�.

Proof. Let us start by observing that from the restrictions imposed on α, φ̂ : � → �,
and ϑ : �→ �, the equilibria are given by λ1. We can also infer that if a trajectory x(t )
converges to λ01, then it holds that λ0 = χ̂ (x(0)) for any initial state x(0).

Let us turn to the restrictions on g (.). It is useful to introduce the new variable
η = {ηi , i ∈ Γ }, where ηi = g (xi )− g (χ̂ (x(0))). Actually, after doing this, consensus
implies asymptotic stability of η. Note that ηi is strictly increasing. Furthermore, η= 0
corresponds to x = χ̂ (x(0))1. Having introduced η, we next prove that the equilibrium
point η = 0 is asymptotically stable in the quotient space �n/span{1}. To do this, we
consider the following candidate Lyapunov function: V (η) = 1

2

∑
i∈Γ η2

i . Note that we
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13.4. A solution to the Mechanism Design Problem 147

have V (η) = 0 if and only if η = 0. In addition, V (η) > 0 for all η �= 0. Our goal is to
show that V̇ (η)< 0 for all η �= 0. To this purpose, let us first rewrite V̇ (η) as follows:

V̇ (η) =
∑
i∈Γ
ηi η̇i =

∑
i∈Γ
ηi

d g (xi )
d xi

ẋi . (13.5)

Now, from (13.4) we can rewrite (13.5) as

V̇ (η) =
∑
i∈Γ
ηi

d g (xi )
d xi

ui

=
∑
i∈Γ
ηi

d g (xi )
d xi

α
1

d g
d xi

∑
j∈Ni

φ̂(ϑ(xj )−ϑ(xi ))

= α
∑
i∈Γ
ηi

∑
j∈Ni

φ̂(ϑ(xj )−ϑ(xi )).

(13.6)

Now, by noting that j ∈ Ni if and only if i ∈ Nj for each i , j ∈ Γ , from (13.6) we can
rewrite

V̇ (η) =−α ∑
(i , j )∈E

(g (xj )− g (xi ))φ̂(ϑ(xj )−ϑ(xi )). (13.7)

From (13.7) we conclude that V̇ (η) ≤ 0 for all η and, more specifically, V̇ (η) = 0 only
for η = 0. To see this, observe that for any (i , j ) ∈ E , xj > xi implies g (xj )− g (xi ) > 0,

ϑ(xj )−ϑ(xi ) > 0, and φ̂(ϑ(xj )− ϑ(xi )) > 0. This is true, as α > 0 and g (.), φ̂(.), and

ϑ(.) are strictly increasing. Therefore we have α(g (xj )− g (xi ))φ̂(ϑ(xj )− ϑ(xi )) > 0 if
xj > xi . A similar argument can be used if xj < xi .

13.4 A solution to the Mechanism Design Problem
This section deals with Problem 13.2, namely the Mechanism Design Problem. We show
that the cost functionals can be designed so that the consensus protocol (13.4) is the unique
best-response strategy. In other words, consensus is reached when all the agents imple-
ment their best-response strategies. This result is significant, as it shows the true nature of
consensus as Nash equilibrium and of a consensus protocol as a collection of best-response
policies.

However, Problem 13.2 presents some difficulties in that the agents must predict the
evolution of their neighbors’ states over the horizon. We propose a method that turns
Problem 13.2 into a sequence of tractable problems (Problem 13.3). Consider an infinite
planning horizon, namely T →∞, and assume that at each discrete-time tk the agents
compute their best-response strategies over this horizon. Remarkably, in doing this, the
neighbors’ states do not change over the planning horizon. Given the sequence of optimal
controls, the agents use only their first controls. In the parlance of receding horizon and
Model Predictive Control, this corresponds to saying that the agents operate on a one-step
action horizon δ = tk+1 − tk . When new information on the neighbors’ states becomes
available at time tk+1, the agents use such information to perform a new iteration of the
infinite horizon optimization problem. This section concludes by showing that the solu-
tion to Problem 13.3 coincides with the solution to Problem 13.2 asymptotically, namely
for δ→ 0.
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148 Chapter 13. Consensus in Multi-agent Systems

Let the following update times be given: tk = t0+δk, where k = 0,1, . . . . Let x̂i (τ, tk )
and x̂(i )(τ, tk ), τ ≥ tk be the predicted state of agent i and of his neighbors, respectively.
The problem we wish to solve is the following one.

Problem 13.3 (Receding horizon). For all agents i ∈ Γ and times tk , k = 0,1, . . . , given
the initial state xi (tk ) and x(i )(tk ), find

û�i (τ, tk ) = arg min#i (xi (tk ), x(i )(tk ), ûi (τ, tk )),

where

#i (xi (tk ), x(i )(tk ), ûi (τ, tk )) = lim
T−→∞

∫ T

tk

:" (x̂i (τ, tk ), x̂(i )(τ, tk ))+ρû2
i (τ, tk )

;
dτ

(13.8)
subject to the following constraints:

˙̂xi (τ, tk ) = ûi (τ, tk ), (13.9)
˙̂xj (τ, tk ) = û j (τ, tk ) := 0 ∀ j ∈Ni , (13.10)

x̂i (tk , tk ) = xi (tk ), (13.11)
x̂ j (tk , tk ) = xj (tk ) ∀ j ∈Ni . (13.12)

The above set of constraints involves the predicted state dynamics of agent i and of
his neighbors; see (13.9) and (13.10), respectively.

The constraints also involve the boundary conditions at the initial time tk ; see condi-
tions (13.11) and (13.12). Note that, by setting x̂(i )(τ, tk ) = x(i )(tk) for all τ > tk , agent i
restrains the states of his neighbors to be constant over the planning horizon.

At tk+1 new information on x(i )(tk+1) becomes available. Then the agents update
their best-response strategies, which we refer to as receding horizon control policies. Con-
sequently, for all i ∈ Γ , we obtain the closed-loop system

ẋi = uiRH
(τ), τ ≥ t0,

where the receding horizon control law uiRH
(τ) satisfies

uiRH
(τ) = û�i (τ, tk ), τ ∈ [tk , tk+1).

The complexity reduction introduced by the method derives from turning Prob-
lem 13.3 into n one-dimensional problems. This is a consequence of constraint (13.10),
which forces x̂(i ) to be constant in (13.8). Further evidence of this derives from rewrit-
ing " (.), thus highlighting its dependence on the state x̂i (τ, tk ). By doing this the cost
functional (13.8) takes the form

Ji = lim
T−→∞

∫ T

tk

@" (x̂i (τ, tk ))+ρû2
i (τ, tk )

A
dτ. (13.13)

Consequently, the problem simplifies, as it involves the computation of the optimal con-
trol ûi (τ, tk ) that minimizes (13.13).

Fig. 13.3 illustrates the receding horizon formulation. Given a dynamics for xj (t ), for
all j ∈Ni (solid line), agent i takes for it the value measured at time tk (small circles) and
maintains it constant from tk on (thin horizontal lines).
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13.4. A solution to the Mechanism Design Problem 149

xj (t ), x̂ j (t ), j ∈Ni

t

Figure 13.3. Receding horizon formulation for agent i : at each sampling time (circles) the
estimated state of neighbor j , x̂ j (.) is maintained constant over the horizon (thin solid); the actual state
xj (.) changes with time (thick solid).

Let us now use the Pontryagin Minimum Principle to prove that the control ûi (τ, tk )
is a best-response strategy. Before doing this, let the Hamiltonian function be given by

H (x̂i , ûi , pi ) = (" (x̂i )+ρû2
i )+ pi ûi , (13.14)

where pi is the co-state. In the above we have dropped dependence on τ and tk . After
doing this, the Pontryagin necessary conditions yield the following set of equalities:

Optimality condition:
∂ H (x̂i , ûi , pi )

∂ ûi
= 0 ⇒ pi =−2ρûi . (13.15)

Multiplier condition: ṗi =−∂ H (x̂i , ûi , pi )
∂ x̂i

. (13.16)

State equation: ˙̂xi =
∂ H (x̂i , ûi , pi )

∂ pi
⇒ ˙̂xi = ûi . (13.17)

Minimality condition:
∂ 2H (x̂i , ûi , pi )

∂ û2
i

BBBBB
x̂i=x̂∗i ,ûi=û∗i ,pi=p∗i

≥ 0 ⇒ ρ≥ 0. (13.18)

Boundary condition: H (x̂∗i , û∗i , p∗i ) = 0. (13.19)

The boundary condition (13.19) restrains the Hamiltonian to be null along any opti-
mal path {x̂∗i (t )∀t ≥ 0} (see, e.g., [52, Sect. 3.4.3]).

Recall from Section 9.2.1 that the Pontryagin Minimum Principle yields conditions
that are, in general, necessary but not sufficient (see also [52]). However, sufficiency is
guaranteed under the following additional assumption:

Uniqueness condition: " (xi ) is convex. (13.20)

If we impose further restraints on the structure of " (xi ), we obtain sufficient con-
ditions that yield a unique optimal control policy ûi (.). This is established in the next
result.

Theorem 13.2. Let agent i evolve according to the first-order differential equation (13.1).
At times tk = 0,1, . . . , let the agents be assigned the cost functional (13.8), where the penalty
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150 Chapter 13. Consensus in Multi-agent Systems

is given by

" (x̂i (τ, tk )) = ρ

⎛
⎝ 1

d g
d xi

∑
j∈Ni

(ϑ(xj (tk ))−ϑ(x̂i (τ, tk )))

⎞
⎠2

, (13.21)

and where g (.) is increasing, ϑ(.) is concave, and 1
d g (y)

d y

is convex.

Then the control policy

û�i (τ, tk ) = ui (xi (τ)) = α
1

d g
d xi (τ)

∑
j∈Ni

(ϑ(xj (tk ))−ϑ(xi (τ))), α= 1, (13.22)

is the unique optimal solution to Problem 13.3.

Proof. First, well-posedness of the problem is guaranteed, as for x∗i = ϑ−1
�∑

j∈Ni
ϑ(xj (tk ))
|Ni |

�
the control policy is null and the cost functional (13.13) converges. This is obtained
from the condition that the penalty (13.21) is null in a state x̂∗i , for which it holds that∑

j∈Ni
(ϑ(xj (tk))−ϑ(x∗i )) = 0.

Let us now prove optimality of the control policy (13.22) with α= 1. To this purpose,
note that it satisfies conditions (13.15)–(13.20). Actually, it is straightforward to see that
conditions (13.17) and (13.18) are satisfied. Now, let us compute ṗi from (13.15) and let
us substitute the expression we obtain in (13.16). Thus we get

2ρ ˙̂ui =
∂ H (x̂i , ûi , pi )

∂ x̂i
. (13.23)

Also, from (13.17), we have ˙̂ui =
∂ ûi
∂ x̂i

˙̂xi =
∂ ûi
∂ x̂i

ûi . Then, (13.23) yields 2ρ∂ ûi
∂ x̂i

ûi =
∂ H (x̂i , ûi , pi )

∂ x̂i
. After integration and from (13.19) we have that the solution of (13.23) must

satisfy
ρû2

i =" (x̂i ). (13.24)

Then, it suffices to note that ûi (τ, tk ) =
1

d g
d x̂i

∑
j∈Ni
(ϑ(xj (tk ))− ϑ(x̂i (τ, tk ))) verifies the

above condition.
To prove uniqueness, let us prove that " (x̂i ) is convex. To this purpose, we can

write " = "3(F1(x̂i ),"2(x̂i )), where function "1(x̂i ) =
:
∂ g
∂ xi

;−1
, function "2(x̂i ) =∑

j∈Ni
(ϑ(xj (tk)) − ϑ(x̂i )), and "3 = ("1(x̂i ) · "2(x̂i ))

2. As "3(.) is nondecreasing in
each argument, function"3(.) is convex if both functions"1(.) and"2(.) are also convex

[64]. Function"1(.) is convex, as
:

d g
d x̂i

;−1
is convex by hypothesis. Analogously,"2(.) is

convex, as ϑ(.) is concave, and this concludes the proof.

The above theorem holds also for α=−1 if d g
d xi
< 0 for all xi (0).

From the above theorem, we can derive the following corollary.

Corollary 13.3. Let a network of dynamic agents G = (Γ , E) be given. Assume that the
agents evolve according to the first-order differential equation (13.1). At times tk = 0,1, . . . ,
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13.5. Numerical example: Team of UAVs 151

let the agents be assigned the cost functional (13.8), where the penalty is given by

" (x̂i (τ, tk )) = ρ

⎛
⎝ 1

d g
d xi

∑
j∈Ni

(ϑ(xj (tk ))−ϑ(x̂i (τ, tk )))

⎞
⎠2

, (13.25)

and where g (.) is increasing, ϑ(.) is concave, and 1
d g (y)

d y

is convex. If we take δ −→ 0, then we

have

(i) the penalty function

" (xi (τ, tk ))−→ F (xi , x(i )) = ρ

⎛
⎝ 1

d g
d xi

∑
j∈Ni

(ϑ(xj )−ϑ(xi ))

⎞
⎠2

(13.26)

and

(ii) the applied receding horizon control law

u�iRH
(τ)−→ ui (xi , x(i )) =

1
d g
d xi

∑
j∈Ni

(ϑ(xj )−ϑ(xi )). (13.27)

The above corollary provides a solution to the mechanism design problem (Prob-
lem 13.2). To see this, imagine that a game designer wishes the agents to asymptotically
reach consensus on the consensus value χ̂ (x) = f (

∑
i∈Γ g (xi )). He can accomplish this

by assigning the agents the cost functional (13.3), where the penalty is as in (13.26) and
where g (.) is increasing, 1

d g (y)
d y

is convex, and δ is “sufficiently” small.

13.5 Numerical example: Team of UAVs

v1

v3v4

v2

Figure 13.4. The information flow in a network of four agents.

Let us now illustrate the results on a team of four UAVs. The UAVs are initially at
different heights, and they are performing a vertical alignment maneuver in longitudinal
flight. Each vehicle controls the vertical rate on the basis of the neighbors’ heights. The
UAVs interact as described by the communication network depicted in Fig. 13.4. The
goal of the mission is to make the UAVs reach consensus on the formation center. We
analyze four different vertical alignment maneuvers where the formation center is the (i)
arithmetic mean, (ii) geometric mean, (iii) harmonic mean, and (iv) mean of order 2 of the
initial heights of all UAVs. Set the initial heights as x(0) = (5,5,10,20)T .

Simulations are performed using the following algorithm.
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152 Chapter 13. Consensus in Multi-agent Systems

ALGORITHM 13.1. Simulation algorithm for a team of UAVs.

Input: Communication network G = (V , E) and UAVs’ initial heights.
Output: UAVs’ heights x(t )

1 : Initialize. Set the initial states equal to the UAVs’ initial heights
2 : for time i t e r = 0,1, . . . ,T − 1 do
3 : for player i = 1, . . . , n do
4 : Set t = i t e r · d t and compute protocol ui (.) using current x(i )(t )
5 : compute new state x(t + d t ) from (13.1)
6 : end for
7 : end for
8 : STOP

In the first simulation, the UAVs are assigned the cost functional (13.3), where the

penalty F (xi , x(i )) =
:∑

j∈Ni
(xj − xi )

;2
. The UAVs use their best responses

u(xi , x(i )) =
∑
j∈Ni

(xj − xi ), (13.28)

and as a result, they reach asymptotically consensus on the arithmetic mean of x(0). We
illustrate this in Fig. 13.5(a).

In the second simulation, the UAVs are assigned a cost functional where the penalty

F (xi , x(i )) =
:

xi
∑

j∈Ni
(xj − xi )

;2
. By using their best responses

u(xi , x(i )) = xi

∑
j∈Ni

(xj − xi ), (13.29)

they reach asymptotically consensus on the geometric mean of x(0). A graphical illustra-
tion of this is available in Fig. 13.5(b).

In the third simulation scenario, the UAVs are assigned a cost functional where for

the penalty we have F (xi , x(i )) =
:

x2
i
∑

j∈Ni
(xj − xi )

;2
. The implementation of their best

responses
u(xi , x(i )) =−x2

i

∑
j∈Ni

(xj − xi ) (13.30)

leads them to reach asymptotically consensus on the harmonic mean of x(0). A sketch of
the resulting dynamics is given in Fig. 13.5(c).

In the fourth simulation scenario, the UAVs are assigned cost functionals where the

penalty F (xi , x(i )) =
:

1
2xi

∑
j∈Ni
(xj − xi )

;2
. The UAVs’ best responses

u(xi , x(i )) =
1

2xi

∑
j∈Ni

(xj − xi ) (13.31)

lead them to reach asymptotically consensus on the mean of order 2 of x(0). This is
sketched in Fig. 13.5(d).

Finally, Fig. 13.6 depicts a vertical alignment maneuver when the UAVs use protocol

u(xi , x(i )) =
maxi∈Γ {xi (0)}

2xi

∑
j∈Ni

(xj − xi ). (13.32)

The above protocol is obtained by scaling the protocol (13.31) by twice an upper bound
of maxi∈Γ {xi (0)}.
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13.5. Numerical example: Team of UAVs 153
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Figure 13.5. Longitudinal flight dynamics converging to (a) the arithmetic mean under
protocol (13.28); (b) the geometric mean under protocol (13.29); (c) the harmonic mean under proto-
col (13.30); (d) the mean of order 2 under protocol (13.31). Reprinted with permission from Elsevier
[30].
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Figure 13.6. Vertical alignment to the mean of order 2 on the vertical plane. Reprinted with
permission from Elsevier [30].

D
ow

nl
oa

de
d 

08
/1

9/
16

 to
 1

31
.1

56
.2

24
.6

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

co
nt

ro
len

gin
ee

rs
.ir



154 Chapter 13. Consensus in Multi-agent Systems

13.6 Notes and references
This chapter shows how to turn a consensus problem into a noncooperative differential
game. Consensus is the result of a mechanism design where a game designer imposes
individual objective functions. Then, the agents reach asymptotically consensus as a side
effect of the optimization of their own individual objectives. The results of this chapter
are important, as they shed light on the game-theoretic nature of a consensus problem.
We refer the reader to a few classical references on consensus [128, 194, 193, 205, 206, 252].

Consensus arises in several application domains, such as autonomous formation flight
[94, 102], cooperative search of UAVs [46], swarms of autonomous vehicles or robots
[100, 161], and joint replenishment in multi-retailer inventory control [31, 32]. More
details on mechanism design or inverse game theory can be found in [196, Chap. 10]. For
more details on receding horizon we refer the reader to [89] and [158].

Part of the material contained in this chapter is borrowed from [30]. We refer the
reader to the original work for further details on invariance properties of the consensus
value. In this chapter, the presentation of the topic has been tailored to emphasize the
game theory perspective on the problem. Additional explanatory material and figures
have been added to help the reader gain a better insight and physical interpretation of the
different concepts.
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Chapter 14

Demand Side
Management

14.1 Introduction
This chapter combines mean-field games and demand side management for a population
of thermostatically controlled loads (TCLs). Demand side management involves a set of
operations aiming at decentralizing the control of loads in power networks. The loads
are considered as fully responsive. This means that they adjust their consumption patterns
in response to the network conditions.

Reframing demand side management within the framework of game theory provides
a better understanding of the following aspects in order:

• the strategic behavior of the end-use customers and the impact on the collective be-
havior of the power system;

• the consistency of the power system model (by this we mean the study of the relation
between microscopic and macroscopic phenomena and how both phenomena can
be brought together into a unified framework);

• the scalability of the policies adopted by the loads and the corresponding stability
of the main characteristics of the loads (temperatures, level of charges, and so on) as
well as of the system frequency dynamics.

To put the problem in context, Fig. 14.1 depicts a population of plug-in electric vehi-
cles supplied by a renewable energy power plant.

In the same spirit as prescriptive game theory and mechanism design, we imagine that a
game designer assigns cost functionals to the players (the TCLs) in order to penalize those
players that are in on state in peak hours, as well as those who are in off state in off-peak
hours. The overall result is a stabilization of the mains frequency.

This chapter is organized as follows. Section 14.2 formulates the problem for a popu-
lation of thermostatically controlled loads. Section 14.3 turns the problem into a mean-
field game. Section 14.4 examines mean-field equilibrium solutions. Section 14.5 provides
a numerical example. Finally, Section 14.6 provides notes and references.

14.2 Population of TCLs
Let a population of TCLs be given, and consider a time horizon window [0,T ]. At time
t ∈ [0,T ], the state of a TCL involves its temperature, denoted by a continuous variable
x(t ), and its state on or off, described by a binary variable πon(t ) ∈ {0,1}.

155
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156 Chapter 14. Demand Side Management

Figure 14.1. Demand response involves populations of electrical loads (lower block) and
energy generators (upper block) intertwined in a feedback-loop scheme.

Let us denote by xon and xoff the lower and upper bounds for the temperature. The
temperature decreases exponentially to xon with rate α anytime the TCL is in state on.
Conversely, the temperature increases exponentially to xoff with rateβ any time the TCL
is in state off. Then, the time evolution of the temperature of a TCL with initial value x
follows the differential equations

⎧⎪⎪⎨
⎪⎪⎩

ẋ(t ) =
� −α(x(t )− xon) if πon(t ) = 1,
−β(x(t )− xoff) if πon(t ) = 0, t ∈ [0,T ),

x(0) = x,

(14.1)

where α,β are positive scalar parameters.
In the spirit of [9, 17], let us consider a stochastic model in which the TCLs can be

in one of the two states, on or off, with given probabilities πon(t ) ∈ [0,1] and πoff(t ) ∈
[0,1]. Let the transition rates be the control variables. In particular, denote by uon the
transition rate from off to on, and by uoff the transition rate from on to off. Let u be a
two-component vector including uon and uoff. The automata in Fig. 14.2 provide a sketch
of the aforementioned model.

πon πoff

uon

uoff 1− uon

1− uoff

Figure 14.2. Automata describing transition rates from on to off and vice versa.
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14.2. Population of TCLs 157

After introducing the transition rates, the controlled dynamics takes the form⎧⎨
⎩
π̇on(t ) = uon(t )− uoff(t ), t ∈ [0,T ),
π̇off(t ) = uoff(t )− uon(t ), t ∈ [0,T ),
0≤πon(t ),πoff(t )≤ 1, t ∈ [0,T ).

(14.2)

Note that we can take only one of the above dynamics as π̇on(t ) + π̇off(t ) = 0. Let us
introduce the notation y(t ) =πon(t ).

For any x, y in the

“set of feasible states” $ :=]xon, xoff[×]0,1[,

we obtain the set of equations as below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t ) =
�

y(t )
+
−α(x(t )− xon)

,
+(1− y(t ))

+
−β(x(t )− xoff)

,
=: f (x(t ), y(t )), t ∈ [0,T ),

x(0) = x,

ẏ(t ) =
�

uon(t )− uoff(t )
�

=: g (u(t )), t ∈ [0,T ),
y(0) = y.

(14.3)

In addition, let us introduce a probability density function m : [xon, xoff]×[0,1]×[t ,T ]→
[0,+∞[, (x, y, t ) → m(x, y, t ), which satisfies

∫ xoff

xon

∫
[0,1]m(x, y, t )d xd y = 1 for every t .

Furthermore, let us define mon(t ) :=
∫ xoff

xon

∫
[0,1] y m(x, y, t )d xd y. Similarly, set moff(t ) =

1−mon(t ).
Assume that the mains frequency shows linear dependence on the difference between

the proportion of TCLs in the state on and a nominal value. Let us refer to such a differ-
ence as error, and let it be denoted by e(t ) = mon(t )−m̄on. Here m̄on is the nominal value.
The rationale of setting the error as above is that the higher the proportion of TCLs in
the on state, the lower the mains frequency.

To introduce the cost function of a TCL, let the running cost depend on the distribu-
tion m(x, y, t ) through the error e(t ) as indicated below:

c(x(t ), y(t ), u(t ), m(x, y, t )) = 1
2

�
q x(t )2+ ron uon(t )

2+ roffuoff(t )
2
�

+ y(t )(Se(t )+W ),
(14.4)

where q , ron, roff, S, and W are opportune positive scalars.

Cost (14.4) includes four terms on which we comment in order. First, 1
2 q x(t )2 penal-

izes the deviation of the TCL’s temperature from the nominal value; we take the nominal
value equal to zero. Second, 1

2 ron uon(t )
2 is the penalty due to a fast switching; that is to

say that this cost is zero when uon(t ) = 0 (no switching) and is maximal when uon(t ) = 1
(switching with probability 1). In addition, we have the term 1

2 roffuoff(t )2, which admits
an interpretation analogous to that of the previous term. Third, y(t )Se(t ) is the incen-
tive; this term penalizes those appliances that are in state on when the demand exceeds
the supply, namely e(t ) > 0. The term y(t )Se(t ) turns into a reward if an appliance is
on when the supply exceeds the demand, that is, e(t ) < 0. Finally, y(t )W penalizes the
power consumption; that is to say that when the TCL is on, the power consumption is W .
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158 Chapter 14. Demand Side Management

In addition to the running cost, we also have a terminal penalty Ψ : � → [0,+∞[,
x →Ψ(x) yet to be designed.

We are in a position to give a precise statement of the problem under study.

Problem 14.1 (Population of TCLs). Consider a population of TCLs. Let a finite hori-
zon T > 0 be given, and assume that the initial states of the TCLs are determined by the
distribution m0 : [xon, xoff]× [0,1]→ [0,+∞[.

Minimize over� subject to the controlled system (14.3) the cost functional

J (x, y, t , u(.)) =
∫ T

0
(c(x(t ), y(t ), u(t ), m(x, y, t )))d t +Ψ(X (T )),

where� is the set of all measurable state-feedback closed-loop policies u(.) : [0,+∞[→� and
m(.) is the time-dependent function describing the evolution of the distribution of the TCLs’
states.

14.3 Turning the problem into a mean-field game
As a preliminary step, let us develop a mean-field game for the population of TCLs of
Problem 14.1.

To this purpose, let us introduce the value function and denote it by v(x, y, m, t ).
Recall that the value function is the optimal value of J (x, y, t , u(.)). In addition, let us set

k(x(t )) = x(t )(β−α)+ (αxon −βxoff)

and

X (t ) =
�

x(t )
y(t )

�
, u(t ) =

6
uon(t )
uoff(t )

7
.

Henceforth, we occasionally write v(X , t ) to mean v(x, y, m, t ). The problem under
study yields the linear-quadratic problem

inf{u(t )}t

∫ T

0

�
1
2

�
‖X (t )‖2

Q + ‖u(t )‖2
R

�
+ LT X (t )

�
d t ,

dX (t ) = (AX (t )+B u(t )+C )d t in $ ,

(14.5)

where

Q =
�

q 0
0 0

�
, R= r =

6
ron 0
0 roff

7
, L(e) =

�
0

Se(t )+W

�
,

A(x) =
� −β k(x(t ))

0 0

�
, B =

�
0 0
1 −1

�
, C =

6
βxoff

0

7
.
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14.4. Mean-field equilibrium and stability 159

In (14.5) we simply write A and L to mean A(x) and L(e). From (14.5) we can derive the
following mean-field game:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t v(X , t )+ infu

"
∂X v(X , t )T (AX +B u +C )+ 1

2

�
‖X‖2

Q

+ ‖u‖2
R

�
+ LT X

#
= 0 in $ × [0,T [, (a)

v(X ,T ) = g (x) in $ ,

u∗(x, t ) = argminu∈�
"
∂X v(X , t )T (AX +B u +C )+

1
2
‖u(t )‖2

R

#
(b)

(14.6)

and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t m(x, y, t )+ div[(AX +B u +C ) m(x, y, t )] = 0 in $ ×]0,T [,
m(xon, y, t ) = m(xoff, y, t ) = 0 ∀ y ∈ [0,1], t ∈ [0,T ],
m(x, y, 0) =m0(x, y) ∀ x ∈ [xon, xoff], y ∈ [0,1],∫ xoff

xon

m(x, t )d x = 1 ∀ t ∈ [0,T ].

(14.7)

Equation (14.6)(a) is the Hamilton–Jacobi–Bellman equation. This equation gives the
value function v(x, y, m, t ) provided the distribution m(x, y, t ). The equation has to be
solved backwards with a boundary condition at final time T . Such a boundary condi-
tion is essentially the equation in the last line of (14.6)(a). Equation (14.6)(b) provides an
expression for the optimal closed-loop control u∗(x, t ). This is obtained as minimizers
of the Hamiltonian function in the right-hand side. Furthermore, equation (14.7) is the
advection equation, which gives the distribution m(x, y, t ) provided u∗(x, t ) and conse-
quently also the vector field AX + B u∗ + C . The advection equation has to be solved
forwards with boundary condition at the initial time. Such a boundary condition is dis-
played in the second line of (14.7). Finally, the value for m(x, y, t ) which we obtain from
(14.7) needs to be substituted in the following expression for the error:⎧⎨

⎩
mon(t ) :=

∫ xoff

xon

∫
[0,1] y m(x, y, t )d xd y ∀ t ∈ [0,T ],

e(t ) = mon(t )− m̄on.
(14.8)

The error obtained from the above expression is then substituted in the running cost
c(x, y, m, u) in (14.6)(a).

It is worth noting that

X̄ (t ) =
�

x̄(t )
ȳ(t )

�
=
�

x̄(t )
mon

�
=
& ∫ xoff

xon

∫
[0,1] xm(x, y, t )d xd y∫ xoff

xon

∫
[0,1] y m(x, y, t )d xd y

'
.

Consequently, we henceforth call mean-field equilibrium any pair (v(X , t ), X̄ (t )) which
is solution of (14.6)–(14.7).

14.4 Mean-field equilibrium and stability
After introducing the mean-field game, the solution to Problem 14.1 takes the form of
a mean-field equilibrium. This section studies such an equilibrium of the population of
TCLs and discusses stability of the TCLs’ state dynamics.
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160 Chapter 14. Demand Side Management

As main result we prove that computing a mean-field equilibrium is equivalent to
solving three matrix equations.

Theorem 14.1 (Mean-field equilibrium). A mean-field equilibrium for (14.6)–(14.7) is
given by ⎧⎨

⎩
v(X , t ) = 1

2 X T P (t )X +Ψ(t )T X +χ (t ),

˙̄X (t ) = [A(x)−BR−1BT P]X̄ (t )−BR−1BT Ψ̄(t )+C ,
(14.9)

where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ṗ + PA(x)+A(x)T P − PBR−1BT P +Q = 0 in [0,T [, P (T ) =φ,

Ψ̇ +A(x)TΨ + PC − PBR−1BTΨ + L= 0 in [0,T [, Ψ(T ) = 0,

χ̇ +ΨT C − 1
2Ψ

T BR−1BTΨ = 0 in [0,T [, χ (T ) = 0,

(14.10)

and Ψ̄(t ) =
∫ xoff

xon

∫
[0,1]Ψ(t )m(x, y, t )d xd y. Furthermore, the mean-field equilibrium strat-

egy is given by

u∗(X , t ) =−R−1BT [PX +Ψ]. (14.11)

Proof. For the first part, let us focus on the Hamilton–Jacobi–Bellman equation in (14.6).
For given m(.) and for t ∈ [0,T ], it holds that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂t v(x, y, t )−
"

y
+
−α(x − xon)

,
+(1− y)

+
−β(x − xoff)

,#
∂x v(x, y, t )

− supu∈�
"
−B u ∂y v(x, y, t )− 1

2 q x2− 1
2 uT r u − y(Se +W )

#
= 0

in $ ×]0,T ],
v(x, y,T ) = Ψ(x) in $ ,

u∗(x, t ) =−r−1BT ∂y v(x, y, t ).

(14.12)

The above set of equations can be rewritten in a more convenient way as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂t v(X , t )− supu

"
∂X v(X , t )T (AX +B u +C )+ 1

2

�
X T QX

+ uT RuT
�
+ LT X

#
= 0 in $ × [0,T [,

v(X ,T ) = g (x) in $ ,

u∗(x, t ) =−r−1BT ∂y v(X , t ).

Let the value function and optimal strategy be given as follows:

�
v(X , t ) = 1

2 X T P (t )X +Ψ(t )T X +χ (t ),
u∗ =−R−1BT [PX +Ψ].
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14.4. Mean-field equilibrium and stability 161

As a result, from (14.12) we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2 X T Ṗ (t )X + Ψ̇(t )X + χ̇ (t )+ (P (t )X +Ψ(t ))T

+
−BR−1BT

,
(P (t )x+Ψ(t ))

+ (P (t )x+Ψ(t ))T (AX +C )+ 1
2

�
X (t )T QX (t )+ u(t )T Ru(t )T

�
+ LT X (t ) = 0 in $ × [0,T [,

P (T ) =φ, Ψ(T ) = 0, χ (T ) = 0.
(14.13)

For the boundary conditions let us set the following constraint:

v(x,T ) =
1
2

xT P (T )x+Ψ(T )x+χ (T ) =
1
2

xTφx.

As (14.13) is an identity in x, the whole procedure culminates in the solution of the
following three equations:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ṗ + PA(x)+A(x)T P − PBR−1BT P +Q = 0 in [0,T [, P (T ) =φ,

Ψ̇ +A(x)TΨ + PC − PBR−1BTΨ + L= 0 in [0,T [, Ψ(T ) = 0,

χ̇ +ΨT C − 1
2Ψ

T BR−1BTΨ = 0 in [0,T [, χ (T ) = 0.

(14.14)

To gain insight on how the incentive term influences the value function, consider the
following differential equation for Ψ:6

Ψ̇1
Ψ̇2

7
+
� −β 0

k(x(t )) 0

��
Ψ1
Ψ2

�
+
�

P11 P12
P21 P22

�6
βxoff

0

7

−
&

P12(r
−1
on + r−1

off )Ψ2

P22(r
−1
on + r−1

off )Ψ2

'
+
�

0
Se +W

�
.

(14.15)

The above set of equalities for Ψ yields⎧⎪⎨
⎪⎩
Ψ̇1−βΨ1+ P11βxoff− P12(r−1

on + r−1
off )Ψ2 = 0,

Ψ̇2+ k(x(t ))Ψ1− P22(r
−1
on + r−1

off )Ψ2+ P21βxoff+(Se +W ) = 0,
(14.16)

which is of the form ⎧⎨
⎩
Ψ̇1+ aΨ1+ bΨ2+ c = 0,

Ψ̇2+ a′Ψ1+ b ′Ψ2+ c ′ = 0.
(14.17)

The set of equalities mentioned above provides the solution Ψ(x(t ), e(t ), t ). Remarkably,
the parameters a′ and c ′ depend on x and e(t ), respectively.

To get an expression for the closed-loop macroscopic dynamics, let us introduce the
mean-field equilibrium strategy given in (14.11) in the open-loop microscopic dynamics
provided in (14.5). By averaging both the left-hand side and the right-hand side, we obtain

˙̄X (t ) = [A(x)−BR−1BT P]X̄ (t )−BR−1BT Ψ̄(t )+C ,

where Ψ̄(t ) =
∫ xoff

xon

∫
[0,1]Ψ(x, e , t )m(x, y, t )d xd y, and this concludes our proof.
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162 Chapter 14. Demand Side Management

It is worth noting that if we introduce the mean-field equilibrium strategy (14.11) in
the open-loop microscopic dynamics (14.5), the closed-loop microscopic dynamics takes
the form

Ẋ (t ) = [A(x)−BR−1BT P]X (t )−BR−1BTΨ(x, e , t )+C . (14.18)

In the rest of this section we analyze stability of the TCLs’ microscopic dynamics.
To this purpose, let% be the set of equilibrium points for (14.18). This set is defined as
follows:

% = {(X , e) ∈�2×�| [A(x)−BR−1BT P]X (t )−BR−1BTΨ(x, e , t )+C = 0}.
Also, let V (X (t )) = dist(X (t ),% ). We are in a position to establish a condition for the
asymptotic convergence to the above set of equilibrium points.

