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Preface

Since the early 1990’s a variety of control design methods that are constructed di-
rectly upon batches of input-output data collected from the process to be controlled
have appeared in the literature. These methods contrast with model-based control
design mainly in two fundamental aspects: they are not based on the knowledge of
a process model and they do not intend to freely determine the controller’s trans-
fer function. Instead, they make direct use of the information carried by the mea-
sured data in order to adjust the numerical parameters of a controller whose transfer
function has a previously specified and fixed structure. Accordingly, these meth-
ods became known as data-based, in opposition to model-based, or alternatively as
data-driven methods.

This same challenge of adjusting the parameters of a controller whose transfer
function structure is given a priori, without ever obtaining a model for the process,
has been undertaken in the context of adaptive control, since at least the 1960’s.
This has become known as the direct approach to adaptive control, in contrast with
the indirect approach, in which the controller’s parameters are adjusted through a
model-based design, which is performed after the identification of the parameters
of a process model and with the application of the certainty equivalence principle.
Adaptive control has been a major field of research in control theory ever since,
and colossal amounts of literature and successful applications of adaptive control
have been developed over the past half-century. However, most quotidian industry
applications do not seem to have assimilated this evolution. This gap between prac-
tical industry applications and the adaptive control theory, along with extraneous
nonlinear behavior introduced by the adaptation mechanisms, propelled a surge of
interest in the data-driven alternative for controller’s adaptation, a surge that has
been gaining momentum since its onset.

Attempts to delimit exactly the borders between model-based control, adaptive
control, and data-driven control would most likely be unproductive; instead, let us
propose a rather elastic definition of data-driven control. The term data-driven (or
data-based) control refers to the methodologies whose aim is to design the parame-
ters of a fixed-structure controller based on a reasonably large batch of input-output
data, without any attempts to perform control design based on a process model.

vii
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viii Preface

Data-driven control is thus different from model-based control because the design
is not based on a process model, even though approximative process models can be
used for secondary purposes in some data-driven control methods. And data-driven
control differs from adaptive control essentially by the fact that parameter adjust-
ments are always based on large batches of data rather than on a single input-output
sample or a few samples, as is usual in adaptive control. This one difference be-
tween data-driven control design and adaptive control has major implications, both
theoretical and practical, and yet a substantial part of the theory in this book can be
applied to direct adaptive control as well.

Some conceptually distinct data-driven approaches to control design appear in
the literature. Yet, it seems fair to say that most of the methodologies are built
around one of the most familiar concepts in control systems theory: the optimiza-
tion of a performance criterion, where performance is measured by the H2 norm of
a particular signal in the loop. Representative of these methodologies are the pio-
neering works of Hjalmarsson, Gunnarsson and Gevers [3], Kammer, Bitmead and
Bartlett [4], Campi, Lecchini and Savaresi [2], Karimi, Mišković and Bonvin [5],
and Shi and Skelton [6]. These pioneering works later developed into sound design
methodologies, as well as into applications, described in many other papers which
constituted fundamental sources for the writing of this book. Each one of these
methodologies has been baptized by their authors, respectively as: Iterative Feed-
back Tuning (IFT), Frequency Domain Tuning (FDT), Virtual Reference Feedback
Tuning (VRFT), Correlation-based Tuning (CbT) and Markov LQG Control.

This is what this book is about: it intends to present a comprehensive analysis
of this H2 approach to data-driven control design, providing a common theoreti-
cal framework to these methodologies that have been presented separately in the
literature since the early 1990’s. This common theoretical framework also fits a
large family of adaptive control methodologies, like Minimum Variance and Model
Reference Adaptive Control. From this unified framework a number of shared prop-
erties become apparent, and solutions to shared problems emerge. This unification
effort, which has been initiated in [1], is based on the analysis of the problem itself,
namely the objective function(s) being minimized, the features of the data used for
this purpose and the potential ways of performing the minimization, rather than on
the algorithmic details of each particular solution.

The book is primarily intended for PhD students and researchers, whether se-
nior or junior, in control engineering. It should serve as reference material for PhD
theses, as well as teaching material for data-driven and adaptive control courses at
the graduate level. We hope it will also be useful for advanced engineers willing to
apply data-driven control design, by providing them with an understanding of the
strengths and limitations of the existing data-driven methodologies and guidelines
that will help coding these methods; but it is not a “how-to book”.

The book starts with a formal delimitation of the problem and the class of sys-
tems treated. General definitions appear in Chap. 1, whereas the formal statement of
the H2 design problem is given in Chap. 2. Also in Chap. 2 is a presentation of the
basic properties of the H2 design problem and a discussion about the different con-
trol objectives and what are the designer’s choices in choosing her/his performance
criterion.
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Preface ix

Once the designer has chosen the performance criterion, it must be minimized,
which will be done using only input-output data collected from the system. It is
possible in many situations to perform this minimization in only “one-shot”, that
is, with only one batch of data collected in only one operating condition. These
“one-shot” solutions, which are the most convenient, are the subject of Chap. 3.
In many other situations, however, it is necessary to resort to iterative procedures
in which each iteration requires collecting more data, each time with a different
controller in the loop. This may be necessary because the theoretical conditions
required by the “one-shot” solutions are not met, or because operational constraints
of the process require that only small adjustments to existing parameter settings can
be made (a very common practical constraint). Accordingly, the subject of iterative
optimization occupies the remaining of this book.

In Chap. 4 a general review of optimization is given, in order to set the stage for
the chapters to follow. Then, starting in Chap. 5, the particularities of the H2 cost
functions minimized in data-driven control start being explored, bearing in mind
that convergence to the globally optimal controller is sought. A number of properties
of these particular cost functions and of some basic optimization algorithms when
applied to them are presented in Chap. 5, along with guidelines for the optimization.
Then, in Chap. 6, the cost function shaping concept is presented. Cost function
shaping is the name we have given to a set of procedures and maneuvers that change
the cost function so that it is more amenable to optimization.

Performing the optimization requires calculation of the cost function’s deriva-
tives, and this must be done only with the data collected from the system—no analyt-
ical expressions are available. It is only in Chap. 7 that this computing aspect—the
calculation of these quantities—is discussed. In this chapter, three different methods
are described in some detail and interpreted under the light of the theory presented
in the previous chapters: IFT, FDT and CbT.

All along the book, simulation examples are presented that aim to illustrate and
explain the concepts presented. These simulation studies do not have the purpose
of demonstrating the practical application of these concepts, a task that is accom-
plished separately, in Chap. 8. There, numerous experimental results showing the
data-driven design of controllers for processes of different natures are presented.
These designs illustrate how the theory translates into the real world, showing that
the methodologies are indeed effective, what are the designer’s choices, and how
he/she should make these choices taking into account the theoretical concepts pre-
sented in this book to obtain the best result from a real data-driven control design.
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Abbreviations

Acronyms
1DOF One Degree of Freedom
2DOF Two Degrees of Freedom
BIBO Bounded-Input Bounded-Output
CbT Correlation-based Tuning
DC Direct Current
DOA Domain of Attraction
FDT Frequency Domain Tuning
IFT Iterative Feedback Tuning
IV Instrumental Variable
GN Gauss-Newton
LI Linearly Independent
LP Linearly Parameterized
LQG Linear Quadratic Gaussian
LQR Linear Quadratic Regulator
LS Least Squares
LTI Linear Time Invariant
MR Model Reference
MRAC Model Reference Adaptive Control
MV Manipulated Variable
NMP Non-Minimum Phase
NR Newton Raphson
PE Persistently Exciting
PI Proportional-Integral
PID Proportional-Integral-Derivative
PRBS Pseudo Random Binary Signal
PV Process Variable
SD Steepest Descent
SISO Single-Input Single-Output
SNR Signal-to-Noise Ratio
SPR Strictly Positive Real
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xviii Abbreviations

SRp Sufficiently Rich of order p

VRFT Virtual Reference Feedback Tuning

Notation and Symbols
E[·] Expected value of a random variable or of a stationary stochastic

process
Ē[x(t)] limN→∞ 1

N

∑N
t=1 E[x(t)]

z Forward time-shift operator, defined as zx(t) = x(t + 1)

R The set of real numbers
R

+ The set of positive real numbers
�{·} Real part of a complex quantity
�{·} Imaginary part of a complex quantity
Rx(τ) Ē[x(t)x(t − τ)]
Φx(e

jω) The spectrum of a stochastic process x(t):
Φx(e

jω) = ∑∞
τ=−∞ Rx(τ)e−jωτ

In The identity matrix of dimension n

minx f (x) Minimization of f (x) where the decision variable is x

arg minf (x) Value of x that minimizes f (x)

� The left hand side is defined by the right hand side
|F(ejω)|2 F(ejω)F ∗(ejω), where the superscript ∗ means complex conjugate

transpose
varx̂ Variance of the estimate of x

∇J (ρ) Gradient of the function J (ρ) with respect to ρ

∇2J (ρ) Hessian of the function J (ρ) with respect to ρ

‖ · ‖ 2-norm ‖ · ‖2
xL(t) Filtered version of the signal x(t) at time t

{x(t)}t=1,...,N Vector containing N samples of the signal x(t)

α̂ The estimate of α

∠x The argument (phase) of the complex number x

dist(ρ1, ρ2) maxω |∠S(ejω,ρ1) −∠S(ejω,ρ2)|
sign(·) The sign function: sign(x) = 1 if x > 0 and sign(x) = −1 if x < 0
sq

(2π
T

t
)

A square wave with period T

N Size of the data-set
r(t) Reference signal at time t

y(t) Process’ output variable at time t

u(t) Control input variable at time t (controller’s output)
ν(t) Process noise at time t

e(t) Zero-mean white noise process
σ 2

e Variance of the white noise process
yd(t) Desired closed-loop system response at time t

r̄(t) Virtual reference signal at time t

ē(t) Virtual reference tracking error at time t

ϕ(t) Regressor vector at time t

ζ(t) Instrumental variable at time t

G(z) Process’ transfer function
H(z) Noise’s transfer function
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Abbreviations xix

Td(z) Reference model for the reference tracking problem
Se(z) Desired sensitivity function for the minimum variance control

problem
Te(z) Desired complementary sensitivity function for the noise rejection

problem
C0(z) Initial controller
ρ Real vector used to parameterize the controller; dimension p

C(z,ρ) Controller’s transfer function parameterized in terms of ρ

T (z,ρ) Closed-loop transfer function obtained with
C(z,ρ)—complementary sensitivity

S(z,ρ) Closed-loop transfer function obtained with C(z,ρ)—sensitivity
yr(t, ρ) Closed-loop system output at time t neglecting the effect of noise
ye(t, ρ) Closed-loop system output at time t due to the noise alone
ε(t, ρ) yd(t) − y(t, ρ) The error between the desired and the achieved

closed-loop response at time t

Cd(z) Ideal controller for the reference tracking problem
ρd Ideal parameter vector, for which C(z,ρd) = Cd(z)

Ce(z) Ideal controller for the noise rejection problem
ρ∗ The global minimum of a cost function
K(z) Difference between the ideal controller and the best controller

allowed by the controller class
ρ0 Parameter vector of the initial controller
ρm Mean value of the parameter ρ obtained from Monte Carlo runs
ρIV Estimate of ρ through instrumental variables
ρi Parameter vector ρ obtained at iteration i

ρi Instance i of the parameter vector ρ

�i Element i of the parameter vector ρ, when ρ has more than one
element

C̄(z) Vector of rational functions which forms a linear parameterized
controller with ρ

C Controller class
CPID Controller class of PID controllers
CPI Controller class of PI controllers
kp , ki and kd Proportional, integral and derivative gains, respectively
T (z, η) Flexible reference model
η Parameter vector of the flexible reference model; dimension q

ϑi Element i of the parameter vector η

(η∗, ρ∗) Global minimum for the flexible criterion J VR
0 (ρ)

ρIV
i Parameter vector ρ obtained using IV in iteration i

ηIV
i Parameter vector η obtained using IV in iteration i

ηIV
i,m Mean value of the parameter vector η obtained from Monte Carlo

runs in iteration i using IV
CVR(ρ) Controller obtained with the application of the VRFT method
CLS(ρ) Controller obtained with the application of the VRFT method,

using least squares
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xx Abbreviations

CIV(ρ) Controller obtained with the application of the VRFT method,
using instrumental variables

J (·) Cost function
Jy(ρ) Reference tracking performance criterion
Je(ρ) Noise rejection performance criterion
JT (ρ) Jy(ρ) + Je(ρ)

J r
e (ρ) Relaxed noise rejection criterion

Ju(ρ) Control effort performance criterion
Jλ(ρ) Weighted sum of the performance criterion and the control effort
λ Design weight parameter
Jc(ρ) Performance criterion of the CbT method
J VR(ρ) Performance criterion of the VRFT method
J VR

0 (ρ) Flexible cost criterion for the VRFT method
JIFT(ρ) Performance criterion of the IFT method
JFDT(ρ) Performance criterion of the FDT method
JS(ρ) JT (ρ)|Td(z)=1

ĴT (ρ) 1
N

∑N
t=1(y(t, ρ) − yd(t))2—JT (ρ) computed from data

J̌T (ρ)

√

ĴT (ρ)

Bε(ρ
1) {ρ : ‖ρ − ρ1‖2 < ε} A ball centered in ρ1 with radius equal to

√
ε

Γ The set of all the controller’s parameter values that render the
closed-loop BIBO-stable

μi Effective step size at iteration i

γi Gradient factor to scale the step size at iteration i

V (·) Lyapunov function
Σ(z,ρ) Sensitivity matrix
bC(z,ρ) ‖Σ(z,ρ)‖−1∞ Stability margin
0 Vector of zeros of appropriate dimension
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Chapter 1
Definitions

1.1 The Process

In this book we consider the control of linear time-invariant (LTI) discrete-time
single-input-single-output (SISO) processes. The processes under consideration can
be described by (1.1) below and the technical assumptions that follow, which are
necessary to specify precisely the problem at hand and also to guarantee that it is
well-posed

y(t) = G(z)u(t) + ν(t). (1.1)

In (1.1) y(t) is the process output, u(t) is the control input and ν(t) is the process
noise; z is the forward time-shift operator, defined as zx(t) = x(t + 1), and G(z) is
the process’ transfer function. The output of the process is also referred to as the
controlled variable, or simply the process variable (PV). The control input u(t) can
be, in principle, freely manipulated; accordingly it is often referred to as the manip-
ulated variable (MV). The process noise ν(t) represents all stochastic effects that
are not captured by the input-output relationship between u(t) and y(t): stochastic
disturbances, measurement errors, etc. This noise is assumed to result from LTI fil-
tering of white noise, that is, ν(t) = H(z)e(t) where H(z) is a transfer function and
e(t) is white noise, whose variance will be denoted σ 2

e .
Both the process transfer function G(z) and the noise transfer function H(z) are

rational transfer functions. They are also proper, that is, the systems they represent
are both causal. It is further assumed, without loss of generality, that H(∞) = 1,
that is the impulse response h(t) of the filter H(z) satisfies h(0) = 1. Moreover,
the noise filter H(z) is BIBO-stable. This setting is standard in control systems
theory in general and in adaptive control in particular, as well as in the parameter
identification framework.

The process (1.1) is controlled by a linear time-invariant controller, whose trans-
fer function has a given (user specified) structure, parameterized in terms of a real
parameter vector ρ ∈R

p . That is, the control action u(t) can be written as

u(t) = C(z,ρ)(r(t) − y(t)) (1.2)

A. Sanfelice Bazanella et al., Data-Driven Controller Design,
Communications and Control Engineering,
DOI 10.1007/978-94-007-2300-9_1, © Springer Science+Business Media B.V. 2012
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2 1 Definitions

where r(t) is the reference signal and C(z,ρ) is the controller’s transfer function,
both of which are further specified in the sequel.

The reference r(t) is usually a deterministic signal, whereas the system noise is
stochastic, a dichotomy which can cause some technical difficulties in the analysis.
This dichotomy is eliminated by the use of a common framework for stochastic
processes and deterministic signals in which all are assumed to be quasi-stationary
processes—see the book by Ljung [3] for details.

A stochastic process—say x(t)—is said to be quasi-stationary if its mean and
autocorrelation are both bounded and if the following limit exists:

lim
N→∞

1

N

N∑

t=1

E[x(t)x(t − τ)] � Ē[x(t)x(t − τ)] ∀τ

where E[·] denotes expectancy and we have defined the notation Ē[·].
For two quasi-stationary processes x(t) and y(t) we can define also the following

two quantities

Rx(τ) � Ē[x(t)x(t − τ)]
and

Rxy(τ ) � Ē[x(t)y(t − τ)]
which will be referred to, with some abuse of nomenclature, the auto-correlation of
x(t) and the cross-correlation between x(t) and y(t), respectively. The spectrum of a
quasi-stationary process and the cross-spectrum between two processes are defined
as the discrete Fourier transforms of the corresponding correlations, that is:

Φx(ejω) �
∞∑

τ=−∞
Rx(τ)e−jωτ

and

Φxy(e
jω) �

∞∑

τ=−∞
Rxy(τ )e−jωτ .

A direct consequence of the above definitions is the following property

Ē[x2(t)] = Rx(0) = 1

2π

∫ π

−π

Φx(ejω)dω (1.3)

which is often referred to as Parseval’s Theorem; this property will be used many
times in this book.

All along this book, both the reference and the noise are assumed to be quasi-
stationary. Moreover, they are also assumed to be uncorrelated, that is

Rre(τ ) = Ē[r(t)e(t − τ)] = 0 ∀τ.
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1.2 The Control 3

1.2 The Control

The set of all the controllers that can be implemented with the specified controller
structure is called the controller class C:

C = {C(z,ρ) : ρ ∈ P}
where P ⊆ R

p is a set of admissible values for the controller parameter vector ρ.
Whenever P is not specified in a given problem, it is assumed that P = R

p . The
controller class C must be such that the loop transfer function C(z,ρ)G(z) has pos-
itive relative degree for all C(z,ρ) ∈ C, so that the feedback connection is always
well-posed; equivalently, the closed loop is not delay-free.

As an example of a controller structure, take the following PID (proportional-
integral-derivative) controller.

C(z, kp, ki, kd) = kp + ki

z

z − 1
+ kd

z − 1

z
(1.4)

where kp , ki and kd are the proportional, integral and derivative gains respectively.
Setting these gains in a PID control structure like this is by far the most common
control engineering task found in practice, as the vast majority of control loops in
industry are fixed structure PIDs. The expression (1.4) can also be written more
compactly in vector form

C(z,ρ) = ρT C̄(z) (1.5)

where the parameter vector ρ and the parameter independent vector of transfer func-
tions C̄(z) are defined as

ρ =
⎡

⎣
kp

ki

kd

⎤

⎦ C̄(z) =
⎡

⎢
⎣

1
z

z−1
z−1
z

⎤

⎥
⎦ .

This parameterization is linear in the parameter ρ. Most industrial controllers are
linearly parameterized in this way, like the PID example above, and this linearity
also makes the resulting design problem more amenable to analysis. In addition,
any ρ-dependent transfer function can be approximated by a transfer function of
this form. Indeed, one can always choose a set of basis functions such that a transfer
function F(z) can be represented as

F(z) =
∞∑

i=1

αifi(z) (1.6)

where αi ∈R and fi(z) are the basis transfer functions. One example of a celebrated
choice for this basis are the Laguerre functions:

fi(z) =
√

1 − a2

(z − a)

[
1 − az

z − a

]i−1
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4 1 Definitions

where a ∈ (−1,1). A truncation of the series in (1.6) yields

F(z) ∼=
p∑

i=1

αifi(z)

which can approximate the transfer function to any degree of accuracy desired by
choosing sufficiently large p.

For these practical and theoretical reasons, assuming that the controller’s trans-
fer function is linearly parameterized does not represent a relevant loss of generality.
Accordingly, most (but not all) results in this book are derived for linear parameter-
izations of this form, so it is worth stating formally this assumption that will be so
frequently used.

Assumption LP The transfer function of the controller can be written as

C(z,ρ) = ρT C̄(z) (1.7)

with C̄(z) a vector of p rational transfer functions independent of ρ.

It is important not to confuse this linear parameterization of the controller’s trans-
fer function from another form of linear parameterization commonly found in the
literature, which is the linear parameterization of the control action:

u(t) = ρT φ(t) (1.8)

where φ(t) is a “regressor vector”, containing past values of the control signal u(t)

and of the tracking error signal r(t) − y(t).
Once the controller structure is fixed, which under Assumption LP amounts to

fix the vector C̄(z), the controller design boils down to the setting of the parameter
vector ρ; this is often called controller “tuning”.

Note that the same controller class admits different parameterizations. For in-
stance, we could parametrize a PI controller C(z,ρ) = kp + ki

z
z−1 as

ρ �
[
kp

ki

]

C̄(z) �
[

1
z

z−1

]

or as

ρ �
[
�1
�2

]

C̄(z) �
[

1
z−1
z

z−1

]

.

The class of controllers represented by each one of these two parameterizations
is the same, that is, any controller that can be represented in one form can also be
represented in the other form. One could also chose the parameterization for this
same controller class as
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1.3 The Closed-Loop System 5

ρ �

⎡

⎣
�1
�2
�3

⎤

⎦ C̄(z) �

⎡

⎢
⎣

z+1
z−1
z

z−1

1

⎤

⎥
⎦

which has three parameters instead of only two; this is not a smart choice, however.
It is important, and a necessary condition for the design problem to have a unique
solution, that the controller class is represented by the minimal number of param-
eters possible, which will be called a minimal parameterization. Representing the
controller class with a minimal parameterization is something that is desirable to do
in the first place, and additional motivations to do it will appear along this book.

A linear parameterization will be minimal if the rational functions forming the
basis vector C̄(z) are linearly independent over the field of real numbers, that is, if
there is no nonzero vector α ∈ R

p such that

αT C̄(z) ≡ 0. (1.9)

Notice that the third parameterization proposed above is not minimal; the vector
α = [1 −2 1]T satisfies (1.9). Suppose that the rational functions forming the basis
vector C̄(z) are Linearly Dependent over the field of real numbers, that is, there
exists a nonzero vector α ∈ R

p satisfying (1.9). Then, for any scalar c,

C(z,ρ + c.α) = (ρ + c.α)C̄(z) = C(z,ρ)

that is, for any ρ there exist an affine space for which all the parameter values result
in the same controller’s transfer function. In order to avoid this, most of the devel-
opments in this book will assume that the parameterization is minimal, as formally
stated in the following assumption.

Assumption LI The parameterization of the controller is minimal, that is, the ele-
ments of C̄(z) are Linearly Independent functions over the field of real numbers:


 ∃α 
= 0 : αT C̄(z) ≡ 0. (1.10)

1.3 The Closed-Loop System

The system (1.1)–(1.2) in closed loop is represented in Fig. 1.1. The resulting
closed-loop relationship between the input signals r(t) and e(t) and the output is
as follows

y(t, ρ) = T (z,ρ)r(t) + S(z,ρ)H(z)e(t) (1.11)

S(z,ρ) = 1

1 + C(z,ρ)G(z)

T (z,ρ) = C(z,ρ)G(z)

1 + C(z,ρ)G(z)
= C(z,ρ)G(z)S(z,ρ).
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6 1 Definitions

Fig. 1.1 The basic feedback
control configuration

In (1.11) we have now made the dependence on the controller parameter ρ ex-
plicit in the output signal y(t, ρ). The closed-loop transfer functions S(z,ρ) and
T (z,ρ) are called respectively the sensitivity and the complementary sensitivity.

Stability being the primary concern in the control design, it is also useful to define
a notation for the set of all controller parameter values that render the closed-loop
system BIBO-stable; this set is designated Γ :

Γ � {ρ ∈R
p : T (z,ρ) is BIBO-stable}.

1.4 The Design Problem

In summary, the problem studied in this book can be posed as follows.

The Data-Driven Control Design Problem Given a controller structure, which
under Assumption LP is specified by a known vector of transfer functions C̄(z),
a process with fixed but unknown transfer functions G(z) and H(z) and a per-
formance criterion (to be discussed in the next chapter). Use input-output data
{u(t), y(t), t = 1, . . . ,N} measured from the system to automatically determine the
parameter vector ρ that yields the best performance according to this criterion.

The term “automatically” implies that there is no expert human intervention dur-
ing the process operation. This problem probably qualifies as one of adaptive con-
trol, though we prefer to leave this semantic issue aside and refer the reader to the
famous paper [1] and the classical book [2], where she/he can find a classical dis-
cussion of what is and what is not adaptive control.

References

1. K.J. Åström, Theory and applications of adaptive control – A survey. Automatica 19(5), 471–
486 (1983)

2. K.J. Åström, B. Wittenmark, Adaptive Control, 2nd edn. (Addison-Wesley, Reading, 1995)
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Chapter 2
H2 Performance Criteria

2.1 Introduction

Control performance criteria are a key element in control systems theory. Not only
are they fundamental from a conceptual point of view, but this concept also leads to a
huge variety of analysis and design methods, which are formulated as optimization
problems. This formulation is, in its general form, expressed as the solution of a
problem like

min
ρ

J (ρ) (2.1)

where the controller parameter vector ρ is the decision variable. In (2.1) J (ρ) is
an objective function which expresses the system’s performance in achieving a pre-
scribed control objective, smaller values of the objective function expressing better
performance. The most fundamental control objectives, as well as more sophisti-
cated ones, are quite naturally and effectively expressed as the norm of some signal
in the control loop. When the 2-norm

‖x(t)‖2 = 1

N

N∑

t=1

[x(t)]2

is used, this is said to be an H2 performance criterion.
A large variety of control analysis and design tools have been derived from this

general formulation with H2 performance criteria, since the early days of modern
control theory—think of Linear Quadratic Control (LQR/LQG) and Generalized
Predictive Control (GPC), for example. These methods can deal with quite sophis-
ticated and ambitious control objectives, but they usually rely on full knowledge of
the process and noise, and require the controller’s transfer function to be freely cho-
sen. Obtaining a good model for a real process usually demands, among other tasks,
collecting data from real system operation. Data-driven design, on the other hand,
addresses the minimization of the performance criterion (2.1) directly from the data
collected from the system, without the intermediate step of deriving a process model

A. Sanfelice Bazanella et al., Data-Driven Controller Design,
Communications and Control Engineering,
DOI 10.1007/978-94-007-2300-9_2, © Springer Science+Business Media B.V. 2012

7

co
nt

ro
len

gin
ee

rs
.ir



8 2 H2 Performance Criteria

from these data, and for a controller whose structure1 has been previously fixed—
only the parameters in this fixed structure are free to be designed.

In this chapter we will present the H2 control performance criteria corresponding
to the fundamental control objectives: reference tracking, noise rejection and econ-
omy of control effort. Most commonly found adaptive control algorithms are con-
cerned with optimizing either reference tracking—like the celebrated Model Refer-
ence Adaptive Control—or noise rejection—the equally celebrated Minimum Vari-
ance Control. We will dissect each one of these performance criteria, as well as some
of its variations and combinations, developing the theoretical framework that will be
used in subsequent chapters to analyze the challenges and solutions encountered in
their optimization.

2.2 The Different Criteria

2.2.1 Reference Tracking—The Model Reference Control

Reference tracking is concerned with the response of the closed-loop system to the
reference alone, disregarding the effect of noise in the output. Let us define this
response as

yr(t, ρ) � T (z,ρ)r(t).

A fundamental objective of a control system being to make the process output
as close as possible to the reference, the performance from this point of view can
be evaluated by the two-norm of the tracking error, that is, by the following perfor-
mance criterion:

J (ρ) = Ē[r(t) − yr(t, ρ)]2. (2.2)

It is easy to see, and a known fact taught even at the basic levels of control
courses, that it is usually impossible to obtain perfect tracking; that is, no controller,
whether in the considered class of controllers or not, can make the output to track
exactly the reference at all times; the performance criterion in (2.2) can never be
made zero. Since perfect tracking is not possible, the tracking objective is usually
relaxed into a specification of how close a tracking would be satisfactory for the
designer. This is often expressed in terms of control performance measures such
as settling time, maximum overshoot, rising time, cutoff frequency, etc. The Model
Reference paradigm comes into the scene as an alternative, more detailed, more
succinct and analytically treatable description of this relaxation.

In the Model Reference design paradigm, the designer is asked to create a trans-
fer function whose behavior is the one expected from the closed-loop system. This
target transfer function is called the reference model, and will be henceforth denom-
inated Td(z)—the subscript d standing for “desired”. The response desired for the

1The C̄(z) vector introduced in the previous chapter.
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2.2 The Different Criteria 9

closed-loop system under a given reference signal r(t) is then yd(t) = Td(z)r(t).
The response actually obtained in closed-loop from the reference signal2 is yr(t, ρ)

defined above, which should be as close as possible to yd(t). Then the controller
design consists in finding the controller parameters that make these two signals as
close as possible to each other. That is, instead of using the performance criterion in
(2.2), the following function Jy(ρ) is defined as the reference tracking performance
criterion

Jy(ρ) � Ē[yr(t, ρ) − yd(t)]2 = Ē[(T (z,ρ) − Td(z))r(t)]2. (2.3)

This control design formulation has been also called, in a more general frame-
work, the model matching control. It can be cast as a linear quadratic regulator
(LQR) and thus solved by means of tools such as Riccati equations, Linear Ma-
trix Inequalities (LMI’s), Bilinear Matrix Inequalities (BMI’s), etc. [3]. Provided, of
course, that the process model G(z) is known, which is not the case in this book.

The model reference control design paradigm has been around since at least the
1960’s. This paradigm has caught more attention within the adaptive control frame-
work, probably because it lends itself naturally to the automatic adjustment of the
controller parameters. Before we move on, let us just note a relevant relationship
with another control design paradigm of great success in the adaptive control con-
text: the pole assignment design. In pole assignment, as the name says, the designer
assigns the poles of the closed-loop system, that is, the denominator of its transfer
function; here we assign the whole transfer function—denominator and numerator.

2.2.2 Noise Rejection—The Minimum Variance Control

Another fundamental control objective is to minimize the effect of the noise in the
output. The output of the closed-loop system due to the noise alone, that is, disre-
garding the effect of the reference, is given by

ye(t, ρ) � S(z,ρ)ν(t).

The effect of the noise in the output can be measured by the size of this sig-
nal, giving rise to the noise rejection performance criterion, which we immediately
baptize as Je(ρ):

Je(ρ) � Ē[ye(t)]2 = Ē[S(z,ρ)ν(t)]2. (2.4)

Again, it is clear that no controller in the universe can make the effect of the noise
to disappear completely, that is, to make Je(ρ) = 0. Indeed, this would require that
S(z,ρ) = 0 ∀z which in turn would demand C(z,ρ)G(z) → ∞ ∀z. Since “perfect
performance” is not possible for this performance criterion either, a relaxation can

2That is, neglecting the effect of noise.
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10 2 H2 Performance Criteria

also be thought of here, just as in the case of the reference tracking criterion Jy(ρ)

and for the same reasons. To do that, define a desired sensitivity function Se(z), and
adopt the following criterion:

J r
e (ρ) � Ē[(S(z, ρ) − Se(z))ν(t)]2.

Even though this relaxation is in all respects dual to the definition of the reference
model Td(z) for the reference tracking criterion, and even though it can lead to better
results than using the original Je(ρ) as the performance criterion, this relaxation is
by no means usual and virtually absent from the literature. This fact is probably
due to two conceptual differences between the two criteria. First, in tracking the
reference, usually the main concern when adjusting the controller’s parameters is
with the transient performance, as steady-state performance is usually guaranteed
by the application of the internal model principle in the choice of the controller’s
structure.3 And it is rather easy to come up with a transfer function that provides
the desired transient performance. For noise rejection, on the other hand, devising
a reasonable sensitivity function may not be as intuitive, particularly taking into
account that the noise model H(z) is unknown. Second, the input signals in each
case—Jy(ρ) and Je(ρ)—are of different nature. In the noise rejection case, the
input signal is the filtered white noise ν(t), whereas the reference can in principle
be anything and is most likely to be deterministic. The random signal ν(t) being
not measurable, as opposed to r(t) involved in the tracking performance criterion,
complicates the practical computation of the quantities that would be necessary for
its optimization—typically the derivatives of the performance criterion. This issue
of computation will become clearer in Chap. 7, where we will see computation
schemes that yield the derivatives of Je(ρ) and Jy(ρ), but not of J r

e (ρ). For these
reasons we will adhere to tradition and consider the performance criterion Je(ρ)

instead of the more generic J r
e (ρ).

2.2.3 The Composite Performance

Each one of the two performance criteria just presented (reference tracking and
noise rejection) represents a conceptually different control objective and each one of
them has a theoretical and practical relevance of its own. Numerous control design
methods, of data-driven, adaptive and model-based natures, have been developed for
each one of them independently. Most commonly found adaptive control algorithms
are concerned either with minimizing the reference tracking criterion Jy(ρ) (the
celebrated Model Reference Adaptive Control) or with the noise rejection criterion
Je(ρ) (Minimum Variance Control).

But equally important is the following composite performance criterion JT (ρ):

JT (ρ) � Ē[y(t, ρ) − yd(t)]2. (2.5)

3Including integral action in the controller being by far the most common instance.
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2.2 The Different Criteria 11

Notice the difference between the definitions of JT (ρ) and Jy(ρ): the definition
of Jy(ρ) involves the tracking error yr(t, ρ)−yd(t), disregarding the effect of noise
in the output, whereas in JT (ρ) the output error y(t, ρ) − yd(t) appears. We call it
the composite criterion because it takes into account both external signals acting on
the system r(t) and ν(t), and as a result it equals the sum of the two previous ones,
that is:

JT (ρ) = Ē[(T (z,ρ) − Td(z))r(t)]2 + Ē[S(z,ρ)ν(t)]2 = Jy(ρ) + Je(ρ). (2.6)

To prove this equality it suffices to develop the composite objective function from
its definition (2.5):

JT (ρ) = Ē[T (z,ρ)r(t) + S(z,ρ)ν(t) − Td(z)r(t)]2

= Ē[(T (z,ρ) − Td(z))r(t) + S(z,ρ)ν(t)]2

= Ē[(T (z,ρ) − Td(z))r(t)]2 + Ē[S(z,ρ)ν(t)]2

+ 2Ē[(T (z,ρ) − Td(z))r(t)S(z, ρ)ν(t)]
and to realize that the last term in this sum is zero because the reference and the
noise are independent.

2.2.4 Economy of Control Effort

Many H2 design methodologies, including some data-driven methodologies, con-
sider an additional control objective in their performance criteria, which is the econ-
omy of control energy—or effort

Ju(ρ) = Ē[u(t)]2. (2.7)

This performance criterion does not make sense if used alone. Minimizing Ju(ρ)

above would always result in u(t) ≡ 0 (an open-loop system), and we don’t need an
optimization procedure to tell us that the best choice regarding economy of control
energy is to turn the control off. Using this performance criterion in a control design
only makes sense when combined with another performance criterion, such as ref-
erence tracking or noise rejection or their combination. The performance criterion
to be minimized in such cases will be a weighted sum of the just defined Ju(ρ) and
whatever performance criterion J (ρ) is to be minimized (JT (ρ), Je(ρ) or Jy(ρ)):

Jλ(ρ) = J (ρ) + λJu(ρ) (2.8)

where λ ∈ R is a design parameter which weighs the relative importance of control
economy versus the performance as specified by J (ρ).

Energy saving is among the strongest social and industrial concerns nowadays,
and probably even more in the future, but still we decline to include it explicitly
in our analysis almost everywhere in the remaining of this book. This is not be-
cause we are not concerned about saving control effort whenever possible—quite
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12 2 H2 Performance Criteria

the contrary—but instead because the addition of this term is not necessary to ac-
complish this end.

In a control design defined by the performance criterion Jλ(ρ) in (2.8) there is
an additional parameter to be chosen by the designer: the weight λ given to the
control effort. It is not clear how to choose λ in order to obtain the desired effect,
and most such formulations rely on trial and error to do so. An equivalent effect on
control effort’s savings can be obtained by properly choosing the reference model
Td(z). Existing constraints in the control action can be taken into account in the
choice of the reference model Td(z), so that we do not require the controller to do
any more effort than necessary to provide an appropriate performance. For instance,
it may be desirable and possible to achieve a deadbeat response Td(z) = 1

zn but, if
such a performance would require too much control energy, the designer can settle
for a slower time response which is also acceptable, and specify a slower reference
model—say Td(z) = 1

(z−0.4)n
. This slower reference model will most likely require

significantly less control effort. So, relaxing the requirements in Td(z) has a similar
effect to adding the term Ju(ρ) in the performance criterion. There seem to be no
quantitative guidelines for choosing either one (the reference model and the weight
λ) to this end, so it may be wiser to have just one thing to choose—the reference
model—instead of two. Accordingly, in almost everything that follows in this book
we will not treat the performance criterion Ju(ρ), which also corresponds to set
λ = 0 in (2.8) in all instances.

2.3 Duality with System Identification—The Ideal Controllers

Our aim in this section is to provide a central concept in the framework for the
analysis of the properties of data-driven design that will be presented along this
book: the “ideal controller”. There are two fundamental objectives to be pursued by
the control design: noise rejection and reference tracking. Each control objective is
best accomplished individually by a given controller, which is the one that, among
all linear time invariant controllers in the universe (and not only within the class,
and not even with causality or stability constraints), provides the minimum value
for the performance criterion. This is what we call the ideal controller, and there is
one ideal controller for each process and for each control objective. We will see in
the following that the ideal controller plays in the data-driven control design a very
similar role to the one played by the “real system” in system identification, and that
this analogy can be used to our benefit.

2.3.1 Reference Tracking

Let us start by analyzing the reference tracking objective function, that is, the per-
formance criterion Jy(ρ) defined previously and reproduced below

Jy(ρ) = Ē[(T (z,ρ) − Td(z))r(t)]2.
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2.3 Duality with System Identification—The Ideal Controllers 13

To that end, define the ideal controller Cd(z), which is the controller transfer
function that would exactly achieve the desired closed-loop transfer function Td(z):

Cd(z) = Td(z)

G(z)(1 − Td(z))
. (2.9)

Should the ideal controller Cd(z) be put in the control loop, the objective function
would evaluate to zero—that is, Jy(ρ) = 0. The ideal controller may or may not
belong to the class of controllers considered. Only when it does the closed-loop
system can be made to behave exactly as specified by the reference model by a
proper choice of the parameter ρ. Whether this is the case or not is a critical issue
in determining the properties of a model reference design. So, let us formalize this
assumption.

Assumption By (Matched control) Cd(z) ∈ C or, equivalently,

∃ρd : C(z,ρd) = Cd(z). (2.10)

This assumption is quite similar to the standard assumption in identification the-
ory that the process model belongs to the model class considered. Though assump-
tions of this nature are standard in our context [1, 2], they are not weak ones. We
can, however, expect them to be violated only moderately in a well formulated de-
sign problem. Indeed, it does not make good sense to formulate a problem in which
one searches for a performance that is radically different from what can be achieved.
Now, it is important to know, for any particular case, whether or not Assumption By

is satisfied, which usually requires knowledge of a model class for the process. On
the other hand, it is possible to arrange things so that this assumption is satisfied.
The following example briefly illustrates these ideas, which will be extensively used
in this book.

Example 2.1 Consider that a process is controlled by a PID controller whose trans-
fer function is

C(z,ρ) = �1(z − �2)(z − �3)

z(z − 1)
(2.11)

with ρ = [�1 �2 �3]T as the parameter vector to be adjusted. The performance cri-
terion to be minimized is Jy(ρ) with the following reference model:

Td(z) = 1 − c

z − c

where c ∈ (0,1) is a given constant.
The controller class is defined as the set of all transfer functions with this partic-

ular structure defined in (2.11):

CPID =
{

C(z,ρ) = �1(z − �2)(z − �3)

z(z − 1)
: ρ ∈ R

3
}

.

co
nt

ro
len

gin
ee

rs
.ir



14 2 H2 Performance Criteria

The job of setting the PID parameters consists in choosing, among all the con-
trollers in the class CPID, the best one according to the performance criterion Jy(ρ).
If the ideal controller is among them—that is, if Cd(z) ∈ CPID—then it is certainly
the best choice. Now assume that the process has a second-order BIBO-stable trans-
fer function:

G(z) = kz

(z − a)(z − b)

with fixed but unknown a, b ∈ (−1,1), k ∈R. Then, using (2.9), the ideal controller
is given by

Cd(z) =
1−c
z−c

kz
(z−a)(z−b)

(1 − 1−c
z−c

)

=
1−c
z−c

kz
(z−a)(z−b)

( z−1
z−c

)

= (1 − c)

k

(z − a)(z − b)

z(z − 1)

which belongs to the class CPID, with

ρd =
⎡

⎣

1−c
k

a

b

⎤

⎦ .

Thus, using only the knowledge of a system class to which the process belongs, it is
possible to establish that Assumption By is satisfied.

Now assume that the same process is controlled by a PI controller within the
following class:

CPI =
{

C(z,ρ) = �1(z − �2)

z − 1
: ρ ∈R

2
}

where the parameter vector has been defined as ρ = [�1 �2]T . It is evident that
Cd(z) /∈ CPI ; equivalently Assumption By is not satisfied. However, if we really want
to work under this assumption, we may choose another reference model which pro-
vides a response yd(t) to be tracked that is similar to the original one. It is straight-
forward to verify that with the second order reference model

Td(z) = Kz

z2 + (K − 1 − b)z + b

where K is any real number chosen by the designer, Cd(z) ∈ CPI and ρd = [K
k

a]T .
And if the parameter K is chosen such that the dominant pole of this new reference
model is close to the unique pole c of the original reference model, then both yield
similar step responses. Figure 2.1 illustrates for an example: b = 0.24, c = 0.8,
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2.3 Duality with System Identification—The Ideal Controllers 15

Fig. 2.1 Step responses of the two reference models in Example 2.1: Td(z) = 0.2
z−0.8 (continuous

line) and Td(z) = 0.22z

z2−1.02z+0.24

K = 0.22, and r(t) is a step signal. This new choice of reference model, however,
requires the knowledge of the process’ pole b.

Assumption By is a quite realistic assumption in many cases. Accordingly, we
analyze the properties of the solution of the model reference design and derive a
number of properties for it under this assumption, which we call the matched con-
trol case. We also show in Sect. 2.4 that actually we can—and should—turn the
problem around, as in the last part of the example. That is, instead of just picking a
reference model and hoping that Assumption By is satisfied, we can try and choose
the reference model such that it is.

In the mismatched control case, when Assumption By is not satisfied, we define
the mismatch in terms of the ideal controller. Let ρ∗ = arg minJy(ρ); then C(z,ρ∗)
is the best controller allowed by the controller class. The mismatch is defined as the
difference between this controller and the ideal controller:

K(z) � Cd(z) − C(z,ρ∗). (2.12)

This is similar to the bias definition in system identification [4]—another simi-
larity with system identification theory found in this book, and certainly not the last.
The norm of the transfer function K(z) can be used as a measure of mismatch. The
case where Assumption By is not satisfied will also be analyzed, and this analysis
will be built upon the results obtained for the matched control case.

When Assumption By is satisfied, the global minimum of the performance cri-
terion is ρd . On the other hand, when Assumption By is not satisfied, the global
minimum of Jy(ρ) will be dependent of the reference spectrum. Whether the global
minimum is unique or not depends on the richness of the input r(t), in both cases.
These properties will be analyzed further ahead in this book.
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16 2 H2 Performance Criteria

2.3.2 Noise Rejection

To analyze the noise rejection performance criterion in a similar way to what has
just been done for the reference tracking criterion, defining an ideal controller, some
preparation is needed. This is due to the fact that, unlike the reference tracking cost,
no relaxation has been included in Je(ρ) and as a result this cost function can not
be made zero by any controller.

Applying Parseval’s Theorem to (2.4) and using the fact that ν(t) = H(z)e(t),
and that e(t) is white noise (thus with a flat spectrum) leads to

Je(ρ) = 1

2π

∫ π

−π

|S(ejω,ρ)|2Φν(e
jω)dω

= 1

2π
σ 2

e

∫ π

−π

|S(ejω,ρ)|2|H(ejω)|2dω. (2.13)

So Je(ρ) = 0 would require S(ejω,ρ) = 0 ∀ω, but no controller can provide this
because S(z,ρ) = 1

1+C(z,ρ)G(z)
—an argument already presented a few pages earlier.

Hence, in order to check which controller provides the smallest possible value for
Je(ρ), we start by checking which value is this. Manipulating (2.13) yields

Je(ρ) = σ 2
e

1

2π

∫ π

−π

|1 + H(ejω)S(ejω,ρ) − 1|2dω

= σ 2
e

1

2π

∫ π

−π

(1 + H(ejω)S(ejω,ρ) − 1)(1 + H(ejω)S(ejω,ρ) − 1)∗dω

= σ 2
e

1

2π

∫ π

−π

(1 + [H(ejω)S(ejω,ρ) − 1] + [H(ejω)S(ejω,ρ) − 1]∗

+ |H(ejω)S(ejω,ρ) − 1|2)dω

= σ 2
e

1

2π

∫ π

−π

(1+2
{H(ejω)S(ejω,ρ)−1}+ |H(ejω)S(ejω,ρ)−1|2)dω.

(2.14)

Now observe that, by hypothesis,

lim
z→∞H(z) = 1

and

lim
z→∞C(z,ρ)G(z) = 0 ∀ρ.

So, by construction,

lim
z→∞S(z,ρ) = lim

z→∞
1

1 + C(z,ρ)G(z)
= 1.
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2.3 Duality with System Identification—The Ideal Controllers 17

Hence [H(z)S(z,ρ)− 1] is a strictly proper transfer function, and the integral of
the real part of a strictly proper transfer function is zero. As a result, we can write

Je(ρ) = σ 2
e + σ 2

e

1

2π

∫ π

−π

|H(ejω)|2
∣
∣
∣
∣S(ejω,ρ) − 1

H(ejω)

∣
∣
∣
∣

2

dω. (2.15)

Equation (2.15) consists of a constant term and a controller-dependent term
which is positive semi-definite. It is seen that the least possible value for the noise
rejection term equals σ 2

e . Moreover, it is also seen that this least value is achieved,
among all linear time-invariant controllers, regardless of any additional constraints,
when the controller is such that the sensitivity equals the inverse of the noise fil-
ter, that is, for S(z,ρ) = 1

H(z)
, because then the second term in (2.15) vanishes.

This sensitivity is the desired sensitivity regarding this performance criterion, and
the corresponding complementary sensitivity plays here a similar role to Td(z) in the
tracking performance criterion, in the sense that it represents the desired closed-loop
transfer function from r(t) to y(t). Let us define this desired transfer function:

Te(z) = 1 − 1

H(z)
.

The controller which achieves this desired closed-loop behavior is given by

Ce(z) = Te(z)

G(z)(1 − Te(z))
= H(z) − 1

G(z)
. (2.16)

This is the “ideal controller” regarding the noise rejection performance Je(ρ),
which is usually called “minimum variance” controller in the literature. This con-
troller may very well result in an internally unstable closed-loop, which happens if
the process is non-minimum phase. We shall study this issue, which is not absent
in the tracking performance criterion either, in Sect. 2.4. It is also worthy of note
the well known fact that if the system noise is white (that is, H(z) = 1) then the
minimum variance controller is Ce(z) = 0—closing the loop can only worsen the
noise rejection performance in this case.

