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PREFACE 

Effective control concepts and applications date back over millennia. 
One very familiar example of this is the windmill. It was designed to derive 
maximum benefit from windflow, a simple but highly effective optimization 
technique. Harold Hazen's 1932 paper in the Journal of the Franklin Institute 
was one of the earlier reference points wherein an analytical framework for 
modem control theory was established. There were many other notable land- 
marks along the way, including the MIT Radiation Laboratory Series volume 
on servomechanisms, the Brown and Campbell book, Principles of Servo- 
mechanisms, and Bode's book entitled Nem'ork Analysis and Syntheses Tech- 
niques, all published shortly after mid-1945. However, it remained for 
Kalman's papers of the late 1950s (wherein a foundation for modem state 
space techniques was established) and the tremendous evolution of digital 
computer technology (which was underpinned by the continuous giant ad- 
vances in integrated electronics) for truly powerful control systems techniques 
for increasingly complex systems to be developed. Today we can look for- 
ward to a future that is rich in possibilities in many areas of major signifi- 
cance, including manufacturing systems, electric power systems, robotics, 
and aerospace systems, as well as many other systems with significant eco- 
nomic, safety, cost, and reliability implications. Thus, this volume is devoted 
to the most timely theme of "Discrete-Time System Analysis and Design 
Techniques." 

The first contribution to this volume is "H2-Optimal Control of Discrete- 
Time and Sampled-Data Systems," by Tongwen Chen and Bruce A. Francis. 
This contribution presents a state space solution to the discrete He control 
problem and also presents direct formulas for an H2-optimal sampled-data 
control problem with state feedback and disturbance feedforward. The deri- 
vations presented in this contribution are new and quite self-contained, with 
the derived formulas being applicable to the sampled-data problem via the 
powerful lifting technique, which is described in the latter part of this chapter. 
As such, this is a most important contribution with which to begin this 
volume. 

The next contribution is "Techniques for Reachability in Input Con- 
strained Discrete Time Linear Systems," by Paolo d'Alessandro and Elena 
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x PREFACE 

De Santis. Constraints on the input of a discrete-time system result in 
constraints (reachability) on the system state. Therefore, this issue is of essen- 
tial importance in the analysis and design of discrete-time systems. This con- 
tribution is an in-depth treatment of the many aspects involved in this essential 
issue. 

The next contribution is ~'Stabilization, Regulation, and Optimization 
of Multirate Sampled-Data Systems," by Patrizio Colaneri, Riccardo Scatto- 
lini, and Nicola Schiavoni. There are two primary reasons for the importance 
of multirate digital control in practice. One of these is the fact that, in practice 
in many diverse applications, sensors and actuators distributed throughout a 
complex system involve different sampling rates, i.e., multirate sampling. The 
second reason rests on the fact that the use of multirate and periodically time- 
varying controllers can significantly improve the closed-loop performance of 
a sampled-data system in terms of model matching, sensitivity reduction, 
disturbance rejection, and pole and zero assignment with state feedback. This 
contribution is an in-depth treatment of these issues, and, as such, is also an 
essential element of this volume. 

The next contribution is "Maximizing the Fisher Information Matrix 
in Discrete-Time Systems," by Wendy L. Poston, Carey E. Priebe, and O. 
Thomas Holland. One of the most important aspects of the design and analysis 
problem for discrete-time systems is that of developing and verifying a mate- 
rial model of the system to which discrete-time control is being applied. One 
of the most important methods for model verification is the Fisher Information 
Matrix Technique. This contribution is an in-depth treatment of this technique, 
including illustrative examples for model development and verification. 

The next contribution is "Discrete-Time Constrained Linear Systems," 
by Jean-Claude Hennet. The existence of hard constraints on state and control 
variables often generate problems in the practical implementation of control 
laws. Methods for generating control techniques which avoid state or input 
(control) saturations and including these aspects in the system design are 
presented in this contribution. Numerous examples are presented throughout 
this contribution which illustrate the effectiveness of the techniques presented. 

The next contribution is "Digital Control with H~ Optimality Criteria," 
by Hannu T. Toivonen. The limitations of standard continuous and discrete 
design methods in the treatment of sampled-data control systems have re- 
cently led to the development of a robust control theory for sampled-data 
control systems. This contribution presents the various approaches to the de- 
velopment of robust control systems by means of solving the sampled-data 
H~ control problem. Several major new issues and techniques are also pre- 
sented in this contribution. 

The next contribution is "Techniques in On-Line Performance Evalua- 
tion of Multiloop Digital Control Systems and Their Application," by Carol 
D. Wieseman, Vivek Mukhopadhyay, Sherwood Tiffany Hoadley, and An- 
thony S. Pototzky. This contribution develops a controller performance eval- 
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PREFACE xi 

uation (CPE) methodology to evaluate the performance of multivariable 
digital control systems. The power and utility of the method is exemplified in 
this contribution through its utilization and validation during the wind-tunnel 
testing of an aeroelastic model equipped with a digital flutter suppression 
controller. Through the CPE technique a wide range of sophisticated real-time 
analysis tools are available for rather complex discrete-time system problems. 

The final contribution to this volume is "Impulse Control of Piecewise 
Deterministic Systems," by Oswaldo L. V. Costa. There is a wide and diverse 
variety of discrete-time systems where control is taken by intervention; that 
is, the decision to act or apply control is taken at discrete times. In this contri- 
bution the impulse control problem of piecewise deterministic processes 
(PDPs) is addressed. Powerful computational techniques are presented and 
illustrated. 

The contributors to this volume are all to be highly commended for their 
contribution to this rather comprehensive treatment of discrete-time system 
analysis and design techniques. The contributors to this volume have pro- 
duced a modern treatment of the subject which should provide a unique ref- 
erence on the international scene for individuals working in many diverse 
areas for years to come. 
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7-/2-Optimal Control of Discrete-Time 
and Sampled-Data Systems 

Tongwen Chen 
Dept. of Electrical and Compute r  Engineering 

University of Calgary 
Calgary, Alber ta  

Canada  T2N 1N4 

Bruce A. Francis 
Dept. of Electrical Engineering 

University of Toronto 
Toronto, Ontario 

Canada  M5S 1A4 

A b s t r a c t  

This paper gives a complete state-space derivation of the 
discrete-time 7"/2-optimal controller. This derivation can be 
extended to treat a sampled-data 7-/2 control problem, resulting 
in a new direct solution to the sampled-data problem. A design 
example for a two-motor systems is included for illustration. 

I. I n t r o d u c t i o n  

A recent trend in synthesizing sampled-data systems is to use the 
more natural continuous-time performance measures. This brought 
solutions to several new %/2-optimal sampled-data control problems 
[1, 2, 3], each reducing to an 7-/2 problem in discrete time. 

Discrete-time 7-/2 (LQG) theory was developed in the 1970's, see, 
e.g., [4, 5, 6, 7, 8, 9]. As in the continuous-time case, the discrete 
optimal controller is closely related to the solutions of two Riccati 
equations. In [10], the solution to a continuous-time 7-/2-optimal 
control problem was rederived using the state-space approach. This 

CONTROL AND DYNAMIC SYSTEMS, VOL. 71 
Copyright �9 1995 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 
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2 TONGWEN C H E N  A N D  B R L C E  A. FRANCIS 

gives a clean treatment of the  problem and provides compact for- 
mulas for the optimal controller. Since complete, general formulas 
for the  discrete optimal colltroller are not readily available in the 
literature, we ask the  question here, can a state-space treatment be 
accomplished for discrete-time 'Ha problems? 

T h e  goal in this paper is twofold: t o  present a state-space solution 
t o  the discrete 'Hz control problem and t o  give direct formulas for an 
'Ha-optimal sampled-data control problem with s ta te  feedback and 
dis turl~ance feedforward. Tllougli the results in the discrete-time 
case are known in various forms, we believe the derivation is new 
and quite self-contained, and therefore has some pedagogical value. 
Moreover, the  formulas derived can be applied to  the sampled-data 
problem via tlle powerful lifting technique [1 1, 12, 13, 1.11. 

The  organization of the paper is as follows. In  the nest section 
we collect and prove some preliminary results on Riccati equations; 
the  presentation follows closely tha t  in [lo] in conti~luous time. Sec- 
tion 111 gives a complete state-space derivation of the discrete-time 
'Hz-optimal control, first via s ta te  feedback and disturbance feedfor- 
ward and then via dynamic output  feedback. Section IV presents 
new direct formulas for a sampled-data If2 problem using s ta te  mea- 
surement. In Section V we apply the  optimal sampled-data control 
in Section IV t o  a two-motor system and compare with the optimal 
analog control. Finally, concluding remarks are contained in Section 
VI. 

Tlie notation in this paper is quite s tandard:  C is tlle complex 
plane, D C C is the open unit disk, and DD is tlle boundary of D, 
namely, the unit circle. Also, Z is the set of all integers and Z+ (Z-)  is 
the  nonnegative (negative) subset of Z .  Tlle space C2(Z+), or simply 
C2, collsists of all square-sulnniable sequences. perhaps vector-valued, 
defined on Z+.  Similarly for E2(Z) and E2(Z-). T h e  discrete-time 
frequency-domain space 'H2(D), or simply 'H2, is the Hardy space 
defined on D. \.lie use R'H2 for the real-rational subspace of 'Hz. 
I11 discrete time. we use A-transforms instc)ad of ,--transforms, where 
A = z-I. If a linear discrete system G has a state-space realization 
( A ,  B, C ,  D),  then we denote the transfer rnatris D + AC(I - AA)-'B 

co
nt

ro
len

gin
ee

rs
.ir



H,- OPTIMAL CONTROL 

Finally, g"(X) stands for the transposed matrix g(l/X)'. 

11. Riccat i Equation 

I t  is well-known tha t  Riccati equations play an important  role in the  
'Hz optimization problem. The  solution of a Riccati equation can 
be obtained via the  stable eigenspace of tlie associated symplectic 
matrix if the s ta te  transition matrix of the  plant is nonsingular. If 
this matrix is singular, as is the case when the  plant lias a time delay, 
tlien the s.vmplectic matrix is 11ot defined; but we can use tlie stable 
generalized eigenspace of a certain matrix pair [9]. 

Let il, Q,  R be real n x n matrices with Q and R symmetric. 
Define the  ordered pair of 2n x 2n matrices 

A pair of matrices of this form is called a synzplectic pair. (This  
definition is not t he  most general one.) Note t ha t  if A is nonsingular, 
then H T ' H ~  is a symplectic matrix. 

Iritroduce the 2n x 2n matrix 

I t  is easily verified tha t  I l l  J t I i  = H 2 J l i a .  Thus the  generalized 
eigenvalues (including those a t  infinity) for the matrix pair 11 (i.e., 
those numbers X satisfying I l l z  = XH2x  for some nonzero z )  are 
symmetric about  the unit circle, i.e., X is a generalized eigenvalue iff 
1 / X  is [9]. 

Now we assun.~c N llas no ge~leralized eigenvalues on 389. Then 
it must have it inside and 72 outside. Thus the two generalized 
eigenspaces & ( H )  and X , ( N ) ,  corresponding t o  generalized eigen- 
values inside and outside tlie unit circle respectively, both have di- 
mension n. Let us focus on the  stable subspace X , ( W ) .  There exist 
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TONGWEN CHEN AND BRUCE A. FRANCIS 

n x n matrices X 1 and X2 such that  

[Xl] 
A ' i ( H ) - I m  X2 " 

Then for some stable n • n matr ix Hi, 

[ ] [Xl] H~ X1 - H2 Hi .  
X2 X2 

(1) 

Some properties of the matr ix  X~X2 are useful. 

L e m m a  1 Suppose H has no eigenvalues on OD. Then 

(i) X{X2 is symmetric; 

(ii) X{X2 >_ O if R >_ O and Q >_ O. 

P r o o f  Rewr i te  (1) as two equations" 

AX1 - X I  Hi  + RX2Hi (2) 

-- Q X 1  + X 2  - A' X2 Hi. (3) 

Par t  (i) can be derived easily from these two equations (see, e.g., 
�9 - /  " t  " [15]). For part  (ii), we define M "- XaX2 - X2X, and pre-multiply 

(2) by H[X; to get 

' " - H [ M H  + H '  "' H i X 2 A X 1  i i X 2 R X 2 H i  �9 (4) 

Take transpose of ( 3 ) a n d  then post-multiply by X1 to get 

- X{QX1 + 3 1 -  H[X(~AX1. (5) 

Thus equations (4) and (5) give 

I ~-I - I  H [ M H i -  M + HiX2RX2Hi + ~IQX1 - O. 

This is a Lyapunov equation in M. Since Hi is stable, tile unique 
solution is 

(ND 

AI - E tt~k(H[X~ RX2Hi + X{QXl)Hik,  
k=O 
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H~- OPTIMAL CONTROL 5 

which is _> 0 since R and Q are _> 0. 
m 

Now assume further that  X 1 is nonsingular, i.e., the two sub- 
spaces 

Xi(H), Im 

are complementary. Set X " -  X2X11 �9 Then 

[1] 
X i ( H ) - I m  X " (6) 

Note that  the n x n matrix X is uniquely determined by the pair H 
(though X1 and X2 are not), that  is, H ~ X is a function. We shall 
denote this function by Ric and write X = Ric(H). 

To recap, Ric is a function 7~ 2'~x2'~ ---, 7~ '~xn that  maps H to X,  
where X is defined by equation (6). The domain of Ric, denoted dora 
Ric, consists of all symplectic pairs H with two properties, namely, 
H has no generalized eigenvalues on 0D and the two subspaces 

Im[~ 
are complementary. 

Some properties of X are given next. 

L e m m a  2 Suppose H E dora Ric and X -  Ric(H). Then 

(i) X is symmetric; 

(ii) X satisfies the algebraic Riccati equation 

A ' X ( I  + R X ) - ~ A -  X + Q - o; 

(iii) (I  + R X ) -  1 A is stable. 

P r o o f  Setting X 1  - I and X2 - X gives (i) from Lemma 1; more- 
over, ( 2 ) a n d  (3)simplify to the following two equations 

A - ( I  + RX)Hi  (7) 
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6 TONGWEN CHEN AND BRUCE A. FRASCIS 

- Q  +X = A'XH,. (8) 

If A is nonsingular, so is Hi and then I + RX by (7) ;  if A is singular, 
by [16] (Lemma 1.5) I + RSy is still nonsingular. Hence 

This proves (iii) since Hi is stable. Substitute (9 )  into (8) to get the 
Riccati equation. 

Lemma 2 is quite standard, see, e.g.. [9. 1.51. Tlie following result 
gives verifiable conditiolls under wliich IZ belol~gs to do112 Ric. 

Theorem 1 Suppose H has the fornz 

with ( A ,  B )  stabilizable and (C.  A) having no  unobservable nzodes on  
dD. Then  H E d o m  Ric and Ric(H) > 0. 

Proof We first show that  H has no generalized eigenvalues on the 
unit circle. Suppose, on the contrary, that  ejs is a generalized eigen- 

value and a corresponding eigenvector; that is. 

Write as two equations and re-arrange: 

, j e ( ~ '  - ,-je)z = - c 1 c X .  (11) 

Pre-multiply (10) and (11) by e-jez* and x' respectively to get 

co
nt

ro
len

gin
ee

rs
.ir



H,- OPTIMAL CONTROL 

Take complex-conjugate of the latter equation to get 

_ l r C x l l  2 _ 
= I I B ' , I I  2. 

Therefore B ' z  - 0 and C x  - O. So from (10) and (11) 

(A  - eJ~ - 0 

( A - eJ~ - O. 

We arrive at the equations 

z * [ A  - e j ~  B ]  

C x 

- 0 

- O .  

By controllability and observability of modes on OD it follows that  
x - z - O, a contradiction. 

Next, we will show that  the two subspaces 

[0] 
A'i(H), Im I 

are complementary. As in the proof of Lemma 1 bring in matrices 
X1, X2, Hi to get equations (2) and (3), re-written as below (R = 
B B ' ,  Q = C ' C ) :  

A X 1  = X 1 Hi + B B ' X 2  Hi (12) 

- C ' C X 1  -t- X2 - A ' X 2 H i .  (13) 

We want to show that  X1 is nonsingular, i.e., Ker X1 - 0. First, it is 
claimed that  Ker X1 is Hi-invariant. To prove this, let x E Ker X1. 
Pre-multiply (12) by x~H[X~ and post-multiply by x to get 

I T r l  ~ r l  X I I I I x sl i .~2X zHix + H i X 2 B B  X2Hix  - O. 

Note that  since X ~ X 1  >_ 0 (Lemma 1), both terms on the left are >_ 0. 
Thus B ' X 2 H i x  - O. Now post-multiply (12) by x to get X I H i X  - O, 

i.e., H i x  E Ker X1. This proves the claim. 
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TONGWEN CHEN AND BRUCE A. FRANCIS 

Now to prove that  X 1 is nonsingular, suppose Oll the contrary 
that  Ker X1 # 0. Then HilKer X1 has an eigenvalue, IL, and a corre- 
sponding eigenvector, x" 

H i x  - # x ,  (14) 

I#1 < 1, 0 # x E  KerX1. 

Post-multiply (13)by  x and use (14)" 

( # A '  - 1 ) X 2 x  - O. 

If t~ - O, then X 2 x  - O. Otherwise, since B ' X 2 x  - 0 from B ' X 2 H i x  - 

0 and (14), we have 

x * X ~ [  A -1--. B ] - 0 .  

Then stabilizability implies X 2 x  - 0 as well. But if X l X  - 0 and 
X 2 x  - O, then x - 0, a contradiction. This concludes the proof of 
complementarity. 

Now set X " -  R i c ( H ) .  By Lemma 1 ( R -  B B ' , Q -  C ' C ,  X I  = 

I, X 2 - X ) , X > O .  
II  

This theorem has various forms ill the literature; for example, in 
[6] similar results were given when tile matrix A is nonsingular and 
in [9] an indirect proof was given that  X1 is nonsingular. Our proof 
here is along the lines of a continuous-time proof in [17]. 

III. D i s c r e t e - T i m e  Case  

This section rederives in a state-space approach the perhaps-known 
results for a discrete-time 7-/2-optimal control problem. 

We begin with the s tandard setup shown in Figure 1. We have 
used dotted lines for discrete signals and will reserve continuous lines 
for continuous signals. The input r is s tandard white noise zero 
mean, unit covariance matrix. The problem is to design a K that  
stabilizes G and minimizes the root-mean-square value of ~; it can 
be shown that  this is equivalent to minimizing the norm on 7-12 of 
the transfer matrix from ~o to ~. 
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H~,- OPTIMAL CONTROL 

G 

V5 

............ ~ K 

l 0a 

13 

Figure 1" Tile s tandard  discrete-t ime setup. 

A. State  Feedback and Dis turbance  Feedforward 

First  we allow the controller to have full information.  In this case, as 
we will see, the opt imal  controller is a constant  s ta te  feedback with 
a d is turbance feedforward. With the exogenous input being some 
pulse function, say, w = co0ae (r is a constant  vector and ~Se the 
discrete unit pulse), we can even think of v as unconstrained.  The 
precise problem is as follows: 

�9 Given the system equations 

G" ~(k + 1) - A~(k) + Bled(to ) + B2u(]r ~ - -  r 
~(1r -- C1~(1r D11r + D12v(k) 

with tile assumptions 

(i) (A, B2) is stabilizable; 

(ii) D~2D1:2- I and D12; 

(iii) the matr ix  

A - A  

C1 

has full rank V,~ E 0D. 

D12 

�9 Solve the opt imizat ion problem 

mi,~ I1~112 2" 
vEg2e 
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10 TONGWEN CHEN AND BRUCE A. FRAUCIS 

Note that  for ease of presentation we initially allow v to be in 12,, the 
extended space for 12; however, the optimal v ,  to be seen later, will 
actually lie in e2. Assumptions (i) and (iii) are mild restrictions and 
(ii) basically means that  the number of outputs to be controlled is 
no less than the number of control inputs and the control weighting 
is nonsingular. If Di2DI2  is   ion singular but not identity, we can 
normalize it by defining the new v to be ( D ~ ~ D ~ ~ ) ' / ~ V .  

The setup can be depicted as in Figure 2, where the transfer 

Figure 2: The full-informatiol1 discrete-time setup. 

We will first derive the solution for a special case and then come 
back to  the general one. 

1. Orthogonal Case 

A11 additional assumption is now made: 

(iv) Di2C1 = 0. 

This assumption is an ortliogonality conditiol~: It  amounts to  or- 
thogonality of C1( and D12u i n  tlie output <. 

It follows readily from assumptions (iii) and (iv) that  ( C I ,  A )  has 
no unobservable modes on BD. Tlius by 'I'l~torem 1 the symplectic 

belongs to don2 Ric and, moreover, := R i c ( I I )  is > 0. Define the 
ma.trices 
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and the transfer matrix 

By Lemma 2, A + B 2 F  is stable and so 9,  E 723-12 

Theorem 2 The unique optimal control is v,,t = F( + Flw. More- 
over, 

mill 11C112 = Iljcwol12. 

In contrast with the full-information continuous-time ca.se where 
the  optimal control is a consta.nt s ta te  feedba.ck, the  discrete-time 
optimal control law involves a disturbance fecdforward term, and 
this is t rue even when Dl l  = 0. 

A useful trick is t o  cha.~lge varia.ble [lo].  Star t  with the system 
equa.tions 

and define a new control va.riable 

So in the  frequency doma.in 

where ic is as  above and i; is seen t o  be 

A t  B2.F 
gi(A) = [i:;] 

T h e  matrices j ,  and j ,  1ia.ve tlie following two useful properties: 
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12 TONGWEN CHEN AND BRLCE A.  FRANCIS 

Lemma 3 The matrix grij, belongs to 'R'Hi and 

Proof To simplify notation. def ne 

Then we have the power series representations 

Using these formulas, write j;ic as a series i n  A, wit11 both positive 
and negative powers. It remains to check that tlle coeficie~lts of 
XO, A, X2,. . . a re  all zero; this can be proved using the Riccati equation 
and the definitions of F and Fl. 

The proof of the second statement is sin1il;ir. W 

Proof of Theorem 2 Since v is free in t2,, so is v. Thus we can 
formally write in the time domain 

since 11 E t2, and by Lemma 3 G';G',wohd E L2(2-) .  Then in the 
frequency domain we can write 

Now note that  irgi = I + BkXB2 by Lemma 3 to get 

This equation gives the desired conclusion: The optimal fi is fi = 0 
(i.e., v = F[ + Flw) and the minimum norm of ( equals Ilbcwollz. 

With vOpt applied, the resultallt system is stable since it t B2F 
is stable; thus uOpt indeed lies in C2, as commented before. 
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H~,- OPTIMAL CONTROL 13 

2. G e n e r a l  Case  

Now we return to the situation at the start of Section III-A, without 
assumption (iv). Our approach is to reduce the problem via a change 
of variable to one where the orthogonality condition holds. 

Define a new control signal 

! 

Y n e w  - -  Y + D12C1~. (15) 

Note that Vnew is a free sequence in g2r if v is. The equivalent system, 
having { as its state vector too, is then shown in Figure 3, where 

" .................. Gnew U n e w  

Figure 3: The equivalent full-information setup. 

A _ B 2 D ~ 2 C  1 B1 B2 .] 
Dla D12 " 

The three assumptions made on G at the beginning of Section III-A 
are also satisfied by GnCw; for example, assumption (iii) is verified 
by the following matrix identity: 

[A i 0] [A 
C1 D12 -D'12C1 I (I  - D12D]2)C1 D12 " 

Moreover, G,~ew satisfies tile orthogonality condition 

Dt l2[( / -  D12D~12)C1] - O. 

Now invoke Theorem 2 to get the optimal Vnew, and then the optimal 
v via (15). 

Let us summarize. The given system is 

G:  ~(k+  1) = A ~ ( k ) +  B l ~ ( k ) + B 2 v ( k ) ,  ~ =~O~d 

~'(k) = Cl~(k)+  D11w(k)+ D12v(k) 
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14 TONGWEN CHEN A N D  BRUCE A .  FRASCIS 

and the  problem is min, IICI12. Under assumptions (i)-(iii), define 

Theorem 3 The unique ol>timnl control is uOpt = F( + F l u .  Alore- 
over. 

mill I l i l l 2  = 114c~~112. 

B. Output  Feedback 

Now we study tlle 'Hz-optimal cont1.01 problem posed a t  the s ta r t  of 
Section 111, where the measured output  $ does not have full infor- 
mation and therefore dynamic feedback is necessary. All discussion 
pertains t o  the  standard discrete-time setup. Let Tcw denote the  
closed-loop system froin w t o  i. i\Te say a causal, finite-dimensional, 
linear time-invariant controller h' is crdr-rzissible if it achieves internal 
stability. Our goal is t o  find an admissible I< t o  minimize Ilicwl12. 

Again, we will first do  the orthogonal case in detail and then 
present the solution for the general case. 

1. Two Special Problems 

For later benefit, we begin with two special 'Hz-optimal control prob- 
lems. 

T h e  first speciul problem has a G of the  form 

with the  assumptions 
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(i) (A, B2) is stabilizable; 

(ii) D~2[C1 D12 ] -  [0 
(iii) the matrix 

has full rank VA r OD; 

(iv) A -  B1C2 is stable. 

A - A  B2 ] 
C1 D12 

Since D21 - I,  the disturbance, w, enters the measurement directly. 
Define 

H 

X - 

F = 

i~c( :~ ) - 

A 0 I 

Ric(H) 
- ( I  + B~2XB2)-IB~2XA 

- ( I  + B'2XB2)-~(B'2XB~ + DI2DII) 
[ A + B 2 F  BI+B2F1 ] 

C1 + D12F Dll + D12F1 " 

Tile next result says that tile optimal controller achieves tile same 
performance as the optimal state feedback and disturbance feedfor- 
ward were the state and the disturbance directly measured. 

T h e o r e m  4 The unique optimal controller is 

~opt( A ) "-- [ A + B2 F - B2['1C2- B1C2 
[ F -  F1C2 

J~/~O re o vc r~ 
m~n Ili<~[12 - !1~112. 

K 

B1 + B2 F1 ] 
F~ ] 

P r o o f  Apply the controller h'opt and let 7/denote its state. Then 
the system equations are 

~(k+ l) 
r 

-- A~(]r BloJ(]r + B2u(]r 

- C1~(]r + DllW(]r D12u(]~) 
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16 TONGWEN CHEN AND BRUCE A. FRANCIS 

Defining E := ( - 1 1 ,  we get 

It is now easy to infer internal stability from stability of A + B 2  F and 
A - B1C2. For zero initial conditions on < and 77, we have ~ ( k )  0, 
i.e., q(k) = ((k). Hence 

This means tlmt has the same action as the optimal state feed- 
back a.nd disturba.nce feedforward. Thus by Theorem 2 Kept is opti- 
mal and in this case 

l l i c w l l a  = I l g c l l z .  

The proof that  IiOpt is unique can be obtained froin the proof of 
Theorem G below: For every admissible contl.oller the equation 

is va.lid; tlieii show t1ia.t the unique solution of i,, = 0 is tlie controller 
given. The deta.il is omitted. 

The second special problem is tlie dual of the first; so G has tlie 
form 

with the a.ssumptions 
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H 2- OPTIMAL CONTROL 17 

(i) (C2, A) is detectable; 

0 

(iii) the matrix 

has full rank VA E OD; 

A - A  
C2 D21 

(iv) A . -  B2C1 is stable. 

Define 

J 

y - 

L = 

L1 = 

~j(~) - 

([ A 0] [i c c2]) 
-BIB~ I ' 0 A 

Ric (J )  

- A Y C ~ ( I + C 2 Y C ~ )  -~ 

- ( D 1 1 D '  Y , -1 21 -~- e l  C;)(I + C~YC2) 
[ A Av LC2 B1 -~- LD21 .] 

C1 -~- L I C 2  D l l  + L ID21  " 

T h e o r e m  5 The unique optimal controller is 

]r "-  [, A + LC2 - B2 L1 C 2  - B2C1 
C1 +" LIC2 [ 

"1 
L - B2L1 / 

L1 ] 

Mo reo ve r, 

r a i n  Ili<~ll~ - IlOsll~ K 

P r o o f  Notice the duality" kopt is the unique optimal controller for !) 
"! 

iff kop t is the unique optimal controller for 0 ~. Then the results follow 
from Theorem 4. 

I 
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18 TONGWEN CHEN AND BRUCE A. FRANCIS 

2. Orthogonal Case 

Now consider the case with 

and with the following assumptions: 

( i )  ( A ,  B2) is sta.bilizable a.nd (C2,  A )  is detectable; 

(ii) [ CI Dl2 ] = [ 0 I ] and [ ] .;I = [ : ] ; 
(iii) the matrices 

A - A  B2 A - A  B1 [ 1 2 ] , [ 0 D 2 ~ ]  

have full rank V A  E 8D; 

The first parts of assumptions ( i ) - ( i i i )  ivere seen in  Section 111-A- 
1. The second parts of assumptions ( i ) - ( i i i )  are dual to tlieir first 
parts: Together they guarantee that the symplectic pair J introduced 
above belongs to  dom Ric. Finally, the second part of assumption (ii) 
concerns how the exogenous signal w enters G: The plant disturbance 
and the sensor noise are orthogonal, and the sensor noise weighting 
is normalized and nonsingular. 

Def ne 
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L  = -AYCi(I  + C 2 ~ C ~ ) - '  

L1 = (Fl Dkl + F Y C ~ ) ( I  + C Z Y C ~ ) - '  

R = ( I  + B ~ x B z ) ~ ' ~  

= 
R(L1C2 - F) I1(L1DZl B 1 + L D 2 1  - I ; )  1 .  

Theorem 6 The unique optimal controller is 

Moreover, 

mill I< i l ~ c u l l i  = l l i j c l l i  + l l g j l l g .  

T h e  first term in the minimum cost, Ilicll:, is associated with 
optimal control with s ta te  feedback and disturbance feedforward and 
the second, JJj Jl;, with optimal filtering. These two norms can easily 
be computed as follows: 

Here X and I.' also satisfy respectively the two Lyapunov equations 

Proof of Theorein 6 Let I i  be any admissible controller. Star t  
with the system equations 
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20 TONGWEN CHEN AND BRUCE A. FRANCIS 

and define a new control variable, u := v -  F ~ -  FlW, as in Section 
III-A-1. The equations become 

~r + 1) = (A + B2F),~(k) + (B1 + B2F,)w(k) + B2u(k) 

((k) = (Ca + D~2F)~(k) + (D~a + D~2Fa)w(k) + D~2u(k), 

or in the frequency domain 

~- Oc~+O~', 
where 

This implies that  

A + B 2 F  
Oi(A)-  C1 + D12F 

B2 ] 
D a 2  " 

i<~ - ~c + O~i~ ,  

where [ ~  is the transfer matrix from u to w. 
Lemma 3 .that 

Now u is generated as in Figure 4, where 

So it follows from 

, 9 1  . . . . . . . . . . . . . . . .  

G~ 

�9 . , .  

l) 

. . . . . . . . . . . . . .  

Figure 4" The system to generate u. 

B21 
C2 D21 0 

Note that  K stabilizes G iff K stabilizes G.  (the two closed-loop 
systems have identical A-matrices). So 

rain {li<~112 2 - I1~)c112 2 + rain I IR i~ I I  2 K K 2" 
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Define 

V n e  w ---- RU 

Kn,w = RK 
_ 0_ ] 

,~ne~ 0 I 0 1 " 

Then minimizing IIRL~II2 is exactly minimizing the norm on "/-/2 of 
the transfer matrix w ~ v , ~  in Figure 5, where 

~]new 

GLtTLC1U 
. . . . . . . . . .  

"- ......... ~ K ~  

Ii ....... ~ ........ 

Figure 5" Tlle system to generate u,~e~. 

~~( ,X)  - 
I , A 

RF 
C2 

B1 B2 R-1 ] 
-RF1 I ] . 

D21 0 

Now this is the second special problem. So by Theorem 5 the unique 
optimal controller is 

kn~,o~t(A) "- [ A + LC2- B2LIC2 + B2F 
R(L1C2-  F) 

L-B2L1 ] 
RL1 

and the minimum cost is 

m i n  IIRL~II= - II~fll=. 

Therefore for the original problem we have 

kopt(A)-  R-lknew,opt(A) 
_ [ A+LC2-B2LIC2+B2F 

[ L1C2 - F 

minlli<~,ll~ - IlOcll~ + IlOjll = 2" 

L -  B2LIL1 ] 
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3. General Case 

Again, we sta.rt with a system of tlre form 

The following assumptions are made: 

(i)  ( A ,  B2)  is stabilizable and (C2 .  A )  is detectable; 

(ii) Di2D12 = I and D21 Dbl = I; 

(iii) the  matrices 

A - X  B2 A - X  Dl 

have full rank VX E DD: 

Note tha t  the two orthogonality colrditiolis are not assumed. In as- 
sumptior1 (ii) it is essential that  the two matrices Di2D12 and 
be just nol~singular; for the .  call be ~lorlnalizetl via changing coordi- 
nates i11 t1 and @: 

Using the  optimal control for tlie general case ~ I I  Section 111-A-2, 
one can derive the results following t l ~ e  procedure in the orthogonal 
case used in Section 111-B-2. T h e  formulas are summarized as follows: co
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I;1 = - ( I +  B~2XB2)-I(B~2XB 1 + D~2Dll ) 

[ A + B 2 F  B,+B2F1 ] 
Oc(A) - C 1 +  D12F Dll + D12F1 ' 

a - - B I ( I -  D~21D21)B~ I ' 0 
Y - Ric(J) 
L = -(AYC~ + BiD~I)(I + C2YC2) -1 

L 1 - ( f g  C ;  + F 1 D~I ) ( I  + C2 Y C';)- 1 

R - (I  J- BI2XB2) 1/2 

[ A + LC2 BI + L D 2 1 ]  
0 ] ( ~ )  -- /~ (L1C2 - F )  R ( L  1D21 - F 1) " 

T h e o r e m  7 The unique optimal controller is 

kopt(A)- [ A + B2FLIc2 + LC2_ F- B2L1C2 

Mo reo ve r, 
min IIi  ll 2 - II0cllg + IlOjll 2 K 2" 

c c2 ]) 
A - BID~I C2 

"1 

L -  B2L1 | 
L1 J 

I V .  S a m p l e d - D a t a  C a s e  

The formulas in the preceding section have direct application in 
sampled-data control problems. We will look at the case when the 
control signal is the output of a D/A device, but is otherwise uncon- 
strained. Then the optimal control law is a sampled state feedback 
with a suitable disturbance feedforward. 

Consider the sampled-data setup in Figure 6. Here the continuous- 
time system G is described by the state equations 

z(t) - Cix(t)+D11w(t)+D12u(t). 

The control input u is obtained through a zero-order hold H0 with 
sampling period h, processing a discrete signal v, the control se- 
quence. Thus u and v satisfy 

u(t) - v(k), kh <_ t < (k + l)h. 
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t I_ 
E 
1- 

W 

.... 

Figure 6" The sampled-data system. 

The exogenous input w is assumed to be fixed and affects the system 
only through the first sampling period. So w has support in [0, h). 
For example, w could be the impulse w(t) - w o 3 ( t -  to), where w0 
is a constant vector and 0 _< to < h. 

Our sampled-data problem is 

rain II~ll~, 
vEg2~ 

the norm being on s ~ ) .  We shall assume that G has zero initial 
state. 

Now we use the lifting technique in [14] to set the problem in the 
lifted space. Following the notation in [14], let $ denote any finite- 
dimensional Euclidean space (its dimension will be irrelevant) and K; 
denote s h). The sequence space g2(l+,/C), or simply g2(/C), is 
defined to be 

e2(Jc) . -  { ~ ~ k  ~ / c ,  
o o  

II~kll 2 < ~), 
k=O 

The norm for ~bk is the one on K; and the norm for g2(K;) is given by 

11~112 - II~kll 2 

1//2 

The lifting operator W, mapping/22[0, co) to f2(~), is defined by 

- W y ~  ~ k ( t ) -  y ( t + k h ) ,  0<_ t < h. 

We denote the lifted signal W y  by/). 
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Now we lift the system in the preceding figure to  get 

Here the lifted system G satisfies the discrete-time equations [14] 
[since w has support in [O, h), 6 is a pulse sequence in e2(IC)] 

((k + 1) = Ad[(k) + 8 1 ~ k  + Bzdv(b), Gk = Gobd(k) (16) 

i k  = C 1 ( ( k ) + D l l ~ k $ ~ 1 2 ~ ( k ) ,  (17) 

where ((k) := x(kh) and the operators are given by 

The system G can be regarded as a linear time-invariant system 
in discrete time, with Zk and Gk being infinite-dimensional (functions 
in IC). Since the lifting opera.tor is norm-preserving, the equivalent 
discrete Kg problem is 

min llZll2 

subject to  equa.tions (16- 17), the norm being 011 12(IC). 
This problem looks almost like the one we studied in Section III- 

A, the difference being that now we are treating operators instead of 
matrices. So the derivatioil for the optimal control in Section 111-A 
carries over except for a few changes such as using operator adjoints, 
denoted by *, instead of transposes. 

In view of the assun~ptions in Section 111-A, we assume here that  
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26 TONGWEN CHEN AND BRUCE A. FRANCIS 

(i) (Ad, B2d) is stabilizable; 

(ii) the matrix D ; ~  D12 is invertible; 

(iii) the matrix operator 

Ad - B2d 

is injective VX E BD. 

I 
To write down the formulas, we need to norinalize ~ 1 2  first. So 

define the matrix 
Q = ( D ; ~ D ~ ~ ) - " ~  (18) 

and v,,,, := Q-'v to get the normalized equations 

We can now give the optimal control. Define 

and the system G, (with input 2i' and output j )  via 

Theorem 8 The unique optinlo1 control is v,,,(k) = F ( ( k )  + f1 w ~ .  
Aforeover, 

mill llil12 = I I G ~ ~ z . ~ ~ ~ .  

The following remarks are in order: 
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1. N defined in (19) is a constant matrix pair because D ; ~ C ~  as a 
whole is a rnatrix (operator on C ) .  Tlze formulas for 0~~61  can 
be derived easily (see Section V).  Similarly, F, though involving 
operators, is also a matrix. However, the feedforward gain FI 
is an operator mapping K to I ;  its action on a fixed 27, can be 
determined a priori. 

2. The optimal control can be written as 

The optinla1 state feedback [I.';c(klr)] is indepe~ltle~rt of the es- 
ogenous input lo and can be realized by sampling x ( t )  a t  the 
same rate as the hold operator. In particular, i f  the rate of 
the D/A device is chosen, one does not gain any advantage by 
sampling x(t)  faster, or even by measuring x ( t )  continuously. 

3. Assumption (i) is satisfied i f  ( A ,  U2) is stabilizable in contin- 
uous time aad if tlze sampling is non-pathological in a certain 
sense, see, e.g., [ls]. 

4. It is not hard to show tlzat assumption (iii) is satisfied if 

is irzjective V/\ E aD, which can be checked easily since it is a 
rnatrix expression. 

V. Example 

The tlleory of tlze preceding section i \  now n~,~)lied to a simple setup 
consisting of two motors controlletl by one PC. Tlie block diagram 
for tlze system is given in Figure 7. Shown there are two identical 
motors, with shaft angles O1 ant1 02. Tllt left-hand motor is forced 
by an external torque w. Tlzc controller, I<, inputs the two shaft 
positions and their velocities. and outputs two voltages, ul and uz, 
to  the motors. Tlze goal is tlzat the system slzould act like a telerobot: 
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W 

' 1 r ~ O l O 2 [ - ~  0 2 [ 1 ' L J  I~'~ 

! 
It l  2 

Figure 7" A two-motor control system. 

When a human applies a torque w, the "master" (left-hand) motor 
should turn appropriately and the "slave" (right-hand) motor should 
follow it. 

The state vector is taken to be 

For certain values of the physical parameters,  the state matrices are 

A 

0 1 0 0 
0 -24.51 0 0 
0 0 0 1 
0 0 0 -24.51 

0 
2.1513 x l0 s 

U l  - 

0 
0 

0 
179.4 

B 2 -  0 

0 

The vector z to be regulated is taken to be 

0 
0 
0 

179.4 

z =  [ 1 0 ( 0 1 - - 0 2 ) b l  0.202 ul 0.1u2] t. 

The first component guarantees that  tile slave will follow the master; 
the second and third components are included to get the motors 
finally to stop moving after a, finite-duration torque is applied; and 
the fourth and fifth components are included to make the problem 
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nonsingular. The constant weights were obtained by trial-and-error. 
With this choice for z we get 

10 0 - 1 0  0 0 0 0 

0 1 0 0 0 0 0 

C 1 - 0 0 0 0.2 , D l l -  0 , D 1 2 -  0 0 

0 0 0 0 0 1 0 

0 0 0 0 0 0 0.1 

Note that (C1, A) is not detectable, reflecting our desire to have 01 
and 02 settle to nonzero final values after a finite-duration torque is 
applied; this will necessitate some massaging below. 

First, the optimal analog state feedback controller is computed. 
The MATLAB command is 

! 
F - - L Q R  (A, B2, CIIC1 -Jr- 10-4I, D12D12), 

where the third matrix on the right-hand side has been perturbed 
to make it nonsingular. The controlled analog system was simulated 
for the finite-duration input 

_ f 0.00.5, O_<t_<O.1 
iv(t) [ O, t > O . 1  

and the result is shown in Figure 8 (01 solid, 02 dash. in degrees 
versus time in seconds). 

Turning to the optimal sampled-data control, for the state-feedback 
gain F one must compute the matrices 

D12D12 - hD' D + ' 12 12 D12C1  e~AdrdtB2 

+ D~2C1 e'AdrdtB2 

+B~2 jfo h [~ot erA'dr] C~C1 [~ot erAdr] dtB2 

( - .  - -1 /2  
- -  D 1 2 D 1 2  ) Q 

/o h C ~ C 1  - e t A ' C ~ C l e t A d t  

/o /ohio " �9 ~ t e t A  t e r D12C1 - D12C1 dt + B 2 ,4' drC~ C1 e t A  dt. 
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Figure 8: Optimal analog controller. 

Then  the  MATLAB commands for F are 

[F,,,,, X] = DLQR [ A d  - B ~ ~ Q ~ ( ~ ; ~ C I  ). ~ 1 2 ~ .  

The disturbance-feedforward gain 1;'1 is an operator K - E ,  but since 
w ( t )  here is constant over [O, 1 2 ) .  the action of F1 is to inultiply by a 
matrix, denoted, say, Fl. This inatr is  is com~)uted  as  follows: 
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_ 

F 1  ( Q - 2  + B ~ d X B 2  d ) - l (  t * b ) .  = -- , B 2 d X B l d  + / ) 1 2  11 

The optimal sampled-data control is then 

{ Fl (O), k-o 
Vopt(k)- Fx(kh). k > 1. 

These matrices, F and F1, were computed for h = 0.1 (quite large, 
for illustration) and the resulting sampled-data system was simulated 
with the same w(t) as above. The responses are shown in Figure 9. 
The response of the sampled-data system is comparable to that of the 

5 

4 

3 

2 

1 

0 
0 0.05 0.1 0.15 0.2 

A 

0.25 0'.3 () as 0.4 0.45 0.5 

Figure 9: Optimal sampled-data controller. 

analog system, except for the DC gains. [The same weights (i.e., C1 
and D12) are used for both the analog and sampled-data controller, 
but in general weights that are good for the analog controller will 
not necessarily be good for the sampled-data controller, and vice 
versa.] However, the analog F does not even stabilize the sampled- 
data. system for this large h. The point is, therefore, that when h is 
given and is appreciably large, the optimal sampled-data controller is 
much superior to the discretized optimal analog controller. Finally, 
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for interest the sampled-data system with only state feedback and 
not disturbance feedforward, that is, 

_ f O, k - 0 
Uopt( k) Fx(kh), k >_ 1, 

was simulated and the responses are shown in Figure 10. Not sur- 

250 . . . . . . . . .  

200 

150 

lOO 

50 

0 
0 

�9 " " , , , ,  , , 

0.05 o.1 0.~5 0.2 o.2_~ 0:3 0;5 0:~ o.:~5 0.5 

Figure 10: 
feedforward. 

Optimal sampled-data controller without disturbance 

prisingly, the response is very poor: The slave motor does not begin 
to move until the start of the second sampling period, by which time 
the tracking error is very large. 

V I .  C o n c l u s i o n  

Direct formulas for the sampled-data output-feedback case are not 
available because the lifted problem is inherently singular (/)21 - 0). 
This obstacle does not arise in the operator-theoretic approach of [1]. 