Corollary 14.2 (Asymptotic stability). Let the following inequality hold:

∂X V (X , t )T
�
[A−BR−1BT P]X (t )−BR−1BTΨ∗(x(t ), e(t ))+C

�
<−‖X (t )−Π% [X (t )]‖2.

(14.19)

Then dynamics (14.18) is asymptotically stable, namely, limt→∞ dist(X (t ),% ) = 0.

Proof. Consider a solution X (t ) of dynamics (14.18) characterized by an initial state
X (0) �∈ % . Let us set t = {inf t > 0|X (t ) ∈% } ≤∞. For all t ∈ [0, t ]

V (X (t + d t ))−V (X (t )) = ‖X (t + d t )−Π% [X (t )]‖−‖X (t )−Π% [X (t )]‖
= ‖X (t )+ dX (t )−Π% [X (t )]‖−‖X (t )−Π% [X (t )]‖
= 1
‖X (t )+d X (t )−Π% [X (t )]‖‖X (t )+ dX (t )−Π% [X (t )]‖2

− 1
‖X (t )−Π% [X (t )]‖‖X (t )−Π% [X (t )]‖2.

Taking the limit of the difference mentioned above we get

V̇ (X (t )) = limd t→0
V (X (t+d t ))−V (X (t ))

d t

= limd t→0
1

d t

+
1

‖X (t )+d X (t )−Π% [X (t )]‖ ‖X (t )+ dX (t )−Π% [X (t )]‖2

− 1
‖X (t )−Π% [X (t )]‖ ‖X (t )−Π% [X (t )]‖2

,
≤ 1
‖X (t )−Π% [X (t )]‖

+
∂X V (X , t )T

�
[A−BR−1BT P]X (t )

− BR−1BTΨ∗(x(t ), e(t ))+C
�
+ ‖X (t )−Π% [X (t )]‖2

,
< 0,

which implies&V (X (t ))< 0 for all X (t ) �∈ % , and this concludes our proof.

In the next section, we illustrate the significance of the above results on a numerical
example.

14.5 Numerical example
This example deals with a population of n = 102 homogeneous TCLs. The simulations
are performed using MATLAB. For the number of iterations, let us set T = 30. The time
plots are obtained from the following discrete-time version of (14.5):

X (t + d t ) =X (t )+ (A(x(t ))X (t )+B u(t )+C )d t . (14.20)
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14.6. Notes and references 163

Table 14.1. Simulation parameters for a population of TCLs.

α β xon xon ron, roff q s t d (m0) m̄0

1 1 −10 10 1 1 1 0

The parameters are set as in Table 14.1. Specifically, we set d t = 0.1 for the step size,
α = β = 1 for the cooling and heating rates, and xon = −10 and xoff = 10 for the lowest
and highest temperatures, respectively. Furthermore, we set ron = roff = 1 for the penalty
coefficients, and q = 1. The initial distribution is assumed normal with zero mean and
standard deviation s t d (m(0)) = 1.

The algorithm used for the simulations is displayed below.

ALGORITHM 14.1. Simulation algorithm for a population of TCLs.

Input: Set of parameters as in Table 14.1.
Output: TCLs’ states X (t )

1 : Initialize. Generate X (0) given m̄0 and std(m0)
2 : for time i t e r = 0,1, . . . ,T − 1 do
3 : if i t e r > 0, then compute m(.), m̄(t ), and std(m(.))
4 : end if
5 : for player i = 1, . . . , n do
6 : Set t = i t e r · d t and compute control u∗(t ) using current m̄(t )
7 : compute new state X (t + d t ) by executing (14.20)
8 : end for
9 : end for
10 : STOP

For the optimal control, we set

u∗ =−R−1BT [PX +Ψ],

where P is obtained from running the MATLAB command[P]=care(A,B,Q,R). The
command receives the aforementioned matrices as input and gives as output the solution P
to the algebraic Riccati equation. Assuming BR−1BTΨ ≈C , for the closed-loop dynamics
we obtain

X (t + d t ) =X (t )+ [A−BR−1BT P]X (t )d t .

In Fig. 14.3, we plot the time evolution of the states of the TCLs, that is to say, their
temperatures x(t ) (top) and modes y(t ) (bottom). The plot is obtained under the assump-
tion that any 10 seconds the states are subject to an impulsive disturbance. As we can
see from the plot, the TCLs respond quickly to the impulsive disturbance and converge
again to the equilibrium point. After the TCLs converge a new impulsive disturbance is
activated and so forth. This explains the nature of the periodic behavior displayed in the
figure.

14.6 Notes and references
The benefits of demand response in electricity markets is discussed in [192]. Demand side
management has been studied in the context of different disciplines, including differential
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Figure 14.3. Time plot of temperature x(t ) (top row) and mode y(t ) (bottom row) of each TCL.

game theory [17, 82, 198], control and optimization [9, 68, 165, 174, 207], and computer
science [228].

Populations of plug-in electric vehicles are dealt with in [9, 165, 174, 198, 228]. Evi-
dence that game theory fits the framework of demand side management is also in [165].
More details on prescriptive game theory and mechanism design are in [16, 51, 132] and
[196, Chap. 10].
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Chapter 15

Synchronization of
Power Generators

15.1 Introduction
This chapter illustrates a constructive design of dynamic demand for the synchronization
of power generators in smart grids. The design is inspired by mechanism design tech-
niques. The game-theoretic nature of the approach provides a better understanding of a
series of aspects:

• The responsive loads can be modeled as rational players characterized by strategic
thinking. Strategic thinking means that the loads respond to the current and the
predicted collective behavior of the grid. In order to do this, the loads must show
computation capabilities.

• The transient can be regulated by a game designer who designs and assigns cost
functionals to the loads. This can be done by considering that the generators have
local interactions and are subject to disturbances.

• The design must account for the fact that the generators are, in general, heteroge-
neous.

We consider frequency responsive loads which measure the rotor angle deviation be-
tween neighbor generators in order to attenuate the mains frequency oscillations. These
are due to the unbalance between energy demand and supply (see, e.g., [207]).

Oscillations are sketched in Fig. 15.1. The plot shows the time in the x-axis and the
rotor angles in the y-axis for a population of 1000 generators. The rotor angles show
ample fluctuations around a nominal value. The underlying idea is that such oscillations
can be attenuated through an opportune design of the loads’ cost functionals.

The transient is modeled as explained next. Let different grids of generators be given.
Each grid constitutes a population of generators. Therefore, we have a multi-population
scenario. Assume that a virtual load, the player, is connected to each generator. The
dynamics of each generator is determined by the swing equation. The swing equation in-
volves the mechanical power as input to the generator and the electrical power as output.
The electrical power includes the load assigned to the generator and the electrical power
in and out from the generator towards other generators. It is a known fact that the swing
equation resembles the classical Kuramoto oscillators’ dynamics [10, 88, 231]. From [193]
it is also known that after linearization around zero, the aforementioned oscillator’s dy-
namics turn into a linear consensus dynamics. From a mean-field game perspective, let us

165
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Figure 15.1. Example of oscillations: qualitative time plot of the state of each TCL, namely
temperature (top row) and mode of functioning (bottom row).

think of the state dynamics of a generator as the microscopic dynamics controlled by the
virtual load assigned to that generator. The dynamics of the generator describes the time
evolution of its rotor angle in the form of a stochastic differential equation. Furthermore,
each population of generators is characterized by a common angle. This is a measure of
the synchronization of the generators. The common angle of each population evolves
according to a dynamics, which represents the macroscopic dynamics of our mean-field
game model. The game-theoretic model involves a finite horizon cost functional for each
virtual load. Such a cost functional involves a mean-field term which will incentivize the
load to shift the energy consumption from high-peak to off-peak periods.

This chapter is organized as follows. Section 15.2 formulates the synchronization
problem. Section 15.3 develops a mean-field game for the problem at hand. Section 15.4
studies mean-field equilibrium solutions. Section 15.5 deals with a numerical example.
Finally, Section 15.6 provides notes and references.

15.2 Multi-machine transient stability in power grids
This section illustrates the problem and the mathematical model of the transient stability
in multiple interconnected grids of generators. Before addressing multiple grids, let us
introduce the model for one grid of generators.

15.2.1 One grid

Let n generators be given, and let δi (t ), i = 1,2, . . . , n, be their rotor angles. The gen-
erators belong to a grid, and therefore their rotor angle dynamics are interconnected as
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15.2. Multi-machine transient stability in power grids 167

described by the following swing equations:

δ̈i (t ) =
Πi i

αi
+

1
αi

n∑
j=1

Πi j sin(δ j (t )−δi (t )), (15.1)

where Πi i is the effective power to generator i , αi is a damping constant, and Πi j is the
maximum power transferred between generators i and j . At an equilibrium, the mechan-
ical power balances the electrical power. At a nonequilibrium condition, the deviation of
the mechanical power from the electrical power induces a frequency deviation from the
nominal value.

To describe synchronization we use the complex order parameter

z = r e iΦ =
1
n

n∑
j=1

e iδ j ,

where Φ is usually referred to as the common power angle.
Let us assume that the generators are topologically symmetric. That is to say that

Πi j = Π0 for all i , j = 1,2, . . . , n, i �= j , and αi = α0 for all i = 1,2, . . . , n. Then, we use
the following simplified version of the swing equation:

δ̈i (t ) =ωi +
1
αi

n∑
j=1

�
n

sin(δ j (t )−δi (t )). (15.2)

In the above equation, ωi =
Πi i
α0

is the effective power divided by the damping constant,

and �
n =

Π0
α0

.
Let us now introduce the common power angle in the above dynamics, and let us

assume that the players are indistinguishable. The corresponding asymptotic limit for
n→∞ yields the following second-order differential equation:

δ̈(t ) =ω+� r sin(Φ(t )−δ(t )). (15.3)

Note that we have dropped index i as we deal with a population of indistinguishable
players. By linearizing around zero we obtain

δ̈︸︷︷︸
ẋ(t )

= ω︸︷︷︸
w(t )

+ r (Φ(t )−δ(t ))︸ ︷︷ ︸
u(t )

. (15.4)

Letting x1(t ) = δ, x2(t ) = δ̇, u(t ) = r (Φ(t )−δ(t )), and w(t ) =ω, the swing equa-
tion takes the form�

ẋ1(t )
ẋ2(t )

�
=
�

0 1
0 0

��
x1(t )
x2(t )

�
+
�

0
1

�
u(t )+

�
0
1

�
w(t ). (15.5)

We can interpret u(·) ∈ U as the control variable and w(·) ∈ W as the disturbance,
where U and W are the control set and the disturbance set, respectively.

We are in a position to extend the above model to multiple grids.

15.2.2 Multiple interconnected grids

Let p smart grids be given, each one placed in a different region. Each grid k ∈ {1,2, . . . , p}
involves a population of generators. Let Φk be the common power angle of population k.
Note that the power angle is now indexed by the population type.
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168 Chapter 15. Synchronization of Power Generators

For every population k ∈ {1, . . . , p}, consider a probability density function mk :
�×[0,+∞[→�, (x, t ) → mk (x, t ), representing the density of agents of that population
in state x at time t , which satisfies

∫
�mk (x, t )d x = 1 for every t . Let the initial density be

mk (., 0) = mk0. Let the mean state of population k at time t be m̄k (t ) :=
∫
� xmk (x, t )d x.

We henceforth denote the common power angle of population k by m̄k (t ).
A network topology is used to model the interconnection between the common power

angles of two distinct populations of generators or smart grids; see Fig. 15.2. The topol-
ogy is essentially represented by a graph G = (V , E), where V = {1, . . . , p} is the set of
vertices, one per each population, and E ⊆V ×V is the set of edges. For sake of simplic-
ity we henceforth assume that G = (V , E) is a balanced graph (or undirected graph). Let
N (k) = { j ∈V | (k , j ) ∈ E} be the neighborhood of k. The rationale of doing this is that
the common power angle of neighbor grids is intertwined in a second-order consensus-
like form. That is to say that m̄k (t ) evolves based on inputs from m̄j (t ) for all j ∈ N (k)
in order to converge to the local average. The consensus value ρk for population k is then
expressed by the averaging law:

ρk =
1

|N (k)|
6 ∑

j∈N (k) m̄j (t )∑
j∈N (k)

˙̄mj (t )

7
, (15.6)

where ρk ,i is the ith component of ρk . Let us also denote

m̄ = (m̄1, . . . , m̄p , ˙̄m1, . . . , ˙̄mp )
T , ˙̄m = ( ˙̄m1, . . . , ˙̄mp , ¨̄m1, . . . , ¨̄mp )

T .

Figure 15.2. Four distinct populations of generators interconnected.

Let the virtual loads of population k (recall that we have one virtual load for each
generator) be assigned the running cost

g (x,ρk , u) =
1
2

�
a1(ρk ,1− x1)

2+ a2(ρk ,2− x2)
2+ c u2� , (15.7)

where a1, a2, and c are given parameters.
Also, let the following terminal cost be given:

Ψ(ρk , x) =
1
2
[S1(ρk ,1− x1)

2+ S2(ρk ,2− x2)
2], (15.8)

where S1 and S2 are given parameters.
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15.3. Modeling the transient as a mean-field game 169

The synchronization problem for the multiple grid system can be formulated as fol-
lows.

Problem 15.1 (Synchronization of generators). Consider multiple grids k ∈ {1,2, . . . , p},
and let a finite horizon from 0 to T > 0 be given. For each generator in grid k, let the initial
state x(0) be obtained from an initial density mk0 : � → �. Furthermore, let the virtual
load linked to the generator be assigned a suitable running cost g :�2×�2×U → [0,+∞[,
(x,ρk , u) → g (x,ρk , u) as in (15.7); a terminal cost Ψ : �2 ×�2 → [0,+∞[ as in (15.8);
and (ρk , x) → Ψ(ρk , x). Given the linear dynamics f :�2×U ×W →� for x as in (15.5),
solve

min
u(.)

max
w(.)

∫ T

0

+
g (x(t ),ρk (t ), u(t ))− γ

2

2
w(t )2

,
d t +Ψ(ρk (T ), x(T )), (15.9)

where γ > 0, and� ,� are the sets of all measurable functions u(.) and w(.) from [0,+∞[
to U and W , respectively.

15.3 Modeling the transient as a mean-field game
This section develops a mean-field game for the problem at hand. After presenting the
formulation of the problem in the previous section, and introducing the compact notation

x(t ) =
�

x1(t )
x2(t )

�
∈�2, ρk (t ) =

6
ρk ,1(t )
ρk ,2(t )

7
∈�2,

we understand that for each generator, we have to solve the following linear-quadratic
problem:

min
u(.)

max
w(.)

∫ T

0

�
1
2

:‖x(t )‖2
Q + ‖ρk (t )‖Q + x(t )T Q̂ρk (t )+Ru(t )2− Γw(t )2

;�
d t

+ 1
2

:‖x(T )‖2
S + ‖ρk (T )‖2

S + x(T )T Ŝρk(T )
;

subject to ẋ(t ) =Ax(t )+B u(t )+C w(t ),

where

Q =
�

a1 0
0 a2

�
, Q̂ =−2Q =

� −2a1 0
0 −2a2

�
, R= c , Γ = γ 2,

A=
�

0 1
0 0

�
, B =C =

�
0
1

�
,

S =
�

S1 0
0 S2

�
, Ŝ =−2S =

� −2S1 0
0 −2S2

�
.

For every population k ∈ {1,2, . . . , p}, let us denote by vk(x, t ) the (upper) value
of the robust optimization problem under worst-case disturbance starting at time t and
at state x. The first step is to show that the problem results in the following multi-
population mean-field game system for the scalar functions vk (x, t ) and mk (x, t ) for all
k ∈ {1,2, . . . , p}.
Theorem 15.1. The synchronization of the generators in a system with multiple grids as
introduced in Problem 15.1 can be formulated as a robust mean-field game involving the
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170 Chapter 15. Synchronization of Power Generators

following Hamilton–Jacobi–Isaacs equation:⎧⎪⎪⎨
⎪⎪⎩
∂t vk (x, t )+

:− 1
2c BBT + 1

2γ 2 C C T
; |∂x vk (x, t )|2+ 1

2 [a1(ρk ,1− x1)
2

+ a2(ρk ,2− x2)
2] = 0 in �2× [0,T [,

vk (x,T ) = Ψ(ρk(T ), x) in �2;

(15.10)

the following advection equation:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂t mk (x, t )+

:
1

2γ 2 C C T − 1
2c BBT

;
∂x

�
mk∂x vk

�
= 0 in �2× [0,T [,

mk (x, 0) = mk0(x) in �,
ṁk (x, 0) = ṁk0(x) in �;

(15.11)

and the following aggregate dynamics for the target value:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m̄k (t ) :=
∫
� xmk (x, t )d x,

˙̄mk (t ) :=
∫
� xṁk (x, t )d x,

ρk =
1

|N (k)|
6 ∑

j∈N (k) m̄j (t )∑
j∈N (k)

˙̄mj (t )

7
.

(15.12)

Furthermore, the optimal control and worst-case disturbance are	
u∗k (x, t ) =− 1

c BT ∂x vk (x, t ),
w∗

k(x, t ) = 1
γ 2 C T ∂x vk (x, t ).

(15.13)

Proof. Let us start by deriving (15.13). To this purpose, consider the Hamiltonian func-
tion

H (x,∂x vk(x, t ),ρk ) = inf
u

"1
2

�
a1(ρk ,1− x1)

2+ a2(ρk ,2− x2)
2+ c u2�

+ ∂x vk (x, t )T (Ax +B u)
#
= 0. (15.14)

For the robust Hamiltonian we have

H̃ (x,∂x vk (x, t ), m̄) =H (x,∂x vk(x, t ),ρk )+ sup
w

$
∂x vk (x, t )T C w − 1

2
γ 2w2

-
.

After differentiation with respect to the control u and the disturbance w we get the
following equations: �

c u +BT ∂x vk(x, t ) = 0,
−γ 2w +C T ∂x vk(x, t ) = 0.

(15.15)

From the above we then obtain the optimal values for u and w as follows:	
u∗k (x, t ) =− 1

c BT ∂x vk (x, t ),
w∗

k(x, t ) = 1
γ 2 C T ∂x vk (x, t ),

(15.16)

and this yields (15.13).
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15.3. Modeling the transient as a mean-field game 171

Let us now turn to prove (15.10)–(15.11). Before doing this, let us note that the second
lines of (15.10)–(15.11) are essentially the boundary conditions.

To derive the Hamilton–Jacobi–Isaacs equation (15.10), let us replace u∗k appearing in
the Hamiltonian (15.14) by its expression (15.13). After doing this we obtain

H (x,∂x vk (x, t ),ρk ) =
1
2

�
a1(ρk ,1− x1)

2+ a2(ρk ,2− x2)
2+ c u∗2k

�
+ ∂x vk(x, t )T (Ax+B u∗k )

=
1
2

�
a1(ρk ,1− x1)

2+ a2(ρk ,2− x2)
2�− 1

2c
BBT

�
∂x vk (x, t )

�2
.

From the above expression, we obtain the following equation for the robust Hamil-
tonian:

H̃ (x,∂x vk (x, t ), m̄) =H (x,∂x vk (x, t ),ρk )+ sup
w

$
∂x vk(x, t )T C w − 1

2
γ 2w2

-
=

1
2

�
a1(ρk ,1− x1)

2+ a2(ρk ,2− x2)
2�+ ∂x vk (x, t )T Ax

+
8
− 1

2c
BBT +

1
2γ 2

C C T
9�
∂x vk (x, t )

�2
.

Using the above expression of the Hamiltonian in the following Hamilton–Jacobi–
Isaacs equation, ⎧⎨

⎩
∂t vk (x, t )+ H̃ (x,∂x vk(x, t ), m̄) = 0 in �2× [0,T [,

vk (x,T ) = Ψ(ρk(T ), x) in �2,
(15.17)

we obtain⎧⎪⎪⎨
⎪⎪⎩
∂t vk (x, t )+

:− 1
2c BBT + 1

2γ 2 C C T
; |∂x vk (x, t )|2+ ∂x vk(x, t )T Ax + 1

2 [a1(ρk ,1− x1)2

+ a2(ρk ,2− x2)2] = 0 in �2× [0,T [,

vk (x,T ) = Ψ(ρk(T ), x) in �2,

and the Hamilton–Jacobi–Isaacs equation (15.10) is proved.
To derive the advection equation (15.11), consider the macroscopic dynamics

∂t mk (x, t )+ ∂x

�
mk (x, t )∂ p̃ H (x, p̃ ,ρk )

�
+ 1

γ 2 ∂x

�
mk (x, t )∂x vk (x, t )

�
= 0 in �2× [0,T [.

(15.18)

Introducing u∗k (x, t ) and w∗
k (x, t ) as in (15.13) in the above set of equations we obtain

∂t mk (x, t )+ ∂x

+
mk

�
Ax +( 1

2γ 2 C C T − 1
2c BBT )∂x vk

�,
= 0 in �2× [0,T [.

The advection equation (15.11) is complemented with the boundary conditions$
mk (x, 0) =mk0(x) in �,
ṁk (x, 0) = ṁk0(x) in �. (15.19)
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172 Chapter 15. Synchronization of Power Generators

Finally, for the tracking signal ρk (t ) we can write⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m̄k (t ) :=
∫
� xmk (x, t )d x,

˙̄mk (t ) :=
∫
� xṁk (x, t )d x,

ρk =
1

|N (k)|
6 ∑

j∈N (k) m̄j (t )∑
j∈N (k)

˙̄mj (t )

7
,

(15.20)

and this concludes the proof.

15.4 Synchronization explained as stable mean-field
equilibrium
In the previous section we have turned the synchronization problem, which we have de-
fined in Problem 15.1, into the robust mean-field game (15.10)–(15.12). This section in-
vestigates a solution for the above game in the form of a worst-case disturbance feedback
mean-field equilibrium; see Section 12.5.

In particular, the main result states that computing the worst-case disturbance feed-
back mean-field equilibrium involves solving three matrix equations, provided that the
time evolution of the common state is given. In the asymptotic case for T →∞, we also
obtain that the macroscopic dynamics has the form of a second-order consensus dynam-
ics.

Theorem 15.2 (Worst-case mean-field equilibrium). Let the robust mean-field game be
given as in (15.10)–(15.12). A worst-case disturbance feedback mean-field equilibrium can be
obtained as follows:

For all k ∈ {1,2, . . . , p}⎧⎨
⎩

vk(x, t ) = 1
2 xTφ(t )x+ h(t )T x +χ (t ),

˙̄mk (t ) =Am̄k (t )+ (− 1
c BBT + 1

γ 2 C C T )(φ(t )m̄k(t )+ h(t )),
(15.21)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̇(t )+φT
:− 1

c BBT + 1
γ 2 C C T

;
φ(t )+φT A+ATφ+Q = 0 in [0,T [,

φ(T ) = S,

ḣ(t )+ h(t )T
:− 1

2c BBT + 1
2γ 2 C C T

;
2φ(t )+ h(t )T A

−ρk (t )
T QT = 0 in [0,T [,

h(T ) =−Sρk (T ),

χ̇ (t )+ h(t )T
:− 1

2c BBT + 1
2γ 2 C C T

;
h(t )

+ 1
2ρk (t )

T Qρk (t ) = 0 in [0,T [,
χ (T ) = 1

2ρk (T )
T Sρk (T ).

(15.22)

The corresponding mean-field equilibrium control and disturbance are	
u∗(x, t ) =− 1

c BT (φ(t )x+ h(t )),
w∗(x, t ) = 1

γ 2 C T (φ(t )x+ h(t )). (15.23)

D
ow

nl
oa

de
d 

08
/1

9/
16

 to
 1

31
.1

56
.2

24
.6

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

co
nt

ro
len

gin
ee

rs
.ir



15.4. Synchronization explained as stable mean-field equilibrium 173

Furthermore, in the stationary case, namely for T →∞, set m̄ = (m̄1, m̄2, . . . , m̄p )
T . It

holds that
˙̄m(t ) =−L̂m̄(t ), (15.24)

where

L̂=
6

0 I
θL θ̃(L+ θ̂I )

7
,

and L = [Lk j ] is the graph-Laplacian matrix of the network and its elements are defined as
follows:

Lk j =

⎧⎪⎨
⎪⎩
φ( 1

c1
− 1

γ 2 ), j = k ,

−φ( 1
c1
− 1

γ 2 )
1

|N (k)| , j ∈N (k), j �= k ,
0 otherwise.

(15.25)

Proof. First, we prove (15.22). Extrapolating the Hamilton–Jacobi–Isaacs equation in
(15.10) for fixed ρk , we have⎧⎪⎪⎨
⎪⎪⎩
∂t vk (x, t )+

:− 1
2c BBT + 1

2γ 2 C C T
; |∂x vk (x, t )|2+ ∂x vk(x, t )T Ax + 1

2 [a1(ρk ,1− x1)
2

+ a2(ρk ,2− x2)
2] = 0 in �2× [0,T [,

vk (x,T ) = Ψ(ρk(T ), x) in �2.
(15.26)

Let us consider the value function

vk(x, t ) =
1
2

xTφ(t )x + h(t )T x +χ (t )

so that (15.26) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 xT φ̇(t )x + ḣ(t )T x + χ̇ (t )+ xTφT

:− 1
2c BBT + 1

2γ 2 C C T
;
φx

+ h(t )T
:− 1

2c BBT + 1
2γ 2 C C T

;
h(t )+ h(t )T

:− 1
2c BBT + 1

2γ 2 C C T
;
φx

+ xTφT
:− 1

2c BBT + 1
2γ 2 C C T

;
h(t )+ (φ(t )x+ h(t ))T Ax

+ 1
2 [a1(ρk ,1− x1)2+ a2(ρk ,2− x2)2] = 0 in �2× [0,T [,

φ(T ) = S, h(T ) = 1
2 Ŝρk(T ) =−Sρk (T ), χ (T ) = 1

2ρk(T )T Sρk (T ).

(15.27)

Since this is an identity in x, it reduces to system (15.22).
For the mean-field equilibrium control and worst-case disturbance we have	

u∗(x, t ) =− 1
c BT (φ(t )x+ h(t )),

w∗(x, t ) = 1
γ 2 C T (φ(t )x+ h(t )),

(15.28)

and this proves (15.23).
By averaging the above expressions and substituting in ˙̄mk (t ) = Am̄k (t ) + B ūk (t ) +

C w̄k (t )we obtain ˙̄mk (t ) =Am̄k (t )+(− 1
c BBT + 1

γ 2 C C T )(φ(t )m̄k(t )+h(t )) as in (15.21).
In the stationary case, let t →∞, and set

:− 1
c BBT + 1

γ 2 C C T
;
=− 1

c

�
0 0
0 1

�
+ 1

γ 2

�
0 0
0 1

�
=
�

0 0
0 2κ

�
, (15.29)
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174 Chapter 15. Synchronization of Power Generators

where κ=− 1
2c +

1
2γ 2 . Then for φ we have�

2κφ12φ21 2κφ12φ22
2κφ22φ21 2κφ2

22

�
+
�

0 φ11
0 φ12

�
+
�

0 0
φ11 φ12

�
+
�

a1 0
0 a2

�
= 0.

(15.30)
Likewise, for h we obtain

�
h1 h2

�� 0 0
2κφ21 2κφ22

�
+
�

0 h1

�− � a1ρk ,1 a2ρk ,2

�
= 0. (15.31)

The above equations for h can be rewritten as

$
2κh2φ21 = a1ρ1,
2κh2φ22 = a2ρ2− h1

⇒
⎧⎨
⎩ h2 =

1
2κφ21

a1ρk ,1 =
φ21

2κφ2
21

a1ρk ,1 =−φ21ρk ,1,

h2 =
1

2κφ22
(a2ρk ,2− h1) =

φ22
2κφ2

22
(a2ρk ,2− h1)≈−φ22ρk ,2.

(15.32)
In the above we have usedφ2

21 =− a1
2κ , which is obtained from (15.29), andφ2

22 =− a2
2κ and

h1 being negligible.
The closed-loop mean-field equilibrium control is given by

u∗(x(t ), t ) =− 1
c [0 1]

��
φ11 φ12
φ21 φ22

��
x1(t )
x2(t )

�
+
�

h1
h2

��
=− 1

c

�
φ12(ρk ,1− x1(t ))+φ22(ρk ,2− x2(t ))

�
,

(15.33)

and the closed-loop worst-case disturbance is

w∗(x(t ), t ) = 1
γ 2 [0 1]

��
φ11 φ12
φ21 φ22

��
x1(t )
x2(t )

�
+
�

h1
h2

��
= 1

γ 2

�
φ12(ρk ,1− x1(t ))+φ22(ρk ,2− x2(t ))

�
.

(15.34)

Then, the mean states of neighbor populations are related by the following local in-
teraction rule:6 ˙̄mk (t )

¨̄mk (t )

7
=Am̄k (t )+ (− 1

c BBT + 1
γ 2 C C T )(φ(t )m̄k(t )+ h(t ))

=Am̄k (t )+
�

0
1

�
( 1c − 1

γ 2 )
�
φ12(ρk ,1− m̄k (t ))+φ22(ρk ,2− ˙̄mk (t ))

�
=Am̄k (t )+

�
0
1

�
( 1c − 1

γ 2 )
�
φ12(

∑
j∈N (k) m̄j (t )
|N (k)| − m̄k (t ))

+φ22(
∑

j∈N (k)
˙̄mj (t )

|N (k)| − ˙̄mk (t ))
�
.

(15.35)
After introducing the compact notation

μ•1(t ) =
@

m̄1(t ), . . . , m̄p (t )
AT , μ•2(t ) =

@ ˙̄m1(t ), . . . , ˙̄mp (t )
AT

,

and collecting dynamics (15.35) for all k in a single expression, we obtain the following
second-order consensus dynamics:�

μ̇•1(t )
μ̇•2(t )

�
=
6

0 I
−θL −θ̃(L+ θ̂I )

7�
μ•1(t )
μ•2(t )

�
t = 0,1, . . . , (15.36)
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15.5. Numerical example 175

where the initial condition is

μ•1(0) =
@

m̄1(0), . . . , m̄p (0)
AT , μ•2(t ) =

@ ˙̄m1(t ), . . . , ˙̄mp (t )
AT = @ 0, . . . , 0

AT ,

and where L is the normalized (one for the entries in the main diagonal, and the reciprocal
of the degree of node i for each adjacent node of i in the ith row) graph-Laplacian matrix
of the communication graph G = (N , E). In the above equation, the parameters θ, θ̂,
and θ̃ are the elastic and damping coefficients and are obtained as a by-product from the
Riccati equation.

Denoting

L̂=
6

0 I
θL θ̃(L+ θ̂I )

7
,

where L = [Lk j ] is the graph-Laplacian matrix of the network as in (15.25), dynamics
(15.36) can be rewritten as

˙̄m(t ) =−L̂m̄(t ).

This concludes our proof.

Remark 1. Dynamics (15.24) is a consensus dynamics, and as such it guarantees synchroniza-
tion. �

From the above theorem, we derive the following scheme for the computation of an
equilibrium:

φ(t ), h(t ), χ (t ) as in (15.22)

vk (.)
��

Riccati equations—backwards

˙̄m(t ) =−Lm̄(t )

ρk (t )

��

Consensus dynamics—forwards

The scheme includes a set of Riccati equations, which involve the variablesφ(t ), h(t ),
χ (t ). The local average ρk(t ) enters as input in the Riccati equations and plays the role of a
target signal for population k. The output is the value function vk (x, t ) for population k.

The second set of equations describe the consensus dynamics. The aforementioned
value function enters as input in the consensus dynamics. Recall that the graph-Laplacian
matrix L depends on φ(t ), which derives from the Riccati equations. The output of the
consensus dynamics is a new trajectory for the target signal ρk . At a fixed point, the target
signal ρk coincides with the one entered in the Riccati equations at the beginning of the
iteration.

15.5 Numerical example
Let us now consider the following numerical example. The example deals with 1000 play-
ers, n = 103, five populations, p = 5, and a discretized set of states % = {xmin , xmin +
1, . . . , xmax}, where xmin = −50 and xmax = 50. Assume that the graph G = (V , E) is a
chain. As for the step size, let us take d t = 1. The number of iterations is T = 50.

The state dynamics of each generator is approximated by the discrete-time equation�
x(t + 1) = x(t )+ ξ̂ (ρk − x)+σ rand[−1,1], t = 0,1, . . . ,T − 1,
x(0) = x.

(15.37)
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176 Chapter 15. Synchronization of Power Generators

We also consider a discretized version of the second-order consensus dynamics (15.24) by
setting

m̄ = (m̄1, . . . , m̄5, ˙̄m1, . . . , ˙̄m5)
T .

After introducing the compact notation

μ•1(t ) =
@

m̄1(t ), . . . , m̄5(t )
AT , μ•2(t ) =

@ ˙̄m1(t ), . . . , ˙̄m5(t )
AT ,

dynamics (15.24) has the form of the following second-order consensus dynamics:�
μ•1(t )
μ•2(t )

�
=
6

I I
−θL −θ̃(L+ θ̂I )+ I

7�
μ•1(t − 1)
μ•2(t − 1)

�
t = 1,2, . . . ,T , (15.38)

where the initial condition is

μ•1(0) =
@

m̄1(0), . . . , m̄5(0)
AT , μ•2(0) =

@ ˙̄m1(0), . . . , ˙̄m5(0)
AT = @ 0, . . . , 0

AT ,

and where L is the normalized (one for the entries on the main diagonal, and the reciprocal
of the degree of node i for each adjacent node of i in the ith row) graph-Laplacian matrix
of the communication graph G = (V , E).

Furthermore, let m0k be Gaussian with mean m̄0k equal to 0 for every population k.
Also, let the standard deviation s t d (m0k ) be equal to 15 for all k. Then, the initial state
x in (15.37) is drawn randomly from m0k for all k. The simulations’ plots are obtained
from the algorithm displayed below.

ALGORITHM 15.1. Simulation algorithm for the synchronization of generators.

Input: Set of parameters
Output: Machine’s rotor angle x(t )

1 : Initialize. Generate x(0) given m̄0k and std(m0k )
2 : for time i t e r = 0,1, . . . ,T − 1 do
3 : if i t e r > 0, then compute mk (.), m̄k (t ), and std(mk (.)) for all k
4 : end if
5 : for player i = 1, . . . , n do
6 : Set t = i t e r · d t and compute control u∗(t ) using current m̄(t )
7 : compute m̄(t ) = (μ•1(t )μ•2(t ))T according to (15.38)
8 : compute new state x(t + d t ) by running (15.37)
8 : end for
9 : end for
10 : STOP

A first set of simulations examines the impact of different elastic and damping coef-
ficients θ, θ̂, and θ̃. Specifically, we simulate for increasing damping coefficients θ̃ =
0.1,0.35,0.55. The state is reset to the initial value every 10 iterations. Figs. 15.3–15.5
display the time plot of the microscopic dynamics (left) and the time plot of the standard
deviation (right). The damping effect increases from Fig. 15.3 to Fig. 15.5.