If and only if the ideal controller Ce(z) lies within the class of controllers con-
sidered, then the closed-loop system can be made to behave exactly as desired by a
proper choice of the parameter ρ. Let us formalize this assumption.

Assumption Be Ce(z) ∈ C or, equivalently,

∃ρe : C(z,ρe) = Ce(z). (2.17)

Just like in the reference tracking case, whether or not this assumption is satisfied
is critical in the study of the solution of the corresponding H2 minimization problem.
But Assumption Be tends to be more restrictive than Assumption By , because Te(z)

is given, whereas Td(z) can be chosen—a consequence of not relaxing the noise
rejection performance criterion.
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18 2 H2 Performance Criteria

Example 2.2 Consider the first-order system

G(z) = k

(z − a)

H(z) = z

(z − b)

with fixed but unknown a, b ∈ (0,1), k ∈ R. The ideal controller regarding noise
rejection is given by

Ce(z) = H(z) − 1

G(z)
=

z
(z−b)

− 1
k

(z−a)

which, after straightforward manipulation, simplifies to the following lead-lag con-
troller

Ce(z) = b

k

(z − a)

(z − b)
.

2.3.3 The Composite Criterion

If the same controller happened to optimize the two different control objectives
Jy(ρ) and Je(ρ) at once, that is, if Cd(z) = Ce(z), then the ideal controller for the
composite performance criterion JT (ρ) would also be this same controller. This is,
however, unlikely to happen in a real application, for a number of reasons; let us
mention one of them. In most applications, one wants to track with zero steady-state
error a reference with a given frequency, which requires a controller such that the
loop gain tends to infinity at this frequency. In other words, the ideal controller in
this case must satisfy:

Cd(ejω1)G(ejω1) → ∞ (2.18)

where ω1 is the frequency of the reference to be tracked. If the two ideal controllers
are the same, that is Cd(z) = Ce(z), then (2.16) with (2.18) would imply that

H(ejω1) → ∞ (2.19)

which violates one of the hypotheses on the noise, which is that the filter H(z) is
BIBO-stable. But this is not the only factor preventing the two controllers to be the
same, as shown in the following example.

Example 2.3 Consider again the process in Example 2.2, with the following refer-
ence model

Td(z) = 1 − c

z − c
.
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2.4 Beware of What You Ask for—Choosing the Reference Model 19

Then the ideal reference tracking controller is given by

Cd(z) =
1−c
z−c

k
(z−a)

(1 − 1−c
z−c

)

=
1−c
z−c

k
(z−a)

( z−1
z−c

)

= (1 − c)

k

z − a

z − 1

which is a PI controller. Hence Ce(z) = Cd(z) would require, according to (2.19)
that H(1) → ∞—the noise filter would have to be an integrator.

The ideal controller regarding noise rejection was calculated in Example 2.2 as

Ce(z) = b

k

z − a

z − b

which equals Cd(z) if and only if b = 1 and c = 0. That is, equality of the two ideal
controllers would also require a specific reference model: Td(z) = 1

z
.

So, the ideal reference tracking controller and the ideal noise rejection controller
are hardly ever the same. This implies that the minimizer of the composite cost
JT (ρ) depends not only on the process and noise characteristics—G(z), H(z)—
but also on the reference signal r(t) and on the noise variance σ 2

e . This can be
seen with a simple mind experiment. Assume that, in a particular problem, both
ideal controllers belong to the controller class, that is Cd(z),Ce(z) ∈ C. If the refer-
ence’s amplitude is zero, then the composite cost equals the noise rejection cost—
JT (ρ) = Je(ρ)—and the minimum of this criterion is achieved with Ce(z), resulting
in JT (ρ) = 0. If, for the same process, the reference’s amplitude is not zero, but the
noise variance is, then the composite cost is given by the reference tracking alone—
JT (ρ) = Jy(ρ)—and its minimum becomes Cd(z), again resulting in JT (ρ) = 0.
In the midway, as the signal to noise ratio becomes larger starting from zero, the
optimal controller drifts away from Ce(z), approaching Cd(z) as the signal-to-noise
ratio tends to infinity. Moreover, for any of these “midway” optimal controllers the
resulting cost will not be zero—JT (ρ∗) �= 0. As a consequence, it is not possible for
the composite performance criterion JT (ρ) to obtain a closed-form formula for an
“ideal controller”, as obtained in (2.9) and (2.16).

2.4 Beware of What You Ask for—Choosing the Reference
Model

When applying a model reference design, the user is asking for the algorithm to find
Cd(z), which is the controller that provides the desired input-output relationship
y(z)
r(z)

= Td(z). In so doing, what the user has specified is “only” the input-output
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20 2 H2 Performance Criteria

behavior of the closed-loop system, and the ideal controller, although it matches the
desired input-output behavior, does not guarantee internal stability. While searching
for his/her ideal controller, the user may find out that his/her ideal is not the best
thing to do—maybe even disastrous. Besides, as we will see further ahead in this
book, specifying a model reference that is too far from what can be achieved tends
to complicate the optimization so that it becomes less likely that the best controller
is ever achieved.

What can be done about it? Precautions can be taken in choosing the reference
model to avoid such disastrous quest for an “ideal” that does not provide an appro-
priate behavior for the closed-loop system. This is what this section is about: these
aspects are studied, and guidelines are derived for choosing the reference model
safely, without waiving the desired performance. All this can be analyzed starting
from Cd(z), so we reproduce its expression here for ease of reference

Cd(z) = Td(z)

G(z)(1 − Td(z))
. (2.20)

In the choice of a sensible reference model, the first concern is that the ideal
controller must be causal. Causality means that the relative degree of Cd(z) is non-
negative. Looking at (2.20) it is easy to verify that the relative degree of Cd(z) equals
the difference between the relative degree of the process and that of the reference
model. Hence, in order to have a causal ideal controller, the reference model must
be chosen according to the guideline below.

Guideline 1 (Causality of the controller) The relative degree of the reference model
Td(z) can not be smaller than the relative degree of the process G(z).

In order to be able to follow this guideline, it is necessary the a priori knowledge
of an overbound for the relative degree of the process. This is the first instance found
in this book of an obvious—yet sometimes forgotten—principle: it is impossible to
properly design a controller for a given process without knowing anything at all
about it. We are dealing with design methods that do not require the knowledge of
the process’ transfer function, but this does not mean that we do not know anything
about the process. A process model is a rather complete and more or less exact
description of the process’ behavior for a wide class of excitations, and as such is
often difficult and/or expensive to obtain. But the designer is likely to know basic
features of the process with very little or no cost, such as an estimate of its static
gain, whether or not it is stable and/or stably invertible, etc. So, what data-driven
and adaptive design methods propose is not to design a controller completely in the
dark, but instead to proceed with only some basic information about the process.
Different methods will require different basic information.

Of course, one could just put an arbitrary controller in the loop, set randomly its
parameters and hope that it will work; this does not require any knowledge about
the process. Every now and then it will work—even a broken watch is correct at
least once a day. But if we do not want to rely on luck to do our job, we are bound to
use methods that are guaranteed to work well under reasonable circumstances, and
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2.4 Beware of What You Ask for—Choosing the Reference Model 21

such methods require knowledge of something about the process to be controlled.
There does not exist a universal control/adaptation law, that would work properly
for all processes in the world regardless of their static and dynamic properties and
the performance requirements; searching for such a panacea is reminiscent of the
quest for the moto perpetuo.

Let us close this brief philosophical parenthesis and go back to (2.20). There, we
observe that the ideal controller is obtained through inversion of the process transfer
function G(z), so the transfer function of the ideal controller will have the zeros
of the process as its poles and vice-versa. If any of the zeros or poles canceled by
the ideal controller is outside the unit circle, then the resulting closed-loop with the
ideal controller would be internally unstable, even though its input-output properties
are the stable ones that were specified through the reference model. It is of course
not acceptable to set the control design problem as the quest for a solution that is not
even stabilizing. These unstable cancellations must be prevented at all costs and this
can be accomplished by appropriately choosing the reference model. If the unstable
singularities of the process are also present in the reference model, then they are
canceled in the right hand side of (2.20) and do not appear in the ideal controller
Cd(z). We arrive thus at a second guideline.

Guideline 2 (Internal stability with non-minimum phase process) The non-minimum
phase zeros of the process G(z) must be included in the reference model Td(z).

Enforcing this second guideline requires the knowledge of the locations of the
unstable zeros of the process, if any. Limitations in performance imposed by NMP
zeros are well known and not including these zeros in the reference model would be
fighting against nature. So, a successful model reference design requires the identi-
fication of the non-minimum phase zeros of the process. How to do this within the
context of data-driven control design, without requiring an explicit previous identi-
fication procedure for the NMP zeros, is the subject of later discussion in Chap. 3.

2.4.1 Too Ambitious Performance

If the reference model Td(z) specifies a performance that is too different from the
best that can be achieved within the given controller class, then the solution may
have nothing to do with Td(z). Start with the following example.

Example 2.4 Consider a process described by the following transfer function

G(z) = z

z − 0.2

controlled by a purely integral controller

C(z,ρ) = ρ

z − 1
.
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22 2 H2 Performance Criteria

Fig. 2.2 Reference tracking performance criterion as a function of the scalar controller parame-
ter ρ

The performance criterion is reference tracking, with the specification of the
deadbeat reference model

Td1(z) = 1

z
.

The corresponding ideal controller is given by

Cd(z) = z − 0.2

z(z − 1)

which does not belong to the controller class considered. Then the minimum of the
reference tracking criterion depends on the reference. For a step reference signal,
the function Jy(ρ) is as shown in Fig. 2.2, and it is observed that ρ∗ = 0.96, that is,
the optimal controller is C(z,ρ∗) = 0.96

z−1 . The transfer function of the closed-loop
system with this controller becomes

T1(z, ρ∗) = 0.96z

z2 − 0.24z + 0.2
.

Now consider the alternative reference model

Td2(z) = 0.3z

(z − 0.5)(z − 0.4)

for which Cd(z) = 0.3
z−1 ∈ C is the optimal controller.
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2.4 Beware of What You Ask for—Choosing the Reference Model 23

Fig. 2.3 System responses for a step applied at t = 1: deadbeat response specified by Td1(z) (dot-
ted line), response achieved minimizing Jy(ρ) with this reference model (thick line), and response
specified by the reference model Td2(z), which is achieved exactly by minimizing Jy(ρ) for this
reference model

The step responses of the closed-loop system with each one of the optimal con-
trollers found for each reference model are shown in Fig. 2.3. It is observed that
the transient performance obtained with the problem formulation using the second
reference model Td2(z) is better than the one obtained when the deadbeat reference
model Td1(z) was used. This is because the closed-loop system can be made to be-
have exactly as specified by Td2(z) with the controller structure available, whereas
for Td1(z) this is not possible.

To better appreciate the moral behind this example, recall that the original per-
formance criterion that one would like to optimize is

Ē[(T (z,ρ) − 1)r(t)]2

which is Jy(ρ) with Td(z) = 1. The primary reason why a different Td(z) is spec-
ified instead of minimizing directly the cost function above is to make it possible
to achieve the performance specified. So, it does not make a lot of sense to specify
another reference model that is still far from what is achievable; if this were not a
concern, we would just keep Td(z) = 1.

Guideline 3 (Realistic ambition) The reference model should be sufficiently close
to what is possible to achieve with the given controller class.
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24 2 H2 Performance Criteria

There is more than just intuition to support this guideline. Analytical results sup-
porting this intuition will be presented in subsequent chapters showing that there
exist a good number of properties of data-based methods that can only be proven
when Assumption By is satisfied. It will also be shown that much can be done to
improve these properties in this case, so that it is more likely and easier and safer to
obtain optimality when this assumption is satisfied, or at least moderately violated—
that is, when ‖K(z)‖ is small.

2.5 Chapter Conclusions

This chapter presented a framework for the study of H2 performance criteria, and all
that has been said is inherent to this problem formulation. These properties apply to
whatever control design based on this formulation. This includes data-driven control
design methods, MRAC, and non-adaptive methods as well.

A central concept in this framework is the one of the ideal controller for each per-
formance criterion—reference tracking and noise rejection. And central conditions
are Assumptions By and Be; whether or not these conditions are violated, and to
which extent, is key to the properties of the data-driven design, as will be seen in the
chapters to follow. A few principles and guidelines have also been established for
the choice of the reference model, which must be followed in the problem setting.
Verifying Assumptions By and/or Be, and following these guidelines, are tasks that
require some basic knowledge about the behavior of the process being controlled.
There is no miracle: there is no need for models in data-driven control design, but the
designer can not be completely in the dark; some (rudimentary) information about
the process must be available.

Given the performance criterion, the design is nothing but an optimization prob-
lem, to be solved by some numerical algorithm. The H2 control design thus consists
“only” in choosing the reference model and then solving the optimization problem.
Data-driven control design usually consists in performing the optimization based on
data collected from the system, without the intermediate step of deriving a process
model from these data. Data-driven control design methods rely mainly on itera-
tive optimization procedures, mostly gradient descent algorithms. The quantities re-
quired in the optimization procedure are the cost function’s gradient and possibly its
Hessian, which are estimated pointwise directly from batches of input-output data
collected from the closed-loop system. These details will be extensively analyzed
along this book.

An alternative to iterative optimization methods is to approximate the cost func-
tion by a quadratic function whose minimum is the same. The function to be mini-
mized being quadratic, no iterative algorithm is required, and the minimum can be
found by one single least squares calculation. This alternative is presented in the
next chapter.
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Chapter 3
One-Shot Optimization—The VRFT Method

3.1 Introduction

Virtual Reference Feedback Tuning (VRFT) is a method for optimizing the ref-
erence tracking criterion Jy(ρ) whose most attractive feature is the fact that it is
not iterative. The core idea of this method is to cast the design problem as the
Prediction Error Identification of a model for the ideal controller Cd(z) in Auto-
Regressive form. Prediction Error Identification of such a model consists in min-
imizing a quadratic function of the model parameters, which we shall refer to as
J VR(ρ). This is a function whose global minimum is, under ideal conditions, the
same as the global minimum of Jy(ρ), but whose minimization is much less de-
manding because it is a quadratic function. Hypothetical cost functions Jy(ρ) and
J VR(ρ) for a scalar parameter ρ are depicted in Fig. 3.1 to illustrate this situation.
Optimization of the original reference tracking cost function Jy(ρ) can prove trou-
blesome due to the local extrema observed in this function, whereas J VR(ρ) does
not suffer from this inconvenient.

In this chapter we will present the VRFT method in detail, starting with the ideal
case, for which the method is originally conceived and in which the concepts appear
more clearly.

3.2 The Ideal Case

The Virtual Reference Feedback Tuning method is conceived with an ideal situation
in mind, in which:

• the system is not affected by noise, that is, σe = 0;
• the ideal controller (2.9) belongs to the considered controller class, that is, As-

sumption By is satisfied;
• the controller is parameterized linearly, that is, Assumption LP is satisfied.

From this idealized situation the main ideas are derived, and extensions for the
nonideal case are developed later. The VRFT method can be described as follows.

A. Sanfelice Bazanella et al., Data-Driven Controller Design,
Communications and Control Engineering,
DOI 10.1007/978-94-007-2300-9_3, © Springer Science+Business Media B.V. 2012
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28 3 One-Shot Optimization—The VRFT Method

Fig. 3.1 Illustrative plots of
the cost functions Jy(ρ) and
J VR(ρ) for the case of a
scalar parameter

Fig. 3.2 Experiment for
obtaining data for the VRFT
method: real data (solid lines)
and virtual data (dashed lines)

Through either an open-loop or a closed-loop experiment, input data u(t) and output
data y(t) are collected from the process. Given the measured y(t), we define the
virtual reference signal r̄(t) such that

Td(z)r̄(t) = y(t),

where Td(z) is the desired reference model for the closed-loop response.
If the system were operating in closed loop with the ideal controller Cd(z), and

the virtual reference r̄(t) were applied, the output data would have been the same as
the data y(t) and u(t) that have actually been collected. The VRFT method goes on
as if this fake experiment had actually been performed. Should the data have been
collected like this, the reference tracking error would have been given by

ē(t) = r̄(t) − y(t).

This ē(t) is the signal that would have fed the ideal controller in this virtual exper-
iment, as presented in Fig. 3.2. We thus have input and output data (ē(t) and u(t)

respectively) from the ideal controller Cd(z) in the fake experiment and we can use
these data to identify it. With ē(t) being the controller’s input, C(z,ρ) a model for
the controller, and C(z,ρ)ē(t) the predicted controller’s output with this model, a
Prediction Error Identification criterion is formed as the H2 norm of the prediction
error; this is the VRFT criterion J VR(ρ) previously mentioned:

J VR(ρ) � Ē [u(t) − C(z,ρ)ē(t)]2 . (3.1)

For a linearly parameterized controller as in Assumption LP, the criterion J VR(ρ)

in (3.1) can be written as

J VR(ρ) = Ē[u(t) − ρT C̄(z)ē(t)]2

= Ē[u(t) − ρT ϕ(t)]2, (3.2)
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3.2 The Ideal Case 29

where the regressor vector ϕ(t) is defined as

ϕ(t) = C̄(z)ē(t) = C̄(z)
1 − Td(z)

Td(z)
y(t).

This is a standard formulation in system’s parameter identification, where the
system to be identified is the ideal controller, u(t) is its measured output and ē(t) its
measured input. By noting that the data are generated by

u(t) = Cd(z)ē(t)

the prediction error identification cost function J VR(ρ) can be further developed
into

J VR(ρ) = Ē[(ρd − ρT )ϕ(t)]2

= Ē

[

(ρd − ρT )C̄(z)
1 − Td(z)

Td(z)
G(z)u(t)

]2

, (3.3)

or, alternatively,

J VR(ρ) = Ē

[

(ρd − ρT )C̄(z)
1

Cd(z)
u(t)

]2

. (3.4)

Application of Parseval’s theorem to (3.4) yields

J VR(ρ) = 1

2π

∫ π

−π

1

|Cd(ejω)|2 |(ρ − ρd)T C̄(ejω)|2Φu(e
jω)dω (3.5)

provided that either Cd(z) has no zeros on the unit circle or these zeros do not
correspond to frequencies in the support of u(t); otherwise the integral does not
exist. It is clear in (3.5) that J VR(ρd) = 0 and therefore ρd is a global minimum of
J VR(ρ). Moreover, (3.5) can be reorganized as a quadratic form:

J VR(ρ) = (ρ − ρd)T AVR(ρ − ρd), (3.6)

where

AVR = 1

2π

∫ π

−π

1

|Cd(ejω)|2 C̄(ejω)C̄∗(ejω)Φu(e
jω)dω (3.7)

is a positive semi-definite matrix by construction. It is clear that ρd is a global mini-
mum of this function, as desired, and that it is the unique global minimum provided
that AVR is a positive definite matrix. Let us assume that the input has a discrete
spectrum, that is

Φu(e
jω) =

q∑

k=1

λkδ(ω − ωk)
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30 3 One-Shot Optimization—The VRFT Method

where δ(·) is the Dirac’s delta function and λk are positive real numbers. Then

AVR = 1

2π

q∑

k=1

1

|Cd(ejωk )|2 C̄(ejωk )C̄∗(ejωk )λk. (3.8)

Each one of the matrices C̄(ejωk )C̄∗(ejωk ) is a positive semi-definite matrix, and
the matrix AVR is a weighed sum of q of these matrices. The rank of such a sum
is min(q,p) as a generic property, that is, for almost all spectra with q nonzero
components. This is a standard result in adaptive control and in identification theory
whose demonstration will not be detailed here. The curious reader (and the skepti-
cal one) can check the formal statement of this and the following properties in the
literature; some references for this purpose are given in this chapter’s conclusions.

We define the following nomenclature, which is classic in the identification liter-
ature and will be used extensively in this book.

Definition 3.1 A quasi-stationary process is said to be sufficiently rich of order q—
or SRq for short—if its spectrum has at least q nonzero components.

With this definition, we can say that the optimal controller parameter ρd is the
unique global minimum of J VR(ρ) if the input signal is sufficiently rich of order p.

Coming back to the standard equation (3.2), the problem of finding the global
minimum of a function of this form is known in the literature as the Least Squares
problem, whose solution is given by the solutions ρ∗ of the following system of
linear equations, known as the normal equation:

Ē[ϕ(t)ϕT (t)]ρ∗ = Ē [ϕ(t)u(t)] . (3.9)

The solution of the normal equation exists and is unique if the matrix Ē[ϕ(t)×
ϕT (t)] is full rank. This property of the regressor vector is given a name in the
literature.

Definition 3.2 A quasi-stationary vector ϕ(t) is said to be persistently exciting if
Ē[ϕ(t)ϕT (t)] > 0.

The regressor vector is generated by filtering of the input u(t), so the persistent
excitation condition, which is needed for the solution of the normal equation to be
unique, can be translated into conditions on u(t). This is the so-called problem of
“transfer of excitation”, and it turns out that, apart some technicalities, one can say
that the regressor vector is persistently exciting if u(t) is SRp.1 So, we have arrived
by two different ways at the same conclusion: under Assumptions By and LP, and
with the SRp condition, the unique global minimum of J VR(ρ) is also the global
minimum of the reference tracking criterion Jy(ρ). Minimizing J VR(ρ) under this

1Again, we leave to the reader to check the details in the literature.
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3.2 The Ideal Case 31

Assumption yields the desired result, which is the global minimum of the reference
tracking performance criterion Jy(ρ). This is the whole point of the VRFT method.

But (3.9) is not a directly computable quantity, since it involves expectations.
Given a set of N input-output data collected from the system, the solution ρ∗ of the
normal equation is obtained through the following calculation:

ρ̂ =
[

N∑

t=1

ϕ(t)ϕT (t)

]−1 N∑

t=1

ϕ(t)u(t) = ρ∗. (3.10)

This calculation will result exactly in the asymptotic solution ρ∗ only in this ideal
case, where there is no noise. When there is noise in the system, then the parameter
ρ̂ resulting from (3.10) is a random variable, whose properties will be discussed a
few pages ahead. In any case, this “one-shot” (that is, noniterative) feature is the
key advantage of working with the VRFT criterion (3.1) over the model reference
criterion Jy(ρ).

In summary, considering that the signals measured are free of noise and that the
input is SRp, and under Assumptions LP and By , the VRFT procedure identifies the
ideal controller (2.9) exactly. We illustrate the calculations involved in the VRFT
method in an example.

Example 3.1 Let the open-loop system be given by y(t) = G(z)u(t) with

G(z) = 0.5

z − 0.9

and the reference model be of the form

Td(z) = 1 − a

z − a
,

with the parameter a ∈ (0,1) to be specified. Notice that Td(1) = 1, so that zero
steady-state error for a step reference is obtained, regardless of the value of a.

In order to be in the ideal case, we need to choose the controller class so that the
ideal controller belongs to it. Knowing that the process can be modeled by a first
order transfer function

G(z) = b1

z − b2
,

the ideal controller is given by

Cd(z) =
1−a
z−a

b1
z−b2

(1 − 1−a
z−a

)

= (1 − a)(z − b2)(z − a)

(z − a)[b1(z − a) − b1(1 − a)]
= 1 − a

b1

z − b2

z − 1
, (3.11)
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32 3 One-Shot Optimization—The VRFT Method

Table 3.1 Signals used to
minimize J VR(ρ) in the
matched case example

u(t) y(t) r̄(t) ē(t) ϕ(t)

1.000 0.000 1.250 1.250
[

1.250 0.000

2.375 1.250

]

1.000 0.500 1.625 1.125

which is a PI controller. We then choose the controller class to be the class of PI
controllers, that is

C̄(z) =
[

z
z−1

1
z−1

]

;

in so doing, Assumption By is satisfied.
Now let us specify the parameter a = 0.6 which amounts to the reference model

Td(z) = 0.4

z − 0.6
.

We apply a step of amplitude 1 as the input signal of an open-loop experiment
and collect only N = 2 samples2 of the input signal u(t) and the output signal y(t).
Using C̄(z) and Td(z) and the collected data, we can calculate the signals presented
in Table 3.1; we then minimize J VR(ρ) (3.1) through (3.10) and obtain

ρ̂ =
[

0.8
0.72

]

.

Substituting a = 0.6, b1 = 0.5 and b2 = 0.9 into (3.11) the ideal controller is
found to be

Cd(z) = 0.8
z − 0.9

z − 1
= [0.8 − 0.72]

[
z

z−1
1

z−1

]

,

exactly the same we have found using the VRFT method.

3.2.1 Generation of the Virtual Reference—A Caveat

The scenario where Assumption By is satisfied can usually be forged by the user,
which is done by choosing appropriately the controller class and the reference
model. This must be done without knowing the process model, but only some of
its features, as explained in Chap. 2. As discussed in Sect. 2.4, the choice of Td(z)

should be guided by the process constraints in order for the algorithm be able to
find Cd(z), that is, to satisfy Assumption By . Specifically, when the process is

2Since we are estimating a PI controller, which is formed by a parameter vector of size two, and
we are dealing with a noise-free case, we can use the minimum amount of data.

co
nt

ro
len

gin
ee

rs
.ir



3.2 The Ideal Case 33

non-minimum phase, then its non-minimum zeros should be zeros of the reference
model. This brings about an implementation issue for the VRFT method, since the
virtual reference is calculated with the inverse of Td(z), which in this case would be
unstable.

This issue can be dealt with by multiplying the signals u(t) and y(t) with an all-
pass frequency weighting filter, which leaves the objective function J VR(ρ) (3.1)
unchanged; the signals needed by the VRFT method are then obtained from stable
filters [9, 16]. We briefly explain how this all-pass filter is obtained.

Let Td(z) be factored as

Td(z) = nu(z)ns(z)

d(z)
,

where the factor nu

nu(z) =
m∏

k=1

(z − xk)

contains all the unstable zeros and nothing more. Let Lap(z) be the following all-
pass filter

Lap(z) � nu(z)

n∗
u(z)

that is, a filter whose magnitude is 1 for all frequencies, where

n∗
u(z) =

m∏

k=1

(xkz − 1).

Thus, the criterion J VR(ρ) is slightly changed in such a way that a stable filter is
used to calculate the virtual reference signal. Let

Ta(z) = n∗
u(z)ns(z)

d(z)

be a transfer function whose magnitude is the same as the magnitude of Td(z), but
with stable zeros only. Then, using Lap(z), we have that

J VR
a (ρ) = Ē

{

Lap(z)

[

u(t) −
(

C(z,ρ)
1 − Ta(z)

Ta(z)

)

y(t)

]}2

whose minimum is the same as the minimum of J VR(ρ). This is the cost to be min-
imized in order to find the controller parameters when the reference model contains
NMP zeros.

Another possibility is to multiply the J VR(ρ) criterion by Td(z), so that (3.1)
becomes

J VR
a′ (ρ) � Ē[Td(z)u(t) − (C(z,ρ)(1 − Td(z)))y(t)]2 (3.12)
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34 3 One-Shot Optimization—The VRFT Method

whose minimum is the same as the minimum of the VRFT criterion, but we do
not have the inconvenience of unstable filtering of the signals. The same artifice is
adopted in Sect. 3.4.

The ideal case, as in the example presented above, is rarely found. In many cases,
Assumption By can be made to be satisfied within any given precision by a proper
choice of the reference model, but this is not always possible. Moreover, the noise
levels are often small, or can be made so by appropriate filtering, but again this is
not generic. And any violation of the basic hypothesis will result in a solution that
is not the one desired, for the minima of J VR(ρ) and Jy(ρ) only coincide under
these ideal conditions. In most real applications, the VRFT method needs some
modifications to deal with these real-life facts: that it is impossible to achieve exactly
the ideal controller and that the signals are corrupted by noise. Let us now show
the techniques that are used to handle these issues, starting with the violation of
Assumption By .

3.3 The Mismatched Case

When Assumption By is not satisfied, that is, Cd(z) /∈ C, we say that the control is
mismatched. In the matched case, arg minJ VR(ρ) = arg minJy(ρ), but this will no
longer be the case when Assumption By is not satisfied.

Let us compare the two performance criteria by looking at their frequency do-
main expressions. Applying Parseval’s Theorem to the reference tracking cost func-
tion

Jy(ρ) = Ē[(T (z, ρ) − Td(z))r(t)]2

and using the closed-loop relations

Td(z) = Cd(z)G(z)

1 + Cd(z)G(z)
T (z,ρ) = C(z,ρ)G(z)

1 + C(z,ρ)G(z)

results in the following frequency domain expression for the cost function:

Jy(ρ) = 1

2π

∫ π

−π

∣
∣
∣
∣

G(ejω)C(ejω,ρ)

1 + G(ejω)C(ejω,ρ)
− G(ejω)Cd(ejω)

1 + G(ejω)Cd(ejω)

∣
∣
∣
∣

2

Φr(e
jω)dω.

Developing this expression using the least common denominator yields

Jy(ρ)

= 1

2π

∫ π

−π

∣
∣
∣
∣
G(ejω)[C(ejω,ρ)(1+G(ejω)Cd(ejω))−Cd(ejω)(1+G(ejω)C(ejω,ρ))]

[1 + G(ejω)C(ejω,ρ)][1 + G(ejω)Cd(ejω)]
∣
∣
∣
∣

2

× Φr(e
jω)dω

= 1

2π

∫ π

−π

|G(ejω)|2|C(ejω,ρ) − Cd(ejω)|2
|1 + G(ejω)C(ejω,ρ)|2|1 + G(ejω)Cd(ejω)|2 Φr(e

jω)dω
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3.3 The Mismatched Case 35

which is written more compactly as

Jy(ρ) = 1

2π

∫ π

−π

|G(ejω)|2|S(ejω,ρ)|2|Sd(ejω)|2

× |C(ejω,ρ) − Cd(ejω)|2Φr(e
jω)dω. (3.13)

As for the VRFT objective function J VR(ρ), let us first include a filtering L(z)

to the signals u(t) and ē(t), so that it becomes

J VR(ρ) = Ē [L(z)(u(t) − C(z,ρ)ē(t))]2

= Ē

[

L(z)

(

u(t) −
(

C(z,ρ)
1 − Td(z)

Td(z)

)

y(t)

)]2

. (3.14)

The role of this filter will be seen in a moment. Now, applying Parseval’s theorem
to (3.14) yields

J VR(ρ) = 1

2π

∫ π

−π

∣
∣
∣
∣L(ejω)

[

1 −
(

C(ejω,ρ)
1 − Td(ejω)

Td(ejω)

)

G(ejω)

]∣
∣
∣
∣

2

Φu(e
jω)dω

= 1

2π

∫ π

−π

|L(ejω)|2 |G(ejω)|2
|Td(ejω)|2

×
∣
∣
∣
∣
Td(ejω)

G(ejω)
− C(ejω,ρ)(1 − Td(ejω))

∣
∣
∣
∣

2

Φu(e
jω)dω.

But

1 − Td(ejω) = Sd(ejω)

and

Td(ejω)

G(ejω)
= Cd(ejω)Sd(ejω),

so we can finally write J VR(ρ) as

J VR(ρ) = 1

2π

∫ π

−π

|L(ejω)|2 |G(ejω)|2|Sd(ejω)|2
|Td(ejω)|2

× |Cd(ejω) − C(ejω,ρ)|2Φu(e
jω)dω. (3.15)

Compare now (3.13) with (3.15). When Assumption By is satisfied both cost
functions have a global minimum at the same parameter value ρd (this does not
even depend on the linear parameterization hypothesis LP). But when Assump-
tion By is not satisfied, neither criterion ever vanishes and the minima of either
one depend on the various factors inside the integral multiplying the difference
|Cd(ejω) − C(ejω,ρ)|2. If these factors in the two integrands are different, there
is no reason to expect that the two minima will be the same.

But there is a free parameter that has been included in the VRFT design and that
can be chosen such that these two integrands are alike: the filter L(z). In order to
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36 3 One-Shot Optimization—The VRFT Method

make J VR(ρ) = Jy(ρ), it suffices to chose L(ejω) as follows:

|L(ejω)|2 = |Td(ejω)|2|S(ejω,ρ)|2 Φr(e
jω)

Φu(ejω)
, ∀ω ∈ [−π;π], (3.16)

because then both integrands will be the same. Notice that Φr(e
jω) here comes from

the criterion Jy(ρ), hence it represents the spectrum of the real reference signal r(t)

which will be applied to the system during its operation, not the virtual reference.
And that Φu(e

jω) comes from the VRFT criterion J VR(ρ), so it represents the spec-
trum of the input u(t) actually measured in the VRFT experiment.

If a filter L(z) whose magnitude satisfies (3.16) is applied to the data in the VRFT
procedure, then both cost functions are the same and hence obviously both minima
will be the same. But there is a catch, of course: the calculation of the transfer
function desired for the filter L(z) as specified in (3.16) requires the knowledge of
S(z,ρ), something that is not available. Then the implementation of this filter will
rely on some approximation of this transfer function. The better this approximation,
the closer the minimum that will be calculated by VRFT (the minimum of J VR(ρ))
will be to the desired result, which is the minimum of Jy(ρ).

Although this is probably not the only sensible choice for an approximation of
S(z,ρ), VRFT invariably uses the following:

|S(ejω,ρ)|2 ≈ |Sd(ejω)|2 = |1 − Td(ejω)|2, (3.17)

which appears to be a sensible approximation, since we expect the two sensibilities
in (3.17) to be very close to each other around the minimum. Using this approxima-
tion, the appropriate filter’s transfer function can be obtained from

|L(ejω)|2 = |Td(ejω)|2|1 − Td(ejω)|2 Φr(e
jω)

Φu(ejω)
, ∀ω ∈ [−π;π ], (3.18)

since all quantities in the right side are known. In fact, Φu(e
jω) can be considered

known only when the input signal has been selected by the designer; in other situ-
ations, it must be estimated. Actually, if the user can choose the input signal of an
open loop experiment to be the same type as the reference signal which is usually
applied on the process, then Φr(e

jω)
Φu(ejω)

= 1, and the filter is only dependent on Td(z),
which is known.

Thus, in the mismatched case, the filter is computed using (3.18) and the asymp-
totic value of the parameter vector ρ is given by

ρ∗ = Ē[ϕL(t)ϕL(t)T ]−1Ē [ϕL(t)uL(t)] (3.19)

where ϕL(t) = L(z)ϕ(t) and uL(t) = L(z)u(t). The actual calculation used to ob-
tain the optimal parameter value is similar to (3.10):

ρ̂ =
[

N∑

t=1

ϕL(t)ϕT
L(t)

]−1 N∑

t=1

ϕL(t)uL(t),

and in the absence of noise ρ̂ equals the asymptotic value ρ∗ in (3.19).
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Example 3.2 Let us apply the VRFT method to find the best reference tracking
controller for a given process whose transfer function is given by

G(z) = 0.5(z − 0.5)

(z − 0.9)2 .

The VRFT design will not use the knowledge of the process’ transfer function to
proceed, of course. This system must track a step reference. Suppose that only an
integrator is available to control the process, that is, the controller is given by

C(z) = ρ
z

z − 1

and that the following reference model is chosen:

Td(z) = 1 − a

z − a
, (3.20)

where a can be chosen arbitrarily. The fact that the real process is a second order
process, together with the controller class given and the reference model chosen,
characterizes the mismatched case. Thus, the use of the filter L(z) is important to
approximate the minimum of the VRFT to the actual design objective, that is, the
minimum of Jy(ρ).

Consider the application of a VRFT design with N = 500 data samples collected
in an experiment consisting of the application of a unit step as an open-loop input
signal u(t). Since this signal is the same as the reference that the system is supposed
to track, the filter L(z) is obtained through (3.18) using Φr(e

jω)
Φu(ejω)

= 1. In order to
see the effectiveness of the filter, we compare the plots of the objective function
Jy(ρ), the VRFT criterion J VR(ρ) without filter (3.1), and J VR(ρ) with the filter
L(z) (3.14). We show the cost functions and the respective minimum values ρ∗ for
reference models obtained using different values of a.

Figure 3.3 shows the cost functions’ plots for the reference model (3.20) with
a = 0.7.3 The minimum values of the costs and their corresponding arguments are
presented in Table 3.2. Note that with the use of the filter the minimum of the VRFT
criterion gets much closer to the minimum of the model reference (MR) criterion
Jy(ρ). Probably even more important, the value of the reference tracking objective
function Jy(ρ∗) decreases significantly, from 12.0802 to 5.36806. Compare these
values with the value at the global minimum 3.71748: the VRFT with the filter
yields a 44% surplus in cost with respect to the global minimum, whereas the de-
sign with no filter results in a cost that is over three times larger than at the global
minimum.

The values presented in Table 3.3 are obtained for a reference model (3.20) with
a = 0.9. The use of the filter again causes the minimum of the VRFT cost to ap-
proach the minimum of Jy(ρ); however, for this new value of a, which represents a

3The introduction of the filter causes the cost function J VR(ρ) to become flatter, so we have plotted
200J VR(ρ) to make the visual comparison to the other costs easier.
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Fig. 3.3 Plots of Jy(ρ) and J VR(ρ) with and without using the filter L(z), varying the parameter ρ

for a reference model (3.20) with a = 0.7; asterisks denote the minimum of each cost

Table 3.2 Minimizers of
Jy(ρ) and J VR(ρ) with and
without using the filter L(z)

and their relative cost values
for a reference model (3.20)
with a = 0.7

Method ρ∗ Jy(ρ∗)

MR 0.00350 3.71748

VRFT 0.01220 12.0802

VRFT + L(z) 0.00850 5.36806

Table 3.3 Minimizers of
Jy(ρ) and J VR(ρ) with and
without using the filter L(z)

and their relative cost values
for a reference model (3.20)
with a = 0.9

Method ρ∗ Jy(ρ∗)

MR 0.00290 2.69770

VRFT 0.00410 2.86835

VRFT + L(z) 0.00350 2.74450

slower reference model, both the value of the minimum ρ∗ and the minimum value
of the cost Jy(ρ∗) are much closer to the values of the reference tracking criterion
than in the case a = 0.7. This is because with this reference model the violation of
Assumption By is less important, that is, ‖C(z,ρ∗) − Cd(z)‖ is smaller.

On the other hand, a disastrous result is obtained if a much faster reference model
were specified, for example a = 0.3. The minimizers and the minimum cost values
for this case are presented in Table 3.4. Differently from the cases above, now the
VRFT method results in a controller that makes the closed-loop unstable, regardless
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3.4 Dealing with Non-minimum Phase Plants 39

Table 3.4 Minimizers of
Jy(ρ) and J VR(ρ) with and
without using the filter L(z)

and their relative cost values
for a reference model (3.20)
with a = 0.3

Method ρ∗ Jy(ρ∗)

MR 0.00400 4.09444

VRFT 0.02900 5496.90

VRFT + L(z) 0.01700 75.25891

the use of the filter. The closed-loop transfer functions, obtained with and without
the filter L(z), are given by

T (z,0.02900) = 0.0145z(z − 0.5000)

(z − 0.7800)(z2 − 2.005z + 1.038)
(3.21)

and

T (z,0.01700) = 0.0085z(z − 0.5000)

(z − 0.7993)(z2 − 1.992z + 1.013)
(3.22)

respectively, both of which present unstable poles.

When Assumption By is satisfied VRFT provides exactly the desired result,
which is the minimum of Jy(ρ). The example above illustrates that for moderate
violations of Assumption By , that is, when the performance specified by the refer-
ence model can “almost” be exactly achieved, then the incorporation of the proper
filter in the VRFT method succeeds in providing almost the same result. As the vi-
olation of this assumption becomes more pronounced, the filter still helps, but grad-
ually loses its effectiveness. But if Assumption By is really strongly violated, that
is, if the best performance that can be achieved with the controller class available
is really far from the reference model, then the VRFT method becomes ineffective,
regardless of the use of the filter.

This is expected, since the formulation of the filter L(z) (3.18) is based on the
approximation (3.17). If this approximation is not valid, the closed-loop response
obtained from VRFT may be far from the desired one and, in some cases, even un-
stable. This undesired situation is also observed when the VRFT method is applied
to non-minimum phase processes. This special case is dealt with in the next section,
where we show a modification in the criterion so that the VRFT method can also be
safely applied to this class of processes.

3.4 Dealing with Non-minimum Phase Plants

The VRFT method searches the parameters of a fixed structure controller to make
the behavior of the closed-loop system as close as possible to the closed-loop sys-
tem with Cd(z). When the process has non-minimum phase (NMP) zeros and the
reference model does not, the ideal controller Cd(z) cancels out the NMP zeros of
the process. Therefore the closed-loop system with Cd(z) would be internally un-
stable and VRFT would try to mimic this disastrous behavior. One could hope that
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40 3 One-Shot Optimization—The VRFT Method

if Assumption By is not satisfied then the controller will not be able to mimic the
unstable behavior and disaster will be avoided. The following example illustrates
that this hope is not justified, and thus including the NMP zeros in the reference
model is a safeguard to be applied in all cases.

Example 3.3 Let the process to be controlled be a non-minimum phase process,
described by

G(z) = (1.1 − z)(z − 0.8)

(z − 0.9)3

and the reference model be

Td(z) = 0.125z2

(z − 0.5)3 .

In this case, the ideal controller would be given by

Cd(z) = −0.125z2(z − 0.9)3

(z − 1.1)(z − 1)(z − 0.8)(z2 − 0.625z + 0.125)

whose application would cause internal instability. We would like to design a PID
controller applying the VRFT method, with a transfer function given by (1.4). This
transfer function has fixed poles, so the NMP zeros of the plant will not be canceled
by the controller. The design is performed for the linear parameterization presented
in (1.4), that is, the gains kp , ki and kd are calculated, but the resulting controller is
presented in the zero-pole form to facilitate the stability analysis.

Suppose that there is no noise in the output of the process and that 600 samples
of the data are collected from an open-loop experiment, where

u(t) = 0.5 + 0.5sq

(
2π

200
t

)

,

where sq( 2π
T

t) denotes a square wave with period T . The application of VRFT to
design a PID controller results in the following controller:

C(z,ρ) = 0.2764(z − 1.176)(z − 0.957)

z(z − 1)

and the corresponding closed-loop transfer function is

T (z,ρ) = −0.2764(z − 1.176)(z − 1.1)(z − 0.957)(z − 0.8)

(z − 1.024)(z − 0.9523)(z − 0.4684)(z2 − 1.531z + 0.5991)
,

The closed-loop system is unstable, since the transfer function T (z,ρ) has a pole
at 1.024.

This issue has been discussed in Chap. 2, where it has been seen that to avoid
this kind of trouble the reference model must possess the NMP zeros present in the
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3.4 Dealing with Non-minimum Phase Plants 41

process. Picking such a reference model would in principle require the identification
of these zeros, in a partial identification phase prior to the controller’s design. We
would like to avoid model identification as one of the motivations for using a data-
driven control design. Yet, only a partial identification is required, not the whole
process model, and it can also be argued that identifying unstable singularities of
a transfer function is less costly than identifying the stable ones [2, 14]. Thus this
prior identification phase should be not such a big burden to the designer. In any case
NMP zeros are a serious problem to begin with and the designer should not expect
to get rid of it for free. Once the NMP zeros are known, they can be included in the
model reference by the designer, and then a data-driven design with this reference
model could be triggered.

But there is a more elegant alternative, that will be presented next. This alter-
native consists in embedding the identification of the zeros into the VRFT method
itself, which is achieved through a simple modification of the cost function to be
minimized. Prior identification is no longer needed and as a consequence there is
less (if any) extra burden on the designer in order to successfully cope with possible
NMP zeros of the plant.

3.4.1 The Flexible VRFT Criterion

If the reference model must contain the zeros of the plant, and these are unknown,
the designer can not fix a priori the zeros of the reference model. Instead, a flexible
reference model can be used

T (z, η) = ηT F (z), (3.23)

where η ∈R
q is a vector of free parameters and F(z) is a q-vector of rational func-

tions. By replacing the fixed reference model Td(z) by T (z, η) and using the filter
L(z), the VRFT criterion (3.1) is changed into

J VR
0 (η,ρ) = Ē

{

L(z)

[

u(t) −
(

1 − T (z, η)

T (z, η)
C(z,ρ)

)

y(t)

]}2

. (3.24)

In this formulation the denominator of the reference model is assigned, while
the numerator is left free. If the number of free parameters q equals the order of
the numerator of T (z, η), then the numerator is entirely free and the formulation
becomes conceptually equivalent to a pole assignment design. Then the optimization
of the performance criterion J VR

0 (η,ρ) with respect to η and ρ should “find” the
zeros of the plant, and particularly the NMP zeros, along with the optimal controller
parameters, all at once.

In the standard VRFT method, Assumption By is crucial. Our analysis for this
new design criterion requires a similar assumption, which will state that there exists,
within the class of reference models considered, one reference model for which
controller matching is possible.
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Assumption BNMP (Flexible matched control) There exists a pair (η∗, ρ∗) such that
J VR

0 (η∗, ρ∗) = 0; equivalently

∃η∗, ρ∗ : C(z,ρ∗) = T (z, η∗)
[1 − T (z, η∗)]G(z)

. (3.25)

Theorem 3.1 Let Assumption BNMP be satisfied and all the poles of the controller
be either inside or on the unit circle. Then the NMP zeros of G(z) are also zeros of
T (z, η∗).

Proof Let G(z) = nG(z)
dG(z)

and T (z, η∗) = nT (z,η∗)
dT (z)

be coprime factorizations of G(z)

and T (z, η∗), where nG(z), dG(z), nT (z, η∗) and dT (z) are polynomials. From (2.9)
we have

C(z,ρ∗) = nT (z, η∗)dG(z)

[dT (z) − nT (z, η∗)]nG(z)
. (3.26)

By assumption, the denominator of C(z,ρ∗) has no unstable roots (that is, roots
outside the unit circle). Therefore, from (3.26), any unstable root of nG(z) must be
canceled by a root of nT (z, η∗). �

According to Theorem 3.1, if G(z) has NMP zeros and Assumption BNMP is sat-
isfied, then the NMP zeros appear necessarily in the numerator of T (z, η∗). Under
these conditions, the global minimum of J VR

0 (η,ρ) gives the desired result: a refer-
ence model containing the NMP zeros of the process and the controller that achieves
this reference model. But this is a nasty cost function to minimize, as the decision
variables appear even in its denominator, and VRFT is all about having a nice cost
function to minimize so as to avoid iterative procedures.