A c k n o w l e d g e m e n t  The authors wish to thank P. P. Khargonekar 
and P. A. Iglesias for helpful discussions. 
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1 - INTRODUCTION 

The theory of constrained systems and their feasibility is 
recently attracting a growing interest, even though a seminal 
contribution can be traced back as far as in 1940, in a paper by 
Liapunov [1], as illustrated in Conti [2]. There is a rather 
complex articulation of the theory, not only in view of the class 
of systems considered, but also according to the variables that are 
bounded by constraints and the characteristics of the constraints 
themselves. In addition to input constraints, one may in fact 
consider constraints for the state and/or for the output of the 
system. The study of positive systems is a case in point. 

As we shall show the constrained input case is already a 
complex one. A clarification of the very concept of input 
constrained system will therefore be useful. In fact the 
properties of an unconstrained systems are widely altered 
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according to the features of the constraints. The most trivial 
case one may think of is that of a time invariant system, which 
becomes a time varying constrained system. In Section 3 we 
illustrate these mechanisms and give precise definitions. 

A major distinction between classes of input constraints is 
between pointwise in time sort and the opposite case. The bulk of 
the literature is for the first, but the second is by no means less 
interesting. In the first place, a constraint on the state is 
equivalent, as we shall see, to a non-pointwise constraint for the 
input. Besides this example, the classical theory of bounded norm 
reachability considers non pointwise constraints for the input. 

Reachability is per se a special kind of constraint on the 
state, and hence constrained system theory is the appropriate 
general framework for studying reachability problems. 

In addition to the reachability one can consider further 
constraints, e.g. on the input, giving rise to constrained 
reachability ~theory proper. We will exploit this point of view to 
give a complete solution of the polyhedral case. 

In consequence of the difference between a constrained system 
and its unconstrained counterpart, we have adopted a more refined 
definition of reachability than the one usually given for 
unconstrained systems. Moreover we stress from the outset the 
importance of the study of problems of reachability in presence of 
noise. A possible assumption on noise will be that of complete lack 
of information, except for the presence of constraints on noise 
too, a setting that naturally leads to the study of robust 
teachability. This problem certainly deserves more attention in the 
research arena and more space here than we can afford. 

Next we pass on to deal with the problem of characterization 
of reachable sets. In this respect, for the case of pointwise 
constraints, we will analyze how the properties of the reachable 
set are connected to the properties of the constraining set. 

It will be then in order to study a number of special cases of 
major interest. First and foremost the case of polyhedral 
constraints. This will be handled by means of two different 
approaches. The first approach is based on a decomposition 
technique applied to the constraining sets viewed as the sum of a 
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linear subspace plus a cone plus a polytope. Dealing with the 
special case of polytopes we establish the discrete time version of 
the bang-bang principle. The second is based on viewing the problem 
as a mixed input-state constraints problem, in keeping within our 
initial remark on reachability. This is handled in Section 7 and, 
to the best of our knowledge, we give the first and only exact 
computation of the reachable set under no restrictive hypothesis, 
and, in addition, the propose~ solution is explicitly parameterized 
in terms of the bound vectors of the constraints. This particular 
technique of handling teachability problems first appeared in [3], 
which is in turn based on [4]. 

The next important special case is that of conical 
constraints. Incidentally, if we look to constraints for the other 
system variables too, then the study of positive systems is 
encompassed in this topic. In this respect an interesting 
extension of the concept of positive systems is in [5]. 

Another important theory we survey is that of bounded norm 
input reachability. Here there is a bifurcation of the possible 
approaches. Following the classical theory we account for smooth 
norm boundedness (more specifically the euclidean norm in our 
finite dimensional territory) including robust reachability. But 
one might also look, e.g., at norms generating polytopic spheres 
connecting back this case to that of polytopic constraints. 

Feasibility and optimization are very close to each other, as 
is well known. Even though optimization theory is beyond he present 
purposes, in a few instances, in which the extension is immediate 
and interesting, we have outlined the links of the results in 
question to optimization theory. In this respect notice that a 
general dynamic and closed loop solution for the polyhedral case 
is given in [4]. 

1.1 - B r i e f  s u r v e y  o f  l i t e r a t u r e  

In this subsection we briefly survey the literature. For space 
reasons we can only confine ourselves to cite some main 
contributions. Thus the reader will forgive us for any relevant 
omission. For the same reason We cannot afford to enter into the 
details. 
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A. Marzollo [6] has studied the case of bounded norm input 
functions for continuous time linear time variant systems. 
Essentially he rielaborated former results of H.A. Antosiewiez, 
published in 1963 [7]. The problem here is that of controllability 
rather than reachability i.e., that of steering the state from one 
to another given point in the state space in finite time. A 
noteworthy contribution of Marzollo work is the study of disturbeA 
controllability problems. More precisely, he studied the 
possibility of reaching a point in a sphere about the desired final 
state, for any disturbance of a given class. 

All the further contribution cited below assume pointwise in 
time constraints. 

R. Conti [2] surveys the case of linear continuous time 
systems with controls constrained by convex sets, encompassing 
contributions by A.A. Liapunov [1], D. Blackwell [8], J.P La Salle 
[9], L.L. Markus [10], R.M. Bianchini [11] and many others. He 
covers also minimum time optimization problems. Surprisingly 
enough, his excellent book is only published in italian. 

M. E. Evans [12] dealts with controllability of discrete time 
linear systems with control values constrained to a bounded convex 
set. The upshot of Evans' work is to connect the controllability 
properties of a constrained system to those of state 
eigen-subspaces. He states a decomposition of the given system in 
subsystems, in the sense that each of them accounts for part of the 
spectrum of the dynamical matrix, and the controllability 
properties of the system can be deduced from those of the 
subsystems. Notice that in his work he assumes the matrix B equal 
to the identity, as it happens in many contributions coming from 
mathematicians rather than control theorists. 

Some authors have approached the problem of finding 
approximations of the reachable set. We cite for example [13], [14] 
and [15]. 

In the first two papers, J. E. Gayek and M.E. Fisher developed 
a technique for approximating the reachable set for discrete time 
linear systems subject to bounded control, with the assumption that 
the state matrix is stable and diagonalizable. They decompose the 
given system into one and two dimensional subsystems and for each 
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one they compute a polyhedron, which is an over estimate of the 
reachable set. These polyhedra are finally used to define a 
polyhedron which contains the reachable set of the original system. 
Besides the limiting assumption of this paper it would be more 
interesting to approximate the reachable set from the inside. A 
similar comment applies to the paper of M.E. Fisher and W.J. 
Grantam, in which the reachable set of a discrete time linear 
system with bounded control is over-estimated by an ellipsoid, 
computed applying results of Liapunov stability theory. 

Some other authors have been involved with the exact 
calculation of the reachable set. However all the approaches we 
know of and cited below are based on the very restrictive 
assumption that the state matrix of the system is nonsingular. 

In [16], [17] and [18], a recursive computation of the 
reachable set at some time k is made, in the case of input and/or 
state polytopic constraints. This approach requires, at each step, 
the transformation of the description of the involved polytopes in 
terms of vertices to the description in terms of boundary 
hyperplanes and viceversa. 

V. G. Rumchev [19] develops a method based on Farkas' lemma 
for positive linear discrete time systems, with polytopical 
constraints. This method also extends to non positive systems. 

S.S. Keerthy and G. Gilbert [20] look to a different problem, 
i.e. that of steering the state to the origin in minimum time. They 
do not make any essential restriction and assume a mixed 
input-state constraint. Their solution requires at each step the 
invocation of a modified Fourier Motzkin method. 

A general analysis of systems with polyhedral constraints on 
input - state - output variables is in [21]. In [22] the reachable 
set of systems with conical constraints is characterized, 
introducing the theory of minimal invariant cones and generalizing 
well known results of unconstrained teachability theory. A 
reachability study of input constrained systems is in [23], where, 
in particular, was addressed the problem of how some properties of 
input constraining sets reflects on reachable set. In [3] is 
developed a technique to compute the reachable set in the 
polyhedral case, without restrictive assumptions. 
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2 - NOTATIONS AND T E R M I N O L O G Y  

We shall consider, unless otherwise stated, points and sets 
in the Euclidean real space ~n, even though many of the involved 
concept are valid for more general linear spaces. 

A subset C of a linear space is said to be convex ff 
(1-2) x + 2y E C whenever x, y E C, with 0~g2~gl. 

The convex hull of a set A is the minimum convex set that 
contains A, and is denoted by C(A). 

A convex cone is a nonvoid subset C of a linear space such 
that a C c C for any real a ~ 0 and C + C c C. 

The convex conical hull of a set A is the minimum convex cone 
that contains A, and is denoted by Co(A). 

The minimal convex cone, which is invariant with respect to a 
linear operator A and contains a convex cone BC, where C is a 
convex cone and B is linear operator, is well defined and unique, 
and is given by Co (U{AIBC �9 i = 0 ,1 ,2 . . .})  [22]. 

The lineality space L of a convex cone C is given by 
L = C N (-C) and is the largest linear subspace contained in C. If 
the lineality space of C is the origin then C is called a pointed 
c o n e .  

A closed half-space is a set of the form {x: (x,y)~;a} where y 
is a vector and a is a real constant. 

A polyhedral convex set (polyhedron) is a set which can be 
expressed as the intersection of a finite collection of closed 
half-spaces. Thus it is also the set of solutions of a finite 
system of linear inequalities. 

The closed segment joining x and y is the set C({x,y}), and is 
denoted by [x'y]. The open segment (x 'y) joining x and y is given 
by [x:y] - {x,y}. 

Let K be a convex set. A convex subset W of K is called an 
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extreme subset if none of its points are included in an open 
segment joining two points of K, which are not both in W. An 
extreme subset consisting of one point is an extreme point. 

A face of K is a convex subset K'  of K such that every closed 
segment in K with a relative interior point in K'  has both 
endpoints in K' .  

The recession cone of K is the set {y: x + gy E K, V2 ;e 0, 
Vx ~ K}. 

A polyhedral convex cone is a polyhedron in which the boundary 
hyperplanes of the half-spaces pass through the origin. Thus a 
polyhedral convex cone is the set of solutions of an homogeneous 
finite system of linear inequalities. 

An extreme ray of a polyhedral convex cone is a face which is 
a half-line emanating from the origin. We call generator a nonzero 
vector belonging to an extreme ray. A polyhedral pointed convex 
cone is the conical convex hull of its generators. 

Polytopes are bounded polyhedra. A polytope is the convex 
hull of its extreme points. 

3 - A G E N E R A L  P R O B L E M  SETTING 

The reachability problem is that of steering the state of a 
dynamical system from the zero vector at a certain initial instant 
of time to a prefixed vector of the state space at a certain final 
instant of time. One may consider either both instants fixed or 
fix only one of the two (either the initial time or the final 
time). 

The problem has a particularly simple solution for the 
unconstrained case, but becomes considerably more complex in the, 
practically more interesting, constrained case. Constrained means 
that system variables are bounded to satisfy certain given 
relations. Such relations may involve systems variables (input, 
state and output) in any combination, but in this chapter we are 
mostly interested to the case in which the only input is involved. 
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Let us now state the problem more precisely starting from 
recalling the concept of unconstrained system. 

3 .1  - U n c o n s t r a i n e d  s y s t e m s  

As usual, a discrete time, linear, time-invariant 
unconstrained systems is described by means of the input - state - 
output equations: 

x(t+l) = A x(t) + B u(t) + D d(t) 
y(t) = C x(t) 

(3.1.1) 

where t is an integer variable (representing time) and the 
functions x, u and y and m assume values in finite dimensional 
linear spaces, that, without restriction of generality, will be 

n ~q 
taken as R ,  ~P, and ~s, respectively. Such functions represent 
the evolution in time of the state, the input, the output and the 
disturbance of the system. We have assumed that the unconstrained 
system is time invariant for the sake of simplicity, so that A, B, 
D and C are linear operators and hence are represented by matrices 
of dimensions consistent with that of the involved linear spaces. 
We shall not distinguish between the operators and the matrices 
neither terminologically nor notationally. 

By these equations we represent a system in the sense that for 
any initial time t o and initial state x(t 0) they define a function 

associating to any pair of functions u(.) and m(.) defined in the 
interval [t o ,+oo) ,  a pair of functions x(.) and y(.) on the same 

interval, that constitute the unique corresponding solution of the 
equations. The computation of these functions is straightforward 
because the equations are easily solved by recursion and 
substitution. 

Let us now put the solution in a form particularly convenient 
for our purposes. We introduce the notation u(t0,t), d(t0,t), 

x(t0,t) and Y(t0,t) to indicate, for any t o and t > t o , the 

restrictions of the functions u(.), d(.), x(.) and y(.) to the 
interval [t0,t ) for u(.) and d(.) and to the interval (t0,t] for 

x(.) and y(.). Clearly these restricted functions can be 
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represented by block vectors in the following manner: 

U(to,t ) = 
Iu(t o) 
Lu(t_l)l 

d(t o) 1 
d(to,t ) = Ld(t_l ) 

I x. (to + 1)1 
X(to,t ) - �9 Lx(t) 

..Y(to+ 1) 

Y(to,t ) - Ly(t ) 

Using these notations we can write, for the state and the 
output of the system" 

x(t) = L(to,t ) X(to) + C(to,t ) U(to,t ) + G(to,t)d(to,t) 

X(to,t ) - L ( t o , t  ) x(t  0) + M(to,t)U(to,t) + N ( t o , t ) d ( t o , t )  

y(t)  - C L(to,t) X(to)C + C(to,t) U(to,t) + C G(to,t) d(to,t) 

Y(to,t ) = CL(to,t)X(to) + CM(to,t)U(to,t) + CN(to,t)d(to,t) 

where: 

C(to,t) - (At-to-lB ... AB B) 

G(to,t ) - (At-to -I D ... AD D) 

M(t0,t ) = 

B 0... 0 0 
AB B... 0 0 

A t -t 0-1 B . . .  A B  B 
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N(to,t  ) = 

and finally 

D 0 . . .  0 0 
AD D . . .  0 0 

A t -t o- 1 D ... AD D 

L(to,t ) - A(t-to ) 

.A 

L(to,t ) = A(t_to ) 

It will be convenient in the sequel to denote by U(t0,t) the 

set of all functions U(to,t ). 

3.2  - C o n s t r a i n e d  s y s t e m s  

We now turn to the definition of constrained system. At a 
superficial level such definition is simply obtained associating 
an unconstrained system with a set of constraints for the system 
variablesl We should consider, however, the ensuing constrained 
system as a whole and completely distinct from the corresponding 
unconstrained system. And it turns out that, as we shall 
illustrate later on, the properties of this new system may be 
profoundly different from those of the original one. To begin 
with, the constrained system cannot be considered, in general, a 
linear one. 

A rather general form for the constraints is the following" 

f(to,tt, U(to,tf),d(to,tf),X(to,tf),Y(to,tf)) E Q(to,t f) 

V t 0, t f > t  O (3.2.1) 
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where f is a function assuming values in some finite dimensional 
linear space and Q(t0,t f) is a given set in such a space. T i m e  tf 

may well be 4-oo. 

We may consider the same constraints for some, instead of for 
all, pairs t 0, tf. However this is easy obtained letting Q(t0,t f) 

be the whole space for those pairs t 0, t f, for  which there are no 

constraints. Thus a distinction between the two cases is not 
required. The set of these relations is called constraint system. 
Of course it is assumed that the constraint system defines non void 
sets of time functions for all variables and time intervals. Any 
function satisfying the constraint system is called admissible. 

In this chapter we are interested (with a few exceptions) to 
constraints bounding the only input, and, possibly, the disturbance 
of the system. Thus the above relation takes on the form: 

f(to,tf, U(to,tf),d(to,tf)) E Q(to,t f) V t 0, tf~et o (3.2.2) 

We assume that such constraint system defines non void subsets 
of U t and D t V t o , which are respectively the set of admissible 

0 0 
input and noise functions. 

For simplicity and space reasons, we shall mostly consider the 
case in which no noise is present and give our general definitions 
accordingly. Problems involving disturbances are however of 
paramount importance. Later on, we shall devote Section 9 to one 
such problem. 

To give an example we introduce right away an interesting 
special case. Assume that the function g takes values in [R m and 
that v(t0,tf) is a vector in such space. Then consider the 

following relation: 

g(to,tf, U(to,tf)) ~ V(to,t f) V to, t f > t  0 (3.2.3) 

co
nt

ro
len

gin
ee

rs
.ir



46 PAOLO D'ALESSANDRO AND ELENA DE SANTIS 

It is trivial to verify that this latter form can be reduced 
to the previous one. In fact it suffices to to define the set 
Q(t0,t f) as the cartesian product set X{(-oo,vi(t0,tf))" i = l , . . m } .  

Notice that this latter form of the constraint system in the 
linear case becomes" 

W(t0,t f) u(t0,tf)) ~; v(t0,t f) V t 0, t f ~ t  ~ (3.2.4) 

where W(t0,t f) is a matrix with dimensions matching that of U and 

v. Despite the name we are far away from linear theory. The real 
nature of the problem is instead polyhedral. Anyway, it is still 
terminologically usual to call such constraint system a linear 
constraint system. We shall soon go back to this case in our first 
formal definition. 

With reference to this form of constraints, there is no harm 
in selecting a certain finite interval [t0,t f] and confining the 

study to the response of a system in this single interval. This is 
precisely what many papers and books dealing with constrained 
systems do. In this case there would not be much to add at this 
point. However, the unconstrained system has a number of 
interesting properties, that depend substantially on the 
variability of parameters t o and tf. This suggest that our 

investigation be carried on in more depth. 

Some system properties are necessarily lost when we add the 
constraints, others may or may not be lost according to the 
features of the constraints, others may be altered and, finally, 
new properties may arise. In the basic properties of dynamicity, 
causality and stationarity [24] as well as in reachability itself 
the two time parameters t o and tf play a fundamental role. At a 

very basic level this role depends on the fact that for the 
unconstrained case the function spaces relative to intervals of the 
form [t0,t f) are strictly connected, since restricting e.g. an 

input function to a subinterval, a legitimate input function is 
obtained. 

For these reasons we are lead to pose some conditions to be 
satisfied by the constraint system. The role of such conditions 

co
nt

ro
len

gin
ee

rs
.ir



TECHNIQUES FOR REACHABILITY 47 

will become more and more apparent as our analysis develops. More 
precisely we consider the following conditions: 

(i) - Assume an admissible input u is defined on the interval 
[t0,tf), assume tf > t 0 + l  and consider t i such that tf > t > t 

i 0" 

Then both the restrictions of u on [t0,ti) and on It i,tf) are 

admissible inputs. 

(ii) - Assume that two admissible inputs u I and u 2 are 

defined, respectively on the intervals [to,t i) and It i,tf) for 

some tf > ti > t.0 Then the function u on ~ f,fto,t~ defined by 

u(t) = Ul(t ) if t E [t0,ti) and u ( t ) =  u2(t) if t E [ti,t ? is an 

admissible input. 

(iii) For any interval [t0,t f) the identically zero function 

is admissible. 

The first remark in order at this point is that assumption 
(iii) will be at time (and for a special case) weakened in such a 
way that, for the purposes of the question under study, the effect 
of the milder assumption is the same as that of the original one. 
We do not introduce any terminological distinction and stipulate 
that (iii) is in force whenever a substitute assumption is not 
explicitly stated. 

A constraints system satisfying the above assumption will be 
called a dynamical constraint system. We shall come back to this 
property in the definition below. 

Next we need to introduce the concept of stationary 
constraint system. For this purpose, for any given integer T, 
consider the shift operator S(t0,T ) defined on U(t0,tf) by: 

(S(to,T)u)(t) = u(t-T) u u e U(t0,t f) 

t = t 0 + T , . . . , t f + T  

(3.2.5) 

The operator S(t o,T) is linear and invertible and maps 
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U(t0,t f) onto U(t0+ T,tf+T). 

At this point we collect in the following definition a number 
of important concepts relating constraint systems and constrained 
systems. 

DEFINITION 1: A constraint system is stationary (or time 
invariant) if an input function u(t0,t f) is admissible when and 

only when the input function S(t0,T)u(t0,t f) is admissible for all 

integer T. A constrained dynamical system is called stationary if 
both the corresponding dynamical system and the constraint system 
is stationary. A constrained system is called linear if both the 
dynamical system and the constraint system are linear. A dynamical 
system associated with a dynamical system of constraints is called 
a dynamical constrained system. 

In this definition we refer to properties of both the 
components of a constrained system for the sake of generality, but 
of course, we have already assumed, for the sake of simplicity, 
that the dynamical system is both linear and stationary. Notice, 
however, that we may still consider non stationary and/or non 
linear and /or non dynamical constrained systems. This is obtained 
by associating to our linear dynamical system a constraint system 
which is not stationary and/or linear and/or dynamical. 

Another interesting remark is that, to define a stationary 
constraint system it is not required that the constraint relation 
should be independent of t o and tf. For example consider the 

constraint system: 

t 
X f 

t 
0 

u(t) < (tf-t0) v (3.2.6) 

As the reader will immediately verify this is a special case 
of stationary linear constraint system. 

At this point, before entering more in depth in the theory of 
constrained systems it is convenient to briefly recall some basic 
ideas underlying the classical unconstrained reachability theory. 
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3.3 - Review of unconstrained reachability theory 

49  

We initiate recalling the classical definition of 
reachability. Even though our dynamic system is stationary we 
refer reaehability to a given instant of time in preparation of 
the constrained case where, as explained above, time variant 
systems may well occur. 

DEFINITION 2 - With reference to a linear dynamic system, we call 
a point (state) z of Nn reachable at time t if there exists a 

8 

instant of time tr, t < t and an input function u defined in 
r s 

[tr,t s) such that the solution x(.) of the system corresponding to 

initial condition x(tr) - - 0  and to the input u assumes the value z 

at time t ,  i.e. x ( t ) -  z. The set of all states reachable at t 
$ $ $ 

is called the reachable space at t .  If all states are reachable 
$ 

at t the system is called reachable at t too. 
8 $ 

Notice that the definition of reachability is characterized 
by two main facts. The first is that the initial condition is 
fixed to be the origin of the vector state space. The second is 
that reachability is a feature of possible evolutions of the 
system, occurring in the past, relative to the instant of 
reachability. 

An important observation, which provides a key argument in 
the analysis of reachability, is that, if a state z can be reached 
at t starting from zero at time t ,  then it can also be reached 

s r 

starting from zero at any instant of time, say tp, prior to t.r In 

fact it suffices to apply a zero input in the interval [tp,tr) to 

the system with initial condition x(t ) - O, thereby obtaining 
p 

x ( t ) - - O ,  and then to concatenate this zero input with the input 
r 

that steers the state from zero at t to z at t .  In other words 
r s 

the set of states reachable at t starting (from zero state) at 
s 
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t < t is contained in the set of states reachable at the same 
r $ 

time starting (from zero state) at earlier times. 

The set of states reachable from zero state starting at one 
step of time ahead of t ,  starting at two steps of time ahead etc. 

$ 

form an increasing family of linear subspaces. Their union is the 
reachable space at time t .  Because we obtain linear subspaces of 

$ 

a finite dimensional linear space, such sequence of linear 
subspaces can only increase up to a certain point and then it will 
become constant. In view of stationarity the set of reachable 
states does not depend on time and we can equate the first 
subspace to the space of states reachable at time one s tar ing 
from state zero at time zero, the second to the space of states 
reachable at time two starting from the zero state at time zero 
and so on. Clearly the first linear subspace is the range of the 
matrix B, the second is the range of the block matrix (B AB) and 
SO O n .  

Finally combining the above observations with the Cayley 
Hamilton theorem we arrive to the conclusion that the set of 
reachable states is the linear subspace of the state space given by 
the range of the matrix C(O,n), which can be more simply denoted by 
C(n). 

At times we are interested to the possibility of reaching a 
state starting from another state, different from the origin. There 
is a simple link between reachability from the origin and 
reachability from a state, say x. In fact we can reach the state z 
at t from state x at t ,  if and only if we can reach from the 

s r 

origin that state z-A(ts-tr ). 

3.4 - Reachability concepts for constrained systems 

Of course we might think to adopt the same definition of 
reachable state and reachable set at a certain time as in the 
unconstrained case. However, this would not be enough for 
constrained systems for a number of reasons. 
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We face now a radically different state of affairs. To 
mention a few novelties, the finite time reachability property does 
not hold anymore. What is reachable in f'mite time may be quite 
different from what is reachable in infinite time. Moreover the 
constrained system may not be stationary even though the 
unconstrained system is. Thus, for example, reachability ahead in 
time may be different from teachability from beforehand. Even the 
property that if we decrease the first extreme of the time interval 
the reachable set grows is missing if we allow for non dynamical 
constraint systems. 

Consequently a more refined definition is advisable in order 
to capture that greater complexity. The following definition 
formalizes a concept that already came to the fore in the 
arguments underlying unconstrained reachability theory. 

DEFINITION 3 - A state z of a system (either constrained or 
unconstrained) is reachable at time t from time t (or from time 

g r 

t in t -  t steps) if there exists an input (an admissible input 
r 8 r 

in the constrained case) such that the solution corresponding to 
initial condition x ( t ) =  0 and to such an input assumes the value 

r 

x(t ) = z .  
$ 

The set of reachable states at time t is the union of the set 
g 

of reachable states from t -  1, t -  2 etc. 
$ $ 

Note that such family of state space subsets is not in general 
an increasing one. Moreover if the state trajectory starting from 
zero state zero at t assumes a certain value w at an intermediate 

r 

time t (t < t. < t )  it is not necessarily true that the state w 
i r x s 

is reachable at time t from time t .  Both these properties do 
i r 

instead hold in the case of dynamical constrained systems. The 
proof of this facts becomes trivial if one bears in mind the 
arguments on which were based our analysis of the unconstrained 
case. These observations enlighten the role of the dynamicity 
assumptions. 
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In presence of constraints for the only input (and, possibly, 
disturbance), the previously illustrated link between reachability 
and reachability from a state holds good. This would not be true 
in general if the state were involved in the constraint system 
tOO. 

This review of basic reachability properties does not exhaust 
all the interesting fields of investigation. Many other properties 
could be considered than there is space to cover here. However, we 
do treat the ease of approximate robust teachability in presence 
of noise. Appropriate definition and fundamental results will be 
given in an apposite section below. 

3 .5  - P o i n t w i s e  in t i me  c o n s t r a i n t s  

A simple but practically interesting particular form of the 
constraints is that of pointwise (in time) constraints for system's 
variables, where, at each instant of time, the value of the 
variable is forced to belong to a (nonvoid) set, that may be fixed 
or vary in time. Such constraints, for the case of the only input, 
are expressed by: 

u(t) E W(t) Y t  (3.5.1) 

where W(t) is a nonvoid set (called the constraining set, while 
W(.) will be called the constraining function). The function W(.) 
may well be a constant function. To represent absence of 
constraints at a certain instant t, it suffices to put W(t) equal 
to the whole space of input values. 

Clearly, for the constraints system to be dynamical it 
suffices that the origin belong to W(t) for any t. We shall weaken 
at times this assumption, in such a way, though, to surrogate the 
effects of the dynamicity hypotheses. Note also that the 
constrained system will be stationary if and only if W(.) is a 
constant function (whose value will be denoted by W). 

In the stationary case the reachable set will be denoted by 
R w whereas in the time varying case it will be denoted by Rw(t). 

The symbol R without subscript will denote the unconstrained 
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system's reachable set. Obviously, whatever is W(.) (or W in the 
stationary case), Rw(t ) (or Rw) is contained in R. 

4 - REACHABILITY UNDER GENERAL 
TIME-POINTWISE CONSTRAINTS 

Most of t~e results of this and the next section were stated 
in [22] and [23] ' .  

Our first concern is to study how set operations on the 
constraining sets reflect on the reachable set. We can define any 
operation on the functions of the form W(.) by the corresponding 
operations on values of the functions. That is for example: 

(Wl(.) CI W2(.))(t ) - Wl(t ) N W2(t ) for any t 

With this premise we can state the following theorem: 

THEOREM 1. 

( i ) -  If BWl(t ) c BW2(t ) for any t then R W ( t ) c  R W (t) for 
1 2 

any t. 

(ii) - Let A be a nonvoid set and {W �9 . E A} (briefly {W }) 
o~ ot 

be an arbitrary family of constraining functions. Then for any t: 

RN{ W }( t )c  N {R W (t)} 
o~ 

Rt3 {W }(t) ~ t3 {S W (t)}. 
o~ 

(iii) - For any constraining function W(.) and real a, for 
any finite family {Wt(.),...,Wk(.)} of constraining functions and 

{al,...,ak } of reals, and for any t: 

IMore specifically, Theorems 1, 2, 3, 4, 5 and Lemma 1 are adapted 
from [22], with kind permission from Pergamon Press Ltd, Headington 
Hill Hall, Oxford O X 3 0 B W ,  UK. 
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Raw(t)  = aRw(t  ). 

R~a.W.(t ) c E Ra.w.(t) 
1 1 1 1 

In the latter relation equality prevails if 0 E ABW.(t) u t,i. 
1 

PROOF -The first two statements have a straightforward proof, and 
so does the first statement in (iii). Therefore, if we prove that 
for any W l and W 2 

RW + W  (t) c R W (t) + R W (t) 
1 2 1 2 

with equality prevailing if 0 belongs to both ABWI(t) and ABW2(t) 

for any t, then the rest of the proof will follow rather directly. 

Actually if z E R w + W  (t) then there exists an input u 
1 2 

starting at some time t < t having the form u(t) = ul(t) + u2(t) 

with Ul(t ) E Wl(t) and u2(t) E W2(t), such that the corresponding 

solution x(.), with x( t )=0 ,  satisfies x(t) = z. At this point, 
that z belongs to the r.h.s,  set immediately follows from the 
fact that the forced solution is linear with respect to the input 
function. 

Conversely if z E R W (t) + R W (t), that is z = z I + z 2 with 
1 2 

z I E R W ( t )  and z 2 E R W (t), then let u I be the input (compatible 
1 2 

with the constraint defined by W l) that steers the state from 0 to 

z 1 starting at time t I < t, and similarly let u 2 be the input 

corresponding to z2, which will start at time t 2 < t. If t l = t  2 then 

the control u l + u  2, compatible with the constraint defined by W I + W  2, 

will steer the system from the zero state at time t I to the state z 

at time t in view of the linearity of the solution. Otherwise, 

co
nt

ro
len

gin
ee

rs
.ir



TECHNIQUES FOR REACHABILITY 55 

assume, without restriction of generality, that t I < t 2. Consider 

an input u' that coincides with u I in the interval [t 2, t), and is 

such that u ' ( t ) E  Wl(t) and ABu ' ( t )=0  for all t in the interval 

[tl,t2) , which is possible in view of the hypothesis. Then u ' + u  2 

will s tee r  the system from state zero at time t I to the state z at 

time t, and the proof is therefore concluded. 

c BW We also remark that Notice that W t c W 2 implies BW 1 2" 

the inclusion relations in the statement ii of Theorem 1 may occur 
in proper sense, as will be shown by the following example" 

EXAMPLE 1 

Consider a discrete time linear system described by the 
equations: 

x l ( t + l )  = -mx2(t ) + u l(t) 

x2(t + 1) = taxi(t) + u2(t ) 

0 < m < l  

Let W l and W 2 be the following sets in input space 

W 1 = { (U I,u2)" -1 ~ U  1 ~ 1, U 2 = 0  } 

W 2 -- { (Ul,U2): U l = 0 ,  - l ~ u 2 ~ l  } 

It can be verified that 
= 2) 

R W {(x l ,x2) ' - l / (1 -m2)<xl<  ll(1-m2),-ml(1-m <x2<m/(1-m2)  } 
1 

2) l / ( l_m 2) < x2 < l/(l_m2)} R w - {(x l,x2):-m/(1-m 2) < x I < m/(1-m ,- 
2 

2 2 
R W NR W =((Xl,X2): - m / ( 1 - m  )<  Xl  < m / ( 1 - m  ), 

1 2 - m / ( 1  - m  2 ) < x  < m / ( 1  - m 2 ) }  
2 
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RWaW2 = { (0,0) } 

It is also easy to verify that the set R W U R W is properly 
1 2 

contained in the set --R~ U W .11 
1 2 

The condition 0 E A B W.(t) is essentially a condition of 
1 

dynamicity, and the theorem confirms the importance of this 
concept. A similar comment will apply to most of the results that 
follow. Of course such condition is weaker than the condition that 
0 E W(t). An intermediate possibility, which will also be used, 
consists in assuming that 0 E B W(t). In this respect one can 
imagine cases, in which, even though 0 ~ A B W(t), there is no 
harm in directly adding the origin to the constraining set (or to 
its image under the operator A B or B), so to keep the dynamical 
nature of the system. 

We now pass on to consider the stationary case. Let us, in 
the first place, deal with the problem of computing the reachable 
set. The unconstrained reachability formula" 

R = Range(B AB . . .  An-IB) (4.1) 

can be rewritten in the form 

n - I  k 

R = E AiB U = l im {~ AiB U} 
i = 0  k-->n- I i •O 

(4.2) 

This result has been generalized for the case of cone 
constrained inputs in [22]. For general time-pointwise constraints 
we can state the following theorem, in which we deal also with 
finite time teachability. To this effect we denote by R wk the set 

of states reachable from the origin in at most k steps of time. 

T H E O R E M  2. 

The set Rwk can be expressed as: 

co
nt

ro
len

gin
ee

rs
.ir



TECHNIQUES FOR REACHABILITY 57 

k-1 

Rwk= Z A~B w 
iffiO 

(4.3) 

Moreover, if 0 E A B W then 

k - I  
Rwflim{ Z AiB W } 

k-> oo i •O 
(4.4) 

The sequence of sets being actually an increasing sequence. 

A i Vi, R w is Finally, if 0 E B W, then 0 G R w, B W c R w 

invariant with respect to A and the set of all states reachable 
from states belonging to R w is contained in R w + R w. 

In the statement of this theorem the usual mathematical 
definition of the limit of an increasing sequence as union of the 
sequence itself is adopted. 

PROOF - The first statement that requires a non trivial proof is 
that of invariance. If x E R w, then for some k 

k 
X E ~ AiBW and hence 

iffi0 

k k+1 
Ax E A~, AiBW = ~ AiBW 

i -0  i -1 

but since 0 E BW 

k+l k+l 
AiBW c ~ AiBW c R 

w 
i-I i-o 

To prove the last statement decompose the response in the sum 
of the free and forced response. The first, in view of the just 
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proved invariance, remains in R w. The same is true for the second 

by definition of R w and the assumption of stationarity. Thus the 

desired conclusion follows. 

The statement of this theorem highlights some differences 
with the unconstrained case. The most noteworthy of these is that 
an unconstrained system has a finite time teachability property 
(that is, ff W = ~  n then the sequence increases at most up to the 
nth term), which does not hold in general. 

The next natural question to ask regards how do the 
properties of R w depend on the properties of W. In this respect 

recall that an operator A is a contraction if IIAII s 1. Let us 
stipulate that A is a proper contraction if IIAII <1.  With these 
premises we can state the following: 

THEOREM 3. 

Assume still that 0 E A B W and that k is any positive integer then 

(i) - If BW is convex then both Rwk and R w are convex. 

(ii) - If B W is bounded and A is a proper contraction then 
R is bounded. If BW is unbounded then R is unbounded and hence 

W Wk 

such is R 
W 

(iii) - If W has interior then both Rwn and R w have interior 

relative to the subspace R. 

So 

(iv) - If W is open then both Rwn and R w are open relative to 

(v) - If B W is a subspace then both Rwk and R w are subspaces 

and Rwk = R w for any k ~ n .  Moreover R w is the minimal subspace, 

that is invariant under A and contains the subspace BW. 
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(vi) - If B W is a (convex) cone then both Rwk and R w are 

cones. Moreover R is the minimal cone, that is invariant under A 
w 

and contains the cone BW. 

(vii) - If B W is a group under addition then both Rwk and R w 

are groups under addition. Moreover R is the minimal subgroup of 
w 

~n that is invariant under A and contains the group BW 

PROOF - For the sake of brevity we outline only a few crucial 
arguments for the proof. From these, from the previous results and 
from standard arguments used in linear reachability theory it is 
not difficult to build complete proofs. 

The proof of (i) follows immediately from the expression of 
the reachable sets given in Theorem 2 and elementary computation 
rules for convex sets (see e.g. [25]). 

As to (ii) note that, because BW is bounded, for some 
positive real r, BW c S r, where S r de~otes the c l o s ~  sphere about 

- I  r -I . . 
the origin with radius r. Thus W c B S (where B is the reverse 
image function), so that, by Theorem 1, R W c RB-1Sr. On the other 

hand" 

sup {llxll" x R(B-1sr ) }  -- 
k - I  

= s u p  {[1 E A i B u ( k - i - 1 ) [ [  "u( i )  E B - I s r }  = 

i =0  
k - I  

= sup { II E Aiz( k-i-1)ll " z ( i )  e s r} < 

i = 0  
k - I  

sup { F~ IIAill IIz(k-i-1)ll " z(i) ~ S r} 
i - -O 

k-I I 
r E IIAill ~ r 

i=o 1 -  ]IAII 

But because the latter inequality holds for any k, the 
desired conclusion is immediate. 
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Finally if B W is unbounded then Rwk and R w must be unbounded 

too, since, under the present hypothesis that 0 E A B W, 
B W c  R w k C  R w �9 

As to (iii), notice that if R has interior then certainly 
Wn 

c R Next, ~ u s e  x(k) = C(k) u(k) it so does Rw, because RWn w" 

is apparent that RWn is the image under C(n) of the set W n c  Rpxn, 

which by hypothesis and well known elementary facts of vector 
topology has interior. But, because of the further topological 
fact that any linear map with finite dimensional domain is 
relatively open and because the range of C(n) is R, the desired 
conclusion follows. 

We omit the proof of (iv). It is largely similar to the 
previous one and is anyway based on elementary topological 
arguments. 

The proof of (v) leans on standard arguments of reachability 
for linear systems. 

As to statement (vi), it is clear from Theorem 2 that if B W 
is a cone then Rwk and R w are cones too. By the same theorem R w is 

invariant under A. On the other hand if a cone is invariant under 
A and contains B W, then it must contain all the sets in the 
series that sum up to R w, whose expression is given in Theorem 2. 

Thus it must also contain the sum of the series i.e. R This 
W" 

shows that R w is actually the minimal cone invariant under A and 

containing B W. 

Finally the proof of (vii) is rather straightforward 
application of by now usual arguments and can therefore be safely 
be omitted. [[ 

Observe that if W is convex then also B W is convex. Similar 
remarks apply to statements (ii), (v), (vi) and (vii). 

Later on we shall consider a few further properties of W. For 
the moment, because all the statements in this theorem are 
sufficiencies, one may wonder about necessity. Unfortunately none 
of these conditions is necessary. If any of them is negated then, 
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as is shown by the following examples, the corresponding property 
of R w may or may not hold according to the cases. 

EXAMPLE 2 
Consider a discrete time linear system described by the 

equations- 

x l ( t + l )  = m xt(t) + m x2(t) + Ul(t) m > 0  

x2 ( t+ l )  = m xt(t) + m x2(t) + u2(t) 

For any t, the input is constrained to belong to the non 
convex set W, described as follows" 

W = { (Ul,U2): U l = - I  , O~;u2~;1 } LJ { (Ul,U2): - l~ ;Ul~ ;0 ,  u2ffil } 

It is easy to verify that both Rwk, for every k >  1, and R w have 

interior; moreover,  if 0.25 < m < 0.5 , Rwk may be not convex for 

some k, while R is convex and bounded. In fact, if 
w 

0.25 < m < 0 . 5 "  

R w f { ( x l , x 2 ) ' l < - x t + x 2 < 2 ,  x t >  -1-(m/(1-2m)), x 2 < l + ( m / ( 1 - 2 m ) ) }  

whereas, if m ~ 0.5 �9 

R w ={(x  1,x2): 1 < -x 1+ x 2 < 2} 

This example shows that conditions (i) and (iii) of the 
statement of Theorem 3 are not necessary.II 

EXAMPLE 3 

Consider a discrete time linear system described by the 
equations- 

x l ( t + l )  = -m x2(t) + u(t) 

x2 ( t+ l )  = m x l(t) + u(t) 
O < m < l  
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with the constraint 

- l ~ ; u ( t ) ~  1 Vt 

The reachable set R w is the rectangle: 

R w =  {(xl,x2)'-2 m/(1-m 2) < -x I + x 2 < 2m/(  1 - m2), 
2 

-2 / (1-m2)< X l + X 2 < 2 / ( 1 - m  )} 

It is easy to verify that the set R w is open (counter example 

to necessity of statement (iv) of Theorem 3).11 

EXAMPLE 4 

Consider the discrete time linear system described by the 
equations: 

x l ( t + l )  = -m x l(t) + u(t) 

x2( t+ l  ) = -m x2(t) + u(t) 
m > l  

with the constraint 

O ~ u ( t )  ~g 1 Vt 

R w =  { (xl,x2) " xl = x 2} 

This example shows that the condition (vi) in Theorem 3 is not 
necessary (the set W is a polytopr while the set R w is a subspace). 

Moreover, because a subspace is a convex cone, it also follows that 
the condition (vi) in the same theorem is not necessary. 1 

EXAMPLE 5 

Consider the system described by the equation" 

x ( t + l )  = x(t) + u(t) 

with input constraining set W = { O, 1 } for every t. 

co
nt

ro
len

gin
ee

rs
.ir



TECHNIQUES FOR REACHABILITY 63 

The reachable set R w is the set of all integers, and hence a 

group under addition. This fact shows that the condition (vii) of 
Theorem 3 is not necessary, l 

A few further important remarks on the theorem are in order. 
As a special case note that if the system is reachable and W has 
interior then R w has interior, whereas if the system is not 

reachable R cannot have interior even if W does, since R is 
W W 

contained in R. 

Moreover if W is convex and 0 E B W and R w is unbounded then 

R w contains a convex cone. Actually in this case R w is an unbounded 

convex set containing the origin and hence the recession cone of R 
W 

is a nontrivial cone and is also the maximal convex cone contained 
in R w (see [25]). 

Note also that if a power of A is zero (that is, A is 
nilpotent) then any power with a greater exponent will be zero 
(exploiting the Jordan form of a matrix, it is not difficult to 
prove that the minimum power of A which is zero is at most the 
n-l th).  Hence if a property of W is not inherited by the finite 
time horizon reachable sets, this also excludes that in general it 
is inherited by R w. Conversely it may happen that a property is 

not in general inherited by Rw, but it is inherited by the finite 

time reachable sets. 

It is convenient to mention some obvious negative cases for 
which a property of W is not inherited by R w. This is the case when 

W is a closed set or when W is a sphere of a given norm or when W 
is a nonlinear manifold (actually in general neither the image 
under a linear map of a manifold nor the sum of two manifolds is a 
manifold). 
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$ - REACHABILITY UNDER POLYHEDRAL CONSTRAINTS 

In this section, for simplicity, we make reference to 
properties of W, but it is clear that, as in the previous section, 
some generalization can be achieved making instead reference to 
B W .  

On the base of the first statement of Theorem 2, and the fact 
that a sum of polyhedra is a polyhedron, it is clear that in the 
present case Rv~ is a polyhedron. 

As is well known [26], if W is a polyhedron then 

W = P + L + C  (5.1) 

where P is a polytope, L is a linear subspace and C is a pointed 
polyhedral cone. Regarding this decomposition we can state the 
following 

LEMMA 1. 
The polytope P can be chosen to contain the origin if and only if W 
contains the origin. 

PROOF - In fact assume that W does not contain the origin. Then if 
P contains the origin it would follow that so does P + L + C ,  which is 
a contradiction. Conversely suppose that W contains the origin but 
P does not. Then because both {0} and P are contained in W, which 
is convex, it is possible to consider the decomposition: 

W = C({O} U P} + L + C 

where the polytope C({O} U P) contains the origin.II 

At this point if 0 E W, we can choose P according to LEMMA 
l, and write, in view of Theorem 1 

Rwk = Rpk + RLk + Rck (5.2) 

R - R  + R + R (5.3)  
W P L C 
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Therefore we can look separately at the cases where W is a 
linear subspace or a polyhedral cone or a polytope. The 
significant cases are those of a polytope and of a pointed 
polyhedral cone. 

Because a polytope is a finitely generated structure, it is 
not preserved by system's dynamics. However ff we consider the 
special case of finite time horizon reachability, which has 
foremost practical importance (in particular in optimization 
problems), then the polytopic structure is preserved: 

THEOREM 4. 

If W is a polytope then Rwk is a polytope for any k. 