In a second set of simulations, we investigate the influence of the Brownian motion.
Figs. 15.6–15.8 show the time plot of the microscopic dynamics (left) and of the standard
deviation (right) for three different values of the parameter σ = 1,2,3. Again, the state
is reset to the initial value every 10 iterations. From Fig. 15.6 to Fig. 15.8, note that the
higher the coefficient σ , the higher the tolerance in the synchronization dynamics.
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Figure 15.3. Intercluster oscillation: the influence of the damping coefficient θ̃= 0.1.
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Figure 15.4. Intercluster oscillation: the influence of the damping coefficient θ̃= 0.35.
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Figure 15.5. Intercluster oscillation: the influence of the damping coefficient θ̃= 0.55.
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Figure 15.6. Intercluster oscillation: the influence of the Brownian motion coefficient σ = 1.
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Figure 15.7. Intercluster oscillation: the influence of the Brownian motion coefficient σ = 2.
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Figure 15.8. Intercluster oscillation: the influence of the Brownian motion coefficient σ = 3.
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180 Chapter 15. Synchronization of Power Generators

15.6 Notes and references
This chapter has studied transient stability in power grids via robust mean-field games.
The study has shown multi-scale phenomena involving fast local synchronization and
slow intercluster oscillation. Future directions of research involve a detailed stability
analysis and the extension of the framework to other coupling effects. The impact of
mean-field games on smart grids is still a broad and open field.

A control-theoretic approach to the unbalance between energy demand and supply
is in [207]. Connections between the swing equation and the classical Kuramoto oscilla-
tors’ dynamics are explored in [10, 88, 231]. Connections between Kuramoto oscillators’
dynamics and consensus are pointed out in [193].
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Chapter 16

Opinion Dynamics

16.1 Introduction
This chapter examines opinion dynamics in the context of two-player repeated games
with vector payoffs. In general, people’s opinions change with time as a consequence of
the interactions among individuals.

Sometimes opinions converge to one or multiple values. Social scientists consider em-
ulation or herd behavior among the root causes of convergence of opinions. It is common
practice to distinguish opinion evolutionary patterns in three categories:

• consensus, when the opinions converge to a single value;

• polarization, when the consensus values are multiple but few in number;

• plurality, when the consensus values are multiple and numerous.

Polarization or plurality is often due to bounded confidence. Bounded confidence
means that the interactions occur only among individuals with “similar” beliefs. Polar-
ization and plurality can also arise in the presence of stubborn individuals. Stubborn
individuals do not consider their neighbors’ opinions. On the contrary, they try to influ-
ence the opinions of other individuals.

In the study of opinion dynamics, a common approach uses Eulerian models, that
is to say models that assimilate the opinion propagation to a mass transport. Eulerian
models consider the individuals as homogeneous, in the sense that they have no private
identity and are simply identified by their opinions. Fig. 16.1 shows how to turn an Eu-
lerian model into a network model. Consider a density distribution over the space of
opinions (top), and imagine discretizing the state space. From left to right we consider
increasingly smaller discretization steps. Here rectangles approximate the population in
a given state. Now, let us associate to each rectangle a node of a network and let us link
the nodes through weighted arcs (different thicknesses correspond to different weights).
The resulting networks are depicted in the center row of the figure. The weights model
the reciprocal influence between two nodes. Note that the influence between two nodes
decreases with the distance in the space of opinions. According to the mass transport equa-
tion, opinions evolve continuously in space. This means that mass cannot jump. In other
words, masses move from one node to an adjacent one, and this is usually described by a
chain topology. The chain networks depicted in the bottom row of the figure illustrate
this phenomenon.

181
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182 Chapter 16. Opinion Dynamics

Figure 16.1. From mean-field models to networks: (top) discretized Eulerian models with
increasingly smaller steps from left to right; (center) interaction networks; (bottom) chain networks de-
scribing the mass transport between neighbor nodes. Reprinted with kind permission from Springer
Science+Business Media [25].

This chapter models opinion propagation as an n-player averaging process with dy-
namics subject to controls and adversarial disturbances. Adversarial disturbances are opin-
ion leaders trying to influence the opinion of the players. As such, each individual faces
an opinion leader in a two-player repeated game with vector payoffs (cf. Chapter 11).
Modeling opinion dynamics as a game sheds light on the following aspects:

(i) Strategic behavior; namely, individuals are rational and they form their opinions
in order to optimize their interests. As an example, they may wish to align their
opinions to the mainstream opinion. Strategic behavior requires prediction capa-
bilities, in the sense that the individuals must be able to anticipate the evolution of
the mainstream opinion when the rest of the population acts rationally.

(ii) Heterogeneous stubbornness; that is to say that the individuals are differently stub-
born and have different initial opinions.

(iii) Local interactions; namely, the individuals change their opinions or, better, play
their strategic game, considering the reactions only of their neighbors, namely, the
individuals of the neighbor populations.

We study conditions under which the players achieve robust consensus to some pre-
defined target set. Such conditions build upon the approachability principle in repeated
games with vector payoffs. Here the averaging process accounts for social emulation and
the input represents the natural opinion changing rate of every individual.

This chapter is organized as follows. Section 16.2 formulates the problem. Section 16.3
discusses Blackwell’s Approachability Principle (cf. Chapter 11) in connection with opinion
dynamics. Section 16.4 gives the main results. Section 16.5 presents a numerical example.
Finally, Section 16.6 provides notes and references.
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16.2. Opinion dynamics via local averaging with adversaries 183

16.2 Opinion dynamics via local averaging with adversaries
A simple model of opinion dynamics is derived from a classical model of consensus dy-
namics that also arises in the Kuramoto oscillator model [201]. Consider the synchroniza-
tion of the phase angles of a set of N coupled oscillators, for which the dynamics of the
ith oscillator is given by

Θ̇i =Ωi +
�
n

∑
j∈N

sin(Θ j −Θi ),

where Θi is its phase and Ωi is its (time-invariant) natural frequency. The coupling term
in the right-hand side is responsible for the synchronization in that such a term regulates
the angular velocity Θ̇i based on the deviation of the ith phase from the average phase
computed over the population. The level of synchronization increases with the parameter
� appearing in the global coupling term.

Now, the analogy assimilates oscillators to individuals, phases to opinions, and nat-
ural frequencies to natural opinion changing rates. Global coupling is a result of the in-
teractions among the individuals, which depend on the distance between them. Thus the
Kuramoto oscillator model is changed to

ẋi =Ωi +
�
n

∑
j∈N

sin(xj − xi )e
|xj−xi |, i ∈N ,

where one can choose to weight the mutual interference between individuals using an
exponential damping function.

It is well known from [193] that the Kuramoto oscillator model, after linearization
around zero, turns into a classical consensus model of type

ẋi =Ωi +
∑
j∈Ni

(xj − xi ), i ∈N ,

where Ni is the set of neighbors of i . The above model can be rewritten in vector form as

ẋ =Ω− Lx,

where L is the graph-Laplacian matrix, with entries defined as

Li j =
$ −1, j ∈Ni ,|Ni |, j = i .

A discrete-time counterpart of the above model can be obtained as follows. Every
player in a set N = {1, . . . , n} is characterized by a vector state xi (t ) ∈ �ñ (its opinion).
At every time t this state evolves in accordance with a distributed averaging process that
represents the interaction of the player with its neighbors and under the influence of an
input variable ui (t ). Let the opinion xi (t ) of player i be determined by the following
discrete-time dynamics:

xi (t + 1) =
n∑

j=1

ai
j (t )xj (t )+ ui (t ), t = 0,1, . . . , (16.1)

where ai = (ai
1, . . . ,ai

n )
T is a vector of nonnegative weights. These weights are consistent

with the sparsity of the communication graph ( (t ) = (N ,) (t )). A link ( j , i) ∈ ) (t )
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v6

v2v8

v4

v1

v5

v7 v3

a1
3 (t )

a7
5 (t ) a5

3 (t )

a1
7 (t )

Figure 16.2. Communication graph.

implies that ai
j (t ) �= 0, and this means that player j is a neighbor of player i at time t . A

graphical illustration of a feasible communication graph is provided in Fig. 16.2.
In the above model, the coupling term accounts for emulation (an individual’s opinion

is influenced by those of its neighbors) and includes an additional input term (the natural
opinion changing rate):

“emulation”=
n∑

j=1

ai
j (t )xj (t ), “natural opinion changing rate”= ui (t ).

We assume that the natural opinion changing rate is perturbed by the influence of a
persuader. This results in a finite horizon n-player dynamic game in which the input vari-
able for each player is the outcome of another game played against an external persuader.

More formally, for each player i ∈ N , the input ui (.) is the payoff of a repeated two-
player game between player i (player i1) and an (external) adversary (player i2). Let S1 and
S2 be the finite set of actions of players i1 and i2, respectively, and let us denote the set of
mixed action pairs by Δ(S1)×Δ(S2) (set of probability distributions on S1 and S2).

For any pair of mixed strategies (p(t ), q(t )) ∈ Δ(S1)×Δ(S2) for players i1 and i2 at
time t , the expected payoff is�

ui (t ) =
∑

j∈S1,k∈S2
pj (t )φ( j , k)qk (t ),∑

j∈S1
pj (t ) = 1,

∑
k∈S2

qk (t ) = 1, pj , qk ≥ 0. (16.2)

Put differently, φ( j , k) ∈�ñ is essentially the vector payoff resulting from player i1 play-
ing the pure strategy j ∈ S1 and player i2 playing the pure strategy k ∈ S2. In Fig. 16.3,
we have the continuous action sets for the two players for the case that S1 = {1,2,3} and
S2 = {1,2,3}.

In order to enforce one of the aforementioned evolutionary patterns, such as consen-
sus, polarization, or plurality, let us introduce the target set X ⊂�ñ . To keep formalities
reasonably simple, let the target set X be a closed convex target set or a convex subset of
a nonconvex target set. Let us focus on the case where player i1 wishes to steer his state
xi (t ) towards X , while player i2 tries to push the same state far from it. The best-response
strategy used by both players is the solution of a minimax game involving the distance of
the state from X as payoff.
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16.2. Opinion dynamics via local averaging with adversaries 185

p1

p2

p3

|S1|

p(t ) ∈Δ(S1)

q1

q2

q3

|S2|

q(t )∈Δ(S2)

Figure 16.3. Spaces of mixed strategies for the two players.

In compact form the problem with finite horizon [0,T ] to be solved by player i takes
the form

min
p(0)

max
q(0)

· · · min
p(T−1)

max
q(T−1)

T∑
t=0

dist(xi (t ),X )2,

p(t ) ∈Δ(S1), q(t ) ∈Δ(S2),
xi (t + 1) = yi (t )+ ui (t ),

ui (t ) =
∑

j∈S1,k∈S2

pj (t )φ( j , k)qk (t ),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ t = 0, . . . ,T − 1,

(16.3)

where yi (t ) is the space average defined as

yi (t ) =
n∑

j=1

ai
j (t )xj (t ). (16.4)

Now, define by ξ (t ) =
@
x1(t ), . . . , xn(t )

A
the collective state of all players in the set N at

time t and let the value function Vi ,τ(ξ (t ), t ) be given. The value function represents the
minimum cost over τ steps starting at xi (t ), where τ = T − t for t ∈ [0,T ]. From dy-
namic programming and the Bellman principle, we know that the value function satisfies
the recursion

Vi ,τ(ξ (t ), t ) = min
p(t )∈Δ(S1 )

max
q(t )∈Δ(S2)

"
dist(xi (t ),X )2+Vi ,τ−1(ξ (t + 1), t + 1)

#
= dist(xi (t ),X )2+ min

p(t )∈Δ(S1 )
max

q(t )∈Δ(S2 )
Vi ,τ−1(ξ (t + 1), t + 1),

with final value Vi ,0(ξ (T ),T ) = dist(xi (T ),X )2. It is worth noting that the space average
in (16.1) implies that the future distance from X of the state xi depends on the current and
future actions of players in N other than player i . As typical of noncooperative games,
joint actions are not possible, and therefore the game payoff involves the worst-case cost
obtained from maximizing over uj (t ), j ∈N , j �= i .

The receding horizon implementation of the optimal strategy for player i defines p(t ),
and hence ui (t ) in (16.2), as the minimizing argument for the T -stage problem with op-
timal value function Vi ,T (ξ (.), ·). The stability of a receding horizon control law can be
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186 Chapter 16. Opinion Dynamics

ensured [175] by imposing a terminal constraint such as xi (T ) ∈ X for all i ∈ N . We
therefore impose the local constraint dist(xi (t + 1),X )≤ dist(yi (t ),X ). After doing this,
the problem statement can be rewritten as

Vi ,τ(ξ (t ), t ) = dist(xi (t ),X )2 + min
p(t )∈Δ(S1 )

max
q(t )∈Δ(S2)

uj (t ), j �=i , j∈N

Vi ,τ−1(ξ (t + 1), t + 1) (16.5a)

subject to dist(xi (t + 1),X )≤ dist(yi (t ),X ). (16.5b)

Now, we investigate contractivity and invariance of sets for the collective dynamics
(16.1)–(16.2). In doing this, we use the collective value function

∑n
i=1 Vi ,T (ξ (t ), t ) assum-

ing that each player i ∈ N adopts a T -stage receding horizon strategy with the optimal
cost Vi ,T (ξ (.), ·) defined in (16.5).

16.3 Using Blackwell’s Approachability Principle
This section explains how to bring Blackwell’s Approachability Principle (cf. Chapter 11)
into the framework. In preparation for this, let us make the following assumptions on the
information structure of the model (16.1) [188, 185]. Let A(t ) be the weight matrix with
(i , j )th element ai

j (t ) .

Assumption 16.1. The matrix A(t ) is doubly stochastic with positive diagonal. Furthermore,
there exists a scalar α > 0 such that ai

j (t )≥ α whenever ai
j (t )> 0 for all t .

The instantaneous graph ( (t ) need not be connected at any given time t ; however,
the union of the graphs ( (t ) over a period of time is assumed to be connected.

Assumption 16.2. There exists an integer Q ≥ 1 such that the graph
@
N ,
⋃(t+1)Q−1
τ=tQ ) (τ)A is

strongly connected for every nonnegative integer t .

Now, let us denote by G the one-shot vector-payoff game (S1, S2, xi ). Furthermore,
consider λ ∈�ñ and let 〈λ,G〉 be the zero-sum game whose set of players and their action
sets are as in the game G, and for which the payoff that player i2 pays to player i1 is
λTφ( j , k) for every ( j , k) ∈ S1× S2. We refer to 〈λ,G〉 as the projected game.

The projected game 〈λ,G〉 is described by the matrix

Φλ = [λ
′φ( j , k)] j∈S1,k∈S2

,

and as a zero-sum one-shot game it has a value vλ, where

vλ := min
p∈Δ(S1)

max
q∈Δ(S2)

p ′Φλq = max
q∈Δ(S2)

min
p∈Δ(S1 )

p ′Φλq .

We are in a position to introduce Blackwell’s Approachability Principle for the opinion
dynamics under study [49] (see also [48, Cor. 5.1]).

Assumption 16.3. The projected game 〈λ,G〉 satisfies

min
p∈Δ(S1)

max
q∈Δ(S2)

.
2pTΦλq +

DDD ∑
j∈S1,k∈S2

pjφ( j , k)qk

DDD2
/
≤ 0 ∀λ ∈�ñ .
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16.4. Consensus, polarization, and plurality using contractivity and invariance 187

Recall that the condition in Assumption 16.3 is among the foundations of approach-
ability theory since it requires that the value of the projected game satisfies vλ < 0 when-
ever λ �= 0. This is sufficient to guarantee that the average vector payoff of a two-player
repeated game is locally almost surely convergent to the target set X (see, e.g., [57] and
[73, Chap. 7]).

16.4 Consensus, polarization, and plurality using
contractivity and invariance
In this section we prove contractivity and invariance for the collective dynamics (16.1)
under the multi-stage receding horizon strategy defined in (16.5). In preparation for the
main result, let us introduce the following lemmas. The first lemma states that the dy-
namics (16.1) is such that the sum of squared distances of the states xi , i ∈N , from the set
X decreases with time.

Lemma 16.1. Let Assumption 16.1 hold. Then the sum of squared distances of the states from
the set X decreases; namely, it holds that

n∑
i=1

dist(yi (t ),X )2 ≤
n∑

i=1

dist(xi (t ),X )2.

Proof. Convexity of dist(.,X ) implies dist(yi (t ),X ) ≤ ∑n
j=1 ai

j (t )dist(xj (t ),X ). Hence
from convexity of (.)2 we obtain

dist(yi (t ),X )2 ≤
n∑

j=1

ai
j (t )dist(xj (t ),X )2.

Introducing a sum over i = 1, . . . , n in the left- and right-hand sides we get

n∑
i=1

dist(yi (t ),X )2 ≤
n∑

i=1

n∑
j=1

ai
j (t )dist(xj (t ),X )2

=
n∑

j=1

� n∑
i=1

ai
j (t )
�
dist(xj (t ),X )2 =

n∑
j=1

dist(xj (t ),X )2,

where the last equality follows from the stochasticity of A(t ) in Assumption 16.1.

Before introducing the next lemma, note that from the definition of dist(.,X ) and
from (16.1) and (16.3), we get

dist(xi (t + 1),X )2 = ‖xi (t + 1)−ΠX [xi (t + 1)]‖2

≤ ‖xi (t + 1)−ΠX [yi (t )]‖2

= ‖yi (t )+ ui (t )−ΠX [yi (t )]‖2

= ‖yi (t )−ΠX [yi (t )]‖2+ ‖ui (t )‖2+ 2(yi (t )−ΠX [yi (t )])
T ui (t ).

(16.6)

In the following result, we establish that there exists an input ui (t ) given by (16.2) such
that the successor state xi (t + 1) is closer to X than the space average yi (t ).
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188 Chapter 16. Opinion Dynamics

Lemma 16.2. If Assumptions 16.1–16.3 hold, then, for all ξ (t ) =
@
x1(t ), . . . , xn (t )

A∈�ñ ×
· · · ×�ñ , there exists ui (t ) satisfying (16.2) and

dist(xi (t + 1),X )2 ≤ dist(yi (t ),X )2 (16.7)

for each i ∈N.

Proof. Rearranging the inequality in (16.6) we obtain

dist(xi (t + 1),X )2− dist(yi (t ),X )2 ≤ ‖ui (t )‖2+ 2
@
yi (t )−ΠX [yi (t )]

AT ui (t ). (16.8)

With λ = yi (t )−ΠX [yi (t )], Assumption 16.3 implies that there exists a mixed strategy
p(t ) ∈ Δ(S1) for player i1 such that, for any mixed strategy q(t ) ∈ Δ(S2) of player i2,
ui (t ) =

∑
j∈S1

∑
k∈S2

pj (t )φ( j , k)qk(t ) satisfies

‖ui (t )‖2+ 2
@
yi (t )−ΠX [yi (t )]

AT ui (t )≤ 0

for all yi (t ) ∈�ñ . Therefore the bound (16.7) follows from (16.8).

From Lemma 16.2, we have that the constraint (16.5b) is feasible for all collective states
ξ = (x1, . . . , xn) ∈�ñ × · · · ×�ñ . In the following result we make use of this property to
show that the set

Ψ(r ) =
"
(x1, . . . , xn) ∈�ñ × · · · ×�ñ

BBB n∑
i=1

dist(xi ,X )2 ≤ r 2
#

is invariant for all r > 0.

Lemma 16.3. If Assumptions 16.1–16.3 hold, then, for any r > 0,Ψ(r ) is invariant for (16.1)
under the receding horizon strategy defined by (16.5) for all i ∈N.

Proof. From the constraint in (16.5b) (which, by Lemma 16.2, is necessarily feasible) and
Lemma 16.1, we get

∑n
i=1 dist(xi (t+1),X )2 ≤∑n

i=1 dist(yi (t ),X )2 ≤∑n
i=1 dist(xi (t ),X )2.

Hence ξ (t + 1) ∈Ψ(r ) if ξ (t ) ∈Ψ(r ).
In the next lemma we provide bounds on the collective value function

∑n
i=1 Vi ,T (ξ , t )

in terms of the sum of squared distances of individual players’ states from X for all ξ ∈
Ψ(R).

Lemma 16.4. Under Assumptions 16.1–16.3, the value functions Vi ,T (ξ , ·), i ∈ N, satisfy,
for all ξ ∈�ñ × · · · ×�ñ ,

n∑
i=1

dist(xi ,X )2 ≤
n∑

i=1

Vi ,T (ξ , ·)≤ (T + 1)
n∑

i=1

dist(xi ,X )2. (16.9)

Proof. The lower bounds in (16.9) follow directly from (16.5a) and since Vi ,T−1(ξ , ·)≥ 0
for any horizon T ≥ 1 and all ξ ∈�ñ × · · · ×�ñ .

To introduce the main result of this section, let us denote by Ψ(rT ) a set of initial
conditions ξ (0) such that the state xi (T ) of (16.1) is driven into X for all i ∈ N by the
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16.4. Consensus, polarization, and plurality using contractivity and invariance 189

optimal strategy for (16.5) with fixed terminal time t = T . Accordingly, let rT be given
by

rT =max
"

r
BBB n∑

i=1

dist(x̂i (T ),X )2 = 0∀ξ (0) ∈ Ψ(r )
#

.

In the above x̂i (t ) for t = 0, . . . ,T is the trajectory of (16.1) under the minimax strategy
with optimal value function Vi ,T−t

@
(x̂1(t ), . . . , x̂n(t )), t

A
for all i ∈N , with x̂i (0) = xi (0).

Now, from Lemma 16.3 we know that X is invariant under any control law incorporating
the constraint (16.5b). Then it follows that rT is monotonically nondecreasing in T , and
hence Ψ(rT )⊆ Ψ(rT+1) for each T = 0,1, . . . .

We are now in a position to give a precise statement of the stabilizing properties of
the control law defined by (16.5).

Theorem 16.5 (Exponential stability of X ). Let Assumptions 16.1–16.3 hold. For the
system (16.1) with the receding horizon strategy with optimal cost Vi ,T (ξ (t ), t ) for all i ∈N,
the set X is exponentially stable with a region of attraction that contains Ψ(rT ); namely, for
all ξ (0) ∈ Ψ(rT ) and each t = 0,1, . . . , we have

n∑
i=1

dist(xi (t ),X )2 ≤
� T

T + 1

�t n∑
i=1

Vi ,T (ξ (0), 0). (16.10)

Proof. First, from the definition of rT and the positive invariance of Ψ(rT )we obtain the
bound in (16.10). As a consequence, under the assumption ξ (0) ∈ Ψ(rT ), for all i ∈N the
terminal state of (16.1) verifies dist(x̂i (T ),X ) = 0 under the minimax strategy with opti-
mal value function Vi ,T−t

@
(x̂1(t ), . . . , x̂n (t )), t

A
for t = 0, . . . ,T and x̂i (0) = xi (0). Then

Vi ,T (ξ , ·) =Vi ,T−1(ξ , ·) ∀ξ ∈ Ψ(rT ).

In addition to this, from ξ (0) ∈ Ψ(rT ) we have ξ (t ) ∈ Ψ(rT ) for all t = 0,1, . . . , and
therefore

Vi ,T (ξ (t ), t ) = dist(xi (t ),X )2+ min
p(t )∈Δ(S1 )

max
q(t )∈Δ(S2 )

uj (t ), j �=i , j∈N

Vi ,T−1(ξ (t + 1), t + 1)

≥ dist(xi (0),X )2+Vi ,T (ξ (t + 1), t + 1)

for all i ∈ N . By introducing a sum over i ∈ N and using the upper bound of (16.9) we
obtain

n∑
i=1

�
Vi ,T (ξ (t + 1), t + 1)−Vi ,T (ξ (t ), t )

�≤− n∑
i=1

dist(xi (t ),X )2

≤− 1
T + 1

n∑
i=1

Vi ,T (ξ (t ), t )).

As a consequence we have
∑n

i=1 Vi ,T (ξ (t ), t )≤
�

T
T+1

�t∑n
i=1 Vi ,T (ξ (0), 0), and the lower

bound of (16.9) yields (16.10).

Contractivity and invariance are illustrated in Fig. 16.4. A contractive set Φ, includ-
ing the target set X , exerts an attracting force on the state. Successive state samples xi (t )
(black bullet) and xi (t+1) (gray bullet) are drawn closer and closer toΦ; see Fig. 16.4(left).
Invariance implies that starting from a state inside a region Ψ, the state path remains con-
fined in that region, as illustrated in Fig. 16.4(right).
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Φ

X
xi (t )

xi (t + 1)

Ψ

Figure 16.4. Theorem 16.5: contractivity (left) and invariance (right).

Table 16.1. Simulation parameters for the opinion dynamics example.

ν xmin xmax σ s t d (m0) T m̄0 β θ θ̃ θ̂

103 0 1 1 10 70 0.5 0.8 0.2 0.32 0.8

16.5 Numerical example
This section develops a numerical example. The example shows contractivity and invari-
ance, which, in the context of opinion dynamics, correspond to consensus, polarization,
or plurality of the opinions. The example deals with n = 5 populations and ν = 103 in-
dividuals. The state space is % = {xmin , . . . , xmax}, where xmin = 0 and xmax = 1. Each
population is made by 200 players. The parameters of the example are listed in Table 16.1.

For the number of iterations, we set T = 70. The state of each player, namely his
opinion, can be ξr e f ∈ {0,1}, but rather than jumps we consider smooth state trajectories
in accordance with the following dynamics:

ξ (t + 1) = ξ (t )+ round
:
β(ξr e f − ξ (t ))+σW (t )

;
, ξ (0) ∈% , (16.11)

where σ = 1 and W (t ) is a random walk.
For every population i ∈N , set xi (t ) := (mi (0, t ), mi (1, t ))T ∈ [0,1]2, where mi (0, t )

is the probability distribution of individuals that have opinion 0 or are changing their
opinions to 0. Similarly, mi (1, t ) is the probability distribution of individuals that have
opinion 1 or are changing their opinions to 1. Furthermore, let us denote the average by
ρ̄i (t ) =

∑
ξ∈{0,1} ξmi (ξ , t ).

Also, let us introduce the compact notation

x• j (t ) =
@

x1 j (t ), x2 j (t ), x3 j (t ), x4 j (t ), x5 j (t )
AT , j = 1,2,

ρ̄(t ) =
@
ρ̄1(t ), ρ̄2(t ), ρ̄3(t ), ρ̄4(t ), ρ̄5(t )

AT .

Then, for given weights ai
j , i , j = 1, . . . , n, dynamics (16.1) can be written as a second-

order consensus dynamics of the form�
x•1(t + 1)
x•2(t + 1)

�
=
6

I I
−θL −θ̃L+(1− θ̂)I

7�
x•1(t )
x•2(t )

�
t = 0,1, . . . ,
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16.5. Numerical example 191

where the initial condition is given by�
x•1(0)
x•2(0)

�
=
�
ρ̄(0)

0

�
.

In the above, L is the normalized graph-Laplacian matrix of the communication graph
( (t ) = (N ,) (t )) where we have set the coefficients θ = 0.2, θ̃ = 0.32, and θ̂ = 0.8. Note
that θ is the elastic coefficient and that θ̃ and θ̂ determine the damping coefficient of the
above second-order consensus dynamics. Recall that for the normalized graph-Laplacian
matrix, we have one for the entries on the main diagonal, as well as the reciprocal of the
degree of node i for each adjacent node of i in the ith row.

After introducing the above model, we run (16.11) and based on (x11(t ), . . . , x51(t ))
T

we update the target state for the players at every iteration. For each population, the
update consists in setting ξr e f = 1 for precisely a number of players equal to the percentage
expressed by xi1(t ), i ∈N . So, if xi1(t ) = 0.7, we set ξr e f = 1 for 70% of players (their state
approaches 1) and set ξr e f = 0 for the remaining 30% of players (their state approaches 0).

Let us consider an initial Gaussian distribution m0 with mean m̄0 equal to 0.5 and
standard deviation s t d (m0) equal to 10.

The simulation algorithm is displayed in the following.

ALGORITHM 16.1. Simulation algorithm for the opinion dynamics example.

Input: Set of parameters as in Table 16.1.
Output: Player’s state trajectories ξ (t ), t ∈ [0,T ], and tracked signal xi (t ),
t ∈ [0,T ], i ∈N

1 : Initialize. Generate ξ (0) from Gaussian distribution with
mean m̄0 and standard deviation s t d (m0),

2 : for time t = 0,1, . . . ,T − 1 do
3 : if t > 0, then compute m(.), m̄(t ), and s t d (m(.)),
4 : end if
5 : for player i = 1,2, . . . , n do
6 : compute xi (t + 1) by solving (16.3),
7 : end for
8 : end for;
9 : STOP

The considered set of simulations analyzes the influence of the communication graph
topology on the consensus dynamics.

The microscopic evolution of each agent’s state is displayed in Fig. 16.5(left). From top
to bottom we have considered different communication graphs, as illustrated in Fig. 16.6.
The first topology is a directed chain with the first node, say v1, which is the one corre-
sponding to the cluster or population with higher average, acting as leader. The second
topology is a directed chain with the last node, say v5, which is the one associated with
the cluster having the lower average, acting as leader (middle). The third topology has
two connected components (bottom).

In Fig. 16.5 (right), we have the time plot of the average vector (x11(t ), . . . , x51(t ))
T . In

the first two examples, we have consensus. That is to say that the clusters converge to a
common value. The reason for this is that the topology has one connected component.
We observe intercluster oscillation during the transient. The interpretation of the first
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Figure 16.5. Microscopic time plot (left) and time plot of the average distribution of each
population (right).

two examples is that opinion leaders (influential political parties) may attract the other
populations. This leads to a consensus on the leader’s opinion value. Differently, the
third example shows polarization. In other words, two clusters of opinions arise. The
main cause for this is that the topology has multiple connected components.

v1

v4
v2

v5

v3

v1

v4
v2

v5

v3

v1

v4
v2

v5

v3

Figure 16.6. Topologies for the three examples.

16.6 Notes and references
This chapter is based on [28] and [29]. In this chapter, we have examined opinion dynam-
ics from a game-theoretic perspective. We have proved invariance and contractivity of
the dynamics and have provided physical interpretations in terms of consensus, polariza-
tion, or plurality. The considered framework is general and involves also stubborn agents
or opinion leaders. Possible future research directions may involve the extension of the
analysis to population games with mean-field interactions, as well as averaging algorithms
driven by Brownian motions.

Opinion dynamics is studied in [72, Sect. III] and [2]. Emulation or herd behavior
leading to convergence of opinions is the main focus in [6, 19, 61, 72, 140, 115, 201].
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16.6. Notes and references 193

Bounded confidence as a cause for polarization or plurality is examined in the well-known
model proposed in [140]. Stubborn agents as a cause for polarization and plurality are
investigated in [1] and [79, 234]. Eulerian models are discussed in [180]. Strategic behavior
in opinion dynamics is studied in [86, 84]. More details on heterogeneous stubbornness are
available in [2, 1, 79, 160, 181, 193]. Local interactions are examined in [69, 84, 115, 140,
163, 180] .

D
ow

nl
oa

de
d 

08
/1

9/
16

 to
 1

31
.1

56
.2

24
.6

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

co
nt

ro
len

gin
ee

rs
.ir



Chapter 17

Bargaining

17.1 Introduction
This chapter discusses bargaining on a dynamic coalitional game with transferable utility
(TU game) (cf. Chapter 5). The game is a repeated one that produces a stream of different
characteristic functions. Our goal is to examine distributed agreement on solutions in
the core of the game. Distributed means that bargaining involves only neighbor players.
Neighborhoods are determined by a directed graph, where the vertices are the players and
the directed links (i , j ) indicate that player i receives a bid from player j at time t . A bid
from player j is an allocation vector that says how player j would distribute resources
among the other players. Then a bid has as many components as the number of players.
Let us call such a graph the players’ neighbor-graph. With the above distributed setup in
mind, let us turn to consider the following bargaining mechanism. At every iteration,
player i receives bids from some of his neighbors. These bids are combined in a weighted
average and based on how such an average player i adjusts his own bid. In a first phase,
player i looks for a trade-off between his original bid and the ones of his neighbors. In a
second phase, player i verifies whether such an average satisfies the feasibility constraints.
These constraints are a subset of the ones characterizing the core of the game, namely,
individual rationality and stability with respect to sub-coalitions for the only coalitions
involving player i ; see Section 6.2. Occasionally we refer to the set of feasible allocations
for a player as his bounding set. In other words, if a bid lies outside the bounding set for
player i , then that same bid receives a veto on the part of player i . Player i then proceeds
by projecting the vetoed bid on his bounding set, and the projection is the new bid of
player i . In this chapter we study convergence properties of such a bargaining protocol.
Results are based on some mild assumptions on the connectivity of the players’ neighbor-
graph.

This chapter is organized as follows. In Section 17.2, we introduce the game. In Sec-
tion 17.3, we provide preliminary results. In Section 17.4, we prove the convergence
results for the robust game. In Section 17.5, we report some numerical simulations to il-
lustrate our theoretical study, and we conclude with notes and references in Section 17.6.

Given a set X and a scalar λ ∈�, the set λX is defined by λX � {λx | x ∈ X }. Given
two sets X ,Y ⊆�n , the set sum X +Y is defined by X +Y � {x + y | x ∈X , y ∈Y }.

Recall from Chapter 5 that a TU game is given by a tuple 〈N ,η〉, where N is the set of
players and η is the characteristic function. Also, ηS is the value of a coalition S for any
nonempty coalition S ⊆N . Furthermore, the core is the set of feasible allocation vectors
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196 Chapter 17. Bargaining

characterized by

C (η) =
"

x ∈�|N |
BBB∑

i∈N

xi = ηN ,
∑
i∈S

xi ≥ ηS ∀ nonempty S ⊂N
#

,

where xi ∈� is an allocation value for player i ∈N and x = (x1, . . . , x|N |)T .

17.2 Bargaining mechanism
Let 〈N ,{v(t )}〉 be a dynamic TU game, where N = {1, . . . , n} is the set of players, and
{v(t )} for t = 0,1,2, . . . is a sequence of characteristic functions. Put differently, the
dynamic TU game 〈N ,{v(t )}〉 involves the players in a sequence of instantaneous TU
games 〈N , v(t )〉, where v(t ) ∈�m for all t ≥ 0.

Let m = 2n− 1 be the number of possible (nonempty) coalitions S ⊆N , and let vS(t ) be
the value assigned to a nonempty coalition S ⊆N in the instantaneous game 〈N , v(t )〉.
Assumption 17.1. There exists vmax ∈ �m such that for all t ≥ 0, we have vN (t ) = vmax

N
and vS (t )≤ vmax

S for all nonempty coalitions S ⊂N.

Henceforth, we call 〈N , vmax〉 a robust game.

Assumption 17.2. We have C (vmax) �= �.
From Assumptions 17.1 and 17.2 we have that the core C (v(t )) of the instantaneous

game is nonempty at any time.
In a generic game 〈N ,η〉 the bounding set of player i is given by

Xi (η) = {x ∈�n | eT
N x = ηN , eT

S x ≥ ηS ∀S ⊂N with i ∈ S}, (17.1)

where eS ∈ �n is the incidence vector for a nonempty coalition S ⊆ N , i.e., the vector
with the coordinates given by

[eS]i =
$

1 if i ∈ S,
0 else.