In order to recover the nice numerical properties of the VRFT objective function,
let us multiply J VR

0 (η,ρ) by T (z, η), arriving at another cost function:

J̃ VR
0 (η,ρ) = Ē[L(z)T (z, η)u(t) − L(z)C(z,ρ)(1 − T (z, η))y(t)]2. (3.27)

This new cost function must have the same minimum as the original one, which
does happen under Assumption BNMP:

arg min
η,ρ

J VR
0 (η,ρ) = arg min

η,ρ
(η,ρ)	={0,0}

J̃ VR
0 (η,ρ) = (η∗, ρ∗). (3.28)

Notice however that because of the linear parametrization of both the controller
and the reference model, J̃ VR

0 (0,0) = 0. Thus, the multiplication by T (z, η) has
created an additional—and undesired—global minimum at the origin of the param-
eter space. This is why the right hand side of (3.28) is subjected to a constraint that
excludes this undesired minimum (η,ρ) = {0, 0}. This is a natural constraint, since
η = 0 corresponds to the closed-loop behavior T (z, η) = 0, which does not make
sense.
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It now follows from Theorem 3.1 that, under Assumption BNMP, the minimiza-
tion (3.28) of J̃ VR

0 (η,ρ) yields a minimum (η∗, ρ∗) such that T (z, η∗) contains all
NMP zeros of G(z). We have thus produced a data-based optimization problem
whose solution detects the NMP zeros of the plant without utilizing a full order
model identification procedure, the only assumption being that the controller struc-
ture is such that the desired closed-loop poles can be achieved. But the resulting cost
function is no longer quadratic in the parameter, so it remains to show how to best
perform its optimization.

3.4.2 Implementation Issues

Inserting (3.23) and C(z,ρ) = ρT C̄(z) into (3.27) yields

J̃ VR
0 (η,ρ) = Ē{ηT F (z)[uL(t) + ρT C̄(z)yL(t)] − ρT C̄(z)yL(t)}2. (3.29)

The argument in (3.29) is bilinear in η and ρ. For objective functions with this
structure, the minimization can be treated as a sequence of least squares problems,
as described below [12]. For a fixed η1 the minimization J̃ VR

0 (η1, ρ) in ρ can be
solved by least squares, obtaining an optimal value—say ρ1; then, with the value of
ρ1 just obtained, optimize the resulting cost function J̃ VR

0 (η,ρ1), obtaining a new
value η2. Proceeding iteratively in this way, at each iteration the following pair of
least squares problem must be solved

ηi = arg min
η

J̃ VR
0 (η,ρi−1), (3.30)

ρi = arg min
ρ

J̃ VR
0 (ηi, ρ), (3.31)

where i is the iteration number. Each one of these least squares problems at iteration
i has the explicit solutions:

ηi = Ē{[F(z)w(ρi−1, t)][F(z)w(ρi−1, t)]T }−1

× Ē{[F(z)w(ρi−1, t)][C(z,ρi−1)L(z)y(t)]}, (3.32)

ρi = Ē{[C̄(z)v(ηi, t)][C̄(z)v(ηi , t)]T }−1

× Ē{[C̄(z)v(ηi, t)][M(z,ηi)L(z)u(t)]}, (3.33)

w(ρ, t) � L(z)[u(t) + ρT C̄(z)y(t)],
v(η, t) � L(z)[1 − ηT F (z)]y(t).

This sequential least squares algorithm is guaranteed to converge at least to a lo-
cal minimum [12, 17]. An initialization must be provided for T (z, η); one possible
choice is to use T (z, η0) = Td(z). This is an iterative algorithm, but it is very im-
portant to notice right away that this algorithm is NOT iterative in the sense (most
commonly used in data-driven design) that iterative adjustments of the controller’s
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parameters are made. The controller’s parameters are set only once, at the end of the
sequential least squares algorithm, and the data from the system are collected only
once. The “one-shot” property of the VRFT method is kept intact.

3.4.2.1 Remarks on the Filter L(z)

A few remarks are in order concerning the filter L(z). First, one may ask why the
filter is used at all, since we consider that matching Assumption BNMP is satisfied,
and the filter is necessary only when the matching condition is violated. But at each
iteration a “classical” VRFT is performed with the current reference model T (z, ηi),
for which the matching condition By is not satisfied. Assumption BNMP only guar-
antees that Assumption By is satisfied for η = η∗. This is the reason why a filter
L(z) must be used at each iteration.

This filter’s job is to approximate the minima of the reference tracking Jy(ρ) and
the VRFT criterion J VR(ρ) and to do that it must be calculated by an expression
involving the reference model. In the iterative algorithm involving the flexible crite-
rion, at each iteration the reference model T (z, η) is different, and thus so must be
the filter, which now must be calculated from

|L(ejω)|2 = |1 − T (ejω, η)|2|T (ejω, η)|2 Φr(ω)

Φu(ω)
, ∀ω ∈ [−π;π]. (3.34)

3.4.3 Two-Step Procedure

The global minimum of the flexible criterion J̃ VR
0 (η,ρ) corresponds to a reference

model that contains the NMP zeros of the plant, if any. But we don’t know a priori
whether there are NMP zeros or not, and when there are not it is preferable to use the
standard VRFT method, in which the designer choses the reference model at will.
With that in mind, and in order to keep the designer’s options as broad as possible,
the following two step procedure can be applied to processes where NMP zeros may
or may not exist.

Let Td(z) be the designer’s choice for the reference model, that he/she will not
use directly in a VRFT design because there may be NMP zeros in the process. Then
proceed in the following two steps.

Step 1 Pick a flexible reference model T (z, η) with the same poles as Td(z) and
minimize J̃ VR

0 (η,ρ). Let (η̂, ρ̂) be the minimizing parameters just found and verify
whether or not the performance provided by the resulting closed-loop—given by
T (z, η̂)—is satisfactory. If it is, apply C(z, ρ̂) to the system; if not, go to Step 2.

Step 2 If T (z, η̂), obtained in Step 1, has NMP zeros, then modify the reference
model Td(z) so that it contains these NMP zeros, keeping its remaining singularities,
and solve a standard VRFT design with this new reference model. If there are not
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3.5 The Noisy Case 45

NMP zeros, just solve a standard VRFT design with the initially chosen reference
model Td(z).

In case Step 1 has determined that there are indeed NMP zeros, these must be
included in the reference model. The proposed modification of the original reference
model Td(z) to include these zeros is a way to specify a performance that is as
close as possible to the originally desired performance Td(z), given the constraints
imposed by the NMP zeros.

3.5 The Noisy Case

The VRFT formulations just presented were derived for noiseless processes, an ideal
condition that is rarely found. In this section, we will analyze what happens when
the VRFT method is applied to noisy systems and present a modification to it that
broadens its application to this case.

The optimal parameter ρ̂ provided by the VRFT method is calculated by means
of (3.10). In the presence of measurement noise, this is no longer a deterministic
quantity, but rather a random variable, which represents a stochastic estimate of
the real parameter value ρd . The relevant properties of the VRFT method are the
statistical properties of the random variable ρ̂. These properties are studied in the
sequel.

The output of the process is given by

y(t) = G(z)u(t) + H(z)e(t). (3.35)

An inverse model can be formed isolating u(t) in (3.35):

Sinv : u(t) = 1

G(z)
y(t) − 1

G(z)
H(z)e(t). (3.36)

But from the definition of the ideal controller Cd(z) in (2.9), the process’ transfer
function G(z) can be written as a function of Cd(z) and Td(z):

1

G(z)
= Cd(z)

1 − Td(z)

Td(z)
. (3.37)

Substituting (3.37) in (3.36) gives

Sinv : u(t) = Cd(z)
1 − Td(z)

Td(z)
y(t) − 1

G(z)
H(z)e(t), (3.38)

u(t) = Cd(z)ē(t) − 1

G(z)
H(z)e(t). (3.39)

The VRFT method can be seen as a prediction error approach to the identification
of this system using the input-output data ē(t) and u(t), a fact that has already been
mentioned earlier, in this chapter’s Introduction. The VRFT method identifies for
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this system a model of the form

û(t) = ρT ϕ(t) (3.40)

where the regressor vector ϕ(t) is defined as

ϕ(t) = C̄(z)ē(t).

Posed like this, the control design via VRFT is a standard identification problem
with a linear regressor, and it will be treated as such. The random variable ρ̂ presents
an error regarding the real optimal parameter value ρd which is conveniently decom-
posed into two terms:

ρ̂ − ρd = (ρ̂ − ρ∗) + (ρ∗ − ρd) (3.41)

where ρ∗ is the asymptotic value of the estimate ρ̂, that is,

ρ∗ = lim
N→∞

[
N∑

t=1

ϕ(t)ϕT (t)

]−1 N∑

t=1

ϕ(t)u(t) = Ē[ϕ(t)ϕT (t)]−1Ē[ϕ(t)u(t)]

as defined previously in (3.9).
The first term ρ̂ − ρ∗ in (3.41) is a random quantity called the variance error;

its origin is the finiteness of the data set used to obtain the estimate. The second
term ρ∗ − ρd is a deterministic quantity called bias error, and is inherent to the
problem formulation. An estimate is said to be consistent if the bias term is zero. A
consistent estimate can be made arbitrarily close to the real optimal parameter value
ρd by collecting more information—that is, more data—because the variance error
tends to zero as N tends to infinity. An estimate that is not consistent can not be
arbitrarily improved; collecting more data will not change the second term.

It is therefore a minimal requirement in most estimation problems in statistics,
and parameter identification is not different, that the solution must be consistent.
The following theorem characterizes the consistency of the estimate ρ̂.

Theorem 3.2 Let Assumption By be satisfied. The estimate (3.9) of the ideal con-
troller parameters ρd produced by the VRFT method is biased by the following quan-
tity.

bias = Ē[(ϕ(t)ϕT (t))−1ϕ(t)G−1(z)H(z)e(t)]. (3.42)

Proof The controller’s output—the signal u(t)—is given by (3.39). Substituting
(3.39) into (3.9) yields

ρ∗ = Ē[ϕ(t)ϕT (t)]−1Ē

[

ϕ(t)

(

ϕT (t)ρd − 1

G(z)
H(z)e(t)

)]

= Ē[ϕ(t)ϕT (t)]−1Ē[ϕ(t)ϕT (t)]ρd − Ē[ϕ(t)ϕT (t)]−1Ē[ϕ(t)G−1(z)H(z)e(t)]
= ρd − Ē[ϕ(t)ϕT (t)]−1Ē[ϕ(t)G−1(z)H(z)e(t)]. �
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A consistent estimate of the ideal parameter ρd is obtained if the bias term is
zero, which will happen if and only if

Ē[ϕ(t)G−1(z)H(z)e(t)] = 0. (3.43)

Since the regressor vector is formed by past values of y(t), which are correlated
to past values of the noise, it is not easy to imagine meaningful conditions under
which (3.43) would be satisfied. So, the standard VRFT provides in almost all real
situations a biased estimate, which is a serious drawback, unless the noise level is
negligible. To overcome this limitation, an instrumental variable (IV) approach to
the identification of Cd(z) can be used.

An instrumental variable is a p-vector ζ(t) satisfying

Ē[ζ(t)ϕ(t)T ] > 0

and

Ē[ζ(t)e(s)T ] = 0 ∀t, s.

Once an appropriate IV has been found, the controller parameters are given by:

ρIV = Ē[ζ(t)ϕ(t)T ]−1Ē[ζ(t)u(t)]. (3.44)

It is also standard knowledge in identification theory that the estimate obtained
with this IV approach is unbiased, as can be shown through the same argument used
in the proof of Theorem 3.2. This IV approach actually is the form of VRFT that is
standard practice, because it removes the bias and maintains the other properties of
the VRFT method. As for the determination of the IV itself, different choices exist,
as discussed next.

3.5.1 Choosing the Instrumental Variable

A traditional way to generate instrumental variables in identification theory is to
substitute the output y(t) in the regressor vector by a noise-free approximation.
Applying this idea to the regressor vector of VRFT, which is given by

ϕ(t) = C̄(z)

(
1 − Td(z)

Td(z)

)

y(t),

results in the following family of IVs:

ζ(t) = C̄(z)

(
1 − Td(z)

Td(z)

)

y′(t), (3.45)

where y′(t) is the “noise-independent output”, that is, a signal that is generated
similarly to the output y(t) but without the influence of the noise measured in the
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48 3 One-Shot Optimization—The VRFT Method

experiment. This will make the IV uncorrelated to the noise, but strongly corre-
lated to the regressor vector, as desired. Equation (3.45) defines a whole family of
IVs rather than a single one, because the “noise-independent output” y ′(t) may be
generated in a number of different ways.

Two different ways to obtain y′(t) have been proposed for VRFT when the data
are collected in an open-loop experiment [5]. The first one consists of repeating the
same experiment twice and guarantees that asymptotically ρIV = ρ∗. However, an
additional experiment on the plant is required. The second one consists in estimating
a rough model for the process with the data collected and then simulating this model
to generate the IV. This procedure does not guarantee that ρIV = ρ∗, but the bias
tends to be small and it does not require an additional experiment. The procedures
for obtaining these two different IVs are detailed below.

• Repeated experiment. Perform a second experiment on the plant using the same
input {u(t)}t=1,...,N and collect the corresponding output sequence {y′(t)}t=1,...,N .
Then construct the instrumental variable through (3.45). Notice that {y ′(t)}t=1,...,N

is different from {y(t)}t=1,...,N , since the two sequences are affected by two dif-
ferent realizations of the noise in the two experiments. If we assume, as it is
reasonable, that the noise signals in the two experiments are uncorrelated, then
ρIV is an unbiased estimate of ρd .

• Identification of the plant. Identify a model Ĝ(z) of the plant from the set of data
{u(t), y(t)}t=1,...,N and generate the simulated output y ′(t) = Ĝ(z)u(t). Then
construct the instrumental variable through (3.45). Due to the inaccuracy of the
estimated Ĝ(z), which also depends on the noise, this second method does not
guarantee that the estimate ρIV asymptotically tends to ρd . It does reduce the
bias, but not necessarily to zero.

3.5.1.1 Instrumental Variables for the Flexible VRFT Criterion

In the presence of noise, the optimization of the flexible VRFT criterion through
the sequential Least Squares (3.32) and (3.33) will of course suffer from the same
bias problems described for the standard VRFT method. On the other hand, the
solution provided by the instrumental variable approach can be applied also to the
flexible VRFT criterion, mutatis mutandis. In the sequel we detail the use of the
instrumental variable obtained by means of the repeated experiment, similarly to
the one presented above for the optimization of the standard VRFT criterion.

Concerning the case of an open-loop experiment, in the first experiment we col-
lect the input data u(t) and the output data y(t); in the second one, only the output
data y′(t) must be collected, because the input data u(t) is the same as in the first
experiment. The regression vector used to calculate ηi in the flexible VRFT criterion
is as given in (3.32):

ϕη(t, ρ) = F(z)w(t, ρ)

= F(z)L(z)[u(t) + ρT C̄(z)y(t)]. (3.46)
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Then the instrumental variable is constructed by simple substitution of the output
y(t) by a noise-independent parallel y ′(t):

ξη(t, ρ) = F(z)wIV (t, ρ)

= F(z)L(z)[u(t) + ρT C̄(z)y ′(t)]. (3.47)

If a closed-loop experiment is used instead, then u(t) is also correlated with the
noise. Then to obtain an IV that is not correlated to the noise, the input u(t) must also
be substituted by a noise-independent signal u′(t), which will be the process’ input
in the second experiment. The instrumental variable for closed-loop experiments
must be computed as

ξη(t, ρ) = F(z)L(z)[u′(t) + ρT C̄(z)y′(t)].
Analogously, in order to compute ρi , the regression vector is given by

ϕρ(t, η) = C̄(z)v(t, η)

= C̄(z)L(z)[1 − ηT F (z)]y(t). (3.48)

Hence, the instrumental variable for this sub-problem is given by

ξρ(t, η) = C̄(z)vIV(t, η)

= C̄(z)L(z)[1 − ηT F (z)]y′(t), (3.49)

where y′(t) is obtained as in the previous case. In this case, it is not relevant whether
the experiment is performed in open or closed loop, since v(t, η) does not depend
on u(t).

Thus, in the noisy case, each step of the algorithm (3.30)–(3.31) is solved through
the following equations:

ηIV
i = Ē{[ξη(t, ρi−1)ϕ

T
η (t, ρi−1)]−1ξη(t, ρi−1)[C(z,ρi−1)L(z)y(t)]}

= Ē{[F(z)wIV(ρi−1, t)][F(z)w(ρi−1, t)]T }−1

× Ē{[F(z)wIV (ρi−1, t)][C(z,ρi−1)L(z)y(t)]}, (3.50)

ρIV
i = Ē{[ξρ(t, ηi)ϕ

T
ρ (t, ηi)]−1ξρ(t, ηi)[T (z, ηi)L(z)u(t)]}

= Ē{[C̄(z)vIV(ηi, t)][C̄(z)v(ηi, t)]T }−1

× Ē{[C̄(z)vIV (ηi, t)][T (z, ηi)L(z)u(t)]}. (3.51)

3.6 Case Studies

A few simulated case studies will be presented in order to illustrate the main is-
sues concerning the application of the VRFT method in different situations. In the
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50 3 One-Shot Optimization—The VRFT Method

first example, we explore the need of instrumental variables when the signals are
corrupted by noise, illustrating the variance and bias properties of the estimates. In
the second, we show how to use the flexible criterion in order to estimate the NMP
zeros of the process, if there are any, and then how to use this information when
designing the controller. Experimental studies further explaining and illustrating the
application of VRFT will be presented in Chap. 8.

3.6.1 The Need of Instrumental Variables

The following example will illustrate that the use of instrumental variables is nec-
essary to provide a meaningful controller, except for very low noise levels. Suppose
that the process to be controlled is described by

G(z) = 1

z − 0.9
, H(z) = 1. (3.52)

Once again, the following reference model of order one will be used:

Td(z) = 1 − a

z − a
(3.53)

where a is the pole of the desired closed-loop transfer function. The controller is
a PI:

C(z,ρ) = �1z + �2

z − 1
.

This linear parameterization is used in all computations, but to facilitate an intu-
itive visualization and interpretation, the results are presented in terms of the con-
trollers gain and zero instead, that is, in terms of �1 and �2 in the following equa-
tion.

C(z,ρ) = �1(z + �2)

z − 1
. (3.54)

The ideal controller is easily calculated, and it belongs to the controller class for
any value of a:

Cd(z) = (1 − a)(z − 0.9)

z − 1
. (3.55)

Since the output signal is corrupted by noise, the VRFT requires the use of in-
strumental variables to produce unbiased estimates. The basic VRFT formulation,
that is, the one with standard least squares estimate, yields a biased result. This ex-
ample will illustrate these consistency properties, also from a quantitative point of
view.

Results for different signal to noise ratios and different reference models, given
by (3.53) with different values of the parameter a, will be presented. For each case
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3.6 Case Studies 51

Fig. 3.4 Estimated parameters obtained through LS (+) and IV (∗) from 500 Monte Carlo
runs where σ 2

e = 0.01. Ellipse plots of 95% confidence interval. The ideal parameter vector is
ρd = [0.4 −0.9]T

we ran 500 Monte Carlo simulations, collecting the open-loop input signal u(t),
which is a PRBS4 with amplitude ±1, and the corresponding output signal y(t),
which is corrupted by white noise. Each Monte Carlo run consisted of N = 1,000
data samples.

Start with a noise variance σ 2
e = 0.01, and a reference model with a = 0.6. The

Monte Carlo experiments were ran and for each run the controller parameters were
calculated using VRFT with both the standard least squares method—LS—and the
instrumental variable (two experiments with the same input)—IV. Figure 3.4 shows
the estimated parameter (the controller gain �1 and the controller zero �2) obtained
in each run, for both methods: LS, marked as + and IV, marked as ∗. We also plotted
the resulting 95% confidence ellipse of each method, which shows the covariance
of the estimate obtained in each case.5

Each ellipse is centered at its mean value, and these mean values are given in
Table 3.5. Substituting a = 0.6 into (3.55), the ideal value of the parameter vector is

ρd =
[

0.4
−0.9

]

.

4Pseudo Random Binary Signal.
5The ellipses were computed from the data, so this is the sample covariance.
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52 3 One-Shot Optimization—The VRFT Method

Table 3.5 Mean values of ρ̂

for LS and IV when a = 0.6
and σ 2

e = 0.01

Method ρ̂T
m ‖(ρ̂m − ρd)‖

Ideal [0.4000 −0.9000] –

LS [0.3922 −0.8978] 0.008125

IV [0.3993 −0.8993] 0.000988

Fig. 3.5 95% confidence ellipses obtained from the estimates using LS (thicker lines, centered
at ◦) and IV (thinner lines, centered at ∗) for a = 0.6 (solid lines) and a = 0.8 (dotted lines). The
LS is strongly biased

The controller parameters are closer to the “correct” value ρd when calculated
with the use of IV, but the standard least squares solution also gives very close ap-
proximations, because the noise level is low. Although the standard least squares
solution provides a biased estimate, this bias is small and could be acceptable
in a practical application. On the other hand, it is also observed in Fig. 3.4 that
the estimate variances obtained with both approaches have about the same magni-
tude.

Consider now a higher level of noise: σ 2
e = 0.25. For this noise level we want to

show the statistical properties of the estimates—through LS and IV—for different
reference models, that is, for different values of a. Figure 3.5 shows the 95% con-
fidence ellipses obtained from the estimates using both methods for two different
values of a: 0.6 and 0.8. The ellipses plotted with solid lines are the ones obtained
with a = 0.6, while the ones plotted with dotted lines correspond to a = 0.8. The
thinner line ellipses with the central point denoted with an asterisk are the ones ob-
tained from IV estimates, while the thicker ellipses centered at a circle are the ones
obtained with LS. The mean values of each estimate (ρ̂m) are presented in Table 3.6,
along with their Euclidean distances to the ideal controller parameter. A negligible
distance between the mean value ρ̂m and the ideal controller parameter ρd indicates
that the estimate is unbiased.
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3.6 Case Studies 53

Table 3.6 Mean values of
the parameters ρ̂ obtained for
a = 0.6, a = 0.8 and
σ 2

e = 0.25

a Method ρ̂T
m ‖(ρ̂m − ρd)‖

0.8

Ideal [0.2000 −0.9000] –

LS [0.1379 −0.8629] 0.072302

IV [0.1995 −0.8988] 0.001277

0.6

Ideal [0.4000 −0.9000] –

LS [0.2764 −0.8643] 0.128634

IV [0.4006 −0.8991] 0.001043

Fig. 3.6 95% confidence ellipses, obtained with LS (thicker lines and centered at ◦) and IV (thin-
ner lines centered at ∗) for σ 2

e = 0.01 (solid lines), σ 2
e = 0.10 (dashed lines) and σ 2

e = 0.25 (dotted
lines)

In both designs (a = 0.6 and a = 0.8), the estimates obtained with IV are un-
biased, while the ones obtained with LS are biased. Note that the bias of the LS
estimate is quite significant in both cases, being larger with the faster reference
model a = 0.6. The variances of both the IV and LS estimates are also larger for the
faster reference model.

Finally, consider yet a third scenario, where the reference model pole is fixed
at a = 0.6 and noise level varies. The 95% confidence ellipses for three different
values of σ 2

e are plotted in Fig. 3.6. Again, ellipses plotted with thicker lines and
centered at a circle are obtained with LS while the thinner ones centered at an aster-
isk are obtained with IV. The solid line ellipses were obtained for σ 2

e = 0.01, dashed
line ellipses are for σ 2

e = 0.10 and dotted lines ellipses are obtained for σ 2
e = 0.25.
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54 3 One-Shot Optimization—The VRFT Method

Table 3.7 Mean values of
the parameters ρ̂ obtained for
a = 0.6, σ 2

e = 0.01,
σ 2

e = 0.10 and σ 2
e = 0.25

σ 2
e Method ρ̂T

m ‖(ρ̂m − ρd)‖

Ideal [0.4000 −0.9000] –

0.01 LS [0.3922 −0.8978] 0.008125

0.01 IV [0.3993 −0.8993] 0.000988

0.10 LS [0.3383 −0.8847] 0.063547

0.10 IV [0.3993 −0.8993] 0.000986

0.25 LS [0.2764 −0.8643] 0.128633

0.25 IV [0.4006 −0.8991] 0.001043

Note that the IV ellipses are concentric, always centered at ρd , meaning that the
estimate is always unbiased, no matter what the noise level is. When we use LS, the
mean value of the estimate varies significantly with the noise level, as well as its
variance. The mean values for each value of σ 2

e tested for both methods as well as
the Euclidean distances of each one to the ideal value of the parameter are shown in
Table 3.7.

3.6.2 Applying the Flexible Criterion

Let us now present a case study using the flexible VRFT scheme for NMP plants
presented in Sect. 3.4.

3.6.2.1 Process with One Non-minimum Phase Zero

Let the transfer function of the process be

G(z) = (z − 1.2)(z − 0.4)

z(z − 0.3)(z − 0.8)
. (3.56)

We want to control this process with a PID controller

C(z,ρ) = ρT C̄(z) = [�1 �2 �3]
⎡

⎢
⎣

z2

z2−z
z

z2−z
1

z2−z

⎤

⎥
⎦ . (3.57)

The data are collected from a closed-loop experiment, where a unit step is applied
as the reference signal and the controller in the loop is given by

C0(z) = −0.7(z − 0.4)(z − 0.6)

z2 − z
. (3.58)
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Assumption BNMP Is Satisfied Consider the following reference model, which has
been chosen in the absence of any knowledge on the NMP zero of G(z) and for
which Assumption By is not satisfied:

Td(z) = 0.0706z2

(z − 0.885)(z2 − 0.706z + 0.32)
. (3.59)

The standard VRFT criterion used with this reference model yields the controller

C(z, ρ̂) = −2.269(z2 − 1.655z + 0.7007)

z2 − z
,

which causes the closed loop to be unstable, as can be seen in the resulting closed-
loop transfer function

T (z, ρ̂)=−2.2693(z − 1.200)(z − 0.4000)(z2−1.655z+0.7007)

(z−0.3909)(z2−1.774z+0.7905)(z2−2.204z+2.470)
.

The system instability results from the fact that the NMP zero present in G(z) is
not in the reference model Td(z); as a consequence, the ideal controller would pro-
vide an internally unstable closed loop by canceling the NMP zero, which causes
closed-loop instability even though the ideal controller can not be exactly achieved
(Assumption By is not satisfied). We thus use the two-step procedure with the fol-
lowing flexible reference model, which satisfies Assumption BNMP and has the same
poles as the desired reference model:

T (z, η) = ϑ1z
2 + ϑ2z + ϑ3

(z − 0.885)(z2 − 0.706z + 0.32)
. (3.60)

We minimize J̃ VR
0 (η,ρ) with respect to η and ρ using the iterative procedure

(3.30)–(3.31). The step responses of the fixed reference model T (z, η̂i) and the
closed loop T (z, ρ̂i) obtained at iterations 1 and 30 are presented in Fig. 3.7. Note
that T (z, η̂30) and T (z, ρ̂30) are almost indistinguishable. Table 3.8 shows the evo-
lution of the corresponding parameters, by means of the numerators of the controller
and the flexible reference model, obtained in different iterations. The transfer func-
tions T (z, η̂30) and C(z, ρ̂30) at iteration 30 are as follows:

T (z, η̂30) = −0.5908(z − 1.200)(z − 0.4022)

(z − 0.885)(z2 − 0.706z + 0.32)
,

C(z, ρ̂30) = −0.5903(z − 0.8000)(z − 0.3004)

z2 − z
.

Observe in Table 3.8 that T (z, η̂30) reproduces both zeros of G1(z) with a good
precision, and the controller C(z, ρ̂30) is such that its zeros cancel the poles of the
process. Note also that a good estimate of the NMP zero is already present at itera-
tion i = 20, while convergence to the minimum phase zero is slower. This observa-
tion is consistent with the findings in the literature, which show that NMP zeros are
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56 3 One-Shot Optimization—The VRFT Method

Fig. 3.7 Step responses of the fixed reference model (3.59) Td(z), the flexible model T (z, η̂i ) and
the closed-loop system T (z, ρ̂i ) for process G1(z) for iterations 1 and 30

Table 3.8 Evolution of
T (z, η), C(z,ρ) (by means of
their numerators—gains and
zeros) and J̃ VR

0 (η̂, ρ̂) in the
iterative procedure for the
process G1(z)

i num(T (z, η̂i )) J̃ VR
0 (η̂i , ρ̂i−1) (×10−6)

1 −1.078(z − 1.182)(z − 0.6404) 1.6772616

2 −0.8782(z − 1.186)(z − 0.5686) 6.4634327

10 −0.6307(z − 1.196)(z − 0.4290) 0.0104166

20 −0.5962(z − 1.199)(z − 0.4061) 0.0002024

30 −0.5908(z − 1.200)(z − 0.4022) 0.0000064

i num(C(z, ρ̂i )) J̃ VR
0 (η̂i , ρ̂i ) (×10−6)

1 −0.7602(z − 0.7448)(z − 0.5292) 12.928054

2 −0.7117(z − 0.7704)(z − 0.4509) 1.8210199

10 −0.6109(z − 0.7963)(z − 0.3245) 0.0086147

20 −0.5931(z − 0.7996)(z − 0.3038) 0.0001776

30 −0.5903(z − 0.8000)(z − 0.3004) 0.0000057

easier to estimate than minimum phase zeros [13, 14]. This design is by itself satis-
factory and shows the efficiency of the flexible design criterion in coping with NMP
zeros. Whereas a standard VRFT design would lead to an unstable closed loop, with
the proposed design approach the closed loop is stable and its behavior resembles
the desired one, specified by the fixed reference model.

We can however make the closed-loop behavior even closer to that of the fixed
reference model. Indeed, in applying the flexible reference model we have left both
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Fig. 3.8 Closed-loop responses T (z, ρ̂) obtained at the end of Steps 1 and 2, compared to the
modified reference model (3.61)

zeros of the process unchanged in the closed-loop transfer function. But only one of
these zeros is NMP and thus needs to be there; the other closed-loop zero can still
be assigned by the designer. So, once we know that the process actually possesses
a NMP zero and its location in the complex plane, we change Td(z) to include this
NMP zero and then use the standard VRFT. This new reference model is defined by

Tdm(z) = −0.3532(z − 1.200)z

(z − 0.885)(z2 − 0.706z + 0.32)
, (3.61)

where the gain is chosen so that Tdm
(1) = 1. The standard VRFT method using

(3.61) yields the controller

C(z, ρ̂) = −0.4516(z − 0.8033)(z − 0.097992)

z2 − z
.

Figure 3.8 shows the step responses obtained at the end of Step 1 with T (z, ρ̂30) =
T (z, η̂30) and at the end of Step 2 with T (z, ρ̂) where ρ̂ is calculated from (3.10),
as well as the step response of Tdm

(z). The responses of T (z, ρ̂) and Tdm
(z) are very

similar, but in Step 2 a smaller inverse response is obtained.

Assumption BNMP Is Not Satisfied In the previous example, the reference model
(3.60) was chosen in such a way that the matching condition (3.25) is satisfied for
some (η∗, ρ∗) pair. Since the process G(z) is unknown, it can not be guaranteed that
the designer can choose the poles of T (z, η) such that Assumption BNMP is satisfied.
Let us see how the design method behaves in this situation.

co
nt

ro
len

gin
ee

rs
.ir
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Fig. 3.9 Step responses of the fixed reference model Tdf
(z) (3.62), the flexible model Tf (z, η̂i )

and the closed-loop system T (z, ρ̂i ) for process G1(z) for iterations 1 and 30 in Step 1

Suppose now that we choose for the same process (3.56) a different fixed refer-
ence model

Tdf
(z) = 0.064z2

(z − 0.6)3 , (3.62)

where the subscript f denotes “faster”, as well as a flexible one defined as

Tf (z, η) = ϑ1z
2 + ϑ2z + ϑ3

(z − 0.6)3 ,

for which Assumption BNMP is not satisfied. In Step 1 we obtain, in 30 iterations,

Tf (z, η̂30) = −0.5422(z − 1.197)(z − 0.4021)

(z − 0.6)3
,

C(z, ρ̂30) = −0.5234(z − 0.7932)(z + 0.009140)

z2 − z
.

The step responses for iterations 1 and 30 are presented in Fig. 3.9. Table 3.9
presents the numerators of the controller and the flexible reference model, obtained
in different iterations. Even though Assumption BNMP is not satisfied, the NMP zero
is still identified with good precision by the minimization of J̃ VR

0 (η,ρ). Besides, the
closed loop T (z, ρ̂30) presents a response that is not exactly, but very similar to the
reference model Tf (z, η̂30) response (see Fig. 3.9).

We can again apply the second step of our procedure, modifying the fixed ref-
erence model to include the NMP zero just identified. The fixed reference model

co
nt

ro
len

gin
ee

rs
.ir



3.6 Case Studies 59

Table 3.9 Evolution of
Tf (z, η), C(z,ρ) (by means
of their numerators—gains
and zeros) and J̃ VR

0 (η̂, ρ̂) in
the iterative procedure for the
process G1(z)

i num(Tf (z, η̂i )) J̃ VR
0 (η̂i , ρ̂i−1) (×10−6)

1 −0.9570(z−1.136)(z−0.5078) 1.3176005

2 −0.8313(z−1.160)(z−0.5205) 4.6132843

10 −0.6368(z−1.194)(z−0.4821) 0.0731824

20 −0.5768(z−1.196)(z−0.4349) 0.0240805

30 −0.5422(z−1.197)(z−0.4021) 0.0108115

i num(C(z, ρ̂i )) J̃ VR
0 (η̂i , ρ̂i ) (×10−6)

1 −0.6904(z−0.7452)(z−0.2133) 9.5254229

2 −0.6659(z−0.7628)(z−0.1892) 1.7675536

10 −0.5905(z−0.7870)(z−0.09796) 0.0683009

20 −0.5491(z−0.7910)(z−0.03529) 0.0231907

30 −0.5234(z−0.7932)(z+0.009140) 0.0105319

Tdf,m
(z) should then be defined as

Tdf,m
(z) = −0.3242z(z − 1.197)

(z − 0.6)3 . (3.63)

In Step 2, we find the following controller

C(z, ρ̂) = −0.3350(z + 0.5649)(z − 0.8066)

z2 − z
.

Figure 3.10 presents the reference models and the step responses obtained for
Steps 1 and 2. Again, Tdf,m

(z) allows the system to present a smaller inverse re-
sponse, closer to the response specified by the original reference model Tdf

(z).

Dealing with Noisy Data To show the applicability of the flexible reference model
method to noisy systems, consider still the same process and control objective, and
that the data are collected in closed-loop with the same controller (3.58), but now
the output signal is affected by white noise, with variance σ 2

e = 0.005. The optimal
value of the controller parameter is already known, and can be used to assess the
quality of the estimate obtained in this noisy scenario.

In order to assess the statistical properties of the design, we used 50 Monte Carlo
runs to calculate the mean values and the variance of each element of the parameter
vectors η and ρ. Initially, the algorithm was applied with LS optimization—without
using instrumental variables. In this case, the mean value of η̂60, considering 60
iterations, has been obtained:

η̂60,m =
⎡

⎣
−0.1986
0.08502
0.1841

⎤

⎦

T

,
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Fig. 3.10 Closed-loop responses T (z, ρ̂) obtained at the end of Steps 1 and 2, compared to the
modified reference model Tdf,m

(z)

which corresponds to a reference model

T (z, η̂60,m) = −0.1986(z − 1.201)(z + 0.7724)

(z − 0.885)(z2 − 0.706z + 0.32)
, (3.64)

and the covariance of this estimate is given by

varη̂ = 10−3 ×
⎡

⎣
1.984 −4.244 2.260

−4.244 9.109 −4.865
2.260 −4.865 2.605

⎤

⎦ . (3.65)

Also, the mean value of the corresponding ρ̂60 is

ρ̂60,m =
⎡

⎣
−0.2950
0.1401
0.07875

⎤

⎦

T

,

for which the corresponding controller is given by

C(z, ρ̂60,m) = −0.2950(z − 0.8060)(z + 0.3312)

z2 − z
. (3.66)
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3.6 Case Studies 61

Fig. 3.11 Flexible reference model and closed-loop responses obtained applying the flexible
VRFT criterion in a noisy system, without using instrumental variables

The covariance of the estimate is

varρ̂ = 10−3 ×
⎡

⎣
0.9165 −1.670 0.7680
−1.670 3.060 −1.416
0.7680 −1.416 0.6594

⎤

⎦ . (3.67)

The controller parameters obtained in the noiseless case are given in Table 3.8.
Comparing the average controller obtained in the presence of noise, described in
(3.64) and (3.66), to the optimal values, a significant difference is observed—the
results obtained with noisy data are biased. This difference can also be observed in
Fig. 3.11, where the closed-loop response obtained with the mean controller (3.66)
is compared to the response that would have been obtained with the mean flexible
reference model (3.64) and with the “optimal” reference model T (z, ρ̂30), obtained
previously. We show the noisy data in the top figure and we show the simulated
result in a noiseless system in order to facilitate the visual assessment of the result.
Note that T (z, ρ̂30) ≈ T (z, η̂30), but it is still far from the optimal value T (z, η∗).

Despite the results being biased, the non-minimum phase zero of the process
is estimated with good precision, as well as the slower pole of the controller. One
could think that the noise effect is not harmful, since the objective of this step is to
identify the NMP-zero of the process and this was successfully done. However, the
other zero of the reference model is far away from the optimal value, which is equal
to the other zero of the process—0.4. In fact, this other zero could be estimated as
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62 3 One-Shot Optimization—The VRFT Method

another NMP zero, and its inclusion in the fixed reference model would be harmful,
since it is not a zero of the process.

Let us now present the results obtained with the application of the algorithm
(3.50)–(3.51), that is, using instrumental variables. After 60 iterations, the mean
value (again 50 Monte Carlo runs were used) η̂60 obtained is

η̂IV
60,m = [−0.6192 1.0034 −0.3137 ]T ,

which corresponds to a reference model

T (z, η̂IV
60,m) = −0.6192(z − 1.198)(z − 0.4230)

(z − 0.885)(z2 − 0.706z + 0.32)
. (3.68)

The estimated variance of this estimate is given by

varη̂ = 10−3 ×
⎡

⎣
64.62 −138.6 74.01

−138.6 297.5 −158.9
74.01 −158.9 84.87

⎤

⎦ . (3.69)

Accordingly, the mean value of ρ̂60 is

ρ̂IV
60,m = [−0.5929 0.6563 −0.1469 ]T ,

which corresponds to a controller given by

C(z, ρ̂IV
60,m) = −0.5929(z − 0.7956)(z − 0.3115)

z2 − z
. (3.70)

The estimated variance of this estimate is given by

varρ̂ = 10−3 ×
⎡

⎣
20.78 −36.27 16.16

−36.27 63.40 −28.30
16.16 −28.30 12.66

⎤

⎦ . (3.71)

Now, comparing (3.68) and (3.70), obtained with instrumental variables, with
the optimal values T (z, η∗) and C(z,ρ∗), we see that, in this case, the parameter’s
estimates are unbiased, and the results obtained using noisy data are very similar
to the results obtained using noise-free data. The same conclusion can be extracted
from the analysis of the results presented in Fig. 3.12.

3.6.2.2 Process with Two Minimum-Phase Zeros

Finally, we apply the method to an example in which the plant zeros are both mini-
mum phase:

G2(z) = (z + 0.2)(z − 0.4)

z(z − 0.3)(z − 0.8)
. (3.72)
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3.6 Case Studies 63

Fig. 3.12 Flexible reference model and closed-loop responses obtained applying the flexible
VRFT criterion in a noisy system, using instrumental variables

This process is initially in closed loop with a PID controller

C0(z) = 0.7(z − 0.4)(z − 0.6)

z2 − z
,

which we want to retune so that the closed-loop response is as close as possible to a
given reference model, using a PID controller C(z,ρ) of the form (3.57).

Assumption BNMP Is Satisfied The desired fixed reference model is given by

Td(z) = 0.4601z2

(z − 0.6673)(z2 + 0.3063z + 0.0766)
,

and the flexible reference model is chosen as

T (z, η) = ϑ1z
2 + ϑ2z + ϑ3

(z − 0.6673)(z2 + 0.3063z + 0.0766)
,

for which Assumption BNMP is satisfied. After 40 iterations we obtain the following
reference model and corresponding controller

T (z, η̂40) = 0.6681(z − 0.4157)(z + 0.1785)

(z − 0.6673)(z2 + 0.3063z + 0.0766)
,
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64 3 One-Shot Optimization—The VRFT Method

Table 3.10 Evolution of
Td(z, η), C(z,ρ) (by means
of their numerators—gains
and zeros) and J̃ VR

0 (η̂, ρ̂) in
the iterative procedure for the
process G2(z)

i num(Td(z, η̂i )) J̃ VR
0 (η̂i , ρ̂i−1)

1 0.6788(z − 0.4595)(z + 0.2540) 0.6958384

2 0.6783(z − 0.4566)(z + 0.2482) 0.0057458

5 0.6768(z − 0.4486)(z + 0.2328) 0.0036328

10 0.6744(z − 0.4377)(z + 0.2134) 0.0016586

30 0.6691(z − 0.4183)(z + 0.1819) 0.0001530

40 0.6681(z − 0.4157)(z + 0.1785) 0.0001157

i num(C(z, ρ̂i )) J̃ VR
0 (η̂i , ρ̂i )

1 0.6776(z − 0.8155)(z − 0.2526) 0.0401828

2 0.6771(z − 0.8146)(z − 0.2568) 0.0342863

5 0.6756(z − 0.8121)(z − 0.2678) 0.0211759

10 0.6734(z − 0.8087)(z − 0.2817) 0.0093376

30 0.6687(z − 0.8028)(z − 0.3038) 0.0010353

40 0.6678(z − 0.8020)(z − 0.3063) 0.0009334

C(z, ρ̂40) = 0.6678(z − 0.8020)(z − 0.3063)

z2 − z
.

In Step 1 the zeros of T (z, η), estimated using (3.30)–(3.31), converge to the
zeros of G2(z), but more slowly than in the case of NMP zeros: see Table 3.10.
Since T (z, η̂40) does not have a NMP zero, we can safely go to Step 2 and use
the standard VRFT method without modifying the reference model. The controller
obtained with Td(z) is

C(z, ρ̂) = 0.4625(z − 0.2996)(z − 0.7613)

z2 − z
.

Assumption BNMP Is Not Satisfied Consider now the control of the same process
under the same circumstances, but a different fixed reference model:

Tdf
(z) = 0.216z2

(z − 0.4)3
, (3.73)

and a flexible model having the same poles as Td(z):

Tf (z, η) = ϑ1z
2 + ϑ2z + ϑ3

(z − 0.4)3
.

With Tf (z, η) and the controller (3.57), Assumption BNMP is not satisfied. Then
Step 1 of the two steps procedure leads to

Tf (z, η̂10) = 0.4986(z − 0.6934)(z + 0.4129)

(z − 0.4)3
,
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3.7 Chapter Conclusions 65

Fig. 3.13 Step responses of the fixed reference model Tdf
(z), the flexible reference model

Tf (z, η̂10) and the closed-loop response T (z, ρ̂10) obtained after 10 iterations in Step 1 (top fig-
ure); step responses of the original fixed reference model Tdf

(z) and of the closed-loop system
T (z, ρ̂) obtained in Step 2 (bottom)

Cf (z, ρ̂10) = 0.4956(z − 0.6815)(z + 0.2039)

z2 − z
.

Since the first step computes not only the numerator coefficients of the flexible ref-
erence model, but also a corresponding controller, one might consider applying this
controller Cf (z, ρ̂10) to the plant, thereby avoiding the need for a second step. But
the performance produced by the controller Cf (z, ρ̂10) is far from the desired per-
formance specified by the original reference model Td,f (z), as illustrated in the top
part of Fig. 3.13. We thus proceed to Step 2 and apply the standard VRFT with the
fixed reference model Td,f (z). The controller thus obtained is

C(z, ρ̂) = 0.1931(z + 0.5997)(z − 0.7890)

z2 − z
.

The closed-loop response obtained with C(z, ρ̂) is compared to the performance of
the fixed reference model Tdf

(z) at the bottom part of Fig. 3.13.

3.7 Chapter Conclusions

In this chapter we have presented a quadratic function whose global minimum is the
same as the reference tracking criterion Jy(ρ) under certain ideal conditions, and
close to that under conditions close to this ideal. This idea was first presented in
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66 3 One-Shot Optimization—The VRFT Method

this clear form and within a data-driven control context in [5], and the resulting de-
sign methodology was baptized as Virtual Reference Feedback Tuning. There have
been several later developments, with applications to different problems, including
nonlinear systems and multivariable systems [4, 15]. A practical application is pre-
sented in [4], thoughts regarding its application to unstable and noisy processes are
presented in [16] and the extension of the VRFT rationale for the control of non-
linear systems has been presented in [6]. The extension for non-minimum phase
processes presented in Sect. 3.4 appeared in [3] and was based on a similar solution
presented for Iterative Feedback Tuning in [11].

Although the same ideas could in principle be extended to performance criteria
other than reference tracking, these extensions are not straightforward and, as of
today, not yet available. On the other hand, the application of direct optimization
relies strongly on Assumption By . When the performance criterion is not reference
tracking, and/or Assumption By can not be enforced, iterative optimization is nec-
essary.

The core idea of the direct method is reminiscent of direct adaptive control,
and the developments and analyses presented in this chapter are closely related to,
and strongly rely on, classical parameter identification theory. The classical text-
books on identification theory by Ljung [12] and by Söderström and Stoica [17]
are paramount references here, as well as the ones on adaptive control by Åström
and Wittenmark [1] and Goodwin and Sin [8]. The sufficient richness, persistence
of excitation and transfer of excitation concepts, and the resulting conditions for
uniqueness of the global minimum of prediction error and H2 control performance
criteria, are also amply studied in the identification and adaptive control literature.
These are given within different contexts and with varying nomenclature and nota-
tion, and even under different sets of hypotheses; for an analysis and a full demon-
stration of uniqueness of the global minimum of prediction error criteria with the
same notation, nomenclature and underlying assumptions presented in this book,
see [7].

A more recent method for direct optimization of the reference tracking perfor-
mance is the noniterative Correlation-based Tuning presented in [10]. This method
is conceived from a different perspective, which is to minimize the correlation be-
tween the reference r(t) and the tracking error y(t, ρ) − yd(t). Still, comparing
to what has been presented in this chapter, the objective is the same (to minimize
Jy(ρ)), the algorithmic aspects are quite similar and so are the main properties of
the resulting estimate of the optimal controller parameter.
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Chapter 4
Iterative Optimization

In this chapter we will study the optimization concepts that are central to the theory
of data-driven control. This is by no means a tutorial on optimization; it is an as-
semblage of the topics and theoretical results immediately necessary to the general
study of iterative data-driven control design.

In the next section, we recall some concepts from multivariable calculus. Some
of these concepts are very basic ones, but we prefer to present them in our own way
instead of leaving for the reader to remember them by him/herself. This serves to
fix nomenclature and notation, and to call the reader’s attention to those aspects of
the basic optimization theory which are the most relevant for our purposes.

Then we present a convergence analysis of the fundamental optimization al-
gorithms: steepest descent and Newton-Raphson. There are of course a myriad
of other optimization algorithms to chose (Gauss-Newton, Levenberg-Marquardt,
quasi-Newton, etc) but the main qualitative aspects of convergence analysis, which
are the ones relevant for the analysis of iterative data-driven control design, are
present in these two. We start, in Sect. 4.2, with a brief account of Lyapunov stability
theory as applied to discrete-time systems. Then in Sect. 4.3 these stability analysis
tools are applied to the analysis of convergence of the optimization algorithms. Last,
but not least, we show that the properties and the conclusions presented are robust
with respect to the unavoidable errors in the implementation of the algorithms.