PROOF - We know from Theorem 2 that 

k - I  

Rwk = ~, AiBW 
i - 0  

Each set in the sum is the image under a linear map of a 
polytope and hence is a polytope [25]. Moreover a finite sum of 
polytopes is a polytope (see again [25]), and therefore the desired 
conclusion has been achieved. I 

An upshot of the theory of systems over polytopes is the 
result below, which can be considered as the generalized bang-bang 
principle for discrete time systems. For a continuous time version 
of the bang-bang principle see e.g. [2]. 

Let us denote by {e j" j - 1 , . . , m }  (briefly {e i}) the set of 

extreme points of W and by E the set of all functions on {0,1,...} 
to {e j} These functions play the role of controls with bang-bang 

values. Then we can state the following" 

THEOREM 5. 

For any k the extreme points of Rwk have the form: 

k - I  

Ak-i-lBu(i) with u E E 
iffiO 
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or, m other words, the set of extreme points of Rw~ is contained 

in the reachable set R 

PROOF - Since {e j} is the set of extreme points of W, so that 

W = C({ei}), it follows that AiB W = C(AiB{ei}). From this fact 
d P  , d w  

and the expression of R it follows: 
Wk 

k-I k-I k-I 

Rwk = Z AiBW = Z C(AiB{ej}) = C( Z (AiB{ej})) 
iffiO i - O  iffiO 

where in the last passage we have exploited the elementary result 
which ensures that, if A and B are arbitrary sets, then 
C(A+B) = C(A)+C(B). The desired conclusion is now an immediate 
consequence of the very definition of sum of sets. II 

5.1 - An opt imizat ion  example  with an i l lustration 
of  the bang bang principle  

Optimization is not part of our concern here, but in this 
case an illustration of how the bang bang principles applies to 
optimization problems is just a few lines away. 

We consider here a simple functional and constraints that 
lead to an immediate solution by inspection. The structure of the 
solution will demonstrate the bang bang principle. 

Suppose that we want to maximize the functional (f, x(T). 
Substituting the solution of the dynamic system we obtain: 

(f, x(T)) -- ( f ,C(T)u(T))  + (f, L(T)x(0)) (5.1.1) 

The second term in the r.h.s, is constant and thus does not 
intervene in the optimization. The first term can be rewritten as" 
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(f, C(T)u(T)) = (C (T)f, u(T)) (5.1.2) 

Thus if we partition the vector C (T) f in T blocks gi 

(i = 0, . .T-l)  corresponding to those of the vector u(T) and bear 
in mind that the blocks of u(T) are independently constrained by 
u(i) E W it is clear that the problem diagonalizes into the T 
optimization problems" 

max (gi' u(i)) 

subject to u(i) E W i - 1 , . . , T - I  ( 5 . 1 . 3 )  

Next suppose that the constraints be polytopical, e.g. of the 
form (box constraints)" 

m. :g u(i) ~ M. 
1 1 

i = 0,.., T-I (5.1.4) 

Then the optimum solution is clearly given by: 

m i j  if gij < 0 

u(i). = any value if gij = 0 (5.1.5) 
l 

M..  if gij > 0 
t l  

Because the maximum of the functional is surely attained on an 
extreme point of the reachable set at T and because the solution 
has the form contemplated by Theorem 5, this example confirms the 
bang bang principle. 

Finally we notice that the same arguments apply to the 
computation of the solution in the more general case in which the 
functional has the form: 

T 

(f., x(i) = (f, x(T)) 
! 

i=l 

(5.1.6) 

where, of course 
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f 

f 

A practically verbatim repetition of the above steps leads to 
the diagonalization of the problem and to the solution. We leave 
the details to the reader for the sake of brevity. 

6 - SYSTEMS OVER CONES 

We have already touched upon the case in which the input 
values are constrained to belong to a cone in Theorem 3, where we 
have introduced the theory of minimal invariant cones. 

If we introduce conical constraints for the other system 
variables too, then the theory extends in various directions. In 
[22], besides the above basic reachability result, conditioned and 
controlled invariant cones are introduced and their application to 
state constrained reachability theory is illustrated. Another 
interesting direction of investigation is that of positive systems 
(see e.g. [27] for the continuous time case). Some recent 
developments for the same case are in [28]. A generalization of the 
concept of positive system for discrete time systems (but the same 
concepts - if not the results - apply immediately to the continuous 
time case) is in [5]. 

Here we wish to complete the case of input conical 
constraints along lines that parallel the case of polyhedral 
constraints. 

First of all we observe that any convex cone C in ~n is the 
s~n of its lineality subspace L plus a pointed cone given by 
L -  n C. Because both of these two sets contain the origin, if we 
constraint the input to belong to a fixed cone at any time, then 
both the finite time reachable set and the reachable set decompose 
in the sum of the reachable sets corresponding to the subspace 
(which is a subspace) and that corresponding to the cone (which is 
a cone), according to Theorems 1 and 3. 
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Next suppose that the input constraining cone C is polyhedral 
(that is, both a cone and a polyhedron at the same time). Notice 
that a linear subspace is a polyhedral cone and the intersection of 
two polyhedral cones is a po lyh~ra l  cone. Thus in the above 
decomposition the pointed cone L -  N C is polyhedral too. Hence it 
is natural to complete our treatment examining the case of pointed 
polyhedral conical constraints. Incidentally notice that the 
nonnegative orthant of the space (i.e., the set of all vectors with 
non negative components) is a pointed polyhedral cone. Thus any 
theory of positive systems is a special case of the theory of 
systems over pointed polyhedral cones. 

A major fact regarding pointed polyhedral cones is that they 
are in a way the unbounded counterpart of polytopes. In fact in the 
same way as we can say that a polytope is the convex extension of 
the set of its extreme points, we can affirm that a pointed 
polyhedral cone is the convex extension of the union of its extreme 
rays. An extreme ray of a cone is a ray which is also a face of the 
cone. This result is, e.g. ,  in [25]. For example the non-negative 
orthant is the convex extension of the coordinate axes. It may be 
more natural to use conical instead of convex extension. Thus let a 
minimal generating set be a set obtained taking a non-zero vector 
from each extreme ray of the cone. Then the cone is the conical 
extension of any minimal generating set. 

This similarity carries on, to same extent, to finite time 
reachable set. The following theorem is the counterpart of Theorem 
5. 

THEOREM 6. 

If W is a pointed polyhedral cone then, for any k, Rwk is a 

polyhedral (not necessarily pointed) cone and, if {e j} is a minimum 

generating set of W the cone Rwk has the form: 

k - I  
Co ( Z Ak'i-lBu(i)" u(i) e {ej}) 

iffiO 
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PROOF - Since W = Co({ej}), it follows that AiB W - Co(AiB{ej}). 

From this fact and the expression of Rwk it follows: 

k - I  k - I  k - I  

Rwk = ~ AiBW = ~ Co(AiB{ej})= Co(~ (AiB{cj})) 
i •0 i •0 i •0 

where in the last passage we have exploited the elementary result 
which ensures that, if A and B are arbitrary sets, then 
Co(A +B) - Co(A)+Co(B). The desired conclusion is now an immediate 
consequence of the very definition of sum of sets. II 

We do not get involved here in optimization concepts though, 
because this would take us too far away. 

7 - CONSTRAINED STATE APPROACH 
TO THE CONSTRAINED INPUT REACHABILITY THEORY 

In this section we develop a technique to compute the finite 
time reachable set of a given system, when the input constraining 
set is a polyhedron, in general time-varying. Here, to fix the 
ideas, we consider the set of states reachable at time T > 0 ,  
starting from time 0. This set will be denoted, for simplicity, by 
~r An argument similar to that at the beginning of Sec. 5 will 

immediately show that ~T is a polyhedron. 

The theory is based on a dual conical condition of 
nonvoidness of a polyhedron. This condition is parameterized with 
respect to the bound vector of the inequalities, which describe 
the polyhedron in question. (see [29] and [30]). 

The idea is that of considering the unknown reachable set ~T 

as a constraining set for the state at the same time T. By means of 
a backward recursion ([4],[5]), we find the description, at each 
step, of the set of the states admissible (that is, for which a 
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solution exists) with respect to this fictitious state constraint 
and with respect to the constraints on the input. By imposing that 
the z e r o  vector in the state space belongs to the admissible 
polyhedron at time t - 0 ,  we arrive at giving the expression of ~r 

It is important to stress that in our approach no assumption 
is required" neither on properties of the matrices of the linear 
system, nor on particular structures of the constraining sets. 

Before illustrating this method, some preliminaries are 
needed. 

We shortly describe the solution of the feasibility problem 
(i.e. the problem of existence of solutions), where both the input 
and the state are constrained to belong to given sets, and then we 
particularize the results, to solve the problem of finding the 
reachable set from the origin, when the only input is constrained. 

Consider the system (3.1.1) with D - 0 .  For reasons that will 
be soon apparent, it is also convenient to consider an initial time 
t., an initial state x(t.) = x, and a final time tf, with 

1 1 

0 ~g t i ~g t f ~g T .  W e  a s s u m e  that the state of the system is 

constrained in a polyhedral set C for all t in the interval 
t 

[0, T]: 

x(t) E C V t E [0, T] (7.1) 
t 

or also, equivalently 

G(t)x(t) ~ M(t) 0 ~; t ~; T (7.2) 

On the other hand the input of the system is constrained in a 
polyhedron W for all t in the interval [0, T-l]" 

t 

u(t) E W V t E [0, T-l]  (7.3) 
t 

o r  
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F(t)u(t) < V(t) 0 < t ~; T- 1 (7.4) 

DEFINITION 4: The problem is feasible, relative to an initial 
state x at t i and to tf, if there exists an input sequence u 

defined on [ti, tf-1], U(t) E W t, such that the above state 

constraints arc satisfied by the solution of the system. 

We shall call any state, with respect to which the system is 
feasible, an admissible state, relative to the pair of times 
(ti, tf), and the given constraints. 

The computation of the set of admissible states is based on 
the following general backward recursion for the set of admissible 
states relative to initial times T- l , . . , 0  and to the final time T. 
Let D be the set of admissible states relative to (T-1,T) with 

T-1 

respect to the constraints x(T) E C T , x(T-1) E ~n (that is, x(T-l) 

unconstrained) and u(T-1) E WT. I. Then it is clear that the set of 

states admissible relative to (T-2,T) with respect to the 
constraints x(T) E Ca,, x(T-1) E CT_ l, x(T-2) unconstrained, 

u(T-1) E W and u(T-2) E W is nothing but the set of states 
T-1 T-2 

admissible relative to (T-2,T-1) with respect to the constraints 
x(T-1) E ET_{ffiDT_{N CT_ 1, x(T-2) unconstrained and u(T-2) E WT_ 2. 

Generalizing to arbitrary t < T ,  denote by D the set of 
t 

admissible states relative to (t,T), with respect tO the 
constraints x ( r ) E C r  and u ( r ) E W  r, t < r < T ,  being D T - C  T, and let 

Et = Dt N C,t with ETfCT.  

At each instant t of the above backward recursion we must 
solve the following problem" find the set of admissible states 
relative to (t-l,t) with respect to the constraints x(t) E E t, 

x(t-1) unconstrained and u ( t - 1 ) E  W This admissible set D is 
t - l"  t - I  

given by: 

Dt.l = {x" =I u E Wt. l such that Ax+Bu E Et} (7.5) 
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To this purpose we recall now the dual conical nonvoidness 
condition [29], [30]. 

THEOREM 7. 

The convex polyhedron { x: Gx ~; v , G E ~sxn} is nonvoid ff and 
only if 

Qv > 0 (7.6) 

where 

.L {rows of Q} = {generators of the cone: R(G) n P}, R(G) denotes the 
range of the matrix G and P denotes the nonnegative orthant of ~s. 

For the sake of simplicity, the same symbol P, which appears 
in the statement of Theorem 7 will be used in the sequel to denote 
the nonnegative orthant of any Euclidean space, leaving to the 
context the determination of the space itself. 

At this point we can give an explicit expression for E .  
t 

THEOREM 8. 

The set E - D n C is described by the inequality" 
t t t 

where 

E = { x" 6 ( 0  x ~ M(t) } (7.7) 
t 

G(t) = Qt + 
G(t ) 

[, . ] M(t) = Qt + 1 l~l(t + 1) + Q t +1V(t) 

M ( t )  
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with terminal conditions: 

G(T) = G(T) and M(T) = M(T) 

N where the matrix Qt+I=[Q~+I !Qt+l] is defined by: 

{rows of Qt+l } = { generators of R[~(tF+I))B] l ( t  n P} 

and the blocks Qt+l 

of l~(t+l) and V(t). 

N 

and Qt+l are determined by the row dimensions 

PROOF: 

The state constraint at T is: 

G(T) x(T) < M(T) 

Substituting for x(T): 

G(T) (A x(T-1) + B u(T-1)) < M(T) or 

G(T) B u(T-1) ~ M(T) - O(T) A x(T-1) 

Now, bearing in mind the original input constraint at T-l, we 
can write the inequality: 

O T' 1 
F(T-1 u(T-1) < [ V(T- 1) 

In view of the dual nonvoidness condition (Theorem 7), the set 
of all bounds that make the latter equation feasible is given by: 

M(T) -G(T) A x(T-1) 1 
QT V(T- 1) > 0 
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where QT is the matrix, whose rows are the generators of the 

pointed polyhedral cone R/F(T_I .L N P. Then, partitioning QT as 

[Q~iQ~, according to the dimension of M(T) and V(T-1), it is 

obtained" 

Q~ M(T) - Q~ G(T) A x(T-1) + Q~ V(T-1) ;e 0 or 

Q~ G(T) A x(T-1)~ Q~ M(T) + Q~ V(T-1) 

The latter inequality represents the set of admissible states 
DT_ 1, and, at the same time, shows that it is a polyhedron. 

The set ET-1 is obtained intersecting DT-I 

constraining set  CT_ 1 and hence it is given by the polyhedron" 

wRh the 

ET_ 1 -- {x: G(T-1)x ~; l~l(T-l>} 

where 

[Q~ G(T) A ] 
G(T- 1) - G(T- 1 ) 

[QT M(T) + QT V(T-1)] 
I~I(T-1) = M ( T- 1) 

At this point it is easy to see that generalizing the above 
formulas for the generic instant of time t, the desired expression 
of E t is obtained.ll 

Next we pass on the reachability problem proper. To this 
purpose, it suffices to solve a special case of the above general 
constrained problem, defined by: 
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x(t) E C for all t e [0, T] (7.7) 
t 

o ~ D(0) 

where 

C = {z} t = T 
t 

C -- [R n V t E [1, T-I] 
t 

Then '~T will be the set of all z that satisfy the above 

conditions. 

The constraint at t = T  may also be expressed as: 

x(T) = z z e a~ 
T 

or also 

x(T) ~ z 

-x(T) ~ -z 

and therefore 

I Izl 
M(T) = -z 

G(t) -- (0) M(t) -- (0) tE[1,T-1]  

The set D(0) is described by the inequality (in this specific 
case D(0) is equal to E(0) and it is convenient to use the symbols 
introduced for this latter): 

where 

G(O)x < M(O) 

A A 

' G(1) A G(0) = Ql 
A 

H M(O) = Qt M(1) + QI V(O) 
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A A 

G(1) = Q~G(2)A N 1~i(1) - Q~l~I(2) + Q2V(1) 

A ~ A 

G(t)  =Qt+lG(t+ 1) A 
A A 

' M + Q "  M(t)  = Qt+l t+ 1 t +1 V ( t )  

[ ] - [ ] I M ( T )  = M ( T )  = z G(T) = G(T) = -I -z 

and where 

-- n P} 
( t )  

Note now that in the expression of the set D(0) the matrix 
G(0) depends on the known matric,es of the dynamic constrained 
system, while the bound vector M(0) actually depends ,,on the 
parameter z. Let us examine more in detail the structure of M(0) 

A A 

M(0) = Q' M(1) + Q* v(0) 
A 

substituting for M(1)" 

A A 

= ' ' M 2  , N " V ( 0 )  M(0) QIQ~ ()+QIQ2V(1)+Q1 

A 

and finally, after the la~st substitution for M(T-1), the following 
expression is obtained for M(O) 

Qi% ' + " ' "  ""QT QIQ~...Q~.IQ~ V(T-1) + 

N N 

+ QIQ 2 V(1) + QI V(O) (7.8) 

At this point it is convenient to simplify the notations by 
means of the following positions: 

co
nt

ro
len

gin
ee

rs
.ir



78 PAOLO D'ALESSANDRO AND ELENA DE SANTIS 

v~ = Q,'%...%_:%_,% 

Z T -" QiQ~...Q~_2%_lQ ~ 
z _ -  Q;%...%_:%_, 

z = olo ~ 

Z 1 = Q. I 

(7.9) 

(:] A 

Thus, remembering that M(T) = _ , the bound vector M(O)can 

be rewritten as 

T - I  
A 

M(O) = (Y~ - Y")T Z + E Zi +I V(i) (7.10) 
i=0 

where YT has been partitioned as [Y~ iY~ ,  according to the 

structure of I~(T). 

Clearly 0 E D(0) if and only if IVl(0)~0. Hence, in view of the 
A 

just found expression of M(O), we have established the following 
theorem" 

THEOREM 9. 

The set of reachable states t/r T has the following expression" 

~T = x" (Y - Y ) x ~ Z Z i+Iv( i ) 
iffi0 

(7.11) 

Some important remarks are now in order. 

First of all note that the generalization to the case of 
initial state x(0) ~ 0 is straightforward. Moreover, with some 
additional computations, it is possible to describe the set of 
states reachable from a set of initial states [3]. 
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The second and more interesting remark is the following: 
despite the numerical complexity of the computation of ar T, an exact 

description of the reachable set is given in a very general case. 
Moreover, the main advantage of this approach is that the 
inequality which describes ar T is parameterized with respect to the 

vector bounds of the input constraining polyhedra. In fact the 
coefficient matrix (YT - Y~3 and the matrices Z i +t '  0~;i ~;T-1, 

~el~end on the matrices of the constraints and the vector 

Z i +IV(i) has the bounds V(i), i=0 . . .T-1 ,  as parameters. This 
i f 0  

means that with our technique we have solved the problem of finding 
the reachable set of an entire class of input constrained system, 
each element of the class corresponding to a set of bounds for the 
input constraining polyhedra. 

8 - B O U N D E D  N O R M  R E A C H A B I L I T Y  

In this section we outline the discrete time version of the 
theory of bounded norm reachability. Here we are interested to the 
possibility of steering the state from one point to another in a 
finite interval of time. Because we consider stationary systems 
such interval can be taken, once and for all, of the form [0, T]. 
Moreover, to simplify notations, we denote u(0,T) by u(T). 

With such stipulation the problem in point is that of 
verifying the existence of a control u(T), such that x ( 0 ) =  x and 
x(T) - z, under the constraints tlu(T)ll < P, for given x, z a:p~ 
p. Here, of course, the norm refers to the function space 
(incidentally, we use the same symbol for all norms leaving to the 
context to specify the space to which it refers). Thus we deal with 
a theory where the constraints are not pointwise in time. 

The reachable set at T starting at time zero from the origin 
will be denoted by D. 

The two cases of reachability from the origin and from x are 
quite Tsimilar since the set of states reachable from x is nothing 
but A ' x  + D. 
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It will be useful in the sequel to bear in mind the following 
simple observation. The set D is the image under C(T) of the 
closed sphere of radius p in the input function space, which is a 
convex and compact set. Thus such is D, and also the set A-x + D. 

Of course one may extend the theory to other norms. In the 
present finite dimensional context all norms are topologically 
equivalent, but it is interesting to note that norms with polytopic 
spheres (see also [31]) can be handled along the lines of 
polyhedral theory, rather than, for example, adopting an Lp 
approach. 

At this point we can pass on to state a first important result 
of the theory. The machinery for proving the following theorem 
consists of inner product properties and a separation theorem. 

THEOREM 10. 

The state z is reachable at T, starting from the state x at 0, 
under Ilu(T)ll ~ p if and only if 

V y E ~n (Y, z-ATx) ~: P II C*(T) y II (8 .1)  

P R O O F  - Necessity: Suppose z is reachable at T from x at 0 for some 
given u(T) satisfying the constraints. Then 

z -- A Tx + C ( T ) t l ( T )  

Thus for an arbitrary y E ~n. 

(y, z) = (y, A Tx) + (y, C(T)u(T))  

or  
(y z-ATx) (y, C(T) u(T)) (C* , = = ( T ) y ,  u ( T ) )  

Applying Sehwarz's inequality: 

[(y, z-ATx) I ~ ]IC*(T)yll ]Iu(T))II~ ]]C*(T)y]]p 

whence, being the r.h.s, positive, the desired conclusion follows. 
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Sufficiency: suppose that, even though the condition holds, 
the point z in not reachable from x under the given constraint. In 
other words we have assumed that z ~ Atx + D. Denote this latter 
set by C for the present purposes and for the sake of simplicity. 
In view of the fact that C is convex and compact and a well known 
separation result (e.g. Corollary 14.4 in [32]), there is a 
continuous linear functional strongly separating {z} and C. That 
is, ff such a functional is represented by the vector v: 

sup {(v,y)" y e C} < ( v , z )  

Thus, there exists an a such that: 

(v, y) < a < (v, z) u y = Atx + d with d E D 

Hence" 

(v, Atx + d) < a < (v, z) V d E D 

or" 

(v, d) < a - (v, Atx) < (v, z-Atx) V d E D 

This can be rewritten, letting t/ = a - (v, Atx) �9 

(v, d) < p < (v, z-Atx) V d E D 

For the moment consider the first inequality. Bearing in mind 
that d has the form C(T) u(T)" 

4, 

(C (T)v, u(T)) < p for IluCr)ll < p 

And hence 

sup{<r (T>v, u(T>): Ilu(T)ll < p} < P 

On the other hand the norm of a functional, as is readily 
verified, is equal to the norm of the vector that represent the 
functional, so that this inequality yields" 

[IC (T)v[[ p < 
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And using the second inequality too- 

IIC*(T)vll p < (v, z-Atx) 

which contradicts the initial assumption thereby completing the 
p roof . [  

As a first remark note that, for the case of reachability from 
the origin, the condition of the theorem becomes" 

V y  ~ a~ n ( y , z )  < p II c*Cr) yll (8.2) 

Next it is useful to l~ut this result in a different form. L e t  
Z be either the matrix z z or the matrix (z-Atx)(z-Atx)  * for the 
case of reachability from the origin or from x respectively. For 
simplicity let's carry out the arithmetics for the first case, 
with the understanding that the substitution of z by (z-Atx) is 
all it is required to cover the second case too. The condition: 

V y E IR n (y, z) < 17 [I C*(T) y ll 

can be rewritten as" 

2 * v y e ~'~ (y, z) 2 ~; p II c (T) yll 2 (8.3) 

V y  E iRn * * 2 * * y z z y < p ( C ( T )  y, C ( T )  y) 

n 2 * 
V y E ~ (y, Z y) < p (C(T) C ( T )  y, y) 

That is to say that the matrix C(T)C*(T) -  l/p2 Z is positive 
semidefinite. We may state this formally in the following: 

COROLLARY 1. 

The state z is reachable at T, starting from the state x (the 
origin) at 0, under Ilu(T)ll ~ p, if and only if the matrix 

C(T) C*(T) - 1//7 2 Z 

is positive �9 
(z-Atx) (z-Atx) 

scmidcfinitr �9 where Z denotes the matrix 
(the matrix z z ). 
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$ 

The matrix C(T)C (1") is often cared the Gramian matrix 
. by its very definition, if associated with the s~,stem Notice .that 

T 1 > T 2, then C(TI)C (T2) > C(T2)C (T2). 

The result above readily implies that the system is reachable 
if and only if there exists a T such that the matrix C O ' ) C  (1") is 
positive definite. The key of the argument lies, for necessity, in 
the fact that, because z is arbitrary, taking z = y, ~e  a~rive to 
the conclusion that it must be (y, C(T)C ( T ) y ) >  1/p" Ilyll" <from 
8.3) for sufficiently large p and T. For ~ufficiency the key lies 
in the fact that if we assume that C(T~C ('r) is positive definite 
and, at the same time that R(C(T)) r ~ (i.e., the system is not 
reachable) a .contradiction would arise. In fact in this case it 
w~uld be N(C (T)) :~ {0} so ~a t  it would exist an y :~ 0 such that 
C (T)y = 0. But there (y,C(T)C (T)y)=0 also. 

8.1 - A bridge to opt imizat ion 

As mentioned earlier, often optimization results are 
practically built into constrained reachability theory. This should 
not come to a surprise, since optimization and feasibility are akin 
to each other and reachability is, after all, a sort of 
feasibility. It is useful to digress a short while, just enough to 
taste the flavor of optimization. 

From Corollary 1 and the fact that, as already noted, the 
Gramian matrix "increases" with time, it is clear that for any 
given bound to the norm, if a state is reachable at some T, then 
there exists a minimum reachability time. How about the minimum 
norm? Existence is settled by the following" 

THEOREM 11. 

Assume that the state z is reachable at T from the origin (or from 
x) by means of controls with norm less than or equal to p, and let 
U be the set of controls that effect the transfer of the state. 

P A ,, 

Then there exists in U a control u, that has minimum norm p. 
P 

PROOF. The proof for the case of reachability from x is a trivial 
variation of the proof for the case of reachability from the 
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origin. Thus it is convenient to make reference to this latter 
case only. Let p be the infimum of the set of norms of members of 
U .  Then there exists a sequence of positive numbers {pn}, with 

P n ;e p for any n, that converges to p, and such that for each n 

there exists a control that effects the transfer and has norm less 
than or equal to p .  Thus, in view of Theorem 9 we can write for 

n 

each n 

<y, z) < p II C'(T) Yll V y ~ ~n <8, l. 1) 
n 

Therefore, passing to the limit" 

A $ 

(y ,z )  < P l l C ( T )  Yll V y  e ~ n  (8 .1 .2)  
A 

It follows, by the same theorem, that tltcrr exists a control u 
~a t  makes tile same transfer and such that Ilu u ~; p. Finally, since 
u E Up and p is the infimum of norms of elements of Up, it must be 

Ilull = p, so that the proof is complete, l 

8.2 - Computat ion of optimal control 

In this subsection we show that the machinery just developed 
allows a straightforward calculation of the optimal control. 

THEOREM 12. 
A 

The minimum norm p of a control effecting the transfer in the 
interval [0, T] is given by" 

A $ 

p = sop {(y, w): II c (T)yll = 1} (8.2.1)  

where, as usual, w = z for the case of reachability from the origin 
and w = z - ATx for the case of teachability from x. 

PROOF - Being the proofs of the t w o  statements similar it is 
convenient to give the proof for the case of reachability from the 
origin. The generalization will be immediate. 

To this purpose we start from inequality (8.1.2): 
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A �9 

(y, z) < p II c c r ) y  I[ v y E IR n (8.2.2) 

This latter implies: 

A �9 

p >  sup {(y, z). II c (T)Yll  = 1} ffi p' (8.2.3) 
A 

. Suppose that p > p '  ~so that there exists cr such that 
p > c7 > p ' .  Because G < p, z is no more reachable relative to the 
input bound norm G. Therefore, in view of Theorem 9, there exists 
a vector v such that: 

(v, z) > a II C (T) vii <8.2.4) 

This inequality implies that (v,z) r 0, which in turn 
implies, in view of inequality we started with, that 
[} C, (T)v i i  ~: 0. Dividing both sides of the ,last inequality by 
II c (T) vU, we obtain for the vector q = v /11 c (T) vii" 

(q, z) > G > p '  (8.2.5) 

S 

with ]] C (T) q][ = 1. This contradicts the definition of p ' .  Thus 
A 

p = p '  and the proof is completed. I 

l~Iotice that if we consider reachability from x and z - A Tx, 
then p -  0. This is obvious because in this case the target state 
can be reached by .free motion. It is obvious too that this is the 
only possibility for p to be zero, because the only zero norm input 
is the T identically zero input. Thus it is contradictory that 
z :~ A x and p - 0 ,  because we would be left with the only free 
motion. In particplar if we consider reachability from the origin 
and z ~: 0 ~en  p cannot be zero too. In the sequel we exclude the 
trivial case p -  0, continuing to refer, without explicit mention, 
all the proofs to the case of teachability from the origin. 

THEOREM 13. 

The supremum of the preceding theorem is attained. 

A 

PROOF - By the expression of p given by, the preceding theorem there 
exists a sequence {pn} converging to p from below such that, for 
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, > a > 0 and there exists an Yn with [] C ( T ) y n [  I = 1 with each n Pn 

p= = II c (T)y=[[ p <  (y ,  z) 

Notice that we can take each yn in the subspaee R(C(T)). In 
o 

fact ~n = R(C(T)) + N(C (I)) ,  the two spaces being the orthogonal 
complement of each other. Moreover z E R(C(T)), because it is a 

= E R(C(T)) and reachable state. Now if Yn Yln + Y2n with Yln 

, its Y2n E N(C (T)) we can clearly write, substituting to Yn 

decomposition" 

= < (Yl z) (9" < +O n II C (T) Ylnl[ Pn n' 

and again [[ C (T)yl~l[ = 1 .  The big difference is that now, since 

C (T) is a linear isomorphism of R(C(T)) onto R(C (T)), ,and the 
sequence {Yln } is mapped into the unit ball of R(C(T)), it 

follows that the sequence is in some sphere and because this latter 
is compact it admits a convergent subsequence. Passing to the limit 
for this latter and eliminating the by now irrelevant subscript 1" 

A ~ A 

a < p = [[ C (T)yl l  p ~ (y, z) 

with II C (T)yl l  = 1, in view of an obviou~ continuity argument. 
But because z is reachable relative to p, our theorem on 
constrained reachability insures also that" 

A I)  A 

(y ,z)  ~ p l [  CCT) yll = P  

which completes the proof. I 

A 

In view of this theorem there exists a vector y with 

[I C (T) Y ll - 1, s u c h  t ha t  ( y ,  z )  - I ( y ,  z )  l - p - p II c ~ y ll- 

THEOREM 14. 

The optimal control is given by: 
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A A 2 , 

u = p C (T) v 

and v can be found solving the equations 

87 

(8.2.6) 

P , 
2 C(T) C (T) v =  z 

I ( v ,  z)  l = 1 

(8.2.7) 

A A 

where v = ( l / p ) y .  

A A / A 

PROOF - From the equality [ (y ,  z ) [  = P  II C- (T) Yll and since 

z = C(T) u" 

p l ie  (T) yll = I (y, C(T) u) I = I (C (T)y, u) I 

From this we infer that the Schwartz inequality holds as 

equality and therefore C (I') y and u must be proportional. That is: 

A , A 

u = K C (T) y 

where, of course: 

K = II u II/11 c ( T )  y II = P / l l  C Ca') y II = P 

hence 

A , A A 2 

u = p C ( T )  y = p C ( T )  v 

A A 2 , A A 

and becausez  = C(T) u = p C(T) C ( T )  v and I(Y,Z) l = p, so tha t  
I (v ,  z ) [  = 1, the proof is completed. I 

9 - A P P R O X I M A T E D  AND DISTURBED 
C O N S T R A I N E D  R E A C H A B I L I T Y  

In this section we examine the problem of approximate 
teachability, which is particularly meaningful in view of the 
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presence of inputs constraints, and the problem of disturbed 
teachability. This is connected to the former since we wish to 
investigate whether, in presence of the constraints and of noise, 
(again characterized by the assumption of bounded norm) we can 
reach, if not the target point, at least some point of a ball 
around the target point. 

Let's start with the first problem. This time our crucial 
result is based on the following immediate consequence of the 
usual separation theorem. 

LEMMA 2. 

If ~ and �9 are two convex and compact subsets of ~n, then a 
necessary and sufficient condition for them to have a non empty 
intersection, is that: 

inf {(x,d)" d E ~} ~; sup {(x, c)" c E ~f) V x E  ~n (9.1) 

PROOF - If the two sets are not disjoint then, given x E ~n for a 
point y in their intersection the two real numbers sets in our 
condition have a point in common, so that the inequality becomes 
obvious. On the other hand suppose that the inequality is true but 
the two sets do not intersect. Then in view of the already cited 
Corollary 14.4 in [32] there exists an x E ~n such that 

inf {(x, d)" d E ~} > sup {(x, c): c E W) 

which is a contradiction. [ 

We can now state the following result of approximate 
reachability: 

THEOREM 15. 

There is at least one point in the closed sphere of radius e about 
z, that is reachable at time T starting from the state x at time 0, 
under the constraint that the input functions have the norm bounded 
by p, if and only if: 

(Y, z -ATx)-  P II y l l - e  II y II '< o Vy E [R n (9.2) 
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PROOF - As usual, we can give the proof for the only ease of 
reaehability from the origin, the general case requiring only 
trivial variations of the argument. 

We already observed that the set D of all states reachable at 
time T, starting from the origin at time 0, is a convex and compact 
set. If this set intersects the closed sphere S of radius e around 
z, then the present approximate reachability property prevails 
otherwise it doesn't. Thus, applying the I.emma, the first case 
occurs ff and only if 

inf {(y, d)" d E D} < sup {(y, s): s E S) V y ~ ~n 

B u t  

inf {(y, d)" d E D} = inf {(y, C(T) u(T)): Ilu<T)ll ~ p} - 

- sup {(y, -C(T) u(T))" Ilu(T)ll ~ p} = 

= - sup {(y, C(T) u(T)): IluCr)ll < p} 

since the constraining set is symmetric. 

Moreover 

sup {Cy, CCT)uCT))" IluCT)ll s p}= 

sup {CC*(T)y, uCT))" Ilu(T)ll ~ P } -  PlIC'CT)yll 

as is readily seen from Schwartz inequality and the fact that u(T) 
can be taken proportional to C CI') y, and with norm p. By a similar 
argument, as to the second term of the inequality, we obtain: 

sup{(y , s ) ,  s ~ s ) -  (y ,z)  + e l l y l l  

Putting again together the terms 

-P lIC<T)  Yll ~ 811Yll  + <Y,Z) 

This latter, changing y into -y yields: 

( y , z ) - p l l C C T ) Y l l - e  IlY II ~ 0 

as we wanted to prove. I 
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The final bounded norm reachability problem we deal with is 
that in which not only the input has bounded norm, but, also, the 
system is affected by noise (that is, the matrix D is different 
from zero), and such noise disturbs our action of steering the 
state toward the target point. We may look at this case as a 
problem of robust reachability, since our purpose is that of 
establishing conditions under which there exist a control, that 
allows us to reach some point in the neighborhood of the target 
point, no matter what is the noise function, provided this latter 
has bounded norm too. 

Let 's be more precise. Let u s  call again p the bound for the 
input norm and J the bound for the noise norm. The problem is that 
of determining whether there exists a control u(T), with 
Ilu(T)ll < p,  such that the state is transferred from x at time 0 to 
a point of the closed ball S of radius e around the target state 
z, no matter what is the noise function d(T), with IId(T)ll < 6. 

It is possible to reformulate the problem in such a way that 
it can be solved invoking the usual separation theorem. If we call 
N the set of all states in which the system is steered by all 
possible noise functions (satisfying the constraint) at time T, 
starting from the origin at time 0, then, for any given control 
u(T), the set of all states that will be reached is: 

A Tx + C(T)u (T)  + N (9.3) 

Clearly we must verify if there exists an u(T), satisfying the 
constraints, such that this set be contained in S. 

Next let F be the set 

F = {w: w + Nc S} (9.4) 

Notice that F c S. At this point we can equivalently express 
our condition saying that it must be R N F r ~, where R is the set 
of all points reachable at T from x under zero noise and with 
inputs satisfying their constraint. 

It is no more than a straightforward verification to ascertain 
that F is convex and closed. Therefore, since F c S, which is 
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compact, it follows that F is compact too. At this point the 
previously invoked separation theorem can be used again. Denoting 
by H the set F -  z and reasoning along the same lines of the proof 
of the preceding theorem we can state the following: 

THEOREM 16. 

A point in the closed e ball around z can be reached at time T 
starting from x at time 0 by means of an input u(T) with 
Ilu(T)II < a, for any noise function d(T) with IldCl')ll < 6 if and only 
if: 

(Y, z-Atx) -/7 II C*(T) yll + min {(v, y)" v E H} < 0 Vy E ~n 
(9.5) 

PROOF: We again make reference to the case x=0 ,  substituting R with 
D. In view of the non-emptiness condition, it must be" 

n 
inf {(y, d): d E D} < sup {(y, f)" f E F) V y E 

Thus" 
We already computed the first term in the preceding proof. 

It 

- p  IIC (T) y ll < sup {(y,  f). f E F) 

Moreover 

sup {(y, f): f E F) = sup {(y,w+z): w E H} = 
= (y,z)  + sup {(y,w)- w ~ H} = 
= (y,z) + max {(y,w): w E H} 

because H is compact. Finally" 

It 

- p lie (T) yll < (y,z) + max {(y,w)" w E H} 

and changing y into -y" 

(y, z ) - p  [I C*(T) Y I[ + min {(v, y): v E H} ~ 0 Vy E ~n 

which is what we wanted to prove. I 

co
nt

ro
len

gin
ee

rs
.ir



92 PAOLO D'ALESSANDRO AND ELENA DE SANTIS 

R E F E R E N C E S  

[1] - A.A. Liapunov, "On completely additive vectorial functions', 
Izvestia Akademii Nauk SSSR, Seria Matem., pp. 465-4784, (1940). 

[2] - R. Conti, "Processi di controllo lineari in ~n,, Quaderni UMI 
3 0 ,  Pitagora, Bologna, (1985) (In Italian) 

[ 3 ]  - E. De Santis, "On Reachability of constrained discrete time 
linear linear systems', Research Report 41, Department of 
Electrical Engineering, University of L'Aquila, (1990). 

[4] - P.d'Alessandro, E. De Santis, "General closed loop 
optimal solutions for linear dynamic systems with linear 
constraints and functional', Research Report 50, Department of 
Electrical Engineering, University of L'Aquila, (1993) (revised 
version of Research Report 40, (1990)). 

[5] - P.d'Alessandro, E. De Santis, "Positiveness of Dynamic 
Systems with Non Positive Coefficient Matrices', IEEE Transactions 
on Automatic Control, (to appear), (1993). 

[6] - A. Marzollo, "Controllability and Optimization', Lectures 
held at the Department for Automation and Information, University 
of Trieste, Courses and Lectures 17, International Center for 
Mechanical Sciences, Udine (Italy), (1969). 

[7] - H.A. Antosiewiez, "Linear control systems', Arch. Rat. Mech. 
Anal., 12, pp. 313-324 (1963). 

[8 ]  - D. Blackwell, "The range of certain vector integrals', 
Proceedings of the Amer. Math. Society, 2, pp. 390-395, (1951). 

[9] - J.P. LaSalle, "The time optimal problem', in "Theory of 
nonlinear oscillations ", vol. 5, pp. 1-24, Princeton Press, (1960). 

[10] - E.B. Lee, L. Markus, "Foundations of Optimal Control 
Theory', J. Wiley & Sons, (1967). 

[11] - R.M. Bianchini, "Local Controllability, Rest States and 
Cyclic Points', SIAM J. Control and Optimization, vol. 21, No. 5, 
(1983). 

co
nt

ro
len

gin
ee

rs
.ir



TECHNIQUES FOR REACHABILITY 93 

[12] - M.E. Evans, "Bounded control and discrete time 
controllability" ,International Journal of Systems Science, 17, pp. 
943-951, (1986). 

[13] - J. E. Gayek and M.E. Fisher, "Approximating Reachable Sets 
for n-dimensional Linear Discrete Systems', IMA Journal of  
Mathematical Control & Information 4, pp. 149-159, (1987). 

[14] - M.E. Fisher and J.E. Gayek, "Estimating Reachable Sets for 
Two-Dimensional Linear Discrete Systems", Journal of  Optimization 
Theory and Applications, Vol. 56, No. 1, pp. 67-88, (1988). 

[ 1 5 ]  - M.E. Fisher and W.J. Grantam, "Estimating the effect of 
continual disturbances on discrete time population models", J. 
Math. Biol., 22, pp. 199-207, (1985). 

[16] - P.O. Gutman and M. Cwikel, "Admissible Sets and Feedback 
Control for Discrete-Time Linear Dynamical Systems with Bounded 
Controls and States", IEEE Transactions on Automatic Control AC-31, 
No. 4, pp. 373-376, (1986). 

[17] - M. Cwikel and P.O. Gutman, "Convergence of an Algorithm to 
Find Maximal State Constraint Sets for Discrete-Time Linear 
Dynamical Systems with Bounded Controls and States", IEEE 
Transactions on Automatic Control AC-31, No. 5, pp. 457-459, 
(1986). 

[ 1 8 ]  - P.O. Gutman and M. Cwikel, "An Algorithm to Find Maximal 
State Constraint Sets for Discrete Time linear Dynamical Systems 
with Bounded Controls and States", IEEE Transactions on Automatic 
Control AC-32, No. 3, pp. 251-254, (1987). 

[19] - V. G. Rumchev, "Constructing the reachability sets for 
positive linear discrete-time systems. The case of polyhedra". 
Systems Science, Vol. 15, No. 3, (1989). 

[20] - S.S. Ke~rthi and E.G. Gilbert, "Computation of Minimum Time 
Feedback Control Laws for Discrete-Time Systems with State-Control 
Constraints", IEEE Transactions on Automatic Control AC-32, No. 5, 
pp. 432-435, (1987). 

co
nt

ro
len

gin
ee

rs
.ir



94 PAOLO D'ALESSANDRO AND ELENA DE SANTIS 

[21] - P. d'Alessandro, M. Dalla Mora and E. De Santis, "On 
consistency of linear linearly constrained discrete time systems", 
International 5ournal of the Franklin institute, vol. 319, no. 4, 
pp. 423-430, (1985). 

[ 2 2 ]  - P. d'Alessandro, M. Dalla Mora and E. De Santis, "On 
discrete time linear systems over cones" - Systems & Control 
Letters, 6, pp.271-275, (1985). 

[23] - P. d'Alessandro and E. De Santis, "Reachability in input 
constrained discrete time linear systems',  Automatica, vol. 28 no. 
1, pp. 227-230, (1992). 

[24] - P. d'Alessandro and M. Dalla Mora, "Systems, memory, 
causality, evolution and recursive equations',  Computers and 
Mathematics with Applications, Vol. 10, No. 1, pp. 61-69, (1984). 

[ 2 5 ]  - R.T. Rockafellar, "Convex Analysis ~, Princeton Mathematical 
Series, No. 28, (1970). 

[26] - J. Stoer, C. Witzgall, ~Convexity and Optimization in finite 
dimensions I ", Springer-Verlag Berlin-Heidelberg-New York (1970). 

[27] -D.G. Luenberger, ~Introduction to dynamic systems ~, J. Wiley 
& Sons, New York, (1979). 

[ 2 8 ]  - A B e r m a n ,  M .  Neumann and R .  J. Stern, "Nonnegative matrices 
in dynamic systems ~ J. Wiley & Sons, New York, (1989). 

[ 2 9 ]  - P. d'Alessandro, M. Dalla Mora and E. De Santis, ~Te~hniques 
of linear programming based on the theory of convex cones ~, 
Optimization 20, pp. 761-777, (1989). 

[30] - P. d'Alessandro, ~The conical approach to linear 
programming ~, Research Report 47, Department of Electrical 
Engineering, University of L'Aquila, (1991). 

[ 3 1 ]  - P. d'Alessandro, M. Dalla Mora, "Fast projection method for 
a special class of polytopes with applications ~, RAIRO O.R., vol. 
22, no. 4, pp. 347-361, (1988). 

[32] - J.L. Kelley, I. Namioka et al., "Linear topological spaces ", 
Springer - Verlag, New York, (1963). 

co
nt

ro
len

gin
ee

rs
.ir



STABILIZATION, REGULATION, AND OPTIMIZATION OF 

MULTIRATE SAMPLED-DATA SYSTEMS 

P a t r i z i o  C o l a n e r i  
R i c c a r d o  S c a t t o l i n i  

N i c o l a  S c h i a v o n i  

Dipar t imento  di E le t t ron ica  e In fo rmaz ione  
Pol i tecnico di Milano 

Milano, I ta ly  

I. INTRODUCTION 

In c lass ica l  digi ta l  control  sys tems,  it is usual ly  
assumed  t h a t  both the p lant  i npu t s -upda t i ng  and the  p lan t  
o u t p u t s - m e a s u r e m e n t  a re  pe r fo rmed  at  a unique cons t an t  r a t e  
and in a synchronous  fashion.  However, th is  hypo tes i s  is 
somet imes  not rea l i s t i c ,  fo r  economical  a n d / o r  
technologica l  reasons ,  and, f u r t h e r m o r e ,  r e l ax ing  it o f t en  
a l lows the des igner  to obtain improved con t ro l  
p e r f o r m a n c e s .  Hence, one is lead to consider  the so -ca l l ed  
m u l t i r a t e  s a m p l e d - d a t a  control  sys tems ,  which a re  
c h a r a c t e r i z e d  by the f a c t  t ha t  each input is upda ted  a t  an 
i t s  own r a t e  and each output  is measured  at  an i ts  own 
r a t e .  The ana lys i s  and the design of such sys t ems  has 
r e ce n t l y  received a g r e a t  deal of a t t en t ion .  For  an 
overview of the a rea  see, e.g.,  [11-[31. 