Remarkably, the intersection of the bounding sets Xi (η) of all players i ∈N = {1, . . . , n}
gives the core C (η), i.e.,

C (η) = ∩n
i=1Xi (η). (17.2)

Let xi (t ) ∈�n be the bid of player i at time t , where the j th component xi
j (t ) is the

quantity that player i would give to player j . To keep formalities simple let Xi (t ) denote
the bounding set of player i for the instantaneous game 〈N , v(t )〉, i.e., for all i ∈ N and
t ≥ 0,

Xi (t ) =
"

x ∈�n |∑ j∈N xj = vN (t ),
∑

j∈S xj ≥ vS(t )∀ S ⊂N s.t. i ∈ S
#

. (17.3)

A directed graph ( (t ) = (N ,) (t )) determines the players and their neighbors at
time t . Here, N is the vertex set and ) (t ) is the set of directed links. A link (i , j ) ∈ ) (t )
exists if player j is a neighbor of player i at time t . We assume that (i , i) ∈ ) (t ) for
all t . We refer to graph ( (t ) as a neighbor-graph at time t . A graphical illustration of a
neighbor-graph at two time instances is available in Fig. 17.1.
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17.3. Preliminaries: Nonexpansive projection and related bounds 197

v1

v4
v2

v5

v3

v6 v7

v1

v4
v2

v5

v3

v6 v7

Figure 17.1. Players’ neighbor-graphs for six players and two different time instances.
Reprinted with permission from IEEE [185].

To introduce a formal definition of the bargaining mechanism, let!i (t ) be the set of
neighbors of player i at time t (including himself), i.e., !i (t ) = { j ∈ N | (i , j ) ∈ ) (t )},
and let ai j (t ) = 0 for all j �∈ !i (t ) and all t . The bargaining mechanism is then given by,
for all i ∈N and t ≥ 0,

xi (t + 1) =ΠXi (t )

⎡
⎣ n∑

j=1

ai j (t )x
j (t )

⎤
⎦ , (17.4)

where ΠXi (t )
[·] is the projection on Xi (t ) and ai j (t ) ≥ 0 is a scalar weight that player i

assigns to the bid x j (t ) of player j ∈ !i (t ). The weights ai j (t ), j ∈ !i (t ), are assumed
to be deterministic scalars chosen by player i (for example, see [187] for some specific
possible choices of ai j (t ), j ∈!i (t )). The initial allocations xi (0), i = 1, . . . , n, are drawn
randomly and independently of {v(t )}.

We now discuss the specific assumptions on the weights ai j (t ) and the players’ neighbor-
graph that we use. We let A(t ) be the matrix with entries ai j (t ).

Assumption 17.3. Each matrix A(t ) is doubly stochastic with positive diagonal, and there
exists a scalar α > 0 such that ai j (t )≥ α whenever ai j (t )> 0.

Assumption 17.4. There is an integer Q ≥ 1 such that the graph
:
N ,
⋃(t+1)Q−1
τ=tQ ) (τ); is

strongly connected for every t ≥ 0.

Assumptions 17.3 and 17.4 together guarantee that the players communicate suffi-
ciently often to ensure that the information of each player is persistently diffused over
the network in time to reach every other player.

17.3 Preliminaries: Nonexpansive projection and related
bounds
We derive some preliminary results pertinent to the core of the robust game and some
error bounds for polyhedral sets applicable to the players’ bounding sets Xi (t ). We later
use these results to establish the convergence of the bargaining mechanism in (17.4).

In our analysis we often use the following relation that is valid for the projection op-
eration on a closed convex set X ⊆�n : for any w ∈�n and any x ∈X ,

‖ΠX [w]− x‖2 ≤ ‖w − x‖2 −‖ΠX [w]−w‖2. (17.5)
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198 Chapter 17. Bargaining

This property of the projection operation is known as a strictly nonexpansive projection
property.

We next prove a result that relates the distance dist(x,C (η)) between a point x and the
core C (η) with the distances dist(x,Xi (η)) between x and the bounding sets Xi (η). This
result will be crucial in our later development.

Lemma 17.1. Let 〈N ,η〉 be a TU game with a nonempty core C (η). Then, there is a constant
μ> 0 such that, for all x ∈�n ,

dist2(x,C (η))≤μ
n∑

i=1

dist2(x,Xi (η)),

where μ depends on the collection of vectors {ẽS | S ⊂ N , S �= �} with each ẽS being the
projection of eS on the hyperplane H = {x ∈�n | eT

N x = ηN }.
Proof (Sketch). We here sketch the two main facts that we use in the proof and refer
the reader to the original paper [185] for a formal proof. The result essentially relies
on the polyhedrality of the bounding sets Xi (η) and the core C (η) and a special relation
for polyhedral sets known as the Hoffman bound. The Hoffman bound states that for a
nonempty polyhedral set  = {x ∈ �n | aT

�
x ≤ b�, � = 1, . . . , r }, there exists a scalar

c > 0 such that

dist(x, )≤ c
r∑
�=1

dist(x, H�) ∀x ∈�n , (17.6)

where H� = {x ∈�n | aT
�

x ≤ b�} and the scalar c depends on the vectors a�, �= 1, . . . , r ,
only.

Another fact that we use in the proof is that the square distance from a point x to a
closed convex set X contained in an affine set H is given by

dist2(x,X ) = ‖x −ΠH [x]‖2+ dist2(ΠH [x],X ). (17.7)

An illustration of the above equation is provided in Fig. 17.2.

H

X ΠX [x]

x

ΠH [x]

Figure 17.2. Projection on a set X contained in an affine set H . Reprinted with permission
from IEEE [185].

From Lemma 17.1, we obtain the following result for the instantaneous game 〈N , v(t )〉.
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17.4. Convergence of the bargaining mechanism 199

Lemma 17.2. Let Assumptions 17.1 and 17.2 hold. We then have for all t ≥ 0, x ∈�n that

dist2(x,C (v(t )))≤μ
n∑

i=1

dist2(x,Xi (t )),

where C (v(t )) is the core of the game 〈N , v(t )〉, Xi (t ) is the bounding set of player i , and μ
is the constant from Lemma 17.1.

Proof. By Assumption 17.2, the core C (vmax) is nonempty. Furthermore, under As-
sumption 17.1, we have C (vmax)⊆C (v(t )) for all t ≥ 0, implying that the core C (v(t )) is
nonempty for all t ≥ 0. Under Assumption 17.1, each core C (v(t )) is defined by the same
affine equality corresponding to the grand coalition value, eT

N x = vmax
N . Moreover, each

core C (v(t )) is defined through the set of hyperplanes HS (t ) = {x ∈ �n | eT
S x ≥ vS (t )},

S ⊂ N , which have time-invariant normal vectors eS , S ⊆ N . Thus, the result follows
from Lemma 17.1.

17.4 Convergence of the bargaining mechanism
In this section, we prove convergence of the bargaining mechanism (17.4) to a random
allocation vector in the core of the robust game with probability 1. To this purpose, let
us rewrite the bargaining mechanism (17.4) as

xi (t + 1) = wi (t )+ e i (t ) ∀i ∈N , t ≥ 0, (17.8)

where the linear term is the vector wi (t ) defined as

wi (t ) =
n∑

j=1

ai j (t )x
j (t ) ∀i ∈N , t ≥ 0, (17.9)

and the nonlinear term is the error

e i (t ) =ΠXi (t )
[wi (t )]−wi (t ). (17.10)

In preparation for the main result, let us introduce two lemmas. The first lemma
shows that the errors e i (t ) decrease with time.

Lemma 17.3. Let Assumptions 17.1 and 17.2 hold. Also, assume that each matrix A(t ) is
doubly stochastic. Then, for the bargaining protocol (17.9)–(17.8), we have the following:

(a) The sequence
E∑n

i=1 ‖xi (t + 1)− x‖2
F

converges for every x ∈C (vmax).

(b) The errors e i (t ) in (17.10) are such that
∑∞

t=0
∑n

j=1 ‖e i (t )‖2 < ∞. In particular,
limt→∞‖e i (t )‖= 0 for all i ∈N.

Proof. To prove (a) it suffices to show that

n∑
i=1

‖xi (t + 1)− x‖2 ≤
n∑

i=1

‖xi (t )− x‖2−
n∑

i=1

‖e i (t )‖2. (17.11)
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200 Chapter 17. Bargaining

Actually, from (17.11) we have that the scalar sequence {∑n
i=1 ‖xi (t + 1)− x‖2} is nonin-

creasing for any given x ∈C (vmax), and therefore the sequence must be convergent.
To prove (17.11), from xi (t + 1) =ΠXi (t )

[wi (t )] and from (17.5) we have that for any
i ∈N , t ≥ 0, and x ∈Xi (t ),

‖xi (t + 1)− x‖2 ≤ ‖wi (t )− x‖2−‖e i (t )‖2. (17.12)

Under Assumptions 17.1 and 17.2, and from the fact that relation (17.12) holds for all
x ∈ C (vmax), we can sum both sides over i ∈ N . Then we obtain for all t ≥ 0 and
x ∈C (vmax) that

n∑
i=1

‖xi (t + 1)− x‖2 ≤
n∑

i=1

‖wi (t )− x‖2−
n∑

i=1

‖e i (t )‖2). (17.13)

By the definition of wi (t ) in (17.9), using the stochasticity of A(t ) and the convexity of
the squared norm, we obtain

∑n
i=1 ‖wi (t )−x‖2 ≤∑n

j=1

:∑n
i=1 ai j (t )

;‖x j (t )−x‖2. Since
A(t ) is doubly stochastic, we have

∑n
i=1 ai j (t ) = 1 for all j , implying

∑n
i=1 ‖wi (t )−x‖2 ≤∑n

i=1 ‖xi (t )− x‖2. By substituting this relation in (17.13), we arrive at (17.11), and this
concludes the proof of condition (a).

To prove (b) let us sum both sides in (17.11) over t = 0, . . . , s . By taking the limit
as s → ∞, we obtain

∑∞
t=0
∑n

i=1 ‖e i (t )‖2 ≤ ∑n
i=1 ‖xi (0) − x‖2, and this implies that

limt→∞ e i (t ) = 0 for all i ∈N .

The next lemma involves the instantaneous average of players’ allocations defined as

y(t ) =
1
n

n∑
j=1

x j (t ) ∀t ≥ 0.

In the lemma we show that the deviation of xi (t ) for any player i from the average y(t )
converges to 0 as time goes to infinity.

Lemma 17.4. Let Assumptions 17.3 and 17.4 hold. Suppose that for the bargaining proto-
col (17.9)–(17.8) we have limt→∞‖e i (t )‖= 0 for all i ∈N . Then, for every player i ∈N we
have

lim
t→∞‖xi (t )− y(t )‖= 0, lim

t→∞‖wi (t )− y(t )‖= 0.

Proof (Sketch). The proof essentially uses the line of analysis that has been employed
in [188], where the sets Xi (t ) are static in time, i.e., Xi (t ) = Xi for all t . In addition, we
also use the rate result for doubly stochastic matrices that has been established in [186].
We refer the reader to the original paper [185] for a formal proof.

Lemma 17.4 captures the effects of the matrices A(t ) that represent players’ neighbor-
graphs. At the same time, Lemma 17.3 is basically a consequence of the projection prop-
erty only. So far, the polyhedrality of the sets Xi (t ) has not been used at all. We now put
all pieces together.

Bringing together Lemmas 17.2–17.4, we get the following result.

Theorem 17.5. Consider a robust TU game 〈N , vmax〉, and let Assumptions 17.1–17.4 hold.
Also, assume that Prob {v(t ) = vmax i .o.} = 1, where i .o. stands for infinitely often. Then,
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17.4. Convergence of the bargaining mechanism 201

the players’ allocations xi (t ) generated by the bargaining protocol (17.9)–(17.8) converge with
probability 1 to an allocation in the core C (vmax); i.e., there is a random vector x̃ ∈C (vmax)
such that limt→∞‖xi (t )− x̃‖= 0 for all i ∈N with probability 1.

Proof. By Lemma 17.3, for each player i ∈ N , the sequence {∑n
i=1 ‖xi (t ) − x‖2} is

convergent for every x ∈ C (vmax) and ‖e i (t )‖ → 0. Then, by Lemma 17.4, we have
‖xi (t )− y(t )‖→ 0 for every i . Hence, for every x ∈C (vmax),

{‖y(t )− x‖} is convergent. (17.14)

We want to show that {y(t )} is convergent and that its limit is in the core C (vmax) with
probability 1. For this, we note that since xi (t + 1) ∈Xi (t ), it holds that, for all t ≥ 0,

n∑
i=1

dist2 (y(t + 1),Xi (t ))≤
n∑

i=1

‖y(t + 1)− xi (t + 1)‖2.

The preceding relation and ‖xi (t )− y(t )‖→ 0 for all i ∈N (cf. Lemma 17.4) imply that

lim
t→∞

n∑
i=1

dist2 (y(t + 1),Xi (t )) = 0.

Under Assumptions 17.1 and 17.2, by Lemma 17.2, we obtain, for all t ≥ 0,

dist2 (y(t + 1),C (v(t )))≤μ
n∑

i=1

dist2 (y(t + 1),Xi (t )) .

By combining the preceding two relations, we see that

lim
t→∞ dist2 (y(t + 1),C (v(t ))) = 0. (17.15)

By our assumption, the event {v(t ) = vmax infinitely often} happens with probabil-
ity 1. We now fix a realization {vω(t )} of the sequence {v(t )} such that vω(t ) = vmax holds
infinitely often (for infinitely many t ’s). Let {tk} be a sequence such that vω(tk ) = vmax

for all k . All the variables corresponding to the realization {vω(t )} are denoted by a sub-
script ω. By relation (17.14), the sequence {yω(t )} is bounded, and therefore {yω(tk )} is
bounded. Without loss of generality (by passing to a subsequence of {tk} if necessary),
we assume that {yω(tk )} converges to some vector ỹω , i.e., limk→∞ yω(tk ) = ỹω. This and
(17.15) imply that ỹω ∈ C (vmax). Then, by relation (17.14), we have that {‖yω(t )− ỹω‖}
is convergent, from which we conclude that ỹω must be the unique accumulation point
of the sequence {yω(t )}, i.e.,

lim
t→∞ yω(t ) = ỹω, ỹω ∈C (vmax). (17.16)

Since (17.16) is true for every realization ω such that vω(t ) = vmax holds infinitely often
and since Prob {v(t ) = vmax i.o.}= 1, it follows that the sequence {y(t )} converges with
probability 1 to a random point ỹ ∈C (vmax). By Lemma 17.4, we have ‖xi (t )−y(t )‖→ 0
for every i . Thus, the sequences {xi (t )}, i = 1, . . . , n, converge with probability 1 to a
common random point in the core C (vmax).
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202 Chapter 17. Bargaining

Table 17.1. Coalitions’ values for the two simulations scenarios.

v{1} v{2} v{3} v{i , j} for all i , j v{1,2,3}
I [4,7] [0,3] 0 0 10

17.5 Numerical example
In this section we provide a numerical example that illustrates the convergence behavior
of the bargaining mechanism (17.9)–(17.8).

Consider a three-player dynamic TU game, where the characteristic function is as in
Table 17.1. Set the number of coalitions m = 7. The characteristic functions vS (t ) for
coalitions {1} and {2} are drawn independently with identical uniform distribution over
an interval. All the other coalition values are zero except for the grand coalition, which
has value 10.

The algorithm used for the simulation is the one displayed below.

ALGORITHM 17.1. Simulation algorithm for the bargaining example.

Input: Game 〈N ,{v(t )}〉, neighbor-graph ( (t ) = (N ,) (t ))
Output: Allocation vectors xi (t ) for all i ∈N

1 : Initialize. Set the initial allocations xi (0)
2 : for time t = 0,1, . . . ,T − 1 do
3 : for player i = 1, . . . , n do
4 : run the bargaining mechanism (17.4)
5 : end for
6 : end for
7 : STOP

We run 50 different Monte Carlo trajectories, each one having 100 iterations. All
plots include the sampled average and sampled variance for the 50 trajectories that were
simulated. The initial allocations are set to x1(0) = [10 0 0]T , x2(0) = [0 10 0]T , and
x3(0) = [0 0 10]T .

The graphs for the times t = 0,1,2 are as follows: players 2 and 3 connected at time t =
0 (see Fig. 17.3(a)), then players 3 and 1 connected at time t = 1 (Fig. 17.3(b)), and finally
players 1 and 2 connected at time t = 2 (Fig. 17.3(c)). These graphs are then repeated
consecutively in the same order. In this way, the players’ neighbor-graph is connected
every 3 time units (Assumption 17.4 is satisfied with Q = 2).

v2 v3

v1

(a)

v2 v3

v1

(b)

v2 v3

v1

(c)

Figure 17.3. Topology of players’ neighbor-graph at three distinct times: t = 0, 1, and 2.
Reprinted with permission from IEEE [185].
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17.6. Notes and references 203

The matrices that we associate with these three graphs, are given by, respectively,

A(0) =

⎡
⎣ 1 0 0

0 1
2

1
2

0 1
2

1
2

⎤
⎦ , A(1) =

⎡
⎣ 1

2 0 1
2

0 1 0
1
2 0 1

2

⎤
⎦ , A(2) =

⎡
⎣ 1

2
1
2 0

1
2

1
2 0

0 0 1

⎤
⎦ .

At any time t , the matrix A(t ) is doubly stochastic, with positive diagonal, and every
positive entry bounded below by 1

2 , so Assumption 17.3 is satisfied with α = 1
2 . All

simulations are carried out with MATLAB. The run time of each simulation is around 90
seconds.

The characteristic function vmax for the robust game is vmax = [73000010]T , and the
resulting core of the robust game is given by

C (vmax) = {x ∈�3 : x1 ≥ 7, x2 ≥ 3, x3 ≥ 0, x1+ x2 ≥ 0, x1+ x3 ≥ 0,
x2+ x3 ≥ 0, x1+ x2 + x3 = 10}.

This core contains a single point, namely [730]T . To ensure that v(t ) = vmax infinitely
often, as required by Theorem 17.5 for the convergence of the protocol, we adopt the
following randomization mechanism. At each time t = 1, . . . , 100, we flip a coin, and if the
outcome is “heads” (probability 1/2), the coalition values v{1}(t ) and v{2}(t ) are extracted
from the intervals [4,7] and [0,3], respectively, with uniform probability independently
of the other times. If the outcome of the coin flip is “tails,” then we assume that the robust
game realizes and take v(t ) = vmax.

We next present the results obtained by the Monte Carlo runs for the bargaining pro-
tocol in (17.9)–(17.8).

At time t = 1, bargaining involves players 2 and 3, who update the allocations, re-
spectively, as x2(1) = [0 5 5]T and x3(1) = [0 5 5]T . These allocations are feasible for
their bounding sets, so the projections on these sets are not performed. At time t = 2,
the bargaining involves players 1 and 3, who update their allocations, respectively, as
x1(2) = [5 2.5 2.5]T and x3(2) = [5 2.5 2.5]T . Again, these allocations are feasible for their
bounding sets and the projections are not performed. Finally, at time t = 3, the bargain-
ing involves players 1 and 2, who update their allocations, resulting in x1(3) = [7 1.5 1.5]T
and x2(3) = [2.5 3.75 3.75]T . Notice that x1(3) is obtained after player 1 projects onto his
bounding set.

In Figs. 17.4 and 17.5, we report our simulation results for the average of the sam-
ple trajectories obtained by Monte Carlo runs. Fig. 17.4 shows the sampled average and
variance of the allocations xi (t ), i = 1,2,3, per iteration t . In accordance with the con-
vergence result of Theorem 17.5, the sampled averages of the players’ allocations xi (t )
converge to the same point, namely x = [730]T , which is in the core of the robust game
C (vmax). Fig. 17.5 shows that the sample average and sampled variance of the errors e i (t )
converge to 0, as expected in view of Lemma 17.3(b).

17.6 Notes and references
This chapter is heavily based on [185]. For a sequence of TU games, each with a ran-
dom characteristic function, we have designed a decentralized allocation process defined
over a communication graph of players. The proposed bargaining mechanism is proven
to converge with probability 1 to the robust game under mild assumptions on the com-
munication topology and the stochastic properties of the random characteristic function.
This bargaining application is an opportunity to introduce novel aspects, including (i) the

D
ow

nl
oa

de
d 

08
/1

9/
16

 to
 1

31
.1

56
.2

24
.6

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

co
nt

ro
len

gin
ee

rs
.ir



204 Chapter 17. Bargaining

Figure 17.4. Sampled average (left) and variance (right) of players’ allocations xi (t ), i =
1,2,3, for the bargaining protocol (17.9)–(17.8) and the robust game associated with the data in Ta-
ble 17.1. Sampled averages of the allocations xi (t ) converge to the same point x̃ = [730]T ∈ C (vmax),
while sampled variances decrease to zero. Reprinted with permission from IEEE [185].

Figure 17.5. Sampled average (left) and sampled variance (right) of the errors e i (t ), i = 1,2,3,
for the bargaining protocol (17.9)–(17.8) and the robust game associated with the data in Table 17.1.
Sampled averages and the variances of the errors e i (t ) converge to zero. Reprinted with permission
from IEEE [185].

formalization of a dynamic coalitional game with transferable utility, (ii) the definition of
a robust game, and (iii) the use of a time-varying communication graph over which the
bargaining mechanism takes place.

More details on the choice of the edge weights in a consensus problem are in [187].
The strictly nonexpansive projection property is discussed in [93, volume II, 12.1.13
lemma on page 1120]. The Hoffman bound is established by Hoffman [120].

In this chapter we present only a sketch of the proof of Lemma 17.4. We refer the
reader to the original paper [185] for a formal proof.
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Chapter 18

Pedestrian Flow

18.1 Introduction

s

d

Figure 18.1. Pedestrian flow (left) and the corresponding network model (right) with a source
node s and a destination node d.

This chapter deals with a pedestrian flow problem. The problem is initially modeled as
an optimal planning problem over a discrete state space. The optimal planning problem
is then turned into a special mean-field game where the players share a same common
cost functional. After introducing the mean-field game, we solve it and provide stability
conditions which mirror classical convergence conditions in repeated games with vector
payoffs. Such conditions can be reviewed also as set inclusion conditions.

The problem involves a continuum of pedestrians walking through the center of a city.
Once at a crossroads, a routing policy tells the pedestrians along which way to proceed.
For such a scenario, we formulate an optimal planning problem over a network. Actually,
we assume that the pedestrians are the players traversing the edges of a network in an
attempt to reach a destination node starting from a source node (see, e.g., Fig. 18.1). The
microscopic part of the model describes the players jumping from one edge to an adjacent
one according to a continuous-time Markov model. The transition rates represent the
controls. The macroscopic part of the model involves the dynamics of the density in each
edge. Such dynamics are forward Kolmogorov ordinary differential equations subject to
adversarial disturbances.

In Section 18.2 we formulate the pedestrian flow problem as an optimal planning prob-
lem. In Section 18.3 we turn the problem into a mean-field game with common cost

205
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206 Chapter 18. Pedestrian Flow

functional for the players. In Section 18.4 we illustrate an extended state space solution
approach. In Section 18.5 we solve the mean-field game and provide stability conditions.
In Section 18.6 we provide simulations. In Section 18.7 we provide conclusions, notes,
and references.

18.2 Model and problem setup
Consider a graph G = (V , E), where V = {1, . . . , n} is the set of vertices and E = {1, . . . , m}
is the set of edges. Vertices correspond to crossroads, and edges correspond to streets. Let
ε+(i) and ε−(i) be the sets of edges departing from vertex i and edges arriving at ver-
tex i , respectively, for all vertices i ∈ V . Occasionally, we will call the edges in ε+(i)
outgoing edges from i and those in ε−(i) incoming edges to i . Let a time horizon win-
dow [0,T ] be given, and consider a continuum of pedestrians. Pedestrians are modeled
as particles, each one characterized by state X (t ) ∈ E at time t ∈ [0,T ]. The state of
a particle indicates the edge where the particle currently lies. A particle in a given edge
means a pedestrian walking along the corresponding street. When the pedestrians reach
a crossroad a routing policy decides which way they proceed based on the congestion
configuration of the network. The routing policy is given by a vector-valued function
α(.) : �+ → [0,1]m , t → α(t ), where [0,1]m denotes the m-dimensional column vector
whose entries are within the interval [0,1]. There is no accumulation of pedestrians at the
crossroads. Therefore, for all vertices i ∈ V from the conservation of the mass, it must
hold that

∑
e∈ε+(i ) αe = 1, where αe is the eth entry of α(t ). In other words, α(t ) lives in

Δ|ε+(1)| × · · · ×Δ|ε+(n)|, where Δ|ε+(i )| is the simplex in �|ε+(i )| and |ε+(i)| is the cardinal-
ity of set ε+(i). Recall that the cardinality of a set is the number of elements in that set,
and therefore |ε+(i)| is the number of outgoing edges from i for all vertices i ∈ V . Let
the current state of a pedestrian be k ∈ E . The dynamics of that pedestrian follows the
continuous-time Markov stochastic process:

{X (t ), t ≥ 0},
qk j (h,φk ,α j ) =

⎧⎨
⎩
α jφk h, j ∈Ad j (k),
1−φk h, j = k ,
0 otherwise,

(18.1)

where

• qk j (h,φk ,α j ) (qk j ) are the infinitesimal transition probabilities from k to j ;

• h is the infinitesimal time interval;

• φk ∈�+ is the transition rate in state k ∈ E ;

• Ad j (k) = { j ∈ E | j ∈ ε+(i), k ∈ ε−(i)} is the set of adjacent edges to k.

From previous consideration on mass conservation, the routing policy α appearing in
(18.1) lives in

� = {α ∈ [0,1]m | {α j } j∈ε+(i ) ∈Δ|ε+(i )| ∀i = 1, . . . , n}.
The above is essentially equivalent to saying that

∑
j∈ε+(i ) α j = 1 for all i = 1, . . . , n.

We model congestion using a density function on the edges. To do this, denote by ρ
the vector of densities on edges, which means that the sum of the components is equal
to one. Thus we have ρ ∈ * := {ρ̂ ∈ [0,1]m :

∑
e∈E ρ̂e = 1}, where ρ̂e is the eth entry
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18.2. Model and problem setup 207

of ρ̂. Let the flow function f (·) : * → �m
+ be given by fe (ρ) = φeρe , where fe (ρ) is

the eth entry of f (ρ). In other words, the flow function maps densities to flows across
the edges. To maintain notation reasonably simple, we have assumed that the flow is
linear in the density. With the above in mind, we are in a position to provide a precise
formulation of the dynamics of the density, which is given by the following Kolmogorov
ordinary differential equation:	

ρ̇(t ) =
:
B̃T (α)B̂ − I

;
f (ρ),

ρ(0) = ρ0,
(18.2)

where the following hold:

• B̃(.) is a matrix-valued function linking vertices to outgoing edges. In particular,
B̃(.) : � → [0,1]n×m , α → B̃(α). Furthermore, B̃i j (α) = α j if j ∈ ε+(i) and

B̃i j (α) = 0 otherwise. Here we use [0,1]n×m to mean the n×m-dimensional matrix

whose entries are within the interval [0,1]. Also, B̃i j (α) is the entry in the ith row

and j th column of B̃(α).

• B̂ ∈ {0,1}n×m is a matrix relating nodes to incoming edges. In particular, B̂i j = 1

if j ∈ ε−(i) and B̂i j = 0 otherwise. Here we use {0,1}n×m to mean the n × m-

dimensional matrix whose entries are either 0 or 1. Also, B̂i j is the entry in the ith

row and j th column of B̂ .

• ρ0 is the initial density, and it is assigned.

Equation (18.2) states that the change in the density in each edge is determined by the
difference between the outgoing flow from and the incoming flow to that edge. Actu-
ally, the term f (ρ) models the outgoing flows, while the term B̃T (α)B̂ f (ρ) models the
incoming flows. It is worth noting that B̃T (α) is a column (left) stochastic matrix, i.e.,∑

i=1,...,m(B̃T (α))i j = 1 for all j = 1, . . . , n.
For the model to be amenable to analysis and design, let us assume that the graph is

directed and acyclic, and has one source node, call it s , and one destination node, call
it d . Let  be a set of paths from s to d ; namely, each element of  is an s − d path
{s , . . . , i , . . . , d}. Let us introduce the matrix C ∈ {0,1}| |×m , which links paths to edges.
The rows of C contain only ones and zeros, depending on which edges are included in
which paths. Let the output vector-valued function y(.) : �+ → �| | be given, where
t → y(t ). This function represents the collective density in each path and is given by
y(t ) =Cρ(t ).

Recall that a Wardrop equilibrium is characterized by uniform density over all avail-
able paths. Then, consider the pedestrians as players with a common cost functional. In
particular, for each player, let the running cost g (.) : E × [0,1]m → [0,+∞[, (x,ρ) →
g (x,ρ) be given as follows:

g (x,ρ) = dist(ρ,+ ), (18.3)
+ = {ρ ∈* : y =Cρ= 1p for any p ∈ [0,1]}, (18.4)

where+ is the consensus manifold/Wardrop equilibrium set.
In the above, we write dist(ρ,+ ) to mean the distance of the vector ρ from the man-

ifold+ . Furthermore, 1 denotes the | |-dimensional column vector of ones.
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208 Chapter 18. Pedestrian Flow

Finally, to account for model misspecifications, consider an additional adversarial dis-
turbance perturbing the evolution of the density. More formally, let us rewrite dynamics
(18.2) as follows:

ρ̇(t ) =
:
B̃T (α,ω)B̂ − I

;
f (ρ), (18.5)

where ω is the disturbance. We assume that the disturbance ω is bounded and belongs
to the polytope

� = {ω ∈ [−1,1]m | {ω j } j∈ε+(i ) ∈Δ|ε
+(i )|

0 ∀i = 1, . . . , n},
where Δ|ε

+(i )|
0 is the simplex translated to the origin in �|ε+(i )|. In other words, the above

corresponds to the constraint
∑

j∈ε+(i )ω j = 0 for all i = 1, . . . , n.
The problem of interest is then the following.

Problem 18.1 (Pedestrian flow problem). Design a routing policy to minimize the output
disagreement; i.e., each player solves the following problem:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

inf
α(.)

sup
ω(.)

J (x,α(.),ρ[·](.)),
J (.) =�

+∫ T
0 g (X (τ),ρ(τ))dτ+ g (X (T ),ρ(T ))

,
,

{X (t ), t ≥ 0} as in (18.1),
ρ̇(t ) =

:
B̃T (α,ω)B̂ − I

;
f (ρ),

(18.6)

where α(.) and ω(.) are measurable functions taking values in� and� .

18.3 Mean-field formulation with common cost functional
In the above problem, every player minimizes a common cost functional which depends
on the density function of the whole population. The density in turn depends on both
the control α(.) and the disturbance ω(.). Let us denote by v(x, t ) the value of the opti-
mization problem starting from time t at state x. Furthermore, let� (x,Δ(v), t ) be the
robust Hamiltonian function defined as

� (x,Δ(v), t ) = inf
α∈� sup

ω∈�

"∑
z∈E qx z (v(z, t )− v(x, t ))+ g (x,ρ)

#
. (18.7)

In the Hamiltonian function, the symbolΔ(v) stands for the difference of the value func-
tion computed in two successive states, and qx z is the transition rate given in (18.1). We
can derive the following mean-field game.

Theorem 18.1. The mean-field game with common cost functional for the pedestrian flow
problem formulated in Problem 18.1 is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̇(x, t )+� (x,Δ(v), t ) = 0 in E × [0,T [,

v(x,T ) = g (x,ρ(T ))∀x ∈ E ,

ρ̇(t ) =
:
B̃T (α∗,ω∗)B̂ − I

;
f (ρ) in [0,T [,

ρ(0) = ρ0, ρ0 given.

(18.8)D
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18.4. State space extension 209

Furthermore, the optimal time-varying control α∗(x, t ) and worst-case disturbance ω∗(x, t )
are given by

α∗(x, t ) ∈ arg min
α∈�

"∑
z∈E qx z (v(z, t )− v(x, t ))+ g (x,ρ)

#
,

ω∗(x, t ) ∈ arg max
ω∈�

"∑
z∈E qx z (v(z, t )− v(x, t ))+ g (x,ρ)

#
.

(18.9)

Proof. The third and fourth equations of (18.8) are the forward Kolmogorov equation and
the corresponding boundary condition on the initial distribution law. To derive the first
equation of (18.8), we know that from dynamic programming it holds that

v̇(x, t )+ inf
α∈� sup

ω∈�

"∑
z∈E qx z (v(z, t )− v(x, t ))+ g (x,ρ)

#
= 0 in E × [0,T [.

By introducing the robust Hamiltonian� (x,Δ(v), t ) given in (18.7), we obtain the first
equation. Note that the transition rates depend on the routing policy/control α. This
is then obtained as the minimizer in the computation of the robust Hamiltonian as ex-
pressed by (18.9). Note that the second equation in (18.8) is the boundary condition on
the terminal penalty.

18.4 State space extension
After introducing the mean-field game with a common cost functional, the idea is now
to extend the state space in order to include the density, henceforth referred to also as
common state. By doing this, the robust Hamiltonian in the extended state space can be
written as

�̃ (x,ρ,Δ(v),∂ρV , t ) = infα∈U supω∈�
"∑

z∈E qx z (V (z,ρ, t )−V (x,ρ, t ))

+ ∂ρV (x,ρ, t )T
+:

B̃T (α,ω)B̂ − I
;

f (ρ)
,
+ g (x,ρ)

#
.

Then the mean-field system turns into the system of equations below in the value function
V (x,ρ, t ) in E × [0,1]m × [0,T [:⎧⎨

⎩
∂t V (x,ρ, t )+ �̃ (x,ρ,Δ(v),∂ρV , t ) = 0 in E × [0,1]m × [0,T [,

V (x,ρ,T ) = g (x,ρ(T )) ∀ (x,ρ) ∈ E × [0,1]m ,
(18.10)

where the optimal time-varying state-feedback control α∗(x, t ) is obtained as

α∗(x, t ) ∈ arg minα∈�
"∑

z∈E qx z (V (z,ρ, t )−V (x,ρ, t ))

+ ∂ρV (x,ρ, t )T
+�

B̃T (α,ω∗)B̂ − I
�

f (ρ)
,
+ g (x,ρ)

#
,

and the worst-case adversarial disturbance is given by

ω∗(x, t ) ∈ argsupω∈�
"∑

z∈E qx z (V (z,ρ, t )−V (x,ρ, t ))

+ ∂ρV (x,ρ, t )T
+�

B̃T (α∗,ω)B̂ − I
�

f (ρ)
,
+ g (x,ρ)

#
.
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210 Chapter 18. Pedestrian Flow

Let E xt{� } and E xt{� } be the sets of the indices of all the vertices of � and� ,
respectively. Also, let a(k) and w (k) be the generic vertices of� and� , respectively. Set
|E xt{� }| = p and |E xt{� }| = q , where |E xt{� }| and |E xt{� }| are the cardinalities
of E xt{� } and E xt{� }, respectively. As a consequence,� = h u l l {a(k), k ∈ E xt{� }}
and� = h u l l {w (k), k ∈ E xt{� }}, where we use h u l l to denote the convex hull.

From the Carathéodory theorem, we can describe any point in the polytope as a con-
vex combination of a subset of vertices, i.e.,

α=
∑

k∈E x t{� }
ak a(k),

∑
k∈E x t{� }

ak = 1,

ω =
∑

k∈E x t{� }
wk w (k),

∑
k∈E x t{� }

wk = 1.

That is to say that ak is the weight of the convex combination
∑

k∈E x t{� } ak a(k) . Analo-
gously wk is the weight of the convex combination

∑
k∈E x t{� }wk w (k).

By doing this, α and ω can be reviewed as mixed strategies of the two-player game
with vector payoffs displayed in Table 18.1.