4.1 Some Things to Remember from Calculus

Let J (·) : R
p → R

+ be a function that is analytical in some domain D ⊆ R
p . The

gradient of this function is a column vector annotated

∇J (ρ) � ∂J (ρ)

∂ρ
.

A. Sanfelice Bazanella et al., Data-Driven Controller Design,
Communications and Control Engineering,
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70 4 Iterative Optimization

The Hessian of this function is a symmetric matrix annotated

∇2J (ρ) � ∂2J (ρ)

∂ρ2
.

The Hessian is symmetric by construction and thus its eigenvalues are all real.

Definition 4.1 (Extrema) A point ρ1 ∈ D ⊆ R
p is said to be a minimum of J (·)

if ∃ε > 0 such that J (ρ) ≥ J (ρ1) ∀ρ ∈ Bε(ρ
1). It is said to be a maximum of J (·) if

∃ε > 0 such that J (ρ) ≤ J (ρ1) ∀ρ ∈ Bε(ρ
1). It is said to be an extremum if it is

either a minimum or a maximum.
A minimum ρ1 is said to be1

• an isolated minimum if ∃ε > 0 such that J (ρ) > J(ρ1) ∀ρ ∈ Bε(ρ
1) \ ρ1;

• a global minimum in D if J (ρ) ≥ J (ρ1) ∀ρ ∈D;
• the unique global minimum in D if J (ρ) > J(ρ1) ∀ρ ∈D \ ρ1;
• a local minimum if it is a minimum but it is not a global minimum.

For ease of reference it is also convenient to define the following.

Definition 4.2 A given point ρ1 is said to be a critical point of J (·) if ∇J (ρ1) = 0.

The main motivation to give a name to the points at which the gradient vanishes
is the following fact.

Lemma 4.1 Any extremum is a critical point.

Proof Let ρ1 be not a critical point of J (·)—that is, ∇J (ρ1) 
= 0. We will prove
that such a ρ1 can not be an extremum.

Let d be an unitary vector such that dT ∇J (ρ1) 
= 0. Because J (·) is analytical
and d is unitary, we can write

J (ρ1 + δd) − J (ρ1) = δ∇J (ρ1)d + hot(δ)

for any δ ∈ R, where hot(δ) stands for “higher order terms”, in this case terms of
order higher than one, meaning that

lim
δ→0

hot(δ)

δ
= 0.

Thus, ∃δ0 such that ‖δ∇J (ρ1)d‖ > ‖hot(δ)‖ for all δ such that |δ| < δ0. Hence, for
any |δ| < δ0, the sign of J (ρ1 +δd)−J (ρ1) is determined by the product ∇J (ρ1)δd
alone:

sign[J (ρ1 + δd) − J (ρ1)] = sign[∇J (ρ1)δd] ∀δ : |δ| < δ0.

1Of course similar definitions can be made for maxima.
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4.1 Some Things to Remember from Calculus 71

It is thus clear that, as δ crosses through zero, J (ρ1 + δd)− J (ρ1) changes sign. So
there are points arbitrarily close to ρ1 for which J (ρ) > J(ρ1) (which implies that
ρ1 is not a maximum) and others for which J (ρ) < J(ρ1) (which implies that ρ1 is
not a minimum). Hence, ρ1 is not an extremum. �

It is important to notice that this is a necessary but not sufficient condition, that
is, not all critical points are extrema. Besides the extrema, inflexion points are also
critical points.

Lemma 4.1 establishes that all minima and maxima share a property: the gradient
vanishes at these points. It remains to establish what differentiates maxima from
minima, which is done by analyzing the next derivative of J (·).

Lemma 4.2 Let ρ1 be a critical point of J (·). Then the following facts hold.

• ρ1 is an isolated minimum of J (·) if ∇2J (ρ1) > 0;
• ρ1 is an isolated maximum of J (·) if ∇2J (ρ1) < 0.

Proof We will prove the first item of the statement; the proof for the other item is
the same, mutatis mutandis.

Since ∇J (ρ1) = 0 we can write

J (ρ1 + δd) − J (ρ1) = 1

2
δ2dT ∇2J (ρ1)d + hot(δ) (4.1)

with d an arbitrary unitary vector and hot(δ) now satisfying

lim
δ→0

hot(δ)

δ2
= 0.

By the same argument in Lemma 4.1, the sign of J (ρ1 + δd)− J (ρ1) is determined
exclusively by the first term in the right hand side of (4.1) for sufficiently small δ,
that is:

sign[J (ρ1 + δd) − J (ρ1)] = sign[dT ∇2J (ρ1)d] ∀δ : |δ| < δ0 (4.2)

for some δ0 > 0 and for all unitary d. If the Hessian is positive definite, then the right
hand side of (4.2) is always positive, and thus J (ρ1 +δd) > J (ρ1) ∀δ : |δ| < δ0; that
is, ρ1 is an isolated minimum. �

If the Hessian is not positive definite, then at least one of its eigenvalues is neg-
ative or zero2. Letting v be an eigenvector associated to a negative eigenvalue, we
have J (ρ1 + δv) ≤ J (ρ1) ∀δ : |δ| < δ0, that is, there are points arbitrarily close to
ρ1 for which the function’s value is smaller than its value at ρ1; hence ρ1 is not a
minimum.

2Note that the Hessian is symmetric and thus all its eigenvalues are real.
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72 4 Iterative Optimization

An obvious fact deriving from the above lemma is that an analytical function
always presents a convex behavior in the neighborhood of an isolated extremum.
Let us define convexity as follows.

Definition 4.3 A function J (·) is said to be convex in a domain Ω if ∇2J (ρ) ≥ 0
∀ρ ∈ Ω and then the set Ω is called a domain of convexity. It is said to be concave
in Ω if ∇2J (ρ) ≤ 0 ∀ρ ∈ Ω and then the set Ω is called a domain of concavity.

Then, with this nomenclature, it is clear from the very definition of extrema that
there exists a nonempty domain of convexity around any isolated minimum of an
analytical function J (·). Similarly, there exists a nonempty domain of concavity
around any isolated maximum of an analytical function J (·). This evident and al-
most tautological fact is not always properly appreciated in the applications of opti-
mization.

These properties relating a function’s extrema and its derivatives inspire the
derivation of many optimization algorithms and form the foundations for their anal-
ysis, as will be seen next.

4.2 Optimization Algorithms (Dynamic Systems)

An iterative optimization algorithm is a recursion, which generates successive ap-
proximations for the global minimum of J (ρ):

ρi+1 = f (ρi, i) (4.3)

where f (·, ·) : R
p × Z

+ → R
p. Notice that at each iteration the function f (·, ·) is

evaluated at the current approximation ρi , that is, only this “local” information (in-
formation at the current approximation) is used in the optimization. If the algorithm
is to be of any use, then the function f (ρi, i) should be such that, as the iterations
pass, the approximations ρi approach a minimum, eventually converging to it. And
preferentially, this minimum to which the algorithm converges should be a global
minimum.

Equation (4.3) defining the algorithm is a discrete-time dynamic system, where
ρi is the system’s state at “time” (iteration) i. It thus seems very reasonable to
profit of systems’ stability theory to study the convergence of these algorithms,
since this is a classical and well established discipline. The convergence problem
is approached by viewing the algorithms as nonlinear dynamical systems, and then
analyzing their convergence as the stability of the corresponding system. Let us thus
follow with a brief review of nonlinear systems theory.

Definition 4.4 (Fixed-point) A vector ρ1 is called a fixed-point (or an equilib-
rium) of an algorithm (4.3) if f (ρ1, i) = ρ1 ∀i. A fixed-point is said to be attrac-
tive (or asymptotically stable) if initializations sufficiently close to the fixed-point
converge to it, that is, if there is a positive scalar ε such that for all ρ0 ∈ Bε(ρ

1),
limi→∞ ρi =ρ1.
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4.2 Optimization Algorithms (Dynamic Systems) 73

The name “fixed-point” expresses the fact that once the algorithm has reached
this point, it can never move away from it or, in more mathematical terms:

ρk = ρ1 → ρi = ρ1 ∀i > k.

Whether fixed points are attractive or not is perhaps the main subject of nonlinear
systems analysis. This problem can be tackled by the two Lyapunov methods: the
direct and the indirect method. The indirect method involves the linearization of
the nonlinear system (4.3) around the fixed point and its application to the analysis
of the convergence of algorithms is commonplace in the literature. This analysis
is useful to determine whether or not a fixed point is attractive, that is, whether or
not initializations of the algorithm sufficiently close to the fixed point converge to
it. But it is also important that convergence is observed for a large enough set of
initializations of the algorithm. This analysis is not covered by the indirect method
and will be our next concern.

Definition 4.5 Let ρ1 be an attractive fixed-point of an algorithm ρi+1 = f (ρi, i).
A p-dimensional set Ω ⊂R

p is a domain of attraction (DOA) of ρ1 if limi→∞ ρi =
ρ1 ∀ρ0 ∈ Ω .

Notice that Ω in this definition is NOT the set of ALL initializations that con-
verge to the fixed-point. This last set can be a very complex subset of the state space.
As such, the set of all initializations that converge to the fixed point is in general very
hard, if not impossible, to characterize in any meaningful way. On the other hand,
it is not critical in the context of data-driven control design to know all the initial-
izations that converge to the fixed-point, but only if these initializations form a “big
enough” set, so that convergence to the fixed-point is obtained even when the opti-
mization is initialized “far” from it. Accordingly, the analysis will focus in finding
sets that satisfy Definition 4.5 and are also relatively easy to characterize mathe-
matically. The standard sets are the ellipsoids, which can be described by equations
like

Ω = {ρ : (ρ − ρ1)T P (ρ − ρ1) < 1} (4.4)

where P is a symmetric positive definite matrix. The ellipsoid Ω described in (4.4)
has ρ1 as its center, its size is determined by the eigenvalues of P , and its shape
by the eigenvectors of P . This set particularizes to a hypersphere (which we call a
“ball” in this book) when P = aIn for some positive scalar a. Equations like (4.4)
are very amenable to calculations and theoretical manipulations, so that it is not by
chance that ellipsoids are the favorite sets to work with.

To analyze domains of attraction it is necessary to resort to the direct method
of Lyapunov, which will be presented next. For this presentation, we still need an
additional preparatory concept.

Definition 4.6 A function φ(·) : R+ → R
+ is of class K if it is continuous, strictly

increasing and φ(0) = 0.
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Fig. 4.1 A quadratic Lyapunov function V (ρ) = ρT Pρ, with P a positive definite matrix, and its
level sets, which are ellipses in the form (4.4)

Now we are ready to state the basic Theorem of Lyapunov’s direct method.

Theorem 4.1 (Lyapunov’s direct method [6]) Consider an algorithm (4.3) with a
fixed point ρ1. The fixed point ρ1 is asymptotically stable if there exist a function
V (·) : Rp →R

+, class K functions α(·), β(·) and ω(·), and a positive scalar ε such
that:

α(‖ρ − ρ1‖) ≤ V (ρ) ≤ β(‖ρ − ρ1‖) ∀ρ ∈ Bε(ρ
1) (4.5)

V (f (ρ, i)) − V (ρ) ≤ −ω(‖ρ − ρ1‖) ∀ρ ∈ Bε(ρ
1), ∀i. (4.6)

When a function V (·) satisfying the conditions of the theorem is found, then
it is called a Lyapunov function, and the asymptotic stability of the fixed point is
established. The main feature of the direct method, when compared to the indirect
method, is that it allows to determine DOAs: level sets of a Lyapunov function serve
as DOAs. The level sets are defined below.

Definition 4.7 (Level sets) The level sets of a Lyapunov function V (·) are defined
as Lc � {ρ : V (ρ) ≤ c} for scalars c > 0. Notice that by construction, ρ∗ ∈ Lc ∀c

(because by definition V (ρ∗) = 0 < c).

Figure 4.1 illustrates a typical Lyapunov function and its level sets. A level set Lc

is a DOA of an asymptotically stable fixed-point ρ1 if Lc ⊂ Bε(ρ
1), where Bε(ρ

1)

is the ball in the statement of Theorem 4.1. For a given Lyapunov function, the
largest c for which this inclusion is satisfied provides the best (largest) DOA that
can be obtained with this Lyapunov function. In the next section, these concepts
on the stability of nonlinear systems will be applied to the analysis of fundamental
optimization algorithms.
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4.2.1 Autonomous Systems

It will often be the case that the recursion defining the algorithm can be written in
the form

ρi+1 = f (ρi). (4.7)

That is, the new parameter value ρi+1 does not depend explicitly and independently
on the “time” variable i as in (4.3), but only on the current state ρi . Nonlinear
systems in this form are called autonomous and constitute a particular class of major
relevance. All the results presented before are also valid for this class of systems, of
course, but the application of the direct method in this case is simpler. The following
Theorem particularizes the direct method of Lyapunov for autonomous systems.

Theorem 4.2 (Direct method—autonomous systems) Consider an algorithm de-
scribed by (4.7) with a fixed point ρ1. The fixed point ρ1 is asymptotically stable if
there exist a function V (·) : R

p → R
+ and a positive scalar ε such that:

V (ρ) > 0 ∀ρ ∈ Bε(ρ
1) (4.8)

V (f (ρ)) − V (ρ) < 0 ∀ρ ∈ Bε(ρ
1). (4.9)

4.3 The Basic Algorithms and Their Convergence

What information is available at step i of the optimization? Knowing ρi it is usually
possible to compute information about the function J (·) at this value of its argu-
ment: its value, its derivative, its Hessian. So, typical optimization algorithms make
use of these informations and can be generically described by

f (ρi, i) = ρi − γiRi∇J (ρi) (4.10)

where, at each iteration i, Ri is a matrix and γi is a positive scalar. The matrices Ri

define the direction of the parameter update made at step i, whereas the scalars γi de-
fine the magnitude of this update at each step. Each different policy for choosing the
update directions Ri implies different convergence and implementation properties
for the algorithm and is accordingly baptized: steepest descent and Newton-Raphson
are the fundamental choices. Let us analyze each one of these algorithms separately.

4.3.1 Steepest Descent

The most basic optimization algorithm is the steepest descent. A steepest descent
algorithm is one in which Ri = Ip in (4.10), that is, the iteration is given by

ρi+1 = ρi − γi∇J (ρi) (4.11)

with γi > 0 ∀i. The rationale behind this algorithm is clear: updates are made in
the opposite direction of the gradient, so, at least for sufficiently small γi , at each
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iteration a smaller value for the cost is obtained. Its properties are analyzed in the
sequel, starting with the characterization of its fixed-points. The following lemma is
an obvious consequence of the definitions of fixed-point and critical point, and also
of (4.11).

Lemma 4.3 A given point ρ1 in the parameter space is a fixed-point of the steepest
descent algorithm if and only if it is a critical point of the objective function J (ρ).

So, every minimum, maximum or inflexion point is a fixed-point of the steepest
descent algorithm. But which fixed-points are asymptotically stable? Stability de-
pends on the choice of the step sizes γi , but only the minima can be asymptotically
stable for γi > 0. Indeed, taking as a Lyapunov function V (ρ) = J (ρ) − J (ρ1),
where ρ1 is a minimum, it clearly satisfies the first condition of Theorem 4.1. Satis-
faction of the second condition depends on the γi’s: they must be sufficiently small
to guarantee that the function decreases at every iteration, yet large enough to guar-
antee that this decrease is bounded by a class K function.3 By a similar argument,
the maxima and inflexion points of the function J (·) are unstable fixed-points of the
steepest descent algorithm, which is a good thing—the algorithm converges only to
minima.

A formal statement of the convergence to the global minimum will be given
shortly, but using a different Lyapunov function. First, we present an example illus-
trating these ideas.

Example 4.1 Consider the following objective function

J (ρ) = eρ(ρ − 1)2

which is plotted in Fig. 4.2. This objective function has two finite extrema at ρ =
−1 and ρ = 1. The point ρ = 1 is a minimum and ρ = −1 is a maximum of the
function. Let us apply the steepest descent algorithm (4.11) to seek the minimum of
the function.

The gradient of the cost function is given by

∇J (ρ) = eρ(2ρ − 2) + eρ(ρ − 1)2.

Following the previous discussion, there are essentially two parameters that de-
termine the convergence of the steepest descent algorithm: the initial condition and
the step size. Three initial conditions were tried, in order to illustrate the conver-
gence properties in this example, with different step size policies.

The first initial condition is ρ0 = −0.5. Let us try a constant step size: γi =
0.2 ∀i. The evolution of the algorithm for 20 iterations is presented in Fig. 4.3,
where it can be seen that the algorithm converges to the global minimum ρ = 1.

3This second constraint is not present when the algorithm is an autonomous system.
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Fig. 4.2 Cost function J (ρ) = eρ(ρ − 1)2

Fig. 4.3 Convergence of the steepest descent algorithm with initial condition ρ0 = −0.5 and step
size γi = 0.2 ∀i

For the steepest descent algorithm with these step sizes the global minimum is an
attractive fixed-point, and the initial condition ρ0 = −0.5 is within a DOA of the
global minimum.

As a second choice, let us try the initial condition ρ0 = 1.1 with step sizes
γi = 0.7 ∀i. The resulting behavior of the algorithm for 20 iterations can be seen
in Fig. 4.4. The algorithm diverged away from the global minimum ρ = 1, even
though the initial condition was very closed to it, because of an unfortunate choice
of the step sizes. With these step sizes the global minimum is not an attractive fixed-
point.

The third initial condition is ρ0 = −1.5, γi = 0.5 ∀i. This again results in diver-
gence, as shown in Fig. 4.5, but now this is because the initial condition was too far
away from the global minimum. Even though the fixed-point is attractive with this
choice of step sizes, this new initial condition does not belong to a DOA.

We have established theoretically and illustrated by an example that the steepest
descent algorithm converges to a minimum provided that an appropriate step se-
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Fig. 4.4 Divergence of the steepest descent algorithm with initial condition ρ0 = 1.1 and step size
γi = 0.7 ∀i

Fig. 4.5 Divergence of the steepest descent algorithm with initial condition ρ0 = −1.5 and step
size γi = 0.5 ∀i

quence is chosen. This is nice, but we are still a long way from a full understanding
of the convergence properties that are relevant in our applications. First, choosing
the appropriate step sequence is far from trivial. Second, we would like the algo-
rithm to converge to the global minimum, not just any minimum. And third, actual
convergence will only be observed in practice if there exists a large enough DOA.
The following result advances in these aspects and can also be generalized for other
search directions besides the steepest descent.

Theorem 4.3 Let ρ∗ be an isolated global minimum of J (·) : R
p → R

+. Define
the set Bα(ρ∗) = {ρ : (ρ − ρ∗)T (ρ − ρ∗) < α} and a class K function ω(·). If

(ρ − ρ∗)T ∇J (ρ) > ‖∇J (ρ)‖√ω(‖ρ − ρ∗‖) > 0 ∀ρ ∈ Bα(ρ∗) \ ρ∗ (4.12)

then there exists a sequence γi , i = 1, . . . ,∞ such that ρ∗ is asymptotically stable
and Bα(ρ∗) is a DOA of algorithm (4.11) for J (ρ).
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4.3 The Basic Algorithms and Their Convergence 79

Proof Let V (ρ) = (ρ − ρ∗)T (ρ − ρ∗) be a candidate Lyapunov function for the
discrete-time system (4.11). Then

V (ρi+1) − V (ρi) + ω(‖ρ − ρ∗‖)
= (ρi − γi∇J (ρi) − ρ∗)T (ρi − γi∇J (ρi) − ρ∗) − (ρi − ρ∗)T (ρi − ρ∗)

= −2γi(ρi − ρ∗)T ∇J (ρi) + γ 2
i ∇J (ρi)

T ∇J (ρi) + ω(‖ρ − ρ∗‖)
which is negative provided that

γi >
(ρi −ρ∗)T ∇J (ρi) − √

((ρi −ρ∗)T ∇J (ρi))2 −∇J (ρi)T ∇J (ρi)ω(‖ρi −ρ∗‖)
∇J (ρi)T ∇J (ρi)

γi <
(ρi −ρ∗)T ∇J (ρi) + √

((ρi −ρ∗)T ∇J (ρi))2 −∇J (ρi)T ∇J (ρi)ω(‖ρi −ρ∗‖)
∇J (ρi)T ∇J (ρi)

.

(4.13)

For ρi ∈ Bα(ρ∗) the existence of such γi is guaranteed by condition (4.12), which
also implies that ∇J (ρi) 
= 0 ∀ρi ∈ Bα(ρ∗) \ ρ∗. The proof is completed by noting
that Bα(ρ∗) is a connected and bounded level set of V (ρ). �

The proof of Theorem 4.3 is constructive: it gives an explicit condition for the
appropriate γi in (4.13), which in principle allows the appropriate choice of a step
size sequence. But the γ s in this equation depend on the global minimum itself,
so this condition can not in principle be enforced, or even verified. In fact, with
some more analytical effort it can, at least in data-driven control, as will be shown
in Chap. 5. On the other hand, the calculation of the right hand side of (4.13) also
requires the specification of the class K function ω(·). This can be any class K
function, and several choices can be made, resulting in different step size sequences.
A simple, and thus natural, choice is ω(‖ρ − ρ∗‖) = a2 ‖ρ − ρ∗‖2 with a2 < 1.
With this choice, the inequality in condition (4.12) becomes:

(ρ − ρ∗)T ∇J (ρ) > a‖∇J (ρ)‖‖ρ − ρ∗‖ .

But

(ρ − ρ∗)T ∇J (ρ) = cos(θ)‖∇J (ρ)‖‖ρ − ρ∗‖ ,

where θ is the angle between the vectors (ρ − ρ∗) and ∇J (ρ). Hence, condition
(4.12) can be written as

cos(θ) � (ρ − ρ∗)T ∇J (ρ)

‖∇J (ρ)‖‖ρi − ρ∗‖ > a ∀ρ ∈ Bα(ρ∗) \ ρ∗. (4.14)

Condition (4.14) is actually quite intuitive, if interpreted geometrically. Each step
of the steepest descent algorithm is taken in the opposite direction of the gradient.
Condition (4.14) means that at each point of the set Bα(ρ∗) the component of the
gradient along the direction ρ −ρ∗ points away from the global minimum ρ∗. Hence
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Fig. 4.6 Gradient direction

its negative, which is the direction taken by the algorithm, points towards it—see
Fig. 4.6. Should this condition not be satisfied at some point of the set Bα(ρ∗), then
from this point the algorithm would take a step in the wrong direction, moving away
from the global minimum, and then convergence to the global minimum can not be
guaranteed if the algorithm is started at this point. Also notice that condition (4.12)
implies that the gradient is never zero—there can be neither inflexion points nor
other extrema in Bα(ρ∗).

A set satisfying the conditions of Theorem 4.3 is such that it can be turned into
a DOA by using the appropriate step sizes γi . Such a set is, so to say, a candidate
to be a DOA. Accordingly, we define the following to facilitate further references to
this property.

Definition 4.8 A ball Bα(ρ∗) satisfying the conditions of Theorem 4.3 is called a
candidate DOA.

4.3.2 Other Search Directions

The results just presented for the steepest descent algorithm are easily extended for
other search directions, that is, for other matrices Ri in (4.10). We spare the reader
the detailed repetition of the equations and Theorems, and focus on the main concep-
tual aspect involved in the use of a different search direction. The main condition for
convergence to the global minimum in the general case of arbitrary matrices Ri will
be, as in the steepest descent method, that the search direction “points” towards the
global minimum and not away from it. In the particular case of the steepest descent
the search direction is the opposite of the gradient and the exact expression of this
condition is given in (4.14). The corresponding condition here will be the following

cos(θi) > a ∀i (4.15)

for some positive number a < 1, where θi is the angle between the vector ρi − ρ∗
and the search direction Ri∇J (ρi), defined as

cos(θi) � (ρi − ρ∗)T Ri∇J (ρi)

‖Ri∇J (ρi)‖‖ρi − ρ∗‖ .

Observe that, unlike (4.14), this is not an a priori condition, that is, a condition
that depends only on the properties of the cost function. This is because the search
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4.3 The Basic Algorithms and Their Convergence 81

direction does not depend only on the cost function anymore, as was the case in the
steepest descent method, but also on the (in principle arbitrary) matrices Ri at each
iteration.

4.3.3 Newton-Raphson

Another fundamental optimization algorithm is the Newton-Raphson algorithm,
which is defined by the following recursion:

ρi+1 = ρi − (∇2J (ρi))
−1∇J (ρi). (4.16)

In this recursion defining the Newton-Raphson algorithm, the search direction is
no longer an arbitrary choice that varies with the iteration i, and neither is the step
size. Instead, the search direction is defined as a function of the parameter vector
ρi and the step sizes are fixed at γi ≡ 1. As a result, (4.16) defines an autonomous
nonlinear system.

Unlike the steepest descent method, which was conceived with optimization in
mind, the Newton-Raphson’s method was conceived as a means to find the roots
of a function. What the Newton-Raphson algorithm really does is to search for the
roots of the equation ∇J (ρ) = 0, which, by Theorem 4.1, are also extrema of J (ρ).
As a consequence, we can not expect this algorithm to tell minima from maxima,
and, as will be seen shortly, this has undesired consequences.

Also notice that the algorithm involves inversion of the Hessian. When the func-
tion has several extrema, the Hessian will be singular at some points, and at these
points the algorithm is not defined. Let us check the properties of the Newton-
Raphson algorithm as we did for the steepest descent, excluding these singularity
points from the analysis. The following is a direct consequence of the previous def-
initions.

Lemma 4.4 Let ρ1 be such that the Hessian ∇2J (ρ1) is nonsingular, but otherwise
arbitrary. Such a ρ1 is a fixed-point of the Newton-Raphson algorithm (4.16) if and
only if it is a critical point of the objective function J (ρ).

Concerning the stability of the fixed-points, we have the following property.

Theorem 4.4 Let ρ1 be an isolated extremum of a function J (ρ). Then ρ1 is an
attractive fixed-point of the Newton-Raphson algorithm.

Proof (sketch)4 Let ρ1 be a minimum, define V (ρ) � J (ρ)−J (ρ1) and let Ω � ρ1

be a domain of convexity around it. Then by definition V (ρ1)=0 and V (ρ)>0

4For a more complete proof the reader is referred to standard optimization books. Such proofs
get somewhat technical, so we prefer to give here only a sketch that provides insight into the
convergence mechanisms.
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∀ρ ∈ Ω . If V (ρi) is strictly decreasing in time for all ρi ∈ Ω , this makes it a Lya-
punov function and proves the theorem.

At step i the Newton-Raphson algorithm gives: ρi+1 − ρi = −(∇2J (ρi))
−1 ×

∇J (ρi). Multiplying this expression on both sides by the gradient yields:

∇V (ρi)
T (ρi+1 − ρi) = −∇J (ρi)

T (∇2J (ρi))
−1∇J (ρi) < 0 ∀ρi ∈ Ω (4.17)

because ∇V (ρi) = ∇J (ρi) and the Hessian is positive definite in Ω . But the ex-
pression in the left hand side of (4.17) is proportional to the directional derivative
of V (ρ) along the direction ρi+1 − ρi . Because this is negative, so is the directional
derivative and thus the function V (ρi) is reduced when ρ is displaced in this direc-
tion, at least for sufficiently small displacements. Because the gradient tends to zero
as the minimum is approached, so does the size of the displacements, and thus there
exists a neighborhood around it for which these displacements are small enough so
that the Lyapunov function is reduced at every step.

The same rationale applies to maxima, noticing that around a maximum the Hes-
sian is negative definite and thus ∇V (ρi)

T (ρi+1 − ρi) > 0. �

So, unfortunately, attractiveness is not restricted to minima in the Newton-
Raphson algorithm. This may sound like trouble, and to some extent it is. Because
there are more attractive fixed-points, the DOA of each one tends to be smaller. As a
consequence, typically the Newton-Raphson algorithm requires better initialization
than the steepest descent. On the other hand, the Newton-Raphson usually presents
much faster convergence and does not require any parameter commissioning, like
the step sizes γi in the steepest descent. The following example, which consists
of application of the Newton Raphson algorithm to the same objective function of
Example 4.1, illustrates these facts.

Example 4.2 Consider again the following objective function

J (ρ) = eρ(ρ − 1)2

plotted in Fig. 4.2, which presents an isolated minimum at ρ = −1 and an isolated
maximum at ρ = 1. The steepest descent algorithm and the Newton-Raphson algo-
rithm were both applied to search the minimum of the function.

The gradient of this objective function is given by

∇J (ρ) = eρ(2ρ − 2) + eρ(ρ − 1)2

and its Hessian:

∇2J (ρ) = 2eρ + 2eρ(2ρ − 2) + eρ(ρ − 1)2.

It has been seen in Example 4.1 that, provided that the step sizes are properly
chosen, the global minimum is an attractive fixed-point of the steepest descent algo-
rithm; moreover, the set ΩSD = (−1;∞) is a candidate DOA. For initial conditions
outside this set the steepest descent algorithm diverges.
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Fig. 4.7 Convergence of the steepest descent algorithm with initial condition ρ0 = −0.8 and step
size γi = 0.2 ∀i

Fig. 4.8 Divergence of the Newton-Raphson method with initial condition ρ0 = 0.2

With the Newton-Raphson algorithm, both the minimum and the maximum are
attractive fixed-points. By exhaustive simulations it can be verified that the Newton-
Raphson algorithm converges to the minimum if the initial condition is in the set
Ωmin

NR = (−2.41;−1.93) ∪ (0.25;0.28) ∪ (0.42;∞). On the other hand, the set
Ωmax

NR (−1.89;0.24) is a DOA for the maximum. For initial conditions that do not
belong to either Ωmin

NR or Ωmax
NR the Newton-Raphson algorithm diverges.

Some illustrative simulations are given. Figure 4.7 shows the convergence to the
minimum with the steepest descent method from the initial condition ρ0 = −0.8 and
step size γ = 0.2. Figure 4.8 shows the convergence of the algorithm to the maxi-
mum, with the Newton-Raphson method, from the initial condition ρ0 = 0.2. Fig-
ure 4.9 shows the convergence to the minimum with the Newton-Raphson method
from the initial condition ρ0 = 0.5. When the Newton-Raphson algorithm con-
verges, it does so much faster (that is, within a much smaller number of iterations)
than the steepest descent.
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Fig. 4.9 Convergence of the Newton-Raphson method with initial condition ρ0 = 0.5

All pros and cons weighted, the Newton-Raphson algorithm tends to be favored
more often than the steepest descent. As an insight into the convergence of the
Newton-Raphson method, consider an objective function J (ρ) which is quadratic,
that is:

J (ρ) = a + bT ρ + ρT Cρ

for some properly defined constants a, b and C = CT > 0, and let ρ∗ be the min-
imum of this function (since the function is strictly convex by definition, there is
only one minimum). The gradient of this quadratic function is given by

∇J (ρ) = b + 2Cρ (4.18)

and the minimum is the unique solution of the linear equation ∇J (ρ) = 0, which is
given by ρ∗ = −(2C)−1b. Adding and subtracting 2Cρ∗ in (4.18) yields

∇J (ρ) = b + 2Cρ∗ + 2C(ρ − ρ∗) = 2C(ρ − ρ∗). (4.19)

Finally, isolating ρ∗ in (4.19) yields

ρ∗ = ρ − (2C)−1∇J (ρ). (4.20)

Equation (4.20) shows that, for any given ρ, the minimum ρ∗ can be exactly cal-
culated by this expression, which is exactly the expression of the NR’s recursion
since ∇2J (ρ) = 2C. Hence, given any initial guess for the global minimum, the
next guess, calculated by the Newton-Raphson algorithm, will be exactly the global
minimum.

In conclusion, if the cost function were quadratic, then the algorithm would
lead exactly to the minimum in only one iteration. Accordingly, one can expect
the Newton-Raphson algorithm to converge in few iterations if the cost function is
close to a quadratic function. Indeed, this is what happens, and the Newton-Raphson
algorithm converges much faster than the steepest descent method in most cases,
provided that the initial condition of the algorithm is sufficiently close to the min-
imum. However, if the initial condition is far enough from the global minimum, so
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4.3 The Basic Algorithms and Their Convergence 85

that in the domain containing both the global minimum and the initial condition
the cost function does not resemble a quadratic, then the algorithm looses some of
its underlying logic. This is in opposition to the steepest descent, whose rationale
is valid regardless of the cost function’s shape. Thus, one may also expect that the
steepest descent will present a larger DOA than the Newton-Raphson, and this is
actually observed in practice, as will be seen in a number of examples along this
book. Moreover, the Newton-Raphson method requires knowledge not only of the
cost function’s gradient, but also of its Hessian, whose determination can be very
costly in many applications.

4.3.4 Robustness

The fundamental data necessary for the optimization algorithms presented previ-
ously are the gradient and the Hessian of the objective function. In real applications,
the objective function is at best known only approximately, so these data can only
be computed approximately. In some of these applications, and data-driven control
design is counted among these, the objective function is not explicitly known at all,
so estimation of the gradient and the Hessian is obtained indirectly, by somewhat
exotic means sometimes, as will be discussed in Chap. 7. Then a question natu-
rally arises: are the convergence properties of these algorithms robust with respect
to these estimation errors? In other words, if only approximate values of the gra-
dient (and the Hessian) are available, do the algorithms keep these properties? The
answer will fortunately be yes.

Assume that the algorithm is perturbed so that

ρi+1 = ρi − γiRi∇J (ρi) + gi (4.21)

where gi represents the error in the implementation of the algorithm. In the sequence
we will present two robustness results with different assumptions on the error. The
first one assumes that gi is stochastic with limited variance and the second one
assumes that gi has limited amplitude.

Theorem 4.5 (Stochastic approximation) Assume that:

1.

(ρ − ρ∗)T Ri∇J (ρ) > 0 ∀ρ ∈R
p, ∀i

2.

E[gi] = 0 ∀i

3.

E[(Ri∇J (ρi))
T (Ri∇J (ρi))] + E[gT

i gi] ≤ C < ∞ ∀ρ ∈ R
p, ∀i
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4.
∞∑

i=1

γi = ∞
∞∑

i=1

γ 2
i < ∞ (4.22)

then the algorithm (4.21) converges almost surely to ρ∗.

This theorem comes from the Stochastic Approximation theory, which has the
paper [5] as a seminal reference. The proof of the theorem can be found in [2].

Let us analyze the assumptions of the theorem. Assumption 1 states that the an-
gle between the algorithm direction and the vector (ρ −ρ∗) should be less than π/2
rad. We have seen that this condition must be satisfied even if the algorithm is not
disturbed to ensure convergence, so this is like saying that the unperturbed algo-
rithm must converge. The nature of the disturbance is specified in Assumptions 2
and 3. The disturbance must have zero average and finite variance. Assumption 3
also implies that ‖Ri∇J (ρi)‖ must also be finite. The final assumption specifies
constraints that the step sizes must respect.

One possible choice of step sizes that respect these constraints is the harmonic
sequence γi = K/i with K > 0. This sequence of step sizes is often used in data-
driven design, as well as in other optimization applications. This step size sequence
ensures the convergence to a minimum, but the convergence rate is usually very
low.

The following is an alternative, more recent result, with a different setting.

Theorem 4.6 [3] Consider a discrete time system

ρi+1 = f (ρi)

with equilibrium point ρ∗ admitting a quadratic Lyapunov function

V (ρi) = (ρi − ρ∗)T (ρi − ρ∗)

and that ∃β < 1, α > 0 such that

V (f (ρ)) < β2V (ρ), ∀ρ ∈ Bα(ρ∗),

where

Bα(ρ∗) = {ρ : ‖(ρ − ρ∗)‖ < α} .

Consider also that the system is perturbed by the disturbance gi

ρi+1 = f (ρi) + gi (4.23)

where ‖gi‖ < δ ∀i. Consider the set

S(ρ∗) =
{

ρi : ‖(ρ − ρ∗)‖ <
δ

1 − β

}
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4.4 Chapter Conclusions 87

and that S(ρ∗) ⊂ Bα(ρ∗). Then for all ρ0 ∈ Bα(ρ∗) the disturbed system (4.23)
converges to the invariant set S(ρ∗).

Proof To study the convergence of the system, the quadratic Lyapunov function
candidate V (ρ) is used. For all ρ0 ∈ Bα(ρ∗) the disturbed system (4.23) converges
to S(ρ∗) if

V (ρi+1) − V (ρi) < 0; ∀ρi ∈ {Bα(ρ∗) − S(ρ∗)}. (4.24)

Using the conditions of the theorem ∀ρi ∈ Bα(ρ∗)

V (ρi+1) − V (ρi) = ‖(f (ρi) − ρ∗)‖2 − ‖(ρi − ρ∗)‖2 + 2gT
i ‖(f (ρi) − ρ∗)‖ + gT

i gi

< β2‖(ρi − ρ∗)‖2 − ‖(ρi − ρ∗)‖2 + 2δβ‖(ρi − ρ∗)‖ + δ2.

Then a sufficient condition to ensure (4.24) is

(β‖(ρi − ρ∗)‖ + δ)2 − ‖(ρi − ρ∗)‖2 < 0 ∀ρi ∈ {Bα(ρ∗) − S(ρ∗)}.
From the definition of S(ρ∗) it is easy to see that the above condition is always veri-
fied. It is still necessary to show that S(ρ∗) is an invariant set. From the assumptions
of the theorem, if ρi ∈ S(ρ∗) then

‖ρi+1 − ρ∗‖ = ‖f (ρi) − ρ∗ + gi‖ < ‖f (ρi) − ρ∗‖ + ‖gi‖
< β‖ρi − ρ∗‖ + ‖gi‖ <

βδ

1 − β
+ δ = δ

1 − β

which verifies that S(ρ∗) is invariant. �

This theorem shows that if the undisturbed system has a minimum convergence
rate specified by β then the system disturbed by gi converges to a ball of radius δ

1−β
centered at the fixed-point ρ∗. If the system’s state is initialized outside the ball, then
it will enter the ball and never leave it again. The size of this ball is proportional to
the disturbance and it is also a function of the convergence rate β . Hence, whenever
an undisturbed system converges to a fixed-point, its disturbed version converges to
a neighborhood of this same fixed-point.

4.4 Chapter Conclusions

The steepest descent and Newton-Raphson algorithms are probably the most basic
and essential options in optimization in general; these are also the algorithms most
commonly applied in data-driven control design. A wide variety of other optimiza-
tion algorithms are derived from, or inspired by, the Newton-Raphson and steep-
est descent algorithms: Gauss-Newton, Levenberg-Marquardt, the so-called quasi-
Newton family, and so forth. The fundamental properties of the Newton-Raphson
and of the steepest descent have been presented in this chapter. Other algorithms
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88 4 Iterative Optimization

will inherit these properties to the same extent that they resemble either one of these
two essential algorithms—which in most cases is to a large extent.

The basic properties presented in this chapter are well-known, though they are
not usually expressed in the language of Lyapunov stability as presented here. This
particular approach to the problem, which has been taken from recent publications
[1, 3, 4], will prove instrumental in the remaining of this book. Particularly impor-
tant will be Theorem 4.3 and its constructive proof.

The two robustness theorems presented at the end of the chapter imply that the
perturbed system converges to a neighborhood of the minimum provided that the
disturbance satisfies some boundedness conditions and that the undisturbed system
converges to the minimum. This justifies our focus on the undisturbed algorithms
from now on.

In the next chapter we will particularize the convergence analysis to the objec-
tive functions that are found in data-driven control design—the ones presented in
Chap. 2.
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Chapter 5
Convergence to the Globally Optimal Controller

In the H2 control design problem, we are looking for the best controller parameter,
that is, the global minimum of the performance criterion. With that in mind, in this
chapter we will apply the analytical results presented earlier to the analysis of the
objective functions that we are interested in: the H2 control performance criteria. We
will explore the structure, properties and particularities of these objective functions,
and we will be concerned primarily with the convergence to their global minima.
This analysis will allow us to write convergence conditions that are more specific
and sometimes stronger, and also to express them in ways that are directly verifiable
and/or computable so that they can be used in practical data-driven control design.

We actually separate this problem into two: an analysis problem and a synthe-
sis problem. The first one is: given a particular process, reference and performance
criterion, which define uniquely the H2 cost function, and assuming that the ini-
tial condition of the algorithm is within a candidate DOA of the global minimum,
how to guarantee convergence to the global minimum and do so as fast as possi-
ble. This issue is the subject of the present chapter. It involves mainly the choice
of the optimization algorithm and its parameters—the search direction and the step
sizes.

With the results of this chapter under our belt we will be equipped to approach
the second problem, which is the following: if the initial controller parameter is not
inside a candidate DOA of the global optimum, what can be done about it? This
question is answered by what we call cost function shaping, a collection of data
manipulation and experimental tricks that change the cost function so that candidate
DOAs containing the initial controller parameters are created. This is the subject of
the following chapter.

It is never too much to stress that, up to this point and for the next two chapters,
the results are not related to the particular method used to calculate the gradient
and/or the Hessian used in the optimization algorithms. All these results are inher-
ent properties of the problem formulation as the iterative optimization of an H2
performance objective. Different methods for obtaining appropriate estimates of the
gradient and the Hessian are the subject of another chapter of this book.

A. Sanfelice Bazanella et al., Data-Driven Controller Design,
Communications and Control Engineering,
DOI 10.1007/978-94-007-2300-9_5, © Springer Science+Business Media B.V. 2012
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90 5 Convergence to the Globally Optimal Controller

5.1 Jy—The Reference Tracker

In this section we will scrutinize the objective function Jy(ρ), calculating conve-
nient expressions for its gradient and then analyzing its relevant properties from the
point of view of optimization. The frequency domain expression of the objective
function is reproduced here for ease of reference:

Jy(ρ) = 1

2π

∫ π

−π

|T (ejω,ρ) − Td(ejω)|2Φr(e
jω)dω. (5.1)

Taking the derivative of Jy(ρ) in (5.1):

∇Jy(ρ) = 1

2π

∫ π

−π

Φr(e
jω)

{

[T ∗(ejω,ρ) − T ∗
d (ejω)] ∂

∂ρ
[T (ejω,ρ) − Td(ejω)]

+ [T (ejω,ρ) − Td(ejω)] ∂

∂ρ
[T ∗(ejω,ρ) − T ∗

d (ejω)]
}

dω (5.2)

where the superscript ∗ indicates the complex conjugate of a complex number.
This expression is not really convenient for analysis, because of the rational de-

pendence of T (ejω,ρ) on the unknown parameter ρ. So, let us develop it into some-
thing more useful, starting with

T (ejω,ρ) − Td(ejω) = C(ejω,ρ)G(ejω)

1 + C(ejω,ρ)G(ejω)
− Cd(ejω)G(ejω)

1 + Cd(ejω)G(ejω)

= (C(ejω,ρ) − Cd(ejω))G(ejω)Sd(ejω)S(ejω,ρ) (5.3)

where we have defined the “desired sensitivity function” Sd(z,ρ) � 1 − Td(z,ρ),
which is the sensitivity function when the closed loop behaves exactly as desired.
Similarly:

(T (ejω,ρ) − Td(ejω))∗ = (C(ejω,ρ) − Cd(ejω))∗G∗(ejω)S∗
d (ejω)S∗(ejω,ρ).

(5.4)
On the other hand,

∂T (ejω,ρ)

∂ρ
= ∂

∂ρ

C(ejω,ρ)G(ejω)

1 + C(ejω,ρ)G(ejω)
= G(ejω)S2(ejω,ρ)

∂C(ejω,ρ)

∂ρ
(5.5)

and similarly:

∂T ∗(ejω,ρ)

∂ρ
= G∗(ejω)S∗2(ejω,ρ)

∂C∗(ejω,ρ)

∂ρ
. (5.6)

Inserting (5.3), (5.4), (5.5) and (5.6) in (5.2) yields, after some simplification:

∇Jy(ρ) = 1

π

∫ π

−π

Φr(e
jω)|G(ejω)S(ejω,ρ)|2

× �
{

(C(ejω,ρ) − Cd(ejω))∗S∗
d (ejω)S(ejω,ρ)

∂C(ejω,ρ)

∂ρ

}

dω (5.7)

where �{·} indicates the real part of a complex quantity.

co
nt

ro
len

gin
ee

rs
.ir



5.1 Jy—The Reference Tracker 91

Fig. 5.1 Objective function Jy(ρ) for Example 5.1. The function’s value declines up to ρ = 1.9,
which is at the border of the stability set Γ = (−0,1;1.9)

Notice in this expression that if C(z,ρ) = Cd(z) then the gradient is zero. This
comes as no surprise, of course, for the value of ρ for which C(z,ρ) = Cd(z), if
such a ρ exists, is a global minimum. But also notice that if Assumption By is not
satisfied, that is, there is no value of ρ for which C(z,ρ) = Cd(z), then the global
minimum depends on the spectrum of the reference Φr(e

jω). It may even happen
that the gradient is never zero.

Example 5.1 Consider the very simple example of a first order process controlled
by a proportional controller which must track a constant reference

G0(z) = 1

z − 0.9
C(z,ρ) = ρ Td(z) = 1 r(t) ≡ 1

with ρ ∈R
+. The closed-loop system behaves as

T (z,ρ) = ρ

z − 0.9 + ρ

and we observe that Assumption By is not satisfied. We also observe that

lim
ρ→∞T (z,ρ) = Td(z)

so that one must be tempted to make ρ as large as possible to approach the de-
sired closed-loop performance Td(z). But the system becomes unstable for ρ > 1.9,
which implies that for such values of the parameter ρ the value of the objective func-
tion becomes infinity. So we can expect that the objective function will decrease as
ρ → 1.9, and then present a discontinuity at this value. Indeed, this is what happens,
as can be seen in Fig. 5.1, which presents the objective function Jy(ρ) evaluated at
different values of ρ.

This model reference design is not a well posed problem, because it does not
have a solution. Indeed, there is not a value of ρ that satisfies the definition of

co
nt

ro
len

gin
ee

rs
.ir



92 5 Convergence to the Globally Optimal Controller

Fig. 5.2 Approximation of the cost function Jy(ρ) for Example 5.1 obtained with N = 105 data

a minimum: for any value ρ′ < 1.9 there always exists a ρ ′′ ∈ (ρ ′;1.9) such that
Jy(ρ

′′) < Jy(ρ
′).

In practice the situation is a bit different, because the objective function Jy(ρ)

is never computed or optimized exactly; the function that is actually computed and
thus minimized is an approximation computed with a finite set of data (for details
see Sect. 6.4.3 and Chap. 7, where computations are discussed). This function does
possess a global minimum in Γ , as can be seen in Fig. 5.2, in which the function
obtained for N = 105 data is plotted, but this does not make the situation any better
from a practical point of view.

Strictly speaking, the optimization of the approximate function is well posed,
because this function possesses a global minimum. But this minimum can be ar-
bitrarily close to the stability boundary, so that from a practical point of view the
situation is as bad as if it did not exist. Any iterative optimization algorithm looking
for a solution that is arbitrarily close to the stability boundary is likely to skip it
and end up at the other side of the boundary at some iteration, thus resulting in an
unstable closed loop. And even assuming that some algorithm can find this global
minimum without ever trespassing the stability limits, it would be by definition a
bad solution. So, whether talking about the asymptotic cost function Jy(ρ) or its
finite data approximation, the bottom line for this example is the same: the control
objective specified is not compatible with the controller structure available, causing
an inconsistency in the H2 problem.