There  a re  two p r i m a r y  reasons  of i n t e r e s t  in m u l t i r a t e  

CONTROL AND DYNAMIC SYSTEMS, VOL. 71 
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96 PATRIZIO COLANERI ET AL. 

digi ta l  control .  
A f i r s t  s t r o n g  mot iva t ion  behind the i r  use is due to 

the  possible  presence  of technologica l  c o n s t r a i n t s  which 
en fo rce  the use of contro l  schemes where  senso r  
m e a s u r e m e n t s  and cont ro l  ca lcu la t ions  have to be p e r f o r m e d  
a t  d i f f e r e n t  sampl ing r a t e s ,  see, e.g. ,  [4]-['/]. This  
typ ica l ly  occurs  in one of the fo l lowing cases" 
(i) Some senso r s  r equ i re  a s ign i f i can t  t ime be fo re  they  
supply the m e a s u r e m e n t s  of the p lant  ou tpu t  va r i ab l e s  to 
the  r e g u l a t o r .  For  example,  such a s i t ua t ion  occurs  in 
con t ro l l ing  chemical  p lan t s  where  expensive c h r o m a t o g r a p h s  
a re  used to measu re  composi t ion products .  These  
m e a s u r e m e n t s  a re  then in f requen t  and delayed wi th  r e s p e c t  
to those  of o ther  va r iab les  measured  by senso r s  not  
s u f f e r i n g  of such a l imi ta t ion.  
(ii) A small  number  of sensors  is used to measu re  a l a rge  
number  of ou tpu t  va r iab les  at  d i f f e r e n t  t imes,  or the  
s ens o r s  al low one to measure  all the p lant  ou tpu t s  a t  the 
same r a t e  and t ime, but h a r d w a r e  c o n s t r a i n t s  p reven t  one 
f r o m  t r a n s m i t t i n g  da ta  s imul taneous ly  f rom all the s enso r s  
to the  cont ro l  p rocess ing  unit.  
(iii) The p lan t  ou tpu t s  are  all measu red  a t  the same r a t e  
and t ime,  but  th is  r a t e  is less than  t h a t  of the  p lan t  
inputs  upda t ing  al lowed by the cont ro l  a p p a r a t u s e s .  
(iv) Some a c t u a t o r s  are  manipu la ted  less f r e q u e n t l y  than  
o t h e r s  in o rde r  to reduce  the e f f o r t  of these  a p p a r a t u s e s .  

As a second reason,  it has been shown t h a t  the use of 
m u l t i r a t e  and per iodica l ly  t ime vary ing  c o n t r o l l e r s  can 
s i g n i f i c an t l y  improve the c losed- loop p e r f o r m a n c e  of a 
s a m p l e d - d a t a  sys tem in t e r m s  of model matching,  s ens i t i v i t y  
reduc t ion ,  d i s t u rbance  r e j ec t ion ,  pole and zero  a s s ignmen t  
wi th  s t a t e  feedback,  see, e.g. ,  [1], [8], [9]. However,  
these  p romis ing  r e su l t s  usual ly  r e f e r  to the sampled  
vers ion  of the sys tem,  while p a r t i c u l a r  ca re  has also to be 
paid to the  in t e r sample  behavior  which can be s i gn i f i c an t l y  
d e t e r i o r a t e d  by the m u l t i r a t e  input updat ing,  see [10]. 

A deep d i f f e r ence  ex i s t s  in the two f o r m e r  c l a s ses  of 
app l i ca t ions  of m u l t i r a t e  control-  when a m u l t i r a t e  
a pp roach  is used to improve cont ro l  p e r f o r m a n c e s ,  the 
f r e q u e n c i e s  and phases  of i n p u t s - u p d a t i n g  and 
o u t p u t s - m e a s u r e m e n t  are  f r ee  design p a r a m e t e r s  to be 
de t e rmined  by the cont ro l  s t r a t e g y  in o rde r  to opt imize  the 
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requi red  per formances .  On the cont ra ry ,  when a mu l t i r a t e  
solut ion is enforced by technological  cons idera t ions ,  the 
same p a r a m e t e r s  are problem data  and must  be faced by the 
adopted control  synthesis  technique. In this  paper ,  
a t t en t ion  will be focused on this  last  s i tuat ion.  Hence the 
problem addressed  will be to design a mu l t i r a t e  digi ta l  
r e g u l a t o r  once the inpu ts -upda t ing  and ou tpu t s - s amp l ing  
mechanisms are  fixed. 

Research in mul t i r a t e  control  can be t r aced  back to the 
la te  f i f t i e s  [11]-[13]; however, it has received more and 
more a t t en t ion  only in the past  decade. For an overview of 
the most  s igni f icant  resu l t s  of the a rea  the r eade r  is 
r e f e r r e d  to [3], [14]. In [14]  a t t en t ion  is focused on the 
analys is  of a control  s t r uc t u r e  where a d i f f e r en t  sampling 
r a t e  is associa ted  with any pair  of inpu t -ou tpu t  var iables ,  
then impulse modulat ion models are developed and c r i t e r i a  
to assess  closed-loop s tabi l i ty  are presented.  Several  
synthes is  a lgor i thms have recent ly  been proposed in a 
l inear  t ime- inva r i an t  set t ing.  Among them, the 
pole-p lacement  approach has been considered in [15]-[21]. 
The Linear  Quadrat ic  Gaussian (LQG) technique has been 
applied in [4], [22]-[26], while some synthesis  a lgor i thms  
based on cos t - func t ion  minimizat ion have been p resen ted  
for  con t ro l le r s  with a prescr ibed s t r u c t u r e  [5], [27]-[29]. 
Some predict ive and se l f - tun ing  mul t i r a t e  control  
a lgor i thms  have been proposed in [6], [7], [30], [31]. The 
output  regula t ion  problem, tha t  is the problem of zeroing 
the s t e a d y - s t a t e  e r ro r  to the maximum possible ex ten t  in 
presence of exogenous signals of prescr ibed dynamics has 
been t r e a t e d  in [32]-[34]. Finally, the case of completely 
asynchronous  sampling has been t r ea t ed  in [35]. 

The aim of this  paper is to review the main aspec ts  
concerning the appl icat ion of popular  synthes is  techniques,  
namely the pole-placement  approach and the LQG method, to 
the mu l t i r a t e  control  problem. Specifically,  the assumpt ion  
is made tha t  the plant  under control  is a d i s c r e t e - t i m e  
l inear  t ime- inva r i an t  system. It is also assumed tha t  each 
output  has i ts own frequency and phase of measurement  and 
each input has its own frequency and phase of updating.  

The paper  is organized as follows. In Section 2, the 
d i s c r e t e - t i m e  l inear t ime invar iant  model of the plant  
under control  is introduced and the sampling and updat ing  
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m e c h a n i s m s  a r e  given a prec i s e  m a t h e m a t i c a l  f o r m u l a t i o n .  
F u r t h e r ,  i t  is a lso  shown how m u l t i r a t e  s y s t e m s  can  be 
c a s t e d  into  the  w i d e r  c l a s s  of pe r iod ic  s y s t e m s .  Then,  in 
Sec t ion  3 some p r e l i m i n a r y  r e s u l t s  on the  s t r u c t u r a l  
proper t ies ( st ab i I i zab i I i ty, detectab i l i ty  and zeros ) of 
the mu l t i ra te  system are given in terms of the or ig ina l  
p lant  under control.  Section 4 deals w i th  the 
pole-placement and LQG methods when the system state is 
assumed to be available fo r  control ,  while, since our main 
goal is to design output feedback contro l lers,  in Section S 
t he  p r o b l e m  of s t a t e  r e c o n s t r u c t i o n  is cons ide red .  In 
p a r t i c u l a r ,  two  s t a t e  o b s e r v e r s  a r e  p r e s e n t e d :  in t he  f i r s t  
one the  p o l e - a s s i g n m e n t  t echn ique  is aga in  appl ied ,  whi l e  
the  second is de r ived  by r e s o r t i n g  to the  Ka lman  f i l t e r i n g  
a p p r o a c h .  In Sec t ion  6 the  p rev ious  r e s u l t s  on s t a t e  
f e e d b a c k  and s t a t e  o b s e r v e r s  a r e  j o i n t  t o g e t h e r  w i t h  the  
a im of de r iv ing  s t a b i l i z i n g  f e e d b a c k  con t ro l  laws.  F ina l ly ,  
t he  c l a s s i c a l  ou tpu t  r e g u l a t i o n  p rob lem is f a c e d  in Sec t i on  
7 w h e r e ,  unde r  some p a r t i c u l a r  a s s u m p t i o n s  on the  i npu t s  
u p d a t i n g ,  a s u i t a b l e  r e g u l a t i o n  s t r u c t u r e  is p r e s e n t e d  
which  g u a r a n t e e s  the  a s y m p t o t i c  t r a c k i n g  of given r e f e r e n c e  
s i g n a l s  in sp i t e  of the  p r e s e n c e  of p e r s i s t e n t  d i s t u r b a n c e s  
and p l a n t  u n c e r t a i n t i e s .  

II. THE PLANT, THE INPUTS-HOLDING 
AND THE OUTPUTS-SAMPLING MECHANISMS 

Let the system under control  be described by the 
fo l low ing  d iscre te- t ime l inear t ime- inva r ian t  stochast ic 
model 

x ( t + l )  = A x ( t )  + B u ( t )  + M w ( t )  
: p .  a 1 

y ( t )  = C x ( t )  + M w ( t )  
2 2 

( 1 . a )  

( 1 . b )  

w h e r e  A~Rn'  n n ,  m ' q R p '  n p ,  p , B~R , M ~R n , C~ , M ~R and w and  
1 2 1 

w a r e  u n c o r r e l a t e d  z e r o - m e a n  g a u s s i a n  w h i t e  no i ses  w i t h  
2 

i d e n t i t y  c o v a r i a n c e  m a t r i c e s ,  i .e . ,  
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The s t anda rd  hypothesis is  made t h a t  t h e  noise ac t ing  
on t h e  output  variable y has  a nonsingular covariance 
ma t r ix ,  t h a t  i s  det(M2)+0. Furthermore,  t h e  initial s t a t e  

x(to) i s  supposed t o  be a gaussian random variable,  

uncorrelated with w and w 
1 2' 

Now assume t h a t  t he  i-th component u i ( t ) ,  i=1,2, ..., m, 
w 

of t h e  input vector u ( t )  can be modified every = i 
t ime-instants ,  ? being a f in i te  positive integer .  Then, 

u ( t )  can  be viewed as the  output of t h e  following 
i 

discrete- t ime periodic system, henceforth called t h e  
input-holding mechanism, 

1 
where  v . ( ~ ) E R '  i s  t he  s tate-variable and r . ( t ) ~ R  i s  t h e  

new input variable. A s  f o r  I ,  i t  i s  a ?.-periodic 

funct ion defined a s  

- 
where  k i s  an  integer and the  integers  t o&.<T., 

i ' 1 1  

describe t h e  skew inputs-holding mechanism. 
Now, let t ing co
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100 PATRIZIO COLANERI ET AL 

sys tem (2 )  can  be given t h e  compact fo rm 

In view of t h e  periodicity of t he  s 's ma t r ix  S ( t )  and  
i 

sys tem (3) a r e  periodic of period ?, where 

As f o r  t h e  system outputs-sampling mechanism, le t  t h e  
i - th  component y .  ( t ) ,  i =  p ,  of t h e  output  vector  

I 

y ( t )  be measured every 5. t ime-instants,  5.. being a f in i t e  
i 

positive integer .  This can be given a mathematical  
formulat ion by defining t h e  measured output  variable Ci ( t ) ,  

i=1,2 ,... ,p,  as fol lows 

where  again k i s  an  integer and t h e  integers  t 0s; <?. 
i '  i i '  

describe t h e  skew outputs-sampling mechanism. Then, at any 
t ime-instant  t ,  t h e  output  measured vector i s  given by 
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Matrix N(t)  i s  where 

By combining the  model ( I ) ,  t he  inputs-holding system 
(31, (4) and the  outputs-sampling mechanism (51, (61, t he  
following overall system is  obtained as 

where 

and 0 represents  zero  ma_trices of appropriate  sizes. 
In view of the  T-periodicity of ma t r ix  S(.)  and 

T-periodicity of mat r ix  N . ,  system (7) i s  T-periodic, 
where 

Notice t h a t  at the  f ixed t ime instant  t some output  
variables may be zero, due t o  the  sampling mechanism N,  and 
some input variables do not a f f ec t  t he  system dynamics, due 
t o  t he  holding mechanism H. In order  t o  avoid th i s  
degeneracy, i t  i s  convenient t o  reorder  t he  input and 
output  variables in t he  following way: 
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where  P ( . )  ( P  ( . ) )  i s  a ?-periodic (T-periodic) 
Y 

permutat ion ma t r ix  such t h a t  

and V ( t )  ( V  ( t ) )  is  a full-rank mat r ix ,  whose dimensions 
u Y 

change wi th  time. Accordingly, part i t ion 6 and rl a s  
follows: 

where  t h e  dimensions of 6 ( t )  and r) ( t )  equal t h e  number of 
1 1 

columns of V ( t )  and rows  V ( t ) ,  respectively, and r )  =O. 
Y 2 

With these  positions t h e  overall system i s  easily obtained 
f r o m  Eqs. (71, (10) and (11) a s  

Of course, system (12) is  T-periodic wi th  input and 
output  having time-varying dimensions. 

111. STRUCTURAL PROPERTIES AND ZEROS 

This  sect ion is  devoted t o  analyze t he  main f e a t u r e s  of 
t h e  T-periodic system (7) ,  namely zeros,  s tabi l izabi l i ty  
and detectabi l i ty ,  in t e rms  of t he  original d a t a  (system 
(1)). For  t h e  analysis of discrete-time periodic sys tems i t  
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is  often useful to  resort  t o  the time-invariant 
reformulation (TIR) associated with a periodic system f i r s t  
introduced in [361. For a tutorial paper on the s t ructura l  
properties of periodic systems, the reader is  referred t o  
[371. The zeros of periodic systems a r e  defined in [381, 
[391 a s  those of their  corresponding time-invariant 
reformulations. For the reader 's  convenience, the  
definition of such a reformulation f o r  a general (periodic) 
system is  briefly recalled in the Appendix. Given any 
(periodic) system Y, the simbol Y will henceforth denote 
i t s  time-invariant reformulation. 

Stabilizability and detectability a r e  discussed f i r s t .  

Theorem 1 1261 
If 

( i )  The pair  (A,B) is  stabilizable; 
( i i )  Do not exist two distinct eigenvalues of A, A. and 

1 - 
T T 

A j ,  I A i  121, IA. /a l ,  such tha t  h.=h ; 
J 1 j 

( i i i )  Do not - exist  eigenvalues A of A, Agl, I Al=l, such 
T 

tha t  A =I; 

Then the pair (@( .  ),T( - 1) is  stabilizable.. 

Theorem 2 
The pair  @ 1 ,  1) is  stabilizable if and only if the 
pair  (A,M 1 is  stabilizable., 

1 

A s  f o r  detectability, recall tha t  the T-periodic pair  
A .  is  detectable if and only if there  exis ts  a 
T-periodic matrix D(. ) such tha t  . I D .  A .  1 is  
asymptotically stable (see, e.g.,  [201). According t o  the 
s t ructure  of matrices @(. )  and A(.), let D(t) :=[D,(t)  01, 

where D (t ) E R " ' ~  is  periodic of period j. Correspondingly 

where ? denotes a block which does not need t o  be 
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specified. Hence, since the characteristic multipliers [371 
of S ( . )  lie all a t  the origin, - i.e. S ( . )  is asymptotically 
stable,  detectability in T of (A,N(.)C) implies 
detectability in T of A .  Thus, the following 
result  is proven. 

Theorem 3 [201 
If 
( i )  The pair  (A,Cl is detectable; 
( i i )  Do not exist  two distinct eigenvalues of A, A. and A , 

- - j 

T 1 A 1 I h j  121. such tha t  h .  =hT. 
1 1' 

Then the  pair  (A,N(.)C) is  detectable.. 

The eigenvalues of the T-periodic system (7 )  a r e  
defined a s  the characteristic multipliers of 1 ,  i .e.,  
the  eigenvalues of the so-called monodromy matr ix  
@:=@(T+t-l)@(T+t-2) ... @ ( t ) ,  where t is  any (a rb i t r a ry )  time 
instant. Recalling the definition of @(. ),T i t  follows t h a t  
the  eigenvalues of (7)  a r e  those of A along with m 
eigenvalues a t  the origin, since, f o r  all t, 

S(T+t-l)S(T+r-2) ... S ( t )  = 0. 
All the  above results, defined f o r  system (71, 

immediately extend t o  system (12), since the two systems 
di f fers  only f o r  slack input and output variables. 

The situation dramatically changes when considering the  
zeros of systems (7)  and (12). Indeed, restr ict ing the 
at tention t o  system (1) f r e e  of disturbances and square,  
i .e.,  m=p, i t  is  apparent that ,  apar t  from the trivial case 
where S ( .  )=N(.)=I, any complex number is  a zero of system 
(7). This kind of degeneracy has been thrown away in system 
(121, where the slack input and output variables do not 
appear anymore. However, the zeros of system (12) depend on 
3f and N in such a way tha t  they cannot be directly argued 
f rom P only. Neverthless, the following part ial  results  can 
be stated.  The f i r s t  of them concerns the relationship 
betweeen the zeros of P and those of i t s  TIR 7'. 

Theorem 4 [331 
( i )  If A i s  a transmission zero of P, then hT is  a 

transmission zero of 3'; 
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( i i )  If p*O is  a tr-ansmission zero of P ,  without bein % an 
eigenvalue of P ,  then there exists  A, such t h a t  A =p, 
which is  a transmission zero of P.. 

In the  special case where S(.)=O, i.e., the  inputs a r e  
updated a t  any time instant, system (3) simply reduces t o  
u ( t )=r ( t ) .  This allows one t o  neglect Eq. (3 .a)  and 
consider system (12), a s  f a r  a s  the zeros a r e  concerned, as 
the  cascade connection of 3' and N. 

Theorem 5 [331 
If S(.)=O, then the se t  of transmission zeros of (12) 
belongs t o  the se t  of the transmission zeros of P.. 

IV. STATE-FEEDBACK CONTROL LAWS 

In this  section, we extend the main classical 
stabilization techniques, namely Pole-Placement (PPI and 
Linear-Quadratic (LQI control, t o  the cgse of mult irate 
systems. To this  end, we consider the T-periodic system 
(7.a) and assume tha t  i t s  s t a t e  < ( . I  is  available f o r  
control. Since our ultimate goal is t o  design output 
feedback controllers,_ we make reference in the sequel t o  
period T, instead of T. 

A. POLE-PLACEMENT 

The TIR of system (7.a)  with w =O, is  easily determined 
1 

where 

and (9, f a r e  suitable matrices, f o r  which the following 
result  holds. 
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Theorem 6 [3?1,1401 
The pair  (O,T) is stabilizable if and only if the  
T-periodic pair  ( a ( .  ),IT. ) )  is  stabilizable., 

Now let v be the dimension of the  reachability 
R 

subspace of ( i , f ) .  Under the conditions of Theorem 1, and 
in view of Theorem 6, there exists  a feedback control law 
f o r  system (13) 

* A  

such tha t  the  closed-loop matrix Q+TK has vR eigenvalues 

arbi t rar i ly  assigned, and n+v +m eigenvalues (independent 
R 

of K) inside the unit circle. Notice tha t  epre2sion (141, 
in the  light of the very definition of t; and r ,  can be 
rewri t ten  a s  follows: 

where 

Equation (15) is  a so-called generalized sampled-data 
hold control function. Implemented on system (7.a) (with 
w.rO), i t  leads to  a T-periodic system whose monodromy 

I 
A A. .  

matr ix  is  exactly O+TK. Notice tha t  the control law (15) 
corresponds t o  the following T-periodic s t a t e  controller 

where co
nt

ro
len

gin
ee

rs
.ir



STABILIZATION. REGULATION. AND OPTIMIZATION 107 

and 

System (16) corresponds to  eq. (15) since, a s  i t  i s  
easily seen, (16. a )  corresponds t o  z(kT+i)=<(kT), 
i = 1 2  T ,  so  tha t  (16. b) becomes r(kT+i)=K(i)<(kT), 
i=O, 1,. . . ,T-1. Hence 

so tha t  the monodromy matrix of the T-periodic closed-loop 
system (7.a), (16) is 

which corresponds to  the' dynamical matrix 

of system (7.a) ,  (16). 
The discussion above can be summarized in the following 

result .  

Theorem 8 
Suppose tha t  the conditions of Theorem 1 hold. Then, there  
exists  a periodic matrix K(.) such that  the  closed-loop 
system (7.a), (16) has vR characterist ic multipliers 

arbi t rar i ly  assigned, m+n characteristic multipliers at the  
origin and the remaining m+n-v characterist ic multipliers 

R 

inside the  unit circle (in positions independent of K(.)). 

Notice tha t ,  according to  control law (151, the s t a t e  
<(t) is  fed-back only once in the period, so  t h a t  the 
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control i s  open-loop in the intersampling. This f a c t  i s  
not completely sat isfactory from a practical point of view. 
In the  direction of obtaining a more robust s t a t e  control 
law, one may consider 

instead of (15). I t  may be proven tha t  the f r e e  motion of 
system (7.a) ,  (18) coincides with tha t  of system (7.a), 
(15) if and only if 

Hence, if such equations a r e  solvable with respect t o  
1 ,  then the control law (18) is easily derived f rom 
(15). 

B. LINEAR-QUADRATIC CONTROL 

The classical LQ problem f o r  system (7 .a)  i s  based on 
the  definition of a suitable quadratic performance index t o  
minimized, i. e . ,  

where O(.) and A ( . )  a r e  T-periodic matrices. Moreover, 
A ( t ) = A ( t ) ' > O  and O(t)=O(t)'zO, Vt. 

I t  i s  well known tha t  this problem (finite horizon) is  
solved by the control law 

where 
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and PC(.) is  the solution of the difference T-periodic 

Riccati equation 

-m(t)~~~~t+i)r(t)[~~t)+r(t)*~~(t+~)r(t)i-~r(t)*~~(t+i)~(t) 

(22) 
with the terminal condition P ( t  )=@(tl). Moreover, the  

C 1 

optimal performance index is  ~ O l t  , t  )=C(to)'Pc(to)C(to). 
0 1 

The case where t +m (infinite horizon) i s  the argument 
1 

of the  following result.  

Theorem 9 [411 
If the  pair  , is  stabilizable and the pair  
(@(.),O(.)) is  detectable, then 

l i m  P ( t)  = Pc(t)  2 0 , V t 
t + + m  C 

1 

which is  the  unique T-periodic positive semidef inite 
solution of (22) f o r  any P (t  120. Moreover, the  

C 1 

closed-loop system (7.a) ,  (20) i s  asymptotically stable, 
i.e., all the characterist ic multipliers of the T-periodic 
matr ix  (a(. )+IT. )K(. 1) a r e  inside the unit disk.. 

The control law of Theorem 9 is also optimal when the  
minimum of the expected value of 

lim - J( to , t l l  
t +m t -t 
1 1 0  

i s  sought in the presence of a stochastic noise w S O  in eq. 
1 

(7.a). 

V. STATE-OBSERVERS 

The problem of s t a t e  reconstruction is  a classical one 
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in control  theory.  Here, t he  two most common approaches a r e  
pursued, namely pole-assignement and Kalman f i l t e r ing .  

Reference will be made t o  system (7). However, t h e  
theory  t o  be developed can easily be modified s o  a s  t o  
apply i t  t o  system ( I ) ,  which i s  very reasonable, s ince t h e  
s t a t e  of (3) i s  a lways available f o r  measure. 

A. POLE-PLACEMENT 

The TIR of system (7) with w =O and w =O i s  given by 
1 2 

t h e  s t a t e  equation (13) together  wi th  t h e  output  
t ransformat ion  

where  

Fo r  system (131, (24) consider t he  observer 

n+m,pT where  LER i s  an  a rb i t ra r i ly  chosen mat r ix ,  which can  
be part i t ioned as 

.. .... System (25) i s  character ized by t h e  dynamical m a t r i x  
@+LA. 

The detectabi l i ty  of t h e  pa i r  (i,i) is t h e  objec t  of 
t h e  following resu l t .  

Theorem 10 [??I, [ 40 I 
The pa i r  A is  detectable if and only if t h e  pa i r  
(@(. ) , A ( .  1) i s  detectable.. 

Let  v be t he  dimension of t h e  unobservability subspace 
0 

of (&A). Under t he  conditions of Theorem 3 and in view of 
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..- 
Theorem 10, there  exists  a matrix i such tha t  @+LA has  
n+m-v eigenvalues arbitrari ly assigned and v eigenvalues 

0 0 

(independent of L) inside the unit circle. 

In order to  enlight the behavior of system (25) in 
t e rms  of the original T-periodic system (71, let L(.)  be 
the  T-periodic matrix such tha t  

Moreover, define the T-periodic system 

where 

i = 1 ,  2 ,  . . . ,  T-I 
V ( t )  := 

i = O  

Such a system is characterized by the dynamical matr ix  

t o  which i t  corresponds the mpnodromy matrix 

Hence, the following theorem holds. 

Theorem I1 
Suppose tha t  the conditions of Theorem 3 hold. Then, the re  
exis ts  a T-periodic matrix L( . )  such tha t  system (26) has  
n+m-v characterist ic multipliers arbitrari ly assigned, n+m 

0 
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characterist ic multipliers in the origin, and the remaining 
v characterist ic multipliers inside the unit circle ( in 

0 

positions independent of L(. 11.. 

Now define the e r ro r  

and 

Then, simple computations yeld e ( t + l ) = i  ( t )  e ( t ) .  
A ..A 

2 

Hence, if @+LA is asymptotically stable, the  e r r o r  
e(t) asymptotically vanishes, so  tha t  < ( t )  tends t o  <(t) 

a s  t+w. Further,  

yelds, asymptotically, 5 (k)= 5 (kT). 

B. KALMAN FILTERING 

The goal of this  section is  t o  construct a Kalman 
predictor f o r  the s t a t e  of system ( 7 ) .  To this  regard,  
f i r s t  note t h a t  the covariance matrix of the  noise 
affecting the  output <(t) is  singular due t o  the  s t ruc tu re  
of matr ix  R(t). A s  such, standard theory cannot be applied 
directly. Instead of ( 7 ) ,  consider system (12) and notice 
t h a t  the  covariance matrix of the noise affecting r )  is  

1 

nonsingular f o r  each t with time-varying dimension. 
With the aim of obtaining f o r  system (12) an output 

vector of fixed dimension p and affected by a noise with 
nonsingular covariance, i t  is possible, following the  line 
of reasoning adopted in [421, to  add a slack output 
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with [n; n ; ~ ' ~ ~ P ,  w3(t)-WGN(O,w3(t)), W3(t)>0, V t ,  and W3 

independent f rom the other noises. Obviously, these new 
output components do not bring any piece of information of 
the  system s t a t e  <(t). 

Turning back to  the output variable <(t) of (71, 
adding n3(t)  t o  -~,(t)  in l l b  and recalling (10.b), i t  

follows tha t  

where 

The covariance matrix of w(t )  is  

The discussion above allows us to  conclude tha t  eq. 
(7) can be suitably adopted a s  the output transformation of 
(7.a). Notice, however, tha t  we need not explicitely 
compute the permutation matrix P ( t ) ,  but i t  suffices t o  

Y 
replace the zeros of the diagonal of 

with positive numbers. 
The one s tep  ahead optimal predictor f o r  system (7 .a) ,  

(27) i s  then given by co
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where 

and P ( t )  is  the solution of the difference T-periodic 
F 

Riccati equation 

with the  initial condition 

The case where t -m is the argument of the following 
0 

result.  

Theorem 12 [411 
If the pair  ( @ ( . ) , A ( . ) )  is  detectable and the pair ( Q ( . ) , \ k )  
is  stabilizable, then 

l i m  PF(t)  = PF(t)  + 0 , 
t 9 - m  
0 

which is  the unique T-periodic positive semidefinite 
solution of (30) f o r  any P (t ) r O .  Moreover, the predictor 

F 0 

(28) i s  asymptotically stable, i .e.,  all the characterist ic 
multipliers of the T-periodic matrix . L .  A .  1) a r e  
inside the unit disk.. 

VI. OUTPUT FEEDBACK CONTROL 

In this  section, the previous results  on s t a t e  
feedback control laws and s t a t e  observers a r e  joint 
together with the aim of deriving stabilizing output 
feedback control laws. In general, it could be possible t o  
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implement any s t a t e  control law on any s t a t e  
reconstruction. However, according t o  a classical approach, 
in following purely deterministic output pole-assignement 
and optimal LQG techniques a r e  pursued. 

A. POLE-PLACEMENT 

Consider the T-periodic regulator constituted by eqs. 
(26) along with eqs. (161, where E, is substituted by S : 

a 

In eqs. (321, matrix K(t)  [L( t ) l  i s  chosen as 
described in SectionA 1y.A. [V.A.], so as t o  assign the  
eigenvalues of @+TK [@+LA]. 

By combining eqs. (7) and (331, disregarding again the  
exogenous signals w and w we obtain 

1 2' 

I t  is  then apparent that  the separation principle 
holds f o r  the characterist ic multipliers of the closed-loop 
system. 

The previous results  a r e  summarized in the following 
theorem. 

Theorem 13 
If 

( i )  The pair  (A,B) is  stabilizable and the  pair  (A,C) is  
detectable; 
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( i i )  do not exist  two distinct eigenvalues of A, A t  and 
T 

hi, ( hi l z l ,  hi 1.1, such tha t  h =hT- 
1 i '  T 

(iii) do not exist  eigenvalues h of A, h*l, I h 1 =1, h =l; 
Then, the  closed-loop system (71, (30) has: 
A. v characterist ic multipliers arbitrari ly assignable by 

R 

a proper choice of the T-periodic matrix K(.); 
9 .  n+m-v characterist ic multipliers arbitrari ly assignable 

0 

by a proper choice of the T-periodic matr ix  L(.); 
C. 2n+2m characterist ic multipliers a t  the origin; 
D. n+m+v -v characterist ic multipliers inside the  unit 

0 R 

circle.. 

9 .  LINEAR QUADRATIC GAUSSIAN CONTROL 

Consider the  following quadratic performance index f o r  
system (7): 

where @ ( . I  and A ( . )  a r e  T-periodic matrices with 
o(t)=o(t)'ro, A(t)=A(t)'>O, vt .  

By applying the separation theorem, the overall 
optimal regulator is  obtained by substituting the optimal 
prediction < ( t )  t o  <(t) in (20),  tha t  is, by letting 

a 

where 

In eqs. (341, matrix K(t)  [L(t) l  is  chosen as in eqs. 
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(21)-(23) [(29)-(31)l so  a s  t o  solve an optimal LQ control 
problem [Kalman prediction problem]. 

Combining eqs. (7) and (341, one gets 

where 

Note tha t  the noise c(.) is  cyclostationary with 
period T, zero mean-value and covariance .T(t). 

Due t o  the asymptotic stability of matrix i 3 ( t ) ,  the  

stochastic process p(.) of eq. (35) converges t o  a 
cyclostationary one cp ( . I ,  whose associated covariance 

S 

matr ix  

i s  the  unique positive semidefinite T-periodic solution of 
the  T-periodic Lyapunov equation 

The optimal value J O  of the performance index (33) can 
now be writ ten in terms of matrix F(.).  Thanks t o  the  
stabil i ty property of (351, (36)' the sum of a f in i te  
number of terms in the performance index (33) can be 
dropped, so obtaining 
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where < (.) and r ( . )  a r e  the asymptotic cyclostationary 
S 

processes relative t o  .$'(.) and r ( . ) ,  respectively, and x i s  
a n  appropriate constant integer. 

By recalling eqs. (34.a), (35) and using standard 
results ,  one obtains 

where 

Further,  the periodicity of F ( . )  implies tha t  

Finally, the arguments above can be summarized in the  
following theorem, which formally supplies the  solution of 
the  LQG control problem f o r  the considered class of 
mult irate sampled-data systems. 

Theorem 14 [261 
If 

( i )  The pair  (A,B) is  stabilizable and the pair  (A,C) is  
detectable; 

( i i )  The pair  (A,M ) is  stabilizable; 
1 
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(iii) Do not exis t  two dis t inct  eigenvalues of A, A and 
i 

~j AT AT A., 1~ I>-1 { I->1 such that .= .; 
J i ' ' l J 

(iv) Do not exist eigenvalues A of A, A~l, I Al=l,  such 
that AT=I; 

(v) The pair  (~(.),F(.)) is detectable;  
Then 
(a) The solution of the LQG problem (7), (33) ex is t s  and is 

given by system (34); 
(b) The closed-loop T-periodic system is asymptot ica l ly  

s table  and given by eqs. (35), (36); 
(c) The optimal per formance  index is given by (38), where  

F(.) is the unique T-periodic positive semidef in i te  
solution of the T-periodic d i f ference  Lyapunov equat ion 
C37).ii 

VII. OUTPUT REGULATION 

The classical  robust  output  regula t ion  problem 
consis ts  of determining a sui table regu la to r  which 
gua ran tees  the asymptot ic  t racking of given r e fe rence  
signals  in spite of the presence of pers i s ten t  d i s tu rbances  
and plant  uncer ta in t ies .  

For this  kind of problem to have a solution, a well 
known fac t  is tha t  the control signals must  be f ree  to 
cover the same funct ional  class as tha t  of the r e fe rence  
and d is turbance  signals. It is then apparent  tha t  problems 
genera l ly  ar ise  when dealing with nons tandard  updat ing 
mechanisms,  apa r t  f rom the pa r t i cu la r  case where  the 
exogenous signals are constant  functions.  S t r i c t ly  
speaking, the exact  solution of the output  regula t ion  
problem does not exist ,  and only par t ia l  solutions can be 
achieved [33]. 

Hence, f rom now on, it will be assumed tha t  the plant  
input is updated at  any time instant .  

A. STATEMENT 

The plant  P under control is assumed square  and 
described by 
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where A E R ~ ' " ,  B E R " ' ~ ,  D ER"", C E R ~ ' " ,  D ~ E R ~ " .  Again, the  
1 

output vector y is  periodically measured according t o  (5). 
P 

The reference signal f o r  y and the disturbance d 
a r e  generated by the following system E:  

n .n 
where A ER e. 

To avoid trivialities, some standing assumptions on E 
a r e  in order: 
( i )  Matrix A is  known, whereas vector x ( 0 )  and matrices 

e e 

C and C a r e  unknown; 
eY ed 

( i i )  The eigenvalues of A all have magnitude greater  than 
e 

o r  equal t o  1. 
The controller G t o  be synthesized is  a linear 

T-periodic (T=T) system, generating the control u a s  a 
function of 

where i s  the output of the system N O  defined by 

Then, letting the control system e r ro r  e be 
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e(t) "= y~ - y(t) 

the problem considered in the paper  is" 

Output Robust Asympto t ic  Regulation Problem (ORARP) 
Find a cont ro l le r  ~' such that :  

(i) The closed-loop system (P,N,~') is asymptot ica l ly  s table;  
(ii) The output  regula t ion  cons t ra in t  

l i m  e ( t )  = 0 
t-)oo 

holds t rue  for  any y~ and d(t), genera ted  by g with 
any x (0), in a robust  way, i.e., fo r  all 

e 

pe r tu rba t i ons  of ma t r i ces  A B, C, D and D which 
' I 2 '  

prese rve  the asymptot ic  s tabi l i ty  of the c losed- loop 
sys tem (~P,N, E).m 

The block scheme of the overall  control  sys tem is 
r e p o r t e d  in Fig. 1. 

B. SOLUTION 

Denote by 2~ the set  of the dis t inct  e igenvalues of 8 
e 

and by 2~ the union (without  repe t i t ions)  of Je and the 
e 

set  of the d is t inc t  eigenvalues of system ~P. Then, le t t ing  
0 denote the zero ma t r i x  of any size, the fol lowing 
solvabi l i ty  condition for  ORARP can be s ta ted:  

Theorem 15 [32], [34] 
Suppose that :  
(i) The pa i r  (A,B) is s tabi l izable;  

(ii) The pa i r  (A,C) is detectable;  

(iii) Det ( 

A-)t I B 
e 

) ~ ' 0 ,  
C 0 

e e 
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(iv) T h e r e  does not  e x i s t  a couple  of e l e m e n t s  of ~, A 

and ~ L~ h -~1 I~ I'-I ~uch that ~ - ~  
j '  i ' j ' i j 

Then,  ORARP a d m i t s  a so lu t ion . l l  

x (0)  

I ~ 
g . . . . .  

I ~ 
Y 

0 

N ~ + )0 e~ I 
- 1 

v 

> 

g 

u 

N 

P 

Fig. 1" The block scheme  of the  overa l l  c o n t r o l  s y s t e m .  

This  t h e o r e m  supp l i e s  a s u f f i c i e n t  cond i t ion  f o r  t he  
e x i s t e n c e  of g; in o r d e r  to s t a t e  a r e s u l t  s p e c i f y i n g  i t s  
s t r u c t u r e ,  some d e f i n i t i o n s  a r e  n e c e s s a r y .  

Le t  the  min ima l  po lynomia l  of m a t r i x  A be 
e 

V V - 1  V - 2  
Z + a z + a z + . . .  + a z + a 

e l  e 2  e V - 1  e l i  

Then,  de f ine  the  m a t r i c e s  
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A := diag {A ) E lR 
rnVxrnV 

rn rn 

B := diag {B ) E R 
rnVxV 

rn rn 

C := diag {C ) E R VxrnV 

m rn 

and call M the  system 

which is  an m-fold reduplication internal t o  E of the  
system 6 modelling t_he exogenous signals. 

Further,  let 9' be the se t  of all the  T-periodic 
systems Y with input e and output v such t h a t  the  
closed-loop system (P,N,Y,M) is asymptotically stable. 

Theorem 16 [321, [341 
Suppose tha t  conditions ( i)-( iv)  of Theorem 14 hold. Then: 
( i )  The se t  ?' is nonempty; 
( i i )  For any YE?, the controller G constituted by the  

cascade connection of Y and M solves ORARP.. 

Any stabilization method valid f o r  th is  class of 
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m u l t i r a t e  s y s t e m s  can be used to syn thes i ze  sy s t em ~r fo r  
i n s t a n c e  the  p o l e - p l a c e m e n t  or the  LQG methods .  These  
t echn iques  should be appl ied to the  cascade  connec t ion  of 
s y s t e m s  ~ ,  :P and ~V, wi th  input  v and ou tpu t  e~=-~.  Hence, 

the  ou tpu t  t r a c k i n g  c o n s t r a i n t  is r obus t  also wi th  r e s p e c t  
to v a r i a t i o n s  of o rde r  and p a r a m e t e r s  of ~r as long as 
a s y m p t o t i c  s t a b i l i t y  is p rese rved .  The same p r o p e r t y  holds 
f o r  as concerns  v a r i a t i o n s  of the  o rde r  n of the  p lan t  ~P. 

It is w o r t h  not ic ing  tha t ,  though the input  of ~' is the  
v a r i a b l e  e~, the  c o n t r o l l e r  is able to a s y m p t o t i c a l l y  b r ing  

o 
to ze ro  the  d i f f e r e n c e  e be tween  the  r e f e r e n c e  s ignal  y 
and the  p lan t  ou tpu t  y a t  all t ime in s t an t s ,  not  only a t  
t imes  whe re  the  ou tpu t  is measured .  

The block scheme of Fig. 1 shows t h a t  the  s t r u c t u r e  of 
the  overa l l  cont ro l  sys t em is very  s imi l a r  to a poss ib le  
one fo r  m o n o r a t e  sys tems .  However,  by c o m p a r i n g  the  
s u f f i c i e n t  condi t ions  of Theorem 1 fo r  the  so lvab i l i ty  of 
ORARP wi th  the  d i s c r e t e - t i m e  vers ion of the  n e c e s s a r y  and 
s u f f i c i e n t  condi t ions  fo r  the so lvabi l i ty  of the  same  
p rob lem in the  monora t e  case,  it may be observed  t h a t  
condi t ion  (iv) he re  does not have a c o u n t e r p a r t  t he re .  As a 
m a t t e r  of f a c t ,  th i s  condi t ion g u a r a n t e e s  (but is not  
n e c e s s a r y  fo r )  the  d e t e c t a b i l i t y  f r o m  y of the  s t a t e  of the  
s y s t e m  (~t,~P,JV), a long wi th  the s t a n d a r d  condi t ions  (ii) and 
(iii). The consequence  of t h a t  is the  imposs ib i l i ty  of 
a s y m p t o t i c a l l y  ze ro ing  th is  way the sys t em e r r o r  f o r  some 
exogenous  s igna l s  fo r  whom it can be b rough t  to ze ro  when 
the  o u t p u t s  a r e  a lways  measured .  

VIII. CONCLUDING REMARKS 

This  pape r  has rev iewed  some r e c e n t  r e s u l t s  abou t  
s t a b i l i z a t i o n  and r egu l a t i on  of m u l t i r a t e  s a m p l e d - d a t a  
sys t ems .  

F i r s t ,  a p rec i se  m a t h e m a t i c a l  f o r m u l a t i o n  of the  input  
and ou tpu t  mechan i sms  has been given in t e r m s  of a 
d i s c r e t e - t i m e  per iodic  sys tem.  Then, i ts  s t r u c t u r a l  
p r o p e r t i e s  have been inves t iga t ed  and r e l a t e d  to those  of 
the  unde r ly ing  t i m e - i n v a r i a n t  plant .  

The c l a s s i ca l  po l e -p l acemen t  and LQ t echn iques  have 
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then  been used fo r  der iv ing  s t ab i l i z ing  s t a t e  f e edback  
con t ro l  laws and s t ab le  s t a t e  obse rvers .  

Final ly ,  it has been shown how to se lec t  a p r o p e r  
r e g u l a t o r  s t r u c t u r e ,  which,  in some s i g n i f i c a n t  cases ,  
g u a r a n t e e s  z e r o - e r r o r  r egu la t i on  in the  f ace  of wide 
c l a s s e s  of exogenous  s ignals ,  desp i te  the  poss ib le  lack of 
i n f o r m a t i o n  due to the o u t p u t s - s a m p l i n g .  

APPENDIX 

by 
Let  S be the  d i s c r e t e - t i m e  T - p e r i o d i c  s y s t e m  desc r ibed  

x(t+l) - A(t) x(t) + B(t) u(t) 

y(t) = C(t) x(t) + D(t) u(t) 

w h e r e  t eZ ,  A(t)ER n'n B(t)eR n'm C(t)ER p'n D(t)ER p'm ~ ~ * 

Denote by ~ (t,z) t>z, the transition matrix of A(.) 
A ~ 

i.e., ~ (t,z):=A(t-l)A(t-2)...A(z). Matrix ~ (z+T,z) is 
A A 

the so-called monodromy matrix associated with A(.). Its 
e igenva lues  do not depend on z and a re  ca l led  
c h a r a c t e r i s t i c  m u l t i p l i e r s  of ~. Sys tem 5 e is a s y m p t o t i c a l l y  
s t a b l e  if and only if all i ts  c h a r a c t e r i s t i c  m u l t i p l i e r s  
a r e  inside the  open uni t  disk. 

Now, def ine  the l i f t ed  input,  the  sampled  s t a t e  and the  
l i f t ed  ou tpu t  as 

u(k) "= [u(kT+T)' u(kT+T+I)' ... u(kT+T+T-I)']' 

^ 

x(k) "= x(kT+z) 

y(k) "= [y(kT+T)' y(kT+z+l)' ... y(kT+z+T-l)']' 

r e spec t i ve ly ,  where  1: is a given in i t ia l  s ampl ing  t ime  
(0-<z-<T-I) and x(T)=x(O).  The l i f t ed  or t i m e - i n v a r i a n t  (TIR) 
r e f o r m u l a t i o n  5 e a s s o c i a t e d  wi th  5 ~ is eas i ly  ob ta ined  f r o m  
the  de f in i t i ons  above as 

x(k+l) = A x(k) + 13 u(k) 
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where  

A := Q A ( t + T , t )  

B := [B B ... B ~ ]  , 
1 2  

B . E R " ' ~  

A .. 
C : =  [C* C9 ... 