Table 18.1. Two-player game with vector payoffs.

a(i )/w ( j ) w (1) . . . w (q)

a(1)
:
B̃T (a(1), w (1))B̂ − I

;
f (ρ) . . .

:
B̃T (a(1), w (q))B̂ − I

;
f (ρ)

...
...

. . .
...

a(p)
:
B̃T (a(p), w (1))B̂ − I

;
f (ρ) . . .

:
B̃T (a(p), w (q))B̂ − I

;
f (ρ)

The cumulative payoff up to time t gives the density at time t , i.e.,	
ρ(t ) =

∫ t
0 ρ̇(τ)dτ =

∫ t
0

:
B̃T (α,ω)B̂ − I

;
f (ρ)dτ,

ρ(0) = ρ0.
(18.11)

We show next that conditions for the convergence of the cumulative payoffs depend
on the value of the projected game (cf. Chapter 11). Recall that the projected game, which is
characterized by the payoff matrix displayed in Table 18.2, is obtained by premultiplying
each entry by a given vector λ ∈�m .

Table 18.2. Two-player projected game.

a(i )/w ( j ) w (1) . . . w (q)

a(1) λT
:
B̃T (a(1), w (1))B̂ − I

;
f (ρ) . . . λT

:
B̃T (a(1), w (q))B̂ − I

;
f (ρ)

...
...

. . .
...

a(p) λT
:
B̃T (a(p), w (1))B̂ − I

;
f (ρ) . . . λT

:
B̃T (a(p), w (q))B̂ − I

;
f (ρ)

As a result, we obtain a two-player game with scalar payoffs. For this game we can
compute the value, which is given by

val [λ] := inf
α

sup
ω

"
λT
:
B̃T (α,ω)B̂ − I

;
f (ρ)

#
.
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18.4. State space extension 211

Assumption 18.1 (Attainability of set� ). Let+ be given as in (18.4), let r > 0, and
let U = {ρ ∈ �m : dist(ρ,+ ) < r }. For all ρ ∈ U \+ there exists y ∈ Π+ [ρ] such that
the value of the projected game, val [λ], is negative for every λ= ρ− y, i.e.,

val [λ] := infα supω
"
(ρ− y)T

:
B̃T (α,ω)B̂ − I

;
f (ρ)

#
< 0 ∀λ= ρ− y. (18.12)

Condition (18.12) in Assumption 18.1 is as in [40, 155]. A graphical illustration of the
above condition is depicted in Fig. 18.2.

ρ y

ρ̇

Figure 18.2. Geometric illustration of the attainability condition.

The condition stated in the aforementioned assumption guarantees that, given a target
manifold, there always exists a routing policy α(t ) that steers the density ρ to the mani-
fold independently of the disturbance. Here, λ is the vector from y (the current density
projection point on the target manifold) to the current density point ρ(t ), with the direc-
tion pointing out from the target manifold. The dark gray triangle indicates all feasible
values of vector ρ̇. We can then establish the following result.

Theorem 18.2. Let Assumption 18.1 hold true. Then the mean-field game for the routing
problem in Problem 18.1 is given by⎧⎨
⎩
∂t V (x,ρ, t )+ val [∂ρV (x,ρ, t )]+ g (x,ρ) = 0 in E × [0,1]m × [0,T [,

V (x,ρ,T ) = g (x,ρ(T )) ∀(x,ρ) ∈ E × [0,1]m .
(18.13)

Furthermore, the optimal control and worst-case disturbance are

α∗(x,ρ, t ) = arg min
α

"
∂ρV (x,ρ, t )T ·

+�
B̃T (α,ω∗)B̂ − I

�
f (ρ)

,#
,

ω∗(x,ρ, t ) = argmin
α

"
∂ρV (x,ρ, t )T ·

+�
B̃T (α∗,ω)B̂ − I

�
f (ρ)

,#
.

(18.14)

Proof. From (18.12) we have

val [∂ρV (x,ρ, t )] = inf
α∈� sup

ω∈�

"
∂ρV (x,ρ, t )T

+
qx•+ ρ̇

,#
= inf
α∈� sup

ω∈�

"
∂ρV (x,ρ, t )T

+
qx•+

:
B̃T (α,ω)B̂ − I

;
f (ρ)

,#
= �̃ (x,ρ,Δ(v),∂ρV , t )− g (x,ρ).
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212 Chapter 18. Pedestrian Flow

Invoking (18.10), we obtain the first equation in (18.13). The second equation in (18.13)
is again the boundary condition on the terminal penalty. It remains to note that the
optimal control is the minimizer in the computation of the extended Hamiltonian and
thus is obtained from (18.14). Analogously, the worst-case disturbance is the maximizer
in the computation of the extended Hamiltonian and thus is obtained from the second
equation in (18.14).

18.5 Stability
We now consider the infinite horizon problem obtained by taking T →∞. The value
function is now interpreted as a Lyapunov function. Such a function is now stationary,
and therefore we drop explicit dependence on time and write simply V (ρ(t )).

Theorem 18.3. Let Assumption 18.1 hold. Then, dynamics (18.5) converges asymptotically
to+ , namely

lim
t→∞dist(ρ(t ),+ ) = 0.

Proof. Let ρ be a solution of dynamics (18.5) with initial value ρ(0) ∈ U \+ . Set τ =
{inf t > 0|ρ(t ) ∈ +} ≤ ∞, and let V (ρ(t )) = dist(ρ(t ),+ ). For all t ∈ [0,τ] and
y ∈Π+ [ρ(t )],

V (ρ(t + d t ))−V (ρ(t )) = ‖ρ(t + d t )− y‖−‖ρ(t )− y‖
= ‖ρ(t )+ ρ̇(t )d t − y‖−‖ρ(t )− y‖+ |d t |ε(d t )

=
‖ρ(t )+ ρ̇(t )d t − y‖2

‖ρ(t )+ ρ̇(t )d t − y‖ −
‖ρ(t )− y‖2

‖ρ(t )− y‖ + |d t |ε(d t ),

where limd t→0 ε(d t ) = 0. Hence

V̇ (ρ(t )) = lim
d t→0

1
d t

�‖ρ(t )+ ρ̇(t )d t − y‖2

‖ρ(t )+ ρ̇(t )d t − y‖ −
‖ρ(t )− y‖2

‖ρ(t )− y‖ + |d t |ε(d t )
�

= lim
d t→0

1
d t

� ‖ρ(t )+ ρ̇(t )d t − y‖2

‖ρ(t )− y‖+O(
�

d t )
− ‖ρ(t )− y‖2

‖ρ(t )− y‖ + |d t |ε(d t )
�

=
1

‖ρ(t )− y‖ lim
d t→0

1
d t

�
‖ρ(t )+ ρ̇(t )d t − y‖2−‖ρ(t )− y‖2

�

=
1

‖ρ(t )− y‖
d

d t

�
‖ρ(t )− y‖2

�
≤ 2
‖ρ(t )− y‖ (ρ(t )− y)T ρ̇(t ).

Now, as + is a compact set, from Assumption 18.1 we have that for all ρ ∈ U \
+ there exists y ∈ Π+ [ρ] such that the affine hyperplane orthogonal to [ρ(t ), y] at y
separates ρ(t )− y from ρ̇(t ), namely

val [ρ(t )− y] := inf
α

sup
ω

"
(ρ− y)T

:
B̃T (α,ω)B̂ − I

;
f (ρ)

#
= inf

α
sup
ω

"
(ρ− y)T ρ̇(t )

#
< 0,

(18.15)
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18.5. Stability 213

from which we have

V̇ (ρ(t ))≤ 2
‖ρ(t )− y‖ (ρ(t )− y)T ρ̇(t )< 0,

and this concludes our proof.

Assumption 18.1 ensures that a specific manifold+ is attainable. However, any mani-
fold can be attainable under a stronger condition, which we copy and adapt from [40, 155].

Assumption 18.2 (Exponential attainability of set� ). Let + be given as in (18.4),
let r > 0, and let U = {ρ ∈ �m : dist(ρ,+ ) < r }. For all ρ ∈ U \+ there exists
y ∈Π+ [ρ] such that the value of the projected game, val [λ], is upper bounded by−λT λ for
every λ= ρ− y, i.e.,

val [λ] := inf
α

sup
ω

"
λT
:
B̃T (α,ω)B̂ − I

;
f (ρ)

#
<−λT λ ∀λ= ρ− y.

Theorem 18.4. Let Assumption 18.2 hold true. Then, dynamics (18.5) converges exponen-
tially to+ , namely

dist(ρ(t ),+ ) = e−t dist(ρ(0),+ ).

Proof. Let ρ be a solution of dynamics (18.5) with initial value ρ(0) ∈ U \+ . Set τ =
{inf t > 0|ρ(t ) ∈ +} ≤ ∞, and let V (ρ(t )) = dist(ρ(t ),+ ). For all t ∈ [0,τ] and
y ∈Π+ [ρ(t )],

V (ρ(t + d t ))−V (ρ(t )) = ‖ρ(t + d t )− y‖−‖ρ(t )− y‖
= ‖ρ(t )+ ρ̇(t )d t − y‖−‖ρ(t )− y‖+ |d t |ε(d t )

=
‖ρ(t )+ ρ̇(t )d t − y‖2

‖ρ(t )+ ρ̇(t )d t − y‖ −
‖ρ(t )− y‖2

‖ρ(t )− y‖ + |d t |ε(d t ),

where limd t→0 ε(d t ) = 0. Hence

V̇ (ρ(t )) = lim
d t→0

1
d t

�‖ρ(t )+ ρ̇(t )d t − y‖2

‖ρ(t )+ ρ̇(t )d t − y‖ −
‖ρ(t )− y‖2

‖ρ(t )− y‖ + |d t |ε(d t )|
�

=
1

‖ρ(t )− y‖ lim
d t→0

1
d t

�
‖ρ(t )+ ρ̇(t )d t − y‖2−‖ρ(t )− y‖2

�

=
1

‖ρ(t )− y‖
d
d t

�
‖ρ(t )− y‖2

�
≤ 2
‖ρ(t )− y‖ (ρ(t )− y)T ρ̇(t ).

Now, as + is a compact set, from Assumption 18.2 we have that for all ρ ∈ U \
+ there exists y ∈ Π+ [ρ] such that the affine hyperplane orthogonal to [ρ(t ), y] at y
separates ρ(t )− y from ρ̇(t ), namely

val [ρ(t )− y] := inf
α

sup
ω

"
(ρ(t )− y)T

:
B̃T (α,ω)B̂ − I

;
f (ρ)

#

= inf
α

sup
ω

"
(ρ(t )− y)T ρ̇(t )

#
<−(ρ(t )− y)T (ρ(t )− y),
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214 Chapter 18. Pedestrian Flow

from which we have

V̇ (ρ(t )) ≤ 2
‖ρ(t )− y‖ (ρ(t )− y)T ρ̇(t )

=−2V (ρ(t ))+
2

‖ρ(t )− y‖ (ρ(t )− y)T (ρ(t )− y + ρ̇(t )),

and this concludes our proof.

The above result mirrors the convergence conditions in set inclusion theory discussed
in [48, 49].

18.6 Numerical example
This example involves a network with four vertices and five edges, as depicted in Fig. 18.3.
The vertex indicated by s is the source, and the vertex indicated by d is the destination.
The flow on edge e is marked with fe , and the incoming flow f0 is equal to the outgoing
flow f6 = f4+ f5.

s

1

2

d
f0 = f6

α1(t )+α3(t ) = 1

f1

f3

f2

α2(t )+α4(t ) = 1

α5(t ) = 1

f4

f5

f6 = f0

Figure 18.3. Network system.

The matrices introduced in the sections above are

B̃T (α) =

⎡
⎢⎢⎢⎢⎣
α1 0 0
0 α2 0
α3 0 0
0 α4 0
0 0 α5

⎤
⎥⎥⎥⎥⎦ , B̂ =

⎡
⎣ 0 0 0 1 1

1 0 0 0 0
0 1 1 0 0

⎤
⎦ .

The density evolution expressed by (18.2) takes on the following form, where we use
fe (ρe (t )) =φρe (t ):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ̇1(t ) = α1(t )(φρ4(t )+φρ5(t ))−φρ1(t ),
ρ̇2(t ) = α2(t )φρ1(t )−φρ2(t ),
ρ̇3(t ) = α3(t )(φρ4(t )+φρ5(t ))−φρ3(t ),
ρ̇4(t ) = α4(t )φρ1(t )−φρ4(t ),
ρ̇5(t ) = α5(t )(φρ2(t )+φρ3(t ))−φρ5(t )

(18.16)
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18.6. Numerical example 215

Table 18.3. Parameters of the overall system.

Parameter Value Variable Initial Value
φ 0.8 ρ(t ) (0.3,0.5,0.2,0,0)

Time step h 0.01 α(t ) (0.6,0.5,0.4,0.5,1)
Time span T 20

and ⎧⎨
⎩
α1(t )+α3(t ) = 1,
α2(t )+α4(t ) = 1,
α5(t ) = 1.

(18.17)

Let us consider the paths {1,4}, {1,2,5}, and {3,5}. In other words,  =
"
{1,4},

{1,2,5},{3,5}
#

, which corresponds to defining an output

⎡
⎣ y1(t )

y2(t )
y3(t )

⎤
⎦=

⎡
⎣ 1 0 0 1 0

1 1 0 0 1
0 0 1 0 1

⎤
⎦

︸ ︷︷ ︸
C

⎡
⎢⎢⎢⎢⎣
ρ1(t )
ρ2(t )
ρ3(t )
ρ4(t )
ρ5(t )

⎤
⎥⎥⎥⎥⎦ .

Table 18.3 displays the parameters’ values. The algorithm used for the simulations is
displayed below.

ALGORITHM 18.1. Simulation algorithm for the pedestrian flow example.

Input: Set of parameters as in Table 18.3.
Output: Density ρ(t ), policy α(t ), and dist(ρ(t ),+ )

1 : Initialize: Set of initial values as in Table 18.3.
2 : for time t = 0, h, 2h, . . . ,T − h do
3 : compute projected point of ρ(t ) on+
4 : compute the optimal control α∗(t ) using

Theorem 18.2, and the distance dist(ρ(t ),+ )
5 : set β(0) = α(t )

for k = 0,1, . . . , 100 do
compute β(k + 1) =β(k)+ h

100 (α
∗(t )−β(k))

end for
set α(t ) = (β1(101),β2(101), 1−β1(101), 1−β2(101), 1)

6 : compute ρ(t + h)
7 : end for
8 : STOP

The simulations are carried out with MATLAB, and the results are illustrated in
Figs. 18.4–18.6. From the conservation law we have

∑
e ρ̇e (t ) = 0, and therefore∑

e ρe (t ) =
∑

e ρe (0) = 1, which is shown in Fig. 18.4 (gray solid line). When achiev-
ing consensus, ρ2(t ) = 0 holds (dashed line), indicating that all players choose either the
path involving edge 1 and edge 4, or the path involving edge 3 and edge 5. Moreover, the

D
ow

nl
oa

de
d 

08
/1

9/
16

 to
 1

31
.1

56
.2

24
.6

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

co
nt

ro
len

gin
ee

rs
.ir



216 Chapter 18. Pedestrian Flow
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Figure 18.4. Simulation results: density.
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Figure 18.5. Simulation results: routing policy (α5(t ) = 1 holds all the time).

players choose these two routes almost equiprobably, i.e., α1 ≈ α3 ≈ 0.5, as illustrated
in Fig. 18.5. The distance from the consensus manifold converges to zero, as illustrated
in Fig. 18.6. Note that in order to avoid chirping in α(t ), we have introduced lowpass
dynamics β̇(t ) = α∗(t )−β(t ) (the relevant transfer function is β(s) = 1

s+1α
∗(s) which is

actually a lowpass filter for α(t )), corresponding to step 5 in the algorithm.

18.7 Notes and references
In this chapter, we have examined a mean-field game formulation with common cost func-
tional of a distributed routing problem. The problem overlaps recent research on optimal
planning [3]. The problem setup has been motivated by an idea in [81, 80] that develops
a dynamic model for the density at network edges in a locally responsive traffic network.
This chapter has provided several contributions. Beyond the mean-field game formula-
tion, we have illustrated an extended state space solution approach applied to the worst-
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Figure 18.6. Simulation results: distance to the consensus manifold.

case scenario. Such an extended state space solution approach was first developed in [34]
and [35].

The study has analyzed convergence conditions of the density to a preassigned mani-
fold. Connections with repeated games with vector payoffs and set inclusion theory have
been highlighted. The simulations have been conducted by Dr. Xuan Zhang from the
Department of Engineering Science of the University of Oxford.

Future directions involve

• alternative models of adversarial disturbances including energy bounded disturbances
in the spirit of H∞-optimal control;

• a detailed analysis of the impact of the graph properties (graph connectivity, degree
of nodes, eigenvalues of graph-Laplacian matrices) on the speed of convergence;

• the analysis of nonconservative flows (actually, a more complex scenario would con-
sider the case where the number of players changes with time, perhaps dependently
on the level of congestion in the network).

The stability conditions provided in this chapter mirror classical convergence condi-
tions in repeated games with vector payoffs [40, 155]. Such conditions can be reviewed
also as set inclusion conditions [27, 59, 60].
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Chapter 19

Supply Chain

19.1 Introduction
In joint replenishment applications, retailers can benefit from placing joint orders and
consequently sharing the transportation costs. When they do this, we say that the retailers
form a coalition. This casts joint replenishment applications within the framework of
coalitional games with transferable utilities (cf. Chapters 5–6). This chapter shows that
in the above application, where the values of coalitions are not known with certainty, one
needs to develop a model which is more sophisticated than those provided by classical
coalitional games with transferable utilities.

We consider a sequence of games where the average coalitions’ values (over time) are
known with certainty but the instantaneous values are unknown but bounded by a poly-
hedron. This model may be seen as a dynamic extension of cooperative interval games
where a coalition value is a closed interval on the real line.

At each point in time a certain revenue is allocated to each player. In general, these
revenues will not meet the actual instantaneous value of the coalitions. To keep track
of this allocation error, an excess vector stores the difference between the instantaneous
value of each coalition and the sum of the allocated revenues to all its players. We may
interpret this excess vector as the state variable describing the history of our dynamic
system. Under the assumption that the only information available at each time is the
excess of the coalitions, our goal is to design robust allocation rules, i.e., allocation rules
that (i) keep the excess vector bounded within a predefined threshold ε at each time (we
will refer to such rules as ε-stabilizing), while (ii) guaranteeing a certain average allocation
vector over time. Justification for keeping the excess vector bounded follows from the
observation that a fair allocation should not allocate the maximum excess to the same
coalition each time.

One may notice that our problem is similar in spirit to classical problems in machine
learning.

This chapter is organized as follows. Section 19.2 introduces the supply-chain model
with multiple retailers. The model builds on the concept of family of balanced games
which we formalize in Section 19.3. Section 19.4 turns the family of games into a dynamic
system. Section 19.5 designs the allocation rule. Section 19.6 considers allocation rules
based on the Shapley value. Section 19.7 shows a numerical example. Finally, Section 19.8
draws some conclusions and provide notes and references for this chapter.

219
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220 Chapter 19. Supply Chain

We denote by 〈N , v〉 a coalitional TU game, where N = {1, . . . , n} is the set of n players
and v is the characteristic function returning the value of each nonempty coalition S ⊆N .
We define by m = 2n−1 the number of nonempty coalitions. Furthermore, occasionally
we also interpret v as a vector in �m , namely, v = [v(S)]S⊆N . For ξ ∈�m , let ξi denote
the ith component of ξ , and define

|ξ |=max
i
|ξi |.

Let 	 denote the set of integers and 	+ the set of nonnegative integers. Also, let f =
{ f (0), f (1), f (2), . . .} be any bounded one-sided sequence in �m , and define

‖ f (k)‖= sup
k∈	+

| f (k)|.

19.2 Supply chain with multiple retailers and uncertain
demand
Let us consider a supply chain consisting of a single-period one-warehouse multi-retailer
inventory system such as the one depicted in Fig. 19.1.

A central warehouse W serves a number of retailers Ri , i = 1, . . . , n, each one facing
a demand di unknown but bounded by preassigned values d−i ∈ � and d+i ∈ �. After
demand di is known to retailer Ri , he must decide whether to fulfill the demand or not.
Fulfilling the demand implies reordering just in time from the warehouse, as the retailers
hold no inventory. Retailers that place joint orders share the transportation cost K . In
particular, if only retailer Ri places an order—in the parlance of coalitional TU games we
say that he does not play in coalition with other players—he pays the full transportation
cost K . This is illustrated by the dashed path (W , R1,W ) in the network of Fig. 19.1(a),
which describes a single truck that serves only R1 and goes back to the warehouse. The
cost of not reordering is the cost of the unfulfilled demand di .

W
R2

R1

R3

(a)

W
R2

R1

R3

(b)

W
R2

R1

R3

(c)

Figure 19.1. Example of one warehouse W and three retailers R1, R2, and R3: (a) Truck
leaving W , serving R1, and returning to W ; (b) Truck leaving W , serving R1 and R2, and returning
to W ; (c) Truck leaving W , serving R1, R2, and R3, and returning to W . Reprinted with permission
from IEEE [185].

If two or more retailers “play” in a coalition, they agree on a joint decision (“everyone
reorders” or “no one reorders”). The cost of reordering for the coalition also equals the
total transportation cost that must be shared among the retailers. This is illustrated, with
reference to coalition {R1, R2}, by the dashed path (W , R1, R2,W ) in Fig. 19.1(b).

When necessary, a single truck will serve all retailers in the coalition and get back to
the warehouse. This is illustrated, with reference to coalition {R1, R2, R3}, by the dashed
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19.3. Family of balanced games 221

path (W , R1, R2, R3,W ) in Fig. 19.1(c). The cost of not reordering is the sum of the un-
fulfilled demands of all retailers.

How the players will share the cost is part of the solution generated by the warehouse
manager, which plays here the role of a game designer.

The cost scheme can be captured by a game with the set N = {R1, . . . , Rn} of players
where the cost of a nonempty coalition S ⊆ N is given by (assume a unitary cost for the
unfulfilled demand)

c(S) =min

	
K ,
∑
i∈S

di

�
.

Note that the bounds on the demand di reflect into the bounds on the cost as follows: for
all nonempty S ⊆N ,

min

	
K ,
∑
i∈S

d−i

�
≤ c(S)≤min

	
K ,
∑
i∈S

d+i

�
. (19.1)

The coalition values represent the cost savings of the coalitions. The cost savings v(S)
of a coalition S are the difference between the sum of the costs of the coalitions of the
individual players in S and the cost of the coalition itself, namely,

v(S) =
∑
i∈S

c({i})− c(S). (19.2)

Given the bound for c(S) in (19.1), the value v(S) is also bounded, as given: for any
S ⊂N ,

v(S)≤∑
i∈S

min
E

K , d+i
F−min

	
K ,
∑
i∈S

d−i

�
.

Thus, the cost savings (value) of each coalition is bounded uniformly by a maximum value.
Letting vmin(S) and vmax(S) be lower and upper bounds for the value of coalition

S ⊆N , the game model turns into a family of cost-savings games 〈N ,� 〉, where

� = {v ∈�m : vmin(S)≤ v(S)≤ vmax(S)∀S ⊆N} , (19.3)

and v(S) is as in (19.2).
In a dynamic context, the same situation is repeated in time. That is to say that at

each time (day, week) k = 0,1, . . . , the warehouse manager allocates the costs and a new
demand is realized.

In the next section, we introduce a formal definition of family of balanced games with
coalition values lying on preassigned closed intervals.

19.3 Family of balanced games
Consider a coalitional TU game 〈N , v〉, where N = {1, . . . , n} is a set of n players and v
is the characteristic function returning the value of each nonempty coalition S ⊆N . Let
m = 2n − 1 be the number of nonempty coalitions, and, with a little abuse of notation,
let us interpret v as a vector in �m , namely, v = [v(S)]S⊆N .

Definition 19.1 (Family of TU games). A family of games 〈N ,� 〉 is the set of games 〈N , v〉
obtained when v varies within a polyhedron � = {v ∈�m : vmin ≤ v ≤ vmax} , where the
bounds vmin and vmax are given.
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222 Chapter 19. Supply Chain

For the sake of simplicity, let us take v ≥ 0. Furthermore, denote by 2N the family of
subsets of N . Let us recall the definitions of balanced map and balanced game.

Definition 19.2 (Balanced map). A map λ : 2N \ {�} → �+ is called a balanced map if∑
S⊆N λ(S)e

S = eN .

Here, eS ∈�n is the characteristic vector of coalition S with eS
i = 1 if i ∈ S and eS

i = 0
if i ∈N \ S.

Definition 19.3 (Balanced game). An n-person game 〈N , v〉 is called a balanced game if,
for each balanced map λ : 2N \ {�}→�+,∑

S⊆N

λ(S)v(S)≤ v(N ). (19.4)

The polyhedron � represents a family of balanced games if the above condition is sat-
isfied for each game v ∈ � . This is formalized in the next definition.

Definition 19.4 (Family of balanced games). A family of balanced games 〈N ,�b 〉 is the
set of games 〈N , v〉 obtained when v varies within a polyhedron

�b = {v ∈ � : condition (19.4) holds} ,

where the bounds vmin and vmax are given.

Recall the notions of core and allocation rules from Chapters 5–6. Also, recall that a
game is balanced if and only if the core is nonempty [63, 221]. By definition each game
〈N , v〉 with v ∈ �b is balanced, and so the core C (v),

C (v) =
	

a ∈�n :
a

v(N )
∈Δn ,

∑
i∈S

ai ≥ v(S)∀S ⊆N

�
,

is nonempty. This is equivalent to saying that there exists an allocation a ∈ C (v) such
that the grand coalition is stable with respect to any sub-coalition.

For the aforementioned family of balanced games, the problem turns into finding an
allocation rule a(v) such that a(v) ∈ C (v) for all games v ∈ �b . To this purpose, note
that the core is a convex set described by linear equations and inequalities.

By introducing a vector of nonnegative surplus variables s = [s1, . . . , sm−1]T , find-
ing an allocation rule a in the core C (v) corresponds to finding an allocation vector u ∈
�n+m−1 in the set

� (v) = {u : Au = v, u ≥ 0}, (19.5)

where

A=

⎡
⎣B

BBBBBB
−I

−−−−
0 . . . 0

⎤
⎦ , (19.6)

and where B ∈�m×n is an incidence matrix with the characteristic vectors eS as rows and
I is the (m− 1)-dimensional identity matrix.

Note that if u ∈ � (v), then u =
�a

s

�
for some a ∈ C (v). Observe that, in general,

� (v) is a polyhedron of dimension n− 1.
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19.4. Turning the repeated TU game into a dynamic system 223

Furthermore, it is worth noting that for each coalition, the surplus variable indicates
the deviation of the allocated value to that coalition and the value of the coalition it-
self, namely

∑
i∈S ai − v(S). Notice that we only need m − 1 surplus variables because∑

i∈N ai = v(N ) due to the efficiency condition of the core.

19.4 Turning the repeated TU game into a dynamic system
After introducing a family of balanced games in the previous section, let us turn to con-
sider a stream of games with characteristic function bounded within the polyhedron �b :

v(t ), t = 1,2, . . . , with v(t ) ∈ �b∀t . (19.7)

In the above expression, v(t ) = [v(t , S)]S⊆N is the vector of coalition values.
Let the average vector of coalition values v̄ be defined as

v̄= lim
T−→∞

1
T

T∑
k=0

v(t ), (19.8)

and assume that such a value is given.
Furthermore, assume that allocations to players are made at a higher rate than the

rate of change of the coalitional values, which equals 1. In particular, let Θ be the time
between two successive allocations. Consequently, the integer number 1/Θ is the rate
of allocations. Now, by stretching the time scale by the rate 1/Θ, we obtain the new
sequence of games

v(k) = v(t )Θ, k =
t − 1
Θ
+ 1, . . . ,

t
Θ

, t = 1,2, . . . . (19.9)

We can interpret the above sequence of games as follows. In the original time interval
(t − 1, t ] the vector of coalitional values equals v(t ). We distribute these values equally
over the 1/Θ allocations that occur in this time period, so this results in values v(t )Θ for
each point in time where allocations are made. This way we can ensure that the total
amount allocated to the players in the new interval ((t − 1)/Θ, t/Θ] does not exceed the
available amount v(t ,N ).

If we use the notation � Θb = Θ · �b , the sequence of games (19.7)–(19.8) is equivalent
to the sequence of games

v(k), k = 1,2, . . . , with v(k) ∈ � Θb for each k = 1,2, . . . ,

v̄ = limT−→∞
1
T

T∑
k=0

v(k),
(19.10)

where v̄ = Θv̄. In the remainder of this chapter, we will refer to the sequence of games
in (19.10).

Now, denote by x(k+1) ∈�m a vector of variables describing the aggregate coalition
excesses over all previous games v(1), . . . , v(k) (the value x(0) is the excess at time 0), i.e.,

x(k + 1, S) = x(k , S)+
∑
i∈S

ai (k)− (sS (k)+ v(k , S)) ∀S ⊆N , (19.11)

where ai (k) is the revenue allocated to player i and sS (k) is a desired surplus for coalition S.
The aggregate coalition excess x(k + 1, S) is the coalition excess summed over all pre-

vious games v(1), . . . , v(k) and therefore represents the state of the system. We rewrite
(19.11) in the following matrix form:

x(k + 1) = x(k)+Au(k)− v(k), v(k) ∈ � Θb , k = 1,2, . . . , (19.12)

D
ow

nl
oa

de
d 

08
/1

9/
16

 to
 1

31
.1

56
.2

24
.6

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

co
nt

ro
len

gin
ee

rs
.ir



224 Chapter 19. Supply Chain

where u(k) =
�a(k)

s (k)

�
, a(k) = [ai (k)]i∈N , and s(k) = [sS (k)]S⊂N . The condition u(k) ≥ 0

is omitted for the sake of notation. Now, let the vector ū ∈ � (v̄) be arbitrarily chosen,
where v̄ is assigned once given the sequence of games (19.10).

Lemma 19.5 (Average constraint). Let the sequence of games (19.10) be given. There exists
an allocation rule f :�m −→�n+m−1 such that, for u(k) = f (v(k)),

Au(k) = v(k), (19.13)

lim
T−→∞

1
T

T∑
k=0

u(k) = ū (19.14)

if and only if there exists a matrix D ∈�(n+m−1)×m that satisfies

AD = I ∈�m×m , (19.15)
D(v − v̄)+ ū ≥ 0 ∀v ∈ � Θb . (19.16)

The allocation rule is linear on v(k), that is,

u(k) = ū +D(v(k)− v̄). (19.17)

In the following we call limT−→∞
1
T
∑T

k=0 u(k) the average allocation (vector).
Note that condition (19.13) implies that u(k) =

�a(k)
s (k)

� ∈� (v(k)) at each time k. This
in turn means that a(k) is an element of the core C (v(k)) of the game 〈N , v(k)〉 obtained
from freezing the coalition values at time k.

The linear allocation rule (19.17) builds on the hypothesis that the coalition values
are known at each sample time. We can turn the above rule into a feedback rule which
allocates revenues at time k based on the aggregate coalition excesses x(k).

Our goal is to find dynamic allocation rules that keep the excess vector bounded and
such that the average allocation is ū. For this we need the following definition of feasible
dynamic allocation rule.

Definition 19.6 (ε-stabilizing allocation rule). Given ε > 0 and a reference value xref

for system (19.12), an ε-stabilizing allocation rule is a feedback rule for which there exists a
continuous positive functionφ(k), monotonically decreasing and converging to 0 as k −→∞
such that for all x(0), the following condition holds true:

‖x(k)− xref‖ ≤max{‖x(0)‖φ(k),ε}.

For the sake of simplicity, take xref = 0. Then the above condition implies that x(k)
does not deviate more than ε from 0 in the long run. For any x(0) with ‖x(0)‖ ≤ ε the
condition simply requires that ‖x(k)‖ ≤ ε for all k. Then, the problem can be restated as
shown below.

Problem 19.1 (Stabilizing allocation rule). For the sequence of games (19.10), find an
ε-stabilizing allocation rule such that its average allocation equals ū, i.e.,

lim
T−→∞

1
T

T∑
k=0

u(k) = ū .
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19.5. Allocation rule based on feedback control synthesis 225

Note that the requirement limT−→∞
1
T
∑T

k=0 u(k) = ū simply represents a constraint
on the coalitions’ excess in the long run.

Also, observe that the ε-stabilization of the excess vector x(k)means that at each time
k the excess x(k) does not exceed a predefined threshold ε of the game 〈N , v(k)〉. Using
the definition of the ε-core from Lehrer (2002) [151], the above problem corresponds to
finding an allocation rule that at each time k returns a vector in the ε-core of the one-shot
game 〈N , v(k)〉.

19.5 Allocation rule based on feedback control synthesis
In this section, we develop a constructive method to solve Problem 19.1. The allocation
rule is obtained based on a feedback control synthesis in an extended state space.

Let A and D be two matrices satisfying (19.15) and (19.16). We can find two matrices
C and F that “square” A and D and satisfy�

A
C

� �
D F

�
= I . (19.18)

This yields the augmented system

x(k + 1) = x(k)+Au(k)− v(k),
y(k + 1) = y(k)+C u(k), (19.19)

where v(k) is as in (19.9). Note that the new variable y(k) accounts for the difference be-
tween the instantaneous and the average allocations of each player. Define the augmented
state variable z ∈�n+m−1 as

z(k) =
�

D F
� � x(k)

y(k)

�
,
�

x(k)
y(k)

�
=
�

A
C

�
z(k).

This variable satisfies the equation

z(k + 1) =
�

D F
� � x(k + 1)

y(k + 1)

�
=
�

D F
� � x(k)

y(k)

�
+
�

D F
� � A

C

�
u(k)

−� D F
�� v(k)

0

�
(19.20)

= z(k)+ u(k)−Dv(k). (19.21)

Then we have that the allocation rule u(k) = −z(k) is a possible allocation rule for the
problem under study.

Theorem 19.7. Consider system (19.21) with v(k) as in (19.9). The allocation rule in feed-
back form

u(k) =−z(k) (19.22)

satisfies
‖z(k)‖ ≤ ‖Dv(k)‖. (19.23)

Furthermore, if the average coalitions’ value is equal to v̄ , then the average allocation vector
converges to ū.
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226 Chapter 19. Supply Chain

Proof. Let us first prove (19.23). To do this, let us substitute (19.22) in the dynam-
ics (19.21). This yields z(k + 1) =−Dv(k) for all k, which in turn implies (19.23).

For the second part of the proof, let us sum both sides of (19.21) over k = 1,2, . . . .
Then we obtain

1
T

T−1∑
k=0

u(k)− 1
T

T−1∑
k=0

Dv(k) =
z(T )− z(0)

T
→ 0 as T →∞.

Actually, note that by taking the limit the numerator remains finite, whereas the denom-
inator goes to infinity. As a consequence, ū = Dv̄, and this concludes the proof.

Let us now find the maximum time period Θ∗ such that ‖Dv(k)‖ ≤ ε for given ε. It
turns out that such a value can be obtained as Θ∗ = ε

δ , where δ = maxv∈�b
|Dv|. Then

we have the following corollary.

Corollary 19.8. Consider system (19.21) with v(k) as in (19.9). For any ε and corresponding
Θ∗, if Θ≤min{Θ∗, 1}, then the allocation rule in feedback form,

u(k) =−z(k), (19.24)

is ε-stabilizing.