At this point we hope to have given the reader some motivation to choose the
reference model such that Assumption By is satisfied. But more will come along the
book, as we establish a variety of nice properties of the H2 control design problem
that are present only when this assumption is verified or mildly violated. Let us
also remind the reader that this assumption is equivalent to knowing a model class
to which the process model belongs, as discussed in Chap. 2 (see Examples 2.1
and 2.4).

Let us move on from (5.7). From now on we treat the case of a linearly param-
eterized controller, in the terms of Assumption LP in Chap. 1, which says that the
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5.1 Jy—The Reference Tracker 93

controller’s transfer function can be written like:

C(z,ρ) = ρT C̄(z) (5.8)

As discussed before, this covers most practical cases and even when the actual
controller is not in the form (5.8), an appropriate basis C̄(z) can be chosen to ap-
proximate the controller’s transfer function to any desired precision. The linear pa-
rameterization form (5.8) implies that

∂C(z,ρ)

∂ρ
= C̄(z)

∂C∗(z, ρ)

∂ρ
= C̄∗T (z)

where ∗ has the usual meaning of complex conjugate transpose, that is, C̄∗(ejω) =
C̄T (e−jω). Under this assumption,

∇Jy(ρ) = 1

π

∫ π

−π

Φr(e
jω)|G(ejω)S(ejω,ρ)|2

× �{(C(ejω,ρ) − Cd(ejω))∗Sd(ejω)∗S(ejω,ρ)C̄(ejω)}dω. (5.9)

If Assumption By is also satisfied, then we can write

C(z,ρ) − Cd(z) = (ρ − ρd)T C̄(z). (5.10)

which inserted into (5.9) results in

∇Jy(ρ) = 1

π

∫ π

−π

Φr(e
jω)|G(ejω)S(ejω,ρ)|2

× �{S∗
d (ejω)S(ejω,ρ)C̄(ejω)C̄∗(ejω)}dω(ρ − ρd). (5.11)

Finally, defining the matrix

M(ρ) � 1

π

∫ π

−π

Φr(e
jω)|G(ejω)|2|S(ejω,ρ)|2

× �{S∗
d (ejω)S(ejω,ρ)C̄(ejω)C̄∗(ejω)}dω (5.12)

(5.11) can be written as

∇Jy(ρ) = M(ρ)(ρ − ρd). (5.13)

As a result of the linear parameterization and of the matched control assump-
tions, the gradient of the cost function can be written in the form (5.13). This is
a convenient expression to study the convergence of the optimization methods be-
cause then

(ρ − ρd)T ∇J (ρ) = (ρ − ρd)T M(ρ)(ρ − ρd), (5.14)

which is a quadratic form.
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94 5 Convergence to the Globally Optimal Controller

Convergence of an optimization algorithm from an initialization in a given set
can be ensured by the satisfaction of condition (4.12) within this set, which for the
particular cost function Jy(ρ) assumes the quadratic form (5.14). And whether this
condition is satisfied in a given set depends on the properties of the matrix M(ρ) for
all ρ contained in this set; let us examine these properties. From (5.12):

M(ρ) = 1

π

∫ π

−π

Φr(e
jω)|G(ejω)|2|S(ejω,ρ)|2�{S∗

d (ejω)S(ejω,ρ)}

× �{C̄(ejω)C̄∗(ejω)}dω

− 1

π

∫ π

−π

Φr(e
jω)|G(ejω)|2|S(ejω,ρ)|2

× 
{S∗
d (ejω)S(ejω,ρ)}
{C̄(ejω)C̄∗(ejω)}dω

� Ms(ρ) + Ma(ρ). (5.15)

It is straightforward to verify that Ma(ρ) is anti-symmetric, whereas Ms(ρ) is
symmetric—hence their subscripts. Since xT Qx = 0 for any anti-symmetric ma-
trix Q and any x ∈ R

n, (4.14) can be written as

(ρ − ρd)T Ms(ρ)(ρ − ρd) > a‖ρ − ρd‖‖∇Jy(ρ)‖ ∀ρ ∈ Bα(ρd) \ ρd . (5.16)

Assume (the standard assumption) that the cost function Jy(ρ) is Lipschitz contin-
uous around the global minimum, that is,

‖∇Jy(ρ)‖ < b‖ρ − ρd‖ ∀ρ ∈ Bα(ρd) \ ρd

for some positive b ∈R
+. Then condition (5.16) is satisfied if

Ms(ρ) > ε > 0

where ε = ab. That is, a ball Bα(ρd) is a candidate DOA if, for some ε > 0, the sym-
metric matrix Ms(ρ) − εI is positive definite for all parameter values ρ in this ball.

In order to simplify the presentation, we would rather work with the simpler
condition Ms(ρ) > 0 in lieu of Ms(ρ)−εI > 0 for some ε. Thanks to the continuity
of all the functions involved, the technical difference between these two conditions
can be taken care of by always verifying and enforcing the positivity of Ms(ρ)

condition in a closed set. Indeed, the existence of ε > 0 such that Ms(ρ) − εI > 0
∀ρ ∈ Ω in an open set Ω is equivalent to Ms(ρ) > 0 ∀ρ ∈ Ω̄ .1 Then we have the
following result.

Lemma 5.1 A ball Bα(ρd) is a candidate DOA if Ms(ρ) > 0 ∀ρ ∈ B̄α(ρd) \ ρd .

1Ω̄ being the closure of Ω .
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So, from now on we will focus on the condition Ms(ρ) > 0. This positive
definiteness condition will be dissected by examining the expression (5.15). At
any given frequency ωi in the support of r(t), the scalar factor in the integrand
Φr(e

jωi )|G(ejωi )|2|S(ejωi , ρ)|2 is positive, except for frequencies ωi correspond-
ing to zeros on the unit circle of the process or of the sensitivity, that may or
may not exist. On the other hand, the matrix �{C̄(ejωi )C̄∗(ejωi )} is a positive
semi-definite matrix. Hence the only factor in the integrand that can be negative
is �{S∗

d (ejωi )S(ejωi , ρ)}. Assuming that �{S∗
d (ejω)S(ejω,ρ)} is positive for all ω,

each term of the sum forming the matrix Ms(ρ) will be positive semi-definite. Then,
as discussed in Chap. 3, the sum of p (the dimension of the parameter vector ρ) such
positive semi-definite matrices will result in a full-rank (thus positive definite) ma-
trix Ms(ρ) as a generic property, that is, for almost all reference signals containing
at least p nonzero frequencies is its support. With this argument we have proven the
following theorem.

Theorem 5.1 Let Assumptions By , LP and LI be satisfied and let Υ ⊆ Γ be a
connected set such that ρd ∈ Υ and, for all ρ ∈ Υ :

�{S∗
d (ejω)S(ejω,ρ)} > 0 ∀ω. (5.17)

Then, for almost all SRp references r(t):

(ρ − ρd)T ∇Jy(ρ) > 0 ∀ρ ∈ Υ \ ρd .

This theorem is the cornerstone of the convergence results that follow, and also of
the methodologies of cost function shaping, which will be presented in a subsequent
chapter. We have seen in Chap. 4 that with the satisfaction of condition (4.12) in a
given set, the optimization “tends to be easy” from initial conditions within this set.
By “easy” we mean that the steepest descent converges to the global optimum, and
there is no need for sophisticated optimization algorithms or ad-hoc schemes. With
Theorem 5.1 that generic condition, which is obviously not computable because it
depends on the global optimum ρd , has been translated into the Strictly Positive
Real (SPR) condition (5.17), which is related directly to the desired closed loop per-
formance and the set that is a candidate to be a DOA. A number of specific MRAC
methods, as well as some data-driven methods, arrive at similar SPR conditions for
convergence, although usually through very different paths.

Interpretation of the conditions of this theorem is a major step towards the appro-
priate use of data-driven and adaptive control methods; let us interpret them one by
one. First note that these conditions guarantee that Ms(ρ) is positive definite, which
is sufficient for the positivity condition (4.12) to be satisfied; it is, in principle, not
necessary. Indeed, even if at a particular value of ρ the matrix is not positive defi-
nite, the positivity condition (4.12) can still be positive, depending on the direction
of vector ρ − ρd . But the direction of this vector is not known, because it is deter-
mined by the global optimum ρd . So, it seems reasonable to try to guarantee the
positivity condition (4.12) regardless of what ρd might be, which can be guaranteed
only if the matrix Ms(ρ) is positive definite everywhere in the set Υ .
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96 5 Convergence to the Globally Optimal Controller

The richness condition on the reference signal and the linear independence con-
dition on the controller parameterization are necessary conditions that have been
explained earlier. In setting up his/her data-driven control design, the designer must
make sure that these conditions are satisfied. The controller parameterization is a de-
signer’s choice, and choosing an independent parameterization is the natural thing to
do anyways, so in most cases this is a nonissue. The reference richness, on the other
hand, may be an issue, and it may be necessary to add some extra excitation on top
of the desired reference during parameter adaptation procedures in order to guar-
antee its richness. The “for almost all” part of the theorem statement also deserves
some attention: in counting the number of frequencies of the reference in order to
check the appropriate signal richness one must exclude those frequencies that are
zeros of the process and those that are zeros of the sensitivity. While the first ones
very seldom exist, the zeros of the sensitivity usually are exactly at the dominant
frequencies of the reference—the frequencies to be tracked with zero steady-state
error. So the actual reference usually must have p frequencies besides the ones to be
tracked with zero steady-state error. These conditions and the considerations above
are typical requirements in the similar problem of system identification, and for
similar reasons.

Now let us take a closer look at condition (5.17). This condition can be expressed
in alternative forms with some basic manipulation using elementary properties of
complex numbers. First, remember that the real part of a complex number is positive
if and only if its argument is in the range (−π/2; π/2), so

�{S∗
d (ejω)S(ejω,ρ)} > 0 ↔ ∠{S∗

d (ejω)S(ejω,ρ)} ∈ (−π/2; π/2).

Moreover, for any complex numbers a and b, ∠a.b =∠a +∠b and ∠a∗ = −∠a,
so that

�{S∗
d (ejω)S(ejω,ρ)} > 0 ↔ ∠S(ejω,ρ) −∠Sd(ejω) ∈ (−π/2; π/2).

As a result, condition (5.17) can be expressed in the equivalent form:

max
ω

|∠S(ejω,ρ) −∠Sd(ejω)| < π/2 ∀ρ ∈ Υ. (5.18)

This maximum phase difference between the two transfer functions is a metric
that can be used to measure the distance between a given ρ and the global optimum
ρd . With this in mind, condition (5.17) reads intuitively as an obvious fact: the op-
timization can converge if it is initialized close enough from the global optimum.
What is very far from obvious, and is told by Theorem 5.1, is how to measure this
“closeness” and just how close is “close enough”. Indeed, this theorem provides the
appropriate metric to measure the distance, which is

dist(ρ1, ρ2) � max
ω

|∠S(ejω,ρ1) −∠S(ejω,ρ2)|.

It also tells what is the largest distance acceptable between the initial controller and
the optimal controller in order to obtain convergence.
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Fig. 5.3 Frequency response of Sd (ejω)

S(ejω,ρ1)
: the maximum value of its phase represents the distance

dist(ρ1, ρd)

Yet another alternative, and also equivalent condition, is that the transfer function
below is strictly positive real (SPR):

Sd(ejω)

S(ejω,ρ)
. (5.19)

Note that this transfer function Sd (ejω)
S(ejω,ρ)

is always proper but never strictly proper;
it is affine in ρ, and BIBO-stable for all ρ ∈ Γ . This alternative form will be instru-
mental in the computations in some of the examples to follow.

Example 5.2 Let

G(z) = 1

z − 0.9
, C(z,ρ) = [
1 
2]

[
z

z−1
1

z−1

]

, Td(z) = 0.2

z − 0.8
. (5.20)

The ideal controller, which minimizes Jy(ρ), is achieved for ρd = [0.2 −0.18]T .
Let us compare ρ1 = [0.05 −0.045]T and ρ2 = [0.3 −0.9]T ; which one is a better
initial condition for optimization? The Euclidean distance from the initial condition
ρ1 to the global optimum ρd is: ‖ρ1 −ρd‖ = 0.2018, whereas ‖ρ2 −ρd‖ = 0.1345,
so one might be tempted to say that initializing the optimization at ρ2 is a bet-
ter choice than initializing it at ρ1. But Figs. 5.3 and 5.4 show the frequency re-
sponses of the transfer functions Sd (ejω)

S(ejω,ρ1)
and Sd (ejω)

S(ejω,ρ2)
. The maximum phase of

each transfer function represents the distance between the corresponding value of ρ

and the global optimum ρd , so it is verified in these figures that dist(ρ1, ρd) = 38.7°
whereas dist(ρ2, ρd) = 100.8°. So ρ1 is actually much closer to the global optimum
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98 5 Convergence to the Globally Optimal Controller

Fig. 5.4 Frequency response of Sd (ejω)

S(ejω,ρ2)
: the maximum value of its phase represents the distance

dist(ρ2, ρd)

in the appropriate sense than ρ2 and thus it is a better initialization. Moreover, ρ2 is
not “close enough” to ρd , since dist(ρ2, ρd) > 90°.

Checking the Convergence Condition Checking the SPR condition (5.18) in a
given design apparently requires knowledge of the phase of the sensitivity functions
Sd(z) and S(z,ρ), which in turn seems to demand knowledge of the process’ trans-
fer function; fortunately this is not the case. The desired sensitivity Sd(z) is given as
a designer’s choice. As for the sensitivity S(z,ρ), it is not necessary to know it, but
only to have some information about its phase, an information which can present
itself in different ways. One obvious possibility to assess this information is to esti-
mate the sensitivity phase from the measurement of the signals r(t) and y(t) from
the system, using the following relationship:

r(t) − y(t) = S(z,ρ)r(t).

This may sound like a model identification, but it is not, because only a rough es-
timate of the phase will be enough, and only in a frequency range where the maxi-
mum occurs. Another way to assess condition (5.18) is illustrated in the following
example.

Example 5.3 Let

G(z) = 1

z − a
, C(z,ρ) = ρ

z − a

z − 1
, |a| < 1.

The ideal controller Cd(z) belongs to the controller class considered if and only if
the reference model is of the form Td(z) = 1−b

z−b
; then ρd = 1 − b. The sensitivity
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5.1 Jy—The Reference Tracker 99

function is given by

S(z,ρ) = 1

1 + C(z,ρ)G(z)
= z − 1

z − (1 − ρ)
.

Condition (5.18) will be studied through its equivalent form (5.19) involving the
SPR property of the transfer function formed by the ratio of the two sensitivities.
For two arbitrary sensitivity functions generated by ρ1, ρ2 ∈ Γ , we have

S(z,ρ1)

S(z, ρ2)
= z − (1 − ρ2)

z − (1 − ρ1)
.

The set of stability parameters ρ is Γ = {ρ : |1 −ρ| < 1}. Let us define αi = 1 −ρi

for convenience of notation. From the positive real lemma, this function is SPR if
and only if there exists q ∈ R

+ satisfying the inequalities:

q(1 − α2
2) > 0

(α2 − α1)
2q2 + 2(α1α2 − 1)q + 1 � η(q) < 0.

The first inequality requires α2 < 1, which is the case for ρ2 ∈ Γ . The second one
will be satisfied for some real positive q if and only if the roots of the polynomial
η(q) are real and at least one of them is positive. The roots of η(q) are given by

q =
−(α1α2 − 1) ±

√
(α2

1 − 1)(α2
2 − 1)

(α2 − α1)2 .

These roots are real if and only if (α2
1 − 1)(α2

2 − 1) ≥ 0, which is satisfied for all
ρ1, ρ2 ∈ Γ . Moreover, for ρ1, ρ2 ∈ Γ , −(α1α2 − 1) > 0, so one of the roots is
positive. Hence, whatever reference model Td(z) we choose such that it is BIBO-
stable and can be achieved exactly with the controller class considered, Γ will be a
candidate DOA for the global minimum ρd = 1 − b.

In the example, the knowledge of the model structure alone is enough to ver-
ify that Assumption By can be satisfied with a PI controller. In order to actually
choose a controller class that satisfies Assumption By we need to know also the
pole value a, but not the gain, that for this process equals one. This knowledge, on
the other hand, allows also to characterize the whole set of reference models for
which Assumption By is satisfied, and to verify that condition (5.17) is satisfied for
all these reference models and for the whole stability set Γ —a very strong result.
So, although some information on the process must be available, this required infor-
mation is far less than what is required for model-based design—namely, knowledge
of G(z) to a reasonable degree of accuracy. Let us stress once again the obvious yet
often forgotten truth that in order to guarantee anything about the control of any
process it is necessary to have some information about it.
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100 5 Convergence to the Globally Optimal Controller

The Role of Φr When the necessary richness and LI conditions in Theorem 5.1
are satisfied, the condition (5.18) is sufficient for the matrix Ms(ρ) to be positive
definite. It is, however, far from necessary. The rationale behind this condition is to
guarantee that the integral forming the matrix Ms(ρ) is the sum of strictly positive
terms. If this condition is not satisfied, then one or more of these terms is negative,
and then it may happen that the sum is not positive definite; but it just “may”.

Example 5.4 Let

G(z) = 1

z − 0.5
, C(z,ρ) = ρ

z

z − 0.9
, Td(z) = 2.4z

z2 + z + 0.45
. (5.21)

The ideal controller, which minimizes Jy(ρ), is achieved for ρd = 2.4. The stability

set is Γ = (−0.05, 2.85). It is straightforward to verify that Sd (ejω)
S(ejω,ρ)

is SPR for all
ρ ∈ Υ = (1.35, 2.85). So, from Theorem 5.1, the cost Jy(ρ) has no other extrema
than ρd within the set Υ and this set is a candidate DOA for Jy(ρ). For ρ �∈ Υ the
SPR condition is not satisfied, so there may exist local minima or maxima outside Υ .
Whether such extrema exist depends on the spectrum of the reference applied to the
system.

Let us reexamine (5.16) in the light of the final remark in the example above,
noting that M(ρ) is a scalar in that particular example. If all the factors inside the
integral that forms Ms(ρ) are positive, which is equivalent with the satisfaction of
condition (5.17), then the integral cannot be zero and (5.16) is satisfied. For param-
eter values such that (5.17) is not satisfied, the matrix Ms(ρ) is a sum of positive
and negative terms, which may result in this matrix not being positive definite. But
if the negative terms are small compared to the positive ones, then the sum will still
be positive. So, if (5.17) is violated only at those frequencies where the input power
(Φr ) is low, then the integral is likely to be positive even though the SPR condi-
tion (5.17) is not satisfied. This is a powerful idea in adaptive control which will be
further explored in the sequel, particularly in Chap. 6.

When condition (5.17) is not satisfied, then the factor �{S∗
d (ejω)S(ejω,ρ)} is

negative in a range of frequencies and positive in another range, and clearly there
exists a Φr such that it “weighs” equally these two frequency ranges, thus causing
the integral to vanish. The following corollary results immediately from this argu-
ment.

Corollary 5.1 Let Assumptions By , LP and LI be satisfied and consider a given set

Υ ⊆ Γ , with ρd ∈ Υ . If for some ρ1, ∃ω : �{ Sd(ejω)

S(ejω,ρ1)
} < 0 then there exist SRp

reference signals r(t) such that ∇Jy(ρ1) = 0. This, in turn, implies that for such
reference signals any set Υ � ρ1 is not a candidate DOA for Jy(ρ).

Example 5.5 Consider again the system of Example 5.4. The SPR condition is not
satisfied for ρ < 1.35. Consider ρ = 0.5, for instance. Figures 5.5 and 5.6 illustrate
that for this value of ρ the SPR condition is indeed not satisfied, since there are
frequencies at which the phases of Sd(z) and S(z,0.5) differ by more than π

2 rad.
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5.1 Jy—The Reference Tracker 101

Fig. 5.5 Example 5.5—frequency response of Sd(ejω) (full line) and S(ejω,ρ) (dashed line) for
ρ = 0.5 (ρd = 2.4)

Fig. 5.6 Example 5.5—frequency response of Sd(ejω)/S(ejω,ρ)

Moreover, it can be seen in these figures that �{ Sd (ej1)

S(ej1,0.5)
} = 0, so if only this

frequency (ω = 1 rad/s) is excited, the gradient will be zero at this particular value of
ρ. Indeed, by applying r(t) = sin(1 · t) the objective function behaves as presented
in Fig. 5.7, which has a local maximum at ρ = 0.5.
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102 5 Convergence to the Globally Optimal Controller

Fig. 5.7 Cost Jy(ρ): global optimum at ρd = 2.4 and a maximum at ρ = 0.5

In short, what we have shown in this section is the following. Let the controller’s
parameterization be minimal (Assumption LI), the reference signal be SRp and
Cd(z) ∈ C (Assumption By). If the SPR condition (5.17)—equivalently (5.18) or
(5.19)—is satisfied in a given set Υ , then any ball Bε(ρd) ⊂ Υ is a candidate do-
main of attraction for the global minimum of the reference tracking objective func-
tion Jy(ρ). If the SPR condition is not satisfied in a given set, then these balls can
still be candidate domains of attraction, depending on the reference spectrum.

It is also important to notice in the example that the phase of the function is
small at both “ends” of the reference spectrum (see Fig. 5.6), that is, for very small
and for very large frequencies. Hence if the reference spectrum is concentrated at
these frequency ranges the convergence condition (5.16) is satisfied. This is in fact
a general property which will turn out to be very important, but we postpone its
demonstration and a deeper discussion of its implications to where it will be most
useful, in Chap. 6.

5.2 Je—The Variance Minimizer

The same treatment just given for Jy(ρ) is now applied to the other performance
criterion—Je(ρ). Start by calculating its gradient.

∇Je(ρ) = σ 2
e

1

2π

∫ π

−π

|H(ejω)|2 ∂

∂ρ
|S(ejω,ρ) − Se(e

jω)|2dω (5.22)

∂

∂ρ
S(ejω,ρ) = ∂

∂ρ

1

1 + C(ejω,ρ)G(ejω)
= −G(ejω)S(ejω,ρ)2 ∂C(ejω,ρ)

∂ρ
.

(5.23)
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5.2 Je—The Variance Minimizer 103

From (5.23) we get:

∂

∂ρ
|S(ejω,ρ) − Se(e

jω)|2

= −2|S(ejω,ρ)|2|G(ejω)|2

× �
{

S∗(ejω,ρ)Se(e
jω)(Ce(e

jω) − C(ejω,ρ))
∂C∗(ρ)

∂ρ

}

. (5.24)

Now, assume that the controller is linearly parameterized and that the ideal con-
troller Ce(z) belongs to the controller class considered (Assumption Be); then:

Ce(z) = ρT
e C̄(z)

C(z,ρ) = ρT C̄(z)

∂C(ρ)

∂ρ
= C̄(z)

and (5.24) becomes:

∂

∂ρ
|S(ejω,ρ) − Se(e

jω)|2 = 2|S(ejω,ρ)|2|G(ejω)|2

× �{S∗(ejω,ρ)Se(e
jω)C̄(ejω)C̄∗(ejω)}(ρ − ρe).

(5.25)

Substituting (5.25) into (5.22) yields the following expression for the gradient:

∇Je(ρ) = Me(ρ)(ρ − ρe) (5.26)

Me(ρ) = σ 2
e

π

∫ π

−π

|H(ejω)|2|G(ejω)|2|S(ejω,ρ)|2

× �{S∗
e (ejω)S(ejω,ρ)C̄(ejω)C̄∗(ejω)}dω.

The similarity between (5.26) and (5.13) is obvious. The one relevant difference
between these two expressions is the role of the reference spectrum Φr(e

jω). In
the matrix Me(ρ) appearing in (5.26), the noise spectrum appears in lieu of the
reference spectrum present in matrix M(ρ) of (5.13). Because the noise consists of
filtered white noise, its spectrum is never zero (except perhaps at a finite number of
frequencies represented by zeros of the transfer function H(z) on the unit circle). So,
there is no need to impose a minimum signal richness as an additional condition for
the symmetric part of Me(ρ) to be positive definite—the noise is always sufficiently
rich of infinite order. As a consequence, a similar result to Theorem 5.1 applies to
the noise rejection objective function, but without the sufficiently rich condition in
its statement.
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104 5 Convergence to the Globally Optimal Controller

Theorem 5.2 Let Assumptions By , LP and LI be satisfied and let Υ ⊆ Γ be a
connected set such that ρe ∈ Υ and that, for all ρ ∈ Υ ,

�
{

Se(e
jω)

S(ejω,ρ)

}

> 0 ∀ρ ∈ Υ. (5.27)

Then

(ρ − ρe)
T ∇Je(ρ) > 0 ∀ρ ∈ Υ,ρ �= ρe.

All the remarks previously made about the reference tracking criterion Jy(ρ) in
Sect. 5.1 apply ipsis literis here, apart from those regarding the role of the reference
spectrum.

Example 5.6 Let

G(z) = 1

z − 0.5
, H(z) = z2 + z + 0.45

z2 − 1.4z + 0.45
, C(z,ρ) = ρ

z

z − 0.9
.

(5.28)
It is easy to check that Assumption Be is satisfied and that the ideal (minimum vari-
ance) controller, which minimizes Je(ρ), is achieved for ρe = 2.4, corresponding to
the ideal closed-loop response given by

Te(z) = 2.4z

z2 + z + 0.45
.

The stability set is Γ = (−0.05, 2.85). Because Te(z) in this example is the
same as Td(z) in Example 5.4, and with the same process and controller structure,
the analysis here is the same as in that example. It is straightforward to verify that
Se(e

jω)
S(ejω,ρ)

is SPR for all ρ ∈ Υ = (1.35, 2.85). So, from Theorem 5.2, the cost Je(ρ)

has no other extrema than ρe within the set Υ and this set is a candidate DOA for
Je(ρ). For ρ �∈ Υ the SPR condition is not satisfied.

5.3 The Mismatched Case

Let us analyze now the “mismatched control class” case, that is, the case where the
ideal controller does not belong to the control class. An analysis for the reference
tracking criterion Jy(ρ) is presented, with similar results applying to the objective
function Je(ρ). We will show that the convergence properties presented previously
are robust with respect to the violation of Assumption By , that is, that these proper-
ties are maintained for moderate violations of this assumption.

One of the first consequences of Assumption By that we have seen in Sect. 5.1
and that was illustrated in Example 5.1 is that it implies that the optimization prob-
lem at our hands is well posed—that is, a global minimum actually exists. Now
Assumption By is abandoned, but we still need a global minimum to exist in order
for the design problem to make sense. So, we will assume explicitly that this is the
case, and this assumption will replace Assumption By in our analysis.

co
nt

ro
len

gin
ee

rs
.ir



5.3 The Mismatched Case 105

Assumption Cy The objective function Jy(ρ) presents a global minimum ρ∗, that
is, ∃ρ∗ ∈ Γ : Jy(ρ) ≥ Jy(ρ∗) ∀ρ �= ρ∗; moreover, the global minimum satisfies

∇Jy(ρ∗) = 0, ∇2Jy(ρ∗) ≥ 0.

Notice that Assumption Cy does not involve the existence of a unique global
minimum; several global minima are admitted, maybe even an infinite number of
them. Uniqueness of the global minimum requires signal richness as a necessary
condition even in the mismatched case.

When Assumption By is satisfied, ρd is a global minimum (ρ∗ = ρd ) and
C(z,ρ∗) = Cd(z)—the ideal controller can be achieved. When Assumption By is
not satisfied, the best controller that can be obtained is C(z,ρ∗) �= Cd(z) and As-
sumption Cy replaces Assumption By in the analysis. The mismatch between the
best controller allowed by the controller class under consideration and the ideal
controller is defined as in (2.12) by the following transfer function

K(z) = Cd(z) − C(z,ρ∗). (5.29)

Now substitute (5.29) into (5.9) to get

∇Jy(ρ) = 1

π

∫ π

−π

Φr(e
jω)|G(ejω)S(ejω,ρ)|2

× �{(C(ejω,ρ) − C(ejω,ρ∗) − K(ejω))∗S∗
d (ejω)S(ejω,ρ)C̄(ejω)}dω

= M(ρ)(ρ − ρ∗) − m(ρ) (5.30)

where M(ρ) is as defined previously in (5.15) and we have also defined a mismatch
term m(ρ):

m(ρ) = 1

π

∫ π

−π

Φr(e
jω)|G(ejω)S(ejω,ρ)|2�{S∗

d (ejω)S(ejω,ρ)C̄(ejω)K∗(ejω)}dω.

(5.31)
Equation (5.30) is similar to (5.13), but perturbed by the vector function m(ρ). This
perturbation is unknown, continuous and satisfies m(ρ∗) = 0. In addition, m(ρ) is
bounded for all ρ ∈ Γ . Thus, ‖m(ρ)‖ can be linearly bounded, that is, for any given
set Υ ⊆ Γ containing the global optimum ρ∗:

∃αΥ ∈ R
+ : ‖m(ρ)‖ < αΥ ‖ρ − ρ∗‖ ∀ρ ∈ Υ \ ρ∗. (5.32)

These properties of the mismatch term m(ρ) allow the enunciation of the follow-
ing theorem.

Theorem 5.3 Let Assumptions LP and LI be satisfied, r(t) be SRp and αΥ be de-
fined as in (5.32). Let Υ ⊆ Γ be a connected set such that ρ∗ ∈ Υ and, for all
ρ ∈ Υ :

�{S∗
d (ejω)S(ejω,ρ)} > 0 ∀ω.
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106 5 Convergence to the Globally Optimal Controller

If, in addition, the perturbation term m(ρ) is such that its bound αΥ in (5.32) satis-
fies Ms(ρ) − αΥ Ip > 0 ∀ρ ∈ Υ , then

(ρ − ρ∗)T ∇Jy(ρ) > 0 ∀ρ ∈ Υ,ρ �= ρ∗.

Proof Using (5.30) we have

(ρ − ρ∗)T ∇Jy(ρ) = (ρ − ρ∗)T [M(ρ)(ρ − ρ∗) − m(ρ)]. (5.33)

The theorem is proven by simple substitution of the assumptions in its statement
into (5.33). �

Example 5.7 Let

G(z) = 1

z − 0.5

and consider a reference tracking performance criterion with

Td(z) = 0.3

z − 0.7
;

then

Cd(z) = 0.3z − 0.15

z − 1
.

Consider the class of all delay-free integral controllers:

C =
{

C(z) : C(z) = ρC̄(z), ρ ∈ R, C̄(z) = z

z − 1

}

;

then Assumption By is not satisfied, that is, Cd(z) �∈ C.
The SPR condition (5.19) yields

Sd(z)

S(z,ρ)
= z2 + (ρ − 1.5)z + 0.5

(z − 0.7)(z − 0.5)

which is SPR for all 0 < ρ < 1.1. This implies that this interval is a candidate DOA
provided that K(z)—and hence m(ρ)—is small enough. Figure 5.8 shows a plot
of the corresponding objective function for a reference consisting of a square wave
such that the global minimum is at ρ∗ = 0.15 (notice that because Assumption By

is not satisfied, the global minimum depends on the spectrum of the reference). It is
verified that the objective function has no other extrema in the predicted interval.

Consider now the same process and reference model but a different class of con-
trollers, described by

C =
{

C(z) = ρz + 0.3

z − 1
;ρ ∈ R

}

;
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5.3 The Mismatched Case 107

Fig. 5.8 Example 5.7—reference tracking criterion

Fig. 5.9 Example 5.7—reference tracking criterion as a function of ρ

then

Sd(z)

S(z,ρ)
= z2 + (ρ − 1.5)z − 0.2

(z − 0.7)(z − 0.5)
,

which is SPR in the interval −0.3 < ρ < 0.44. However, the cost function is as
presented in Fig. 5.9, where it can be seen that this interval is not a candidate DOA.
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108 5 Convergence to the Globally Optimal Controller

The nice properties of the cost function are destroyed by this additional distance
between the ideal controller and the controller class.

The “nice” properties of the objective function, obtained for the case where As-
sumption By is satisfied, are nevertheless robust to the violation of this hypothesis.
Even in the mismatched control case the SPR condition still serves as a guide to de-
termine the appropriate initializations, provided that the mismatch between the ideal
controller and the best controller that can be obtained within the class of controllers
available is moderate.

5.4 Choosing the Algorithm Parameters

The optimization of the objective function will be performed, as discussed previ-
ously, by an algorithm of the form

ρi+1 = ρi − γiRi∇J (ρi) (5.34)

with Ri ∈ R
p×p and γi ∈ R

+. So, there are two parameters to be specified by the
user and that will determine whether or not the algorithm will converge and, if it
does, at what rate: the search directions at each step, defined by the matrices Ri , and
the sequence of step sizes γi .

Among the myriad of choices existent for the search direction, we have cho-
sen in the previous chapter to analyze the two most widely known in general and
most commonly applied in data-driven control design: the steepest descent and the
Newton-Raphson algorithms. These two were presented in some detail and their
convergence features were analyzed, an analysis that will guide the brief discussion
of the choice of the search directions that will be presented next. Once the search di-
rection policy is fixed, the relevant properties of the algorithm (5.34) are explored to
design a step size sequence that ensures convergence to the global minimum (when
the given initial condition is such that this is possible) as quickly as possible. The
analysis and the corresponding design of the step size sequence are valid for any
search direction.

5.4.1 The Search Direction

The steepest descent algorithm corresponds to the algorithm (5.34) with Ri = Ip ,
whereas the Newton-Raphson’s algorithm corresponds to Ri = (∇2J (ρi))

−1 and
γi = 1 ∀i. A slight adaptation of the Newton-Raphson algorithm is to keep its di-
rection but allow different step sizes, which keeps the fundamental properties of the
Newton-Raphson search direction allowing additional flexibility that can be used
to further improve the method’s convergence. This adaptation will be accordingly
named the variable step Newton-Raphson algorithm.
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5.4 Choosing the Algorithm Parameters 109

It was shown in the previous chapter that the Newton-Raphson algorithm typi-
cally results in higher convergence rates and the steepest descent algorithm presents
larger domains of attraction. Then from a given initial condition that is potentially
far from the optimum, it is safer to use the steepest descent algorithm. But from a
better initial condition, it is smarter to use the Newton-Raphson algorithm, as it will
converge faster. It is then only logical to use the steepest descent algorithm in the
initial steps of the optimization, when the parameter approximation is farther away
from the optimum, switching to the Newton-Raphson algorithm once the parameter
approximation is sufficiently close to it. This is actually the search direction policy
that we prefer to apply and recommend.

5.4.2 The Step Sizes—First Solution

The choice of γi is fundamental to the performance of the algorithms. If too small
steps are taken at each iteration, then convergence will be very slow. Large values
are dangerous because they can cause the algorithm to leave the candidate DOA
and even result in an unstable closed-loop. Among the many possible solutions for
the choice, let us present two that have proven quite effective in data-driven control
design.

The first one is a recursive step size policy, in which the steps are maintained fixed
as long as the cost function is reduced, then reduced by half when the cost function
is increased at a given iteration. This step size sequence results in convergence to
the global minimum under quite general conditions, as shown below.

Theorem 5.4 Let ρ∗ be the global minimum of the cost function J (ρ) : Rp → R
+.

Assume that there exists ε > 0 and a > 0 such that ρ0 ∈ Bε(ρ∗) and

(ρ − ρ∗)T Ri∇J (ρ)

‖ρ − ρ∗‖‖Ri∇J (ρ)‖ > a > 0 ∀ρ ∈ Bε(ρ∗) \ ρ∗.

The algorithm (5.34) converges to ρ∗ if the step size sequence is given by:

γi = μi

‖Ri∇J (ρi)‖
where μi is chosen as:

• μi = μi−1 if Ji(ρ) ≤ Ji−1(ρ);
• μi = μi−1

2 if Ji(ρ) > Ji−1(ρ).

Proof Consider the quadratic candidate Lyapunov function

V (ρ) = (ρ − ρ∗)T (ρ − ρ∗) = ‖ρ − ρ∗‖2.

Let μ0 = μ be such that V (ρ1) < V (ρ0). This is no loss of generality, because if
this were not the case then the step size policy would require to reduce the step until
such a μ is found. For such a μ:
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110 5 Convergence to the Globally Optimal Controller

V (ρi+1) − V (ρi) = ‖ρi+1 − ρ∗‖2 − ‖ρi − ρ∗‖2

=
∥
∥
∥
∥ρi − μ

Ri∇J (ρ)

‖Ri∇J (ρ)‖ − ρ∗
∥
∥
∥
∥

2

− ‖ρi − ρ∗‖2

= μ2 − 2μ
(ρi − ρ∗)T Ri∇J (ρ)

‖Ri∇J (ρ)‖
< μ2 − 2μa‖ρi − ρ∗‖

as long as the Lyapunov function keeps being reduced at each iteration, because in
this case μi is not altered. But this implies that for any ρi satisfying

‖ρi − ρ∗‖ >
μ

a

the Lyapunov function is reduced at least by a certain fixed amount:

V (ρi+1) − V (ρi) < −μ2.

That is, as long as ρi is outside a ball Bε(ρ∗) with ε = (
μ
a
)2, the Lyapunov func-

tion is reduced of at least −μ2 at each iteration. This implies that the parameter ρ

will enter the ball Bε(ρ∗) in finite time. More specifically, let k be the first integer
larger than V (ρ0)

μ2 − 1
a2 ; then the parameter ρ enters Bε(ρ∗) in at most k iterations.

Once the algorithm has entered this ball, the Lyapunov function will be increased.
When this happens, the parameter μi will be reduced by half repeatedly until reach-
ing a value—say μ′—such that the Lyapunov function is reduced. Then the same
argument above shows that the parameter enters in finite time a ball Bε(ρ∗) with
ε = (

μ′
a

)2, whose radius is at most half the one of the previous ball. As the iterations
pass, the radii of the balls entered by the algorithm in finite time keep decreasing,
causing the parameter to converge to the global minimum. �

This is a recursive choice for the step sizes, where each γi is chosen as a function
of the previous one. So, it is necessary to initialize the step size, which can be done
by establishing the size of the first parameter change as a fraction of the initial
parameter value:

γ0 = α‖ρ0‖ 1

‖R0∇J (ρ0)‖ ,

and the fraction α is chosen to make a first step which the designer deems as a safe
change to be made.

5.4.3 The Step Sizes—Second Solution

It has been shown in Chap. 4 that the algorithm (5.34) converges to the global opti-
mum if

−2γi(ρi − ρ∗)T Ri∇J (ρi) + γ 2
i ∇J (ρi)

T RT
i Ri∇J (ρi) + ω(‖ρi − ρ∗‖) < 0

co
nt

ro
len

gin
ee

rs
.ir



5.4 Choosing the Algorithm Parameters 111

at all iterations. Using the expression ∇J (ρi) = M(ρi)(ρi − ρ∗) for the gradient of
H2 cost functions and the class K function ω(‖ρi −ρ∗‖) = a2‖ρi −ρ∗‖2, the above
condition can be expressed as

−2γi(ρi − ρ∗)T RiM(ρ)(ρi − ρ∗) + γ 2
i (M(ρ)(ρi − ρ∗))T RT

i RiM(ρ)(ρi − ρ∗)

+ a2‖ρi − ρ∗‖2 < 0

which can be simplified to

(ρi − ρ∗)T (−2γiRiM(ρ) + γ 2
i MT (ρ)RT

i RiM(ρ) + a2)(ρi − ρ∗) < 0.

This is a quadratic form which is satisfied if

−2γiRiM(ρi) + γ 2
i MT (ρi)R

T
i RiM(ρi) + a2 < 0. (5.35)

Using the Schur’s Lemma we obtain the equivalent condition

[
2γiRiM(ρi) − a2 γiRiM(ρi)

γiM
T (ρi)R

T
i I

]

> 0. (5.36)

Then we can enunciate the following theorem, which is valid for arbitrary search
directions.

Theorem 5.5 Suppose that Assumption By is satisfied and let Bα(ρd) ⊆ Γ be
a candidate DOA. If ρ0 ∈ Bα(ρd) and γi respects (5.36) for some a > 0 then
limi→∞ ρi = ρd .

It is important to realize that Bα(ρd) being a candidate DOA means that there is
a sequence of γi that satisfies the conditions of the theorem (see Definition 4.8). But
besides finding some sequence that results in convergence, we would like to find
the step size sequence that also results in the fastest convergence. The convergence
rate of the algorithm is directly related to the parameter a; for larger values of a the
algorithm converges faster. So, to guarantee convergence to the global minimum ρd

and to make this convergence as fast as possible, the step size γi must be chosen as
the solution of the following problem

max
a,γi

a

subject to (5.36)

An important feature is that such a selection of the step size can be made au-
tomatically, and is based solely on the basis of Ri and an estimate of M(ρ). This
second method uses more information about the process (an estimate of M(ρ)) than
the first method to compute the step size sequence.
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112 5 Convergence to the Globally Optimal Controller

5.4.3.1 Estimate of M(ρ)

In this section we discuss how to obtain from the data the information required for
computation of the step sizes γi . This computation requires an estimate of the matrix
M(ρ), which can be expressed as

M(ρ) =
nr∑

i=1

Φr |G|2|S(ρ)|2�{S∗
dS(ρ)C̄C̄∗} (5.37)

when the reference has a finite support with nr components. The matrix M(ρ) de-
pends on the reference signal, on the controller, on the reference model and on
the frequency response of the process. The reference signal, the controller and the
reference model are known by the designer and the only information unknown to
compute M(ρ) concerns the frequency response of the process. A rough estimate
of the process response can be made using the same input-output data collected to
estimate the gradient of the cost function. Since the quality of this estimate is not
critical for the convergence of the algorithm, using an estimate of the steady-state
gain and of the pass band as representative of this frequency response is appropri-
ate to approximate the sum (5.37). This procedure is successfully applied in some
examples along this book, including the experimental results presented in Chap. 8.

5.5 A Case Study

Consider the control of a process described by (there is no noise):

y(t) = 0.05

z − 0.95
u(t). (5.38)

This process is controlled by a PI controller

C(z,ρ) = [

1 
2

]
[

z
z−1

1
z−1

]

. (5.39)

The process’ transfer function is unknown to the designer, whom will be applying
a data-driven design to the PI controller. It is only assumed that the designer knows
that the process’ transfer function is of first order. With this information, the designer
can choose his/her reference model so that Assumption By can be verified. The
following reference model is specified:

Td(z) = 0.1

z − 0.9
.

The above reference model can be achieved by the ideal controller

Cd(z) = [
2 −1.9

]
[

z
z−1

1
z−1

]

. (5.40)

This controller lies in the class of PI controllers in the form (5.39), so Assump-
tion By is satisfied.
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5.5 A Case Study 113

Fig. 5.10 Closed-loop step response: desired response, with the initial controller, and with the
final controller (hidden by the desired response)

Consider that the system is initially in closed-loop with the controller

C(z,ρ0) = [
2.5 −1.5

]
[

z
z−1

1
z−1

]

. (5.41)

Figure 5.10 shows the step response of the closed-loop system. This initial re-
sponse is very different from the desired one, as can be seen visually and assessed
by the significant value of the objective function J (ρ0) = 0.15048: given that the
input is a unit step, this is roughly a 15% error in the desired value for the output.

Let us use the algorithm (5.34)2 to improve the closed-loop performance. The
following reference signal, which guarantees persistence of excitation, is used to
obtain the data:

r(t) = sq

(
2πt

200

)

where sq( 2πt
T

) stands for a square wave with period T .
The search direction is initially the gradient direction—the steepest descent

method Ri = Ip—switching to the variable step Newton-Raphson after the param-
eter value is sufficiently close to the minimum. The step sizes are determined by the
second solution presented earlier in Sect. 5.4.3. The result of this iterative design
is presented in Fig. 5.11 and in Table 5.1, where the evolution of the step sizes,

2The gradient ∇J (ρ) was estimated based on data using the Iterative Feedback Tuning (IFT)
method described in Sect. 7.1.
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114 5 Convergence to the Globally Optimal Controller

Fig. 5.11 Evolution of the controller parameters using different search directions and the step size
sequence of Sect. 5.4.3

Table 5.1 Controller
parameters evolution i Ji ρT

i γi Ri

0 0.15048 [2.5000 −1.5000] 1.3537 Identity
1 0.11803 [2.3887 −1.6630] 1.0351 Identity
2 0.07437 [2.2670 −1.8149] 0.6123 Identity
3 0.02267 [2.1565 −1.9366] 0.2267 Identity
4 0.00031 [2.1012 −1.9931] 0.4916 Hessian
5 7.8514e − 005 [2.0518 −1.9481] 0.7472 Hessian
6 4.4729e − 006 [2.0132 −1.9123] 0.9421 Hessian
7 1.2461e − 008 [2.0008 −1.9007] 0.9955 Hessian
8 2.1745e − 013 [2.0000 −1.9000] 0.9958 Hessian

the search directions, the controller parameters and the resulting values of the cost
function are all presented. It is seen that the minimization is successful, obtaining
five correct significant digits of ρd in few iterations. The step size has converged to
a value very close to one, which amounts to the original Newton-Raphson method;
when very close to the minimum the Newton-Raphson is indeed the optimal algo-
rithm. Figure 5.10 also shows the step response with the final controller (iteration 8),
which is visually indistinguishable from the reference model response.

To further stress the effectiveness of this particular design, let us present another,
more classical alternative, in which the steepest descent algorithm is applied with
step sizes originated from the classical stochastic approximation theorem, as given
in (4.22). It is worth of notice that this “classical” step size policy does not provide
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5.6 Chapter Conclusions 115

Fig. 5.12 Evolution of the controller parameters with the steepest descent algorithm and the clas-
sical step size sequence given by the harmonic sequence

an initial step size, which is then an additional parameter for the designer to worry
about. To make an easier comparison, we chose the step size of the first iteration
of the classical choice the same as calculated before. The result of this alternative
optimization is presented in Fig. 5.12 and in Table 5.2. It is clear from the table that
convergence is slower and is not monotonic, and it is apparent in the figure that the
steepest descent gets trapped after some iterations. This is not because of a local
minimum of the cost function, but rather because the component of the gradient of
the cost function along the line connecting this point to the global minimum is very
small. It was the switching to the Newton-Raphson’s search direction that allowed
the minimization to evolve along this line and converge to the global minimum in
the previous case.

From these results, one may be tempted to apply the Newton-Raphson algorithm
from the first step; it turns out that this is not a good idea because of the Newton-
Raphson’s small DOA. Indeed, Table 5.3 and Fig. 5.13 show the result of applying
the Newton-Raphson method with the initial condition (5.41). In this case, because
the initial condition is far from the global minimum, the Newton-Raphson method
diverges, arriving at an unstable closed-loop at iteration 2.