1 2  
I , C.ER~ ' "  

D := {D , D E R " ~ ,  i=1,2,. . . ,T, j=1,2,.. . ,T} 
i j  i j  

* . . A  

Of course,  mat r ices  A, B, C and D depend on t h e  choice 
of t h e  initial sampling t i m ~  t. I t  can be shown t h a t  t h e  
nonzero poles and zeros  of Y a r e  independent of t. From t h e  
very definition of t he  l i f ted system, i t  can immediately be 
recognized t h a t  Y and Y sha re  t he  same s t r u c t u r a l  
propert ies .  For  instance, t he  pair  A B  i s  
s tabi l izable if and only if (A,B) is  s tabi l izable,  and s o  
f o r t h .  
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I. I N T R O D U C T I O N  

An important part of research in control theory is that of developing 
and verifying a mathematical model of a system. Experimental tests should be 
performed using the real system, and results from these tests should then be 
compared with results from the model using similar conditions, ff they differ 
significantly, then the model should be modified accordingly. 

An example of this is verifying a finite element model [1] of a 
structure. When a vibration test is performed, data are collected from the 
sensors, and modal parameters such as mode shapes, frequencies, and damping 
rates must be extracted from the data. This information is then used to validate 
the model of the structure. To correlate the measured data with the analytical 
model, it is necessary to place sensors at locations that keep the mode shapes 
independent in the spatial domain, ff it is not possible to spatially differentiate 
between them, then mode shape correlation using orthogonality and cross- 
orthogonality methods cannot be used. 

CONTROL AND DYNAMIC SYSTEMS, VOL. 71 
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One application where it is vitally important to place sensors properly 
is in vibration tests of large flexible space structures such as the space station. 
These will be constructed in space so a ground level vibration test is not 
possible. A limited number of sensors must be placed on each piece of the 
space station before it is sent into space. Once the structure is built, a test could 
be performed by exciting it orbit and measuring the free-decay response using 
accelerometers. If it is found that the sensors are incorrectly placed, then it is 
very expensive to move the sensors and repeat the test. Therefore, it is very 
important to place sensors properly prior to performing the test. 

Several methods have been presented in the literature that address the 
problem of optimal sensor placement. They can be classified into the areas of 
system identification, state estimation, optimal control, and structural 
parameter identification. A survey of these sensor location methods was 
published by Kubrusly and Malebranche [2]. The methods discussed in the 
survey are based on the optimization of different criteria. These include 
minimizing the trace of the error covariance matrix, maximizing the kinetic 
energy, and maximizing the determinant of the information matrix. The 
method presented here addresses the problem of sensor placement for structural 
parameter identification and for validation of a finite element model of the 
structure. It maximizes the determinant of the Fisher Information Matrix 
(FIM). 

In this chapter, a method of choosing optimal sensor locations based 
on the Effective Independence Distribution (EID) will be presented. This 
technique uses the EID to rank the contribution of each sensor measurement to 
the linear independence of a structure's mode shapes. Sensor locations can then 
be kept that will keep the mode shapes spatially independent. After the EID is 
developed, it will be shown that retaining locations with large values will 
maximize the determinant of the Fisher Infornmtion Matrix, thus increasing 
the amount of information available from the sensors. The computational cost 
of the process is analyzed, and simple examples are given that provide some 
insight into how the EID ranks locations. Finally, some additional applications 
of this technique to other problems are discussed, and it will be shown that it 
optimizes the observability of a system. Before the references, a list of symbols 
and acronyms is provided. co
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The EID method will be applied to the problem of sensor placement 

for the purposes of model verification described previously. For this reason, the 

EID will be derived using the following mode shape equation for any one time 

step 

h=~bq+e (1) 

where h is an n x 1 column vector containing the measurements from the 
sensors, �9 is an n x p matrix of mode shapes such that each column O j 

corresponds to the flh mode shape, and q is a column vector of mode shape 

scale factors that must be estimated because they are unobservable. The vector 
e denotes the noise in the measurements, and it is assumed that 

E[e] = ~t = 0 (2) 

and 

E[(I~ -I.1.)2 ] = ~ (3) 

It might be useful to discuss how the matrix tl) is obtained before 

continuing. For a complicated structure, it can be calculated using finite 

element analysis techniques and software [1]. However, for a simple structure 

it can be determined analytically. Consider a uniform bar of length L hinged at 

both ends. It can be shown [3] that the normal modes are given by 

mFt37 
0 , ,  (x) = qsin m = 1,2 .... 

L 

where q is a constant. The first step is to divide the bar into possible sensor 

locations; these will be the x coordinates. The values for m are chosen and 
these will determine the number of target modes (i.e., m = 1,2, .... p). The 

desired mode shape matrix can now be calculated using the above equation 

where each row corresponds to an x coordinate and each column corresponds to 

a target mode. 
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The mode shape matrix �9 has p target modes that have to be 

reamvered in a vibration test and an initial set of n candidate sensor locations. 

It is usually the case that n>>p. It is assumed that the initial set of p locations 
must be reduced to some smaller set such that n _> p. 

Equation (1) is in the familiar form of a least squares problem [4,5]. 

The minimum variance estimate for the scale factors q can be written 

= (o rE- lO) - t  ~ r E - I  h (4) 

where o r  denotes the transpose of the matrix O. The covariance matrix in 

Eq. (4) is given by 

COV = ( o r z - ~ O )  -~ (5) 

and it is the inverse of the Fisher Information Matrix 

COV -1 = FqM 

The covariance matrix given by Eq. (5) provides statistical information for the 
estimate q and the matrix Z is the covariance of the noise vector e. Without 

loss of generality and for simplicity, we will take the covariance E to be the 

identity matrix. This means that the noise is uncorrelated and each element 

has a variance of one. 

To get a good estimate of the scale factors q, sensor locations should 

be chosen that will minimize a norm (e.g., trace, determinant, etc.) of the 

covariance matrix. Calculating the covariance matrix involves determining a 

matrix inverse which is an O(p3) 1 process [6,7]. Since it is computationally 

expensive to have an objective function containing a matrix inverse, it would be 

better to maximize a norm on the FIM. It is known from information theory 

[8] that the determinant of the FIM is a measure of the amount of information 

provided by the sensor locations. Therefore, this will be the norm optimized 

l O ( f ( p ) )  is the set of all functions g(p )  such that there exist positive 

constants c and N O with [g(p)[  _< c f ( p )  for all p > N o. Thus, this notation 

indicates functions that are at most as large as some constant times f ( p )  and 

can be thought of as an upper bound. 
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here, and sensor locations will be kept that maximize the determinant of the 
FIM. 

The Effective Independence Distribution is an n-dimensional vector 
where each element corresponds to one sensor location. The development 
[9,10] of the EID method given in the next section will show that the ith term 
of the vector is the contribution of the ith sensor location to all of the 
eigenvalues of the FIM. Since 

I  -XM I = (6) 
j=l 

where I �9 [ denotes the determinant, then the eigenvalues are also a measure of 

the information. If sensor locations with large EID values are kept, then this 
will maximize the eigenvalues and hence maximize the determinant. 

III. T H E  E F F E C T I V E  I N D E P E N D E N C E  D I S T R I B U T I O N  

M E T H O D  

A. DEVELOPING EID FROM AN EIGENVALUE PROBLEM 

The Effective Independence Distribution can be derived from the 
following eigenvalue problem 

(FIM- ~ j I )~ ;  = 0  

where I is a p x p identity matrix, ~,j is the flh eigenvalue, and ~Pj is the flh 

eigenvector. It is important to remember that the eigenvalues found here are 
not the natural frequencies of the structure; they are the eigenvalues of the FIM. 

It follows from the definition of the information matrix that the FIM is 
symmetric. Since the columns of �9 are linearly independent, this implies that 
the FIM is also positive definite [11]. Therefore, the eigenvectors Wj can be 

chosen to be orthonormal, which implies that 
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~FT~j = 0, i~:j  and ~FTwi = l 

Hence, the following matrix properties hold 

~FT~ = I (7) 

FIM ~F = A~F 

where ~F is an orthonormal matrix with each column containing an eigenvector 
and A denoting a diagov.al matrix of eigenvalues. 

Starting from the second property given above and substituting for the 
FIM, we have 

o T o ~ = A ~  

Pre-multiplying by ~F T and using the first property in Eq. (7) yields 

~FToTo~ = A 

After grouping terms, this can be written as 

(O~F) r (O~F)= A 

It can be seen from this that the jth eigenvalue has the form 

~ j  -- ( (D/kl~/kj , j = 1 . . . .  p (8) 
i=1 k=l 

The eigenvectors of the information matrix span the p-dimensional 
mode shape space, so ~F can be used to transform the mode shape matrix ~ .  

The following matrix product is now formed 

G = (O~g) | ( 0 ~ )  (9) 

where | denotes an element by element matrix multiplication and O~F 

represents the transformed mode shape matrix. The ij-th element of G is given 
by 
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P 

k=l 

(~o) 

An examination of each element of G reveals that the sum of the jth column of 
G equals the flh eigenvalue given in Eq. (8) 

~ gij = ~,j 
i=l 

matrix 

The next step is to post-multiply G by A -1 forming the following 

E =GA -l 

The purpose of this step is to divide each column of G by the corresponding 

eigenvalue (i.e., the flh column of G is divided by the flh eigenvalue). Each 
column in the matrix E sums to one, and the element e ij represents the 

fractional contribution of the ith sensor to the flh eigenvalue. 
The Effective Independence Distribution is calculated by summing the 

terms in the ith row of the matrix E 

p 

EIDi = s eij, 
j=l 

i=1  ..... n (11) 

Thus, EID i represents the contribution of the ith sensor to the eigenvalues of 

the Fisher Information Matrix. Note that there are n elements in the Effective 
Independence Distribution corresponding to each sensor location. 

B. AN ALTERNATIVE CALCULATION OF THE EID 

The diagonal elements of the following matrix 

p = ~( t~T~)- l~  T 
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will also yield the Effective Independence Distribution. 
equation, start with the definition of the ith element of the EID. 

To derive this 

EIDi = e~/ = 
j=l /=1 ~L ) 

and substituting for the (j-th element of G from Eq. (10) yields 

12 P ~VKj 
EIDi =Z 

j=l k=l 

These are the diagonal elements of the following matrix product 

p = (~WA-1/2)(t~kI/A-1/2 )T 

where A 1/2 is a diagonal matrix containing the square roots of the eigenvalues. 

Re-arranging the matrices yields 

P = OWA-1Wro r (12) 

Using the properties in Eq. (7), it can be shown that 

FIM -1 = WAW r 

Therefore, using Eq. (5) the matrix P can be re-written as 

P = (I~(t~rcI)) -1 cI~ r 

This matrix has some interesting properties. First of all, it is an 

idempotent 2 matrix. These matrices have the property that the trace equals the 

rank [11,12], therefore 

~ E I D  i = rank(P) = rank(O) = p 
i=1 

2 An idempotent matrix is one that equals its square; i.e., A 2 _ A .  
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So, each term in the EID can be said to show the contribution of the ith sensor 

location to the rank of the mode shape matrix and thus the linear independence 

of the modes. Secondly, the matrix P is a projection matrix which can be used 
to project any vector onto the column space of O. This means that the error 

component can be calculated using 

e=~-q:Pq-q 

The elements of the vector e are called the residuals, and they are the difference 
between the observed values and the estimated values. When performing a 
least squares analysis of a problem, the residuals should always be examined for 

indications that assumptions about the errors or noise have been violated [4,5]. 

C. USING THE EID TO CHOOSE OPTIMAL SENSOR LOCATIONS 

The Effective Independence Distribution can be used in an iterative 

manner to determine optimal sensor locations. This method employs the 

following steps: 

1. Start with a large set of potential sensor locations and the mode shape 
matrix O. 

2. Calculate the Effective Independence Distribution for all sensors in the 

current set of locations. 

3. Delete the sensor location with the smallest EID value. 

4. Repeat steps 2 and 3 until the desired number of sensors is reached. 

The sensor location with the smallest EID value is deleted because that sensor 

contributes the least amount of information and contributes the least to the 

linear independence of the mode shapes. 
To see how computationally intensive this method is the following 

algorithm analysis is provided. This considers the calculation of the EID vector 
as the diagonal elements of the projection matrix P. A similar analysis of the 

algorithm can be performed using the definition of the EID given in Eq. (11). 

This is left to the interested reader. These operation counts indicate the number 

of loops, each loop containing a multiplication and an addition. For one 

iteration of the EID method, the following calculations are needed: 
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�9 Calculate ~ t O ,  which is an O(np 2 ) operation 

�9 Find ( ~  r ~)-1,  which is O(p 3 ) 

�9 Multiply ( ~  rq~)-i ~ T, which is O(np 2 ) 

�9 Find the diagonal elements only of ~ ( ~  r ~)-1 ~ r ,  which is an O(np) 

operation 

To determine the upper bounds on this algorithm, the step with the 
largest operation counts must be determined. Examining the above counts, the 

first inclination is to state that the calculation of the EID is O(p 3 ). However, 

in most applications of the method n >> p and this must be taken into account. 

The other steps that could produce upper bounds are the two that are O(np 2 ). 

To see which one is greater, it is instructive to look at the ratio of the counts 

3 
P P 

2 
np n 

The numerator is obviously smaller, given the conditions mentioned above. 
The value for n decreases (i.e., the number of possible sensor locations 

decreases) at every iteration, but it will never be less than p. Therefore the 

method is O(np 2 ) for one iteration with n observations. 

IV. MAXIMIZING THE DETERMINANT OF THE FIM 

It was slated previously that in order to get the best estimate of the 

scale factors q, the sensor locations should be chosen such that a norm on the 
Fisher Information Matrix is maximized. The norm optimized here is the 

determinant of the FIM. In this section, it will be shown that deleting the 

sensor location with the smallest EID value will cause the least change in the 

determinant of the FIM, thus maximizing the determinant. 
The eigenvectors of the FIM are an orthonormal basis for the p- 

dimensional column space of the mode shape matrix . .  They also represent an 

identification ellipsoid in p dimensions with the axes of the ellipsoid pointing 
toward the eigenvectors. The determinant of the FIM is proportional to the 
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volume of this ellipsoid and is a measure of the amount of information provided 
by the sensors. When sensors are deleted from the candidate set of 
measurement locations, it is desirable to delete those sensor locations that 
change the volume of the ellipse by the least amount. If locations are deleted 
such that the determinant of the information matrix is maximized, then the 
volume of the identification ellipse will be maximized also. 

Recall the following relationship from Eq. (6) 

p 

Iwl-l-l  
j= l  

The relative change in the determinant can be found from the above equation 
using the differential approximation 

It will be shown that when a sensor is deleted with the smallest EID value, then 
that will yield the smallest relative change given above. 

Also recall the formulation of the G matrix in Eq. (9) 

G = (OW) | (O~) 

and that each column of the matrix G sums to the corresponding eigenvalue 

. a g i l  = ~'1, gi2 = ~'2 . . . . .  gip = ~" 
i=l i=1 i--1 

so that the U-th term is the contribution of sensor i to the jth eigenvalue. Using 
the definition of the ith element of the EID, the relative change in the 
determinant of the FIM from deleting the ith sensor location (i.e., the ith row of 
�9 ) is 

'1FIM ] j=l ~ j  ~ e0 =EIDi 
i j=l 

(~3) 
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Because the terms in E are the fractional contribution of the sensors to the 

eigenvalues, then using those values to delete sensors will change the 
eigenvalue by that amount. 

It can be seen from Eq. (13) that deleting a sensor with a small EID 

value will yield the smallest relative change in the determinant. It will be 

shown in this section that this differential approximation for the relative 

change in the determinant is actually exact and that the following holds true 

[ FIM.il = (1 -EID i )1FIM[ (14) 

where FIM_ i denotes the Fisher Information formed with the ith row of 

removed. One can see from this relationship that deleting the sensor location 

with the smallest EID value will maximize the determinant as desired. 

However, prior to proving the above relationship, some information 
from matrix theory is needed [11]. Because the determinant of a matrix is 

linearly dependent on each row separately, the following relationships hold 

la+b c+d[ 
e f 

a 

e 
(15) 

and 

c 
- k  a ~[ c (16) 

The first theorem presented is needed to prove the relationship in 
Eq. (14). 

T T H E O R E M  1. If A = B - r  r where A and B are p x p matrices 

and r is a 1 x n row vector, then 

T T IAI = [1~ - rB~o/r 

where B coy is the cofactor matrix of B with the cofactors of the ith 

row of B entered in the ith column. 
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PROOF: Since A = B -  r r r ,  then 

This can be expanded as 

I bxl - q q  ... blp - r l rp  

IAI - ' .  : 

[ b p l - r p r  1 ... b p p - r e r  e 

Using the properties in Eqs (15)-(16), the determinant of A can be 

written 

I IAI- b~ _ r2r 1 b2P 7 r2rp ! - b21 - r2rl ::" 

]bel - rpr 1 bpp - rprpl Ibe~ - rpr~ . . .  

~r~ 

02 ~ - r2 r r 

Expanding both determinants on the right side about the second row 
yields four determinants, the last one having the following form 

r~ r~ . . .  rl r,, 

r2r~ . .  r2r, ,  

b31 - r3q  ... b3p -r3rp 
�9 ~ ~ 

�9 , ,  ~ 

b p l - r p r  1 ... bpp--rpFp 

143 

The first two rows in this determinant are linearly dependent, so the 
determinant is zero. Continuing to expand the determinants in the 

same manner yields 
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IAI = I 
bll ... blp 

b21. b2p 

Ibpl bpp 

]rl rl "" rl rp [ bll "" blp l 

l , ,  t" "1 
ibm, ... b ,  i~ , r ,  ... r ~ l  

The first term is the determinant of B, and using the definition of the 

determinant as the sum of the ith row times the cofactors of the ith 
row, the above equation can be written 

p p 

Z ' Z ' IAI =l~t-r, r jn l j - .  . . -r  p rjn pj 
j=l j-I 

where 

�9 '§ I B~j =(-1)  M~ 

and M ii is the-sub-matrix formed by deleting the ith row and j th 

column of B [1 1]. Using the definition of the cofactor matrix, the 
determinant of A can be written in matrix form 

IAI I~ ~ = - r B c o f r  

and the theorem is proved. 
It is now possible to prove the result [ 13] presented in Eq. (14) which 

is given below in Theorem 2. This provides a rigorous relationship between the 
determinants of the FIM before and after a sensor location is removed from the 
candidate set. 

T I tEOREM 2. Given FIM = o T o  and FIM_ i = FIM - r r r  where 

r is the row vector corresponding to the ith sensor location, then 

I ~M_,I =(1-EID,)I NM I 

PROOF: An application of Theorem 1 yields 
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T T 
I _,1-1 V -rWco  r 

Since the FIM is a symmetric matrix, its cofactor matrix is 

synunetric also, so 

T 

Using the definition of a matrix inverse [ 11], the above equation can 

be written 

-l r T 

= ( I -  r FIM-'rr)~ FIM l 

From Eq. (12), the ith element of the EID is seen to be 

EIDi = r FIM-lr  r 

therefore, 

] FIM_il = ( I -EIDi  ~ FIM 

which is the desired result. 
The determinant of the FIM with the ith sensor location removed can 

be calculated using Theorem 2, thus yielding a simple way of optimizing this 

norm on the information matrix. Since the determinant of the FIM is a 
measure of the information from the sensors, then the EID is proportional to 
the amount of information lost by deleting a sensor. So, Theorem 2 shows that 
deleting the location with the smallest EID value yields the smallest change in 

the determinant as previously stated. 
It will be proven shortly that the range of EID values is given by 

0 < EIDi <1 

However, it would be instructive to see what happens if a sensor has one of the 

extreme values of zero or one. A sensor location with a value of one must be 
retained in order to preserve the linear independence of the matrix ~ .  If this 
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location is deleted, then from Theorem 2 we have [ FIM_/[ = 0 and the sensor 

matrix becomes singular. This means that all of the mode shape scale factors 
cannot be determined. If a candidate sensor location has an EID value of zero, 

then the determinant is unchanged and no loss of information occurs. 
The fact that an element in the EID is non-negative is readily apparent 

from the definition in Eq. (11). All of the elements in the matrix G are positive 
because they are squares, and all eigenvalues k j are non-negative because the 

H M  is positive def'mite. The following proposition will show that an element 

of the EID is also less than one. 

PROPOSITION: EIDi is in the range 0 < EIDi < 1 

PROOF: Since P is an idempotent matrix, this implies that 

/7 

P" = (PP)" = E PO PJ~ 
j=l 

Since P is also symmetric, the diagonal elements can be written 

n 

2 
Pii = PijPji = Pij 

j=1 j=l 

Expanding the sum on the right-hand side yields 

2 ~ 2 
Pii = Pii + Pii 

i#j 

2 
This equality can only be true if P ii < P.  which implies that 

O<_Pi i <_1 

The results in this section show that sensor locations can be ranked 

using the EID. Those that are closer to one are more important and should be 
retained to keep the mode shapes linearly independent. Sensor locations with 

values close to zero contribute less information and less to the linear 
independence of the mode shapes and can be deleted. 
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V. A P P L I C A T I O N S  O F  T H E  E I D  M E T H O D  

147 

A. NUMERICAL EXAMPLES 

Two simple numerical examples are provided to illustrate how sensor 
locations are ranked by the EID. One example will show that a sensor location 

with an EID value of one must be retained to keep the columns of the mode 

shape matrix linearly independent. The other example will show that the EID 

tends to give a higher rank to those locations with a larger magnitude, if none 

of the locations are essential in keeping the problem non-singular (i.e., the 
columns of �9 linearly independent). 

Suppose the following is a mode shape matrix 

�9 - 0. 1 (17) 

and one sensor measurement must be removed. The EID values for each of the 
locations are 

EID1 = 0.2 

EID 2 = 1.0 

EID3 -- 0.8 

Notice that the sum of the EID values is 2, which is the rank of the mode shape 

matrix. According to these numbers, the second row of the mode shape matrix 
must be kept so that the columns remain linearly independent. An examination 
of the matrix �9 reveals that to be true. If the second row is deleted, then the 

two columns are the same and the FIM formed with Eq. (17) is singular. Also 

note that the EID value for sensor 3 is larger than sensor 1. This means that 

sensor 1 can be deleted yielding the smallest change in the determinant of the 
FIM. 

Now suppose that the mode shape matrix is 
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I1 21 �9 - 1 0.5 (18) 
-4  -5 

None of the rows of this matrix are needed to keep the columns linearly 

independent. The EID values in this case are 

EID1 = 0.5556 

EID 2 = 0.5556 

EID3 = 0.8889 

One can see from these values that the EID ranks sensor 3 the highest and that 

either sensor 1 or 2 can be removed to yield the smallest change in the 
determinant of the FIM formed using Eq. (18). This example shows that if no 
row is critical to the independence of the target modes, then the rows with a 
larger magnitude tend to receive a higher value in the EID. Note, however, 

that in the first example the row with the  smallest magnitude received the 

highest EID value because it was needed to keep the problem at full rank. 

B. PLACING SENSORS ON A UNIFORM PLATE 

To illustrate the problem of determining mode shape scale factors for a 

structure, a rectangular plate of uniform thickness will be used. This model of 

a uniform plate is a simple structure, making it easier to evaluate the 
effectiveness of using the EID values to choose optimal sensor locations. The 

EID will be used to choose 9 optimal sensor locations from 184 candidate 

locations. Results will show that the method described in Section III chooses 

optimal sensor locations in keeping with engineering judgment. 

The rectangular plate extends over the domain 0 < x  < a  and 
0 < y < b, and the plate is simply supported. The free-dexay response of a 

uniform plate to N concentrated unit impulse forces can be written as 

N ~ 

w(x. y.t) = ~ ~ ~<ii(xm. Y, )i(x,~. y,,.t) (19) 
k=l s=l m=l 
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where the mode shapes are given by 

2 mrt, x sTvy 
O(x, y) = ,_. . ._ sin sin 

4pab a b 
(20) 

and the forcing function is 

f (X~k,  Y~k,t) = 2 e ~ ' ~ ' a  sin 
COd.,, 

mr~X sin S ~  sin o3 d, t 
a b 

(21) 

The natural frequencies of the plate are given by 

2 F/m/2 2] 
V P L  ' a '  

with 

denoting the damped natural frequency. The mass per unit area is given by 9, 
and the plate stiffness is denoted by D E . To simplify things further, the values 

for p and the plate stiffness will be set to one. The x and y coordinates in Eq. 

(20) refer to the sensor locations and those in Eq. (21) refer to the locations of 

the actuators (i.e., places where the concentrated impulse forces are located). 

For more information on the response equation given in Eq. (19), any graduate 
text on vibration theory can be consulted [ 14]. 

The mode shape matrix �9 must be calculated to model the plate. 

This can then be used with the EID technique to optimally locate sensors for a 

vibration test. The normal modes of a simply supported plate are given by 

Eq. (20). In order to construct the mode shape matrix, maximum values are 
chosen for the frequency parameters m and s. These values determine the 
number of target modes or columns in the mode shape matrix. For example, 
maximum values of m = s = 3 yield p = 9 target modes. The next step is to 

choose x and y coordinate pairs for candidate sensor locations. These 
coordinate pairs are used in Eq. (20) along with the frequency indices to 
evaluate each element of the matrix ~ .  
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II 

I I  

I 
�9 II I I  

�9 I I  

I t  

i l  

II �9 I �9 

�9 11 II I 

II 

Fig. 1. A set of 42 candidate sensor locations on a square plate. 

For the application presented here, the initial sensor locations were 
found using the following method. The rectangular plate is divided into 
angular and radial distances, and the x and y coordinate pairs are found using 

x = r c o s O  

y = r sin t9 

An initial set of 42 sensor locations is shown in Fig. 1. An application of the 

EID technique yields the sensor locations illustrated in Fig. 2. The parameters 

used for this example are given in Table I. This example shows that deleting 

the sensor location with the smallest EID value chooses sensor locations in 
keeping with engineering judgment. The sensor locations are evenly spaced on 
the interior of the plate, which makes sense for a vibration test of this type of 

structure. 
This is a simple example, 3 but it is illustrative of the power of the 

method. In practical use, an analyst would not need to use a technique such as 

the one described here for simple structures. However, for large, complicated 

structures with many target modes engineering judgment alone is not very 

3 For an example of the EID technique applied to a more complicated structure 
where the finite element model is used, see Kammer [9] and Poston [ 10]. 
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Table I. Parameters Used in Plate Application 

Parameter Value 
iii III L I llill I 

Maximum m 3 

Maximum s 3 
a 1.001 

b 1.0 

Number of Candidates 184 
Number of Final Locations 9 

i i i i i  i i i 

effective. It should also be noted that taking measurements is a cosily process, 
so the sensors should be placed correctly and in the most effective manner 
possible. Relying solely on the expertise of an engineer or analyst can be risky 
and subjective. A combination of engineering expertise and the EID technique 

should produce sensor locations that will yield the maximum amount of 
information and result in a meaningful test. For example, an initial set of 

possible sensor locations is determined, and final sensor locations are chosen 
using the EID technique. At this point, the engineer can use his experience to 

decide whether the sensor locations make sense. This can be repeated using 
different starting locations until the engineer is satisfied with the results. 

i 
Fig. 2. Final sensor configuration chosen using the EID technique from 184 

possible sites. 

co
nt

ro
len

gin
ee

rs
.ir



152 WENDY L. POSTON ET AL. 

VI. S U M M A R Y  A N D  O T H E R  A P P L I C A T I O N S  

The EID distribution can be used in applications other than the one 
presented here. Since it is derived from a least squares problem, it is applicable 
to any situation that can be represented in this context. For example, a series of 
experiments are performed and measurements are taken. Regression analysis 

[4,5,11 ] is used to fit equations to the values observed in the experiments. This 
is a least squares problem under certain assumptions with n observations and p 
response variables. If, for some reason, all of the observations cannot be 
processed, then the EID technique can be used to optimally choose the best 
observations for analysis. 

Another application for this method is Kalman filtering [4] and other 
state space representations of random processes. In this system, the state 
summarizes all of the information from the past that is needed to predict future 
states. The state space representation of a discrete-time linear system is 
described by two equations. One is a system equation that pertains to the 
evolution of the state, and the other is a measurement equation that denotes the 
observations obtained from a given state [4,15,16]. The measurement equation 
is 

y(k) = C(k)x(k) + o,'(k) 

where k denotes a time step, y is an observation vector, x is an unobservable 
state vector that summarizes the state of the system at time step k, C is a known 
matrix, and e is a white-noise process as described in Eqs (2) and (3). This is 

in the same form as Eq. (1) and the EID method can be used in this context 
also, where C takes on the role of the mode shape matrix. 

A linear system is observable [15,16] at time step k 0 if x(k0) can be 

determined from the output function or sequence Y(k0,k 1 ) for k 0 _< k~, where 

k~ is a finite time step. A system is completely observable if this is true for all 

k 0 and x(k 0). If the system is not completely observable, then the initial state 

cannot be determined from the output. Observability was originally defined by 

Kalman and Bucy [ 17,18,19] for linear, lumped parameter systems, and it can 

be seen from the definition given above that it indicates the ability to recover 
the prior state of a system based on observations of the state over a period of 
time. Therefore, observability should be a major consideration when 
determining where measurements should be taken on a system. 
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It was shown in Section IV using Theorem 2 that a sensor location 
with an EID value of 1 must be retained to keep the problem non-singular and 
of full rank. If the matrix C is not of rank p, then the system will not be 
observable because the prior state is unrecoverable. Therefore, it can also be 

said that using the EID method ensures the observability of the system. 
A deterministic method for optimally locating sensors for the purposes 

of model verification has been presented. This method optimizes the 

determinant of the FIM as a means of maximizing the information obtained 
from the sensors. The FIM is determined from the finite element model of a 
complicated structure or analytically for a simple structure. The EID 
distribution can be calculated and used to determine a subset of measurement 
locations from a large candidate set of locations. The candidate sensor with the 
smallest EID value is deleted, the EID is calculated again, and another location 
is deleted. This continues in an iterative manner until the desired subset of 
locations is chosen. It is possible to delete more than one candidate location at 

each calculation of the EID. However, for optimal results only one should be 
deleted at any iteration. 

Given the computer resources available today, this is not a 

computationally intensive algorithm. Thus, it is feasible to use this technique 

for large, complicated systems and still delete only one location at each 
iteration. The final configuration is dependent on the initial starting point, 
because the EID technique is a greedy algorithm and is not guaranteed to find 
the global optimum. This technique could be used several times with different 
sets of candidate locations. Engineering judgment or other modal analysis [ 10] 

would then be used to choose the final sensor locations. 

VII.  S Y M B O L S  A N D  A C R O N Y M S  

h 

q 
^ 

q 

r 

COV 

Eigenvalue of the FIM 

Vector of noise in measurements 

Vector containing sensor output 
Vector of unobservable scale factors 
Vector of estimated scale factors 

Row vector 
Covariance matrix corresponding to 
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EID 

FIM 

P 

A 

WENDY L. POSTON ET AL. 

Effective Independence Distribution; vector of values for each 
sensor location 
Fisher Information Matrix 
Projection matrix, diagonal elements are the EID 
Matrix with each column corresponding to a mode shape 
Diagonal matrix of eigenvalues 
Orthonormal matrix with each column corresponding to an 

eigenvector 
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D I S C R E T E  T I M E  C O N S T R A I N E D  L I N E A R  S Y S T E M S  

J e a n - C l a u d e  H e n n e t  
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7, avenue du Colonel Roche, 31077 Toulouse FRANCE 

I. I N T R O D U C T I O N  

The existence of hard constraints on state and control variables has often 
generated problems in practical implementation of control laws. As pointed 
out by E.G.Gilbert [1], modern multivariable control designs has increased 
the risks of performance degradation and of failure, due to unmodelled phe- 
nomena such as the existence of practical bounds on control variables and of 
physical limitations on state variables. Integration of such constraints in the 
formulation of an optimal control problem is generally possible and may lead to 
tractable solutions, as for instance in Model Predictive Control [2], [3], [4], and 
in Linear Quadratic Control [5], [6]. However, such control schemes generally 
imply considerable off-line computations and are not always robust enough. 
In practice, anti-windup schemes [7] can often compensate for the undesired 
evolutions due to actuators saturations, but their properties are unperfectly 
analyzed. Also, it is often interesting to avoid state or input saturations as 
much as possible, and thus to generate controlled trajectories staying in the 
interior of the constrained domain, without reaching the border of this do- 
main. It is only recently that some attempts have been made to analytically 
integrate constraints within the design of feedback control laws. The basic 
mathematical tools for such a direct integration are mainly the positive invari- 
ance concept and its analytical characterizations. 
Several algorithms are now available to obtain the positive invariance of the 
constrained domain or of a domain included in the constrained domain by 
construction of linear state feedback regulators. Some extensions of this ap- 

CONTROL AND DYNAMIC SYSTEMS, VOL. 71 
Copyright �9 1995 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 
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proach to dynamic output feedback have also been recently studied in the 
literature [8]. Two basic methods have been developed for constructing pos- 
itively invariant regulators: one by Linear Programming, and the other one 
by eigenstructure assignment. The advantages of the first method are in its 
greater generality and in the possibility of easily integrating other constraints, 
such as performance and robustness requirements in the optimization program 
[9]. On the other hand, the major advantages of the second method is the sim- 
plicity of its implementation, and the insights it gives into the structural and 
spectral properties of the system. 

II. P O S I T I V E  I N V A R I A N C E  R E L A T I O N S  F O R  L I N E A R  
S Y S T E M S  

A. Pos i t ive ly  invar i an t  d o m a i n s  

Def in i t ion  II.1 : Pos i t ive  invar iance  
Positive invariance is a property characterizing some function of time gen- 
erated by a dynamical system : any trajectory of this function starting in a 
region of space always remains in that region along the system evolution. 

In particular, consider a discrete-time multivariable system represented by 
a state-space equation of the following type (1): 

X k + l  ---- f (xk ,  wk) for k - - 0 ,  1, .. (1) 

with x0 E ~'~, wk (5 W C NP and f(.) a mapping from N'~ x )4; onto Nn. 
Let f~ be a subset of ~n . Within the framework of set-theory , f~ is said 

to be a positively invariant domain of system (1)  if and only if: 

The well-known "geometric approach" (W.M.Wonham [10]) was initially 
based on the properties of invariance of some subspaces for linear systems 
(A-invariance) and on the use of these properties for the design of feedback 
control laws ((i,B)-invariance). Extension of this approach to some classes of 
non-linear systems also proved highly successful. The natural extension of the 
notion of invariant linear subspace to the case of smooth non-linear systems is 
the property of invariance of affine distributions [11]. 

In view of the application of invariance properties to linear constrained 
control problems, two classes of positively invariant domains of the state space 
have recently been explored: polyhedral cones, as studied by C.Burgat et al. 
([12], [13]), and polyhedral domains including the origin point in the works of 
G.Bitsoris et al. [14], [15], and J.C.Hennet et al. [16], [17]. 
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B. Posi t ive  invar iance  of po lyhed ra l  domains  of  the  s t a t e  space 

Def ini t ion II .2 : Po lyhed ra l  Set [18] 
Any polyhedral set of ~n can be characterized by a matrix Q E ~r.n and a 
vector r E !t~ r, r and n being positive integers. It is defined by: 

R[Q, r = {x E ~n; Q.x <_ r (2) 

Def in i t ion  II.3 : Po lyhed ra l  Cone [18] 
A polyhedral cone of ~'~ is characterized by a matrix Q E ~r.n,  with r a pos- 
itive integer. It is defined by: R[Q, Or] = {x E ~n;Q.x < 0r}, where, by 
convention, 0r denotes the null vector of ~r . From this definition, it is clear 
that polyhedral cones are a particular class of polyhedral sets. 

Def in i t ion  II.4 : Simplieial  Po lyhed ra l  Cone [19] 
For Q E ~n• and non-singular, the polyhedral cone R[Q, 0hi is called a sim- 
plicial polyhedral cone. It is a proper cone with exactly n extremal rays. 

Defini t ion II.5 : Simplicial  P r o p e r  P o l y h e d r a  
I f  rank Q = n and if r is a vector of ~n with strictly positive components, 
then, the polyhedral set R[Q, r is a simplicial polyhedron with the origin as an 
interior point. It is called here a simplicial proper polyhedron. 

Consider a discrete-time linear system described by the state equation: 

zk+, = Aoxk (3) 

This equation may represent an autonomous system or a system controlled 
by state feedback. In the latter case, matrix A0 can be decomposed as 
Ao = A + BF ,  with A the open-loop state matrix, B the control matrix and F 
the gain matrix. The purpose of chapters IV and V will mainly be to give algo- 
rithms to construct F so as to obtain the desired positive invariance properties. 

Def ini t ion II.6 : Posi t ive  invar iance of po lyhed ra l  sets 
A polyhedral set R[Q, r is a positively invariant set of system ( 3 )  if  and only 
if" xk E R[Q, r ~ zk+p ( -  APooXk) E R[Q, r Vp E A f, Vk E .M. 

c .  Basic invar iance  p r o p e r t y  

L e m m a  1 
A necessary and sufficient condition for R[Q, r to be positively invariant for 
system (3) is : 

QAoz  < r , Vx E ~'~; Ox <_ r (4) 
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This property directly follows the foregoing definition. From this lemma, pos- 
itive invariance of polyhedral domains in the state space for system (3) can be 
analyzed as a special case of inclusion of polyhedral domains and characterized 
using the extended Farkas' lemma presented in J.C.Hennet 1989 [20]. 

D. The  E x t e n d e d  Farkas '  L e m m a  

The set of linear inequalities 

Q.x < r with Q (5 ~"*n and r (5 ~r (5) 

defines a convex polyhedral set of ~ " ,  denoted R[Q, r Under what conditions 
any point of R[Q, r also belongs to an other convex polyhedral set, RIP, r 
defined by the set of linear inequalities: 

Pz _< r with P (5 ~P*" and r (5 ~P (6) 

An extension of Farkas' lemma to the non-homogeneous matrix case provides 
a set of necessary and sufficient conditions on Q, P, r r under which" 

R[Q, r c_ RIP, r (7) 

L e m m a  II.2 
The system Px < r is satisfied by any point of the non-empty convex polyhedral 
set defined by the system Qx < 4) if and only if there exists a (dual) matrix U 
of ~p*r with non-negative coefficients satisfying conditions" 

U Q -  P (8) 

u.o < r (9) 

P r o o f  
This Lemma can easily be proven by concatenation of necessary and sufficient 
conditions related to each row Pi of matrix P. For i = 1, .., p, consider the row 
vector Pi of matrix P and its associated component r of vector r Condition 
(7) is equivalent to the joint p conditions (Ci) defined by: 

(C~) p~x < r ; q x  <_ O. 

From Farkas' Lemma [18], under the assumption R(Q, r r 0, 

3U~ ; U~ T E ~* 

(c~) ~ u~ > o  v j - 1 , . . . , q  (lO) 
�9 " u i . o - p i  

u i . r  < r 
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Then, joint satisfaction of p conditions (Ci) for i -  1, ..., p is equivalent to 
the joint existence of p row vectors Ui satisfying (10). Therefore, as stated in 
the theorem, condition (7) is equivalent to the existence of a matrix U having 
the Ui as row vectors. It clearly satisfies (8) and (9). 
D 

It is worth pointing out that the derivation of this property by the theory 
of duality in linear programming does not require any particular assumption 
on the rank of Q and components of vector ~b. 

As for the classical Farkas' Lemma, many different versions of the extended 
Farkas' Lemma can be obtained for different values of q~ and ~ and for equali- 
ties instead of inequalities in (5) and/or (6). A particularly interesting version 
of this Lemma is obtained when replacing (5) and (6) by equalities with null 
right-hand terms. 

L e m m a  II.3 
The system Px = Op is satisfied by any point of the non-empty convex poly- 
hedral set defined by the system Qx = Or if and only if there exists a (dual) 
matrix U of ~e *r satisfying condition : 

U Q = P  (11) 

The proof is similar to the proof of Lemma II.2, with the usual dual corre- 
spondences. 

Note that relation (8) with U non-negative is a particular instance of rela- 
tion (11). Therefore, the primal condition (7) implies the primal implication: 

Px = Op ==~ Qx = o,. (12) 

E. Invar iance  re la t ions  

The following Proposition and its Corollary are direct consequences of Lemma 
II.2. 

P r o p o s i t i o n  II.1 
Positive invariance of the polyhedral set R[Q, ~] for system (3) is equivalent to 
the following properties: 

3K = ((Kij)) 6_ ~"*", Kij > O, Vi = 1, ..., r, Vj = 1, ..., r (13) 

KQ = QAo (14) 

Kqt < ~ (15) 
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Corol la ry  II.1 
Positive invariance of the polyhedral cone R[Q, 0,.] for system (3) is equivalent 
to the existence of a non-negative matrix : 
K = ((K~j)) E ~*~,  K~j >_ O, Vi = 1, ..., r, Vj = 1, ..., r, such that : 

KQ =QAo.  (16) 

Some elementary results can be derived from the conditions stated in 
Proposition II.1. 

F H o m o t h e s i s  p r o p e r t y  

Note that if R[Q, r is an invariant set of system (3), any domain homoth- 
eric to R[Q, r  R[Q, PC] with e > 0 is also invariant. Indeed, in Proposition 
II.1, the only relation in which r appears is (15) and for any strictly positive 
value of e, this inequality is equivalent to: 

Ker _< er (17) 

G. S tab i l i ty  p rope r t i e s  

1. Pos i t ive  invar iance  of a po lyhedra l  cone 
Positive invariance of a polyhedral cone R[Q, 0r] with respect to system (3) 
is simply characterized by (16) with matrix K non-negative. Matrix K being 
non negative, its spectral radius, PK, is an eigenvalue of K and, from the 
Perron-Frobenius Lemma [19], an associated eigenvector of K, denoted vp, is 
non-negative and non-null. Consider the projected system : 

Yk+l = Kyk with yk = Qxk (lS) 

Asymptotic stability of system (18) is equivalent to p(K) < 1. Then, from 
(16) and 

Kvp = pkvp < vp, (19) 

R[Q, %] is a positively invariant polyhedron for system (3). 

L e m m a  II.4 
Under the assumption of positive inva~ance of R[Q, 0~] with respect to system 
(3), asymptotic stability of (18) implies the existence of a positively invariant 
polyhedron R[Q, X] for system (3), with X a non-negative and non-null vector 
in ~". 
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Conversely, under the assumption of positive invariance of the polyhedral 
cone R[Q, 0r], the following matrix can then be constructed : 

z = - K ( 2 0 )  

where Ir• is the unity matrix of ~r . All the off-diagonal terms of Z are non- 
positive. Then, from a classical result on matrices ([19], [21], [22]), system (18) 
is asymptotically stable if matrix Z is a non-singular M-matrix. An equivalent 
characterization of Z is the existence of a strictly positive vector, 

X E ~ r  w i t h x i > 0  Vi - 1 ,  ..., r, such t h a t Z x > 0 r .  

But this property can be written : 

K X < X  (21) 

This relation, together with (16) then shows the positive invariance of the 
polyhedral set R[Q, X]. The following result can then be formulated: 

Proposition II.2 
If  system (3} admits a polyhedral cone R[Q, 0,] as a positively invariant set, 
the projection of (3) on Range(Q T) is asymptotically stable if there exists a 
polyhedron R[Q, X] with X > Or which is positively invariant ( with strict con- 
tractivity (21}) with respect to (3). 

2. C o n t r a c t i v e  invar i ance  of a s impllc ia l  p r o p e r  p o l y h e d r o n  

L e m m a  II.5 
If  rank Q = n and R[Q, r is a simplieial proper polyhedron (vector r has 
strictly positive components), then, contractive invariance of R[Q, r for sys- 
tem (3) implies asymptotic stability of system (8) .  

Note that positive invariance of R[Q, r implies the existence of a non- 
negative matrix K E ~"•  such that : KQ = QAo. And this condition is 
equivalent to positive invariance of the simplicial cone R[Q, 0,,]. Matrices K 
and A0 being similar, they have the same spectrum. Then, Lemma II.4 di- 
rectly derives from Proposition II.2. 