Proof. The thesis follows from

‖z(k)‖ ≤ ‖Dv(t )Θ‖ ≤ ‖Dv(t )Θ∗‖ ≤max
v∈�b

|DvΘ∗| ≤ ε.

Note that as ‖z‖ ≤ ε, it also holds that ‖u‖ ≤ ε as u = −z. That is to say that
the smaller the ε, the smaller the maximum allocation in magnitude. Furthermore, note
that the above results can be extended to the case where v̄ is averaged online, with the
difference that matrix D must be updated iteratively according to (19.15)–(19.16).

19.6 The Shapley value as a linear allocation rule
This section shows that the Shapley value can be obtained from the allocation rule (19.17).

Recall that the Shapley valueφ is defined byφ= 1
n!

∑
σ∈Π(N )mσ , whereΠ(N ) is the set

of all permutations of N and mσ is the marginal vector corresponding to the permutation
σ : N → N [219]. A marginal vector mσ corresponds to a situation in which the players
enter a room one by one in the order σ(1),σ(2), . . . ,σ(n) and where each player receives
the marginal contribution he creates upon entering. Hence, mσ is the vector in �n with
elements

mσ
σ(1) = v({σ(1)}),

mσ
σ(2) = v({σ(1),σ(2)})− v({σ(1)}),

...
mσ
σ(k) = v({σ(1),σ(2), . . . ,σ(k)})− v({σ(1),σ(2), . . . ,σ(k − 1)}).
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19.6. The Shapley value as a linear allocation rule 227

Theorem 19.9. The Shapley valueφ is linear in v, i.e.,φ= Lv, where the matrix L ∈�n×m

is defined by

Li j =
1
n!
·
$ −μ!(n− (μ+ 1))! if i �∈ S,
(μ− 1)!(n −μ)! if i ∈ S, (19.25)

if column j corresponds to coalition S with μ= |S|.
Proof. The proof follows immediately from the definition of the Shapley value in Shapley
(1953) [219].

To emphasize the dependence of φ on v we henceforth write φ(v) instead of φ. Let
s(φ(v)) be the vector of surplus variables when revenues are allocated according to the
Shapley value φ(v). The idea is now to express s(φ(v)) linearly in v.

Theorem 19.10. The vector of surplus variables is linear in v, i.e.,

s(φ(v)) =Qv, (19.26)

where Q ∈�(m−1)×m has row i associated to a surplus variable (a coalition S ⊂ N), column
j associated to a coalition M ⊆N, and generic i j th element

Qi j =
� ∑

p∈S Lp j if i �= j ,∑
p∈S Lp j − 1 if i = j . (19.27)

Proof. First, consider the coalition containing just player 1 and let Li• be the generic ith
row of L. The associated surplus variable is

s1(φ(v)) =φ1− v({1}) = L1•v − v({1}) = (L11− 1)v({1})+ L12v({2})+ · · ·+ L1m v(N ).

The latter equation yields Q1• = [(L11− 1) L12 . . . L1m] , in accordance with (19.27).
If we repeat the same reasoning for a generic coalition M ⊂N , the surplus variable is

sM (φ(v)) =
∑
i∈M

φi − v(M ) =
∑
i∈M

Li•v − v(M ).

Recall that j is the column associated to coalition M . Then, the latter equation yields
Qj k =

∑
i∈M Lik if k �= j and Qj j =

∑
i∈M Li j − 1, in accordance with (19.27).

Using the fact that φ(v) and s(φ(v)) are linear in v, we define the allocation vector
associated to the Shapley value by u(φ(v)) = [φ(v)T s(φ(v))T ]T .

Corollary 19.11. There exists a matrix Φ∈�(n+m−1)×m , defined by Φ=
�
LT QT

�T , such
that u(φ(v)) = Φv. Furthermore, Φ is a right inverse of A, i.e., AΦ= I .

Proof. From Theorems 19.9 and 19.10 we have
�
φ(v)T s(φ(v))T

�T =
�
LT QT

�T v.
This concludes the first part of the proof.

To prove that AΦ = I , it is sufficient to show that Ai•Φ• j = 1 if i = j and zero oth-
erwise. Observe that row i of A, denoted by Ai• ∈ �1×(n+m−1), corresponds to coalition
M ⊆ N , whereas column j of Φ, denoted by Φ• j ∈ �(n+m−1)×1, corresponds to coalition
S ⊆N . Hence, the condition i = j is equivalent to M = S.
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228 Chapter 19. Supply Chain

Now let the row vector Ai• be given. The first n elements of this vector correspond
to players p = 1, . . . , n, and the last m − 1 elements correspond to all coalitions R ⊂ N
(recall the structure of A as described in (19.6)). Now the structure of row Ai• may be
formulated as

Ai• = [. . . 1︸︷︷︸
∀p∈M

. . . . . . 0︸︷︷︸
∀p �∈M

. . . . . . −1︸︷︷︸
R=M

. . . . . . 0︸︷︷︸
∀R �=M

. . .]. (19.28)

Analogously, the first n elements of Φ• j correspond to players p = 1 . . . n, and the last
m− 1 elements correspond to all coalitions R⊂N (see (19.25) and (19.27)).

In conclusion, if i = j , or M = S, then Ai•Φ• j =
∑

p∈S Lp j − (∑p∈S Lp j − 1) = 1.

Conversely, if i �= j , or M �= S, then Ai•Φ• j =
1
n! [
∑

p∈M Lp j −∑p∈M Lp j ] = 0.

19.7 Numerical example
Let a three-player TU game be given where the characteristic function satisfies

v({1}) = 0, v({2}) = 0, v({3}) = 0,
v({1,2}) ∈ [0,5], v({1,3}) ∈ [0,5], v({2,3}) ∈ [0,7], v(N ) ∈ [0,12].

Set the average values

v̄ = [0,0,0,2,3,4,10]T , ū = [3,5,2,3,5,2,6,2,3]T .

Note that Aū = v̄. We translate the origin of the u-v space to ū-v̄ .
First, we calculate D by formulating a linear programming problem. Then we com-

pute the matrices C and F that square B and D. The method is explained in detail in the
appendix of [44]. For the maximum sample time we get Θ∗ > 0.1 and choose Θ= 0.1.

The nature of the problem does not change even if we consider the bounding polyhe-
dron� := {u ∈�10 :−0.5 ·1≤ u ≤ 0.5 ·1}, where 1 is the 10-dimensional vector of ones.
Actually, the resulting games in the sequence are balanced.

The algorithm used for the simulations is illustrated below.

ALGORITHM 19.1. Simulation algorithm for the supply-chain example.

Input: Game 〈N ,{v(t )}〉, average allocation ū, average values v̄, matrices C , D, F
Output: Augmented state z(k), error ū(k)− ū

1 : Initialize. Set the initial state z(0)
2 : for time t = 0,1, . . . ,T − 1 do
3 : run dynamics (19.21) where u(k) is as in (19.22)
4 : end for
5 : STOP

The evolution of the system is displayed in Figs. 19.2 and 19.3. In particular, Fig. 19.2
shows the time plot of the variable z(.). The variable is ε-stabilized with ε= 0.5. For the
same simulation scenario, Fig. 19.3 shows the time plot of ū(k)− ū, where ū(k) is the
average of u(k) up to time k. All plots tend to zero for increasing time, which means that
the average ū(k) tends to ū .
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19.8. Notes and references 229

0 500 1000 1500 2000 2500 3000

0

1

2

3

4

k

z(
kΘ

)

Figure 19.2. Time plot of z(.). The variable is ε-stabilized with ε = 0.5. Reprinted with
permission from Elsevier [45].
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Figure 19.3. Time plot of ū(k)− ū. The average tends to ū for increasing time. Reprinted
with permission from Elsevier [45].

19.8 Notes and references
This chapter is based on [44] and [45]. We have modeled a supply chain with multiple
retailers and uncertain demand as a dynamic TU game. As a main result, we have devel-
oped a constructive method to design robust allocation rules based on feedback control
synthesis. The rule uses a measure of the extra benefit that a coalition has received up to
the current time to redistribute the budget among the players.

A similar idea under the assumption that the values of the coalitions are known and
time invariant is also in [75, 151, 216]. Budget distribution occurs iteratively until the
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230 Chapter 19. Supply Chain

allocation process converges to an element in the core or in the ε-core if the game is not
balanced (in the latter case the core is empty).

It must be noted that to compute the matrix D, used by the allocation rule, the number
of constraints of type (19.13) to consider grows exponentially in the number of players
n. We refer the reader to [26, Sect. 5] for a method based on constraints generation that
computes the matrix D in polynomial time.

Joint replenishment is studied in [112, 176, 177]. Other works where the values of
coalitions are not known with certainty are [232, 233, 240, 241]. We consider a sequence
of games where, differently from Filar and Petrosjan (2000) [95] and Haurie (1975) [114],
the average coalitions’ values (over time) are known with certainty but the instantaneous
values are unknown but bounded by a polyhedron. Cooperative interval games are intro-
duced in [103]. A classical reference in machine learning is [74]. The definition of the
feasible dynamic allocation rule is in [26]. Allocation rules as iterative algorithmic pro-
cedures are proposed in [75, 151]. For the definition of balanced map and balanced game
for games 〈N , v〉 we refer the reader to [239, Def. 11.5]. Sets of balanced games can also
be found in the work of Kranich, Perea, and Peters (2005) [139] and Lehrer (2002) [151].
Lemma 19.5 recalls a result obtained in Bauso, Blanchini, and Pesenti (2006) [26]. The
notion of excess introduced in this chapter is different from the coalitional excess that
appears, e.g., in the definition of the nucleolus [214].
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Chapter 20

Population of Producers

20.1 Introduction
We specialize mean-field games to production of exhaustible resources. The novelty in
this model lies in the presence of an additional uncertainty capturing the influence of
taxation or inflation on the amount of production.

The main contribution of this chapter is three-fold. First, we show that the problem of
a population of producers can be formulated as a robust mean-field game. Second, we shed
light on the strategic behavior of the producers by establishing mean-field equilibrium
production policies. Third, we investigate stability of the microscopic and macroscopic
dynamics.

More specifically, we provide an explicit expression of the connection between the op-
timal production law and the worst-case disturbance law. Exploiting the specific structure
of the application involving oil production, we show that the dimension of the mean-field
system can be reduced. The chapter also establishes a connection with risk-sensitive mean-
field games with a modified Hamilton–Jacobi–Bellman equation.

This chapter is structured as follows. Section 20.2 formulates the problem. Section 20.3
turns the problem into a robust mean-field game and shows a mean-field equilibrium.
Sections 20.4 and 20.5 examine stability of the microscopic and macroscopic dynamics,
respectively. Section 20.6 provides a numerical example. Finally, Section 20.7 provides
conclusions, notes, and references.

20.2 Production of an exhaustible resource
Let a continuum of market producers be given. Producers possess an initial reserve of raw
material. For given constant parameters α,β,σ ∈�, let us describe the reserve evolution
over the interval [0,T ] via the following stochastic differential equation:

d x(t ) = [αx(t )+βu(t )] d t +σ[x(t )d�(t )+ ζ (t )d t ], t ∈ [0,T ], (20.1)

where

• �(t ), t ≥ 0, is a standard Brownian motion, which is independent of the initial
state and independent across players; we will occasionally use the Brownian motion
notation� to denote the process over the interval [0,T ];

• x0 is the random initial reserve with distribution m0;

231

D
ow

nl
oa

de
d 

08
/1

9/
16

 to
 1

31
.1

56
.2

24
.6

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

co
nt

ro
len

gin
ee

rs
.ir



232 Chapter 20. Population of Producers

• u(t ) : [0,T ]→� is the production rate of the player at time t ;

• ζ (t ) : [0,T ] → � is an unknown parameter function, representing taxation or
inflation at time t .

Equation (20.1) is commonly referred to as geometric Brownian motion.
In addition, let us introduce a probability density function m(x, t ) : �+ × [0,T ]→

[0,+∞[, which satisfies
∫
�+

m(x, t )d x = 1 for every t . Furthermore, let m̄(t ) be the

mean of the process m(.).
A game designer assigns the producers a running cost involving the production cost

to which we subtract the total income. The running cost takes the form

c(x(t ), u(t ), m(.)) =−h(m̄(t ),ζ (t ))u(t )+
+a

2
u(t )2+ b u(t )

,
,

where h(m̄(t ),ζ (t )) is the sale price of oil and thus h(m̄(t ),ζ (t ))u(t ) is the income col-
lected from producing and selling the quantity u(t ); a

2 u(t )2 accounts for a production
energy consumed, a > 0, and b u(t ) is a known linear taxation on production.

Let us denote the terminal penalty by g (xT ) and set g (xT ) = φ|xT |2, where φ > 0.
The rationale here is to penalize the producers for unexploited reserve at the end of the
horizon. In the spirit of H∞-optimal control, the cost functional over the interval [0,T ]
is given by

J (x(0), u, m,ζ ) =�
�

g (x(T ))+
∫ T

0 c(x(t ), u(t ), m(.), t )d t − γ 2
∫ T

0 |ζ (t )|2d t
�
.

The term h(m̄(t ),ζ (t )) in the running cost expresses the sale price as function of the
distribution. An explicit expression for it is as below:

h(m̄(t ),ζ (t )) = ke
r 1
β

d
d t m̄(t )− αr

β m̄(t )− σ r
β ζ (t ), r < 0, k ∈�. (20.2)

To obtain (20.2), note that the mean of the state is generated by

d
d t
[�x(t )] = α [�x(t )] +β [�u(t )]+σ [�ζ (t )] .

From indistinguishability [149], the mean of the total production is given by

[�u(t )] =
1
β

. d
d t

∫
xm(d x, t )

/
− α

β

.∫
xm(d x, t )

/
− σ
β
ζ (t ) (20.3)

for β< 0. Thus, by using a standard supply-demand law, we can assume that the price is
decreasing in the produced quantity according to the following exponential law:

h(m̄(t ),ζ (t )) = ke r ū(t ). (20.4)

Equation (20.2) is obtained by substituting the right-hand side in (20.3) in (20.4).
In essence, the above expression describes the price as a function of the mean reserve

distribution and taxation, and represents the coupling term between an individual player
and the population behavior. Later we will see that as u(t ) and ζ (t ) are given by bounded
state-feedback closed-loop policies, m̄(t ) is differentiable and bounded, which implies that
h(.) is uniformly continuous in m̄(t ). This in turn implies that J is uniformly continuous
in m̄(t ).
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20.3. Robust mean-field equilibrium production policies 233

Problem 20.1 (Population of producers). Let� be a one-dimensional Brownian motion
process defined on (Ω," ,�), where " is the natural filtration generated by � . Let x(0) be
any random variable independent of� having distribution m0(x). Introduce the following
robust optimization problem:

inf{u(t )}t

sup
{ζ (t )}t

J∞(x, u, m∗,ζ ),

where the dynamics of x(t ) are given by

d x(t ) = [αx(t )+βu(t )+σζ (t )]d t +σ x(t )d�(t ), t ∈ (0,T ], x0 ∈�, (20.5)

and m(.)∗ is the equilibrium mean-field trajectory obtained when any player at state x imple-
ments the control

u∗(x) = arg inf{u(t )}t

sup
{ζ (t )}t

J (x, u, m∗,ζ ).

20.3 Robust mean-field equilibrium production policies
We shall now turn the problem into a robust mean-field game and examine mean-field
equilibrium policies.

Set v(x, t ) as the (upper) value of the robust optimization problem under worst-case
disturbance starting from time t at state x.

Theorem 20.1. The production problem with exhaustible resources for a population of pro-
ducers formulated in Problem 20.1 can be modeled via the following robust mean-field game:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t v(.)+
+
− 1

2aβ
2+
:
σ
2γ

;2
,
|∂x v(.)|2+

+
− 1

2a (−2h(m̄(t ),ζ ∗(t ))β+ 2bβ)

+ αx(t )
,
∂x v(.)− 1

2a

@
h(m̄(t ),ζ ∗(t ))2+ b 2− 2h(m̄(t ),ζ ∗(t ))b

A
+ 1

2σ
2x(t )2∂ 2

x x v(.) = 0,

v(x,T ) =φ|x|2,

∂t m(.)+ ∂x

+
m(.)

�
αx(t )+β h(m̄ (t ),ζ ∗(t ))−b−∂x v(.)β

a + σ2

2γ 2 ∂x v(.)
�,

+ σ2

2γ 2 ∂x(m(.)∂x v(.))− 1
2σ

2∂ 2
x x

�
x(t )2m(.)

�
= 0,

m(x, 0) = m0(x),
(20.6)

where m0(x) is the initial distribution.
Furthermore, the optimal production is⎧⎪⎪⎪⎨

⎪⎪⎪⎩
u∗(t ) = h(m̄(t ),ζ ∗(t ))− b − ∂x v(.)β

a
,

ζ ∗(t ) = σ

2γ 2
∂x v(.).

(20.7)

Proof. To prove condition (20.7), consider the Hamiltonian

H (x(t ),∂x v(.), m̄(t ), t ) = inf
u

"
−h(m̄(t ),ζ ∗(t ))u

+
+a

2
u2+ b u

,
+ ∂x v(.)(αx(t )+βu)

#
= 0.
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234 Chapter 20. Population of Producers

After differentiation we obtain

au − h(m̄(t ),ζ ∗(t ))+ b + ∂x v(.)β= 0,

which in turn yields

u∗(t ) = h(m̄(t ),ζ ∗(t ))− b − ∂x v(.)β
a

,

and the first equation in (20.7) is proved. Furthermore, let p be the co-state, and consider
the robust Hamiltonian

H̃ (x, p, m, t )= inf
u

sup
ζ
{c(x, u, m)− γ 2ζ 2+ p(αx +βu +σζ )}.

Assume that the function ζ −→ −γ 2ζ 2 + pσζ is strictly concave and has a global
maximizer given by

ζ ∗(t ) = σ

2γ 2
p.

By setting the co-state equal to ∂x v(.), we obtain the following expression of the worst-case
disturbance:

ζ ∗(t ) = σ

2γ 2
∂x v(.),

and the second equation in (20.7) is proved.
We now derive (20.6). Initially, notice that the second and fourth equations are the

boundary conditions and derive straightforwardly from the Hamilton–Jacobi–Isaacs equa-
tion and the evolution of the distribution of states.

The first equation in (20.6) is the Hamilton–Jacobi–Isaacs equation. To derive this equa-
tion, let us rewrite the robust Hamiltonian as

H̃ (x, p, m, t ) = inf
u
{c(x, u, m)− γ 2ζ ∗(t )2+ p(αx +βu +σζ ∗(t ))} (20.8)

= inf
u
{c(x, u, m)+ p(αx +βu)}+

8
σ p
2γ

92

. (20.9)

In (20.9) we have introduced the maximum value of the function −γ 2ζ 2+ pσζ , which is:
σ p
2γ

;2
. Then for the Hamilton–Jacobi–Isaacs equation we have	
∂t v(.)+H (x,∂x v(.), m(.), t )+

:
σ
2γ

;2 |∂x v(.)|2+ 1
2σ

2x(t )2∂ 2
x x v(.) = 0,

v(x,T ) = g (x).
(20.10)

Now, using for u the expression in (20.7), the Hamiltonian in (20.10) can be rewritten
as

H (x(t ),∂x v(.), m̄(t ), t ) = u∗(t )[−h(m̄(t ),ζ ∗(t ))+ b + ∂x v(.)β]+
a
2

u∗(t )2+ ∂x v(.)αx(t )

=− 1
2a
(h(m̄(t ),ζ ∗(t ))− b − ∂x v(.)β)2+ ∂x v(.)αx(t )

=− 1
2a

�
h(m̄(t ),ζ ∗(t ))2+ b 2+ (∂x v(.)β)2− 2h(m̄(t ),ζ ∗(t ))b

− 2h(m̄(t ),ζ ∗(t ))∂x v(.)β+ 2b∂x v(.)β
�
+ ∂x v(.)αx(t )

=− 1
2a
β2|∂x v(.)|2+

+
− 1

2a
(−2h(m̄(t ),ζ ∗(t ))β+ 2bβ)

+ αx(t )
,
∂x v(.)− 1

2a

@
h(m̄(t ),ζ ∗(t ))2+ b 2− 2h(m̄(t ),ζ ∗(t ))b

A
.
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20.4. Stability of the microscopic dynamics 235

Substituting the above expression of the Hamiltonian in the Hamilton–Jacobi–Isaacs
equation (20.10), we obtain (20.6).

The third equation in (20.6) is the Kolmogorov–Fokker–Planck equation. A general
expression for this equation is⎧⎪⎨
⎪⎩
∂t m(x, t )+ ∂x

:
m(x, t )∂p H (x,∂x v(.), m(.), t )

;
+ σ2

2γ 2 ∂x(m(x, t )∂x v(.))
− 1

2σ
2∂ 2

x x

�
x(t )2m(x, t )

�
= 0,

m(x, 0) = m0(x),
(20.11)

where m0(x) is the initial distribution. By substituting (20.7) into (20.11), we obtain the
third equation in (20.6), and this concludes the proof.

The significance of the above result is that to find the optimal production we need
to solve the two coupled partial differential equations in (20.6) in v and m with given
boundary conditions. This is usually done by iteratively solving the Hamilton–Jacobi–
Isaacs equation in (20.6) for fixed m and by substituting the optimal u obtained from (20.7)
in the Kolmogorov–Fokker–Planck equation until a fixed point in v and m is reached.

20.4 Stability of the microscopic dynamics
We shall now discuss a sufficient condition under which the microscopic dynamics is
exponentially asymptotically stable. To this purpose, from

αx(t )+βu∗(t )+σζ ∗(t ) = ∂p H (.)+σζ ∗(t ) (20.12)

and from (20.7), we can rewrite (20.5) as

d x(t ) = [αx(t )+βu∗(t )+σζ ∗(t )]d t +σ x(t )d�(t )
=

)
∂p H (x(t ),∂x v(.), m(.), t )+σζ ∗(t )

*
d t +σ x(t )d�(t )

=
6
∂p H (x(t ),∂x v(.), m(.), t )+

σ2

2γ 2
∂x v(.)

7
d t +σ x(t )d�(t ),

t ∈ (0,T ], x0 ∈�.

(20.13)

Assumption 20.1. There exists k̂ > 0 such that

− k̂ x(t )≥ ∂p H (x(t ),∂x v(.), m(.), t )+
σ2

2γ 2
∂x v(.). (20.14)

Let us take as Lyapunov function the quadratic function V (x) = x2; then the stochas-
tic derivative of V (x) is obtained by applying the infinitesimal generator to V (x), which
yields

&V (x(t )) = lim
d t→0

�[V (x(t + d t ))−V (x(t ))|x(t )]
d t

= [σ2− 2k̂]x(t )2.

Theorem 20.2 (see [162]). Let Assumption 20.1 hold true. If V (x) ≥ 0, V (0) = 0, and
&V (x)≤−ηV (x) on Qε := {x : V (x)≤ ε} for some η> 0 and for arbitrarily large ε, then
the origin is asymptotically stable “with probability 1” and

Px(0)

�
sup

T≤t<+∞
x(t )2 ≥ λ

(
≤ V (x(0))e−ψT

λ

for some ψ> 0.
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236 Chapter 20. Population of Producers

From the above theorem, we have the following result, which establishes exponen-
tial stochastic stability of the mean-field equilibrium provided above (see the Appendix,
Chapter E, on stochastic stability).

Corollary 20.3. Let Assumption 20.1 hold true. If [σ2 − 2k̂] < 0, then limt→∞ x(t ) = 0
almost surely, and

Px(0)

�
sup

T≤t<+∞
x(t )2 ≥ λ

(
≤ V (x(0))e−ψT

λ

for some ψ> 0.

The above results can be specialized to the case where the value function can be ap-
proximated by a quadratic expression of the form v(.) = 1

2φ(t )x(t )
2. In this case it holds

that ∂x v(.) = φ(t )x(t ), which means that the gradient is linear in the state. Then, we
obtain h(m̄(t ),ζ ∗(t ))− b − ∂x v(.)β> 0. Furthermore, we can rewrite the dynamics as

d x(t ) = [αx(t )+βu∗(t )+σζ ∗(t )]d t +σ x(t )d�(t )
=

6
αx(t )+

β

a
[h(m̄(t ),ζ ∗(t ))− b − ∂x v(.)β]+

σ2

2γ 2
∂x v(.)

7
d t +σ x(t )d�(t )

=
6
α+

β

a
φ(t )+

σ2

2γ 2
φ(t )

7
x(t )d t +

1
a
(h(m̄(t ),ζ ∗(t ))− b )d t +σ x(t )d�(t ),

t ∈ (0,T ], x0 ∈�.
(20.15)

Consequently, condition (20.14) takes the form

− k̂ x(t )≥
6
α+

β

a
φ(t )+

σ2

2γ 2
φ(t )

7
x(t )+

h(m̄(t ),ζ ∗(t ))− b
a

. (20.16)

We can conclude that the existence of a k̂ satisfying the above expression implies stability
of the microscopic dynamics.

20.5 Stability of the macroscopic dynamics
Let Assumption 20.1 hold. Then, we can approximate the macroscopic dynamics describ-
ing the evolution of m̄(t ) over the horizon (0,T ] as follows:

d
d t

m̄(t ) ≤ −k̂ m̄(t ), t ∈ (0,T ], m̄0 ∈�, (20.17)

which yields the following upper bound for m̄(t ):

m̄(t )≤ m̄0e−k̂ t , t ∈ (0,T ], m̄0 ∈�.

The inequality above describes a converging linear dynamics which upper bounds the
time evolution of m̄(t ) for all t ∈ (0,T ].

Furthermore, from (20.15), the macroscopic dynamics describing the evolution of
m̄(t ) is given by

d
d t

m̄(t ) =
6
α+

β

a
φ(t )+

σ2

2γ 2
φ(t )

7
m̄(t )+

1
a
(h(m̄(t ),ζ ∗(t ))− b ),

t ∈ (0,T ], m̄0 ∈�.
(20.18)
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20.6. Numerical example 237

Table 20.1. Simulation parameters for the population of producers.

α β T m̄0 hmin hmax b σ s t d (m0) a [101] Q
0 −1 40 70 1 102 0 0.09 7 {1,5,50} {1,5,50}

The interpretation of the above equation is straightforward if we take b = 0 and h̃ m̄(t ) =
h(m̄(t ),ζ ∗(t )). The latter means that the sale price h(m̄(t ),ζ ∗(t )) is linear in m̄(t ). In
this case, we can derive the following tight bound for the microscopic dynamics:

⎧⎨
⎩

m̄(t ) = m̄0eρt ,

ρ= α+
β

a
φ(t )+

σ2

2γ 2
φ(t )+

h̃
a

.
(20.19)

That is to say that if ρ is strictly negative, the mean stock converges exponentially to zero,
and therefore the macroscopic dynamics is stable.

20.6 Numerical example
We provide next a numerical example showing a feasible macroscopic evolution pattern.
The game involves n = 103 players and a discretized set of states % = {xmin , xmin +
1, . . . , xmax}, where xmin = 0 (no reserve) and xmax = 100 (maximal reserve). The simu-
lation parameters are listed in Table 20.1. The reserve changes only with the production
quantity and the stochastic disturbance�(t ), and therefore let us set α= 0 and β=−1.
We also set v(.) = Q x2 and assume that the deterministic disturbance ζ (t ) enters into
the picture indirectly through the coefficient Q. Indeed, Q is monotonically decreasing
in γ as a higher γ leads to a lower ζ ∗, and this in turn implies a lower optimal cost v(.).
Parameter σ is set equal to 0.09 to guarantee that, given the initial distribution m0, x ∈%
at each time. The horizon length is T = 40. The dynamic equation (20.5) is then given
by

$
d x(t ) =−u(t )d t +σ x(t )d�(t ), t = 0,1, . . . ,T ,
x0 ∈ {xmin , xmin + 1, . . . , xmax}. (20.20)

Furthermore, m0 is Gaussian with mean m̄0 = 70 and standard deviation s t d (m0) = 7.
For the sale price h(m̄, .) we consider a linear approximation between the minimum

hmin = 1 when m̄ = xmax and the maximum hmax = 102 when m̄ = 0:

ĥ(m̄(t )) =
8

102− m̄(t )
102

9
hmax +

8
1− 102− m̄(t )

102

9
hmin . (20.21)

Furthermore, we approximate ∂x v(.) = Q x, which fits the case of quadratic value
function, and replace the optimal production in (20.7) by

u∗(t ) = ĥ(m̄(t ))+Q x
a

. (20.22)

We have obtained the simulations via the algorithm displayed below.
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238 Chapter 20. Population of Producers

ALGORITHM 20.1. Simulation algorithm for a population of producers.

Input: Set of parameters as in Table 20.1.
Output: Distribution function m(.), mean m̄(t ), and standard deviation s t d (m(.)).

1 : Initialize. Generate x(0) as n random samples from Gaussian distribution
with mean m̄0 and standard deviation s t d (m0),

2 : for time t = 0,1, . . . ,T − 1 do
3 : if t > 0, then compute distribution m(.), mean distribution m̄(t ),

standard deviation s t d (m(.)),
4 : end if
5 : compute sale price ĥ(m̄(t )),
6 : for player i = 1,2, . . . , n do
7 : compute u(t ) from (20.22),
8 : generate Brownian motion d�(t ),
9 : compute new state x(t + 1) by executing (20.20),
10 : end for
11 : end for
12 : STOP

The macroscopic evolution pattern highlights the impact of the disturbance ζ (t ).
Here, the mean distribution m̄(t ) decreases monotonically, and the standard deviation
s t d (m(.)) first increases due to the influence of the Brownian motion and then decreases
to zero.

This is shown in Fig. 20.1(left). From top to bottom, the figure depicts the time plot
of the microscopic evolution x(t ). In the horizontal axis we plot the time t . The linear

term Qx
a dominates more and more in comparison with the constant term ĥ(m̄(t ))

a from
top to bottom. In particular we have set Q = 1, a = 10 (top); Q = 5, a = 50 (middle);

and Q = 50, a = 500 (bottom). Note that the ratio Q
a is kept constant, whereas ĥ(.)

a is
strongly decreasing from top to bottom. Apparently, the speed of convergence reduces
as well. This is clear from observing the graphs on the right column which display the
time plot m̄(t ) (solid line and y-axis labeling on the left) and the evolution of the standard
deviation s t d (m(.)) (dashed line and y-axis labeling on the right).

20.7 Notes and references
This chapter is based on [42, 43]. This chapter has provided insights on how to specialize
mean-field games to uncertain production applications. We have first applied the method-
ology to production of an exhaustible resource. Then, we have established a mean-field
system for the resulting robust games.

We highlight three key directions for current and future research. A first key direction
examines the connection with risk-sensitive optimal control problems.

A second key direction aims at extending the results to the vector state case and to an
infinite horizon problem involving both a discounted cost functional and a time-average
cost functional. A third direction is concerned with the study of a market where some
producers are leaders and others are followers. The model takes the form of a Stackelberg
game.

Mean-field games applied to production of exhaustible resources were first introduced
in [105].
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Figure 20.1. Macroscopic evolution pattern: showing the effects of a higher control coefficient
Q (associated with a stronger disturbance ζ (t )): both the mean distribution m̄(t ) and the standard devi-
ation s t d (m(.)) decrease monotonically. Reprinted with kind permission of Springer Science+Business
Media [43].
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Chapter 21

Cyber-Physical Systems

21.1 Introduction
This chapter provides a robust mean-field game modeling cyber-attacks and concurrency
in cyber-physical systems (CPSs).

CPSs include (i) computation processes, (ii) physical processes, and (iii) humans in the
loop. Let us consider the paradigmatic example depicted in Fig. 21.1. There, we have a
physical plant, a sensor network, distributed controllers, and actuators. A communica-
tion network connects sensors, controllers, and actuators.

Figure 21.1. Example of cyber-attacks.

In the design of CPSs, a main goal is to guarantee a reasonable good performance
under the following circumstances:

• Cyber-attack: A cyber-attack is any malicious behavior that disturbs the measure-
ment and control process, such as measurement distortions, communication noise
or disruptions, actuator failures, etc.

• Concurrency: Physical processes involve several parallel dynamics, in contrast to
software processes, which are compositions of sequential steps. Thus, there is the
need to bridge an inherently sequential semantics with an intrinsically concurrent phys-
ical world [85]. In hybrid systems, a similar aspect yields to minimum attention
control.

Reframing CPSs within the theory of mean-field games is motivated by the following
reasons. First, the game is large and highly distributed, in that we decentralize decisions,

241
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242 Chapter 21. Cyber-Physical Systems

information, and objectives. Second, worst-case adversarial disturbances may well de-
scribe the effects of cyber-attacks. Third, a mean-field term in the cost functional keeps
in consideration the level of congestion in the communication network. Last but not
least, sticking to heuristics rather than sophisticated strategies may accurately simulate
bounded rationality and limited computation capabilities of the humans in the loop.

In this chapter, we adopt the following model. We have a large number of physical
processes. The players are the controllers of the physical processes. The players’ state
dynamics are given by linear stochastic differential equations. Players minimize a cost
functional which includes a mean-field term. Such a penalty term deters the use of the
communication network when this is congested. Adversarial disturbances with bounded
energy disturb the players and interfere with the optimization of their performances.

Our study provides fundamental insights on consistency, scalability, and stability in
CPSs.

In particular, the provided mean-field game is consistent, in that the macroscopic part
provides an accurate and reliable description of what happens when all players are ratio-
nal. The players are shown to use best-response policies which are scalable, in that they
build on simple information structures. The best-response policies lead to stable micro-
scopic and macroscopic behavior.

In Section 21.2, we formulate the problem. In Section 21.3, we turn the problem into
a mean-field game. In Section 21.4, we study equilibria. In Section 21.5, we study stabil-
ity. In Section 21.6, we provide numerical studies. Finally, in Section 21.7, we provide
conclusions, notes, and references for this chapter.

21.2 A model of CPS
Let a continuum of physical processes be given. Let us model such physical processes as
homogeneous players’ dynamics. Let x(0) ∈ �+ be the initial state of a generic player,
which is realized according to the probability distribution m0. The state of the generic
player at time t , denoted by x(t ) ∈ �+ evolves, according to the following controlled
stochastic process in the interval [0,T ]:

d x(t ) = [αx(t )+βu(t )]d t +σ [x(t )d�(t )+ ζ (t )d t ] , (21.1)

where u(t ) ∈ �+ is the control input, �(t ) is a standard Brownian motion, which is
independent of the initial state x(0) and independent across players and time, α,σ ∈ �
and β< 0 are parameters, and ζ (t ) is an adversarial disturbance.

In addition, let us introduce a probability density function m(x, t ) : �+ × [0,T ]→
[0,+∞[, which satisfies

∫
�+

m(x, t )d x = 1 for every t . Similarly, let a probability den-

sity function for the control be given as z(u, t ) : �× [0,T ]→ [0,+∞[, which satisfies∫
� z(u, t )d u = 1 for every t . Furthermore, let z̄(t ) and m̄(t ) be the mean of the processes

z(.) and m(.), respectively. The players are assigned the following cost functional:

J (x(0), u, z̄ ,ζ ) =�
�

g (x(T ))+
∫ T

0 c(x(t ), u(t ), z̄(t ))d t − γ 2
∫ T

0 |ζ (t )|2d t
�
.