5.6 Chapter Conclusions

Most developments, results and conclusions in this chapter were given for the ref-
erence tracking performance criterion Jy(ρ). These properties are a consequence of
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116 5 Convergence to the Globally Optimal Controller

Table 5.2 Evolution of the
controller parameters with the
steepest descent and the
classical step sizes

i Ji ρT
i γi Ri

0 0.15048 [2.5000 −1.5000] 1.35370 Identity

1 0.11803 [2.3887 −1.6630] 0.67685 Identity

2 0.09127 [2.3091 −1.7623] 0.45123 Identity

3 0.06350 [2.2393 −1.8423] 0.33842 Identity

4 0.03202 [2.1724 −1.9145] 0.27074 Identity

5 0.00214 [2.1074 −1.9816] 0.22562 Identity

6 0.00886 [2.0754 −2.0133] 0.19339 Identity

7 0.03721 [2.1843 −1.9049] 0.16921 Identity

8 0.01740 [2.1446 −1.9462] 0.15041 Identity

9 0.00207 [2.1083 −1.9830] 0.13537 Identity

10 0.00078 [2.0894 −2.0018] 0.12306 Identity

11 0.00111 [2.1043 −1.9867] 0.11281 Identity

12 0.00027 [2.0920 −1.9988] 0.10413 Identity

13 0.00020 [2.0982 −1.9924] 0.09663 Identity

14 0.00010 [2.0940 −1.9964] 0.09027 Identity

19 7.9126e − 005 [2.0949 −1.9949] 0.06765 Identity

29 7.8385e − 005 [2.0945 −1.9944] 0.04513 Identity

39 7.7867e − 005 [2.0941 −1.9941] 0.03382 Identity

49 7.7468e − 005 [2.0939 −1.9939] 0.02704 Identity

Table 5.3 Evolution of the
controller parameters with the
Newton-Raphson method

i J (ρi) ρT
i γi Ri

0 0.15048 [2.5000 −1.5000] 1 Hessian

1 0.09372 [4.2419 −3.5074] 1 Hessian

2 ∞ [5.1033 −5.3243] 1 Hessian

the particular structure of the gradient in the form (5.13). Since the noise rejection
performance criterion Je(ρ) presents this same structure, as seen in (5.26), the same
developments, results and conclusions apply to this performance criterion as well,
apart from the ones related to signal richness.

The convergence analysis is based on the positivity of the matrix Ms(ρ) in (5.15)
(or the symmetric part of Me(ρ) in (5.26) for the noise rejection performance crite-
rion). This positivity condition can be used in many different ways in a data-driven
design. For example, whenever the symmetric matrix Ms(ρi) is positive definite at
some ρi , the next iteration will drive the parameter closer to the global optimum.
So this condition can be used as a test to be carried out at each iteration to verify
whether or not the algorithm is converging to the global minimum. It is also possi-
ble to verify a priori the positivity of this matrix for all parameter values in a given
ball, thus establishing that this ball is a candidate DOA (or not). Moreover, when
the initial controller is within a candidate DOA, then this same condition provides
an appropriate automatic procedure to calculate the step sizes. We have presented
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Fig. 5.13 Evolution of the controller parameters with the Newton-Raphson algorithm

an example suggesting that much faster convergence can be expected with the step
sizes calculated in this way when compared to other, more classical alternatives.
This expectation is also supported by other examples given elsewhere (see, for in-
stance, [1]).

A conceptually and practically relevant alternative convergence condition is that
a particular transfer function, which is the ratio between two sensitivities, is SPR.
This is a more conservative condition than the positivity of Ms(ρ), but it does not
depend on the reference spectrum and provides important insight to the problem.
Similar SPR conditions abound in the literature of system identification, adaptive
control and data-driven control. Here we have obtained this condition as a general
property of data-driven and adaptive control design, analyzing only the particulari-
ties of the H2 cost functions. Even though our analysis has been presented for the
steepest descent algorithm, for other search directions the same arguments will ap-
ply with Ms(ρi) replaced by RiMs(ρi).

On the other hand, instead of verifying candidate DOAs for an optimization prob-
lem fully defined a priori, one can shape the problem such that given sets are candi-
date DOAs, or that given parameter values are within candidate DOAs. How to do
this is the subject of the next chapter.
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Chapter 6
Cost Function Shaping

6.1 Introduction

The previous chapter presented an analysis of the properties of the cost function
around the global minimum and we have seen conditions under which the cost
function is “well behaved”. Having a “good behavior” means that large candidate
domains of attraction exist, without extrema close to the global minimum that would
complicate or even preclude the optimization. In this chapter, the same problem is
studied from a synthetic perspective, that is, instead of analyzing the properties of
a given problem, we will see how the designer can choose some parameters of the
problem to make the cost function “well behaved”. A set of principles and proce-
dures to achieve this goal will be derived, always based on the analytical results in
the previous chapter, and the ensemble of these tools has been baptized cost function
shaping.

6.2 The Problem Data

For each performance criterion, satisfaction of the basic convergence condition
(4.12) is determined through the positivity of a particular symmetric real matrix.
For the reference tracking criterion Jy(ρ) the relevant matrix is Ms(ρ) given in
(5.15), whereas for noise rejection Je(ρ) the relevant matrix is the symmetric part
of Me(ρ) given in (5.26). Among the variables present in (5.15) and (5.26), which
define the corresponding matrix and therefore determine the convergence proper-
ties, some can be manipulated by the designer and others cannot. These variables
are the following, divided into three groups:

• the process characteristics—G(z), H(z) and σ 2
e ;

• the controller features—the controller class C, its parameterization C̄(z) and the
initial controller parameter ρ0;

• the performance criterion—Td(z) and Φr .

A. Sanfelice Bazanella et al., Data-Driven Controller Design,
Communications and Control Engineering,
DOI 10.1007/978-94-007-2300-9_6, © Springer Science+Business Media B.V. 2012
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120 6 Cost Function Shaping

The first group of variables are the process characteristics, which obviously are
given and certainly cannot be changed. Moreover, they are unknown but at least
some partial information about them is provided—such as the relative degree of
G(z), or an estimate of σ 2

e , for example.
The second group of variables concerns the controller. The controller class C is

given and known; it is a designer’s choice that is usually made in a previous stage
of system conception, so in most cases we cannot change it at this stage. The hard-
ware and software available often impose the controller class, linearly parameterized
PID controllers being the most commonly used. On the other hand, the particular
parametrization C̄(z) used to represent this class can often be manipulated. It has
been proven earlier in this book that this parametrization must represent the class
C with the minimal number of parameters but it can otherwise be freely chosen.
This choice does play a role in the properties of the cost function, and thus might be
useful for cost function shaping.

The initial controller parameter ρ0 could, in theory, be selected at will. However,
finding an initial controller that is guaranteed to provide a stable closed loop is not
without danger when the process is unknown. Also, a major application field for
model-free tuning methods is the performance improvement of controllers that have
been operating in a stable, but not optimally performing way. In this situation, which
is probably the most common in practice, the initial controller is the one already
operating in the control loop and is thus imposed upon us. So, whether it is possible
to choose ρ0 in a given practical situation is determined by case-specific and rather
subjective considerations.

The remaining group of variables influencing the objective function are related
to the performance criterion: Td(z) and Φr . Once it has been established what is
the desired performance criterion, these variables are fixed; changing them would
imply minimizing another criterion, achieving a performance that is not the one de-
sired. Nevertheless, if the criterion of choice is too hard to optimize starting from
the starting controller ρ0, we may consider minimizing an easier criterion as an in-
termediate task. Then, taking the new controller resulting from this optimization
as the initial controller, it might be easier to optimize the desired criterion. Actu-
ally, one can think of inserting more than one intermediate task, optimizing at each
time a criterion that is closer to the desired one, and guaranteeing that each one of
these intermediate optimization tasks will converge to its global minimum. This cau-
tious approach to performance improvement is a familiar idea that has been called
“the windsurfer approach” to control design by some, or simply cautious control
by many. A similar reasoning applies to the reference spectrum: if it is too hard to
minimize the performance criterion for the desired reference, then minimize it for
other easier to track references as intermediate steps, until the desired reference is
tracked.1

This is the central idea presented in this chapter: one can manipulate one or both
of the variables Td(z) and Φr stepwise so that the resulting intermediate cost func-
tions have a larger domain of attraction to their global optimum, in such a way as

1We will see that under Assumption By this is not even necessary.
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6.3 Cautious Control 121

to eventually minimize the desired cost function. The effects and possibilities of
manipulating each one of these variables are now studied to derive a number of dif-
ferent numerical maneuvers and experimental procedures that can be used to make
the cost function to be optimized “well behaved”. The ensemble of these maneuvers
and procedures is what we have baptized “cost function shaping”.

6.3 Cautious Control

Convergence to the global optimum is obtained if the optimization is initialized
sufficiently close to it, where closeness is measured by a metric defined as the phase
difference between the desired and achieved sensitivities, stemming from (5.17).
So, choosing an initial controller ρ0 such that this difference is sufficiently small
should be appropriate. However, it is often the case that the controller to be tuned is
in operation, that it is stabilizing the plant, but providing rather poor performance.
The engineer may be very reluctant to change abruptly the controller parameters
to another value at which not even stability is 100% assured—after all, one bird
in the hand is worth two in the bush. So, instead of choosing an initial controller
whose parameters are close to the optimal ones, let us consider an alternative: keep
ρ0 unchanged and temporarily change Td(z) so that the optimal parameter ρd is
brought closer to ρ0.

Starting from an initial controller which delivers a given performance—say
T0(z)—which is considered to be poor, let us choose a first intermediate reference
model T 1

d (z). This reference model should not require at once the achievement of a
performance that is much better than the one we already have with T0(z), because
this would likely require the optimal controller parameters to be too far from the
current controller parameters. Instead, T 1

d (z) should be cautious, aiming at a mod-
est performance improvement, one which is closer to the (poor) performance T0(z)

than the real reference model of interest—namely Td(z). Of course, closeness here
should be understood as measured by the appropriate metric defined previously, that
is, the distance

dist(ρ0, ρd) = max
ω

∠
S1

d(ejω)

S(ejω,ρ0)

should be small, where S1
d(z) = 1 − T 1

d (z). Specifically, one should try to ascertain

that
S1

d (z)

S(z,ρ0)
is SPR.

Then an iterative procedure is applied to find the global minimum of this cau-
tious intermediate criterion—say ρ1∗ . Once the global optimum of this intermediate
criterion has been reached, we can pick a second, more ambitious, reference model
T 2

d (z) (i.e. one closer to Td(z)), and optimize it starting from ρ1∗ as the initial con-
troller. This argument can be used successively, with several intermediate reference
models, until the desired reference model Td(z) is achieved. We illustrate the pro-
cedure by means of an example.
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122 6 Cost Function Shaping

Example 6.1 Consider again the following system and reference model:

G(z) = 1

z − 0.5
C(z,ρ) = ρ

z

z − 0.9
Td(z) = 2.4z

z2 + z + 0.45

and let us say that the initial controller parameter is ρ0 = 0.4. Then the closed-loop
transfer function is given by

T (z,ρ0) = 0.4z

z2 − z + 0.45
.

Consider initially a reference tracking objective, where the control system must
track a square wave reference with period T = 6 samples and unitary amplitude
with the performance specified by Td(z).2

In order to verify what would happen if an iterative optimization of the cost func-
tion Jy(ρ) were applied to the design of the controller, the cost function is calculated
for all values of ρ ∈ Γ , resulting in the graphic shown in Fig. 6.1d. It is seen that
this cost function presents a local maximum at ρ ≈ 0.6. Under these circumstances,
convergence to the global optimum ρd = 2.4 is not possible from the initial condi-
tion ρ0 = 0.4. In fact, an attempt to apply a data-driven design in this case would
likely be disastrous. The algorithm would reduce the controller parameter ρ indef-
initely, which depending on the step sizes would either make it to assume values
very close to zero (which would amount to no control at all), or cross the boundary
of the stability set into negative values that would result in instability.

Let us see how cautious control would work here. Consider the use of a cautious
reference model given by

T 1
d (z) = 0.6z

z2 − 0.8z + 0.45
,

for which ρ1
d = 0.6, and verify the behavior of the corresponding cost function

J 1
y (ρ) = Ē[(T 1

d (z) − T (z,ρ))r(t)]2.

This function is plotted in Fig. 6.1a, where it is seen that the initial controller ρ0 =
0.4 belongs to a candidate DOA of the global minimum ρ1

d = 0.6. Optimization of
the cost function J 1

y (ρ) starting from ρ0 is then “easy” and will result in reaching

the global minimum ρ1
d = 0.6.

Once this optimization has been performed, we can try a second step, with the
new intermediate reference model

T 2
d (z) = 1.2z

z2 − 0.2z + 0.45
,

2Granted, this is a rather artificial control objective, but the purpose of this example is not to illus-
trate practical applications but rather to explain the ideas. Accordingly, the choice of this particular
example was based on obtaining easily understandable equations and pictures rather than on its
practical meaning. Real life examples are given elsewhere, particularly in Chap. 8.
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6.3 Cautious Control 123

Fig. 6.1 Example 6.1—cautious control: performance criterion Jy(ρ) for square-wave reference,
T = 6 s, with different reference models

for which ρ2
d = 1.2. The corresponding cost function J 2

y (ρ) is plotted in Fig. 6.1b,

and it is clear that ρ1
d , which represents the initial condition for the optimization of

J 2
y (ρ), is within a candidate DOA of the global minimum ρ2

d = 1.2. Having done

this second optimization, we take ρ2
d as the initial condition for the optimization of

a third intermediate reference model

T 3
d (z) = 1.8z

z2 + 0.4z + 0.45
,

for which ρ3
d = 1.8; the corresponding cost function J 3

y (ρ) is plotted in Fig. 6.1c.

Finally, from ρ3
d as the initial condition it is safe to optimize the desired criterion

Jy(ρ) with the reference model

Td(z) = 2.4z

z2 + z + 0.45
.

As a matter of fact, the above sequence of reference models is more cautious than
necessary, since the first optimum ρ1

d is already within a candidate DOA of ρd . But
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Fig. 6.2 Example 6.1—cautious control: performance criterion JT (ρ) for square-wave reference,

T = 6 s, σe = 0.2 and H(z) = z2−1.15z+0.45
z2−1.4z+0.45

, with different reference models

in an actual application we would not know that, so going directly from ρ1
d could

represent a relevant risk.
Consider now that the performance criterion is no longer reference tracking

Jy(ρ), but the composite criterion JT (ρ) = Jy(ρ) + Je(ρ), with the same reference

signal, σe = 0.2 and H(z) = z2−1.15z+0.45
z2−1.4z+0.45

. The concept of cautious control still ap-
plies. Indeed, if the same three intermediate reference models above are used, then
the intermediate cost functions behave as in Fig. 6.2. Again, at each intermediate
step, the global optimum belongs to a candidate DOA of the next one.

6.4 Manipulation of the Reference Spectrum

Candidate domains of attraction have been established by checking, for all ρ in a
set and for all ω ∈ [−π;π], the following inequality

−π

2
< ∠S(ejω,ρ) −∠S(ejω,ρd) <

π

2
. (6.1)
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This is because under this condition the following matrix is positive-definite

Ms(ρ) = 1

π

∫ π

−π

Φr |G|2|S(ρ)|2�{S∗
dS(ρ)}�{C̄C̄∗}dω. (6.2)

However, the SPR condition (6.1) is not a necessary condition; it can be circum-
vented by a proper manipulation of the reference r(t). Even if (6.1) is not satisfied
for all ω, the integral in (6.2) will still result in a positive definite matrix Ms(ρ)

provided that the reference spectrum is concentrated at those frequencies for which
(6.1) is satisfied. But it is not immediately clear how to take advantage of this fact,
because this frequency range depends on the unknown process and other unknown
quantities, so it is unknown, and at first sight it appears that it might even be empty.
Fortunately, there are general structural properties such that this interval is never
empty and that allow the designer to concentrate the reference’s spectrum within
this range. These will be seen next.

6.4.1 Properties of the Sensitivity

For each value of the parameter ρ the sensitivity function is given by:

S(z,ρ) = (1 + ρT C̄(z)G(z))−1

and its phase has the following property for all stabilizing values of ρ.

Lemma 6.1 For all ρ1, ρ2 ∈ Γ , the following equalities are satisfied:

∠S(1, ρ1) −∠S(1, ρ2) = 0

∠S(−1, ρ1) −∠S(−1, ρ2) = 0.

Proof Let bi be the poles of the loop transfer function C(z,ρ)G(z) and ai(ρ) be the
closed-loop poles—that is, the poles of S(z,ρ). Clearly, the bi are the same for all
ρ, because the parameter ρ only enters in the numerator of C(z,ρ)G(z), and these
bi are also the zeros of S(z,ρ). For any frequency ω and any parameter value ρ we
can write:

∠S(ejω,ρ) =
n∑

i=1

∠(ejω − bi ) −
n∑

i=1

∠(ejω − ai(ρ)). (6.3)

For ω = 0 (6.3) becomes

∠S(1, ρ) =
n∑

i=1

∠(1 − bi) −
n∑

i=1

∠(1 − ai(ρ)). (6.4)

Because ρ ∈ Γ , for all real poles—that is, ai (ρ) ∈ R, ∠(1 − ai(ρ)) = 0—see
Fig. 6.3a. Also, all complex poles appear in conjugate pairs, and it is easy to see that
∠(1− ai (ρ))+∠(1− a∗

i (ρ)) = 0—see Fig. 6.3b. As a consequence, the second sum
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126 6 Cost Function Shaping

Fig. 6.3 Determining each term of the phase ∠S(1, ρ)

in (6.4) is zero:
n∑

i=1

∠(1 − ai (ρ)) = 0 ∀ρ ∈ Γ.

Then ∠S(1, ρ) = ∑n
i=1 ∠(ejω − bi) does not depend on ρ, proving the first in-

equality in the theorem’s statement.
For ω = π , ∠(ejω − ai (ρ)) = ∠(−1 − ai(ρ)) = π and as a consequence, the

second sum in (6.4) is either zero or π , depending on the parity of the system’s
order:

n∑

i=1

∠(−1 − ai (ρ)) = π ∀ρ ∈ Γ, n odd

n∑

i=1

∠(−1 − ai (ρ)) = 0 ∀ρ ∈ Γ, n even.

In either case, this sum does not depend on ρ, which proves the second inequality
in the statement. �

From the property above and the continuity of S(ejω,ρ) we can also conclude
that the phase difference between two sensitivity functions is small for frequencies
close to ω = 0 and ω = π .

Lemma 6.2 For all ρ ∈ Γ , ∃ωl , ωh ∈ (0,π) such that:

|∠S(ejω,ρ) −∠Sd(ejω)| < π

2
∀ω ≤ ωl

|∠S(ejω,ρ) −∠Sd(ejω)| < π

2
∀ω ≥ ωh.
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6.4 Manipulation of the Reference Spectrum 127

The phase difference between Sd(z) and S(z,ρ) is small at least at the “ends” of
the frequency spectrum—for very small frequencies (close to ω = 0) and very large
frequencies (close to ω = π ). Hence, if the spectrum of the reference is concentrated
at the two ends of the frequency spectrum then the matrix Ms(ρ) will be positive
definite for all ρ and there will be no other extrema except the global optimum ρd .
This is formalized in the following theorem.

Theorem 6.1 Let Assumptions By , LP and LI be satisfied, and let r(t) be SRp.
Then ∃ωl , ωh ∈ (0,π) such that Φr = 0 ∀ω ∈ (ωl,ωh) implies that ρd is the unique
extremum of Jy(ρ) in Γ .

This theorem is a quite general result: it indicates that global convergence to ρd

can always be achieved by a proper choice of the reference spectrum. Of course,
the values of ωl and ωh are unknown, but this theorem can nevertheless be used to
choose a good reference signal. For example, if the controller has only one or two
tuning parameters, it suffices to apply a reference whose spectrum is exactly at the
borders of the frequency spectrum, as formalized in the following corollary.

Corollary 6.1 Let Assumptions By , LP and LI be satisfied. Let α1 and α2 be two
nonzero but otherwise arbitrary real numbers. The global minimum ρd is the unique
extremum of Jy(ρ) in Γ

• for p = 1 if C(−1, ρ)G(−1) is finite for all ρ ∈ Γ and r(t) = α1(−1)t ;
• for p = 2 if C(−1, ρ)G(−1) and C(1, ρ)G(1) are finite for all ρ ∈ Γ and r(t) =

α1 + α2(−1)t .

It is also important to remember that in picking her/his own reference the de-
signer is actually changing the performance criterion. This is something she/he does
not always have the luxury of doing. We will see in the following some different
ways to choose the appropriate experimental conditions in order to profit from these
properties to obtain global convergence and still reach the desired minimum—the
minimum of the original performance criterion with the reference that the practical
process actually has to follow.

Before moving into that, let us note that a similar theoretical result can be es-
tablished for Je(ρ), though this is of limited practical use because the spectrum Φν

cannot be manipulated.

Lemma 6.3 Let Assumptions Be, LP and LI be satisfied. Then ∃ων
l , ων

h such that
Φν = 0 ∀ω ∈ (ων

l ,ω
ν
h) implies that ρe is the unique extremum of Je(ρ) in Γ .

6.4.2 Applying a Different Reference

In any control system, the reference that the system is supposed to track is given
and is not something the designer can choose. But the designer can still apply a dif-
ferent reference during some noncritical phases of process operation, during which
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128 6 Cost Function Shaping

the system can take the opportunity to find out the best controller parameters. Or the
designer can add a small signal on top of the reference to be tracked, thus guaran-
teeing persistence of excitation and other properties necessary for a good adaptation
without compromising the tracking performance. In short, there are certainly im-
portant constraints to when and how to apply the reference signal that will provide
the desired convergence features for the data-driven controller design, but it is nev-
ertheless possible to do so.

Theorem 6.1 states that there always exists a reference for which there are not
local maxima or minima to prevent convergence in the entire stability set Γ . More-
over, under the standing Assumption By , the global optimum of Jy(ρ) does not
depend on the reference spectrum; it is always equal to ρd . So, whatever reference
the system is supposed to track, it is always possible to choose another reference
for which the optimization can be performed from any initial stabilizing controller
and that will yield the same final result. In other words, if our cost function is diffi-
cult to minimize, we minimize instead another one, which is easier to minimize and
has the same global minimum. Minimizing a different cost function with the same
minimum is also the central idea in VRFT and some of the fundamental methods in
MRAC, an idea that invariably relies on Assumption By .

The same argument holds for the noise rejection cost Je(ρ), but not for the com-
bined cost JT (ρ) = Jy(ρ) + Je(ρ). Nevertheless, when minimizing the combined
cost JT (ρ) we can expect Je(ρ) to be significantly smaller than Jy(ρ) away from
ρd , in which case the argument holds approximately and the approach will still be
effective.

But one should not rely so much on Assumption By here. For two significantly
different references the global minima can be significantly different, even if As-
sumption By is “almost” satisfied (that is, if ‖K(z)‖ is small). Changing the cost
function is reasonable to eliminate local minima and to calculate the step sizes and
so on, but we should still minimize the original cost function. A safer and thus
more advisable posture, which does not depend on the exact satisfaction of As-
sumption By to yield the correct results, is to use different references as intermediate
steps, similarly to what has been done in cautious control. After all, if the designer is
really confident that Assumption By is satisfied up to a negligible error, then he/she
could resort to VRFT.

The following example illustrates the application of different references to the
minimization.

Example 6.2 Consider again the process, the controller structure and the cost func-
tion JT (ρ) in Example 6.1, resulting from the tracking of a reference that is a square
wave of unitary amplitude and period T = 6 samples with noise variance σ 2

e = 0.2.
Recall that the corresponding cost function JT (ρ) possesses a maximum at ρ ≈ 0.6.
In order to get rid of this extremum that prevents convergence to the global minimum
from initial controllers with very low gain, let us use the tracking of square-waves
with larger periods as intermediate objective functions. In making the period larger,
the reference spectrum becomes more concentrated at low frequencies, as can be
observed in Fig. 6.4. The result of optimizing the cost JT (ρ) successively for three
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6.4 Manipulation of the Reference Spectrum 129

Fig. 6.4 Example 6.2—spectra of the square-wave with different periods T

different square waves is shown in Fig. 6.5. It can be observed that for the initial
cost, given by the reference with largest period (T = 24 samples), the global opti-
mum is at ρ1∗ = 1.9 and Γ is a candidate DOA. The cost with the second reference
(T = 12 samples) has a minimum around ρ2∗ = 2.2 and there are no other extrema in
the set (ρ1∗, ρ2∗). Finally, ρ2∗ is within a candidate DOA for the desired cost function.

Notice in this example how the facts of Theorem 6.1 have been explored. Know-
ing that for sufficiently low frequencies the maximum would disappear, we tried a
reference similar to the original one—a square-wave—only with a lower frequency
spectrum. Also, it was not necessary to make the spectrum totally concentrated in
the low frequency range, but only to make it much larger in the low frequency range
than outside it.

6.4.3 Windowing

Actually applying to the process a reference that is different from the one it is sup-
posed to track is something that, although feasible, may be very inconvenient to do.
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130 6 Cost Function Shaping

Fig. 6.5 Example 6.2—H2 performance criterion JT (ρ) for different reference spectra:
square-wave with different periods T

An alternative consists in windowing the data such that the cost function “sees” a
different reference spectrum even though the reference is not actually changed. We
will not dwell upon the details of windowing methods, which belong to the realm
of digital signal processing. We will instead present only a very basic form of win-
dowing to illustrate the central idea and to provide a simple tool that can be applied
in many cases for data-driven control design. Still, more advanced windowing tech-
niques are worth exploring.

The basic technique to be presented consists in the use of a rectangular win-
dow, whose size and position in the time axis will determine the effective spectrum
“seen” by the cost function. We start by noticing that the cost Jy(ρ) as originally
defined is not computable in practice, because it involves expectations that can not
be calculated, only estimated by a single realization of the stochastic process in-
volved. What can be computed, and is actually computed in real applications, is the
following function
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6.4 Manipulation of the Reference Spectrum 131

Ĵy(ρ,N) = 1

N

N∑

t=1

(y(t, ρ) − yd(t))2

= 1

N

N∑

t=1

[(Td(z) − T (z,ρ))r(t) + S(z,ρ)ν(t)]2. (6.5)

If the signal-to-noise ratio is large, then

Ĵy(ρ,N) ∼= 1

N

N∑

t=1

[(T (z,ρ) − Td(z))r(t)]2.

Under the standing assumption that all signals are quasi-stationary, the sum above
converges to Jy(ρ) as the data window size N grows:

lim
N→∞ Ĵy(ρ,N) = Jy(ρ).

We would like to have a reference whose spectrum is concentrated either at very
low or at very high frequencies. But the spectrum of the same reference is computed
differently when measured with different data sizes. To see this, define the signal
rN(t) obtained as the periodic repetition of a truncation at t = N of r(t), that is

rN(t + kN) � r(t) t = 1, . . . ,N

for all integer k. Now calculate the associated cost Jy(ρ) that would result if this
signal were applied to the control system:

Jy(ρ) = Ē[(T (z,ρ) − Td(z))rN (t)]2 = lim
m→∞

1

m

m∑

t=1

[(T (z,ρ) − Td(z))rN (t)]2

= lim
k→∞

1

kN
k

N∑

t=1

[(T (z,ρ) − Td(z))rN (t)]2

= 1

N

N∑

t=1

[(T (z,ρ) − Td(z))rN (t)]2

= 1

N

N∑

t=1

[(T (z,ρ) − Td(z))r(t)]2

= Ĵy(ρ,N).

The approximated cost Ĵy(ρ,N) equals the exact cost Jy(ρ) that would have
been obtained should rN(t) have been applied to the system. Hence, using a differ-
ent N for the calculations (that is, a window with different size) has the same effect
on the cost function as applying a different reference signal. For instance, if the ref-
erence is a step, taking smaller N is equivalent to applying a reference with more
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132 6 Cost Function Shaping

Fig. 6.6 Example 6.3—reference r(t) and its spectrum calculated with different rectangular win-
dows

energy at higher frequencies. On the other hand, taking more data after the transient
will make the spectrum more concentrated at low frequencies. This is illustrated by
the following example.

Example 6.3 Consider a signal r(t) defined as a unitary step at t = 100 samples, that
is, r(t) = 1 ∀t > 100 samples and r(t) = 0 ∀t ≤ 100 samples and let us calculate
the spectrum of this signal by the fast Fourier transform. If in this calculation we
use N = 200 points (that is, a rectangular window covering the first 200 points), the
resulting spectrum is the one given in Fig. 6.6b, whereas for N = 110 it is given in
Fig. 6.6c. Clearly, for this particular class of reference, the spectrum tends to spread
out to higher frequencies as we take less data into account. As a measure of this
effect, take the amount of the signal energy that is concentrated at each border of the
frequency spectrum for each case. For N = 200, about 88% of the signal energy is
concentrated below ω = 0.4π , whereas for N = 110 only 77% of the signal energy
lies in this range. On the other hand, the range 0.6π ≤ ω ≤ π contains about 7% of
the signal energy for N = 200 and 13% of the signal energy for N = 110.
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Fig. 6.7 Example 6.4—performance criterion Ĵy(ρ,4) for square-wave reference, T = 6 samples

Thus the cost function can be shaped by changing the size and/or the location
of the data window. This is equivalent, regarding its effect on the shape of the cost
function, to using a reference with a different spectrum. Choosing an appropriate
data window for general reference signals is far from trivial, but it is not so much
so for step reference signals, which are the most commonly found in practice. The
following example illustrates how to do it.

Example 6.4 Reconsider once again Example 6.2. Take the original reference, with
T = 6 samples, but include only four data in the cost function, that is, consider the
minimization of Ĵy(ρ,4). This cost function presents no extrema in Γ other than
the global minimum ρd , as shown in Fig. 6.7.

6.5 Case Studies

6.5.1 A PID Design

To further illustrate the possibilities of cost function shaping in control design, let
us consider the design of a PID controller for the following process:

G(z) = 1

100

z2 − 0.25

z3 − 1.9z2 + 0.91z
.

The transfer function of the PID controller is given by

C(z,ρ) = �2z
2 + �1z + �0

z(z − 1)
.
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134 6 Cost Function Shaping

Let us pretend we do not know the process model and proceed with a data-driven
control design using as the only information on the process the fact that its open-
loop step response settles in approximately t1 = 80 samples.

This process is supposed to track a square-wave with period Tf = 20 samples.
The desired performance is a step response with settling time ts ≈ 10 samples with
no overshoot. In the interest of clarity of presentation, we consider a reference track-
ing objective—Jy(ρ)—with a reference model such that Assumption By is satisfied:

Td(z) = 0.6z2 − 0.15

z3 − 0.4z2 − 0.15
.

A simpler and more intuitive reference model could have been used without sig-
nificantly altering the final results, but presentation would be far more complicated.
This reference model is exactly achieved with ρd = [60 −114 54.6 ]T and provides
the desired settling time with no overshoot.

Since very little knowledge about the process is available, we initially apply a PI
controller with conservative tuning, that is with pass-band smaller than that of the
process. In this case, the following initial controller qualifies

C0(z) = C(z,ρ0) = 30
z − 0.9

z − 1

which corresponds to the initial parameters ρ0 = [30 −27 0]T .
If we apply this controller to the process then the settling time ts and maximum

overshoot Mo in response to a step reference are ts = 55 samples and Mo = 76%,
respectively. Let us take this PI controller as an initial controller and consider the
minimization of Jy(ρ). First let us check the SPR condition (5.17) for this controller

Sd(z)

S(z, ρ0)
= z(z − 0.90)(z − 0.086)(z2 − 1.61z + 0.87)

(z − 0.70)(z2 + 0.30z + 0.21)(z2 − 1.9z + 0.91)
.

The phase of this transfer function is shown in Fig. 6.8. We see that the SPR con-
dition is not satisfied: the phase difference between Sd(z) and S(z,ρ0) is larger than
90° in the interval 0.16 < ω < 0.45. On the other hand, the fundamental frequency
of the reference is ωf = 2π

20 = 0.316, which is exactly within this range.
So, it is expected to have troublesome extrema of the cost function around ρ0.

It is not possible to see the cost function’s dependence on the parameter vector in
this case (because there are three parameters), but it is possible to see its shape
along directions in the parameter space. One such direction is presented in Fig. 6.9,
specifically the variation of Jy(ρ) along the line that connects the global optimum
ρd and the initial parameter value ρ0. In this plot the abscissa is parameterized
as ρ = ρd + a(ρ0 − ρd); so, a = 1 corresponds to ρ0 and a = 0 to ρd . It is ob-
served that at a ∼= 0.85 the curve presents a maximum. This is not a maximum of the
cost function, only a constrained maximum along this line, but still it implies that
at this point the component of the gradient ∇Jy(ρ) along this direction is zero—
(ρ −ρd)T ∇Jy(ρ) = 0. Moreover, in the interval 0.85 > a > 1.1, which includes the
initial controller, (ρ − ρd)T ∇Jy(ρ) < 0. Hence, no candidate DOA contains ρ0.
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Fig. 6.8 Case study—the distance between the initial and the desired sensitivities

Fig. 6.9 Case study—cost function along the direction ρ0 −ρd for Tf = 20 samples; the parameter
is normalized: ρ = ρd + a(ρ0 − ρd)
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6.5.1.1 Cautious Control

Trying to optimize the desired performance criterion starting from ρ0 is very un-
likely to result in convergence to the global optimum and may even lead to insta-
bility. So, let us approach the design in a more cautious way, using a less ambitious
reference model, that is, one whose performance is slightly better than the one ob-
tained with the initial controller. For instance, the reference model

T 1
d (z) = 0.45z4 − 0.71z3 + 0.16z2 + 0.18z − 0.068

z5 − 2.45z4 + 2.11z3 − 0.75z2 + 0.18z − 0.068

yields a settling time ts = 22 samples and an overshoot Mo = 29% and is exactly
achieved with ρ1

d = [45 −70.5 27.3]T , which lies on the straight line connecting ρd

and ρ0; more specifically, ρ1
d = ρd + a(ρ0 − ρd) for a = 0.5.

Then the intermediate cost function J 1
y (ρ) � E[((T (z,ρ) − T 1

d (z))r(t))2] be-
haves as shown in Fig. 6.10. It is seen that J1(ρ) vanishes at a = 0.5, which corre-
sponds exactly to ρ1

d , and that there are no other extrema of the cost function in this
direction.

Analysis in other directions yield similar results—no extrema are found by
inspection—so we can expect to find a DOA for J 1

y (ρ) which contains ρ0. Define,
for example, the polyhedron Υ1 whose vertices are given by:

Fig. 6.10 Case study with cautious control—intermediate cost function J 1
y (ρ) along the direction

ρ0 − ρd for Tf = 20; the parameter is normalized: ρ = ρd + a(ρ0 − ρd)
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⎡

⎣
45.50

−73.04
28.11

⎤

⎦

⎡

⎣
45.19

−72.88
29.05

⎤

⎦

⎡

⎣
46.31

−72.47
28.28

⎤

⎦

⎡

⎣
46.00

−72.31
29.22

⎤

⎦

⎡

⎣
29.00

−25.19
−1.92

⎤

⎦

⎡

⎣
28.69

−25.03
−0.98

⎤

⎦

⎡

⎣
29.81

−24.62
−1.75

⎤

⎦

⎡

⎣
29.50

−24.46
−0.81

⎤

⎦ .

This polyhedron contains ρ0 and ρ1
d and it is easy, although somewhat time con-

suming and very boring, to define a fine grid within this polyhedron and verify
numerically that, for each ρ of this grid, the following condition is satisfied:

(ρ − ρ1
d)T J 1

y (ρ) > 0. (6.6)

Any ball inside Υ1 is a candidate DOA for the cost J 1
y (ρ) and it is thus possible to

converge to ρ1
d taking ρ0 as initial condition in a steepest descent algorithm applied

to the cost function J 1
y (ρ).

Once ρ1
d is reached, the system’s performance has already been significantly im-

proved regarding the initial controller. Indeed the original performance criterion
evaluates to Jy(ρ

1
d) = 0.47—as can be seen in Fig. 6.9—whereas Jy(ρ0) = 0.76.

Yet, this is just an intermediate step.
Now observe in Fig. 6.9 that there are no extrema of Jy(ρ) (the original perfor-

mance criterion) between ρd and ρ1
d , so we can expect to find a candidate DOA for

Jy(ρ) which contains ρ1
d . Indeed, let Υ be the polyhedron defined by the following

vertices
⎡

⎣
60.70

−116.27
55.83

⎤

⎦

⎡

⎣
60.60

−116.21
56.05

⎤

⎦

⎡

⎣
60.90

−116.14
55.88

⎤

⎦

⎡

⎣
60.80

−116.08
56.10

⎤

⎦

⎡

⎣
44.20

−68.42
25.80

⎤

⎦

⎡

⎣
44.10

−68.36
26.02

⎤

⎦

⎡

⎣
44.40

−68.29
25.85

⎤

⎦

⎡

⎣
44.30

−68.23
26.07

⎤

⎦ .

Observe that Υ contains ρ1
d and ρd . By defining a fine grid within Υ and verify-

ing numerically that, for each ρ of this grid, the following condition is satisfied:

(ρ − ρd)T Jy(ρ) > 0 (6.7)

it is established that any ball inside Υ is a candidate DOA for Jy(ρ) and it is thus
possible to converge from ρ1

d to ρd by means of a steepest descent algorithm applied
to the cost function Jy(ρ).

Thus a two step cautious control approach allows to obtain convergence, with
a steepest descent optimization, from the poor initial condition ρ0 to the global
minimum ρd . Notice that the knowledge of the process’ transfer function was used
along the example to verify that this was indeed possible, but not to decide how to
use the intermediate reference model T 1

d (z).
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Fig. 6.11 Case study—cost function along the direction ρ0 − ρd for Tf = 30; the parameter is
normalized: ρ = ρd + a(ρ0 − ρd )

6.5.1.2 Shaping the Reference Spectrum

For the reference to be tracked—a square wave with period 20 samples—
convergence to the global optimum is not obtained from the initial controller given.
Let us consider changing the reference spectrum to properly shape the cost function.
This can be done in two ways: either applying a different reference or changing the
size of the data window.

By increasing the period of the reference to T ′
f = 30 samples, the cost function

behaves as shown in Fig. 6.11. It can be seen that there are no extrema along this line
for all parameter values in Γ . Just like in the cautious control case, analysis in other
directions show similar behavior and candidate DOAs can be found by inspection.
Alternatively, we can keep the same reference applied to the system and take less
data into account in the calculation of the cost. Recall that this has the opposite ef-
fect on the reference spectrum regarding the change in reference proposed above: it
tends to concentrate the spectrum in higher frequencies. The resulting cost function
behaves as shown in Fig. 6.12.

6.5.2 A Noisy Process

Consider the following system

y(t) = 0.15

z − 0.5
u(t) + e(t),
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Fig. 6.12 Case study—cost function along the direction ρ0 −ρd for Tf = 30 samples; the param-
eter is normalized: ρ = ρd + a(ρ0 − ρd)

where e(t) is white noise with variance σ 2
e = 0.001. The system is controlled by a

PI controller

C(z,ρ) = [
�1 �2

]
[

z
z−1

1
z−1

]

.

The desired reference model is

Td = 0.1

z − 0.9

which can be exactly achieved with the ideal (PI) controller

Cd(z) = [
2/3 −1/3

]
[

z
z−1

1
z−1

]

∈ C.

The following controller is initially running in the loop

C(z,ρ0) = [
2 2

]
[

z
z−1

1
z−1

]

.

Figure 6.13 shows the closed-loop response with this controller and the desired
behavior. We can see that the output is very different from the desired one. An
iterative data-driven control design with the steepest descent optimization will be
used to improve the closed-loop behavior.
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140 6 Cost Function Shaping

Fig. 6.13 Closed-loop step response with controller C(z,ρ0) and the desired response

Fig. 6.14 Closed-loop step response with controller C(z,ρ100) and the desired response

We choose the following reference signal, which is SR3, to use in the experi-
ments.

r1(t) = 1 + sin

(
2πt

10

)

.

After 100 iterations the algorithm converged to the following controller:

C(z,ρ100) = [
16.2130 −2.0725

]
[

z
z−1

1
z−1

]

.

Figure 6.14 shows that the closed-loop response is still far from desired. It is ob-
served in Fig. 6.15 that the cost is being reduced at each iteration, however in
Fig. 6.16 we can see that the algorithm is converging to some parameter value dis-
tant from Cd(z). Because the system is affected by noise, the algorithm will not
converge exactly to Cd(z), but because the noise level is low, the algorithm should
converge to some controller close to Cd(z). In fact, the algorithm has converged to a
local minimum and realizing this only requires knowledge of the fact that Assump-
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Fig. 6.15 Cost at each iteration—r1(t)

Fig. 6.16 Controller parameters at each iteration—r1(t)—Initial condition ρ0 = [2 2]T

tion By is satisfied. Under this assumption, the cost function at the global minimum
evaluates at a very low value—of the same order of the noise’s variance—and yet
the algorithm has lead to values of the cost function which are orders of magnitude
larger.

Now let us use another reference signal

r2(t) = 1 + sin

(
2πt

5

)

.

This signal results in a different cost function, for which the local minimum, at
which the optimization has been trapped before, does not exist anymore. Indeed,
after 100 iterations the algorithm converged to the controller

C(z,ρ100) = [
0.6692 −0.3398

]
[

z
z−1

1
z−1

]

,

which is very close to Cd(z). The closed-loop response is shown in Fig. 6.17, where
it is observed that the performance is close to the desired one. The evolution of the
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Fig. 6.17 Closed-loop step response with controller C(z,ρ100) and the desired response

Fig. 6.18 Cost at each iteration—r2(t)

controller’s parameter at each iteration can be seen in Fig. 6.19 and the cost at each
iteration is observed in Fig. 6.18.

In Fig. 6.20 we can see that |∠Sd(ej2π/5)/S(ej2π/5, ρ0)| < 90° while
|∠Sd(ej2π/10)/S(ej2π/10, ρ0)| > 90°.

6.6 Chapter Conclusions

Cost function shaping makes use of the variables that the designer has at his/her
disposal: the reference signal, the intermediate reference models, the data window
and the initial controller. Regarding the reference signal, applying references with
frequency content sufficiently constrained to low and/or high frequencies is appro-
priate. Different reference spectra can also be simulated by taking different data
windows with the same applied reference. For a step reference, for instance, it is
clear how to do this: taking very few data right after the step concentrates the ap-
parent spectrum in high frequencies, whereas taking very large sets of data has the
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6.6 Chapter Conclusions 143

Fig. 6.19 Controller parameters at each iteration—r2(t)—Initial condition ρ0 = [2 2]T

Fig. 6.20 Bode diagram of Sd(z)/S(z,ρ0)

opposite effect. The idea of restricting the reference spectrum to obtain global con-
vergence has appeared in the literature a long time ago [6], but it was not much
explored until recently [1].

Concerning the intermediate reference models, they should be sufficiently close
to each other so that the global minimum of one intermediate criterion is within
a candidate DOA of the next, but not too close so that too many intermediate steps
are required to reach the desired performance—which would require too much time.
This concept of cautious control is a familiar one in data-driven control design [2, 3]
and in iterative identification and control design [7, 8]; it is also a fundamental pre-
cept of the windsurfer approach to adaptive control [4, 5]. In short it consists of the
route pursued in the examples presented in this chapter: modest, easily achievable
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performance is initially required, and increasingly tight performance requirements
are imposed.
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Chapter 7
Computations

In the previous chapters we have given a general formulation, and a general theory,
for the iterative optimization of H2 control performance criteria. Actually imple-
menting this optimization with the classical methods (steepest descent, Newton-
Raphson and their variants) is far from trivial. In order to do that it is necessary
to compute, at each iteration step, at least the gradient of the function being mini-
mized. This gradient is a fairly complicated function of the plant dynamics and of
the noise spectrum. When these are unknown, it is not clear how this gradient can
be computed.

Yet, the ingenuity of our fellow researchers has provided several procedures to
estimate the gradient and other quantities related to the objective function that are
required at each step of the optimization. Each one of these procedures was born
from a particular perspective taken at the problem at hand and, as such, each one
results in a different algorithm that can be applied to a different range of systems and
performance criteria. Most of them have been baptized by their authors according
to the method’s most appealing characteristic, yet some have remained unnamed.

We will see in the following the description of three different schemes for esti-
mation of the gradient and the Hessian in different situations. The methods to be
presented are the following: Iterative Feedback Tuning (IFT), Frequency Domain
Tuning (FDT) and Correlation based Tuning (CbT). Each one of these methods is
described in a separate section of this chapter, and they are organized in chrono-
logical order. IFT is oldest (1994), whereas the other methods are more recent and
invariably refer to this original IFT paper. So, IFT comes first, followed by FDT
(2000) and CbT (2003). Other methods and variants exist, of course, but unfor-
tunately we can not cover all of them in one book. We have selected a range of
methods which illustrate different approaches that can be taken to the problem at
hand. Indeed, each one of these three methods optimizes a different H2 perfor-
mance criterion, and each one derives its gradient/Hessian estimation mechanism
from a conceptually different viewpoint.

The FDT method is based on spectral analysis of the signals involved in the
normal closed-loop operation and aims at minimizing the noise rejection criterion
Je(ρ). All the analysis and the derivations are made from nonparametric models for

A. Sanfelice Bazanella et al., Data-Driven Controller Design,
Communications and Control Engineering,
DOI 10.1007/978-94-007-2300-9_7, © Springer Science+Business Media B.V. 2012
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146 7 Computations

the plant and the controller. The IFT algorithm is derived directly from the time do-
main analysis of the signals involved in the composite performance criterion JT (ρ).
The CbT method, on the other hand, searches for the minimum of the reference
tracking criterion Jy(ρ), and it does so indirectly, by using an instrumental variable
approach.

7.1 Iterative Feedback Tuning

Iterative Feedback Tuning (IFT) was proposed by Håkan Hjalmarsson, Svante Gun-
narsson and Michel Gevers in the 1994 IEEE CDC [6], whereas the other methods to
be presented are more recent and consistently refer to this original paper. This paper
is often seen as the landmark for the dawn of data-driven control design. There were
previous publications advocating the model-free tuning of controller parameters in
much the same philosophy, as far back as in the 1960s, but it was only starting with
this paper in 1994 that data-driven design started acquiring a personality of its own.
The name Iterative Feedback Tuning (IFT) was coined later on, in a subsequent
journal paper of the same authors [5]. Later developments on IFT extended the orig-
inal algorithm to treat broader classes of systems and performance criteria, and also
reported practical applications, including to nonlinear and multivariable systems [1,
3, 4, 11, 12, 14].

We will see in the following the description of the procedure and its implications.
The presentation of the other methods, which will be seen in the following sections,
follows the same pattern, mutatis mutandis.