H. S y m m e t r i c a l  and  n o n - s y m m e t r i c a l  i nva r i an t  d o m a i n s  

Polyhedral domains which are symmetrical with respect to the origin point 
are of special importance for the analysis of invariance sets of a linear system. 
They are also well adapted to the regulator design problem in the current 
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case of symmetrical constraints. A specialized version of invariance relations 
(13),(14),(15) can be formulated as follows" 

Propos i t i on  II.3 
A necessary and sufficient condition for the symmetrical polyhedral set 

S(G ~) - { z  e ~ " - ~  < Gz < ~} with G e ~"" ~ e ~" 

to be invariant for system (3) is the existence of a matrix H E ~'*" such that: 

H G -  GAo (22) 

]Hiw _< w with ] H I -  ((IHij])) (23) 

P r o o f  
This Proposition can be derived from Proposition II.1 using the following 
analysis. Symmetrical inequalities: -w  < Gx <_ w with G E ~J.n, w E ~a+, 
can be re-written as 

Application of positive invariance relations (13),(14),(15) to formulation (24) 
can be expressed as follows: 

3H + E ~ '* ' ,  (H+)ij >_ 

3 H - E ~ ' * ' , ( H - ) i j  >__ 

( H + _ H - ) G  - 

(H+ + H - )  ( w < 

O V i -  1,..,s, V j -  1,. . ,s 

O V i -  1,..,s, V j -  1,. . ,s 

GAo 

w 

And , by setting H - H + - H - ,  the preceding relations can be re-written as 
stated in Proposition II.3 ( G. Bitsoris [14]). 

To show the sufficiency of the conditions, take for instance 

H+ij - max(Hij,  0) and H-i j  - max( -Hi j ,  0). 

E] 

Similarly, positive invariance w.r.t, system (3) of non-symmetrical domains 
of the following form" 

S ( G , ~ - , w  +) - {x E ~n such t h a t - ~ -  _< Gx <_ ,:+} 

with w+ E ~ 8 + , w - E  ~s+ and rank G - s is equivalent to the existence of 
two non-negative matrices of ~s . , ,  H + and H -  such that [23], [16]" 

(H + -  H - ) G  - GAo (25) 

< . (26) 
H- H + cv- - w- 
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I. Invar ianee  of  the  subspaee  K:er G 

P r o p o s i t i o n  II.4 
Ao-Invariance of the subspace K.er G is a necessary condition for positive in- 
variance, with respect to system (3), of any of the non-empty sets RIG, w], 
S(G,w), S(G,w-,w+),  for G 6 ~ , x , ,  rank G - s, w 6 ~~ w- 6 ~'+, 
w+ 6 ~  '+.  

P r o o f  
The first relation (22) characterizing the positive invariance property of the 
non-empty symmetrical polyhedron S(G, w) is purely structural. It is a canoni- 
cal projection equation (W.M. Wonham [10]). From Lemrna II.3, the existence 
of a matrix H satisfying (22) is necessary and sufficient for the following im- 
plication to hold true : Gz = Os ==~ GAox = 08. Such an implication 
characterizes the invariance of the subspace tUer G with respect to system (3). 

Note that equation (25) obtained in the case of a non-symmetrical domain 
S(G,w+,w -)  is equivalent to (22). Also, relation (16) applied to R[G,w] is a 
particular case of (22) with matrix H non-negative. In this last case, positivity 
of the components of vector w is not required. 
[:3 

J. Invariant domains  of  s imilar sy s t ems  

Relation (22) defines similarity relationships between cyclic subspaces of A0 
and K. A possible way to construct invariant domains for system (3) can then 
proceed from the design of invariant domains for the "similar" system" 

yk + x - U yk ( 2 7 )  

with T ~ ~ " ,  rank T -  n and 

U - T -  1AoT (28) 

L e m m a  II.6 
A necessary and sufficient condition for system (3) to admit R[Q, r as a posi- 
tively invariant polyhedron is that system (27) admits as a positively invariant 
domain R[Q', r with Q' - QT. 

P r o o f  
The proof is elementary. From Lemma II.1, positive invariance of R[Q, r is 
characterized by" 

QAoz < 5 V x such that Qx < r 
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The change of variable x = Ty implies QAoTy _< r and with AoT = TU, 
QTUy < r for all y such that QTy <_ r 

Conversely , by the similarity relationship and the change of variable 
y = T-~x ,  positive invariance of R[Q',r for system (27) implies positive 
invariance of R[Q'T-~, r for system (3). 

No te  
This lemma is also valid for symmetrical polyhedral sets. In the statement 
of the lemma, the domains R[Q, r R[Q', r can be replaced by S(G,w) and 
S(G',w) respectively, with G ' - G T . .  

L e m m a  II.7 
Existence of a positive vector of ~ '~, r such that [U[.r < r is a necessary and 
sufficient condition for system (3) to admit as an invariant set a symmetrical 
n-parallelotope with facets parallel to the hyperplanes of the system of column 
vectors of matrix T. 

P r o o f  
The similarity relationship, (28) can be re-written" 

UT -1 - T-1Ao (29) 

If it is possible to find a strictly positive vector,r E ~n such that �9 

[U[r < r (30) 

then, from the symmetrical invariance relations (22),(23) of Proposition II.3, 
the domain" 

S(T  -1 , r - {x E il~";-r _< T - I x  <_ r 

is positively invariant for system (3). This polytope is symmetrical with respect 
to the origin. It has 2n facets. In an orthonormal basis, the symmetrical 
hyper-rectangle S(Ir,.n, r is positively invariant w.r.t, system yk+l = Uyk. 
Therefore, its image by T -1 is a symmetrical n-parallelotope (A. Brondsted 
[24]). 

Conversely, if system (3) admits as a positively invariant domain a sym- 
metrical n-parallelotope S(V, r with r E ~n+, V E ~n,n, rank V = n and 
U = VAoV -1, then, by Lemma II.5, S(:In• r is a positively invariant set 
of system Yk+l = Uyk and therefore [UIr _< r 
o 
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III .  P O S I T I V E L Y  I N V A R I A N T  D O M A I N S  OF L I N E A R  
S Y S T E M S  

A. Ex i s t ence  of  P o l y h e d r a l  Pos i t ive ly  Inva r i an t  D o m a i n s  for a 
S tab le  S y s t e m  

From a classical result by R.E.Kalman et al., 1960 [25], any stable linear sys- 
tem admits elliptic positively invariant domains associated with its quadratic 
Lyapunov functions. Therefore, if A0 is a stable matrix, there exists a positive 
definite mapping from ~" onto ~+ such that 

v(x) - x T P x  satisfies A v ( x ) -  v ( A o x ) -  v(x) < 0 Vx E ~.". 

Then any ellipsoid 
v(x) < p, with # E ~+, # # O, 

is a positively invariant domain with respect to the linear system (3). 

Similarly, the linear system ( 3 )  may admit as a Lyapunov function a 
generalized Loo-norm function, called a polyhedral norm, of the following type" 

v ( x ) -  max/I(Gz)i_.____~ with G E N,,n, r a n k G -  n, and w e N' ,wi  > 0 (32) 

In this case, Av(x) - v(Ax)- v(x) is negative semi-definite, and any convex 
polytope defined by 

Gx < vw vith u E ~+ ,u # 0 

is a positively invariant domain of system (3). 
If the spectral radius of A0 is less than 1, from the existence of elliptic 

positively invariant domains of the type (31) and from the classical property 
of equivalence between norms (see e.g. [26]), that there exists a polyhedral 
norm such that the unit ball for this norm (a symmetrical convex polytope) is 
positively invariant, i.e. the operator A0 is contracting in this norm. 
A basic consequence of this property is that any asymptotically stable linear 
system admits non-quadratic Lyapunov functions of the afore mentioned type 
(32), introduced by H.N.Rosenbrock [27]. 
The following existence proposition can thus be stated : 

P r o p o s i t i o n  III .1 : Asymptotic stability of system (3) implies that this sys- 
tem admits as positively invariants sets some closed and bounded symmetrical 
polytopes S(G,w), with G E ~ , ,n ,  rankC, - n, and w E ~ ' ,w i  > O. Each of 
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168 JEAN-CLAUDE HENNET 

these polytopes is associated with a polyhedral L yapunov function (3~) of sys- 
tem (3). 

The main purpose of Chapter III is to construct such positively invariant 
polytopes using the information on the spectrum of A0, and not only its spec- 
tral radius. Some of the results presented in this chapter can also be found in 
J.C Hennet et al., 1993 [28]. 

B. T h e  J o r d a n  d e c o m p o s i t i o n  of the  p r o b l e m  

The construction technique which will now be described uses the real Jordan 
representation of matrix A0 . It distinguishes the types of invariant domains 
associated with each diagonal block depending on the location of the associated 
eigenvalues. 

Consider the Jordan decomposition in ~n of matrix A0 : 

Ao - P -  1AoP (33) 

with" 
L1 0 . 

0 . 
�9 0 L p l  0 

(A:o) - D1 
0 Dp2 0 

0 A1 

(34) 

�9 0 

0 . . 0 Ap3 

Matrix A0 is assumed to have all its eigenvalues strictly inside the unit disk of 
the complex plane. The space ~n can be decomposed into p cyclic independent 
eigensubspaces associated with the p Jordan blocks of A0,with" p - pl +p2+p3. 

From lemma I1.5, existence of a positively invariant polytope for system 
(3) is equivalent to the existence of a positively invariant polytope for system 

Yk+a - A 0 y k  with yk - P - lxk .  (35) 

Then, if it is possible to construct a positively invariant polytope S(G~,w) for 
system (35), the domain S(G'P,w) is a positively invariant polytope of the 
initial system (3). The proposed technique then consists of constructing a 
positively invariant polytope in each cyclic subspaee associated with a Jordan 
block of A0, and of constructing a global positively invariant polytope of (35) 
from its positively invariant projections. 
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1. Blocks  a s soc i a t ed  wi th  rea l  e igenva lues  

The blocks L 1 , . . . ,  Lpl are associated with the pl (not necessarily distinct) real 
eigenvalues of A0. Each such block Li concerns the eigenvalue Ai (IAil < 1) 
with the order of multiplicity qi in this block. 

Li = 

Ai 0 . 
1 . 

0 �9 �9 

�9 ~ ~ 0 

0 . . 0 1 Ai 

Under condition IAil < 1 , it is possible to construct a strictly positive 
vector li, such that the symmetrical polyhedral set S(Iq, • li) is positively 
invariant for the subsystem: 

zk+l = Lizk (36) 
Such a vector li can be constructed as follows" 

�9 If the order of multiplicity of Ai in the block Li is 1, li can be any positive 
number. In this case, zk E ~, and under the assumption IAil < 1, 

--li < zt: < li ~ --li < Aizk < li 

�9 If qi > 1, under the assumption [Ai[ < 1, define the strictly positive 
number ei = 1 -  IAi[ and set" 

li T -- ( l i l ,  ..., liq,) 

such that: 
lil is any positive real number 
the positive numbers li2, ..., liq, should satisfy the relations: 

1i2 >_ 1i_.1.1, ..., liq, ~_ liq,-1 (37) 

Inequality (38) is then obviously verified" 

JLiJ.li < li for i -  1, ..., pl (38) 

Then, by Proposition 11.3, S(Iq, x q,, li) is a positively invariant symmetrical 
polytope of system (36). 
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R e l x l a r k  

The same result applies for systems stable in the sense of Lyapunov having -1  
or (and) +1 as eigenvalues. 
This result obviously derives from the fact that stability of the system implies 
that each eigenvalue -1  or +1 is necessarily simple in each Jordan block as- 
sociated with it. 

2. Blocks associated with simple complex eigenvalues 

The blocks D,n (m - 1, . . . ,  p~) correspond to couples of simple complex eigen- 

values: / p,,,[cos(/3m) + jsin(Bm)] with order of multiplicity 1 in this block 
Pm [cos(~,~) - jsin(Bm)] ' k 

and such that p~ < 1, pm > 0, 0 < ~,~ _< 27r. 
The real Jordan block associated with such a conjugated pair of eigenvalues 

is" 
D - (  p cos(/~) psin(/3) ) (39) 

- p  sin(/3) p cos(/3) 

Consider the following linear dynamical system of N2. 

zk+ 1 - Dzk (40) 

L e m m a  111.1 
A necessary and sufficient condition for system (40) to admit as a positively 
invariant domain any regular polygone with N edges (N  >_ 3) and its center 
at the origin is: 

pcos((2K + 1)r x N - /3)  _< cos(~)  (41) 

with the integer K (0 <_ K < N -  1) uniquely defined by �9 

2(K + 1)r 2KTr </3 < (42) 
N N 

P r o o f  
The two relations above have a very simple geometrical interpretation, illus- 
trated in figure 1. They describe the interior of the regular polygone with 
N edges having one vertex in point 1 and inscribed in the unit disk of the 
complex plane. 

Now, consider the geometrically identical regular polygone with N edges 
in ~2. This polygone, denoted (H), can be defined in polar coordinates by: 

n -  { Y -  0).  r + r  1)Tr 
' N 

7t" 
0] < cos(~)} with k E (0, 1 , . . . , N -  1) 

(43) 
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R 

Figure 1" The polygone of admissible eigenvalues for N=6 

Note that this definition of H is similar to the relations (41) and (42) since 
the maximal value of cos[ (2k+1)" - 0] for 0 < k < N, is obtained for k* such 

N 
that the absolute value of the angle is minimal, that is precisely for k* such 
that" 

2k*Tr 2(k* + 1)~r 
< 0 <  

N - N 
In cartesian coordinates, II can be equivalently defined by a set of N linear 

inequalities: 

I I -  { z -  �9 W z  < w} (44) y ~ _ 

with- 

W 

I "  1 "  - cos(~)  sin(T ) 
~ 

�9 , 

cos( N ) s i n (  U ) 

. 

cos((2~O ") sin((2N+')" N ) -  

~W~ 

cos( ) 

~ 

71" = Cos(~-)IN co
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Since such a polygone is convex, a necessary and sufficient condition for its 
positive invariance is that the image of each of its vertices belongs to it. And 

2 k z  this property can easily be checked. Let Sk - (1, 0k), with Ok - --if- be any of 
the N vertices of II. Its image by D is" 

, , , 2klr (mod27r) Sk - (P, Ok) with O k - / 3  + 

Note that �9 

271" 2(K + k ) r  (mod2~r) < 0' < 2(K + k ) r  (mod2~r) + - - .  
N - - N N 

Therefore, by condition (41), 

pcos(2(K + k )  + 1 ) r  _ 01 ) 
N 

(2K + 1)r)  _/3) (45) 
- p(cos( 2N 

_< cos (~) .  (46) 

And thus S~: to belong to domain II. 

Conversely, if the conditions of the lemma are not satisfied, 

pcos((2K + 1)~ N - /~)  > cos (~ )  

and by (45), the image of any vertex Sk of (H) is outside (H). Now, if a 
domain (II) is invariant by D in ~2, any homothetic domain is also invariant 
(section II.F). Furthermore, since D is a rotation matrix, any rotation of the 
domain around the origin preserves the invariance property. Indeed, the proof 
of invariance is the same as above if the polar coordinates of the current vertex 
is (1, ~ + b) instead of(l, - ~ - ) .  

In an orthonormal basis of ~2, any regular polygone II' with N edges and 
its center at the origin is invariant by matrix D. 
rl 

3. Blocks a s soc ia t ed  wi th  m u l t i p l e  complex  e igenva lues  

The blocks Am (m -- 1 , . . . ,Pa)  correspond to couples of multiple complex 

(p[cos(f lm) + jsin(fl, n)] with order of multiplicity rm in this eigenvalues: 
dcos( m) - ' 

block, and such that P~m < 1, Pm > O, 0 <_ tim <_ 2~. 
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The real Jordan block associated with these multiple complex eigenvalues 
take the form" 

A m 

D 0 . . . . .  0 
I2x2 �9 �9 
�9 1 2 •  �9 �9 

�9 o �9 0 

0 . . . . .  I~• D 

with D defined as above, in paragraph III.B.2. 
Consider the linear system of N2r. 

zt+l -- Azk. (4T) 

A condition slightly stronger than (41) will now be used" 

p cos( (2K + 1)Tr x 
N - / 3 )  < c o s ( ~ )  (48) 

with the integer K defined by (42). 

L e m m a  I I I .2  
Under conditions (4s and ($8) on p and ~, sys tem (47) admits as a positively 
invariant  domain R [ W ,  a] , with kV E ~Ns*2s defined by 

W m 

W 0 . . . . .  0 
0 W . 

�9 �9 �9 0 

0 . . . . .  0 W 

I alw 1 
- -  " -- " ) I N ,  under conditions and ~ E ~Nr  defined by ~ with w cos( 

~S tO 

al > 0 W and defined in Lemma III.1, and 
ai > a,_1r . i - 2 r ' 

111 a s  
~ ~ ~ o~ 

7r 
= - p 

(2K + l)Tr 
N 

- f l ) .  ( 4 9 )  
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D z 1  

zx + Dz~ 
Then, D z -  

zs-1 + Dzs 

By construction, for i - 1 , . . . ,  s 

P r o o f  

Take any point z E R[W, (r]" z - " with zi - e R[W, aiw] for 
' ' Yi 

Zr 

i -  1 , . . . ,  s. Let Six,.. . ,  SiN be the N vertices of the polygone R[W, aiw]. 

be wri t ten"  zi - ~=1__ x o S o ,  with ~ ; = 1 X i j  - 1, Xij > O. Zi can 
W D z l  

Wzx + WDz2 
; W D z -  

Wz ,_x  + W D z ,  

N 

zi < ai w and W Dzi - ~.~ Xij W D S  0 W 
j=l  

but, from the proof of Lemma III. 1, 

WDSi j  < pcos[ (2K + 1)Tr _ fl]ailN 
- -  N 

thus 
71" 

WDSi j  < ( c o s ( ~ )  - ~)a i lN 

T and , under condition ai( >_ ai_ 1 cos(~-) for i - 2 , . . . ,  s, 

W Z i _  l -~- WDzi < (ai_, c o s ( ~ )  + a i ( c o s ( ~ )  - ~))IN 

71" 
_< r 

C. S y m m e t r i c a l  p o l y t o p e s  o f  t h e  J o r d a n  s y s t e m  

The positively invariant polygones of ~ which have been considered in Lem- 
mas III.1 and III.2 are regular and have their center at the origin, but they 
are not necessarily symmetrical with respect to the origin. The symmetrical  
case is simply obtained when the number of edges,N, is even (N = 27). with 

cos(a + ~r) - - c o s a  and 
7 >_ 2. Then, as for any angle a (0 < a < ~r) ,  sin(a + ~ r ) -  - s i n a  ' 

the analytical expression of R[W, aiw] can be re-written symmetrically as fol- 
lows ; 

s ( r ,  a c) - _< _< (50) 
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c o s ( ~ )  s i n ( ~ )  

�9 " " - " ) 1 ~  withF  E ~ ' 2 ~ ,  F - . . , c E ~ + , c -  c o s ( ~  . 

c o s ( ~ ) 2 ~  sin( (~'~+1)'2-r ) 

The constructed positively invariant symmetrical polytope for subsystem (40) 
is now denoted S(F, c), and the positively invariant symmetrical polytope for 
system (47) can be re-written S(C, r/) with C E N,-r• and 77 E NTr defined by 

C m 

F 0 
0 F 

0 . . 0 

0 

, 1 7 -  

arc 
F 

By construction, the number of constraints defining the symmetrical polytope 
of ~2r, S(C, r/), is 27r. 

Because of the block-diagonal structure of matrix A0, a positively invari- 
ant polytope of system (35) can be constructed from the positively invariant 
symmetrical polytopes of all its blocks. This polytope takes the form S(G ~, w), 
with, in the most general case when Pl ~: 0, P2 ~: 0, p3 ~: 0 �9 

2"q, 0 . . 0 11 
0 . 0 . . 
�9 :Zq, ,  . l p l  

�9 F 1  �9 Cl 

G ~ -  . and w - . . 
Fp~ 0 cp~ 

�9 { 7 1  �9 rh 
�9 , 0 �9 

0 . . 0 c p 3 .  . o p ~ .  

Concatenation of the invariance relations associated with each block implies 
the existence of a matrix H satisfying" 

HG' - G'Ao (51) 

I H I h  < ~ ( 5 2 )  

And thus, from Proposition II.3, S(G ~, w) is a positively invariant symmetrical 
polytope of system (35). G ~ E ~,•  and w E ~ with, by Jordan decomposition 
of A0 and construction of the positively invariant domain ,  

Pl Pa n -- ~ i = l  qi + 2p2 + 2 rm E m = l  
Pt P~ Pn �9 

S E i = I  qi ~" E j = I  "/'j E m = l  rmTm 
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D. Posit ively invariant  polyhedra l  sets for s table l inear  sys tems 

Lemma I1.5 and the decomposed construction of sections III.B, III.C now 
allow to state the following result. 

P ropos i t ion  III.2 
Any asymptotically stable system (3) admits some symmetrical polytopes as 
positively invariant sets. The number of linear constraints defining such poly- 
topes is 

p ,  p~ Ps 

i=1 j = l  r n = l  

qi is the order of multiplicity of the real eigenvalue Ai (with la, I < ~) in 
the block Li. 

7m is the smallest integer (necessarily, 7m > 2) associated with the pair of 
eigenvalues p,n (cos(/3m) 4- j sin(13m)) with order of multiplicity rm in the block 
Dm of Ao, such that: 

K r  

7m 

Pm cos[ (2K + 1)r 
27m 

(K + 1)~r 
_< tim < (53) 

7,n 
71" 

] < Cos (54) 
27m 

P r o o f  
Consider the real Jordan form of matrix A0, -40, defined by (34),under the 
asumption that system (3) is asymptotically stable, or that all its eigenvalues 
have their module strictly less than 1. From Lemma II.5, a positively invari- 
ant symmetrical polytope S(G,w) for system (3) can easily be derived from 
the construction of the positively invariant symmetrical polytope S(G~,w) for 
system (35). It suffices to compute G E ~ ' •  by : 

G -  G'P -1. (55) 

to obtain from (33) and (51) 

H G -  GAo. (56) 

Conditions (56) and (52) guarantee positive invariance of S(G,w) w.r.t, sys- 
tem (3). 
Q 
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E. T h e  case of  s impl ic ia l  inva r i an t  s y m m e t r i c a l  p o l y t o p e s  

A case of particular interest is obtained when s - n. The two polytopes 
S(G',w) and S(G,w) are then simplicial, that is they are defined by non- 
singular matrices of ~nx , ,  G' and G, respectively. Furthermore, from propo- 
sition III.2, this case is obtained for �9 

[Ail < 1 for any real eigenvalue of A0, 
7-~ = 2 for any complex eigenvalue p,~ (cos(tim) + j sin(/3,n)). 

In the special case when 7m - 2 is feasible for all the blocks Din, condition 
(48) on the location of the complex poles takes the simple form" 

IP cos/3,nl + ]P sin/3,~ I < 1 

for each elementary block" ( p c o s ( / ~ m )  k -psin(/%,) 
psin(/3m) ) 
Vr " 

The basic positively invariant square associated with each such block is 
S(F, c), with �9 

I F ' - -  2 - -  ._vq : ~  and c . 
2 2 

By a rotation o f - {  and a homothesis of v/~, an other elementary positively 
invariant square of system (40) is obtained : S(I~, 1~). Similarly, for any block 
Ai associated with a couple of complex eigenvalues ~i 4-jai with multiplicity 
order ri > 1 in this block, it is always possible to select ri positive scalars 
hi1,..., hi,., satisfying the conditions of Lemma III.2: 

{ ail > 0 

a i k  > a,~,_.~ cos(~_)  . k - 2 ,  . . r i  

with ~i - 1 - I m l -  I~ l  > 0, to guarantee positive invariance of S(I2r,, ai), for 

ai~12 ] 
ai - . . ( 5 7 )  

a i r  i 12 

Matrix G' then takes the form of the identity matrix of ~".  And relation 
(55) reduces to �9 G - p -1 .  The row-vectors of matrix G form a set of left 
generalized real eigenvectors of matrix A0. The following result, due to G. 
Bitsoris 1988 [14], then becomes a direct consequence of Proposition III.2. 
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Proposition III.3 
A snfficient condition for the ezistence of a simplicial symmetrical invariant 
polytope S(G,w), with G 6 ~"*", w E ~n+ for system (3) is that all the 
eigenvalues of Ao (real and complez), denoted pi + jai, are such that: 

Iml + < 1 (58) 

The spectral domain defined by (58) is represented on Fig.2. In general, 

Figure 2: The spectral domain 

condition (58), which is associated with the selected construction technique, 
is sufficient but not necessary for the existence of such a polytope S(G,w). 
However, it is not difficult to show that condition (58) is also necessary for 
the particular choice G = P -a ,  that is if matrix H of relation (56) is selected 
under the real Jordan form. A candidate vector w can then be constructed as: 

w T - [Ix T lp~ dx T dp2T f lT  T] 

with li T - ( ~  IT ) under the conditions (37) for i -  1 . Px, 
~ ' " ~  t q i  ~ ~ ' "  

di = 6i 12, with 6i any positive number, for i = 1, ...,P2, 
fi = dial with di any positive number and the vector ai E ~2~, constructed 
as in (57). co
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IV.  F E E D B A C K  C O N T R O L  O F  S T A T E - C O N S T R A I N E D  
L I N E A R  S Y S T E M S  

A. T h e  D e s i g n  A p p r o a c h  

Consider now the case of a linear system described by the state equation �9 

z~+a - Axk + Buk for k (5 .hf (59) 

withxk(5~R" uk (5~'~ A(s!t~ "*n B(5~'~*m 
xk is subject to symmetrical linear constraints" 

rn < n .  The state vector 

- w  <_ Gxk <_ w for k E A/" (60) 

with G (5 ~ r . . ,  r < n, rank(G) = r, w (5 !t~ r and wi > 0 for i = 1, ..., r .  These 
constraints are supposed to be satisfied by the initial state of the system, x0. 

A possible design technique to solve such a state-constrained control prob- 
lem consists of constructing a closed-loop linear regulation law: 

uk - Fxk  with F (5 ~'~*'~ (61) 

asymptotically stabilizing the system while maintaining its state vector in a 
domain f2 such that  �9 

C S(G,w) .  (62) 

The problem will then be solved by restricting the set of allowed initial states 
to f2 and by imposing positive invariance of f~ with respect to the controlled 
system �9 

zk+l -- Aozk with Ao - A + BF.  (63) 

Clearly, the domain f2 should be constructed as large as possible, and the best 
possible choice in terms of allowable initial states is f] = S(G,w) .  But, as it 
will now be shown, such a choice is not always possible, for structural or for 
stability reasons. 

The structural limitation derives from Proposition 11.4 of section II.I. Us- 
ing the definition of (A,B)-invariance given in W.M. Wonham [10], it can be 
formulated as follows" 

L e m m a  IV.1  
(A,B)- invariance of the subspace ICer G is a necessary condition for  the ex- 
istence of  a feedback gain matriz  F such the closed-loop system (63) admits 
S ( G , w )  as a positively invariant domain . 
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P r o o f  
From Proposition II.3, positive invariance of S(G,w) with respect to (63) is 
equivalent to the existence of a matrix H E ~s • such that �9 

HG - G(A + BF) (64) 

[H[w <_ w. (65) 

As shown in the proof of Proposition II.4, existence of a matrix H satisfying 
relation (64) is equivalent to invariance of K;er G with respect to (63). Equiv- 
alently, the gain matrix F should be a "friend" of K:er G [10] relatively to the 
pair (A,B). 
C] 

If the domain S(G,w) is a polytope, that is if s _> n and rankG - n, it 
is always possible, for any F E Nm• to satisfy (64). Select, for instance, 
H - G(A + BF) (GTG)- IG  T. In other words, using Lemma IV.l, relation 
(64) can be trivially satisfied since ~er G - 0. 

If the structural condition of Lemma IV.1 is satisfied, the second condition 
for positive invariance of S(G, w), (65), and additional stability condition will 
be required to solve the constrained regulation problem. At this point, two 
approaches have been developed �9 one by Linear Programming, which directly 
provides an admissible solution whenever it exists, and one by eigenstructure 
assignment which not only solves the problem if possible, but also indicates, if 
the problem is unfeasible, how to select a better domain for positive invariance 
with stability. 

The scope of application of these two approaches are different. The use 
of the eigenstructure assignment technique is probably better adapted to the 
case rank G < n, when the condition of Lemma IV.1 has to be obtained, and 
the Linear Programming technique is appropriate when rank G -  n, because 
relation (64) is then trivially satisfied. In this case, satisfaction of relation (65) 
both implies positive invariance of S(G,w) and closed-loop stability of (63), 
as it is shown in the next section. 

B. Pos i t ive  invar lance  of a symmet r i ca l  p o l y t o p e  

1. Posi t ive  invar iance and  s tabi l i ty  

Lemma 11.4 of section II.G establishes that, for rank Q = n and r > 0, 
contractive invariance of a simplicial proper polyhedron R[Q, r with respect 
to system (63) implies asymptotic stability of system (63). An other stability 
result is obtained if the positively invariant domain is a symmetrical polytope 
S(G,w), with rank G = n and w > 0. 
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L e m m a  IV.2  
Positive invariance with respect to (53) of S(G,w),  with rank G -  n and w > 0 
implies L yapunov stability of (63}. 

To proove this result, it suffices to show that the function 

w(x) - max {l(Cz),l 
,_-,, ,. (-ViT-,  (66) 

is a Lyapunov function of system (63). 
If rank G = n, the constrained regulation problem can thus be reduced to 

the determination of a gain matrix F such that the positive invariance condi- 
tions (64),(65) are satisfied. 

2. Reso lu t ion  by Linear  P r o g r a m m i n g  

A possible design technique was proposed in [29]. It is also related to the 
algorithm presented in [30]. Any matrix H E ~ x r  can be decomposed into: 
-the matrix of its non-negative elements "H +, with H +q - max(Hij ,  O) 
-the matrix of its non-positive elements : - H - ,  with H - i j  = m a x ( - H i j ,  O) 
so that 

H = U + -  H -  and IUl = H + + H - .  (67) 

Using matrices H + and H - ,  relation (65) is then formulated as a linear 
relation. A possible performance index to be optimized is the contraction rate 
of function w(x) defined by (66). As shown in [29], optimizing such an index 
corresponds, in some sense, to maximizing the convergence of (63) and the 
robustness of the stability property with respect to uncertainties on A0. An 
other advantage of selecting such a linear index is to formulate and to solve 
the design problem as a Linear Programming problem. 

It is now interesting to show that in relation (64), matrix H can be simply 
replaced by X -  Y and in relation (65) matrix IHI replaced by X + Y with 
X _< 0,• and Y _< 0,• to obtain the following formulation of the L.P., with 

and the coefficients of matrices X, Y, F as unknown variables" 

Minimize 
under (X + Y)~ - e~ _< 0, 

(X - Y)G - G B F  - PA 
e, X, Y _> 0.• 

(68) 

If the pair ( X , Y )  is feasible, set H - X - Y .  Then the pair (H+,H - )  also 
satisfies: 

(H + + H - ) w -  ew < 0,, 
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since the following (componentwise) inequalities are always satisfied" 

H + < X a n d H - < Y .  

Furthermore, the value of e obtained for the pair (H +, H - )  is always less than 
or equal to the one obtained for (X, Y). To avoid non-minimal solutions, that  
is solutions with X 0 ~ 0 and Y0 r 0 for some pairs of indices (i, j) ,  it suffices 
to add in the criterion vector some very small weights on each variable X 0 and 
Yq. The minimum of the modified criterion is then obtained only if X - H +, 
Y - H - .  Therefore, the optimal solution of this problem can be denoted 
(e*,H+*,H -* F*) ~o 

If this solution is such that e* < 1, the closed-loop system admits S(G,w) 
as a positively invariant domain . The Lyapunov function (66) is strictly 
decreasing, and matrix A 4- B F" is asymptotically stable. 

If the optimal solution of (68) is such that e* > 1, then, positive invariance 
of S(G,w) cannot be obtained by any static state feedback. 

If e* - 1, positive invariance of S(G,w) can be obtained but not together 
with asymptotic stability of the closed-loop system. 

The two last cases do not necessarily mean that  system (63) cannot be 
stabilized. These cases can even occur with the pair (A,B) controllable. In 
this case, a solution e* > 1 would simply mean that  the function w(x) of 
relation (66) cannot be used as a Lyapunov function for system (63). 

Some additional design requirements can be introduced in the formulation 
of the Linear Program (68). In particular, if the desired dynamics of the 
system should not be too fast, it suffices to impose" 

e _> e0. (69) 

Such a constraint, with 0 < e0 < 1 guarantees that  the spectral radius of the 
closed-loop matrix A0 is not smaller than e0. This result derives from the fact 
that  the function w(x) can be interpreted as an induced polyhedral norm of 
matr ix A0, and from the property of the spectral radius of a matr ix to be 
always greater than or equal to any norm of this matrix. 

An other classical additional requirement is to impose some constraints 
on the control vector ut - Fxk. This case of state and control constrained 
problem was treated in details in [30] and, with a different algorithm, in [16]. 
A simple solution to limit the magnitude of the control vector is to impose a 
constraint on the Loo norm of matrix F : 

IIFll~ _< f (70) 
Such a constraint can be translated into a linear constraint by setting F - 
F + -  F -  with both F + and F -  matrices of Nmxn with non-negative compo- 
nents. Constraint (70) can then be replaced by 

(F  + + F - ) l n  _< f l=  
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and added to the constraints of problem (68), in which the gain matrix F is 
replaced by F + -  F - .  

3. E x a m p l e  

Consider the following data: 

[ 04 _062 ] [ 0 
A - -0 .1  0.4 -0 .25 and B - 1 

-0 .7  -0 .1  0.25 2 

5] 
0 
2 

The open-loop system has one unstable eigenvalue and two stable ones �9 

~ ( A )  - 

1.1282 ] 
-0.0391 + j0.3731 
-0.0391 - j0.3731 

The state constraints are defined by 

[~176176 [11 G -  0.8 0.2 -0 .7  ; ~ -  1 
0.2 -0 .8  1.6 1 

Resolution of the Linear Program (68) gives" 

~* "~ 0.8987 

for [o.3864 o.4938 0018 ] [ 0.5158] 
H - 0.4814 -0.1909 0.2264 and F T - 0.3992 

0.4096 0.4891 0.0 -0.4527 

The controlled system is stable. The eigenvalues of A o  - A + B F  are also the 
eigenvalues of H �9 

~(A0) - -0.0207 
-0.5529 

The control uk = F x k  can be applied to any state vector xk E S(G,w). The 
resulting trajectory of the state vector remains in this symmetrical polytope 
which is positively invariant. The closed-loop system is stable, and this sta- 
bility property is robust to any "small" perturbation of any component of A 
and B. This robustness property of regulators letting a symmetrical polytope 
positively invariant will be further analyzed in section IV.D. 
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C Pos i t ive  invar iance  o b t a i n e d  by e i g e n s t r u c t u r e  a s s i g n m e n t  

1. A s s i g n m e n t  of c losed-loop poles to s y s t e m  zeros 

Assume now that matrix G E ~ , . n ,  with s g n, is full rank. As stated in 
Lemma IV.l, (A,B)-invariance of the subspace IUer G is a necessary condition 
for obtaining positive invariance of the symmetrical polyhedron S(G, w) with 
respect to the closed-loop system (63). 

Consider the system matrix of the triplet (A, B, G) [27]" 

p ( ) ~ ) _ [ ) ~ I - A G  0,.m-B ] (71) 

(A,B)-invariance of tUer G requires and implies the existence of a gain matrix 
F such that n -  s independent generalized eigenvectors of A + B F belong 
to leer G. Equivalently, there should exist a system of n -  s independent 
generalized real eigenvectors (Vl, ..., Vn-s) and a matrix J1 E N(n-s)• 
having the real Jordan canonical form, satisfying: 

(A + BF)V~ - V I J ~  with V~ - (v~, . . . ,  v ,_r ) ,  (72) 
GVt = 0 

Classically, the zeros of (A, B, G) are defined as the set of complex numbers 
Ai for which there exist vectors vi E C '~ and wi E C '~ such that: 

0 [ :: ] [0] (73) 

vi is called a state zero direction, and wi an input zero direction. 
Taking into account the possible existence of zeros with a multiplicity order 

greater than 1, the zero subspace of of (A, B, G) can be defined as the subspace 
spanned by all the vectors vi solutions of (73) for any possible complex value 
of ,~i. It is then possible to state the following Proposition �9 

P r o p o s i t i o n  IV .  1 
A necessary condition for the existence of a gain matrix F such that S(G,w) 
is positively invariant w.r.t, the closed-loop system (63) is that the dimension 
of the zero subspace of (A,B, G) is not less than the dimension of ICer G . 

If this condition is satisfied, then it is possible to obtain the (A + BF)-  
invariance of t~er G by selecting F such that �9 

FVx - Wx (74) 
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This equation always admits the pseudo-inverse solution: F = W1 (V~ V1 ) -1V~.  
But this solution is generally not satisfactory for obtaining positive invariance 
of S(G,w).  A more complete eigenstructure assignment scheme will actually 
be needed. 

Conversely, if the dimension of the zero subspace of (A,B,G) is less than 
the dimension of leer G , then it is easy to show by contradiction that  the 
subspace Iger G cannot be (A,B)-invariant. 

The problem of the existence and of the number of zeros of a linear system 
is solved in the literature (for a survey of the main results, see Mac Farlane et 
al. [31]). Depending of the numbers of input variables, m, of output  variables, 
s, and of state variables, n, the possible cases can be outlined as follows: 

1. If s = n, then Ker G = {0}. The (A,B)-invariance of ICer G is auto- 
matically satisfied. 

2. If m < s < n, in general the dimension of the zero subspace is less than 
n -  s and therefore the zero subspace is strictly included in l~er G. Thus, 
from Proposition IV.l ,  p o s i t i v e  i n v a r i a n c e  of  S(G,w)  c a n n o t  g e n e r a l l y  
b e  o b t a i n e d .  The particular case when the system has n - s zeros is similar 
to the following case. 

3. (a) If s = m but rank(GB) = m -  d, with d > 0, the system has only 
n -  m -  d finite zeros and d infinite zeros, which cannot be used as closed-loop 
poles. ~er  G is not (A,B)-invariant. 

(b) If s = m, and rank(GB) = m, then the system has exactly n - m 
finite zeros. If these zeros are stable, they can be selected as closed-loop 
eigenvalues, to obtain the (A+BF)-invariance of ICer G. But if any of these 
zeros is unstable, closed-loop stability and positive invariance of R(G, g) cannot 
both be obtained. 

4. If s < m, equation (73) has solutions for any complex value Ai. 
These "controllable" solutions generate the maximal controllability subspace 
of (A,B) included in 1lSer G.  The system may also admit invariant zeros. Their 
associated zero-directions generate the maximal (A,B)-invariant subspace of 
tUer G not intersecting Ira(B). Under the condition rank(GB) = s, the direct 
sum of these two independent subspaces is tUer G . 

The three last cases can be summarized in the following Proposition [32]" 

P r o p o s i t i o n  IV.2  
If  s < m and s < n, condition rank(GB) - s is sufficient for the (A,B)- 
invariance of lCer G .  In order to obtain the (A 4-BF)-invariance of K.er G ,  
it is necessary to locate closed-loop eigenvalues at all the invariant zeros of the 
system. I f  an u of these zeros is unstable, (,4 § of ICer G and 
closed-loop stability will not be simultaneously obtained. 
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Consider the more general case rank(G) = s _< m, when matrix GB can be 
rank deficient. Let d be the rank deficiency of matrix GB; rank(GB) - s - d. 
To find the zeros of (A, B, G), define, respectively, right and left annihilators of 
matrices G and B, M E ~ . . ( n - . )  and N E ~(n- ,a ) . . ,  satisfying the following 
relations: 

G M - 0,.,.,_,. , N B  - Oa-m,,n. 

The degrees of freedom on the choice of matrices N and M, and the property 
r ank (UM)  - n - m -  d, allow to choose U and M so that [33]" 

N M -  [ Ia-m-d'n-m-d I On-m-d'm+d-" ] (75) 
Od,a-rn-d I Od,rn+d-s 

Any vector vi ~_ C a satisfying relation (73) belongs to K;er G C C a. Therefore, 
it is uniquely defined by the vector zi E C n-" such that: 

v i -  Mzi (76) 

Relation (73) can then be equivalently replaced by" 

[Ai I -  A - B] [ Mzi ] - 0  (77) 
[ j w i  

The m components of wi can be eliminated by left multiplication of (77) by 
matrix N, yielding: 

[AiNM - UAM]zi - 0 (78) 

Equations (73) and (78) have the same solutions A~ E C, which are the finite 
zeros of (A, B, G). The polynomial matrix [ANM - NAM] is called the zero 
pencil [33]. It completely characterizes the finite zeros and the associated zero 
directions of (A, B, G). Using for matrix N A M  the same partitionning as for 
N M ,  we can write the zero pencil as follows [34]" 

A N M -  N A M  - [ A I -  (NAM)x  I - ( N A M ) 2  ] (79) 
- ( N A M ) 3  I - ( N A M ) 4  " 

This decomposition indicates that the zeros of system (A, B, G) are also the 
zeros of the non-proper system [ (YAM)l ,  ( N A M ) 2 , - ( N A M ) a , - ( N A M ) 4 ] .  
Any zero-direction associated to a value of A E C can be defined from a 
vector z E C n - '  belonging to the transmission subspace Tr(A) of system 
( (NAM)x ,  (NAM)~) .  By extension of the classical definition of (state) trans- 
mission subspaces [35], Tr(A) is defined as the kernel of the pole pencil" 
[AI,.,-,.,-,-d,a-,.,-d- ( N A M ) ,  ] - ( N A M ) 2 ] .  Then, in order to satisfy relation 
(78) for some value of Ai, vector zi has to satisfy the two following relations: 

[)iila_m_d,n_m_d --(NAM)I [ - ( g A M ) 2 ] z i  - 0 (80) 
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[ - ( N A M ) 3  [ - (NAM)4]z i  - 0 

We are now ready to state the following proposition: 

(Sl) 

Proposition IV.3 
A necessary and sufficient condition for I(,er G to be spanned by zero-directions 
is: 

= d im{Image[- (NmM)3 I - (NAM) , ]}  - 0 

(or equivalently, d i m { g e r [ - ( N A M ) 3  I - (NAM)4]} - n -  s) 
This condition can be split into two alternatives: 

�9 e i t h e r d - O  

�9 or d > 0 but [ - ( N A M ) 3  [ - ( N A M ) 4 ]  = Oh,.-,. 

Then, the condition of (A + BF)-invariance of I(.er G can be satisfied but sta- 
bility of the closed-loop system is also obtained if and only if all the invariant 
zeros of (A, B, G) are stable (located in the unit-circle of the complez plane). 

P r o o f  
necessity 

Invariant and controllable zeros have to satisfy the two relations (80) and (81). 
But since the second condition does not depend on the value of A, it constrains 
all the candidate vectors z to belong to IUer[-(NAM)3 [ - ( N A M ) 4 ] .  If this 
kernel is not the whole space C ~  but has dimension n -  s -  * with $ > 0, 
then the associated zero directions v -  Mz  can at most generate a subspace 
of K:er G with dimension n -  s -  3. 

sufficiency 
Let us now assume that  the condition above (6 - 0) is satisfied. Then, condi- 
tion (81) can be suppressed. Only relation (80) has to be verified. As noted 
above, the considered singular pencils satisfy s < rn + d. Then for any com- 
plex value of )~, the transmission subspace Tr()~) for system with s ta te -mat r ix  
( (NAM1) and input matr ix  (NAM2),  

Tr(A) - {z; z E C ~  ; [AI - ( N A M ) I  I - (NAM)2]z - 0} 

has a dimension greater or equal to m + d -  s. (a) dim[Tr()q)] > m + 
d -  s if ,~i is an invariant zero of (A, B, G). Note that  the invariant zeros 
of (A, B , G ) ,  when they exist, are the " input  decoupling" zeros of system 
( (NAM)~,  (NAM)2)  [33]. If the system ( (NAM)~,  (NAM)2)  has q input de- 
coupling zeros, these zeros are uncontrollable poles of ( N A M ) I  and the max- 
imal controllability subspace of the pair ( (NAM)x ,  (NAM)2)  has dimension 
n - m - d - q .  
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(b) dim[Tr(Ai)] = m + d -  s if Ai is a "controllable" zero of (A, B, G), that 
is simply any complex value which is not an invariant zero. 