Players wish to stabilize their states to zero, and therefore we can take for the stage
cost

c(x(t ), u(t ), z̄t ,ζ (t )) = h(z̄(t ))u(t )+
�a

2
x(t )2+

b
2

u(t )2
�

,

where h(z̄(t )) is a measure of the congestion. Thus h(z̄(t ))u(t ) is a penalty on the control
of the single player which is proportional to the congestion in the control loop. The
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21.3. Turning a CPS into a mean-field game 243

term a
2 x(t )2, where a > 0, is the cost of being in a nonnull state, and b

2 u(t )2, where
b > 0, accounts for the control energy. The terminal penalty on final state is given by
g (x(T )) =φx(T )2 for a given scalar φ> 0. This term penalizes nonnull states at the end
of the horizon. The congestion term depends on the magnitude of the average control
and is given by

h(z̄(t )) = k|z̄(t )|= k
BBB 1

n
∑n

j=1 uj ,t

BBB= k
BBB 1
β

d
d t m̄(t )− α

β m̄(t )− σ
βζ (t )

BBB , k ∈�+.
(21.2)

Actually, to obtain the last equation we have introduced expectations in (21.1) and con-
sidered deterministic disturbance ζ (t ). By using indistinguishability we obtain

[�u(t )] = 1
β

:
d

d t [�x(t )]
;− α

β ([�x(t )])− σ
βζ (t )

= 1
β

:
d

d t

∫
xm(d x, t )

;− α
β

@∫
xm(d x, t )

A− σ
βζ (t ).

We are in a position to give a precise statement of the problem under study.

Problem 21.1 (Continuum of physical processes). Let� be a one-dimensional Brownian
motion defined on (Ω," ,�), where" is the natural filtration generated by� . Let x(0) be
independent of� and with density m0(x). Consider the problem in � and (0,T ]:

⎧⎪⎨
⎪⎩

inf{u(t )}t

sup
{ζ (t )}t

J (x, u, z̄ ,ζ ),

d x(t ) = [αx(t )+βu(t )+σζ (t )]d t +σ x(t )d�(t ).

In the context of CPSs, dynamics (21.1) is suitable to describe a multi-tank system,
where the tank level is the state variable. Here the control input tries to stabilize the tank
level to zero while at the same time an adversarial disturbance tries to impede stabiliza-
tion. Dynamics (21.1) may represent a power grid, where the angle of the rotor of each
generator is the state. Here the control acts to guarantee transient stability despite the
volatility of the renewable power sources (wind or solar power). As a further example,
we can think of cyber-physical economic systems; here (21.1) shares similarity with the
Black and Scholes model derived in the context of portfolio selection.

21.3 Turning a CPS into a mean-field game
This section shows that the above problem can be modeled as a robust mean-field game.

To this purpose, let v(.) be the (upper) value of the robust optimization problem under
worst-case disturbance starting from time t at state x. Consider the Hamiltonian function

H (x, p, z̄ ) = inf
u
{c(x, u, z̄ )+ p(αx +βu)} ,

where p is the co-state.
The problem of a continuum of physical processes can be turned into a robust mean-

field game as established in the following.
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244 Chapter 21. Cyber-Physical Systems

Theorem 21.1. The closed-loop robust mean-field game for the crowd-averse CPSs takes on
the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t v(.)+
+
− 1

2bβ
2+
:
σ
2γ

;2, |∂x v(.)|2+ )− 1
2b (2h(z̄(t ))β)+αx(t )

*
∂x v(.)

− 1
2b h(z̄(t ))2+ a

2 x(t )2+ 1
2σ

2x(t )2∂ 2
x x v(.) = 0 in �+× [0,T ),

v(x,T ) =φ|x|2 in �+,

∂t m(.)+ ∂x

+
m(.)

�
αx(t )+β−h(z̄ (t ))−∂x v(.)β

b + σ2

2γ 2 ∂x v(.)
�,
+ σ2

2γ 2 ∂x(m(.)∂x v(.))

− 1
2σ

2∂ 2
x x

�
x(t )2m(.)

�
= 0 in �+× [0,T ),

m0(x) given in �+,
˙̄m(t ) = αm̄(t )+βz̄(t )∗+σζ̄ ∗(t ), m̄0 given,

(21.3)
where z̄(t )∗ :=

∫
�+

u∗(x, t )m(x, t )d x, ζ̄ ∗(t ) :=
∫
�+
ζ ∗(t )(x)m(x, t )d x, and the optimal

closed-loop control and disturbance are⎧⎨
⎩

u∗(x) = −h(z̄(t ))−∂x v(.)β
b ,

ζ ∗(x) = σ
2γ 2 ∂x v(.).

(21.4)

Proof. Let us start by proving condition (21.4). To this purpose, let the Hamiltonian be
given by

H (x(t ),∂x v(.), z̄(t )) = infu

"
h(z̄(t ))u(t )+

)
a
2 x(t )2+ b

2 u(t )2
*

+ ∂x v(.)(αx(t )+βu(t ))
#
= 0.

(21.5)

By differentiating with respect to u(t )we obtain b u(t )+h(z̄(t ))+∂xv(.)β= 0. From the
latter we get u∗(x) as in (21.4). The worst-case disturbance ζ ∗(x, t ) is obtained by solving

sup
ζ (t )

"
− γ 2ζ (t )2+ ∂x v(.)σζ (t )

#
.

Assuming concavity in ζ (t ), and after differentiation, we get −2γ 2ζ ∗(t ) + ∂x v(.)σ = 0.
From the latter, we obtain ζ ∗(x, t ) = σ

2γ 2 ∂x v(.). This concludes the first part of the proof
related to condition (21.4).

Let us now focus on the set of (21.3). From Chapter 12 the Hamilton–Jacobi–Isaacs
equation of the robust mean-field game for Problem 21.1 is given by⎧⎪⎪⎨

⎪⎪⎩
∂t v(.)+H (x,∂x v(.), z̄(t ))+

:
σ
2γ

;2 |∂x v(.)|2+ 1
2σ

2x(t )2∂ 2
x x v(.) = 0

in �+× [0,T ),

v(x,T ) =φx2 in �+.

(21.6)

Now, let us substitute the value of u∗ from (21.4) in the Hamiltonian (21.5):

H (x(t ),∂x v(.), z̄(t )) = u∗(t )[h(z̄(t ))+ ∂x v(.)β]+ a
2 x(t )2+ b

2 (u
∗(t ))2+ ∂x v(.)αx(t )

=− 1
2bβ

2|∂x v(.)|2+
+
− 1

2b (2h(z̄(t ))β)+αx(t )
,
∂x v(.)− 1

2b h(z̄(t ))2+ a
2 x(t )2.

Using the above expression of the Hamiltonian in the Hamilton–Jacobi–Isaacs equation
in (21.6), we obtain the first equation in (21.3).
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21.4. Humans in the loop and heuristic policies 245

To obtain the third equation in (21.3), we know from Chapter 12 that the Kolmogorov–
Fokker–Planck equation is given by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂t m(x, t )+ ∂x

:
m(x, t )∂p H (x,∂x v(.), z̄(t ))

;
+ σ2

2γ 2 ∂x(m(x, t )∂x v(.))
− 1

2σ
2∂ 2

x x

�
x(t )2m(x, t )

�
= 0 in �+× [0,T ),

m0(x) given in �+.

(21.7)

By introducing u∗ from (21.4) into the above equation we obtain the third equation in
(21.3).

Finally, the last equation, which is the ordinary differential equation describing the
evolution of the mean m̄(t ), is obtained from (21.1) by averaging over the state space, and
this concludes the proof.

The interpretation of the above result is that the solution of the above game must be
obtained by solving the two coupled partial differential equations in (21.3) in the value
function v and density function m with given boundary conditions.

Recall from Chapter 12 that such a solution is called worst-disturbance feedback mean-
field equilibrium.

21.4 Humans in the loop and heuristic policies
After introducing the robust mean-field game, we now develop a heuristic method to
compute an approximation of the mean-field equilibrium. Such a method builds on a
state space extension involving the microscopic state and the average state distribution.

In the following, we assume that there exists a lower bound on the rate of change of
the mean m̄(t ).

Assumption 21.1. There exist a θ > 0 and an m̃(t ) satisfying� d
d t m̄(t )≥ d

d t m̃(t ) =−θm̃(t ) ∀t ∈ [0,T ],
m̄0 = m̃0.

(21.8)

In addition to this, let us also assume that ζ̄ (t ) = δ m̃(t ).

From (21.2) and using the approximate dynamics d
d t m̃(t ) = −θm̃(t ), m̄0 = m̃0, we

obtain

h(z̄(t )) = k
BBB−θ−α−σδ

β
m̃(t )

BBB := 2s m̃(t ). (21.9)

The problem under study is then given by

inf{u(t )}t

sup
{ζ (t )}t

∫ T

0

+
2s m̃(t )u(t )+

q
2

m̃(t )2+
�a

2
x(t )2+

b
2

u(t )2− γ 2ζ (t )2
�,

d t + g (xT )

s.t.
�

d x(t )
d m̃(t )

�
=
��

α 0
0 −θ

��
x(t )
m̃(t )

�
+
�
β
0

�
u(t )

+
�
σ
0

�
ζ (t )

�
d t +

�
σ x(t )d�(t )
0

�
,
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246 Chapter 21. Cyber-Physical Systems

where the term q
2 m̃2

t is here introduced to guarantee convexity of the cost as formalized
later in Assumption 21.2.

After introducing the extended state and control

X (t ) =
�

x(t )
m̃(t )

�
, ũ(t ) = u(t )+

2
b

s m̃, (21.10)

and by completing the square in the objective function, we get the linear-quadratic prob-
lem ⎧⎪⎨

⎪⎩
inf{ũ(t )}t

sup
{ζ (t )}t

∫ T

0

�
1
2
(X (t )T Q̃X (t )+Rũ(t )2− Γ ζ (t )2)

�
d t + g (xT ),

dX (t ) = (ÃX (t )+B ũ(t )+Cζ (t ))d t +C x(t )d�(t ),
where

Q̃ =
6

a 0
0 q − 4

b s2

7
, R= b , Γ = 2γ 2,

Ã=
6
α −β 2

b s
0 −θ

7
, B =

�
β
0

�
, C =

�
σ
0

�
.

Consider a value function � (x, m̃, t ) (in compact form � (X , t )) in the extended state
space, for which it holds that	

∂t� (X , t )+H (X ,∂X� (X , t ))+
:
σ
2γ

;2 |∂x� (X , t )|2+ 1
2σ

2x(t )2∂ 2
x x� (X , t ) = 0,

� (X ,T ) = g (x).
(21.11)

Let us assume that the above value function has a quadratic structure as given below:

� (x, m̄, t ) = [x(t ) m̃(t )]
�

P11(t ) P12(t )
P21(t ) P22(t )

�
︸ ︷︷ ︸

P (t )

�
x(t )
m̃(t )

�
.

The matrix P (t ) appearing in the above equation must be solution of the differential Ric-
cati equation

Ṗ (t )+ P (t )Ã+ ÃT P (t )− 2P (t )(BR−1BT −C Γ−1C T )P (t )+ Q̃
2 +W = 0, (21.12)

where

BR−1BT −C Γ−1C T =
6 1

bβ
2+ 1

2γ 2σ2 0
0 0

7
,

W =
�
σ2P11 0

0 0

�
.

(21.13)

Assumption 21.2. For the parameters q and s it holds that

Q̃ =
6

a 0
0 q − 4

b s2

7
≥ 0. (21.14)
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21.5. Asymptotic stability 247

Now, given a solution P of the Riccati equation, the best response μ is given by

μ(X (t ), t ) =−2R−1BT P (t )X (t )

=− 2
b [β 0]

�
P11(t ) P12(t )
P21(t ) P22(t )

��
x(t )
m̃(t )

�
=− 2β

b (P11(t )x(t )+ P12(t )m̃(t )).

(21.15)

From the above expression and from (21.10) we get

ũ∗(X (t ), t ) =− 2
b [βP11(t )x(t )+ (βP12(t )+ s)m̃(t )]. (21.16)

Analogously, for the worst-case disturbance we obtain

ζ̃ ∗(X (t ), t ) = 2Γ−1C T P (t )X (t )

= 1
γ 2 [σ 0]

�
P11(t ) P12(t )
P21(t ) P22(t )

��
x(t )
m̃(t )

�
= 1

γ 2 σ(P11(t )x(t )+ P12(t )m̃(t )).

(21.17)

It is worth noting that by taking the average in (21.17), the condition ζ̄ (t ) = δ m̃(t ) in
Assumption 21.1 is satisfied.

21.5 Asymptotic stability
In this section we provide an analysis of the stability of the mean-field equilibrium estab-
lished in the previous section. Introducing the best-response and worst-case disturbance
(21.16)–(21.17) in the stochastic differential equation (21.1) we get

d x(t ) = αx(t )+ (− 2β2

b +
σ2

γ 2 )P11(t )x(t )

+ [(− 2β2

b +
σ2

γ 2 )P12(t )−β 2
b s]m̃(t )+σ x(t )d�(t ),

t ∈ (0,T ], x0 ∈�.

The above stochastic differential equation can be studied in the framework of stochastic
stability theory [162]. To do this, consider the candidate Lyapunov function V (x) = Φx2.
The stochastic derivative of V (x) yields

&V (x(t )) = [σ2+ 2(α− 2β2

b
+
σ2

γ 2
)]Φx(t )2.

Theorem 21.2 (see [162]). If V (x) ≥ 0, V (0) = 0, and&V (x) ≤ −ηV (x) on Qε := {x :
V (x)≤ ε} for some η > 0 and for arbitrarily large ε, then the origin is asymptotically stable
“with probability 1” and

Px(0)

�
sup

T≤t<+∞
x(t )2 ≥ λ

(
≤ V (x(0))e−ψT

λ

for some ψ> 0.

From the above theorem, we get the result below, which states exponential stochastic
stability of the mean-field equilibrium.
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248 Chapter 21. Cyber-Physical Systems

Table 21.1. Simulation parameters for a CPS.

σ [10−1] s t d (m0) b Q
1 5 {20,25,100} {4,5,20}

Corollary 21.3. If [σ2+ 2(α− 2β2

b +
σ2

γ 2 )]Φ< 0, then l i mt→∞x(t ) = 0 almost surely and

Px(0)

�
sup

T≤t<+∞
x(t )2 ≥ λ

(
≤ V (x(0))e−ψT

λ

for some ψ> 0.

From the above result we conclude that the players stabilize their states to zero asymp-
totically.

We can approximate the mean-field equilibrium, which is captured by the evolution
of m̄(t ) over the horizon (0,T ], as

d
d t m̄(t ) =

+
α+(− 2β2

b +
σ2

γ 2 )(P11(t )+ P12(t ))−β 2
b s
,

m̄t , t ∈ (0,T ], x0 ∈�.

Actually, we can derive a differential equation describing the evolution of the mean
distribution which represents a bound, namely	

m̄(t ) = m̄0eρt ,
ρ= α+(− 2β2

b +
σ2

γ 2 )(P11(t )+ P12(t ))−β 2
b s .

The equation above corresponds to saying that the mean distribution converges exponen-
tially to zero in absence of the stochastic disturbances (the Brownian motion), under the
assumption that ρ is strictly negative.

21.6 Numerical example
This section highlights a stereotypical evolution pattern for a CPS made by a continuum
of physical processes.

Let a number of processes n = 103 and a discretized set of states % = {xmin , xmin +
1, . . . , xmax} be given, where xmin = 0 and xmax = 100 (see parameters in Table 21.1).

Let us set the parameters α = 0 and β=−1, and let us examine the influence of ζ (t )
implicitly by increasing the coefficient Q used in the quadratic approximation of the value
function v(.) =Q x2. The horizon length is T = 40.

Let the initial density m0 be Gaussian with mean m̄0 = 70 and standard deviation
s t d (m0) = 5. Consider a linear function of type

ĥ(m̄) =
8

102− m̄
102

9
hmin +

8
1− 102− m̄

102

9
hmax . (21.18)

The above expression is a linear approximation of h(m̄, .) in the interval from hmin = 0 to
hmax = 102. The minimum hmin = 0 is obtained for m̄ = xmin , and the maximum hmax =
102 is obtained for m̄ = xmax . In addition, let us take ∂x v(.) = 2Q x. As a consequence,
from (21.4) we get

u∗(t ) = −ĥ(m̄(t ))+ 2Q x
b

. (21.19)
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21.7. Notes and references 249

Simulations are performed using the following algorithm.

ALGORITHM 21.1. Simulation algorithm for the CPS example.

Input: Set of parameters as in Table 21.1.
Output: Distribution function m(.), mean m̄(t ),

and standard deviation s t d (m(.)).
1 : Initialize. Generate x(0) given m̄0 and s t d (m0)
2 : for time t = 0,1, . . . ,T − 1 do
3 : if t > 0, then compute m(.), m̄(t ), and s t d (m(.))
4 : end if
5 : compute congestion term ĥ(m̄(t )),
6 : for player i = 1,2, . . . , n do
7 : compute new state x(t + 1) by executing (21.1)
8 : end for
9 : end for
12 : STOP

The evolution pattern highlights the effects of a higher linear term Qx
b in comparison

with the constant term ĥ(m̄(t ))
b in the control input expression (21.19). A higher value for

Q can be linked back to the effects of the disturbance ζ (t ). Agents far from zero show a
faster converging dynamics. As a consequence, the standard deviation s t d (m(.)) and the
sparsity decrease with time, while the mean distribution m̄(t ) decreases to zero. This is
shown in Fig. 21.2(left). From top to bottom, the figure shows the time plot of the mi-

croscopic dynamics x(t ). The linear term Qx
b dominates the constant term ĥ(m̄(t ))

b more
and more in the graphs from top to bottom. Actually, Q = 4, b = 20 (top); Q = 5, a = 25

(middle); and Q = 20, a = 100 (bottom). The ratio Q
b is constant, whereas ĥ(.)

b is decreas-
ing from top to bottom. Apparently, the speed of convergence increases. The graphs on
the right column plot the time evolution of m̄(t ) and the evolution of the standard de-
viation s t d (m(.)). The average m̄(t ) is plotted using a solid line and the corresponding
y-axis labels are indicated on the left, while the standard deviation s t d (m(.)) is plotted
using a dashed line and the corresponding y-axis labels are indicated on the right. It is
worth noting that both the mean distribution m̄(t ) and the standard deviation s t d (m(.))
decrease to zero.

21.7 Notes and references
This chapter is based on [41] and discusses robust mean-field games as paradigmatic mod-
els for CPSs. The players simulate a continuum of physical processes, adversarial distur-
bances account for cyber-attacks, and a mean-field term in the individual cost functionals
models congestion. After introducing the robust mean-field game we examine mean-field
equilibrium policies and study stability.

Future directions include the study of (i) the connection with risk-sensitive optimal
control problems, (ii) the vector state case and infinite horizon (with discounted payoff
and time-average payoff), and (iii) a cyber-physical economic market with some big players
and many other small players.
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Figure 21.2. Macroscopic evolution pattern: showing the effects of a higher control coefficient
Q (associated with a stronger disturbance ζ (t )): both the mean distribution m̄(t ) and the standard
deviation s t d (m(.)) decrease monotonically. Reprinted with permission from IEEE [41].

An analysis of the main issue arising when combining sequential semantics and in-
trinsically concurrent physical world is available in [85]. Minimum attention control is
discussed in [87]. Adversarial disturbances with bounded energy in CPSs are studied in
[235]. A multi-tank system is studied in [129]. Transient stability and the volatility of the
renewable power sources (wind or solar power) are developed in [227]. Cyber-physical
economic systems and the Black and Scholes model are discussed in [56].
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Appendix A

Mathematical Review

This text makes use of some fundamentals of real analysis which we survey in this ap-
pendix. This chapter of the appendix is largely subsumed by [23, Appx. I]. We refer the
reader to the classical book by Luenberger [164] for more details.

A.1 Sets and vector spaces
A set S is defined as a collection of elements. The notation s ∈ S indicates that s is an
element of the set S. Conversely, the notation s �∈ S means that s is not an element of the
set S. We call S a finite set if the number of elements is finite; otherwise, it is called an
infinite set. If there is a one-to-one correspondence between the elements of a set and the
positive integers, we say that set is countable; otherwise, it is a uncountable. A space is a
set S enjoying a specific structure. For a linear (vector) space, the structure is of algebraic
nature and enjoys well-known properties which we assume that the reader is familiar with.
Given a set S, if S is a vector space, we call subspace a subset of S that is also a vector space.
As an example, the n-dimensional Euclidean space is a vector space. Here each element is
determined by n real numbers. We denote such a space by �n . An element x ∈ �n is
written as a column vector x = (x1, . . . , xn)

T , where x1, . . . , xn are real numbers and denote
the components of x.

A.1.1 Linear independence and basis

Given a vector space S and a finite number of vectors s1, . . . , sn in S, these vectors are
linearly independent if

∑n
i=1 αi si = 0 implies that αi = 0 for all i = 1, . . . , n. In addition,

if any element in S can be expressed as a linear combination of these vectors, this set of
vectors, denoted by X , is said to be a basis of the space S. As a consequence, S is said to
be finite dimensional, and the “dimension” is the number of elements of X ; otherwise, S
is said to be infinite dimensional.

A.2 Normed linear vector spaces
Given a linear (vector) space S, we say that S is normed if there is a structure induced on
S by a real-valued function mapping every element u ∈ S into a real number, denoted by
‖u‖ and referred to as the norm of u. The norm satisfies the following three axioms:

(1) ‖u‖ ≥ 0 for all u ∈ S; ‖u‖= 0 if and only if u = 0.
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252 Appendix A. Mathematical Review

(2) ‖u + v‖ ≤ ‖u‖+ ‖v‖ for each u, v ∈ S.

(3) ‖αu‖= |α| · ‖u‖ for all α ∈� and for each u ∈ S.

A.2.1 Convergent sequences, limit points, and Cauchy sequence

Given a normed vector space S and an infinite sequence of vectors {s1, s2, . . . , si , . . .} in S,
this sequence is said to converge to a vector s if, for a given ε > 0, there exists an N for
which it holds that ‖s − si‖< ε for all i ≥N . To indicate that the sequence converges we
use the notation si → s , or limi→∞ si → s . The vector s is referred to as the limit point of
the sequence {si }. More generally, a vector s is a limit point of an infinite sequence {si } if
there is an infinite subsequence {sik

} that converges to s .
A Cauchy sequence is an infinite sequence {si } in a normed vector space such that, for

a given ε > 0, there exists an N such that ‖sn − sm‖ < ε for all n, m ≥ N . Letting S be
a normed vector space, S is complete, or a Banach space, if every Cauchy sequence in S
converges to an element of S.

A.2.2 Open, closed, and compact sets

Given a normed vector space S, an element s ∈ S, and an ε > 0, we call the set Nε(s) ={x ∈ S : ‖x− s‖< ε} an ε-neighborhood of s . Letting a subset X of S be given, X is said to
be open if, for every x ∈X , there exists an ε > 0 such that Nε(x)⊂X . Letting a subset X
of S be given, X is said to be closed if its complement in S is open. This is equivalent to
saying that every convergent sequence in X has its limit point in X . Letting a set X ∈ S
be given, the largest open subset of X is referred to as the interior of X and denoted as
int{X }.

Let a normed vector space S be given. A subset X of S is compact if every infinite
sequence in X has a convergent subsequence whose limit point is in X . If the subset X
is finite dimensional, then the property of compactness is equivalent to the properties of
being closed and bounded.

A.2.3 Functions, functionals, and continuity

Given two vector spaces S and T , a function is a mapping f of S into T and is denoted by
f : S → T or y = f (x) for x ∈ S, y ∈ T . If T =�, then f is a functional.

Let S and T be two normed linear spaces, and let f : S → T be given. f is continuous
at x0 ∈ S if, for every ε > 0, there exists a δ > 0 such that f (x) ∈ Nε( f (x

o)) for every
x ∈Nδ (x0). f is continuous everywhere or, simply, continuous if it is continuous at every
point of S.

A.3 Matrices
A rectangular array A of numbers arranged in m rows and n columns is called an (m×n)
matrix. The numbers are the elements or entries of the matrix. We use a subscript i j to
denote the element in the ith row and j th column of A, namely ai j or [A]i j (occasionally
also ai

j ). We also write A= {ai j }. A matrix with the same number of rows and columns
is a square matrix. An identity matrix is an (n × n) square matrix A such that ai i = 1,
i = 1, . . . , n, and ai j = 0, i �= j , i , j = 1, . . . , n. We symbolically write In or, simply, I for
such a matrix.

Given an (m× n) matrix A, the transpose of A is the (n×m) matrix AT with entries
aT

i j = aj i . A square matrix A is said to be symmetric if A = AT . A square matrix A is
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A.4. Convex sets and convex functionals 253

nonsingular if there is an (n × n) matrix called the inverse of A, which is symbolically
written as A−1, that satisfies the equations A−1A= I =AA−1.

A.3.1 Eigenvalues and quadratic forms

Given a square matrix A, a scalar λ and a nonzero vector x such that Ax = λx are an
eigenvalue and an eigenvector of A, respectively.

Let a square symmetric matrix A be given, and let the eigenvalues be all positive (re-
spectively, nonnegative). A is a positive definite (respectively, nonnegative definite or pos-
itive semidefinite). Equivalently, a symmetric (n × n) matrix A is positive definite (re-
spectively, nonnegative definite) if xT Ax > 0 (respectively, xT Ax ≥ 0) for all nonzero
vectors x ∈�n . The matrix A is negative definite (respectively, nonpositive definite) if the
matrix (−A) is positive (respectively, nonnegative) definite. We use the notation A > 0
(respectively, A ≥ 0) to mean that A is positive (respectively, nonnegative) definite. An
n×n matrix A is row-stochastic if the matrix has nonnegative entries ai

j and
∑n

j=1 ai
j = 1

for all i = 1, . . . , n. A matrix A is doubly stochastic if both A and its transpose AT are
row-stochastic.

A.4 Convex sets and convex functionals
Given a vector space S, a subset C of S is convex if for any pair u, v ∈ C and every
scalar α ∈ [0,1], it holds that αu + (1− α)v ∈ C . Let a functional f : C → � be given,
which is defined over a convex subset C of a vector space S. The functional f is convex
if, for any pair u, v ∈ C and any scalar α ∈ [0,1], it holds that f (αu + (1 − α)v) ≤
α f (u)+ (1−α) f (v). If the latter is a strict inequality for all α ∈ (0,1), the functional f is
strictly convex. Conversely, f is concave if (− f ) is convex, and strictly concave if (− f ) is
strictly convex.

Given a functional f : �n → �, if the partial derivatives of f with respect to the
components of x = (x1, . . . , xn )

T ∈ �n exist, then f is differentiable. In this case we use
the symbol

∇ f (x) = [∂ f (x)/∂ x1, . . . ,∂ f (x)/∂ xn].

We refer to∇ f (x) as the gradient of f at x. The gradient is also symbolically expressed as
fx (x) or d f (x)/d x. Consider a partition of x involving two vectors y and z of dimensions
n1 and n− n1, respectively. We use the notation ∇ f (y, z) or ∂ f (y, z)/∂ y to denote the
partial gradient of f with respect to y. Consider a vector-valued function g : �n → �m ,
and let its components be differentiable with respect to x ∈ �n . Then, g (x) is said to be
differentiable, and the derivative d g (x)/d x is an (m× n) matrix determined by an i j th
entry of the form ∂ gi (x)/∂ xj . Here we write gi to mean the ith component of g .

Consider the gradient ∇ f (x) which is a vector. Its derivative corresponds to the sec-
ond derivative of f : �n → � and is an (n × n) matrix. If f (x) is twice continuously
differentiable with respect to x, then such a matrix, denoted by∇2 f (x), is symmetric and
is referred to as the Hessian matrix of f at x. A necessary and sufficient condition for the
Hessian matrix to be nonnegative definite for all x ∈�n is that f be convex.

Let a subset C ⊆�n be given, and consider a point x0 in its boundary. Furthermore,
let a �= 0 be given such that aT x ≤ aT x0 for all x ∈ C . Then, the hyperplane {x : aT x =
aT x0} is referred to as the supporting hyperplane to C at the point x0. That is to say that
the hyperplane {x : aT x = aT x0} separates the vector x0 and the set C . Geometrically this
corresponds to saying that the hyperplane {x : aT x = aT x0} is tangent to C at x0, and the
half-space {x : aT x ≤ aT x0} contains C .
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Appendix B

Optimization

In this appendix we give some basic notions of mathematical optimization which we use
throughout the text.

B.1 Optimizing functionals
This section is based on [23, Appx. I.5]. Consider a vector space S, a functional f : S →�,
and a subset X ⊆ S. The optimization problem

minimize f (x) subject to x ∈X

consists in finding an element x∗ ∈X , which we call a minimizing element or an optimal
solution, for which it holds that

f (x∗)≤ f (x) ∀x ∈X .

This is occasionally called a globally minimizing solution, in contrast with a locally
minimizing solution, as defined next. An element xo ∈X is a locally minimizing solution
if there is an ε > 0 for which it holds that

f (xo)≤ f (x) ∀x ∈Nε(x
o)∩X .

An optimal solution may not exist. An optimal solution exists if the set of real num-
bers { f (x) : x ∈X } is bounded below and there exists an x∗ ∈X such that inf{ f (x) : x ∈
X }= f (x∗), in which case we write

f (x∗) = inf f (x) =min f (x).

We say that an optimal solution does not exist if such an x∗ cannot be computed, even
though inf{ f (x) : x ∈X } is finite. In this case the notation

inf{ f (x) : x ∈X } or infx∈X f (x)

stands for the optimal value of the optimization problem. In the case where { f (x) : x ∈X }
is not bounded below, namely infx∈X f (x) = −∞, then neither an optimal solution nor
an optimal value exists.

We can always convert a maximization problem into a minimization problem by re-
placing f by − f . Any solution of one problem is also solution to the other problem.
The optimal value of the maximization problem is symbolically expressed as supx∈X f (x),
which is equal to minus the optimal value of the minimization problem. For a given max-
imizing element x∗ ∈X , we have supx∈X f (x) =maxx∈X f (x) = f (x∗).
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256 Appendix B. Optimization

B.1.1 Existence of optimal solutions

Keeping in mind the aforementioned minimization problem, if X is a finite set, there is
only a finite number of comparisons, and therefore an optimal solution exists.

If X is not finite, an optimal solution exists if f is continuous and X is compact. This
is a result known as the Weierstrass theorem. When X is finite dimensional, recall that
compactness is equivalent to being closed and bounded.

B.1.2 Necessary and sufficient conditions for optimality

Consider S =�n and f :�n →�, which is differentiable. If X is an open set, an optimal
solution must satisfy the first-order necessary condition

∇ f (x∗) = 0.

Furthermore, if f is also twice continuously differentiable on �n , an optimal solution
must satisfy the second-order necessary condition

∇2 f (x∗)≥ 0.

The two conditions mentioned above are necessary for x∗ ∈ X to be a locally mini-
mizing solution. Furthermore, if X is also a convex set and f is a convex functional on
X , then the above conditions are also sufficient for global optimality.

B.2 Mathematical optimization
This section is based on [64, Chap. 1] and [117, Chap. 13]. A mathematical optimization
problem can be symbolically expressed by

minimize f0(x)
subject to fi (x)≤ bi , i = 1, . . . , m. (B.1)

In the above problem, the vector x = (x1, . . . , xn)
T is the optimization variable of

the problem, the function f0 : �n → � represents the objective function, the functions
fi : �n → �, i = 1, . . . , m, are the (inequality) constraint functions, and the constants
b1, . . . , bm are the bounds for the constraints. A vector x∗ is the optimal solution to the
problem (B.1) if it provides the smallest value of the objective functions among all vec-
tors that satisfy the constraints. In other words we have that for any z with f1(z) ≤
b1, . . . , fm(z)≤ bm , we have f0(z)≥ f0(x∗).

The optimization problem (B.1) is said to be a linear program if the objective and
constraint functions f0, . . . , fm are linear. That is to say that they satisfy

fi (αx +βy) = α fi (x)+β fi (y)

for all x, y ∈ �n and all α, β ∈ �. Conversely, a nonlinear program is an optimization
problem which is not linear. An optimization problem is said to be convex if the objective
and the constraint functions are convex, i.e., if it holds that

fi (αx +βy)≤ α fi (x)+β fi (y), α+β= 1, α,β≥ 0.

Note that convex optimization is a generalization of linear programming, as any linear
program is a convex optimization problem.

D
ow

nl
oa

de
d 

08
/1

9/
16

 to
 1

31
.1

56
.2

24
.6

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

co
nt

ro
len

gin
ee

rs
.ir



B.2. Mathematical optimization 257

B.2.1 Linear programming

Linear programming involves optimization problems where the objective and all con-
straint functions are linear. A linear program is given by

minimize cT x
subject to aT

i x ≤ bi , i = 1, . . . , m,
(B.2)

where the vectors c , a1, . . . ,am ∈�n and the scalars b1, . . . , bm ∈� represent the parame-
ters of the problem.

The solution of a linear program has no simple analytical formula. However, there
exist effective solution algorithms, such as Dantzig’s simplex algorithm, or interior point
methods described in [117, Chap. 4] and [64, Chap. 11].

B.2.2 The complementarity problem

Consider the variables w1, w2, . . . , wp and z1, z2, . . . , zp . The complementarity problem
consists in finding a solution of the constraints

w = F (z), w ≥ 0, z ≥ 0

that verifies also the following complementarity constraint:

wT z = 0.

In the above problem, w and z represent column vectors, and F is a given vector-valued
function. Note that the problem has no objective function. Such a problem is referred to
as the complementarity problem because of the complementary relationships that either
wi = 0 or zi = 0 (or both) for each i = 1,2, . . . , p.

A special complementarity problem is the linear complementarity problem, which is
symbolically expressed as

F (z) = q +M z.

In the above, q is a column vector and M is a p × p matrix.

B.2.3 Quadratic programming

The convex optimization problem (B.1) is said to be a quadratic program if the objective
function is (convex) quadratic and the constraint functions are affine. A quadratic pro-
gram is in general given by

minimize (1/2)xT P x + qT x + r
subject to Gx ≤ h,

Ax = b ,
(B.3)

where P ∈ Sn
+, G ∈�m×n , and A∈�p×n . The symbol Sn

+ indicates the set of symmetric
positive semidefinite matrices. A quadratic program involves the minimization of a con-
vex quadratic function over a polyhedron. If the objective in (B.1) as well as the inequality
constraint functions are (convex) quadratic, as in

minimize (1/2)xT P x + qT x + r
subject to (1/2)xT Pi x + qT

i x + ri ≤ 0, i = 1, . . . , m,
Ax = b ,

(B.4)
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258 Appendix B. Optimization

where Pi ∈ Sn
+, i = 0,1, . . . , m, the problem is called a quadratically constrained quadratic

program. A quadratically constrained quadratic program involves the minimization of a
convex quadratic function over a feasible region that is the intersection of ellipsoids (when
Pi > 0). Linear programs are special quadratic programs, which are obtained by taking
P = 0 in (B.3). Quadratically constrained quadratic programs include quadratic programs
(and therefore also linear programs), in which case we have Pi = 0 in (B.4) for i = 1, . . . , m.
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Appendix C

Lyapunov Stability

This appendix introduces Lyapunov stability and related concepts. It is based on [162].
These concepts are extensively used throughout the text.

Consider the trajectory of a dynamic system starting from x0 at time t0, and denote
such a trajectory by x(t ; x0, t0). In the following we give three different definitions of
Lyapunov stability. Let the equilibrium solution be 0 unless stated otherwise.