7.1.1 Derivation

The IFT methodology consists in a set of maneuvers to obtain an unbiased esti-
mate of the gradient and the Hessian for optimization of the composite cost JT (ρ).
Actually the original derivation of IFT was done for an objective function with a
penalty in the control effort, something that we did not consider along this book for
the reasons discussed at its early chapters. Yet, because considering this penalty in
the control effort does not implies any extra burden on the reader at this point, and
in order to respect the IFT tradition, we will consider the following H2 objective
function, where λ ∈ R

+ is a design parameter

JIFT(ρ) = Ē[(yd(t) − y(t, ρ))2 + λu2(t, ρ)] = JT (ρ) + λĒ[u2(t, ρ)]. (7.1)

Taking the derivative of (7.1) with respect to the parameter ρ yields

∂JIFT (ρ)

∂ρ
= 2Ē

[

[yd(t) − y(t, ρ)]∂y(t, ρ)

∂ρ
+ λu(t, ρ)

∂u(t, ρ)

∂ρ

]

.
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7.1 Iterative Feedback Tuning 147

In order to implement the iterative optimization, it is necessary to compute this
gradient. This is not possible to compute exactly because it involves expectations
of stochastic processes, which are unknown. What can be done is to estimate this
expectation by a given single realization of the stochastic process, that is:

̂∂JIFT(ρ)

∂ρ
= 2

N

N∑

t=1

[yd(t) − y(t, ρ)]∂y(t, ρ)

∂ρ
+ λ

2

N

N∑

t=1

u(t, ρ)
∂u(t, ρ)

∂ρ
(7.2)

where N is the number of data collected. Then, with this estimate, the optimization
problem can be solved by using a stochastic approximation, that is, replacing the
gradient by its estimate. If this estimate turns out to be an unbiased one, then con-
vergence is assured in terms of the Stochastic Approximation Theorem 4.5 and of
the robust convergence Theorem 4.6.

Let us work this estimate out in such a way that it will be unbiased. The estimate
in (7.2) contains directly measured quantities—yd(t), y(t, ρ) and u(t, ρ)—and the
partial derivatives ∂y(t,ρ)

∂ρ
and ∂u(t,ρ)

∂ρ
, which are not measured. In order to calculate

the gradient in (7.2) it is necessary to somehow synthesize these partial derivatives.
Let us start with the partial derivative of the output with respect to the parameter
∂y(t,ρ)

∂ρ
. To calculate it, recall that

y(t, ρ) = T (z,ρ)r(t) + S(z,ρ)ν(t)

T (z, ρ) = C(z,ρ)G(z)

1 + C(z,ρ)G(z)

S(z,ρ) = 1

1 + C(z,ρ)G(z)
.

Then we have

∂y(t, ρ)

∂ρ
= G(z)

1 + C(z,ρ)G(z)

∂C(z,ρ)

∂ρ
r(t) − C(z,ρ)G2(z)

(1 + C(z,ρ)G(z))2

∂C(z,ρ)

∂ρ
r(t)

− G(z)

(1 + C(z,ρ)G(z))2

∂C(z,ρ)

∂ρ
ν(t)

which can be rewritten as:

∂y(t, ρ)

∂ρ
= 1

C(z,ρ)

∂C(z,ρ)

∂ρ
{T (z,ρ)r(t) − T (z,ρ)[T (z,ρ)r(t) + S(z,ρ)ν(t)]}.

(7.3)
This expression for the derivative ∂y(t,ρ)

∂ρ
consists of the application of the vector

filter

1

C(z,ρ)

∂C(z,ρ)

∂ρ
� Q(z,ρ) (7.4)

to the signal within braces

T (z,ρ)r(t) − T (z,ρ)[T (z,ρ)r(t) + S(z,ρ)ν(t)] � ϑ(t). (7.5)
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The derivative can be computed if we know the signal ϑ(t) in (7.5) and then
apply the filter (7.4) to it. The filter (7.4) consists of a known transfer function, since
it depends only on the controller and its parameterization; no problem there. The
signal ϑ(t) to which the vector filter Q(z,ρ) must be applied, however, is neither a
measured signal nor can it be directly calculated from measured quantities, because
it contains the unknown transfer functions T (z,ρ) and S(z,ρ) and the noise signal
ν(t). Synthesizing this signal from direct measurements alone, without any process
model or prior information, becomes the key ingredient of the IFT development.

Let us regroup the expression of this signal as

ϑ(t) = T (z,ρ){r(t) − [T (z,ρ)r(t) + S(z,ρ)ν(t)]}.
Then, since y(t, ρ) = T (z,ρ)r(t) + S(z,ρ)ν(t), it can be further regrouped as

ϑ(t) = T (z,ρ){r(t) − y(t, ρ)}. (7.6)

Now imagine the following special experiment. There is no noise (ν(t) ≡ 0) in
the system and the closed-loop system is excited with the reference r(t) − y(t, ρ),
that is, the difference between the reference and the output signals observed in an-
other previously performed experiment. Then, according to (7.6), the output of the
closed-loop system in this special experiment would be exactly the signal ϑ(t) that
we are looking for. This observation lead to the suggestion of the following proce-
dure.

First collect the output of the process y(t, ρ) under normal operation, where the
reference signal is some given reference r(t). Next, excite the closed-loop system
with r(t)− y(t, ρ) and collect the corresponding output again; this second output is
given by ϑ(t) + S(z,ρ)ν(t), that is, it is a noisy version of the desired signal ϑ(t)

and as such will be considered as an estimate of it. It is important to realize that,
since ν(t) has zero mean, this is an unbiased estimate of ϑ(t), that is:

E [ϑ(t) + S(z,ρ)ν(t)] = ϑ(t).

Finally, filter this signal through the appropriate filter Q(z,ρ) in (7.3), thus ob-
taining the partial derivative ∂y(t,ρ)

∂ρ
.

A similar treatment can be given to the other partial derivative ∂u(t,ρ)
∂ρ

. Deriving
the closed-loop relationship

u(t, ρ) = C(z,ρ)

1 + C(z,ρ)G(z)
[r(t) − ν(t)] = S(z,ρ)C(z,ρ)[r(t) − ν(t)]

yields

∂u(t, ρ)

∂ρ
= S(z,ρ)

∂C(z,ρ)

∂ρ
[r(t) − ν(t)] + ∂S(z,ρ)

∂ρ
C(z,ρ)[r(t) − ν(t)].

Using the following relation:

∂S(z,ρ)

∂ρ
= − 1

C(z,ρ)

∂C(z,ρ)

∂ρ
T (z,ρ)S(z,ρ)
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7.1 Iterative Feedback Tuning 149

the following manipulations, similar to the ones just applied to the calculation of
∂y(t,ρ)

∂ρ
, lead to a convenient expression for the desired derivative

∂u(t, ρ)

∂ρ
= S(z,ρ)

∂C(z,ρ)

∂ρ
[r(t) − ν(t)] − ∂C(z,ρ)

∂ρ
T (z,ρ)S(z,ρ)[r(t) − ν(t)]

= S(z,ρ)
∂C(z,ρ)

∂ρ
[r(t) − T (z,ρ)r(t) − (1 − T (z,ρ))ν(t)]

= ∂C(z,ρ)

∂ρ
S(z,ρ)[r(t) − y(t, ρ)]

= Q(z,ρ){C(z,ρ)S(z,ρ)[r(t) − y(t, ρ)]}.
This expression of the partial derivative, just like (7.3), is the filtering of the

bracketed signal C(z,ρ)S(z,ρ)[r(t) − y(t)] through the vector filter Q(z,ρ). Sim-
ilarly to the findings regarding the output derivative, it can be seen that the signal to
be filtered is the control signal u(t, ρ) that would be observed in the control loop if
the system were excited with a reference [r(t) − y(t, ρ)] and no noise.

In conclusion, both signal derivatives ∂y(t,ρ)
∂ρ

and ∂u(t,ρ)
∂ρ

that form the gradient
estimate can be obtained by measuring the controller’s output and the process output
in an additional experiment, where we feed the system’s reference with the output
obtained in the first experiment. The IFT procedure then consists of a sequence of
measurements and calculations that is detailed below.

The IFT Algorithm At each step i of an iterative data-driven control design,
estimate the gradient ∇JIFT (ρi) through the following procedure.

1. collect data from the normal operation of the process; let the reference signal
during this measurement period be denoted by r1(t) and the resulting controller’s
output and process output respectively by u1(t) and y1(t);

2. compute offline the signal r1(t) − y1(t) � r2(t);
3. perform an additional experiment applying r2(t) as the reference to the closed-

loop system and measure the resulting controller’s output and process output; let
these measurements be denoted by u2(t) and y2(t) respectively;

4. compute

̂∂y(t, ρi )

∂ρ
= 1

C(z,ρi)

∂C(z,ρi)

∂ρ
y2(t)

and

̂∂u(t, ρi)

∂ρ
= 1

C(z,ρi)

∂C(z,ρi)

∂ρ
u2(t);

5. compute

̂∇JIFT(ρi) = 2

N

N∑

t=1

[yd(t) − y1(t)]
̂∂y(t, ρi)

∂ρ
+ λ

2

N

N∑

t=1

u1(t)
̂∂u(t, ρi )

∂ρ
.
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7.1.2 Extensions

7.1.2.1 Other Search Directions

Search directions other than the steepest descent can also be determined using only
an estimate of the first-order derivatives provided by IFT. Then the IFT procedure
can be equally applied, modifying only the search direction accordingly. To illus-
trate these extensions of the IFT method, consider for example the following search
direction matrices:

Ri = Ē

[
∂y(t, ρi)

∂ρ

∂y(t, ρi)

∂ρ

T

+ λ
∂u(t, ρi)

∂ρ

∂u(t, ρi)

∂ρ

T
]−1

. (7.7)

An unbiased estimate of Ri in (7.7) can be obtained simply by using the same
computations already used to obtain the gradient’s estimate, that is:

R̂i = 1

N

N∑

t=1

⎡

⎣
̂∂y(t, ρi )

∂ρ

̂∂y(t, ρi)

∂ρ

T

+ λ
̂∂u(t, ρi )

∂ρ

̂∂u(t, ρi)

∂ρ

T
⎤

⎦

−1

(7.8)

where the estimates ∂̂y(t,ρi )
∂ρ

and ∂̂u(t,ρi)
∂ρ

are obtained as described previously.
The inspiration for this particular choice is the Newton-Raphson’s method, in

which the search direction is defined by the Hessian:

Ri =
(

∂J 2(ρ)

∂ρ2

)−1

.

Calculating the Hessian for the IFT performance criterion yields, for λ = 0 (let us
consider only this case for simplicity):

∂J 2(ρ)

∂ρ2
= 2Ē

[

[yd(t) − y(t, ρ)]∂y
2(t, ρ)

∂ρ2
+ ∂y(t, ρ)

∂ρ

∂y(t, ρ)

∂ρ

T
]

and the search direction (7.7) consists in taking only the second term in this ex-
pression, neglecting the first one. As such, the search direction defined in (7.7) is
interpreted as an approximation of the Hessian by many, and referred to as an ap-
proximate Newton-Raphson.

Of course, an additional search direction alternative is to apply the Newton-
Raphson’s method or its variable step variation, with a more accurate estimate of
the Hessian. The implementation of this alternative requires extra information when
compared to the steepest descent and the Gauss-Newton, namely an unbiased esti-
mate of the Hessian. Obtaining such an estimate directly from data, with the purely
model-free approach of IFT, is an unsolved problem in general. But for the particu-
lar case of zero reference and no weight in the control effort (λ = 0), the following
procedure is available [15].
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7.1 Iterative Feedback Tuning 151

Let the reference signal be zero, that is, let the data be generated by

y(t, ρ) = S(z,ρ)ν(t) = 1

1 + C(z,ρ)G(z)
ν(t).

Then the expression (7.3) reduces to:

∂y(t, ρ)

∂ρ
= −T (ρ)S(ρ)

∂C(z,ρ)

∂ρ
ν(t). (7.9)

The second derivative in this case is given by

∂2y(t, ρ)

∂ρ2
= −T (ρ)S(ρ)

∂2C(z,ρ)

∂ρ2
ν(t)+2T 2(z, ρ)S(z,ρ)

∂C(z,ρ)

∂ρ

∂C(z,ρ)

∂ρ

T

ν(t).

(7.10)
An estimate can be built for this second derivative with the aid of four experi-

ments, in the very same philosophy and analytical treatment used for obtaining the
gradient estimates. The first two experiments are the ones described before, that are
used to estimate the gradient. The third experiment is a repetition of the second one,
and will differ from this one only by the fact that it is driven by a different noise
realization. The fourth experiment consists in applying to the reference the output
of the third experiment. These additional experiments allow to construct an estimate
of the second derivative:

̂∂2y(t, ρ)

∂ρ2
= 2

∂C(z,ρ)

∂ρ

∂C(z,ρ)

∂ρ

T

y4(t, ρ) − ∂2C(z,ρ)

∂ρ2
y2(t, ρ)

where y2(t, ρ) and y4(t, ρ) are the outputs of the second and fourth experiment
respectively.

In this way, unbiased estimates of the Hessian can be obtained at the cost of two
more experiments. The one special experiment necessary to estimate the gradient
(the second one) is already a potential nuisance that somehow limits the practical
application of IFT, so the realization of yet two more special experiments is a pos-
sibility to be considered with prudence.

The approximate Newton-Raphson algorithm, defined by the search direction
(7.7), tends to present faster convergence than the steepest descent, without the ex-
tra information and experiments required by the Newton-Raphson’s algorithm, or
its extra risks arriving from its typically smaller domain of attraction. As a result,
IFT applications have been most successful with this approximate Newton-Raphson
algorithm, even though the appropriate choice of the step sizes for the steepest de-
scent, as presented in Chap. 5, somewhat levels the field between the two algorithms.

7.1.2.2 Two Degree-of-Freedom Controllers

The IFT procedure can also be applied to the case of controllers with two degrees
of freedom—2DOF. A 2DOF controller is a controller described by the following
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Fig. 7.1 Block-diagram of a
2DOF controller

control law

u(t) = Cr(z,ρ)r(t) − Cy(z,ρ)y(t) (7.11)

where the “in-the-loop” controller Cy(z,ρ) and the “pre-filter” controller Cr(z,ρ)

are causal transfer functions. This control structure is depicted in Fig. 7.1.
The same development presented in Sect. 7.1.1 leads to the following algorithm

for the tuning of the controllers Cy(z,ρ) and Cr(z,ρ).

The IFT Algorithm for 2DOF Controllers At each step i of an iterative data-
driven control design, estimate the gradient ∇JIFT(ρi) through the following proce-
dure.

1. collect data from the normal operation of the process; let the reference signal
during this measurement period be denoted by r1(t) and the resulting controller’s
output and process output respectively by u1(t) and y1(t);

2. compute offline the signal r1(t) − y1(t) � r2(t);
3. perform an additional experiment applying r2(t) as the reference to the closed-

loop system and measure the resulting controller’s output and process output; let
these measurements be denoted by u2(t) and y2(t) respectively;

4. collect once again data from the normal operation of the process, with the same
reference signal as in the first step; let the resulting controller’s output and pro-
cess output be denoted respectively by u3(t) and y3(t);

5. compute

̂∂y(t, ρi)

∂ρ
= 1

Cr(z,ρi)

[(
∂Cr(z, ρi)

∂ρ
− ∂Cy(z,ρi)

∂ρ

)

y3(t) + ∂Cy(z,ρi)

∂ρ
y2(t)

]

and

̂∂u(t, ρi)

∂ρ
= 1

Cr(z,ρi)

[(
∂Cr(z, ρi)

∂ρ
− ∂Cy(z,ρi)

∂ρ

)

u3(t) + ∂Cy(z,ρi)

∂ρ
u2(t)

]

;

6. compute

∇̂J (ρi) = 2

N

N∑

t=1

[yd(t) − y1(t)]
̂∂y(t, ρi )

∂ρ
+ λ

2

N

N∑

t=1

u1(t)
̂∂u(t, ρi)

∂ρ
.

co
nt

ro
len

gin
ee

rs
.ir



7.1 Iterative Feedback Tuning 153

Note that this algorithm requires an extra measurement phase—Step 4 of the
algorithm. But this is not a special experiment to be performed, only a measurement
of data during normal operation of the process. With the algorithm above, including
this additional measurement phase, the gradient estimate is again unbiased.

7.1.2.3 Optimizing Robustness

Consider the following H2 objective function, which corresponds to JT (ρ) when
Td(z) = 1:

JS(ρ) � JT (ρ) |Td(z)=1= Ē[r(t) − y(t, ρ)]2.

Applying Parseval’s Theorem, this objective function can also be written as

JS(ρ) = 1

2π

∫ π

−π

|S(ejω,ρ)|2[Φr(e
jω) + Φν(e

jω)]dω.

Observe that minimizing JS(ρ) is equivalent with minimizing the weighted H2
norm of the sensitivity function S(z,ρ), where the norm is weighted by the spectra
of the reference and of the noise. But the norm of the sensitivity function S(z,ρ)

is directly related to the robustness of the closed-loop system, so that in a sense
minimizing JS(ρ) (which is a particular case of JT (ρ)) maximizes robustness. From
a robustness point of view it would be more interesting to minimize the H∞ norm,
and we will take care of this aspect in a while. It is also useful in the context of
robust control design to include an additional weighting function in the norm, in the
form of a filter chosen by the designer. The cost function with this filter becomes

JS(ρ) = Ē[LS(z)(r(t) − y(t, ρ))]2.

It is usual in robust control theory to gather up the closed-loop sensitivities in a
sensitivity matrix Σ(z,ρ)

Σ(z,ρ) =
[
G(z)C(z,ρ)S(z,ρ) G(z)S(z,ρ)

C(z,ρ)S(z,ρ) S(z,ρ)

]

(7.12)

and many robust control design methods consist in minimizing some weighted norm
of this matrix. The sensitivity functions in this matrix can all be related to time-
domain H2 performance criteria in the same way as just described for S(z,ρ). These
relations, with frequency weighting filters included, are given below

JGCS(ρ) = Ē[LGCS(z)y(t, ρ)]2

= 1

2π

∫ π

−π

|LGCS(e
jω)|2|S(ejω,ρ)|2

× {|G(ejω)C(ejω,ρ)|2Φr(e
jω) + Φν(e

jω)}dω,

JCS(ρ) = Ē[LCS(z)u(t, ρ)]2

= 1

2π

∫ π

−π

|LCS(e
jω)|2|C(ejω)S(ejω,ρ)|2{Φr(e

jω) + Φν(e
jω)}dω,
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JGS(ρ) = Ē[LGS(z)C
−1(z, ρ)y(t, ρ)]2

= 1

2π

∫ π

−π

|LGS(e
jω)|2|S(ejω,ρ)|2

× {|G(ejω)|2Φr(e
jω) + |C−1(ejω,ρ)|2Φν(e

jω)}dω.

The filters are important here, as they usually are in robustness designs, where
their choice is strongly associated with the specified performance and robustness re-
quirements. In this particular situation of IFT design for robustness, two aspects are
important mentioning. First, the magnitude of the filters serves to weigh the different
criteria against each other. Second, they allow to “transform” the H2 norm into an
approximation of the H∞ norm, if we pick a band-pass filter around the maximum of
|S(z,ρ)|. For this purpose, it was proposed in [14] a two step design. In the first step,
JT (ρ) is optimized, and it is verified at which range of frequencies the sensitivities
achieve their maximum values. Then this range of frequencies will be the passing
band for the filters in the second step, where the robustness costs are included.

Unbiased estimates for the gradients of each one of these functions can be ob-
tained using the unbiased estimate for the partial derivatives produced by IFT, in
exactly the same way as the estimate of the gradient of JIFT(ρ). The gradients of
these cost functions are given by the following expressions

∇JS(ρ) = 2Ē

[

LSC−1u(t, ρ)LS

(
∂C−1

∂ρ
u(t, ρ) + C−1 ∂u(t, ρ)

∂ρ

)]

∇JGCS(ρ) = 2Ē

[

LGCSy(t, ρ)LGCS
∂y(t, ρ)

∂ρ

]

∇JCS(ρ) = 2Ē

[

LCSu(t, ρ)LCS
∂u(t, ρ)

∂ρ

]

∇JGS(ρ) = 2Ē

[

LGSC
−1y(t, ρ)LGS

(
∂C−1

∂ρ
y(t, ρ) + C−1 ∂y(t, ρ)

∂ρ

)]

.

A complete objective function—say JR(ρ)—would be one contemplating per-
formance as specified by JT (ρ) and every aspect of robustness specified through
the sum of each one of these objective functions

JR(ρ) = JT (ρ) + JGCS(ρ) + JCS(ρ) + JGS(ρ) + JS(ρ).

7.2 Frequency Domain Tuning

Leonardo Kammer, Bob Bitmead and Peter Bartlett presented in 2000 [8] a method
for iterative tuning of a fixed structure controller aiming at optimizing the noise
rejection performance. Their analysis is based on nonparametric models for the pro-
cess and the controller. Given the nature of the computations involved, it becomes
straightforward to include robustness measures.
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7.2.1 Derivation

The performance criterion to be optimized is the noise rejection criterion Je(ρ), with
an additional penalty in the control effort, that is, the following objective function

JFDT(ρ) = Je(ρ) + λJu(ρ) = Ē[y2(t, ρ) + λu2(t, ρ)]

with λ ∈ R
+ a design parameter. It is assumed that there is no excitation at the

reference: r(t) ≡ 0. Then the only external signal applied to the process is the noise
and the signals appearing in the performance criterion are given by:

y(t, ρ) = S(z,ρ)ν(t) (7.13)

u(t, ρ) = −C(z,ρ)y(t, ρ) = −C(z,ρ)S(z,ρ)ν(t). (7.14)

Using Parseval’s theorem the performance criterion can be written as follows

JFDT(ρ) = 1

2π

∫ π

−π

[Φy(e
jω,ρ) + λΦu(e

jω,ρ)]dω

= 1

2π

∫ π

−π

[1 + λ|C(ejω,ρ)|2]Φy(e
jω,ρ)dω. (7.15)

Calculating the gradient of JFDT(ρ) in (7.15) with respect to ρ yields

∇JFDT(ρ) = 1

2π

∫ π

−π

{

[1 + λ|C(ejω,ρ)|2] ∂

∂ρ
Φy(e

jω,ρ)

+ Φy(e
jω,ρ)

∂

∂ρ
[1 + λ|C(ejω,ρ)|2]

}

dω (7.16)

and the partial derivatives ∂
∂ρ

[1 + λ|C(ejω,ρ)|2] and ∂
∂ρ

Φy(ejω,ρ) must be deter-
mined. The first one of these partial derivatives is given by

∂

∂ρ
[1 + λ|C(ejω,ρ)|2] = 2λ�

{

C∗(ejω,ρ)
∂C(ejω,ρ)

∂ρ

}

. (7.17)

To determine the second one, determine the spectrum of y(t, ρ) from (7.13):

Φy(e
jω,ρ) = |H(ejω)|2

|1 + G(ejω)C(ejω,ρ)|2 σ 2
e

whose gradient is

∂

∂ρ
Φy(e

jω,ρ) = −2Φy(e
jω,ρ)�

{
G(ejω)

1 + G(ejω)C(ejω,ρ)

∂C(ejω,ρ)

∂ρ

}

. (7.18)
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Inserting (7.18) and (7.17) into (7.16) results in the final expression for the gra-
dient:

∇JFDT(ρ) = 1

π

∫ π

−π

Φy(ejω,ρ)

[

λ�
{

C∗(ejω,ρ)
∂C(ejω,ρ)

∂ρ

}

− (1 + λ|C(ejω,ρ)|2)�
{

G(ejω)

1 + G(ejω)C(ejω,ρ)

∂C(ejω,ρ)

∂ρ

}]

dω.

(7.19)

In the gradient expression in (7.19) the controller’s transfer function and its gra-
dient (C(ejω,ρ) and ∂C(ejω,ρ)

∂ρ
) are known a priori, and the spectrum Φy(e

jω,ρ) is

measured. The one term that is not available is the transfer function G(ejω)
1+G(ejω)C(ejω,ρ)

,
so in order to be able to calculate the gradient in (7.19) it is necessary to estimate
this quantity. This can be done effectively by injecting a probe signal at the reference
and using the following closed-loop relationship:

G(ejω)

1 + C(ejω,ρ)G(ejω)
= Φyr(e

jω)

C(ejω,ρ)Φr(ejω)
(7.20)

where Φyr(e
jω) is the cross-spectral density of the stochastic processes y(t) and

r(t). The right hand side of this equation can be computed from the signals mea-
sured in this situation, which unfortunately is not the normal process’ operation; an
intrusive experiment is required.

Last, but not least, the Hessian of JFDT(ρ) can be computed similarly, and using
the same measurements used to compute the gradient. Calculating the Hessian and
appropriately grouping terms, it is found that the k, l element of the Hessian is given
by (for readability we have omitted the dependence on ω and ρ in the presentation
of this equation):

∂2J
k,l
FDT(ρ)

∂ρ2
= 1

π

∫ π

−π

Φy

[

λ�
{

∂C

∂ρl

∂C∗

∂ρk

+ C∗ ∂2C∗

∂ρkρl

}

− 2λ�
{

C∗ ∂C

∂ρl

}

�
{

G

1 + CG

∂C

∂ρk

}

− 2λ�
{

C∗ ∂C

∂ρk

}

�
{

G

1 + CG

∂C

∂ρl

}

− �
{

G

1 + CG

∂2C

∂ρlρk

− 2
G

1 + CG

∂C

∂ρl

G

1 + CG

∂C

∂ρk

−
∣
∣
∣
∣

G

1 + CG

∣
∣
∣
∣

2
∂C

∂ρl

∂C∗

∂ρk

}

(1 + λ|C|2)
]

dω. (7.21)

It is seen that indeed all the terms in this expression were already present in the
gradient’s formula, and hence no additional information is necessary. This allows the
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use of Newton-Raphson’s optimization without extra experimental cost regarding
the steepest descent.

The FDT gradient estimation procedure can be summarized as follows.

The FDT Algorithm At each step i of an iterative data-driven control design,
estimate the gradient ∇JFDT(ρi) through the following procedure.

1. collect data from the normal operation of the process with r(t) ≡ 0; let the output
during this measurement period be denoted by y1(t);

2. estimate the spectrum of the output y1(t);

R̂y(τ ) = 1

N

N∑

t=1

y1(t)y1(t − τ)

Φr(e
jω) = 1

N

δ∑

τ=−δ

w(τ)R̂y(τ )e−jωτ

where ω(·) is an appropriate window [13].
3. perform an additional experiment with a SRp reference r(t) to the closed-loop

system and measure the resulting output y2(t);
4. estimate the reference spectrum

R̂r (τ ) = 1

N

N∑

t=1

r(t)r(t − τ)

Φr(e
jω) = 1

N

δ∑

τ=−δ

w(τ)R̂r(τ )e−jωτ

and the cross-spectral density

R̂yr(τ ) = 1

N

N∑

t=1

y2(t)r(t − τ)

Φyr(e
jω) = 1

N

δ∑

τ=−δ

w(τ)R̂yr (τ )e−jωτ

where ω(·) is an appropriate window [13].
5. compute the sensitivity estimate from (7.20):

Ĝ(ejω)

1 + C(ejω,ρi)G(ejω)
= Φyr(e

jω)

C(ejω,ρi)Φr(ejω)

6. compute ̂∇JFDT(ρi) from (7.19) and ̂∇JFDT(ρi) from (7.21) replacing
G(ejω)

1+C(ejω,ρi )G(ejω)
by its estimate Ĝ(ejω)

1+C(ejω,ρi )G(ejω)
computed in Step 5.
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7.2.2 Extensions

7.2.2.1 Guaranteeing Stability Along the Way

Given a controller for which the closed-loop is BIBO-stable, another controller will
also yield a stable closed loop provided that it is “close enough” to the first con-
troller. This reasoning results in a convenient test for stability to apply before chang-
ing the controller from one iteration to the next in a data-driven iterative control
design, provided that the appropriate measure of “closeness” is used. The appro-
priate measure in this problem is the Vinnicombe distance between two controllers
δν(C1(z),C2(z)), which is defined as follows. For a given transfer function Q(z),
let η(Q(z)) be the number of poles outside the unit circle of this transfer function
and ζ(Q(z)) be the number of counterclockwise encirclements of the origin made
by the Nyquist plot of Q(z). If the following condition is satisfied

1 + C∗
1 (z)C2(z) �= 0 & ζ(1 + C∗

1 (z)C2(z)) + η(C2(z)) − η(C1(z)) = 0

then

δν(C2(z),C1(z)) = ∥
∥[1 + C1(z)C

∗
1 (z)]− 1

2 [C1(z) − C2(z)][1 + C2(z)C
∗
2 (z)]− 1

2
∥
∥∞

else δν(C2(z),C1(z)) = 1.
Think of the two controllers in this definition as the current controller at iteration

i of the design, for which the system is currently operating in a stable manner, and of
the second controller as the one that has just been determined and must be inserted
in the loop. Before actually inserting it in the loop, we would like a guarantee that
the resulting closed-loop will be stable. This will be guaranteed if the new controller
represents a perturbation to the current closed-loop that is smaller than its stability
margin.

Recall from the IFT presentation that robustness can be expressed by the norm of
the matrix Σ(z,ρ) in (7.12). An important measure of robustness of the closed-loop
achieved with a given controller C(z,ρ) is the following stability margin

bC(z,ρ) � ‖Σ(z,ρ)‖−1∞ . (7.22)

With these measures of robustness of the closed-loop system at iteration i and of
the distance between the current controller and the next one, we can use the follow-
ing test to assert that the new controller will provide a BIBO-stable closed loop.

Theorem 7.1 Let ρ1 ∈ Γ .1 If δν(C(z,ρ2),C(z,ρ1)) < bC(z,ρ1) then ρ2 ∈ Γ .

Testing this criterion requires calculating the Vinnicombe distance between the
two controllers and the stability margin. These two can be calculated using the same

1That is, the closed-loop system with the controller C(z,ρ1) is BIBO-stable.
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quantities already calculated in the FDT procedure. Indeed, the Vinnicombe distance
only involves the transfer functions of the two controllers, and the stability margin
can be calculated as

bC(z,ρ) =
∥
∥
∥
∥
∥
∥

Φur (e
jω,ρ)

C(ejω,ρ)Φr (e
jω,ρ)

Φur (e
jω,ρ)

Φr (e
jω,ρ)

Φyr (e
jω,ρ)

C(ejω,ρ)Φr (ejω,ρ)

Φyr (e
jω,ρ)

Φr (ejω,ρ)

∥
∥
∥
∥
∥
∥

−1

∞
. (7.23)

Clearly, Theorem 7.1 is valid for any two controllers, and certainly for any two
subsequent controllers in any iterative tuning procedure. In principle, the same test
can be applied to any iterative tuning procedure, not only in FDT and not only for
this particular optimization criterion. But for other methods and/or performance cri-
teria the quantities necessary for calculating the associated stability margins would
have to be determined, maybe needing extra approximations and/or extra experi-
ments. Whereas in FDT the stability test comes “for free”, since all these quantities
have already been calculated.

7.2.2.2 2DOF

Like IFT, FDT can also be extended to 2DOF controllers, that is, controllers de-
scribed by (7.11). But unlike IFT, this does not require extra experiments or ex-
tra calculations. The procedure is still the same and the fact that the controller
is 2DOF does not even change the equations used to calculate the gradient and
the Hessian. Only the expressions (7.20) and (7.23), for estimating the sensitivity

G(ejω)
1+G(ejω)C(ejω,ρ)

and for calculating the stability margin bC(z,ρ) respectively, are
changed into the following

G(ejω)

1 + Cy(ejω,ρ)G(ejω)
= Φyr(e

jω)

Cr(ejω,ρ)Φr(ejω)

bC(z,ρ) =
∥
∥
∥
∥
∥
∥

Φur (e
jω,ρ)

Cr (ejω,ρ)Φr (ejω,ρ)

Φur (e
jω,ρ)Cy(ejω,ρ)

Φr (ejω,ρ)Cr (ejω,ρ)

Φyr (e
jω,ρ)

Cy(ejω,ρ)Φr (ejω,ρ)

Φyr (e
jω,ρ)Cy(ejω,ρ)

Φr (ejω,ρ)Cr (ejω,ρ)

∥
∥
∥
∥
∥
∥

−1

∞
.

7.3 Correlation-Based Tuning

Alireza Karimi, Ljubisa Mišković and Dominique Bonvin first presented the
Correlation-based Tuning (CbT) method in their 2003 paper [9], and a careful ac-
count of its properties was later given in [10]. CbT aims at optimizing the reference
tracking performance, but it does not do so by directly minimizing the objective
function Jy(ρ). Instead, the authors built their method upon an analogy with the
correlation based methodologies in the system identification theory, and formulated
the control design problem as one of identification of the ideal controller through
instrumental variable methods. The CbT methodology is detailed in the sequel.
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7.3.1 Derivation

Define, for convenience of notation, the following output error signal

ε(t, ρ) � yd(t) − y(t, ρ) = [Td(z) − T (z,ρ)]r(t) + S(z,ρ)ν(t).

With the ideal controller Cd(z) in the loop, T (z,ρ) = Td(z), and the output error
would be ε(t, ρ) = S(z,ρ)ν(t); it would depend only on the noise, and not on the
reference. So the ideal controller Cd(z) is the one for which these two signals are
not correlated, that is, for which the following equation is satisfied

Ē[ε(t, ρ)r(t − τ)] = 0 ∀τ. (7.24)

Therefore, the ideal controller’s parameter ρd is the solution of the correlation
equation (7.24) and it could in principle be found by solving this equation, but this
is actually a system of infinite equations. In order to obtain a set of equations that can
be solved, the system of equations (7.24) is truncated, keeping only those equations
for small values of τ , which are the ones for which the correlation tends to be larger.
Moreover, it can be advantageous to replace the reference r(t) by another signal
strongly correlated to it but still not correlated to the noise.

With this rationale in mind, define the instrumental variable ξ(t) ∈R
q with q ≥ p

such that Ē[ν(t)ξ(t)] = 0 and that all the elements of the vector Ē[r(t)ξ(t)] are
nonzero. Then define the function f (·) : Rp → R

q :

f (ρ) � Ē[ε(t, ρ)ξ(t)].
The CbT method is based on finding the roots of this vector function, that is, in

solving the following system of q nonlinear equations with p unknowns:

f (ρ) = Ē[ε(t, ρ)ξ(t)] = 0. (7.25)

If q = p, then the solution of this set of nonlinear equations can be found by an
iterative algorithm, just the same as in the optimization problems treated all along
this book, with an algorithm of the form:

ρi+1 = ρi − γiRif (ρi). (7.26)

Notice however the advantage of this algorithm over the previous methods. The
right hand side of this equation does not depend on the gradient of some unknown
function, but only on the function f (ρi) itself. As a consequence, there is no need
for intricate schemes for estimation of the gradient, or extra experiments; all that
needs to be done is to estimate the function f (ρi) by

f̂ (ρi) = 1

N

N∑

t=1

ε(t, ρi)ξ(t). (7.27)
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There is, unfortunately, a caveat: the solution of the equation only guarantees that
the tracking error is uncorrelated to the p samples of the reference that are closest to
it in time, and not to the whole reference signal. Because p is usually very small, this
motivates the use of larger numbers of equations (q 
 p), but then there are more
equations than unknowns and the nonlinear system of equations will in general have
no solution, unless Assumption By is satisfied. Nevertheless, this procedure has been
successfully applied to practical examples [10], and it has shown some robustness
against violations of Assumption By . A practical application will also be described
in Chap. 8.

An alternative that is safer, but for which the above computational convenience
of the CbT method is lost, is to “solve” the nonlinear system of equations in a least
squares sense, that is, to minimize the following cost function

Jc(ρ) = f T (ρ)f (ρ) = Ē[ε(t, ρ)ξ(t)]T Ē[ε(t, ρ)ξ(t)]. (7.28)

To optimize this cost function it is necessary to estimate its gradient, just as in
the IFT and FDT methods. The gradient of the objective function Jc(ρ) in (7.28)
with respect to the parameter vector is given by

∇Jc(ρ) = 2Ē

[
∂ε(t, ρ)

∂ρ
ξT (t)

]

Ē [ε(t, ρ)ξ(t)] .

Similarly to the IFT case, an unbiased estimate of this gradient can be obtained
by:

∇̂Jc(ρ) = 2
1

N

N∑

t=1

[
∂ε(t, ρ)

∂ρ
ξT (t)

]
1

N

N∑

t=1

[ε(t, ρ)ξ(t)] . (7.29)

Computing the estimate (7.29) requires measurements of the instrumental variable
ξ(t) (which is a nobrainer) and the computation of the partial derivative ∂ε(t,ρ)

∂ρ
. But

ε(t, ρ) = y(t, ρ) − yd(t), that is:

∂ε(t, ρ)

∂ρ
= ∂y(t, ρ)

∂ρ
.

Hence an estimate of the partial derivative ∂ε(t,ρ)
∂ρ

can be obtained in exactly the
same way as described in IFT, by means of the additional experiment described
then. This provides an unbiased estimate of the gradient and thus convergence to a
point where the gradient ∇Jc(ρ) is zero.

Another approach to obtain the derivative proposed by the CbT creators is to
generate it based on a rough model for the process. If the control action is a linear
regression

u(t, ρ) = ρT φ(t)

with φ(t) a vector containing only past measurements of the control u(t, ρ) itself
and of the tracking error r(t) − y(t, ρ), then the following expression is valid
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∂ε(t, ρ)

∂ρ
= B(z)

P (z,ρ)
φ(t, ρ) (7.30)

where B(z) and P(z,ρ) are the numerator of the process transfer function and the
denominator of the closed-loop transfer function T (z,ρ) respectively. Then these
two polynomial B(z) and P(z,ρ) can be approximated using a model for the pro-
cess. This alternative way of estimating the gradient does not require the extra ex-
periment but relies on a process model. The estimate will be unbiased only if the
model estimate used for its calculation is unbiased, which is unlikely to happen.
Hence, convergence can no longer be guaranteed with this alternative estimate of
the gradient.

In short, the CbT algorithm can be described as follows. The description is given
for the optimization version of the algorithm, in which Jc(ρ) is minimized. The
original and simpler version does not require any estimates and can be described
simply by the recursion (7.26) and the calculation (7.27). On the other hand, the
description below uses IFT-like estimate of the partial derivative of y(t, ρ) with
respect to ρ; for the alternative estimate of this quantity it suffices to eliminate step 3
and substitute accordingly step 4.

The CbT Algorithm—Optimization Version At each step i of an iterative data-
driven control design, estimate the gradient ∇Jc(ρi) through the following proce-
dure.

1. collect data from the normal operation of the process; let the reference signal
during this measurement period be denoted by r1(t) and the resulting control
input and process output respectively by u1(t) and y1(t);

2. compute offline the signal r1(t) − y1(t) � r2(t) and the instrumental variable
vector ξ(t);

3. perform an additional experiment applying r2(t) as the reference to the closed-
loop system and measure the resulting control input and process output; let these
measurements be denoted by u2(t) and y2(t) respectively;

4. compute

̂∂y(t, ρi)

∂ρ
= 1

C(z,ρi)

∂C(z,ρi)

∂ρ
y2(t);

5. compute

∇̂Jc(ρi) = 2

N

N∑

t=1

̂∂y(t, ρi)

∂ρ
ξT (t)

N∑

t=1

ξ(t)[yd(t) − y1(t)].

As in most applications of IV ideas in different contexts, different choices of
IVs have been proposed over the years of application experience with CbT. The
simplest and more commonly found ones are the delayed samples of the reference
itself and the noiseless simulated output with a rough model for the process (a choice
of instrumental variable that has already been used in the VRFT method in Chap. 3).
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7.4 Chapter Conclusions

Three different methods for obtaining the necessary quantities for optimization of
the H2 cost functions have been presented in this chapter. Each method can be ap-
plied to the optimization of a different control objective, that is, to a different cost
function. In each method (except in the original version of CbT) it is necessary to
collect data from a “special” experiment, that is, an experiment with a particular ref-
erence input that does not correspond to the normal operation of the process. These
special (and inconvenient) experiments can be sometimes avoided by identifying
a process model with data from the normal operation of the process, but then the
convergence is no longer guaranteed because of the bias that will be present in this
estimated model.

Notice that these procedures for estimation of the gradient and Hessian do not
require that the controller is parameterized linearly as in Assumption LP. Assump-
tion LP is used in most data-driven designs not for implementation of the algorithms,
but rather for providing theoretical guarantees of convergence and to guide some de-
sign choices, as presented in the previous chapters of this book.

It is a very important practical issue in iterative data-driven control design to
have some guarantee, at each iteration, that the next controller to be put in the loop
is at least a stabilizing controller for the unknown process. The results previously
presented in this book do not provide this guarantee—they tacitly assume that the
(candidate) DOAs are contained in the stability set Γ . Even though this is a reason-
able assumption, it should not be taken for granted, given the severe consequences
that can result from putting a destabilizing controller in the loop. A test that provides
in real-time a guarantee that the next controller is a stabilizing one is provided in
FDT, as presented in Sect. 7.2. This stability test has been developed into a simpler
and more effective form in [7]. Given its relevance, this subject has been given a
broader approach later on, and a theoretical framework of its own has been devel-
oped, resulting in tests that can be applied equally well with any data-driven control
design methodology [2].
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Chapter 8
Experimental Results

We have given several simulation examples along the various chapters of this book
to better explain the concepts and the methods, but it is hard to illustrate the actual
application of a model-free design with simulation examples. In simulation, we al-
ways know everything there is to know about the process, and it may sound artificial
and arbitrary to determine which part of this information will be used for the design
and which will not. Only with practical applications can we hope to clarify how a
data-driven design is really performed. Accordingly, in this chapter we present the
practical application of data-driven control design to real systems.

The designer must make the problem assessment and the corresponding design
decisions using only whatever rudimentary and/or imprecise information about the
process is available a priori to her/him. These assessments and decisions may in-
volve the choice of a reference model, an estimate of to which extent Assumption By

is violated, the necessity for and proper setting of cost function shaping, the choice
of the search direction in the iterative optimization, and/or several other aspects
discussed along this book. The data collected from these systems are affected by
noise, whose level and spectrum are not known a priori and can vary widely, as
well as by nonlinearities. With the presentation of these practical applications we
expect to make clearer to the reader how the theory translates into the real world,
what kind of information is typically available a priori and how the designer should
make his/her choices based on this information. Besides, of course, showing evi-
dence that the theory actually works and that the design for any specific process can
be automated.

We present the control of three different processes: the flow control of water in a
system of tanks, the speed control of a DC motor, and the control of the temperature
of a heated resistance. Each process is representative of typical processes found in
industry and possesses distinct features that will illustrate distinct aspects of data-
driven control applications.

In general, data-driven methods aim to minimize the cost function

JT (ρ) = Jy(ρ) + Je(ρ),

A. Sanfelice Bazanella et al., Data-Driven Controller Design,
Communications and Control Engineering,
DOI 10.1007/978-94-007-2300-9_8, © Springer Science+Business Media B.V. 2012
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166 8 Experimental Results

where the reference tracking term Jy(ρ) is due to the reference signal only and
the noise rejection term Je(ρ) is due only to the noise. As seen along the book,
some data-driven design methods minimize only the term Jy(ρ), other methods
minimize only Je(ρ), and some methods use the composite cost function JT (ρ).
We will present designs with three different data-driven methods: Virtual Refer-
ence Feedback Tuning (VRFT), Iterative Feedback Tuning (IFT) and Correlation
based Tuning (CbT). Recall that the VRFT and CbT methods minimize the ref-
erence tracking term Jy(ρ) while the IFT method minimizes the composite cost
function JT (ρ). As each method minimizes a different cost function, one cannot ex-
pect that they will result in the same controller parameters or control performance.
For this reason alone, the controllers obtained with each one of them will be differ-
ent, and comparisons among different methods must be made and interpreted very
carefully.

Because only a finite set of data will be available and the cost functions involve
expectations, they can not be calculated exactly, but only estimated from this finite
set of data. The function that can actually be computed in a general case is the
following estimate of the composite cost JT (ρ):

ĴT (ρ) = 1

N

N∑

t=1

(y(t, ρ) − yd(t))2. (8.1)

Note that, by definition:

JT (ρ) = lim
N→∞E[ĴT (ρ)].

Moreover, to express the quality of any given design we prefer to work with
the square root of this function, because then the function has the same physical
unit as the output and thus its value has a more evident physical interpretation. The
performance of a control loop will thus be expressed by the following criterion:

J̌T (ρ) =
√

ĴT (ρ). (8.2)

Approximations can—and will—be obtained for the reference tracking cost
Jy(ρ) by computing (8.1) with a filtered version of the output. The details of these
computations are given in the next section.

8.1 A Liquid Flow Process

The first practical example to be presented is the control of water flow in a system
of two tanks. The schematic diagram in Fig. 8.1 describes the main parts of the
process. The whole process is built with of-the-shelf industrial equipments (pump,
valve, sensors and tanks).
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8.1 A Liquid Flow Process 167

Fig. 8.1 Schematic diagram
of the water flow control
system. The water is pumped
up from tank 2 to tank 1
through a valve and flows
back to tank 2 by gravity. The
output flow of tank 1 is the
process variable y(t) and the
valve opening is the
manipulated variable u(t)

The objective of the control system is to control the output flow of one of the
tanks (the output variable y(t)), which is accomplished through the manipulation
of the opening of a valve which is at the input of this same tank (the input variable
u(t)). The flow entering the tank changes its level, which changes the pressure at
the bottom of the tank and consequently the output flow. The output signal is the
flow measure, given in milliliters per second ( ml

s ). As usual in flow measurement,
the output signal is quite noisy. This measurement noise occurs in a wide range
of frequencies, including the same range where the signals are observed, which
makes it difficult to perform an effective filtering. The control system has some
constraints, the most relevant of which being that only PI controllers can be imple-
mented.

We begin with no knowledge whatsoever about the process’ behavior and pro-
ceed with obtaining a minimal amount of information that will allow us to set up the
data-driven design. Let us start by assessing the noise level of the process. This will
serve as a benchmark for the achievable values of the cost functions, because if the
noise where white then this would be the minimum value of Je(ρ).1 Notice that this
is probably not the minimum value of Je(ρ), because it is unlikely that the noise
will actually be white. Still, it gives a ballpark indication of the achievable values
for the performance indexes. If a control design results in a closed-loop system such
that the cost evaluates at several times this value, it will most likely be a poor design
that can be much improved; on the other hand, it is pointless to try and make the
cost significantly smaller than this value.

Proceeding with the noise level estimate, an open-loop experiment is performed
with a constant opening of the valve, at 85% of its full span. We collected N =

1Recall the discussion on the minimum variance controller in Chap. 2.
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Fig. 8.2 Flow of an open-loop experiment, used to estimate Je(0)

360 samples of the output with a sampling interval of 10 seconds and the result of
this one hour experiment is presented in Fig. 8.2. The data collected were used to
estimate the noise level of this process, and this calculation yields

J̌e(0) = 10.5215 ml/s =
√

Ē[ν(t)]2.

We would like the closed-loop system to behave as specified by the first order
reference model

Td(z) = 1 − a

z − a
,

where a ∈ (0,1) is the pole of the closed-loop system, to be specified. As said be-
fore, we can only implement PI controllers in the system, which can be described
by

C(z,ρ) = �1z + �2

z − 1
.

Assumption By is satisfied if and only if

G(z) = b

z − c

for some real numbers b and c. Assumption By is satisfied to exactly the same ex-
tent, and under exactly the same conditions, that such a first-order model appropri-
ately describes the process dynamics; both statements are equivalent. This first-order
model may or may not be a reasonable model from first principles analysis of the
process, depending on the particular dimensions of the process, its operating point
and the particular adjustment of the process’ physical characteristics (the speed of
the pump, the setting of the valve positioning device, etc.). Without any further
modeling and analysis, one must assume that the process model is more complex
than a first-order transfer function and, as a consequence, that Assumption By is not
satisfied.
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8.1 A Liquid Flow Process 169

In the sequel the parameters of the PI controllers will be tuned by direct data-
driven design (VRFT) and an iterative data-driven design (IFT).