A sufficient condition for the existence of n -  s zero-directions spanning 
ICer G is that the union of all the transmission spaces Tr(A) (for at most n - s  
values of A) span C"- ~ 

Any z E C "-~ can be written z - , with Zl E C n - m - d  and z2 ~. C m + d - `  
Z2 

If it belongs to Tr(A), it satisfies: 

(NAM)l Zl = Az, - (NAM)2z2 (82) 

Under the assumption 6 - 0, the assignment of n -  s closed-loop eigenvectors 
in ICer G can be obtained in two stages" 

stage 1 
First, apply a state feedback (I)~ to ((NAM)~, (NAM)2)  to locate the n -  
m - d -  s eigenvalues of matrix (NAM) '  x = (NAM)I  + (NAM)2r in the 
stable region. These eigenvalues can be selected all different , and different 
from the uncontrollable poles (if there are any). In order for the set of vectors 
zi solutions of (82) to span !It '~ - ' ' - a ,  the set of closed-loop poles, Ai, must 
include the uncontrollable poles of (NAM) '  1 (and (NAM)I ) ,  with their order 
of multiplicity. As mentionned above, these uncontrollable poles are precisely 
the invariant zeros of (A, B, G). 
The eigenvectors of (NAM)'~ define n - m - d  independent zero directions such 

that J' zi # 0 . The corresponding zero-directions obtained from these / Z2 - -  (I) 1 Z l  

vectors through relation (76) span a subspace $1 in K:er G with dimension 
/1 - -  I / l  - -  d .  

stage 2 
Any solution of equation (82) is also a solution of 

' with ' -  (NAM) '  l z' - ~ Z l  - (NAM)2z2 z 2 z2 - 01Zl (83) 

Controllability properties are invariant by state-feedback. They are the same 
for ( (NAM) ' I ,  (NAM)2)  than for ( (NAM)I ,  (NAM)2).  And under the change 
of coordinates in (83), the n - s -  d independent eigenvectors of (NAM')x  sat- 
isfy 

{ z, # 0 (84) 
- 0 

Consider the Jordan form associated to the controllable subspace of ( N A M ) '  x, 
A - n ( N A M ) ~ r ,  where the ith line of II is the left-eigenvector of ( N A M ) '  1 
and the ith column of F the corresponding right eigenvector for eigenvalue A/, 
with all )q distinct by construction for i -  1, .., n -  m -  d -  q. 
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Now, we can use a basis of ~,,,+d-0 as rn + d -  s independent input vectors, 
z~i, of m + d - s different transmission subspaces Tr(pi)  for any set of selected 
distinct eigenvalues (pl, . . . ,  Pro+d-,)- 
For i -- 1, .., r e + d - s ,  each couple (z~, pi) of an input vector and of a selected 
eigenvalue generates a state vector of ~ , - , , , - d  zxi -- H(pi I - A ) -  x F(NAM)~ z~i. 

[ zli ] are independent and independent from By construction, all the vectors z~ i 

vectors satisfying relation (84). The associated coordinates of vectors zi sat- 

Zli ]. The corresponding zero-directions isfying equation (82) are z~i + ~lZli 

obtained from these vectors through relation (76) span a subspace 5'2 of ICer G 
independent of 5'1, with dimension m + d -  s. Therefore, it is such that its 
direct sum with $1 generates ICerG: ICer G -  $1 @ S~. 
f-1 

Note that the decomposition of ICer G used in this proof is far from being 
unique. In fact, as it will be illustrated in the examples, we have a free choice 
of the n - r -  s controllable zeros. And the eigenstructure assignment problem 
can practically be solved in a single stage. 

2. Ass ignmen t  in a c o m p l e m e n t a r y  subspace  of  lCer G 

Whenever the (A,B)-invariance of K~er G is satisfied with rank G = s, the 
existence of positively invariant domains S(G,w) in ~n for system (63) re- 
duces to the existence of positively invariant domains S(I , ,w)  in ~" for the 
restriction o f ( A + B F )  to (~c,~ G),  matrix F being constrained to be a friend" 
of ICer G. Matrix H in equation (64) can precisely be interpreted as the map 
induced in (~c,r G) by the map (A + BF)  in ~". Let us now assume the 
(A,B)-invariance of the subspace K~er G, and wonder about the existence of 
positively invariant polyhedra S(D, O), with /Cer D = /Uer G and D to be 
constructed and not necessarily full-rank. The following result can easily be 
shown from Proposition III.1 and the results of section III. 

P r o p o s i t i o n  IV.4 
Under the assumption that tUer G is (A,B) invariant and F a "friend" of 
leer G, the asymptotic stability of the restriction of A + B F  to the quo- 
tient space ~"/ICer G is a necessa~ and sufficient condition for the ezistence 
of a positively invariant polyhedral domain S(D, Yl) of system (63) such that 
/Cer D = ICer G. 

P r o o f  
From Proposition II.4, a necessary and sufficient condition for the (A,B)- 
invariance of ICer G is the existence of a matrix H E ~ '* '  satisfying relation 
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(64) �9 G(A + BF)  - HG. The dynamics of the projection of system (63) on 
~n/lCer G are described by the evolution of vector y G ~ such that 

Yk+l - Hyk, with yk - G x k .  (85) 

Then, from Proposition III.1, asymptotic stability of system (85) implies the 
existence of a matrix D' (5 ~r•  and of a vector r/(5 ~r, with strictly positive 
components, and r > s such that the polytope of ~' ,  S(D',  ~) is a positively 
invariant symmetrical polytope of (85). By application of Proposition 11.3, 
there exists a matrix K (5 ~ x ~  such that �9 

K D -  DH (86) 

IKIr] < r] (87) 

Then, combining relation (86) with (64), we obtain, for D -  D'G, 

K D -  D(A + BF)  (88) 

Relation (87) then implies positive invariance of S(D, w) with ICer D = ICer G 
for system (63). 
r] 

In order to replace matrix D by matrix G in relation (88) matrix H should 
be such that Eq. (86), (87) would be satisfied for O' = h .  But from Proposi- 
tion 111.3 and for matrix H under the real Jordan form, this result is obtained 
when the eigenvalues ofthe restriction (A+BF)I(~n/)Uer G),  denoted pi+jai ,  
satisfy relation (58). The following proposition is based on this result. 

Proposition IV.5 
I f  the pair (,4,tl) is controllable and Eer G an (A,B)-invariant subspace, and 
under the conditions rank(GB)=rank(G)=s <m, there exists a positive vector 

such that S(G,w) is positively invariant. The existence of such a vector, w, 
is induced by the ezistence of a gain matriz F E ~m.n such that: 

(a) ICer G is an invariant subspace of system (63). 
The real generalized eigenvectors of the restriction (A + BF)I)Uer G are the 
column-vectors of a matrix. V1 satisfying: 

GV~ - 0,,(,.,_,) (89) 

(b) The real generalized eigenvectors associated to the eigenvalues of (A + 
BF)l(!W'/lCer G) span a subspace R C ~n such that R (9 ]Cer G - ~'~. They 
can be selected as the column-vectors of a matrix V2 satisfying: 

GV2 - I, with I, the unity-matrix, in ~'*" (90) 
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The corresponding eigenvalues, pi + jai, satisfy pi + Jail < 1. 

P r o o f  
The eigenstructure assignment problem can be solved by the same decompo- 
sition technique as in Wonham [10]. Let F0 be a friend of leer G. The real 
generalized eigenvectors of (A + BFo)llCer G are the column-vectors of a ma- 
trix V1 satisfying relation (89). Any feedback gain matrix F - Fo + FIG , 
with F1 E ~0"~ is also a friend of ICer G, and (A + BF)llCer G is identical to 
(A + BFo)lEer G. 
Consider the real Jordan canonical form of (A + BF): 

j _  [ Jlo J20 ] (91) 

J1 is the real Jordan canonical form of (A + BF)[Eer G and we have: 

(A + BF)V~ - vxgx (92) 

J~ is the real Jordan canonical form of (A + BF)I(~"/]Cer G). The restriction 
of (A + BFo) to (~n/)Uer G)is denoted A0 and defined by the canonical 
projection equation" 

AoG-  G(A + BFo) (93) 

Define/} - GB. Under the assumption that (A,B) is controllable, then (/~0,/}) 
is also controllable in ( ~:er V ) " The eigenvalues of (m0 + B F~) can be selected 
so as to satisfy relation (58). Their associated generalized real Jordan form is 
matrix J2. Moreover, if rank(GB) - rank(G) - s _< m, s < m, we can select 
as generalized real eigenvectors in (t:er e )  the canonical basis Constituting 
the columns of the identity matrix I,. The corresponding generalized real 
eigenvectors in ~n are the column-vectors of matrix V2 defined by relation 
(90). To do so, it suffices to select F1 such that" 

/} F1 - J2 - A0 (94) 

And in particular, 
F1 -- [~T ([~[~T)-I(J2 -- A0)  (95)  

Let us now define matrix G ~ E ~('*-')*" such that" 

G ' - [ I , . , _ ,  [ 0(,.,_,).,][Yx l V2] -~ (96) 

And consider the nonsingular matrix G E Nn,,~. It is the inverse of 

matrix [VIlV2]. Then, we have: 

G I 
0 J2 G ] (97) 
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And in particular, 
G(A + B F ) =  J2G (98) 

Relation (98) is equivalent to relation (64) when selecting J2 as a candidate 
matrix H. Under conditions (58) on the eigenvalues of ,/2, from Proposition 
III.3, there exists a positive vector w E ~ for which 

[J~[w < oa. (99) 

And, from Proposition II.3, the polyhedron S(G,w) is a positively invariant 
set of the closed-loop system. 

Note that, as shown in section III.E, a~ cannot generally be freely chosen for 
any admissible pole assignment in (~c~,- a )  �9 But it can be freely chosen if all 
the selected closed-loop poles in (~c~ a )  are selected stable, real and simple. 
cl 

3. I m p l e m e n t a t i o n  and  E x a m p l e s  

To compute the eigenvectors of the closed-loop system, we use Moore for- 
mulation [36] of the pole pencil, S(Ai), and of its kernel Kx,: 

S ( a ,  ) - [a,  Z - A f - B ]  ; - 

Then, any solution vi E N" can be written, for some vector ki of appropriated 
dimension, 

vi = Nx,ki, with Fvi = M,x,ki (100) 

If the eigenvector belongs to Ker G, it should satisfy: 

GNx.k~ = 0  (101) 

and if it belongs to s such that s ~ t~er G = ~" : 

GNx,ki = ei (102) 

with ei the corresponding vector belonging to the canonical basis of !t~ r. 
These formulations can be used directly for simple real eigenvalues. In the 

case of simple complex conjugate eigenvalues, (#i + j~ri, lii - j(ri), the complex 
kernels (Ku,+jo,,Ku,-ja,) are replaced by the associated real kernels of the 
real pencils defined as follows. The closed-loop eigenvectors and controls as- 

s o c i a t e d t o # i + j ~ i a n d # i _ j ~ i ( w i t h e r i ~ O )  aredenoted: [ vi ] [ v/* ] 
W i  ' W i *  " 

They are complex conjugate. The corresponding real directions, denoted 
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[v"][v"]~rede~nod~therea, andimaginarypartsof[V']tfw. ,  ~ . ,  o ,  

they are assigned to K:er G , they should satisfy the following equations: 

p i I -  A - a i I  - B  0 
o'iI p i I -  A 0 - B  

vpi ] ~., [ o ]  
wui 0 " 
Wai 

Once all the eigenstructure has been selected, let V = [V1 [ V2] be the 
matrix of the desired real generalized eigenvectors, and W = [W1 [ W2] the. 
associated control. The feedback gain matrix providing the desired eigenstruc- 
ture assignment is: 

F = W V  - 1  (103) 

E x a m p l e  ( f rom [34]): Pos i t ive  Inva r i ance  w i t h o u t  g lobal  S tab i l i ty  

Consider the following data: 

A w 

[ 04 32 08 07 07741 ] [_o.o.4237] 
-0.6135 0.6538 -0.9626 , B - 0.7469 -0.2613 
-0.2749 0.4899 0.9933 -0.0378 0.2403 

0.4481 + j0.9683 
The open-loop system has unstable eigenvalues: [ 0.4481 - j0.9683 . 

1.2341 
The state constraints are defined by 

c_[_o.51o2 o.o189_o.348o] [1.5] 
-0.2779 -0.7101 -0.6953 ; w -  1 5 

System (A, B, G) has an unstable zero Ax - 1.6166. This value is selected 
as a closed-loop eigenvalue, for which the associated eigenvector spans Iger G. 

The 2 other poles have been chosen as" [ A]-  0.1 + j0.6 Then, we get t ~= o ~ - j o . o  �9 

[0.,618 10 47 0 ] [_2.01,3 0.1301_0.1828] 
Ao - -0.4946 0.0478 -1.4530 , V - 0.6262 -1.2049 -0.1856 

-0.0875 -0.3519 1.3070 -0.1656 -0.2596 0.2626 

a n d F =  [ 0.4571 -2.1552 - 0 . 2 1 1 5 ]  
0 . 8 5 1 7 - 3 . 8 4 2 4 1 . 2 7 2 2  

On Fig 3, we can see the stable time evolution of x~ and x~, which are the 
coordinates of the state vector in an orthonormal basis of the space spanned by 
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the second and third columns of V. But the global unstability clearly stands 
out on Fig 4. Projection of the state vector on the first eigenvector, V1, has a 
divergent evolution. In this example, global stability of the closed-loop system 
and positive invariance of S(G,w) cannot be simultaneously achieved. 

xlOm 
33 

~"', .. '',.,.+ 

"" .............................................................. "-':i 
i 

i i i | " a 1 
-3 -2 -1 0 1 2 3 4 

Figure 3" Projected trajectory on the plane (V2, 1/3) 

2~ 

1-+ 

0-~ 

~ ; ,'0 ,~ 3o 20 25 

194 

Figure 4" System trajectory projected on V1 
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Example (from [34]) : Positive Invariance with global Stability 

by: 
Now, consider the same system as before, subject to constraints defined 

[0 0.7741 o9933] 
0.4899 -0.9626 -0.8360 ; w -  2.5 

The two figures (5, 6) show that positive invariance of R(G,w) and global 
asymptotic stability are obtained when selecting 

0.5117 -0.0986 
F -  -0.2111 -0.2378 

-1.5022 ] which yields �9 
-3.3025 J ' 

-0.0341 0.8624 -0.9173 ] [ -0.9129 
A 0 -  -0.1761 0.6423 -1.2219 and V -  -0.0668 

-0.3449 0.4365 0.2565 -0.4580 
Under this choice, the poles of the closed-loop system are: 

-0.8081 
-1.1403 
-0.3567 

-0.7202 ] 
-0.4641 

0.1123 

{ "~1-- 0.6647 ( stable zero) 
A i -  0.1 + j0.6, 
~ -  0.1 - j0.6 

~176 ;o,,, ""~ 

- 6  �9 ~. ~, 6 -~ ~ -~. o 

Figure 5" Projected trajectory on the plane (V~, V3) 
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-6 
0 S 10 15 20 25 30 

Figure 6" System trajectory projected on I/1 

D. Modi f i ca t ions  of  The  E i g e n s t r u c t u r e  A s s i g n m e n t  Techn ique  

1. The  case of u n s t a b l e  zeros 

As stated in Propositions IV.2 and IV.3, under the assumption rank G = 
s < m, (A + BF)-invariance of ~er G and closed-loop stability cannot be 
simulataneously obtained if any invariant zero of the triplet (A,B,G) is unsta- 
ble. 

However, the positive invariance approach can also be used in that non- 
minimum phase case if the system is controllable, by imposing positive invari- 
ance of a symmetrical polytope t2included in S(G,~). Under an appropriate 
scaling of the row vectors of G, the positive vector ~ can be replaced by 1,. 
The set of admissible initial states for the resulting linear regulator is then 
restricted to f~. 

A technique for constructing such a set ~ is described in (Castelan et al. 
[17]) for the case of continuous-time linear systems. A similar technique can 
be used for discrete-time systems. The basic principles of this technique derive 
from the following Proposition �9 

P r o p o s i t i o n  IV.6 
If the triplet (A, B, G) has unstable invariant zeros, the constrained regulation 
problem can be solved by restricting the initial states of the system to a posi- 

tively invariant symmetrical polytope S( [ Qx ] ,ln), obtained by adding n - s  
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independent row vectors to G. 

The first step of the method consists of imposing a stable real Jordan form for 
the closed-loop system. The set of selected closed loop eigenvalues may include 
the stable zeros of (A, B, G), and the matrix of generalized real eigenvectors 
can be decomposed as V = [I/1 I/2]. The selected generalized real eigenvectors 
I/'1 and I/2 span two independent complementary subspaees with dimensions s 
and n -  s. They are now related with matrix G through the following relation: 

G[V1 V2]- [E I,]. (104) 

Contrarily to the case of stable zeros, the row vectors of G cannot be selected as 
left generalized real eigenvectors of (A+BF). But the matrix of left generalized 

[Qx ],withQx E ~'• Q2 E real eigenvectors can be decomposed a s -  Q~ 

!it ("-~215 It satisfies �9 

Q1 Q2 ] (A + BF)- [ AIO o][Q, 
As Q2 ] (105) 

Under the controllability assumption, the eigenvalues of h~ E ~ , x ,  and of 
A1 E ~(n-s)x(n-~) are all selected simple. They satisfy the spectral conditions 
#i + Io'i[ < 1. Then, 

[.A,. 0][in,] [in_,] 
0 IA21 1, < I, " (106) 

It is possible to construct a non null matrix, M E ~0x(,-0) such that: 

IMIln_, + JAil)l, < 1, (107) 

Under such an assignment, S(Q2, 1,) is a positively invariant symmetrical 
polyhedron of the closed-loop system. From a matrix M satisfying (107), 
compute a matrix E E ~sx(n-~) satisfying the equation" 

EAI - A 2 E -  M (108) 

This equation can be solved column by column by an assignment type equation: 
er = (,~UIo - A2)-~mj. Relation (108)implies: 

01[ 1 0] 
E I, 0 As M As E I, (109) 

The matrix of generalized real eigenvectors , V = [I/1 V~], can be selected so 
as to satisfy (110). 

G[V1 V2] = [E I,]. (110) 
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Then, the matrix of left generalized real eigenvectors satisfies" 

r ~ [Q1 [ G _ [ E  I,]" ~ [Q1 [. Relations (105)and (109, yield: 
t J Q2 t J Q2 

[QG1 ] (A BF) [A?v } + _ 

This relation, combined with relations (106) and (107) shows the positive 

invariance of the symmetricalpolytope S([  QG ~ ] ,1 .)  for the closed-loop sys- 

tem. 

2. R o b u s t n e s s  i m p r o v e m e n t  
In this paragraph, it is now assumed, for simplicity, that rank G - s < m 
and that the triplet (A, B, G) does not have any unstable invariant zero, and 
that the closed-loop eigenvalues can all be selected simple and satisfying the 
spectral condition �9 ]~i -~-I~il < 1. Then, in the absence of uncertainties on 
the parameters of A and B, positive invariance of S(G, 1,) is obtained by the 
eigenstructure assignment technique of section IV.C. positive invariance that 
the pai To obtain a robust invariant control scheme, it is possible to construct a 
bounded positively invariant set, f2, included in S(G, 1,). To satisfy constraints 
(60) all along the trajectory, the admissible initial states of the system will then 
be restricted to f~. Clearly, a simple way to build such a candidate set f2 is to 
complete matrix G by n -  s independent row vectors, constituting a matrix 

G ~, to make up a non-singular matrix in ~'~• R - G " 

The design problem can then be reduced to finding a gain matrix F for 
which the S.S.P. S(R,e,) is positively invariant in a robust way. Matrix 
G~inN (n-~215 cannot be freely chosen. But, by construction, a candidate 
matrix G ~ is available. The matrix of selected generalized real eigenvectors is 
V -  [V~ [ II2]. Then, G' can be constructed as the matrix of complementary 
left generalized real eigenvectors of (.4 + BF).. It satisfies" 

[ c , ]  [ R V -  G [V~ IVy] -  O,,n-,  I, (111) 

And by the choice of the closed-loop eigenvalues, relation guarantees the pos- 
itive invariance property of S(R, 1,~) with respect to the closed-loop system 
(63). 
Among the possible choices of a matrix V satisfying the design requirements, 
it is possible to select the candidate matrix which minimizes the condition 
number:  

k(V) = IlWl1211V-al12. 
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As shown by Kautsky et al [3811 the sensitivity of eigenvalues to structured 
perturbations decreases with k(V). In the design technique described above, 
the degrees of freedom left to the designer are essentially in the assignment 
of left generalized real eigenvectors to eigenvalues. Thus, for reasonable size 
systems, this assignment problem can be solved by an implicit enumeration 
technique (Hennet et hi., [29]). 

V. I N V A R I A N T  R E G U L A T I O N  U N D E R  C O N T R O L  C O N S T R A I N T S  

A. The  Pos i t ive  Inva r i ance  A p p r o a c h  

This chapter analyzes the case of discrete-time linear multivariable systems 
with the same state-equation (59) as in chapter IV �9 

zk+t - Azk + Buk for k E N ~ 3  (112) 

with z~ E ~'~ u~ E ~'~ A E !R"*n B E ~ , ,m  m < n. But it is now 
1 1 1 1 - -  

the control vector uk which is subject to symmetrical linear constraints, put 
under the generic form" 

- 1,,,,, < Sut < 1,n for k e A/'I S e ~ x 8 1  rank(S) - ~. (113) 

The state of the system is supposed to be fully observed, and the investigated 
control law to regulate the system to the zero state is a constant state feedback: 

uk - Fzk with F E ~"*"  (114) 

In the state space, the input constraints then define the following polyhe- 
dral set: 

S(SFllm) - {x E ~" �9 - l m <  SFx < lm} (115) 

Under such control constraints, the stabilizability issue has to be raised. 
The linear model (63) is valid only for states belonging to S(SF�91 lm). 

The approach by positive invariance ( M.Vassilaki et hi. [30]) consists of 
finding a state feedback matrix F and a domain in the state space, f~ satisfying 
the following requirements of constrained invariant regulation: 

1. 12 C_ S(SF1 l m) 

2. (A + BF)(f~) C_ f~ 

3. The eigenvalues )~(A + BF) are stable. 

For the consistency of the scheme, it is convenient to select as a candidate 
domain f~, a symmetrical polyhedral domain S(G,w) defined by �9 

S(G,w) - {z e !R" �9 -w  < Gz < ~}. (116) 
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withGE! t r  9 * " m < g  w E ~ a a n d w i > 0 f o r i - 1  ..,g. 

Two cases will be distinguished, depending on the choice of the candidate 
domain S(G,w). In the first case, the domains S(G,w) and S(SF, lm) are 
supposed independently chosen. Under this assumption, the domain S(G,w) 
may correspond to a domain of possible initial states or to a domain of state 
constraints, as in the LCRP (Linear Constrained Regulation Problem) frame- 
work studied by M.Vassilaki et al. [301, and by G.Bitsoris et al. [41], [40], 
[42], [43]. The second case, studied by J.C.Hennet et al. [32], [44], only sup- 
poses the existence of control constraints, and aims at maximizing the size of 
the domain S(G,w), which is constructed from S(SF, lm) �9 Paragraph V.B 
analyzes the first case using a Linear Programming approach, and Paragraph 
V.C. solves the second case, using an eigenstructure assignment technique. 

B. T h e  L inea r  P r o g r a m m i n g  Des ign  Techn ique  

To obtain a simple control scheme in which positive invariance of S(G,w) 
implies robust stability of the closed-loop system (63), zk+l = (A + BF)zk, 
it suffices to consider the case when S(G,w) is a polytope. This polytope can 
either be given or can be constructed from the domain of state constraints, if 
it is unbounded, using the results of sections III.D. The algorithm will thus be 
described for the case G E ~ . x n ,  rank(G) - n, w E !t~.. 

In this ease, if it is possible to find a linear feedback control uk - F.zk with F E 
~m. . ,  that guarantees : 

- positive invariance of S(G,w) with respect to (63), 
-inclusion of S(G,w)in S(SF, 1M), 

then, this regulator solves the LCRP for any initial state of the system that 
belongs to S(G, w). 

The 2 requirements of this control scheme can be characterized by a set of 
linear equalities and inequalities obtained by application of Proposition II.3 
and Lemma II.2 (Extended Farkas Lemma). 

From Proposition II.3, positive invariance of S(G,w) is equivalent to the 
existence of a matrix H with non-negative coefficients satisfying : 

H.G- G(A + B.F) 
H.w <w 

From Lemma II.2, it is easy to derive the following result. 

L e m m a  V . 1  
If G has a f ,  ll row-rank (rank (G) = s for G E ~,xn) ,  a necessary and suffi- 
cient condition for inclusion of S(G,w) in S(F, l m )  is the existence of a matrix 
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D E ~'~ • such that  �9 

D G -  F (117) 

IDI., _< lm. (118) 

P r o o f  
The proof is similar to the proof of Proposition II.3 in section II.H. From 
Lemma II.2, S(G,w)  C S(SF,  lm) is equivalent to the existence of a matrix 

[D1  D 2 ]  s a t i s f y i n g ' D 3  D4 

[o1 
/)3 D4 - G  - - F  (119) 

ID3I ID41 w - lm (120) 

Necessity of the condition of the Lemma iQ readily obtained from (119) and 
(120) by setting D - D I - D ~  and by using the fact that D + < D1 and 
D-  < D2. To show that the condition is also sufficient, it suffices to select 
D1 - D3 = D +, and D2 = D4 - D- .  
n To solve the LCRP, a LP algorithm can then be constructed by adding to 
the Linear Program (68), formulated in the case s = n, the inclusion relations 
(117), ( l l8)  . A linear representation of constraint (118) is obtained by re- 
placing D by D1 - D2, with matrices D1 and D2 non-negative. The program 
takes the following form" 

Minimize 
under 

under 

(X + Y)~ - e~ < 0 .  
( X  - Y ) G -  G B F  = P A  
( D l + D 2 ) w - e l m  < 0n 
( D 1 - D 2 ) G - F  = 0,nx, 

e, X, Y, D1, D2 > O,x, 

(121) 

This formulation can be simplified by eliminating F, using the last equality. 

If the optimal solution is such that e* < 1, S(G,w)  C S(SF,  1,,) and the 
closed-loop system is asymptotically stable. 

If the optimal solution of (121) is such that e* > 1, then, the three require- 
ments cannot be met together. The problem is then to understand why and 
to relax some requirements. The eigenstructure assignment approach is then 
more appropriate for facing this challenge. 

To make sure that at the optimum, X = H +, Y = H - ,  D1 = D +, D2 = 
D- ,  it suffices to introduce in the objective function some very small positive 
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weights associated with all the components of matrices X, Y, D1, D2. 

C. A p p r o a c h  by e i g e n s t r u c t u r e  a s s i g n m e n t  

Let P = [V0 I Vt] be a matrix of generalized real eigenvectors of A. The 
( n -  r) columns of V0 span the stable subspace of A in ~",  and the r columns 
of VI span its unstable subspace. The associated real Jordan form is" 

Jo 0 ] _ p - ~ A p  (122) 
0 Jt 

Two different eigenstructure assignment schemes will be described for the eases 
r < m a n d r > m .  

1. T h e  case r < m 

The following proposition (J.C.Hennet et al. [44]) gives the conditions un- 
der which a perfect matching can be obtained between the invariant domain 
and the domain of constraints (G - S F ,  w - 1,~). 

P r o p o s i t i o n  V.1 
There ezists a state feedback gain matrix F which meets requirements I, I? and 
3 of constrained invariant regulation, with f~ - S (SF ,  1,n), i f  and only i f  sys- 
tem (A ,B)  is stabilizable and the unstable subspace of A has dimension r < m. 

P r o o f  
necessity 
Suppose that S ( S F ,  lm)  is a positively invariant set of the closed-loop system: 

zk+l - (A + B F ) x k  (123) 

Then, from Proposition II.3, there exists a matrix H E ~,,x,~ such that 

H S F  - S F ( A  + B F )  (124) 
IHII.  _< lm (125) 

Relation (124) implies the closed loop invariance (in the sense of W.M.Wonham 
([10])) of the subspaee ICe," F .  The dimension of this uncontrolled subspace 
is greater or equal to n -  m. This subspace cannot be included in the stable 
subspaee of A, of dimension n -  r if the condition r < m is not satisfied. 
This condition is therefore necessary to fulfill both requirements 2 and 3 with 
f~ - S ( S F ,  1,.). 
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sufficiency 
This part of the proof is constructive. It describes the basic algorithm for 
obtaining the positive invariance of a given symmetrical polyhedron by eigen- 
structure assignment. 
The stable subspace of A is kept unchanged by the chosen feedback law. Only 
the unstable eigenvalues need to be moved to stabilize the system. Then, the 
gain matrix F satisfies: span(V0) =lCer F . The selected spectrum of the 
restriction of (A + BF) to (~cer F) is a set of r symmetric complex numbers, 
)~i - -  Pi  + ja ' i  s u c h  t h a t "  

Iml + I~1 < 158 (126) 

The r new eigenvalues Ai are selected distinct from the stable eigenvalues of A. 
A set of eigenvectors of (123) associated with these eigenvalues can be obtained 
by solving, for i = 1, ..., r, the equations: 

�9 for )~i ~- ~ ( q i  --  0) :  

vi = (AiI, - A )  -1Bwi (127) 

Swi = ei with ei E ~ (128) 

�9 and for ai ~- 0: 

vi = (AiI, - A)-aBwi (129) 

Vi+ 1 = (A~'I,,, - A)-aBwi+x (130) 

s W i  -t- Wi+ l  _ ei (131) 
2 

S wi - wi+ 1 
2 j  --  e i+ l  (132) 

Relation (127) expresses the fact that vector vi belongs to the transmission 
subspace of Ai. Under an appropriate choice of el, which is always possible 
(see e .g .N.  Karcanias, B. Kouvaritakis [35]), vi ~range (B). Then, the set of 
vectors vi for i = 1, ..., r is independent. It spans an (A,B) invariant subspace 
of ~n which is complementary of range(V0) in ~". In general, a set of inde- 
pendent vectors (v,) solutions of (127), (128) or of (129), (131) (130), (132) is 
obtained when choosing (el,..., er) = It, the identity matrix. We then obtain 
the relation: 

S W s - [  0("-~)• ] I , .  (133) 

The generalized real eigenvectors associated with (vx, ..., v~) are the columns 
of a matrix Vs E Rn• Their corresponding real inputs are the columns of 
Ws ~_ Nmxr computed by: 

W s - S - I [  O(m-r)• ] I ~  " (134) 
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The state feedback gain matrix providing this assignment can be written: 

F -  W V  -1 with W -  [o I Ws]; v = [vo I Vs] (135) 

This gain matrix has rank r. By construction, it satisfies" 

0 with (136) 
S F - .,qc. , Y" Vo - O~x(n-r) 

Under the feedback gain matrix of relation (135), The real Jordan form of 
the closed-loop system is: 

J0 0(n-~).r ] _  V - X ( A  + B F ) V  (137) 
J -  0,.(n_~) Js 

By construction, from (135), (136), (137), 

- H with U -  [ 0(m-r)• S F ( A + B F ) [ V o  l Vs] [ O,.x(n-,.) o(~_~),,~Ss ]" (~3s) 

The matrix of left generalized real eigenvectors corresponding to matrix V = 
[Vo l Vs] is: 

[~ O -  7 (~a9) 

with D E ~(n-r)• defined by D - [In_, I 0(._~)• Vs]-  
The row vectors of matrix Q are a set of left generalized real eigenvectors of 
(A + BF) .  It satisfies Q V  - VQ - In. Right multiplication of the terms of 
(138) by matrix Q yields: 

9r(A + B F )  - Js9 r. (140) 

Furthermore, the structure of Js and the spectral relations (58) imply 
that matrix ISsl- I~ is an M-matrix satisfying (A.Benzaouia, C.Burgat [23], 
G.Bitsoris [14]) : 

(IJsl- Im)l,~ <Om (141) 

Relations (140) and (141) are precisely the two basic conditions of positive 
invariance of S(Z', lm) for the closed-loop system (63). And from (136), it is 
clear that S(SF,  1,n ) = S(.7 r, lm ). 
Q 

2. The  case r > m 

From Proposition V.1, positive invariance of S(SF,  lm) cannot be obtained 
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with closed-loop stability if the number of inputs, m, is strictly smaller than 
the dimension of the unstable subspace of A, r. But the three requirements 
of an admissible invariant control can still be met by constructing a positively 
invariant polyhedron strictly included in S(SF, lm). This point will now be 
explained in a constructive way in the proof of the following Proposition. 

Proposition V.2: 
If  the system is stabilizable and r > m, it is possible to construct a state feed- 
back matrix F E ~mxn and a matrix �9 E ~ , x ,  such that f~ = S(~b, 1~) satisfies 
the three requirements of constrained invariant regulation. 

P r o o f  : 
All the unstable eigenvalues of A are controllable and can be shifted to the 
region of the complex plane included in the unit circle and bounded by con- 
straints (58). The new eigenvalues are selected simple, distinct from each other 
and from the stable eigenvalues of A. As in the preceding ~ction, the eigen- 
structure of the stable subspace of A is kept unchanged by the state feedback. 

[ J 0  0 ] 
The real Jordan form of (A + BF) takes the form 0 Js " 

g - [V0 I~Vs] is the matrix of dosed-loop generalized real eigenvectors, and 
W -  [0~,(,_,.) I Ws] is the matrix of corresponding "real inputs". 
The matrix of left generalized real eigenvectors , G -  g - l ,  can be decom- 

posed as: ( ~ - /  ~ , / .  Matrix G E  ~ ' •  has rank r. It is associated with 

Js, and generates the positively invariant symmetrical polyhedron S(G, lr) 
for the closed-loop system (63). 
By construction, the following relations are satisfied" 

JsG - G(A + BE) (142) 

( I J s l -  I~)1, < 0 (143) 

Now, partition matrices Ws E iR mxr and Vs E iR "xr as follows: 
Ws - [W~ W~], with W~ E ~ . . •  Wz E ~m• 

Vs - [V~ V2], with V~ e !R "•  , V2 E ~"• 

MatrixGisaccordinglydecomposedas:G-  [ GI ] w i t h G 1 E ~  mxn 
~(~-m)• The state feedback gain matrix 2t [c,] F -  [0 W l[Y0 a ,  

F 

The associated real Jordan canonical form of (A+BF) is" J - / 
t. 

where J0 E ~(" - ' ) •  Jx E ~?m• , j~ E ~(~-,~)• 

Jo 0 
0 J~ 
0 0 

, G2E 

(144) O] 
0 
J~ 

co
nt

ro
len

gin
ee

rs
.ir



206 JEAN-CLAUDE HENNET 

By convention, the blocks of J1,J2 can be ordered in the increasing order of 
~ - lull+ I~1. The maximal value of 7i is denoted 7max. It is strictly smaller 
than 1 since it respects constraint (58). 
Input directions of matrices (W1, W2) are now selected so that the the closed- 
loop system (63) also admits as a positively invariant symmetrical polyhedron 
a polyhedron S(r 1".) included in S(SF, lm). Define" 

r  
o G2 

By construction, the symmetrical polyhedron S(r  1".) is included in S(SF,  lm) 
and exactly fits into its facets. This polyhedron has 2m of its parallel facets 
generated by matrix SF. 
The selected matrix W1 of input vectors associated with J1 satisfies SW1 = 
In,  so as to obtain: 

SWI Ja - Jx SW1. (146) 
The eigenvalues of Js are all distinct and satisfy (58). Then, (IJ~l- I,,)1,, < 
0m, and it is always possible to construct a full rank matrix K E ~,n• 

such that: ( IJxl -  I,,~)lm + IKI1,-,~ < 0,. (147) 
For that, it suffices to choose the elements of K such that: 

" . - -  nq~ 

Iktil _< 1 - I , , I -  I~,!), for l -  1 , . . . ,  m. (148) 
j = l  

The closed-loop dynamics in (~c~'. a)  are described by �9 7"/- 0 ,/2 " 

The column-vectors of SW2 can be computed from 

SW2J2 - J~SW2 + K. (149) 

In particular, if its associated eigenvalue X2j is real, the jth column of SW2, 
denoted yy can be computed from the jth column of K, k/ by: 

yj - ()~2jI, n - Jx ) - l k j  for j - 1,... ,m. (150) 

From relations (146), (149), we obtain: 

0 I,.-m 0 J2 0 J~ 0 I,.-m (151) 

The column vectors of matrices I/1 and V2 are computed from the column 
vectors of matrices W1 and W2 by equations (127). Then, apply the feedback 
gain matrix (144) to obtain the positive invariance of S(r 1".), which directly 
derives from the properties of matrix 7f" 

(~(A + BF.) - 'H(~ (152) 

(1r < o'.. (153) 
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3. The  domain  of  admiss ib le  ini t ial  s ta tes  

Under the schemes of this section, the domain of states for which the linear 
state feedback uk - Fxk satisfies the constraints, is the symmetrical poly- 
hedron S(q), lr), with q) - ~ in the case r < m. To obtain a robust scheme 
relatively to structured perturbations on matrices A and B, it suffices to bound 
the domain not only in the directions of the range of Vs, but also in the range 
of V0 (J.C.Hennet,E.B.Castelan [44]). In particular, if all the eigenvalues of 
J0 are simple and satisfy the spectral condition (58), a positively invariant 
bounded and admissible polytope of the closed-loop system (63) is: 

[~ S(Q , I ,~ ) - { zEN '~  �9 - l n _ < Q z < _  1 , ~ } w i t h Q -  ~ , (154) 

where the rows of D are the left generalized real eigenvectors of (A + BF) 
associated with J0. The vector of bounds related to D, ln-,., is arbitrarily 
chosen. It can be multiplied by any positive number without breaking up the 
positive invariance property, at least for the unperturbed controlled system. 
The volume of the polytope S(Q, ln) is a good measure of the quality of the 
eigenstructure assignment from the two following viewpoints [44]" 

�9 Maximization of the size of the domain of admissible initial states. 
As mentionned before, this size is arbitrary large in the range of Iio, but 
it has to be maximized in the other directions. 

�9 Robustness of the assignment. 
For vectors of given norms, the maximal volume is obtained for vectors 
which are as close as possible to orthogonality. For a set of eigenvectors, 
this property precisely characterizes the minimal sensitivity of eigenval- 
ues relatively to structured perturbations (J.Kautsky et al. [38]). 

The volume of S(Q, ln) is proportional to the absolute value of the determi- 
nant of V = [II0 I Vs]. In the proposed assignment scheme, the set of desired 
eigenvalues of ,IS is supposed to be given. The only degrees of freedom are 
in the selection and assignment of the r eigenvalues, )~i to the selected input 
directions. The best possible assignment can be obtained by implicit enumer- 
ation, with Det(V) as the function to be minimized. co
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4. E x a m p l e  ( f r o m  [44]) 

Consider a third order system with dynamic matrix and input matrix" 

A __ 

[0125 13 5 03 5] [5.00_1.00] 
-2.500 -0.500 2.500 , B = 1.00 2.00 

0.625 1 .125  -0.125 1.00 0.00 

The open-loop system has two unstable eigenvalues, ( -3 .0  , 2.0 ), and one 
stable, 0.5. The input vector is subject to constraints: 

1.00 -1.00 ] 
- 1 2  <_ Suk  _<12 wi th  S - 2.00 1.00 " 

In this example, r = m = 2. The selected control law leaves the stable pole, 
A1 = 0.5, unchanged, and moves the two unstable eigenvalues of A to the pair 
of complex conjugate eigenvalues 0.4 5= 0.4j. These eigenvalues satisfy relation 

( A2 - 0 . 4 -  0.4j 
(58). If we select A a -  0.4 + 0.4j ' and S -1 as the matrix of real input 

vectors associated with these last two eigenvalues, the matr ix of closed-loop 
generalized real eigenvectors becomes: 

[ J 1 
0.707 -3.131 2.359 0.511 0.733 -0.511 

V - 0.0 0.993 0.087 under F -  0.658 -0 .160 -0 .658 " 
0.707 -2 .359 1.832 0 0] 

The matr ix of the closed-loop system takes the form: 0 0.4 -0 .4  . 
0 0.4 0.4 

The basic eigenstrueture assignment technique of section V.C.1 guarantees 
positive invarianee of S ( S F ,  12) for the perfectly deterministic system (123). 
Any point of this domain is asymptotically driven to the zero state by the 
control law uk - F x k  without ever violating the control constraints. Now, if 
the system parameters are slightly uncertain, the requirements of constrained 
invariant regulation will be satisfied in a robust way by the same control law 
if the domain of admissible initial states is restricted to S ( Q e t , ,  13) with : 

[o] 1 
Qo - S F  and Q1 - S F  - V -  

Then, D _~ [-4.84 - 0 . 4 0  6.26], and the positive weighting term r /can be 
selected small if the system parameters are almost perfectly known. Fig. 7 
represents the admissible domain of initial states and an admissible trajectory, 
in projection on the plane orthogonal to the first column vector of V. 
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Figure 7: Projected positively invariant domain 

VI. C O N C L U S I O N  

The positive invariance approach has been described as a valuable alterna- 
tive to optimal control for rigorously solving regulation problems for systems 
subject to constraints on their state, output or control vector. Its main advan- 
tage is the obtention of closed-form solutions which are of the state-feedback 
type and can be easily computed using standard tools of linear algebra and 
software packages such as Matlab. 

The homothesis property of positively invariant domain can also be used 
to recompute the control law from the knowledge of the current state of the 
system. Such a recursive computation- not studied in this paper- can improve 
the system dynamics and can be integrated in adaptive versions of the proposed 
algorithms. 

The study has been presented in the discrete-time framework. This does 
not mean that its theory and algorithms do not apply to continuous-time 
systems. On the contrary, all the results of this paper have their counterpart 
in the continuous-time framework. From the obtention of positive invariance 
conditions for continuous-time linear systems by Bitsoris and Vassilaki [45], 
[46] and by Castelan, ttennet [17], [37], algorithms have been constructed for 
solving constrained control problems in the continuous-time framework. As 
for the discrete-time case, the two main design techniques are based on Linear 
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Programming and on Eigenstructure Assignment. 
Positive invariance of closed domains also provides an interesting interme- 

diate step between the more theoretical geometric approach which analyzes 
the invarianee properties of subspaces, and the more practical devices elab- 
orated by control engineers to respect practical constraints. In this respect, 
practical applicability of the proposed control schemes has been noticeably in- 
creased by some robustness considerations. In particular, the simple rule that 
consists of always bounding (in a proper way) the domain of admissible initial 
states is a guarantee to obtain a closed-loop system behavior robust to small 
perturbations or (and) uncertainties. 
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I. I N T R O D U C T I O N  

It is well known that the H~  control problem [1, 2] plays a central role 
in a wide range of robust and worst-case control issues. In particular, it 
is related to the robust control of systems with unstructured frequency- 
domain uncertainties. The H~ problem is today well established, and 
efficient state-space solution procedures exist for both continuous-time and 
discrete-time systems [3, 4]. 

In control system implementations it is common to apply digital control 
to plants which operate in continuous time. The controller then consists of 
a sampler, a discrete control law which processes the sampled output, and 
a hold element, which takes the discrete control sequence to a continuous- 
time signal. The question then arises how the sampler and hold elements 
affect the robustness properties of the closed-loop system. Clearly, the 
hybrid discrete/continuous-time nature of the closed-loop system is not 
correctly taken into account by standard continuous and discrete analysis 
and synthesis techniques. Therefore, it has been common in the literature 
to apply various approximative methods to the problem of designing digital 
controllers in the context of robust controller synthesis. One approach is 
to make the design in continuous time using well-established techniques, 

CONTROL AND DYNAMIC SYSTEMS. VOL. 71 
Copyright �9 1995 by Academic Press. Inc. 
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and to discretize the controller obtained in this way, for example using 
bilinear transformation [5]. This approach is clearly limited to cases when 
the sampling frequency is high compared to the design bandwidth [5]. An 
alternative approximation technique is to discretize the continuous-time 
plant, and to apply standard discrete synthesis methods to the discrete 
process model [5, 6]. The main difficulty with this approach is to perform 
the discretization in such a way that various assumptions on the continuous- 
time plant concerning model uncertainties and performance specifications 
are preserved in the discretization process. 

The limitations of standard continuous and discrete design methods 
in the treatment of sampled-data control systems have recently led to the 
development of a robust control theory for sampled-data control systems. In 
this line of work, Francis and Georgiou [7] and Chen and Francis [8] have 
studied the Lp-stability of sampled-data systems. Chen and Francis [9], 
Kabamba and Hara [10], and Sivashankar and Khargonekar [11, 12] have 
given methods for computing the L2-induced norm of sampled-data control 
systems, and Leung et al. [13] have studied the performance of sampled- 
data control systems for bandlimited disturbances. An important problem 
in a robust control theory for sampled-data systems is the generalization 
of the Hoo control problem to the sampled-data case [14, 15, 16, 17, 18, 
19, 20, 21, 22, 23]. The sampled-data Hoo control problem consists of 
the minimization of the L2-induced norm of the closed-loop system. This 
problem has been shown to be relevant to the robustness of sampled-data 
control systems, and it provides a basis for dealing with both unstructured 
and structured plant uncertainties in digital control [24, 25, 26]. A theory 
for the Loo-induced performance in sampled-data systems has also been 
developed [27, 28, 29, 25]. 