Definition C.1 (Lyapunov stability). The equilibrium solution is stable if, given ε > 0,
there exists a δ(ε, t0)> 0 such that, for all ‖x0‖<δ ,

sup
t≥t0

‖x(t ; x0, t0)‖< ε.

Definition C.2 (Asymptotic Lyapunov stability). The equilibrium solution is asymptot-
ically stable if it is stable and if there exists a δ ′ > 0 such that ‖x0‖<δ ′ guarantees that

lim
t→∞‖x(t ; x0, t0)‖= 0.

If the convergence condition is satisfied for all initial times, t0, then the equilibrium solution
is uniformly asymptotically stable.

Definition C.3 (Exponential Lyapunov stability). The equilibrium solution is exponen-
tially stable if it is asymptotically stable and if there exist a δ > 0 and α > 0 and a β > 0
such that ‖x0‖ ≤ δ guarantees that

‖x(t ; x0, t0)‖ ≤β‖x0‖e−α(t−t0).

If the convergence condition is satisfied for all initial times, t0, then the equilibrium solution
is uniformly exponentially stable.

Let a nonnegative continuous function V (x) on �n be given, where V (0) = 0 and
V (x) > 0 for x �= 0. Assume that for some m ∈ � the set Qm = {x ∈ �n : V (x) < m} is
bounded and V (x) has continuous first partial derivatives in Qm . Given the initial time
t0 = 0, let x(t ) = x(t , x0) be the unique solution of the initial value problem$

ẋ(t ) = f [x(t )], t ≥ 0,
x(0) = x0 ∈�n , f (0) = 0, (C.1)
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260 Appendix C. Lyapunov Stability

for x0 ∈Qm . From the continuity of V (x), the open set Qr for r ∈ (0, m] given by Qr ={x ∈�n : V (x)< r } includes the origin and decreases monotonically to the singleton set
{0} as r → 0+. Consider the total derivative V̇ (x) of V (x) along the solution trajectory
x(t , x0), which is given by

V̇ (x) =
dV (x)

d t
= f T (x)

∂ V
∂ x

:=−k(x). (C.2)

If such a derivative satisfies −k(x) ≤ 0 for all x ∈ Qm , where k(x) is continuous, then
V (x(t )) is a nonincreasing function of t . That is to say that V (x0)< m implies V (x(t ))<
m for all t ≥ 0. This corresponds to the stability of the zero solution of (C.1) in the sense
of Lyapunov, and V (x) is called a Lyapunov function for (C.1). Furthermore, if k(x)> 0
for x ∈ Qm \ {0}, then V (x(t )), as a function of time t , is strictly monotone decreasing.
This implies that V (x(t )) → 0, as t → +∞, from (C.2). From this we also have that
x(t ) → 0 as t → +∞. We can arrive at the same result from a different perspective.
Actually, after integration of (C.2) we have

0<V (x0)−V (x(t )) =
∫ t

0
k(x(s))d s <+∞ for t ∈ [0,+∞). (C.3)

From (C.2) we then get x(t )→ {0} = {x ∈ Qm : k(x) = 0} as t → +∞. This proves the
asymptotic stability for system (C.1).

The Lyapunov function V (x)may be regarded as a generalized energy function of the
system (C.1). The above argument illustrates the physical intuition that if the energy of a
physical system is always decreasing near an equilibrium state, then the equilibrium state
is stable.
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Appendix D

Some Notions of
Probability Theory

This appendix reviews some basics of probability theory used throughout the text. It is
largely subsumed by [23, Appx. II].

D.1 Basics of probability theory
Consider a set Ωwhose elements are the outcomes of a random experiment. As an exam-
ple, if the experiment is the toss of a coin, then the setΩ has two elements. Another exper-
iment could be the selection of an integer from the set [0,∞), in which caseΩ is countably
infinite. Furthermore, if the experiment is the continuous roulette wheel, then we have a
nondenumerable set Ω. We call event any subset of Ω on which a probability measure can
be defined. In particular, let us denote by F the class of all such events, namely subsets of
Ω. Then F enjoys the following properties:

(1) Ω ∈ F.

(2) If A1,A2 ∈ F, then its complement Ac = {ω ∈ Ω : ω �∈ A} belongs to F. Note that
the empty set, �, is the complement of Ω and also belongs to F.

(3) If A1,A2 ∈ F, then A1 ∩A2 and A1 ∪A2 also belong to F.

(4) If A1,A2, . . . ,Ai , . . . denote a countable number of events, then the countable inter-
section ∩∞i=1Ai and the countable union ∪∞i=1Ai are also events (i.e., ∈ F).

The class F defined as above is a sigma algebra (σ -algebra). We call probability measure
P a nonnegative functional defined on the elements of this σ -algebra. Such a probability
measure P satisfies the following axioms:

(1) For every event A∈ F, 0≤ P(A)≤ 1, and P(Ω) = 1.

(2) If A1,A2 ∈ F and A1∩A2 =φ (i.e., A1 and A2 are disjoint events), then P(A1∪A2) =
P(A1)+P(A2).

(3) Let {Ai } denote a (countably) infinite sequence in F, with the properties Ai+1 ⊂Ai
and ∩∞i=1Ai = �. Then, the limit of the sequence of real numbers {P(Ai )} is zero
(i.e., limi→∞P(Ai )→ 0).

The aforementioned triple (Ω,F,P) is referred to as a probability space. The pair (Ω,F)
is a measurable space. If Ω = �n , then the subsets are n-dimensional rectangles, and
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262 Appendix D. Some Notions of Probability Theory

the smallest σ -algebra generated by these rectangles is called the n-dimensional Borel σ -
algebra and is denoted by 
n . We call Borel sets the elements of 
n . We refer to the
pair (�n ,
n ) as a Borel (measurable) space. A probability measure defined on this space is
known as a Borel probability measure.

D.1.1 Finite and countable probability spaces

Let Ω be a finite set, and denote it by Ω = {ω1,ω2, . . . ,ωn}. Then, we can assign prob-
ability weights on individual elements of Ω rather than on subsets of Ω. In doing this,
we use the symbol pi to indicate the probability of the event ωi . We refer to the n-tuple
(p1, p2, . . . , pn) as a probability distribution over Ω. Evidently, it holds that 0 ≤ pi ≤ 1
for all i = 1, . . . , n. Furthermore, if the elements of Ω are all independent events, we
get
∑n

i=1 pi = 1. The same convention applies when Ω is a countable set (i.e., Ω =
{ω1,ω2, . . .}), in which case we simply replace n by∞.

D.2 Random vectors
Consider two measurable spaces (Ω1,F1) and (Ω2,F2), and let f be a function defined from
Ω1 into Ω2. f is a measurable function if for every A ∈ F2 we have f −1(A) := {ω ∈ Ω1 :
f (ω)∈A} ∈ F1. Equivalently we can say that f is a measurable transformation of (Ω1,F1)
into (Ω2,F2). Furthermore, if (Ω2,F2) is a Borel space, then f is said to be a Borel function,
in which case we denote it by x. In addition to this, if the Borel space is (Ω2,F2) = (�,
),
then the Borel function x is referred to as a random variable. In the special case when
(Ω2,F2) = (�n ,
n), x is an n-dimensional random vector.

If there is a probability measure P defined on (Ω1,F1)—which we henceforth write
simply as (Ω,F)—then the random vector x will induce a probability measure Px on the
Borel space (�n ,
n ), so that for every B ∈ 
n we have Px (B) = P(x−1(B)). Since every
element of 
n is an n-dimensional rectangle, the arguments of Px are in general infinite
sets; however, considering the collection of sets {ξ ∈ �n : ξi < ai , i = 1, . . . , n} in 
n ,
where ai (i = 1, . . . , n) are real numbers, restriction of Px to this class is also a probability
measure whose argument is now a finite set. This probability measure is denoted by Px =
Px (a1,a2, . . . ,an) and is referred to as probability distribution function of the random vector
x. It is worth noting that

Px(a1,a2, . . . ,an) = P({ω ∈Ω : x1(ω)< a1, x2(ω)< a2, . . . , xn(ω)< an}).
In the above xi is a random variable which denotes the ith component of x. If n > 1, Px
is occasionally called the cumulative (joint) probability distribution function. It is a well-
established fact that there is a one-to-one correspondence between Px and Px , and the
subspace on which Px is defined can generate the whole 
n .

D.2.1 Independence

Let the probability distribution function of a random vector x = (x1, . . . , xn ) be given.
The (marginal) distribution function of each random variable xi is given by

Pxi
(ai ) = lim

aj→∞, j �=i
Px(a1, . . . ,an ).

The random variables x1, . . . , xn are independent if

Px(a1, . . . ,an) = Px1
(a1)Px2

(a2) . . . Pxn
(an)

for all scalars a1, . . . ,an .
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D.3. Integrals and expectation 263

D.2.2 Probability density function

A Lebesgue measure is a measure defined on subintervals of the real line and is equal to
the length of the corresponding subinterval(s). Such a measure assigns zero weight to
countable subsets of the real line, and its definition can be extended to n-dimensional
rectangles in �n . Consider a Borel probability measure P defined on (�n ,
n ). Such a
measure P is said to be absolutely continuous with respect to the Lebesgue measure if
any element of 
n which has a Lebesgue measure of zero has also a P-measure of zero.
With this in mind, recall a result of probability theory which says that if x : (Ω1,F,P)→
(�n ,
n ,Px ) is a random vector and if Px is absolutely continuous with respect to the
Lebesgue measure, there exists a nonnegative Borel function px (.) such that, for every
A∈ 
n ,

Px (A) =
∫

A
px (ξ )dξ .

We refer to px (.) as the probability density function of the random vector x. Equivalently,
the preceding relation can be written as

Px(a1, . . . ,an) =
∫ a1

−∞
. . .
∫ an

−∞
px (ξ1, . . . ,ξn)dξ1dξn

for every scalar a1, . . . ,an .

D.3 Integrals and expectation
Consider a random vector x : (Ω,F,P) → (�n ,
n ,Px ) and a nonnegative Borel func-
tion f : (�n ,
n) → (�m ,
m). As a consequence, f can also be considered as a ran-
dom vector from (Ω,F) into (�m ,
m). Its average value (expected value) is determined
by
∫
Ω

f (x(ω))P(dω) or equivalently by
∫

Rn f (ξ )Px(dξ ). Both integrals are well defined
and are uniquely equal in value. If f changes signs, then we take f = f + − f −, where
both f + and f − are nonnegative, and write the expected value of f as

�[ f (x)] =
∫
�n

f +(ξ )Px(dξ )−
∫
�n

f −(ξ )Px(dξ ) :=
∫
�n

f (ξ )Px(dξ ),

provided that at least one of the pairs �[ f +(x)] and �[ f −(x)] is finite. Since, by defi-
nition, Px (dξ ) = Px(ξ + dξ )− Px(ξ ) := d Px (ξ ), this integral can further be written
as

�[ f (x)] =
∫
�n

f (ξ )d Px (ξ ),

which is a Lebesgue–Stieltjes integral and which is the convention that we shall adopt.
When f (x) = x we have

�[x] :=
∫
�n

ξ d Px (ξ ) := x̄,

which is the mean (expected) value of x. We call the covariance of the n-dimensional ran-
dom vector x the quantity given by

�[(x − x̄)(x− x̄)T ] =
∫
�n

(ξ − x̄)(ξ − x̄)T d Px (ξ ) := cov(x).
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264 Appendix D. Some Notions of Probability Theory

This is a nonnegative definite matrix of dimension (n×n). Under the assumption that Px
is absolutely continuous with respect to the Lebesgue measure, we can equivalently write

�[ f (x)] =
∫
�n

f (ξ )px(ξ )dξ ,

where px (.) is the corresponding probability density function. In the case where Ω in-
volves a finite number of independent eventsω1,ω2, . . . ,ωn , the integrals are replaced by
the summation

�[ f (x(ω))] =
n∑

i=1

f (x(ωi ))pi .

In the above, the symbol pi defines the probability of occurrence of event ωi . For a
countable set Ω, we have the counterpart

�[ f (x(ω))] = lim
n→∞

n∑
i=1

f (x(ωi ))pi .
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Appendix E

Stochastic Stability

This appendix provides some of the foundations of stochastic stability theory. It is based
on [162]. We first extend to stochastic systems the definitions of Lyapunov stability given
in Appendix C for deterministic systems. Then, we introduce some basic results on sta-
bility.

E.1 Different definitions of stochastic stability
We shall note that there are at least three times as many definitions for the stability of
stochastic systems as there are for deterministic systems. This is due to the fact that in
a stochastic setting we have three different types of convergence, such as convergence in
probability, convergence in mean (or moment), and convergence in an almost sure (sample
path, probability 1) sense.

Definition E.1 (Lyapunov stability in probability). The equilibrium solution is stable in
probability if, given ε,ε′ > 0, there exists a δ(ε,ε′, t0) such that, for all ‖x0‖<δ ,

�
�

sup
t≥t0

‖x(t ; x0, t0,ω)‖> ε′
(
< ε.

Here, � denotes probability.

Definition E.2 (Lyapunov stability in the pth moment). The equilibrium solution is
stable in the pth moment, p > 0, if, given ε > 0, there exists a δ(ε, t0) > 0 such that
‖x0‖<δ guarantees that 1

�
�

sup
t≥t0

‖x(t ; x0, t0,ω)‖p
(
< ε.

Definition E.3 (Almost sure Lyapunov stability). The equilibrium solution is almost
sure stable if

�
�

lim‖x0‖→0
sup
t≥t0

‖x(t ; x0, t0,ω)‖= 0
(
= 1.

It is worth noting that almost sure stability corresponds to saying that, with proba-
bility 1, all sample solutions are Lyapunov stable.

1Here, � denotes expectation.
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266 Appendix E. Stochastic Stability

We provide next definitions of asymptotic stability for stochastic systems.

Definition E.4 (Asymptotic stability in probability). The equilibrium solution is asymp-
totically stable in probability if it is stable in probability and if there exists a δ ′ > 0 such
that ‖x0‖<δ ′ guarantees that

lim
δ→∞�

�
sup
t≥δ
‖x(t ; x0, t0,ω)‖> ε

(
= 0.

If the convergence condition is verified for all initial times, t0, then the equilibrium
solution is uniform asymptotic stability in probability.

Definition E.5 (Asymptotic stability in the pth moment). The equilibrium solution
is asymptotically pth moment stable if it is stable in the pth moment and if there exists a
δ ′ > 0 such that ‖x0‖<δ ′ guarantees that

lim
δ→∞�

�
sup
t≥δ
‖x(t ; x0, t0,ω)‖

(
= 0.

Definition E.6 (Almost sure asymptotic Lyapunov stability). The equilibrium solution
is almost surely asymptotically stable if it is surely stable and if there exists a δ ′ > 0 such
that ‖x0‖<δ ′ guarantees that

lim
δ→∞

�
sup
t≥δ
‖x(t ; x0, t0,ω)‖> ε

(
= 0.

We introduce next the definitions of exponential stability for stochastic systems.

Definition E.7 (pth moment exponential Lyapunov stability). The equilibrium solu-
tion is pth moment exponentially stable if there exist δ > 0 and α > 0 and a β > 0 such
that ‖x0‖<δ guarantees that

�{‖x(t ; x0, t0,ω)‖} ≤β‖x0‖e−α(t−t0).

Definition E.8 (Almost sure exponential Lyapunov stability). The equilibrium solution
is almost surely exponentially stable if there exist δ > 0 and α > 0 and a β > 0 such that
‖x0‖<δ guarantees that

�{‖x(t ; x0, t0,ω)‖} ≤β‖x0‖e−α(t−t0) = 1.

E.2 Some fundamental theorems
We now examine the key ideas behind the Lyapunov function approach to the stability
analysis of stochastic systems.

Consider the stochastic system (E.1), which is defined on a probability space (Ω," , P ),
where Ω is the set of elementary events (sample space)," is the σ field which consists of
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E.2. Some fundamental theorems 267

all subsets of Ω that are measurable, and P is a probability measure:$
ẋ(t ) = f [x(t ),ω], t ≥ 0,
x(0) = x0. (E.1)

To study stability let us focus on the time derivative of the expectation of V (x(t )),
which is denoted by &V (x(t )), where & is the infinitesimal generator of the process
x(t ). If the system is such that the conditional probability distribution of future states
of the process depends only upon the present state, not on the sequence of events that
preceded it, then the system is said to be Markovian.

If the system is Markovian, the solution process is a strong, time homogeneous Markov
process. Then,& is defined by

&V (x0) = lim
Δt→0

Ex0
(V (x(Δt )))−V (x0)

Δt
, (E.2)

where the domain of & is the space of functions V (x) for which (E.2) is well defined.
Note that by doing this we construct a natural analogue of the total derivative of V (x)
along the solution x(t )which we use in the deterministic case. With this in mind, assume
that there exists a Lyapunov function V (x)which satisfies the conditions stated above and
for which it also holds that&V (x)≤−k(x)≤ 0. From this we obtain

0≤V (x0)−�x0
V (x(t )) =�x0

∫ t
0 k(x(s))d s

=−�x0

∫ t
0 &V (x(s))d s <+∞ (E.3)

and for t , s > 0

�x(s )(V (x(t + s)))−V (x(s))≤ 0 almost surely. (E.4)

Equation (E.4) essentially states that the Lyapunov function V (x(t )) is a supermartin-
gale. Then, from the martingale convergence theorem, we have that V (x(t ))→ 0 almost
surely as t →+∞. That is to say that x(t )→ 0 almost surely as t →+∞. From (E.3) we
have that x(t )→{x ∈�n : k(x) = 0} almost surely.

From (E.3) for given x0, we obtain the following supermartingale inequality:

�x0

�
sup

0≤t<+∞
V (x(t ))≥ ε

(
≤ V (x0)

ε
. (E.5)

The above yields some of the key results by Kushner [142, 143, 144]. To keep the analysis
reasonably simple, suppose that x(t ) ∈Qm almost surely for some m > 0.

Theorem E.9.

1. Stability with probability 1:
If&V (x)≤ 0 with V (x)> 0 for x ∈Qm\{0}, then the origin is stable with probability
1.

2. Asymptotic stability with probability 1:
If&V (x) = −k(x) ≤ 0 with k(x) > 0 for x ∈Qm \ {0} and k(0) = 0, and if for any
d > 0 small, εd > 0 exists so that k(x)≥ d for x ∈ {Qm : ‖x‖ ≥ εd }, then the origin is
stable with probability 1 with

�x0
{x(t )→ 0as t →+∞}≥ 1− V (x0)

m
.
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268 Appendix E. Stochastic Stability

In particular if the conditions are satisfied for arbitrarily large m, then the origin is
asymptotically stable with probability 1.

3. Exponential asymptotic stability with probability 1:
If V (x)≥ 0, V (0) = 0, and&V (x)≤−αV (x) on Qm for some α > 0, then the origin
is stable with probability 1, and

�x0
{ sup

T≤t<+∞
V (x(t ))≥ λ} ≤ V (x0)

m
+

V (x0)e
−αT

λ
∀T ≥ 0.

In particular, if the conditions are satisfied for arbitrarily large m, then the origin is
asymptotical stable with probability 1, and

�x0
{ sup

T≤t<+∞
V (x(t ))≥ λ} ≤ V (x0)e−αT

λ
.

We borrow from Kushner’s work a few examples that show the application of the
stability theorems.

Example E.10. Let the following scalar Itô equation be given:

d x = axd t +σ xd w, (E.6)

where w is a standard Wiener process. For this system, the infinitesimal generator takes
the form

& = 1
2
σ2x2 d 2

d x2
+ ax

d
d x

.

Let us consider the Lyapunov function V (x) = x2. Then we have

&V (x) = (σ2+ 2a)x2.

Now, if σ2+2a < 0, then with Qm = {x : x2 < m2}, from item 1 of the previous theorem,
the zero solution is stable with probability 1. Furthermore, set m → +∞. By item 2 of
the theorem,

lim
t→∞ x(t ) = 0 almost surely,

where x(t ) is solution of (E.6). By item 3 of the theorem,

�x0
{ sup

T≤t<+∞
x(t )2 ≥ λ} ≤ V (x0)e

−αT

λ

for some α > 0.

In Has’minskii’s work [113] and references therein, we find a detailed analysis of dif-
fusion processes which are solutions of a stochastic system described by the following Itô
differential equation:�

d x(t ) = b (t , x)d t +
∑k

r=1σr (t , x)dξr (t ), t ≥ s ,
x(s) = xs ,

(E.7)
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E.2. Some fundamental theorems 269

where ξr (t ) are independent standard Wiener processes and the coefficients b (t , x) and
σr (t , x) satisfy Lipschitz and growth conditions. The infinitesimal generator & is given
by

&V (t , x) = ∂ V
∂ t +

∑n
i=1 bi (t , x) ∂ V

∂ xi
+ 1

2

∑n
i , j=1 ai j (t , x) ∂ 2V

∂ xi∂ xj
. (E.8)

Note that & is a second-order partial differential operator on V (t , x), which are twice
continuously differentiable with respect to x and continuously differentiable with respect
to t .

In the following we provide some typical results obtained by Has’minskii’s work. The
key idea is to derive an inequality like (E.5).

Consider a neighborhood of 0, say U , and let U1 = {t > 0} ×U . Let us denote by
C 0

2 (U1) the set of functions V (t , x) defined in U1, which are twice continuously differ-
entiable in x except at the point x = 0 and continuously differentiable in t . A function
V (t , x) is said to be positive definite in the Lyapunov sense if V (t , 0)= 0 for all t ≥ 0 and
V (t , x)≥ω(x)> 0 for x �= 0 and some continuous function ω(x).

Theorem E.11 (Has’minskii).

1. The trivial solution of (E.7) is stable in probability (same as our definition) if there exists
V (t ,X ) ∈ C 0

2 (U1), positive definite in the Lyapunov sense, so that &V (t , x) ≤ 0 for
x �= 0.

2. If the system (E.7) is time homogeneous, i.e., b (t , x) = b (x) and σr (t , x) = σr (x), and
if the nondegeneracy condition

n∑
i , j=1

ai j (x)λiλ j > m(x)
n∑

i=1

λ2
i for λ= (λ1 . . .λn)

T ∈�n

is satisfied with continuous m(x) > 0 for x �= 0, then a necessary and sufficient con-
dition for the trivial solution to be stable in probability is that a twice continuously
differentiable function V (x) exists, except perhaps at x = 0, so that

&0V (x) =
n∑

i=1

bi (x)
∂ V
∂ xi
+

n∑
i , j=1

ai j
∂ 2V (x)
∂ xi∂ xj

≤ 0,

where&0 is the generator of the time homogeneous system.

3. If the system (E.7) is linear, i.e., b (t , x) = b (t )x and σr (t , x) = σr (t )x, then the system
is exponentially p-stable (the pth moment is exponentially stable), i.e.,

�x0
{‖x(t , x0, s)‖p} ≤A‖x‖p e−α(t−s ), p > 0,

for some constant α > 0 if and only if a function V (t , x) exists, homogeneous of degree
p in x, so that for some constants ki > 0, i = 1,2,3,4,

k1‖x‖p ≤V (t , x)≤ k2‖x‖p ,
&V (t , x)≤−k3‖x‖p (E.9)

and DDDD∂ V
∂ x

DDDD≤ k4‖x‖p−1,

DDDDD∂ 2V
∂ x2

DDDDD≤ k4‖x‖p−2.
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270 Appendix E. Stochastic Stability

Example E.12. Let the following system be given:$
d x(t ) =Ax(t )d t +

∑m
i=1 Bi x(t )dξi (t ), t ≥ 0,

x(0) = x0, (E.10)

where ξi (t ) are independent standard Wiener processes. The process x(t ) is then a Markov
diffusion process with the infinitesimal generator

& u = (Ax)T
∂ u
∂ x
+

1
2

d∑
i , j=1

σi j (x)
∂ 2u

∂ xi∂ xj
,

where u is a real-valued twice continuously differentiable function andΣ(x) = (σi j (x))d×d =∑m
i=1 Bi xxT Bi .
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Appendix F

Indistinguishability and
Mean-Field Convergence

This appendix presents the notion of indistinguishability (or exchangeability) and dis-
cusses the existence of a limiting measure and mean-field convergence in the framework
of de Finetti, Hewitt, Savage (see, e.g., [83, 116]).

Definition F.1 (Indistinguishability). A family of processes (x1, x2, . . . , xn ) is said to be
indistinguishable (or exchangeable) if the joint distribution is invariant by permutation over
the index set {1, . . . , n}. That is to say that for any permutation π over {1,2, . . . , n} we have

& (x1, x2, . . . , xn ) =& (xπ(1), . . . , xπ(n)), (F.1)

where& (X ) is the distribution of the random variable X .

The de Finetti–Hewitt–Savage theorem establishes the mean-field convergence with
speed O( 1�

n
). The theorem makes use of the Monge–Kantorovich distance given by

d (μ, ν) = sup
φ

�∫
%
φ(x)d(μ− ν)(x)

(
,

where μ and ν are two measures and the supremum is over all φ :% → �, continuous,
and with Lipschitz constant Lip(φ)≤ 1.

Theorem F.2 (de Finetti–Hewitt–Savage). Let x1, x2, . . . be a sequence of% –valued ran-
dom variables, where% is a Polish space, and for each n, {x1, x2, . . . , xn} is indistinguishable.
Let  (% ) denote the space of probability measures on % . Then, there is a  (% )–valued
random variable m such that

m = lim
n→∞

1
n

n∑
k=1

δxk
almost surely.

In addition, if the moments of xk are finite, then

d

<
m,

1
n

n∑
k=1

δxk

=
≤O

8
1�
n

9
almost surely.

This result has been proved by [83] for infinite binary sequences and has been extended
by [116] to continuous and compact state spaces.
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Index

ε-Nash equilibrium, 9
H∞-optimal control, 23, 130

as linear-quadratic differential
game, 94

σ -algebra, 261

absorbing game, 103
additive games, 57
advection equation, 122

in demand side management,
159

in synchronization of power
generators, 170

agreement, see consensus
allocation policy, 4, 56, 196

and approachability, 120
in supply chain, 222
robust, 59, 224

applications, 3, 100
bargaining, 195
cyber-physical systems, 241
demand side management, 155
multi-agent consensus, 143
opinion dynamics, 181
pedestrian flow, 205
population of producers, 231
supply chain, 219
synchronization of power

generators, 165
approachable set, 108
aspiration learning, 85
asymptotic stability, see stability
attainability

in opinion dynamics, 186
in pedestrian flow, 211

attainable set, 114
automata, 156

balanced game, 63
in supply chain, 221

balanced map, 62
in supply chain, 222

bargaining
mechanism, 196, 197

bid
in bargaining, 195

Big Match, 102
Blackwell’s Approachability

Principle, 109
in opinion dynamics, 186

Bondareva and Shapley theorem,
62

bounded confidence, 181

Chicken game, see Hawk and
Dove game

closed-loop strategy, 90
coalitional games, 51

in bargaining, 195
in supply chain, 220

common power angle, 166
communication graph, 183
concurrency, 241
consensus, 143, 145, 165

in bargaining, 199
in opinion dynamics, 181, 187,

192
in pedestrian flow, 207
in smart grids, 175

conservative strategy, 20
computation, 28

consistency
demand side management, 155
in cyber-physical systems, 242

contractivity
in opinion dynamics, 189

convex games, 65
cooperative differential games,

57
cooperative games, see

coalitional games
Coordination game, 15

Stackelberg equilibrium, 49

coordination in mean-field
games, 128

core, 61, 195
nonempty, 62

Cournot duopoly, 13
cyber-attacks, 241
cyber-physical systems, 241

de Finetti–Hewitt–Savage
theorem, 133, 271

differential game, 87, 90
discounted evaluation, 99
dominance, 12
doubly stochastic matrix, 253
dynamic programming, 89

efficiency, see Pareto optimality
empirical frequency, 84
emulation, 127, 184
equal payoff property, 22
equilibrium point theorem, 10
Eulerian model, 181
evolutionarily stable strategy

definition, 73
monomorphic, 76
polymorphic, 77

excesses, 66
exchangeability, see

indistinguishability
expected value, 263
externality, 128

farsighted, see patient
fictitious play, 83

geometric Brownian motion, 232
Gloves game, 63

nucleolus, 66
graph, 195

Laplacian, 183
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290 Index

Hamilton–Jacobi–Bellman
(HJB) equation, 89, 123,
135

Hamilton–Jacobi–Isaacs (HJI)
equation, 93, 137

for the synchronization of
power generators, 171

in robust mean-field game, 137
Hamilton-Jacobi-Isaacs equation

for a population of producers,
234

in cyber-physical systems, 244
Hawk and Dove game, 15

as evolutionary game, 76
monomorphic evolutionarily

stable strategy in the , 76
Nash equilibrium, 15

herd behavior, 129, 192
heterogeneous players, 165

in opinion dynamics, 182
Hoffman bound, 198
homogeneous players, 122

imputation
dynamically stable, 58
set, 56
time consistent, 58

incumbents, 69
Indifference Principle, 11, 17, 35,

36, 77, 78, 103
indistinguishability, 133, 232,

243, 271
individual rationality, 56
inessential games, see additive

games
infinitesimal generator, 235,

267–270
interchangebility property, 22
invariance

in opinion dynamics, 189
iterated dominance algorithm,

13

Kakutani’s theorem, 10
Kolmogorov ODE, 207
Kolmogorov–Fokker–Planck

(KFP) equation, 125, 137
for a population of producers,

235
in cyber-physical systems, 245

Kuramoto oscillator, 165
in opinion dynamics, 183

Lanchester model, 91
Langevin equation, see geometric

Brownian motion
Laplacian

matrix, 175, 176, 183, 191, 217
operator, 125

learning in games, 82
Lebesgue measure, 263
Lemke–Howson algorithm, 105
lexicographic minimizer, 66
limsup evaluation, 99
linear complementarity, 257

to compute Nash equilibrium
solutions, 38

linear programming, 257
to compute saddle-points, 34

linear-quadratic differential
games, 93

local interactions
in opinion dynamics, 182, 191,

193
in smart grids, 165

log-linear learning, 85
Lyapunov stability, 259

macroscopic dynamics, 132, 166,
171, 172, 205

for a population of producers,
231

mains frequency, 165
Markovian strategy, 90
matrix games, see zero-sum

games
max-flow game, 55
maximin strategy, see

conservative strategy
mean-field equilibrium, 124

approximation, 209
computation, 209
existence and uniqueness, 126
in demand side management,

159
mean-field game

discrete, 206
first-order, 123
second-order, 125
with common cost functional,

208
mechanism design, 143, 147
microscopic dynamics, 166

for a population of producers,
231, 235

mimicry, 127, 184
minimax games, see zero-sum

games

minimax strategy, see
conservative strategy

minimax theorem, 23
minimum spanning tree game,

53
mixed strategy, 10

in stochastic games, 98
Model Predictive Control, see

receding horizon
multi-objective optimization, 3
multi-population, see

heterogeneous players
mutants, 69
myopic

play, 83, 99

Nash equilibrium, 8
and consensus, 147
and dominant strategies, 12
and evolutionarily stable

strategies, 72
and iterated dominance

algorithm, 13
and mean-field equilibrium,

124
and saddle-point, 19
asymptotic stability, 81
closed-loop strategy, 92
computation, 11, 27, 35
dynamic programming, 43
equilibrium point theorem, 10
existence, 10
in continuous infinite game, 11
in Coordination game, 15
in Cournot duopoly, 13
in evolutionary game, 69
in extensive game, 9
in Hawk and Dove game, 15
in mixed strategy, 36
in Prisoner’s dilemma, 8
in Stag-Hunt game, 16
in the Battle of the Sexes, 14
open-loop strategy, 91
original paper, 17
payoff dominant, 41
refinement, 41
risk dominant, 42
stationary solution, 81
strategy in differential game,

87
subgame perfect, 43
worst-case disturbance

feedback, 133, 137
neighbor graph, see graph
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network flow
and attainability, 112
control problem, 111

network frequency, see mains
frequency

networks, 17
communication, 4, 100, 105
in opinion dynamics, 191
social, 4

nonanticipative strategy, 114
nonexpansive projection, 197
nucleolus, 66

computation, 67

open-loop strategy, 90
operations research games, 53
optimal control, 87
optimal planning problem, see

planning problem
optimization, 3

mathematical, 256
of functionals, 255

Pareto optimality, 47
curve computation, 59
curve in differential games, 59
in coalitional TU games, 56
in the Coordination game, 49
in the Hawk and Dove game,

49
patient

play, 99
payoff dominance, 41
permutation game, 54
persuaders, see stubborn players
planning problem, 205
plurality, 181, 187, 192
polarization, 181, 187, 192
Pontryagin Maximum Principle

(PMP), 88, 149
population

of thermostatically controlled
loads, 158

Principle of Optimality, 89
Prisoner’s dilemma, 6

as evolutionary game, 70
dominant strategy in the, 12
historical notes, 17
in coalitional form, 51
Nash equilibrium, 8
Pareto optimal solutions in

the, 48
repeated game and tree

representation, 7

Stackelberg equilibrium in the,
45

probability density, 263
probability distribution, 262
probability measure, 261

Borel, 262
probability space, 261

Borel, 262
probability theory, 261
projected game, 115

in opinion dynamics, 186
in pedestrian flow, 210

pure strategy, 10, 20
in stochastic games, 98

quadratic programming, 257

random variable, 262
receding horizon, 143, 147, 148

in opinion dynamics, 185
regret learning, 111
reinforcement learning, 85
replicator dynamics, 79
Riccati differential equation, 94
risk dominance, 41
robust mean-field game, 130
Rock-Paper-Scissors game, 77
row-stochastic matrix, 253

saddle-point, 19
existence of, 21
graphical resolution, 27

scalability
demand side management, 155
in cyber-physical systems, 242

Shapley value, 63
in supply chain, 226

shortsighted, see myopic
social optimality, 41

in multi-inventory systems, 59
stability

for a population of producers,
235

in cyber-physical systems, 242,
247

in demand side management,
162

in opinion dynamics, 189
in pedestrian flow, 212

stabilizing control policy, 224
Stackelberg equilibrium

in the Coordination game, 49
Stag-Hunt game, 15

learning in the, 83
Nash equilibrium, 16

payoff dominant solutions in
the, 42

risk dominant solutions in the,
42

state space extension, 209, 225,
245

stochastic matrix, 197, 200, 253
in bargaining, 197, 199
in opinion dynamics, 186

stochastic stability, 236, 247, 265
strategic behavior

demand side management, 155
in opinion dynamics, 182
in smart grids, 165

stubborn players, 181, 193
subadditive games, 57
subgame perfectness, 41
superadditive games, 57
supply chain, 219
swing equation, 165, 167
synchronization of power

generators, 169
system frequency, see mains

frequency

TCLs, see thermostatically
controlled loads

team theory, 3
thermostatically controlled

loads, 155
transferable utility, see

coalitional games
transient stability, 166
transport equation, see advection

equation
TU games, see coalitional games
two-point boundary value

problem, 89
Typewriter game, see

Coordination game

UAVs, see unmanned aerial
vehicles

uncoupled dynamics, 83
uniform equilibrium, 104
unknown but bounded, 112,

219, 220, 230
unmanned aerial vehicles, 151

value, 101
of projected game, 115

value function, 89, 123

Wardrop equilibrium, 207
weakly acyclic games, 85
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worst-case disturbance feedback
mean-field equilibrium,
136

for the synchronization of
power generators, 172

in cyber-physical systems, 245

zero-sum games, 19
zero-sum stochastic games, 101
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