8.1.1 Direct Method

In order to obtain data to apply the instrumental variables version of the VRFT
method, two open-loop experiments were performed. In these experiments, the in-
put signal is a step change from 80% to 85% in the opening of the valve. The output
of one of these experiments is presented in Fig. 8.3 and the input applied to the
process is shown in Fig. 8.4. Notice, from Fig. 8.3, that the signal-to-noise ratio
is low; this will probably impose some difficulties to the data-driven method de-
signs, particularly for those who minimize only the Jy(ρ) term. In spite of the high
level of noise, the VRFT with LS estimation will also be used for illustration pur-
poses.

It is possible to estimate the settling time of the process at around 70 samples,
which gives us the information that a first-order approximation of the process’ trans-
fer function would have a dominant open-loop pole close to 0.94. This is an useful
information to decide the value of the pole of the closed-loop reference model Td(z).
We chose to design the controller for three different reference models: with a equal
to 0.80, 0.85 and 0.90. All of these reference models represent responses that are

Fig. 8.3 Output signal of the open-loop experiment in the liquid process
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Fig. 8.4 Input signal of the open-loop experiment in the liquid process

Table 8.1 Flow controllers obtained with VRFT for different reference models

a Method num(C(z, ρ̂)) J̌T (ρ̂) [ml/s] J̌y(ρ̂) [ml/s] J̌e(ρ̂) [ml/s]

0.80 LS 0.003970(z + 0.7444) 18.6139 18.0556 9.2721

IV 0.03166(z − 0.3300) 17.1334 15.7430 10.6531

0.85 LS 0.005115(z + 0.5117) 18.8208 17.8601 9.9749

IV 0.05369(z − 0.7057) 16.8571 14.7268 10.9266

0.90 LS 0.007342(z − 0.01021) 17.9318 16.5554 10.4929

IV 0.08920(z − 0.8876) 14.1128 11.4537 10.6317

faster than the open-loop response of the process. Using the data collected in the two
open-loop experiments, the controller parameters were computed using the VRFT
method for the three different reference models. In all these cases, we have com-
puted the parameters using the instrumental variables (IV) and the least squares
(LS) method. Table 8.1 shows the numerators of the PI controllers designed (the
denominator is always the same), presenting their gains and zeros and the resulting
cost values. The composite cost J̌T (ρ) is estimated simply as described earlier in
(8.1) and (8.2), but the separate estimation of the noise rejection cost (J̌e(ρ)) and of
the reference tracking cost (J̌y(ρ)) requires some extra attention.
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8.1 A Liquid Flow Process 171

Recall that the reference tracking and noise rejection performance criteria are
defined respectively as

Jy(ρ) = Ē[yr(t, ρ) − yd(t)]2,

Je(ρ) = Ē[ye(t, ρ)]2,

where yr(t, ρ) = T (z,ρ)r(t) and ye(t, ρ) = S(z,ρ)ν(t) = y(t, ρ) − yr(t, ρ). Nei-
ther yr(t, ρ) nor ye(t, ρ) are measurable, so yr (t, ρ) is approximated by a low-pass
filtered version—yf (t, ρ)—of the measured output y(t, ρ). Then the two costs are
estimated by

J̌y(ρ̂) =
√
√
√
√ 1

N

N∑

t=1

(yf (t, ρ̂) − yd(t))2

J̌e(ρ̂) =
√
√
√
√ 1

N

N∑

t=1

(y(t, ρ̂) − yf (t, ρ̂))2.

Now, from the very definition of the three costs, it is expected that the following
relationship should be satisfied.

J̌ 2
y (ρ̂) + J̌ 2

e (ρ̂) = J̌ 2
T (ρ̂).

However, the estimations of the three performance criteria are imprecise due to
the finiteness of the data. Moreover, the estimation of the noise rejection and of
the reference tracking performance criteria are also affected by the approxima-
tion yr(t, ρ) ≈ yf (t, ρ) that has been necessary for their calculation. As a result,
this identity is not exactly verified in the data presented in Table 8.1: a difference
around 10% is observed in all the lines of this table. This small but not negligi-
ble discrepancy must be bore in mind when analyzing the results presented in Ta-
ble 8.1.

For all different values of a, the use of instrumental variables (IV) has resulted
in a better performance when compared to the Least Squares (LS) solution. A fair
comparison between two VRFT designs should take into account only the reference
tracking criterion, since this is the performance criterion that VRFT optimizes. This
comparison shows that the LS design has resulted in values of the performance
criterion J̌y(ρ̂) that are significantly higher (that is, worse) than the IV designs for
the three different reference models with a = 0.9 (44.5% higher), a = 0.85 (21.2%)
and a = 0.8 (12.8%). On the other hand, the lowest cost values were obtained using
a = 0.90. This is expected because this is the slowest reference model, and thus the
easiest to be followed—it is the one for which the violation of Assumption By is the
least substantial.
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Fig. 8.5 Closed-loop response of the system with the PI controller obtained with VRFT using LS
for a reference model response with a = 0.90

A visualization of the results obtained for the reference model with a = 0.90 is
provided in Figs. 8.5–8.8, illustrating the results shown in Table 8.1. The controller
computed with the VRFT using the Least Squares estimate for this case is

CLS(z, ρ̂) = 0.007342(z − 0.01021)

z − 1
.

Figures 8.5 and 8.6 present the output and the control signal, respectively, of the
closed-loop system with this controller. The filtered output yf (t) used to compute
the individual cost functions as described before is also shown. We can see that
the closed-loop behavior is quite different from the desired reference model. The
estimated cost of the controller obtained with the LS was J̌T (ρ) = 17.9318 ml/s.

The controller computed with the VRFT method using the instrumental variables
estimate is

CIV (z, ρ̂) = 0.08920(z − 0.8876)

z − 1
.

Figures 8.7 and 8.8 present the output and the control signal, respectively, of the
resulting closed-loop system. The response obtained with IV is better than the one
obtained using LS, but still far from the desired response yd(t), resulting in a cost
J̌T (ρ̂) = 14.1128 ml/s. Taking into account that the cost of the noise in the open-
loop experiment was J̌e(0) = 10.5215 ml/s, a similar value for J̌T (ρ) could be ex-
pected at the optimum controller, along with J̌y(ρ) ≈ 0. Because Assumption By is
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8.1 A Liquid Flow Process 173

Fig. 8.6 Control signal of the PI controller obtained with VRFT for a reference model with
a = 0.90, using LS

Fig. 8.7 Closed-loop response of the system with the PI controller obtained with VRFT using IV
for a reference model response with a = 0.90
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Fig. 8.8 Control signal of the PI controller obtained with VRFT for a reference model with
a = 0.90, using IV

not satisfied, the best controller has yielded J̌y(ρ) = 11.4537 ml/s. Considering that
the desired behavior was a variation of 50 ml/s in the output, one can say that the
output presents an average difference of the order of 22.9% (= 11.4537

50 ) with respect
to the desired behavior. This result may seem disappointing, but it should not be:
it is not clear whether or not it is possible to do much better with the PI controller
class that is available. On the other hand, this controller will be a very good initial
condition for the iterative data-driven design to be presented next.

8.1.2 Iterative Method

The Iterative Feedback Tuning (IFT) method was also applied to the design of the PI
flow controller. The controller has been designed for the same first-order reference
model as before, with a = 0.9, and the initial controller was taken as the controller
designed for this case with the VRFT-IV method. Recall that the IFT design does
not aim at the same performance as the VRFT design; it minimizes JT (ρ) instead
of Jy(ρ).

The reference signal applied to collect the data used to compute the gradient of
the cost function is the following

r(t) = 605 + 25sq

(
2πt

360

)

,
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Table 8.2 Controller evolution with IFT

i num(CI (z, ρi)) J̌T (ρi ) [ml/s] J̌y(ρi ) [ml/s] J̌e(ρi ) [ml/s]

0 0.0892z − 0.07918 13.5050 11.2810 10.4293

1 0.0919z − 0.08039 12.5571 9.9179 10.4086

2 0.0952z − 0.08134 12.0205 8.8239 10.4167

3 0.0970z − 0.08203 12.5843 9.8802 10.4358

4 0.0988z − 0.08319 13.3915 9.6905 11.6510

5 0.1048z − 0.08483 9.8159 8.4707 7.7586

and the initial controller used in the iterative procedure is the one obtained with
the VRFT method using instrumental variables. The steepest descent optimiza-
tion was used, and in order to compute the step size sequence using the second
method presented in Sect. 5.4.3, the following approximate model of the process
was used

G(z) = 0.6465

z − 0.9573
.

This model was estimated from the same data collected for the application of the
VRFT method.

The evolution of the controller parameters for five iterations of the IFT design
is presented in Table 8.2. It is important to realize that the cost values presented
in this Table are calculated for the square-wave reference being applied, and not
for a reference step as the results presented previously in the direct design. This is
why the costs in the first line of Table 8.2 are different from the ones presented in
Table 8.1 for the same controller.

After five iterations the method achieved the controller

C(z,ρ5) = 0.1048z − 0.08483

z − 1

and the cost was reduced to JT (ρ5) = 9.8159 ml/s. Figure 8.9 shows the process
variable in response to a reference step that is obtained in closed-loop with this con-
troller, while Fig. 8.10 shows the corresponding controller’s output. Taking into ac-
count that the noise level estimated in open loop was J̌T (0) = J̌e(0) = 10.5215 ml/s,
the resulting performance with the final controller is quite satisfactory, as it yields a
smaller cost value.2

2Notice, however, that there is a random component in the cost value, since each time it is measured
a different noise realization is present. So, the low cost value obtained in the last iteration may not
be as low if measured again.
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Fig. 8.9 Closed-loop response of the system with the PI controller obtained with IFT after five
iterations for a reference model response with a = 0.90

Fig. 8.10 Control signal of the PI controller obtained with IFT after five iterations for a reference
model with a = 0.90
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8.2 A DC Motor 177

8.2 A DC Motor

The second experiment to be presented is the speed control of a DC motor, using
the educational kit described in [1]. The output of the process y(t) is the motor’s
speed, which is measured by an encoder and given in radians per second, whereas
the manipulated variable u(t) is the voltage applied to the motor, given in volts. The
sampling period chosen for this application is 0.01 seconds, and in the results to
be presented the time variable is always expressed in number of samples instead of
seconds.

A PI controller is available, with the following structure

C(z,ρ) = [kp ki ]
[

1
z

z−1

]

, (8.3)

where kp is the proportional gain and ki is the integral gain.
A DC motor is a fairly standard process, both in textbooks and in industrial prac-

tice. For speed control purposes it is usually modeled by a second order transfer
function, which represents its two main dynamics: the mechanical part and the elec-
trical part. The electrical dynamics tend to be much faster than the mechanical dy-
namics, which often motivates the use of a simplified first order model, but we will
not make this simplification here. Let us work under the assumption that the speed
control process is appropriately represented by a second-order model, that is, that
the process’ transfer function is of the form

G(z) = kg

z

(z − b)(z − c)
(8.4)

for some positive real numbers kg , b < 1 and c < 1. With the process (8.4) and the
controller (8.3), the closed-loop transfer function will be

T (z,ρ) = Kz(z − f )

(z − b)(z − c)(z − 1) + Kz(z − f )
(8.5)

where we have defined K = kg(ki +kp) and f = kp

ki+kp
for convenience of notation.

The order of the closed-loop transfer function is, in general, three, but it is reduced
to two when either f = c or f = b; in any case, it is always larger than or equal to
two.

The reference model will be chosen taking into account this basic knowledge
about the process, trying to enforce Assumption By . We will analyze two situations:

1. the reference model has order one, which implies that the desired behavior cannot
be achieved with the PI controller; this is the mismatched case;

2. the reference model has order two and the desired behavior can be achieved with
the PI controller; this is the matched case.

In the sequel we will design controllers for these two situations using both a
direct design method and an iterative design method.

co
nt

ro
len

gin
ee

rs
.ir



178 8 Experimental Results

8.2.1 Direct Method

Let us apply the VRFT method to design the PI controller. Even though the noise
level is low in this particular application, still the instrumental variable method was
applied to minimize J VR(ρ); the repeated experiment IV was used, with two open-
loop experiments. The same input was utilized in both experiments: a square signal
described by

u(t) = 3 + sq

(
2πt

333

)

. (8.6)

Let us open a brief parenthesis on the practical meaning of signal richness. A
square wave is, in theory, sufficiently rich of infinite order. But the magnitude of the
harmonics decay linearly with their order: the third harmonic is three times smaller
than the first harmonic, the fifth is five times smaller, and so on. As the orders of
the harmonics increase, their magnitudes become negligible with respect to the first
harmonic, so for any practical purposes it would not be appropriate to count these
negligible harmonics in the richness of the signal. How small should be considered
negligible in a given practical case depends on its specificities—the noise level, the
precision required for the solution, etc. An attitude in the very conservative side is
to neglect all the harmonics but the first one, and work as if the square-wave were
SR2; then the signal above is considered to be SR3, which is more than enough in
this particular case because the controller’s parameter is of dimension two. Let us
now close this parenthesis.

Two experiments with the same input (8.6) have been performed; the results are
presented in Figs. 8.11 and 8.12 (the experiments are visually indistinguishable from
each other because the noise level is very low, so only the result of one experiment

Fig. 8.11 Output collected from the open-loop experiment in the DC motor
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Fig. 8.12 Input collected from the open-loop experiment in the DC motor

has been plotted). We have collected N = 1,000 samples in order to perform the
controller parameters’ estimate.

8.2.1.1 Mismatched Case

Let us choose (once again) the simplest reference model, described by the first order
transfer function

Td(z) = 1 − a

z − a
, (8.7)

where a is the closed-loop pole and the transfer function gain is such that the steady-
state gain is one, that is, Td(1) = 1. Although the structure of the controller is given
by (8.3), the controllers will be presented in the zero-pole form, in order to facilitate
the visualization and the analysis of the results.

From the open-loop experiment performed, which has been presented in
Fig. 8.11, the settling time of the process can be estimated at approximately 40
samples. Incidentally, this corresponds to a process with a transfer function possess-
ing a dominant pole at b ≈ 0.9 (dominant meaning that |c| is significantly smaller
than |b|).

Let us specify a performance with settling time of approximately 10 samples,
which corresponds to a reference model with a = 0.7. This is a bold choice, as the
closed-loop is asked to be about four times faster than the process in open-loop.
Assumption By is not satisfied for any value of a, but the reference model becomes
farther away from the achievable performance as a becomes closer to zero; other-
wise phrased, the violation of Assumption By is more severe for faster reference
models.3 So, this value of a may not be a smart choice of reference model, but let
us see what happens anyways.

3A root locus argument would show that, and this argument requires no knowledge of the process
other than the assumption that its transfer function is of the form (8.4).
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Fig. 8.13 Closed-loop responses of the reference model with a = 0.7 and the correspondent PI
controller

Fig. 8.14 Control signal of the PI controller obtained with the VRFT method for a reference model
(8.7) with a = 0.7

Using the VRFT method with the instrumental variables estimate, the optimal
parameter

ρ̂ =
[

0.1419
−0.1287

]

is found, which corresponds to the following controller

CVR(z, ρ̂) = 0.1419(z − 0.9069)

z − 1
. (8.8)

The closed-loop response y(t) with this controller is presented in Fig. 8.13; the
corresponding control signal u(t) is presented in Fig. 8.14. It is seen that the closed-
loop response is far from the desired one (yd(t)), presenting an overshoot of 18%
and a settling time significantly larger than specified. This visual perception can be
quantified by calculating the resulting cost function: J̌T (ρ̂) = 1.6033 rad/s. Given
that the reference’s amplitude is 30 rad/s, one can say that the deviation from the
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Fig. 8.15 Closed-loop responses of the reference model with a = 0.8 and the correspondent PI
controller

desired output trajectory yd(t) is roughly 5.3% (= 1.6/30) in average for the whole
measurement period, but this deviation is much larger during the transient.

This significant mismatch between the desired and the obtained closed-loop re-
sponses stems mainly from the significant violation of Assumption By . Note how-
ever that, despite this mismatch, the zero of the controller is close to the dominant
pole, estimated from the open-loop response.

The choice of the parameter a was indeed not a very fortunate one. In view of the
circumstances, a less ambitious performance should be specified. Still, the closed-
loop obtained is stable, and its performance is better than what is usually found in
control loops in industry.

But much better can be done with VRFT by choosing a reference model that
is closer to the achievable performance. Let us perform a new direct design, now
with a = 0.8. By using the same data as in the previous design, again with IV, the
resulting controller is given by

CVR(z, ρ̂) = 0.0951(z − 0.9011)

z − 1
, (8.9)

which corresponds to the optimal parameter

ρ̂ =
[

0.0951
−0.08569

]

.

Note that the zero of the controller’s transfer function is very close to the one ob-
tained in the first design, but now the controller’s gain is smaller. The closed-loop re-
sponse is presented in Fig. 8.15, and the cost is calculated as J̌T (ρ̂) = 1.0116 rad/s.
The control signal u(t) of this design is presented in Fig. 8.16. In this design, the
overshoot has decreased significantly, though not completely vanished, and the set-
tling time is not visually distinguishable from the desired one.
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Fig. 8.16 Control signal of the PI controller obtained with the VRFT method for a reference model
(8.7) with a = 0.8

Fig. 8.17 Closed-loop responses of the reference model with a = 0.9 and the correspondent PI
controller

Finally, let us use a reference model with the closed-loop pole at a = 0.9. The
VRFT method estimates the controller

CVR(z, ρ̂) = 0.0478(z − 0.8961)

z − 1
, (8.10)

which yields the closed-loop response presented in Fig. 8.17, resulting in a cost
J̌T (ρ̂) = 0.5604 rad/s. This closed-loop response presents no overshoot and is very
close to the desired one. The corresponding control signal is presented in Fig. 8.18. It
is seen that as the parameter a is increased, that is, as the reference model’s response
becomes slower, the control signal decreases significantly in the transient period, as
expected.

The results of the three designs that have been performed are summarized in
Table 8.3. Notice that specifying a smaller settling time does not necessarily result
is obtaining a smaller settling time. It does so only up to the point where the violation
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Fig. 8.18 Control signal of the PI controller obtained with the VRFT method for a reference model
(8.7) with a = 0.9

Table 8.3 Different PI
controllers obtained for
different first order reference
models (8.7) and the
respective costs and settling
times (specified and obtained)

a num(CVR(z, ρ̂)) J̌T (ρ̂) [rad/s] ts (spec) ts (obt)

0.7 0.1419(z − 0.9069) 1.6033 10 20

0.8 0.0951(z − 0.9011) 1.0116 15 15

0.9 0.0478(z − 0.8961) 0.5604 40 40

of Assumption By becomes too important. Also note that the PI controllers obtained
with the VRFT method are such that their zeros almost cancels out the dominant
pole of the plant, which is close to 0.9.

The results show that the VRFT method depends strongly on the matching condi-
tion, so it is highly desirable that Assumption By is verified or violated only moder-
ately. Specifying a better performance (a faster reference model) does not necessar-
ily result in obtaining a better performance! Specifying a performance that is not so
good (a slower reference model), but is closer to the best that can be achieved with
the controller class available, has yielded a much better performance in this practi-
cal application. Let us now explore the case where the reference model is chosen in
order to (at least theoretically) respect the Assumption By .

8.2.1.2 Matched Case

In this section we will choose the reference model so that Assumption By is verified,
under the hypothesis that the DC motor is described by a transfer function of order
two as in (8.4). With the PI controller given in (8.3), whose transfer function can
also be written as

C(z,ρ) = kc

z − f

z − 1
, (8.11)
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with the new definition kc = kp + ki and the previously defined f = kp

kc
, the closed-

loop system is described by the transfer function (8.5), reproduced here for ease of
reference

T (z,ρ)
kgkcz(z − f )

(z − 1)(z − b)(z − c) + kgkcz(z − f )
.

It suffices to choose a reference model in this form to satisfy Assumption By . To
make our lives easier, let us pick a second order reference model, which corresponds
to the cancellation of one of the process’ poles by the controller’s zero; let us say
f = c. Then the closed-loop transfer function is in the form

T (z,ρ) = kgkcz

(z − 1)(z − b) + kgkcz
= kgkcz

z2 + (kgkc − b − 1)z + b
. (8.12)

The model reference Td(z) must be chosen such that (8.12) equals Td(z) for
some value of kc. This will happen for any real number K in the following transfer
function

Td(z) = Kz

z2 + (K − b − 1)z + b
.

Notice that choosing this reference model requires knowledge of one of the pro-
cess’ poles—the parameter b. As expected, enforcing Assumption By requires some
additional information about the process. But a reasonable estimate for the dominant
pole is already available from the open-loop step response presented previously. So,
we can easily define a second order reference model (8.12), and the matching con-
dition is satisfied. Finally, we still have to choose the parameter K to completely
define the reference model Td(z). Any value of K will do, but of course for each
different value a different performance is specified.

Let us show the results obtained with b = 0.9 and K = 0.005, which substituted
into (8.12) yields

Td(z) = 0.005z

z2 − 1.895z + 0.9
.

Then the controller obtained using the VRFT method is given by

CVR(z, ρ̂) = 0.0020(z + 0.2585)

z − 1
(8.13)

which resulted in a cost of J̌T (ρ̂) = 0.3424 rad/s. Notice that this cost is lower
compared to all the costs presented in Table 8.3, and results almost exclusively from
the effect of noise, that is, Jy(ρ̂) ≈ 0. The closed-loop response obtained using this
controller, compared to the desired closed-loop response, is presented in Fig. 8.19.
Now that Assumption By is verified, the closed-loop response is very close to the
response of the model reference. The control signal is presented in Fig. 8.20.
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Fig. 8.19 Closed-loop responses of the reference model (8.12) with a = 0.9 and k = 0.005 and
the correspondent PI controller

Fig. 8.20 Control signal of the PI controller obtained with the VRFT method for a reference model
(8.7) with a = 0.9 and k = 0.005

One could try other values of K , but this will not result in a reference model
with better transient response. Indeed, by changing the value of K the poles of the
reference model (and hence of the closed-loop system) change, but their product is
always equal to b—the dominant pole of the process. Since the poles of the closed
loop must always have module smaller than one, this implies that both poles have
module larger than b. As a consequence, it is not possible to obtain a closed-loop
response faster than the open-loop response. It would be possible in principle to as-
sign the other pole of the process to b, instead of assigning the dominant pole, which
would result in faster reference models and hence faster closed-loop performance.
But this would require knowing the value of this other pole at least approximately,
an information that is not available to the designer.
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8.2.2 Iterative Method

Let us now design the controller using an iterative method, in this case the Corre-
lation based Tuning (CbT) method. The initial condition to the method will be a
controller designed with the VRFT method and only the mismatched case will be
considered—in the matched case VRFT already produces the best controller. Con-
sider again the first-order model reference (8.7) with a = 0.7, which is the case
where the violation of Assumption By is strongest among the three VRFT designs
performed. The desired closed-loop response is then

Td(z) = 0.3

z − 0.7
. (8.14)

The VRFT design has yielded the following controller

C(z,ρ0) = 0.1419(z − 0.9069)

z − 1
, (8.15)

and the closed-loop performance shown in Fig. 8.13, with a significant overshoot
and a cost evaluated at J̌T (ρ0) = 1.6033 rad/s.

The CbT method has been applied in its most convenient form, that is, the one
in which the correlation (7.25) is solved, instead of minimizing the cost function
(7.28). The algorithm ran for three iterations and the cost was reduced to J̌T (ρ3) =
1.2070 rad/s. Table 8.4 presents the evolution of the controller parameters and the
estimated cost at each iteration. After iteration three, no significant reduction of the
cost was obtained.

At the end of this iterative procedure, the controller obtained is

C(z,ρ3) = 0.1242z − 0.1142

z − 1
, (8.16)

which yields the closed-loop output presented in Fig. 8.21. The overshoot has been
decreased from 16% in the initial controller to 6%.

The iterative procedure gets much closer to the minimum of Jy(ρ) than the VRFT
design. This results in a significant performance improvement regarding this perfor-
mance criterion. Yet, the controller design still suffers from the strong violation of
the matching condition.

Table 8.4 Controller
evolution with CbT i num(CCb(z, ρi)) J̌T (ρi ) [rad/s]

0 0.1419z − 0.1286 1.6033

1 0.1303z − 0.1198 1.3190

2 0.1238z − 0.1137 1.2843

3 0.1242z − 0.1142 1.2070
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Fig. 8.21 Closed-loop responses of the reference model with a = 0.7 and the correspondent PI
controller C(z,ρ3) obtained with CbT

8.3 A Temperature Process

The third process to be studied consists of a resistance whose temperature is mea-
sured by a thermopair and controlled by a commercial PID controller. The output
of the process is the temperature, which is given in degrees Celsius. The input of
the process is the power applied to the resistance and is expressed as a percentage
of the maximum power that can be applied to the system. The sampling period is
3 seconds.

Results in two different scenarios will be presented. In the first scenario, the
signal-to-noise (SNR) ratio is comfortably large and Assumption By is satisfied.
This scenario resembles the ideal conditions for application of direct data-driven
design (VRFT) and is accordingly called the “favorable scenario”. For a second
scenario the SNR will be decreased significantly and Assumption By will not be
satisfied. The process is the same, and so is its noise level. The SNR is changed
by reducing the amplitude of the reference, and Assumption By will no longer be
satisfied because a simpler class of controllers will be used: a PI controller. In this
situation the data-driven design becomes more involved; accordingly this will be
called the “tough scenario”.

8.3.1 The Favorable Scenario

In this scenario, a PID controller with the following structure

C(z,ρ) = [kp ki kd ]
⎡

⎣
1
z

z−1
z−1
z

⎤

⎦ ,

co
nt

ro
len

gin
ee

rs
.ir



188 8 Experimental Results

will be designed. The behavior desired for the closed loop is defined by the reference
model

Td(z) = 0.1

z − 0.9
.

With this reference model and model class, Assumption By is satisfied provided
that the process’ transfer function is of order at most equal to two. The literature
on modeling of electrically heated temperature processes indicates that this is the
case here.4 The process operates at temperatures around 80°C and the references
to be followed are step changes of amplitude equal to 20°C. Given that the system
noise is under 1°C, this provides a large SNR. In the experiments performed for
data collection the reference signal will have a similar amplitude, so that the signal-
to-noise ratio is high and the system noise will have little effect on the controller
design. This large SNR and full order controller (Assumption By satisfied) is the
ideal situation from a control design perspective, which is the reason why it is called
the “favorable scenario”. We will design the controller using a direct and an iterative
method, starting with the direct method.

8.3.1.1 Direct Method

The Virtual Reference Feedback Tuning with instrumental variables is used to opti-
mize the reference tracking performance. Two open-loop experiments are performed
to collect the data and form the instrumental variable to be used in the VRFT calcu-
lations. The same input was used in both experiments:

u(t) = 10 + 5 sin

(
2πt

60

)

− 5 sin

(
2πt

30

)

+ 5 sin

(
2πt

10

)

and N = 420 samples of this signal (1260 seconds) have been collected. The input
signal (u(t)) is shown in Fig. 8.22 and the resulting output signals of each experi-
ment (y1(t) and y2(t)) are shown in Fig. 8.23. Notice that this input is sufficiently
rich of order seven (SR7), much more than the minimum richness required for opti-
mization of the three parameters in the PID controller.

The data collected in the open-loop experiment were utilized to design a PID
controller with the VRFT-IV method, with the IV generated by the repeated experi-
ment. The following controller has been obtained:

CVR(z, ρ̂) = [
0.6684 0.0178 0.6808

]
⎡

⎣
1
z

z−1
z−1
z

⎤

⎦ . (8.17)

4We will show later, in Sect. 8.3.1.3 that this is indeed the case.
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Fig. 8.22 Input collected from the open-loop experiment

Fig. 8.23 Output collected from the open-loop experiment

The controller CVR(z, ρ̂) just designed was included in the loop and a reference
signal consisting of a step change from 70°C to 90°C was applied. Figure 8.24
shows the resulting closed-loop response y(t, ρ̂), along with the desired response
yd(t) (the response of the reference model to this same reference signal). As ex-
pected from the favorable conditions in this scenario, the resulting response is very
similar to the desired one, showing that the VRFT method is indicated for this case.
It can be inferred from the plots that the difference between the two signals is due ex-
clusively, or almost, to the noise; in other words, Jy(ρ̂) ≈ 0 and thus JT (ρ̂) ≈ Je(ρ̂).
The cost is estimated with 100 samples of the signals plotted in Fig. 8.24, resulting
in J̌ (ρ̂) = 0.26°C per sample. Since Assumption By is satisfied and the SNR is
large, it is expected that CVR(z, ρ̂), obtained through the application of the VRFT
method, will be close to Cd(z).
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Fig. 8.24 Closed-loop response with the controller CVR(z, ρ̂)

8.3.1.2 Iterative Method

VRFT seems to fit like a glove to this favorable scenario, and iterative optimization
unnecessary. But let us explore the use of an iterative data-driven method anyways.
This will illustrate the concept of cost function shaping, which are observed more
clearly in this favorable scenario, and will also serve to give even more evidence in
favor of the choice of VRFT in this scenario.

It was shown in Chap. 6 that the iterative methods can converge to the globally
optimum controller even for very poor initial conditions, if the cost function has
an appropriate shape. This happens if the data are collected through an experiment
where the reference spectrum is sufficiently concentrated in a particular frequency
range. In the following design we will explore the choice of the reference spec-
trum and show the results of this choice. We will use the Iterative Feedback Tuning
method, starting with the following initial controller

C(z,ρ0) = [0.55 0.02 0.00 ]
⎡

⎣
1
z

z−1
z−1
z

⎤

⎦ , (8.18)

which is far from optimal. Figure 8.25 shows the step response from 70°C to 90°C
with the controller C(z,ρ0). Using 100 samples of this signal the cost function is
evaluated to J̌T (ρ0) = 6.34°C per sample.

Initially, the following reference signal is applied:

r1(t) = 80 + 10sq

(
2πt

200

)

.

This reference signal, which is not the reference that the system is supposed to
track, is applied for controller tuning purposes, in order to guarantee persistence of
excitation. This signal is sufficiently rich of order three (even if only the first har-
monic is considered), as required, and causes the process to operate around 80°C;
its amplitude is 20°C, guaranteeing a large SNR. It is likely that the application
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Fig. 8.25 Closed-loop response with the initial controller C(z,ρ0)

of such a large probe signal would not be viable in many practical industrial ap-
plications, which is one reason why the conditions are not usually as favorable in
practice. The spectrum of this reference is concentrated at a very low frequency
range, which is appropriate to eliminate the possibility of local maxima or minima
in the search space. That is, by choosing this particular reference the cost function
has been shaped to have no other extrema than the global minimum, as explained in
Chap. 6.

The IFT method actually minimizes the composite cost JT (ρ), but given the
large SNR, JT (ρ) ≈ Jy(ρ). On the other hand, under Assumption By the global
minimum of Jy(ρ) is always the same regardless of the reference input. So, the
global minimum in the following optimization will not be significantly changed by
changing the reference from a step to the reference r1(t) above during the tuning
procedure.

The IFT algorithm ran for five iterations using the step size sequence proposed
by the first method presented in the Chap. 5, Sect. 5.4.2. The controller parameters
at each iteration are shown in Table 8.5, along with the cost evaluated at each itera-
tion. After five iterations the cost was reduced to J̌T (ρ5) = 0.495°C, achieving the
following controller:

C(z,ρ5) = [0.7168 0.01954 −0.053 ]
⎡

⎣
1
z

z−1
z−1
z

⎤

⎦ .

We observe in Table 8.5 the convergence of the controller parameter; conver-
gence after iteration number five becomes very slow and is not presented. The pa-
rameters kp and ki obtained using the IFT method (in C(z,ρ5)) are very close to
their corresponding values in the controller designed by VRFT—CVR(z, ρ̂). The
derivative gain kd , on the other hand, is smaller; this is to be expected since the
derivative action tends to amplify the noise and this effect is penalized in the per-
formance criterion JT (ρ), but not in Jy(ρ). The step response of the closed-loop
system with C(z,ρ5) is shown in Fig. 8.26, where it is seen that the performance is
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Table 8.5 Controller
evolution C(z,ρi) using the
reference signal r1(t)

i ρT
i μi J̌ 1

T (ρi )

0 [0.5500 0.20000 0.00000] 0.0930 6.34

1 [0.6973 0.03970 −0.04672] 0.0116 1.76

2 [0.6641 0.01956 −0.05345] 0.0058 0.67

3 [0.7069 0.02960 −0.04977] 0.0003 1.23

4 [0.7118 0.02457 −0.05141] 0.0003 0.88

5 [0.7168 0.01954 −0.05304] 0.0003 0.49

Fig. 8.26 Closed-loop response with the controller C(z,ρ5)

close to, though noticeably different from, the one obtained with the VRFT method,
presented in Fig. 8.24.

Let us now explore the choice of the reference signal used to compute ∇̂J T (ρ).
This choice is critical to ensure convergence of the iterative algorithm to the global
minimum because the shape of the cost function is strongly related to the reference
signal, as seen in Chap. 6.

Consider the following reference signal

r2(t) = 80 + 10 sin

(
2πt

58

)

whose spectrum spreads to higher frequencies than the spectrum of r1(t). Applying
the IFT method with the same initial controller C(z,ρ0), but now with data collected
from an experiment using r2(t) as the reference signal, the evolution of the controller
parameter is as shown in Table 8.6. Observe that the cost function being minimized
is not the same as before, because the reference signals are different. Accordingly,
we have named this new cost function J 2

T (ρ), in opposition to the notation J 1
T (ρ)

used for the cost function resulting from the reference r1(t).

co
nt

ro
len

gin
ee

rs
.ir



8.3 A Temperature Process 193

Table 8.6 Controller
evolution C(z,ρi) using the
reference signal r2(t)

i ρT
i μi J̌ 2

T (ρi )

0 [0.5500 0.2000 0.0000] 0.0116 3.60

1 [0.5327 0.2343 0.0029] 0.0116 3.51

2 [0.4996 0.2738 0.0128] 0.0116 3.43

3 [0.4730 0.3116 0.0197] 0.0116 3.39

Fig. 8.27 Closed-loop response with the controller C(z,ρ3)

After three iterations, the controller

C(z,ρ3) = [0.4730 0.3116 0.0197]

⎡

⎣
1
z

z−1
z−1
z

⎤

⎦

has been achieved and the cost has been reduced from J̌ 2
T (ρ0) = 3.60°C to J̌ 2

T (ρ3) =
3.39°C per sample. Additional iterations result in very little change in the controller
parameters and the cost function’s value. The behavior of the closed-loop system
with the controller C(z,ρ3) is shown in Fig. 8.27.

Despite the fact that the cost is being reduced, the parameters of the controller
are getting farther away form the global minimum; the algorithm seems to be con-
verging to a local minimum of J 2

T (ρ). The initial controller C(z,ρ0) is not in the do-
main of attraction of the global minimum. The estimated cost calculated with a step
reference is J̌

step
T (ρ3) = 10.00°C, significantly higher than the J̌

step
T (ρ0) = 6.34°C

obtained with the initial controller C(z,ρ0) for the same step reference.

8.3.1.3 A Performance Benchmark—Model-Based Design

In the following, a model-based design for this temperature process will be briefly
presented. The purpose is to establish a benchmark for the performance that can be
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Table 8.7 Comparison
between the temperature
controllers obtained using
different methods

Method Controller Optimal ρT J̌T (ρ)

model-based C(z,ρd) [0.6750 0.0200 0.7930] 0.22

VRFT CVR(z, ρ) [0.6684 0.0178 0.6808] 0.26

IFT C(z,ρ5) [0.7168 0.0195 −0.0530] 0.49

achieved, and thus assess the quality of the results obtained with the VRFT and IFT
methods.

A prediction error identification has been performed, resulting in the following
model:

G(z) = 0.067209z

(z − 0.9703)(z − 0.5492)
.

The parameters of this transfer function have been identified to a precision better
than 3 × 10−3. This model was not used at all in the control designs presented
before; it has been identified only to confirm the hypothesis that the process is well
described by a model of order two and the ideal controller belongs to the class we
considered (PID controllers) in this example.

Based on this model, the ideal controller is calculated as

Cd(z) = [0.675 0.02 0.793 ]
⎡

⎣
1
z

z−1
z−1
z

⎤

⎦ ,

whose parameters are similar to the ones obtained using the VRFT method. Again,
kp and ki obtained using the IFT method are still similar to ρd , as shown before.

Applying a reference step to the closed-loop system with the controller Cd(z)

results in J̌T (ρd) = 0.22°C. Notice that Jy(ρd) ∼= 0, which implies that the cost
obtained is due only to the noise contribution; that is, it is fair to say that

J̌T (ρd) ∼= J̌e(ρd) ∼= 0.22°C.

This is thus the optimal value that could be expected for JT (ρ) when using
VRFT, and it is also indicative of the value that we can expect to obtain with IFT.
The results obtained in each method are compared in Table 8.7.

8.3.2 Tough Case

Consider now the control of the same temperature process, with the same reference
model

Td(z) = 1 − a

z − a
,
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8.3 A Temperature Process 195

but now with the controller constrained to a PI structure

C(z,ρ) = [�1 �2 ]
[

z
z−1

1
z−1

]

.

With this controller class and reference model, Assumption By would require the
process model to be of order one; we are now in the mismatched case. Besides, the
design will be carried out with references of amplitude equal to five, so that the SNR
is significantly smaller than in the previous scenario. These two aspects complicate
the data-driven design, which is why this is called the “tough scenario”.

8.3.2.1 Direct Method

The VRFT method will be applied using both the IV and LS estimates; this exer-
cise will serve the purpose of illustrating the statistical properties of both estimates,
quantifying them in a practical example. We will design the controllers for three
different values of the parameter a in the reference model: a = 0.8, a = 0.9 and
a = 0.95.

In this mismatched control situation, the signals must be filtered in order to ap-
proximate the minima of J VR(ρ) and Jy(ρ). The input signal will be a square wave
applied in open-loop, so that the filter can be computed as in (3.18), where the spec-
trum of the reference signal and the spectrum of the input signal are the same. So,
the filter’s transfer function is given by

L(z) = Td(z)(1 − Td(z)).

The controller parameter resulting from VRFT design is a random variable whose
statistical properties we want to assess. In order to do that, 100 Monte Carlo exper-
iments have been performed to collect data. The input for each one of these experi-
ments was the same, as it is shown in Fig. 8.28; the output for one of the experiments
is presented in Fig. 8.29. It is seen that the noise level is far from negligible.

Since data from two experiments are needed to design a controller using the
instrumental variables approach, these 100 data sets were combined in pairs, re-
sulting in 50 pairs. For each pair of data sets, a controller has been designed by
means of VRFT with the IV approach. We have also designed 50 different con-
trollers using the least squares estimate, in each case using one of the data sets of
the corresponding pair. Each one of these 100 controllers designed by VRFT—50
designed with IV and 50 designed with LS—was applied to the system. This whole
procedure has been repeated for the three reference models—a = 0.8, a = 0.9 and
a = 0.95. The results obtained for all these 300 controllers are presented and ana-
lyzed next.

First of all, let us verify the average performance obtained with each method and
each reference model. To do that, calculate the mean controller in each case, which

co
nt

ro
len

gin
ee

rs
.ir



196 8 Experimental Results

Fig. 8.28 Input of one open-loop experiment in the thermal process

Fig. 8.29 Output of one open-loop experiment in the thermal process

is given by

ρm = 1

50

50∑

i=1

ρi.

Table 8.8 shows all these mean controllers and the corresponding costs, which are
considerably lower with the IV estimate, as expected. Notice that the controllers ob-
tained with the IV estimates approximately cancel out the process’ dominant pole at
z = 0.97, just like the ideal controller Cd(z) calculated in Sect. 8.3.1.3 did. It is also
worthwhile to compare these mean controllers to Cd(z), evaluating the mismatch
factor K(z,ρm) = C(z,ρm) − Cd(z).

The step responses of the closed-loop system with the mean controllers are pre-
sented in Figs. 8.30–8.35. Figures 8.30, 8.31, 8.32 and 8.33 show the step response
and the controller’s output for a = 0.8, obtained using LS and IV (the mean con-
troller in each case). The step response obtained using IV is significantly closer to
the desired response than the one obtained with LS. Figures 8.34 and 8.35 present
the step responses (we omit the control signal in this case) obtained when using
a = 0.95. The graphic results confirm the results presented in Table 8.8: for this
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8.3 A Temperature Process 197

Table 8.8 Mean value of the controllers for different values of a

a LS IV

num(CLS(z, ρm)) J̌T (ρ) num(CIV(z, ρm)) J̌T (ρ)

0.80 0.27590(z − 0.8986) 4.1296 1.34440(z − 0.9717) 1.4012

0.90 0.33838(z − 0.9474) 2.1279 0.70074(z − 0.9709) 0.5869

0.95 0.27462(z − 0.9648) 0.7479 0.33938(z − 0.9704) 0.4696

Fig. 8.30 Step response with the mean controller obtained for Td(z) with a = 0.80 and LS

choice of reference model, the IV estimate still gives a better result, but the differ-
ence is much smaller than for a = 0.8.

Let us now analyze the distribution of the controllers around the mean value,
by computing the sample variance of the controller parameters. Figure 8.36 shows
the parameters of the 100 controllers designed based on the reference model with
a = 0.90. The following data are provided for each estimate (IV and LS): the 50
parameters obtained, the mean value of the parameters, and an ellipse that repre-
sents the covariance. Specifically, each ellipse represents the corresponding 95%
confidence interval, that is, each ellipse encloses 95% of the parameters calculated.
It is observed that the variance of the parameters computed with IV is consider-
ably larger than the variance of the parameters computed with LS, but it has also
been seen that the LS yields in average a worse performance—a more biased es-
timate of Cd(z). Figure 8.37 shows the same results for the reference model with
a = 0.95.

co
nt

ro
len

gin
ee

rs
.ir



198 8 Experimental Results

Fig. 8.31 Controller’s output with the mean controller obtained for Td(z) with a = 0.80 and LS

Fig. 8.32 Step response with the mean controller obtained for Td(z) with a = 0.80 and IV
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8.3 A Temperature Process 199

Fig. 8.33 Controller’s output with the mean controller obtained for Td(z) with a = 0.80 and IV.
The controller’s output goes below zero, but this is not applied to the process—the control action
is saturated at zero

Fig. 8.34 Step response with the mean controller obtained for Td(z) with a = 0.95 and LS
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Fig. 8.35 Step response with the mean controller obtained for Td(z) with a = 0.95 and IV

Fig. 8.36 Ellipse plots (using IV and LS) estimated from 50 parameters obtained for Td(z) with
a = 0.90
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Fig. 8.37 Ellipse plots (using IV and LS) estimated from 50 parameters obtained for Td(z) with
a = 0.95

Fig. 8.38 Ellipse plots (using IV and LS) estimated from 50 parameters obtained for Td(z) with
a = 0.80
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For the case of the reference model with a = 0.8 the results are shown in
Fig. 8.38, where it is seen that the design can fail in this case. Even though the VRFT
method with IV provides a good performance in the average, as seen previously, it is
observed in Fig. 8.38 that the IV method sometimes results in controller parameters
that are very far from the average—the covariance of the estimate is huge. These
“outliers” would result in a performance very different from the desired one, and
many times in an unstable behavior.

Last, but not least, Figs. 8.39 and 8.40 present histograms of the cost function
obtained with the controllers computed for a = 0.9 with LS and IV, respectively. It
can be seen that the worst controller obtained with IV yields a similar performance
to the best controller obtained with LS. It is also observe that most instances of
the IV design result in costs evaluated below 1°C per sample. Observe that a cost
of 1°C per sample represents roughly a 5% average difference between the desired
response and the response obtained, since the reference amplitude is 20°C.

8.3.2.2 Iterative Design

Let us now present two iterative data-driven designs for the same problem. One
design will be made to optimize reference tracking performance, using the CbT
method, and another will minimize the composite performance criterion, using the
IFT method; both use the first-order reference model with a = 0.9. The iterative
methods use data collected in closed loop, and the reference signal used to collect
data is given by

r(t) = 100 + 2.5sq

(
2π

200

)

.

The initial controller in the loop is given by

C(z,ρ0) = [1 −0.9 ]
[ z

z−1
1

z−1

]

.

The closed-loop performance with the initial controller is presented in Figs. 8.41
and 8.42.

The application of the IFT method results, at each iteration, in the controllers and
the cost values shown in Table 8.9. The performance is significantly improved by
the iterative design, reducing the cost in more than one order of magnitude, down to
J̌T (ρ9) = 0.065875. Figures 8.43 and 8.44 show the closed-loop behavior with the
controller obtained after 9 iterations.

The CbT method was also applied, and the results are presented in Table 8.10,
and Figs. 8.45 and 8.46. The CbT design has also improved significantly the perfor-
mance. The fact that the CbT converges to a larger value of the composite cost than
IFT is expected, since CbT does not minimize this particular cost function. Still, the
performances obtained with each one of the two iterative design methods are quite
similar.
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Fig. 8.39 Histogram plot obtained for a Td (z) with a = 0.90 using LS

Fig. 8.40 Histogram plot obtained for a Td (z) with a = 0.90 using IV
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Fig. 8.41 Output signal with the initial controller

Fig. 8.42 Input signal with the initial controller
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Fig. 8.43 Output signal with the controller obtained at iteration nine of the IFT method

Fig. 8.44 Controller’s output with the controller obtained at iteration nine of the IFT method
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Fig. 8.45 Output signal with the controller obtained at iteration nine of the CbT method

Fig. 8.46 Controller’s output with the controller obtained at iteration nine of the CbT method
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Table 8.9 Controller
evolution using IFT i ρi J̌T (ρi )

0 [1.0000 −0.9000] 0.7314983047

1 [0.9127 −0.9029] 0.1357317944

2 [0.9211 −0.9026] 0.1053474675

3 [0.8083 −0.7898] 0.0771399942

4 [0.7363 −0.7178] 0.0693600716

5 [0.7046 −0.6861] 0.0661818423

6 [0.6987 −0.6801] 0.0645949295

7 [0.7252 −0.7057] 0.0716331607

8 [0.6988 −0.6796] 0.0655598452

9 [0.7047 −0.6854] 0.0658755918

Table 8.10 Controller
evolution using CbT i ρi J̌T (ρi )

0 [1.0000 −0.9000] 0.6581802296

1 [0.9273 −0.8956] 0.1312727723

2 [0.9210 −0.8953] 0.0877604872

3 [0.9201 −0.8951] 0.1036740312

4 [0.8970 −0.8721] 0.1074603629

5 [0.8783 −0.8537] 0.1052306820

6 [0.8589 −0.8346] 0.0957999872

7 [0.8394 −0.8152] 0.0908681376

8 [0.8205 −0.7965] 0.0842272289

9 [0.8098 −0.7860] 0.0860577893
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