In this contribution, we focus on the Hoo sampled-data control prob- 
lem. The main nonstandard feature of the sampled-data Hoo problem is 
the fact that the closed-loop system is a hybrid discrete/continuous sys- 
tem, part of which (the plant) evolves in continuous time, while another 
part (the controller) evolves in discrete time. The induced norm that is 
minimized is based on the continuous-time input and output signals. In 
the recent literature, a number of solution approaches to the sampled-data 
Hoo control problem have emerged. One is based on the 'lifting technique' 
[14, 15, 30, 22], in which the sampled-data system is represented as a dis- 
crete system with a finite-dimensional state, but with inputs and outputs 
which take values in infinite-dimensional spaces. This is due to the fact that 
the inputs and outputs of the system between the sampling instants {kh) 
take values in the infinite-dimensional space L2[0, h]. The sampled-data 
problem can then be solved via a standard finite-dimensional discrete Hoo 
problem. A second approach solves the problem using methods based on 
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dynamic game theory [31, 32, 11, 23, 19]. In this approach the game-theory 
solutions of standard continuous and discrete Hoo problems [33] are gener- 
alized to the sampled-data problem. The problem is then formulated as a 
hybrid discrete/continuous dynamic game, in which one player (the distur- 
bance) acts in continuous time, whereas the other player (the controller) 
is restricted to act in discrete time. The sampled-data H~  problem has 
also been solved using a Hamiltonian optimal control approach [16, 17, 20, 
21], similar to the time-domain solution of the Hoo problem presented in 
[34]. A common feature of the solution methods for the sampled-data Hoo 
problem is that all procedures lead to a problem representation in terms of 
an equivalent finite-dimensional discrete Hoo problem. The solution pro- 
cedures have been derived independently, and the connection between the 
resulting discrete problem representations is therefore not easy to see. Later 
it has been shown, however, that the discretization can be treated in a uni- 
fied framework [35], which clarifies the connections between the various 
solution procedures. 

The purpose of this contribution is to provide a tutorial presentation of 
various approaches for solving the sampled-data H~ control problem. The 
relevance of the problem to the robustness issue in sampled-data control 
is also discussed. The material is organized as follows. In Section II, the 
problem is stated. The solution of the sampled-data H~ problem using 
the lifting technique formalism and game theory approach, respectively, is 
discussed in Sections III and IV, respectively. In Section V a worst-case 
sampling approach to the problem is presented, which clarifies the connec- 
tion between various solution approaches. Finally, some special topics are 
discussed. In Section VI the game-theoretic approach is applied to solve 
a dual-rate sampled-data Hoo control problem, in which the sampling and 
hold elements operate at different rates. In Section VII the design of opti- 
mal sampling prefilters is considered in the context of sampled-data H~-  
optimal control. Finally, the relevance of the sampled-data H~ problem to 
the robustness issue is discussed in Section VIII. 

Although most of the material covered here is available in the liter- 
ature and the discussion is mainly tutorial in nature, some of the issues 
dealt with are new. In particular, the solution of the dual-rate sampled- 
data Hoo control problem described in Section VI does not appear to have 
been presented before. In Section VIII, previously presented necessary and 
sufficient conditions for robust stability of sampled-data control systems 
are generalized to nonlinear time-invariant uncertainties. co

nt
ro

len
gin

ee
rs

.ir



218 HANNU T. TOIVONEN 

II. P R O B L E M  F O R M U L A T I O N  

We study a linear finite-dimensional continuous-time plant described by 

]e(t) = A x ( t )  + B l w ( t )  + B2u( t )  , x(O) = 0 

Z(t) : F ix ( t ) - t -  D12tt(t) (1) 
v(t) = 

where x ( t )  e R n is the state vector, w(t )  E R m' is the disturbance, u( t )  e 
R m2 is the control signal, and z( t )  6_ R p' and y( t )  6_ R p2 are the controlled 
and measured outputs. The system (1) is assumed to include all weighting 
filters as well as anti-aliasing filters. For simplicity and clarity, the system 
matrices are assumed time-invariant unless otherwise stated. It is, however, 
straightforward to generalize the results to time-varying systems. 

The measurements are assumed to be available at discrete sampling 
instants {kh}, and may be corrupted by noise, i.e., 

9k = y(kh)+  (2) 

where h > 0 is the sampling time and ~)k 6_ R "~3 is a discrete measurement 
disturbance. Here, a circumflex (^) has been used to indicate signals and 
matrices which relate to the discrete-time part  of the control system. 

Part  of the discussion becomes significantly simpler if some special 
assumptions on the system matrices are made. We list these simplifying 
assumptions here for future reference: 

(A1) D12 has full column rank, 

(A2) i)21 has full row rank. 

The control signal is assumed to be generated digitally using a hold 
device. Usually a zero-order hold is assumed, i.e. the control signal is taken 
piecewise constant between the sampling instants, 

u(t )  = irk , t 6_ [kh, kh  + h). (3) 

We consider discrete controllers of the form 

/t = K:y, (4) 

where K~ is a causal discrete operator. In analogy with standard Hoo control 
problems, a worst-case performance measure induced by L2/12-dis turbances  
is considered. Here the performance measure is taken as the induced norm 
of the closed-loop system defined as 

. -  sup{ [llwll2L [i~1112 11/2 }, 
(5) 
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where the supremum is taken over (w, ~)) ~: (0, 0) in L2 G 12. Both infinite- 
horizon and finite-time problems will be considered. Depending on the 
context, the signals are then taken to belong to the spaces L2[0, c~) and 
12(0, c~) in  the infinite-horizon case, and to L2[O, Nh] and 12(0, N ) i n  the 
finite-time case. 

In some studies on the sampled-data H ~  problem zero measurement 
noise has been assumed. Then (5) reduces to the L2-induced norm of 
the closed-loop system. As the results readily generalize to the case with 
measurement noise, we choose in this contribution to include it. The case 
with zero measurement noise can be recovered by setting /)21 = 0. Note, 
however, that the simplifying assumption (A2) does not hold in this case, 
and some of the formulas which are given take a different form when the 
assumption is relaxed. 

The sampled-data H ~  problem consists of the problem of minimizing 
J(,~). More precisely, we consider the problem of finding a digital controller 
such that 

J (K) < 7 (6) 

holds for a specified positive constant 7. In analogy with other Hoo prob- 
lems, the performance measure (5) can then be minimized by checking 
whether (6) has a solution for successively smaller values of 7, a procedure 
known in the literature as '7-iteration'. 

Note that (6) is equivalent to the inequality 

Ilzll 2 -r 2 L= -- [IIwlIL~ + Ir,911,=~] < 0 , all (w, ~)) # (0, 0). (7) 

The equivalence of (6) and (7) will be used extensively. The condition (7) is 
particularly useful, since the expression on the left-hand side is quadratic in 
the variables. This makes it possible to apply linear-quadratic control and 
game theory methods to check whether (7) holds for a particular control 
law, and to solve the problem of finding a controller which achieves the 
performance bound (7), when such a controller exists. 

III.  D I S C R E T E  S Y S T E M  R E P R E S E N T A T I O N  

It is natural to represent the sampled-data control system defined by Eqs. 
(1)-(3) as a discrete system with the system state defined at the sampling 
instants {kh} [15, 22]. Consider the evolution of the system state x(t) at 
the sampling instants kh. Then 

�9 (kh + h) - ~ h  ~(kh) + fo ~ eA(h-~')B 1 w(kh + A)dA 
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jr0 h + eA(h-) ' )B2dAf ik  , x(O) -- 0 

z(]ch @ 7") -- 61 eATx(]ch) @ CleA('r-) ' )Blw(Ich "F A)dA 

+ C l e A ( r - ~ ) B 2 d A  + Dl~)f~k , r ~_ [O,h) 

~1~: = C 2 x ( k h )  + [:)~l~k , k = O, 1, . . . .  

(8a)  

(8b) 

(8c) 

This equation describes the sampled-data system as a discrete system with 
finite-dimensional state vector x ( k h ) ,  but with inputs and outputs  tak- 
ing values in the infinite-dimensional spaces L~I[0, h) and L~I[0, h), re- 
spectively. In order to obtain a compact discrete state-space represen- 
tation of (8), introduce the lifted discrete signals 2 : -  (20,~1, . . . )  and 

]L~[O,h) of sequences with ele- d~ "-  (w0, Wl , . . . ) ,  belonging to the space "2 
ments in L2[0, h), and defined according to 

~:k(v) : z ( k h  + r) , ~k(v) : w ( k h  + r)  , r E [0, h) , k = 0, 1 , . . . .  (9) 

L2[0,h) By construction, the lifting operation L2 ---+ 12 defined by Eq. (9) is 
norm preserving [15, 22], 

II~ll,~ -IIzIIL~ , Ilwll,~ = llwilm~. (10) 

The system (8) can then be written compactly as 

}k+l = fi,}k + /~ lOk +/~2~k , }0 = 0 (11a) 

(11b) 

(11c) 

where xk "-  x ( k h ) ,  and fi,,/~1,/~2, (~1, b11, JOl~, (~2, and b21 are operators 
on the respective spaces, i.e., 

A : R" --+ R" 

t)l �9 L~' [0 ,  h) -~ R" 

/~2 : R  m~ ~ R" 

C1 " Rn -"+ n~i[0, h) 
Dll  " L ~ '  [0, h) ~ L~' [0, h) 

b12 �9 R "~: ---+ L~i[0, h) 

C'2 : R ~ " - *  R p~ 

I)21 : R  ~ ~ R  p~ 
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defined as 
2~'-- e Ah 

~o h Bl w -- eA(h-A)BI ~b(A)dA 

[32 -- .~h eA(h-'X) B2d A 

(8~ ~)(~) = C l ~ a ~  I" 
/o" (bx~)(~-) - ( C~('-~)B~d~ + Dx~)~, 

(12) 

The system described by Eq. (8), or the lifted representation (11), is 
a hybrid discrete/continuous system, part of which (the plant) evolves in 
continuous time, while another part (the controller) evolves in discrete time. 
For such systems, Chen and Francis [8] have introduced of useful stability 
concept in terms of hybrid stability, defined as internal stability when the 
signals are taken to be in L2 and 12, respectively. Their analysis shows 
thats the sampled-data system described by Eqs. (1)-(3) is stabilizable by 
a feedback law (4) if and only if the pair (A,/~2) is stabilizable and the pair 
(t~2,A) is detectable in discrete time. For any discrete controller (4), the 
closed-loop system is stable if and only if the corresponding discrete system 
(-A,/~2, C2) is stable. 

By Eq. (10), the performance measure (5) equals the/z-induced norm 
of the discrete system (11), i.e., 

J(~ )  - ~up{ [11~,11~ + I1'~11~] ~/~ } (13) 

L2[0 h) l~  3 . T h e  where the supremum is taken over (~b,~) ~ (0,0) in 12 ' @ 
control problem defined by the sampled-data system (1)-(3) and the per- 
formance bound (6) can thus be characterized in terms of a discrete Hoo 
control problem defined by the system (11) and the performance measure 
(13). Its solution is, however, complicated by the fact that the system (11) 
has infinite-dimensional input and output spaces. 

Note that the operators/)1, (~1 and/)12 have finite ranks and they may 
therefore be represented by finite-dimensional matrices, whereas the oper- 
ator/)11 has infinite rank. In [22], the operator/911 was approximated by 
finite-rank operators obtained by expanding ~bk and ~k in orthonormal bases 
in L2[0, h). Since/)11 is compact, it can be approximated to any desired 
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accuracy in this way. Hence the H ~  sampled-data control problem can also 
be solved to any specified accuracy in terms of finite-dimensional discrete 
H~  control problems [22]. A related approach, in which the continuous- 
time signals are expanded in terms of sequences of step functions, has been 
applied in [36, 37] to the discretization of continuous-time controllers. 

An exact solution to the H~  sampled-data control problem, which 
does not involve any approximations, was given by Bamieh et al. [14] and 
Bamieh and Pearson [15]. They applied a loop-shifting procedure to the 
lifted system described by Eq. (11), which removes the operator Dll and 
preserves closed-loop stability and norm. In this way the Hoo sampled-data 
problem could be solved exactly as a finite-dimensional discrete Hoo control 
problem. 

Note that a necessary condition for the performance bound (6) to hold 
is II/)1111 < 7. A feedback connection can then be introduced around the 
plant (Figure 1) to define new input and output signals tbk and r according 
to 

] ] 
where O :  L2[0, h)•  L2[0, h)---* L2[0, h ) � 9  L2[0, h ) i s  the unitary operator 
given by 

--"f-1/)ll (I - ~/-2DllD~l) 1/~ 
19 - ( I -  " / - 2 b ~ l b l l ) l / 2  ")'-lO~l (15) 

where D~I denotes the adjoint operator. 

' I I {~ )  i 

'! - ~ - - - ~  '5 I I 
I I 
I I , ~ - - - - - ] _ ~  , 
I ! 

l 
1 K ~-- 

Fig. 1. The feedback connection (11), (14). 
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Substituting the new variables ~bk and § from Eq. (14) into the system 
equation (11) gives the state-space realization 

i :k+l Axk +/32tik + / )a  (I 7 -2^*  /)1 )-1/2 - -  - -  D l l  1 lbk 

§ (I -- "/--2611 V i i )  ^* - 1/2 [d lXk -~-bl2s (16) 

where 
A - A + 7 - 2 / ) , b ~ 1  (I - 7 - : ~ b l l D ; 1 ) - ' d l  

/~2 .b2 + ' r  ~/~1 ~* - 2 [ 1  ^* /)12. 
_ _  - D l 1 ( 1  _ 7 1 D l l )  -1  

We then have the following result [15]. 

(17) 

L e m m a  1. Consider the lifted system described by Eq. (II).  Assume that 
I Ib , , l l  < "~. Then for any controller fi - K, fl the following are equivalent: 
(i) K, stabilizes the system (11) and d(lC) < 7, 

(ii) K, stabilizes the system (15) and 

I1§ ~] ' /~  } < "r. 
sup{ [llell~ ~ + I1~11,~ 

(lS) 

Proof: Note that the transformation e :  L2[0, h)q)L2[0, h)---+ L2[0, h)q) 
L2[0, h) is unitary. Hence 

II,'k II~,~to,,,) + ~'~ll~kll ~ ..,,2 ,_.~to.,,) = II~kll~to.,,) + II~,~ll,_.~to.,,) 
or 

I1§ = "Y= ~ - , - ' Y '  
and the norm result follows. The stability part of the lemma is harder 
to show. In [15], it was shown using an operator-valued version of the 
Redheffer lemma. Here we will present an alternative proof in Section V 
(Theorem 5) in connection with a worst-case sampling approach, u 

In the state-space representation (16) the operator/)11 is removed, but 
the input and output signals tbk and § taking values in L2[0, h), have still 
infinite dimensions. It is, however, straightforward to obtain an equivalent 
finite-dimensional system characterization using the fact that all operators 
in (16) have finite ranks. An application of Lemma C.1 in Appendix C 
results in the following theorem. 

T h e o r e m  1. Consider the lifted system described by Eq. (11). Assume that 
l ib , i l l  < ~. Define the finite-dimensional system 

ik - CI xk + bt~fik (19) 
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where A and [~2 are given by Eq. (17), and [71, (~1 and [912 are defined by 

/~, B', --/3, ( I  - 7-2/~)11 b11) - '  B,"* (20) 

b~:2 [C1 1)12 ]=  ^, - - D12 
Then for any controller f~ = ICfl the following are equivalent: 
(i) IC stabilizes the system (11) and J(~)  < 7, 

(iO l(. stabilizes the system (19) and 

II llz  (21) 
sup{ [11 11 = + i! 11{=1 ,/= } < 

In (19), all signals are finite-dimensional. Explicit formulae for the 
matrices A,B: ,  B2,C1 and D:2 are given in [15]. These expression will 
not be repeated here, but instead alternative formulae will be presented in 
Section V (Lemma 9) in connection with a worst-case sampling approach. 

A possible inconvenience with the result in Theorem 1 is the fact that 
the system matrices A and /~2 in (19) are different from the system ma- 
trices of the discrete representation (11). The set of stabilizing controllers 
of the discrete system (19) is therefore in general different from the set 
of controllers which stabilize the sampled-data system (11). It is, how- 
ever, possible to define a second norm-preserving variable transformation, 
which takes the system (19)^into a finite-dimensional discrete system with 
the same system matrices A and /32 as the discrete representation (11), 
cf. Hayakawa et al. [26]. 

The problem of finding a sampled-data controller (4) such that (21) 
holds is a standard finite-dimensional discrete Hoo control problem. This 
problem can be solved using standard discrete techniques for the discrete 
Hoo control problem [4, 33], and it will not be discussed here. 

Theorem 1 gives a complete solution of the Hoo sampled-data control 
problem defined in Section II in terms of a finite-dimensional discrete Hoo 
control problem. Note that the result holds for the finite-time case as well, 
and that it can easily be modified to time-varying system. It is, however, 
not easy to apply the result to more general situations, such as problems 
where the dynamics of the sampler and/or the hold function are part of 
the design problem, or cases when the periods of the sampler and the hold 
function are different. It is therefore also well motivated to study other 
methods to the H~  sampled-data control problem. 

IV .  A D Y N A M I C  G A M E  S O L U T I O N  

An alternative approach to the discretization procedure of Section III is 
to solve the sampled-data control problem directly using a time-domain 
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approach to the mixed discrete/continuous H~  control problem defined 
in Section II. This approach is related to existing time-domain solution 
methods for standard continuous and discrete H~ control problems [3, 4, 
33, 34]. These methods are related to dynamic games [33], and in this 
framework the sampled-data Ho~ control problem can be considered as a 
hybrid discrete/continuous dynamic game. The approach has been applied 
in [23] to a time-varying, finite-horizon problem, and by Sun et hi. [19] to 
the stationary problem. In a related study, Sivashankar and Khargonekar 
[11, 12] have applied a similar approach to compute the induced norm of 
sampled-data systems. The dynamic game procedure is also well suited for 
treating sampled-data control problems with free hold functions [18, 31, 32, 
33]. 

It is convenient to develop the procedure first for a finite-time control 
problem over the time interval [0, Nh], in which the induced norm J(K), 
Eq. (5), is taken to be induced by signals in L2[0, gh] and /2(0, g ) .  In 
analogy with Eq. (7), introduce the finite-time cost function 

L[o ,Nh] (~ t  W, 'O)  llzl IL~[O,Nh] []]Wl + II 'll]  (o )]. , "-- -- ]L;[O,Nh] ,N  (22) 

The performance bound J(K;) < 3' holds on [0, Nh] if and only if the inequal- 
ity L[o,gh](fi, W, ~) < 0 holds for all (w, ~) :/: (0, 0) in L~[0, gh] G/~(0, g) .  
The problem of finding a control sequence which achieves this is a two- 
player discrete/continuous dynamic game, where the u-player, restricted 
to using piecewise constant signals according to Eq. (3), tries to ensure 
that L[o,gh](it, W, ~) < 0 for all (w, 7)) :/: (0, 0). For its solution, standard 
methods of dynamic game theory [33] can be employed [23]. 

The solution to the sampled-data Ho~ problem is obtained in several 
stages. First, the solution to a sampled-data H~ problem with complete 
state information is obtained. This leads to an H~ filtering problem with 
sampled measurements. A combination of the control and filtering results 
then gives the solution to the original control problem. 

A. THE STATE FEEDBACK CONTROL PROBLEM 

In this subsection, the solution of the control problem defined above is 
obtained for the case when complete information of the state is available 
to the controller. The sampled-data system described by Eqs. (1) and (3) 
can be represented as a hybrid discrete/continuous system described by the 
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state-space equations 

t )  = 1 [ I  1 t E [kh ,  k h  + h )  

where 

Lemma 2. Consider the system (23). Assume that assumption ( A l )  holds. 
Assume that there is a bounded symmetric positive semidefinite matrix 

S ( t )  := [$ :;:I ( t )  , t E [ O ,  N h )  

which satisfies the following Riccati differential equation with jumps asso- 
ciated with (23), 

Then 
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Proof." From (23) and (26) we have 

fk kh4"h 
h 

( z ' z -  ~ ' ~ ) ~ t  [z 'z-  ~ ' ~  + ~([~'  e ] s  )]~t 
h U 

�9 

Itm _ _  ~ 

L ~ j 

Here 

f 
~ + ~  

h 
d [ ]  

[z'z - ~ ' ~  + ~([~'  . ' ]s  ~ . )]dt 

: ~2 fk kh+hh ( w -  w ~  w~ 

and 

[x'(kh) fi'k]S(kh) [ z(kh) ] ftk -- ft~kS22(kh)ftk + 2fikS~2(kh)x(kh) 

-4- x ' (kh)Sxl(kh)x(kh) 
= (ilk - fi~)'S22(kh)(ftk - itS)+ x ' (kh)S l l (kh- )x (kh) .  

The result of the lemma then follows by summing over k and observing 
that  x(0) = 0 by assumption, o 

R e m a r k .  For simplicity, Lemma 2 has been stated for the case when the 
matrices S~2(kh) are invertible. Assumption (A1) is a sufficient condition 
for this to hold. The assumption can, however, be relaxed [23], and when 
S22(kh) is singular, its inverse in (26) and (27a) is replaced by the pseu- 
doinverse [23]. 

From Lemma 2 we have the following state feedback result. 

T h e o r e m  2. Consider the sampled-data system described by Eqs. (1) and 
(3). Assume that assumption (AI)  holds. There exists a state feedback law 
ft = IC({x(kh)}) such that the performance bound 

Ilzll~to,~l "r~ll~l ~ - IL2[O,Nh] <0  , allwTs (28) 

holds for the closed loop if and only if the Riccati equation with jumps (26) 
has a bounded symmetric positive semidefinite solution on [0, Nh). In that 
case, the performance bound (28) is achieved by the linear discrete causal 
stale feedback law (27a). 
Proof: The result can be shown via standard arguments in H ~  control 
theory, of. [33, 23, 19]. For the sake of completeness, a proof is presented 
in Appendix A. n 
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The sampled-data Hoo control problem can now be solved via an Hoo 
filtering problem with sampled measurements. For this purpose, introduce 
the variables v ( t ) " -  w ( t ) -  w~ and § "- S1/2(kh)(itk - fi~,), i.e. 

v ( t )  . -  w ( t )  - 

and 

-2B~ [$11 ( t )z( t )  + S12(t)fi~], t 6 [kh, kh + h), k - 0, 1 , . . .  
(29) 

112 -1 '2 (kh)x(kh)+f ,k]  k - 0  1 . . .  N - 1 .  (30)  § "- $22 (kh)[S22 (kh)S1 , , , , 

The system (1)-(3) is then described by 

;~( f ) -  A(f)x(t)-{- J~lU(t)+ B 2 ( f ) ~ k  , t # k h  , x(O) - 0 
_ 

rk -- Cl ,kx(kh)  + D12,kftk 

flk -- (J2x(kh) + D21f)k , k - O, 1 , . . . ,  N - 1 

(31) 

where 
f~(t) "- A + 7-2B1B~Sx~(t)  

B1 "- B1 

/32(t) "- B2 + 7-2B1B~ Sis(t) 

Cl,k "-- $221/2(kh)S'12(kh) 

1/2(kh). D~2,k "- S~2 

From Lemma 2 we have, 

(32) 

,~ I lv l l~ -  [I II~= Ilwll~,~. (33) 

The sampled-data Hoo control problem can now be characterized as follows. 

L e m m a  3. Consider the sampled-data system described by Eqs. (1)-(3).  
Assume that assumption (A1) holds. Then for any discrete causal controller 
f i -  I(.fl the following statements are equivalent" 
(i) J(IC) < 7 on [0, Nh], 

5i)  the Riccafi differential equalion with jumps (26) has a bounded solution 
on [0, Nh) ,  and 

I1~11~= < ~2[11v112 L= + I1~11,~] (34) 

holds for all (v, i)) # (0, O) for lhe syslem (31). 
Moreover, assuming that the Riccali differential equation with jumps 

(26) has a bounded solution on [0, Nh), there ezisls a discrete causal con- 
troller which achieves the performance bound (34) if and only if there exists 

co
nt

ro
len

gin
ee

rs
.ir



DIGITAL C O N T R O L  WITH H a O P T I M A L I T Y  CRITERIA 229 

an estimator § which depends causally on 9 and fi, and which achieves 
the performance bound 

II ,= - ,~11~ < "f~ [llvll~ + I1~11~=], aU (v, ~) # (0, 0). (35) 

Proof." The equivalence of (i) and (ii) follows from the fact that a necessary 
condition for (i) is the existence of a state feedback which achieves the 
performance bound J(K:) < 7, Theorem 2, and the identity (33). Note 
that  since a finite-horizon problem is considered, the stability issue is not 
involved. In order to prove the second part of the theorem, assume first that 
the controller fi =/( :9 achieves the bound (34). Form the causal estimator 

~ ( t ) -  2 ( t ) ~ ( t ) +  B~(t)[~,~ - (~ :9 )~] ,  t E [kh, kh + h), ~(0) - 0 

re,k - -  Ol,k&(kh) + b 1 2 , ~  [ilk - (tC~))k], k - -  0, 1 , . . . ,  N - 1. 

For the input fi = /C#, we have ~e = 0, and the estimator achieves the 
performance bound (35) since (34) holds. It is easy to see that the esti- 
mation error is independent of fi, and hence the above estimator achieves 
the performance bound (35) for all inputs ft. Conversely, assume that the 
performance bound (35) is achieved for some causal estimator ~,. As/)x2,k 
has full row rank, the control signal i can be chosen so that fe ~ 0. Then 
r - f e  = § and it follows that the controller constructed in this way achieves 
the performance bound (34). [] 

By Lemma 3, the sampled-data H ~  control problem is reduced to an 
Hoo-optimal estimation problem. The solution of the estimation problem 
with sampled measurements that is involved will given in the next subsec- 
tion. 

B. Hoo OPTIMAL ESTIMATION WITH SAMPLED MEASUREMENTS 

The estimation results needed for the sampled-data Hoo problem are given 
in Lemma 4 and Lemma 5 below. 

L e m m a  4. Consider the system 

}( t )  - A(t )~( t )  + [~,(t)v(t) ,  ~(o) - o 

~'k - C,  ,k x( k h) 

9k - C2x(kh) + /)219k , t E [0, Nh]. 

(36) 

Assume thai assumption (142) holds. There exists a discrete causal filter 
f ' e -  f 9  such thai 

2 72 il~- ~II,~ < [II~II~ + II~II~] (37) 
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holds for all (v, iJ) 7t (0, 0), if and only if there exists a solution to the 
Riccati equation with jumps, 

1 q ( t ) -  A ( t ) N ( t )  + N( t )A( t ) '  + [~x(t)[~ (t) , t ~ kh 

N ( k h )  = N ( k h - ) E ~ :  (38) 
- -  2 - !  - -  Ek -- I + [C~(/)21/)21) :C2 - 7 -  C:,k(~t,~lY( kh ) 

g ( o - ) = O ,  k = O ,  1 , . . . , g ,  

such that the matrices Ek, k = 0, 1, . . .  , N ,  have only positive eigenvalues. 
In this case, the estimator 

;~(t) - fii(t)~c(t), t E [kh, kh + h) , ~c(O-) - 0 

~c(kh) = ~(kh- )  (39) 

+ N(kh-)(9~[b2xb~: + (~2N(kh- ) (~] - :  (Uk - (~2~(kh-)) 

re,k = (~l,kSc(kh) , k - O, 1 , . . . , N  

achieves the performance bound (37). 

Proof: See Appendix B. t~ 

It is also of interest to consider the open-loop Hoo-optimal estimator 
for estimating the controlled state z(t) based on the sampled measurements 
~t. We have the following H ~  estimation result. 

L e m m a  5. Consider the system described by Eqs. (1) and (2) on t E 
[0, Nh]. There exists a causal filter .T:12 ~ L2 such that the estimator 
ze - 9ell achieves 

llz- z~ll~= < ~ [11~11~ + 11~11~2=] (40) 

for all (w, f~) ~ (0, 0), if and only if there exists a bounded symmetric posi- 
tive semidefinite solution Q(.) to the Riccati differential equation with jumps 

Q - AQ + QA'  + ~'-2QC' 1C1Q Jr- B1B~ , t r kh 

Q(kh)  - Q ( k h - )  - Q(kh- )C~[b2:b '2:  + C ~ Q ( k h - ) ( ~ ] - I C 2 Q ( k  h - )  

Q(o-)  = 0 ,  k = 0, 1 , . . . , N .  (41) 

In this case, the estimator 

~(t) - A( t )~( t ) ,  t # kh, ~ (0 - )  - 0 

~(kh) = ~ (kh-  ) 

+ Q(kh-)0:[b~xD~: + C~Q(kh-)C~]-: (v~ C~(kh-)) 
z,( t)  : C12.(t) , k : O, 1, . . . , N 

(42) 

co
nt

ro
len

gin
ee

rs
.ir



DIGITAL CONTROL WITH H OPTIMALITY CRITERIA 231 

achieves the performance bound (40). 

Proof: The result can be proved in the same way as Lemma 4. See also 
reference [18]. o 

C. SOLUTION OF THE SAMPLED-DATA H ~  C O N T R O L  P R O B L E M  

The results of Lemma 3 and Lemma 4 can now be combined to obtain a 
solution to the Hoo control problem as follows. 

L e m m a  6. Consider the sampled-data system described by Eqs. (1)-(3). 
Assume that assumptions (I41) and (A2) hold. There exists a discrete 
causal control law fL -  IC~) which achieves the performance bound J(IC) < 7 
on [0, N h] if and only if 
(i) the Riccati equation with jumps (26) has a bounded positive semidefi- 

nile solution S(t) on [0, Nh) ,  and 
(ii) for A(t), B1, [12(t) and Cl,k defined by Eq. (3# ,  there exists a bounded 

positive semidefinite matrix N(t)  which satisfies 

lV(t) - A( t )N( t )  + N( t )A( t ) '  + Bz B~, t E [kh, kh + h) 

N ( k h ) -  N ( k h - ) E ~  z 

Ek -- [ + [C~(b21b~l)-1(~2 - 7-~C~,k(9,,k]N(kh - )  

y ( 0 - ) -  0, 

(43) 

such that the matrices Ek, k - 0 , 1 , . . . , N -  1, have only positive 
eigenvalues. 
Moreover, when conditions (i) and (ii) are satisfied, the performance 

bound J()U) < 7 is achieved by the controller 

~(t) - ft(t)~c(t) + [~2(t)ftk , t E [kh, kh + h) , ~c(O-) - 0 

~c(kh) - ~c(kh- ) 

+ N(kh-)C~[b21D~2z + C2N(kh- )C~]- l (yk  - C 2 x ( k h - ) )  

ftk - -$22 z (kh)S~2(kh)~(kh) , k - O, 1 , . . . ,  N - 1. 

(44) 

Note tha t  the controller (44) sets § = 0, where re achieves the perfor- 
mance bound (35) according to Lemma 4. Hence it follows from the proof 
of Lemma 3 that  the controller achieves the performance bound as stated.  

The sampled-data  H ~ - o p t i m a l  controller can also be characterized in 
terms of the state-feedback solution of Theorem 2 and the H ~ - o p t i m a l  
open-loop est imator  of Lemma 5. 

T h e o r e m  3. Consider the sampled-data system described by Eqs. (1)-(3). 
Assume that assumptions (A1) and (142) hold. There exists a discrete 
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causal control law fi = Kft which achieves the performance bound J(IC) < 7 
on [0, Nh] if and only if the following conditions are satisfied: 
(i} The Riccali differential equation with jumps (26) has a bounded positive 

semidefinite solution S(t) on [0, Nh), 
(ii} the Riccati differential equation with jumps (~1) has a bounded positive 

semidefinite solution Q(I) on [0, Nh), and 
(iii} p(S~(t)Q(t))  < 7 ~ for all t E [0, Nh). 

Moreover, when conditions (i}-(iii) hold, a controller which achieves the 
performance bound J(K) < 7 is given by Eq. ( ~ ) ,  where 

N(t)  - Q ( t ) ( I -  7-ZS,  l(t)Q(t)) -1 . (45) 

Proof: By Lemma 6, a discrete controller which achieves the performance 
bound J(K) < 7 exists if and only if the Riccati equations (26) and (43) 
have bounded solutions. When (43) has a solution, it is straightforward to 
verify that Q(t) := N(t ) ( I  + 7-2Slx( t )N(t) )  -1 is a solution to (41). More- 
over, (iii) follows from S11(t)Q(t) -- "f2,S'11 (t)N(t)(72 I + Slx (t)N(t)) -1 and 
the positive semidefiniteness of the matrices Sll(t) and N(t).  Conversely, 
if (41) has a solution such that (iii) holds, then N(t)  defined by (45) is 
positive semidefinite and satisfies (43). n 

For computational purposes, it is useful to note that the Riccati equa- 
tions with jumps (26) and (41) can be reduced to discrete Riccati equations 
as follows. 

L e m m a  7. (a) Define the 2(n + m2) x 2(n + m2) matrix 

[I-[11 1112 ] (t) ._ exp ( _  [ me 7-2BelB 'ea] t )  (46) 
I I ( t ) - - .  1121 1122 -C/elCel -m', 

where the matrices Ae, Bel and Cel are defined by Eq. (2,4). Then the 
solution of the Riccati differential equation with jumps (26) is given by 

S ( kh - )  - A'dS(kh)A d - A,dS(kh)Bd(B,dS(kh)Bd)-l B,dS(kh)Ad, 

S ( k h -  t ) =  [II21(t ) -+- rI22(t)S(kh-)][n,1(t)+ I I ,2 ( t )S (kh- )] - l , t  E (0, h] 

S ( N h - )  = 0 ,  k =  N , . . . , 1 , 0  (47) 

wh e re 

A e - -  0 0 I " 

(b) Define the 2n x 2n matrix 

[ ] ( -m' -7-2C~C1] ) All A12 ( t ) " -  exp t (49) 
A(t) "- A21 A22 B1B~ A " 
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Then the solution of the Riccati differential equation with jumps (41) is 
given by 

Q(kh + t) - [A21(t ) -+- A22(t)Q(kh)][A11(t) + Aa2(t)Q(kh)] -x , t ~. [0, h) 
^ l 

Q(kh) - Q(kh- )  - Q(kh-)C~[D2~D2~ + C2Q(kh )(~]-~(~2Q(kh-) 

Q(0- )  - 0 ,  k - 0, 1 , . . . , N .  (50) 

R e m a r k .  In analogy with other H ~  control problems, the infinite horizon 
case for time-invariant plants can be obtained as a limiting case from Theo- 
rem 3 as g ---+ cx~. More precisely, assume that the pairs (A, B1) and (Cx, A) 
of the continuous-time system (1) are stabilizable and detectable, respec- 
tively, and that the pairs (A,/32) and ((~2, A) of the discrete system (11) are 
stabilizable and detectable. Then the performance bound J(K:) < 3' holds 
on [0, oc) if and only if the discrete Riccati equations (47) and (50) have 
corresponding stationary stabilizing solutions such that condition (iii) of 
Theorem 3 holds for all t, see [19]. 

V .  A W O R S T - C A S E  S A M P L I N G  A P P R O A C H  

The procedures described in Sections III and IV lead to different finite- 
dimensional discrete characterizations of the H~-opt imal  sampled-data 
control problem, of. Theorem 1, and Theorem 3 and Lemma 7, respec- 
tively. This indicates that the discretization comprises an essential step in 
the solution methods. It is therefore well motivated to study the discretiza- 
tion process which is involved in more detail. In this section we study the 
discretization step in terms of a worst-case sampling approach [35]. The 
approach clarifies the connection between the discrete representations of 
the loop-shifting result of Theorem 1 and the characterizations described 
in Section IV. 

Consider the lifted discrete system representation (11). In analogy with 
the standard finite-dimensional discrete H ~  problem, a necessary condition 
for the performance bound J(/U) < 7 is }1/~11[[ < 7- Equivalently, it is 
required that for any bounded xk, ilk, the quadratic function 

has a bounded supremum in t~k. In. this case, the maximum of (51) is 
achieved by a unique t~  in L~[O, h). Depending on whether the maximizing 
strategy is represented in open or closed loop form, we obtain two different 
expressions for Lk(t~k, i:k,/tk). 
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Introduce the  symmetric positive semidefinite matrix 

which satisfies the  following Riccati differential equation (cf. Eq ( 2 6 ) )  

- P ( t )  = A' ,P( t )  + P ( ~ ) A ,  + T - ~ P ( ~ ) B , ~ B : ~ P ( ~ )  + C : ~ C , ~ ,  
P ( h )  = 0 ,  t E [0, h] (53) 

where the matrices A,, Be l  and C e l  are defined by Eq. (24 ) .  

Lemma 8. Consider ik E L2[0 ,  h )  defined by Eq. ( l l b ) .  Then we have the 
following characterizations of the quadratic function L k ( w k ,  x k ,  u k ) :  
(a)  L k ( w k , x k ,  u k )  has a bounded supremum in wk if and only if the Riccati 

diflerential equation (53) has a bounded solution on [0, h ] .  In  this case, 
the maximum of L k ( w k ,  x k ,  u k )  is achieved by the optimal closed-loop 
strategy 

Moreover, (51) can be expressed as 

where & ( t )  is  the pointwise deviatio;. from the optimal closed-loop 
strategy, i.e., 

(6) L k ( t h k , i k r  G k )  has a bounded supremum in wk if and only ~ ~ I I D ~ ~ I I  < 7 .  
In this case, the maximum of L k ( w k , x k , u k )  is achieved by the optimal 
open-loop strategy 

where D ; ~  denotes the adjoint operator. Moreover, (51) can be ex- 
pressed as 
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where < .,. > denotes the inner product defined on L2[0, h). 

Proof: (a) See the proof of Lemma 2. (b) The result follows from standard 
linear operator theory and a completion of squares argument [35]. n 

Lemma 8 provides two ways of introducing a variable transformation, 
which takes the H~ sampled-data control problem to a finite-dimensional 
discrete Hoo problem. From Lemma 8(a) we have the following characteri- 
zation of J(K;) in terms of a finite-dimensional discrete system. 

T h e o r e m  4. Consider the sampled-data system described by Eq. (11). De- 
fine the finite-dimensional discrete system 

gCk+l --  A~ck + B2~tk + e l ~ ) k ,  ~CO -- 0 

~'k - - C l X k  + D12~k (60) 

where 

h 

fi, - ~(h,0) , /32 - f0 ~(h,A)[B~ + 7-2B1B~P12(A)]dA 

h 

[31[~ -- fo <b(h'A)BIB'Ir 

[ D~ 2 ] [ (71 D12 ] - P(O) 

and r .) is the state transition matrix associated with A+7-2B1B~ PI1 (t). 
Then for any control law ft - K~I the following are equivalent: 
(i) IC stabilizes the system (I1) and J(IC) < 7, 

(it) E stabilizes the system (50) and 

I1~11~ } < r 
sup{ [11~!1?~ + I1~11,\] x/: 

(61) 

Proof: Assume first that K: internally stabilizes (11) and (60). From Lemma 
8(a), introduce the variable tbk E L2[O, h) defined by Eq. (56), and 

5k "- 01 &k + b12fik. (62) 

Then the sampled-data system is described by 

]c(kh + t) - [A + 7-~B1B~P11(t)]x(kh + t) + [B2 + 7-2B1B~P12(t)]ftk 

+ B ~ ( t ) ,  t e [0, h ) ,  x(0) - 0 
z'k - Clx(kh) + ba2ftk (63) 
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By Lemma 8(a), we have 11~1122- 7211~112 -I1~11~- ~211~11~, Integrating (63) 
over the sampling interval gives for the state 

x(kh + h) - fi, x(kh) + B2fq: + ~h ~(h, r)Ba ~bk(r)dv. 

The norm result of the theorem then follows from Lemma C.l(b) in Ap- 
pendix C, see also [26, 23]. 

In order to prove the stability part of the theorem, assume first that 
K: internally stabilizes (11), and consider the system (11) with input tb ~ 
defined by (54). Let xk denote the combined state of the system and the 
controller at time kh. Then J(K:) < 7 implies the existence of M1 > 0 such 
that for any initial time koh and initial state ~'ko, 

II~ll~<ko,~)- ~2ll~~ M~ll~oll 2, 

From (54), (55) and the continuity of P(t) it also follows that there exists 
M2 > 0 such that 

II ~ < [ll ll ] .12(ko,co) co) co) - -  1 2 ( k o ,  - -  i ~ ( k o ,  " 

Since K~ stabilizes the system (11), there exists 6 > 0 such that 

Hence it follows that 

II~llt=<ko,oo) ~ ~(Ma/2 + x)ll~koll. 

As the inequality holds for any initial state ~'ko, the result implies that the 
closed-loop system (11) with input tb ~ is internally stable, or equivalently, 
that the controller K; stabilizes the system (60). The reverse result can be 
shown analogously, o 

A similar result is obtained from Lemma 8(b). 

T h e o r e m  5. Consider the sampled-data system described by Eq. (11). De- 
fine the finite-dimensional discrete system 

(64) 
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wh e re 

A A + 7  2B1 "* -2D1 "* C1 - -  D l 1 ( I  "I' 1 - _ D I I )  -1  

/~2 -- J~2 "~" ~f - 2j~l D1 ^* 1 (I  - 7-2/)1 1 /)~1) -1  b 12 

/~1/~.  --  B1 (I  - ~ -  2^*D11 Dll) - '  Bx ^*  

b ~  2 [ e l  /)12 ] - " ,  - D12 
J~12 ] �9 

Then for any control law fi - Kit the following are equivalent: 
(i) IC stabilizes the system (11) and J(K.) < 7, 

(ii) E stabilizes the system (64) and 

sup{  [11 11{  + I1 11  ] 
(65) 

Proof." Assume first that K: stabilizes both (11) and (64). From Lemma 
8(b), introduce the variables 

tbk "-- (I - 1,-2/)~1 b , , ) 1 / 2  (t~.)k __ tb~e ) 
(66) 

Then I l i l lg-    II IIN -II llg - 7 llwllN, 

;~k4-1 -- A~k  "4- /~2~k "1- B1 ( I - 7  -2/)~i/)11)-I/2~. 
The norm result of the theorem then follows by applying Lemma C.l(b)  in 
Appendix C. 

The stability part of the theorem can be shown in the same way as in 
Theorem 4. u 

It is interesting to compare the discrete characterizations of Theorems 
4 and 5 with other discrete representations of the H ~  sampled-data con- 
trol problem. Theorem 4 is similar to the characterizations obtained by 
game-theory type methods [11, 12, 23], cf. Section IV. The difference is, 
that  in the game-theory based methods, the Riccati differential equation 
(53) over a single sampling interval is imbedded as part of the mixed dis- 
crete/continuous Riccati equation (26) over the whole control time. The 
characterization in Theorem 5 is identical to the one obtained via a loop- 
shifting approach in [15], cf. Theorem 1. 

It is clear from the construction of the discrete systems of Theorems 4 
and 5 that they are closely connected. Bamieh and Pearson [15] give explicit 
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formulae for the matrices in Eq. (64). Here we give alternative formulae, 
derived for the system matrices in (60). The formulae are based on the 
optimal control characterization of Lemma 8(a). This approach results in 
very simple formulae, requiring only one matrix exponential. 

Recall the 2(n + m2) x 2(n + m2) matrix exponential II(t) defined by 
Eq. (46). Note that it follows from the structure of the matrices Ae and 
Bel that Hal and II12 can be partitioned accordingly as 

[ ] Iil111 Hl112 H12 -- (67) 
Iill - -  0 I ' 0 0 " 

L e m m a  9. The discrete systems of Theorems 4 and 5 are identical in the 
sense that 

D~ 2 [0 ,  D 1 2 ] -  jOi2 

The system matrices are given by 

d - -  I I 1 1 1 1 ( h )  - 1  / ) 2  - - A I I 1 1 1 2 ( h )  

b~ b'~ - - ~ A r I l ~ , ( h )  , 
d~]  �9 
b~2 IV1 -D12]- n2~(h)n~(h) -~ 

(69) 

where II(h) is the exponential matrix defined by Eq. (46) and the partition 
(6V. 

Proof'. The first part of the lemma follows from the construction of the 
discrete systems (60) and (64). For the second part, we need to evaluate 
the matrices in Theorem 4 in terms of the matrix II(h). First note that the 
matrix P(t) of Eq. (53) can be expressed in terms of the matrix II(.) as 

P(t)- I I 2 1 ( h -  t ) I I l , ( h -  t ) - '  , t (E [0, h]. (70) 

The matrix II(h) is the transition matrix from time h to time 0 of the 
system 

1 i02(t) -C'el Cel - A  e p 2 ( t )  " 

Introduce the variable transformation 

_[ i 0]  72) 
s(t) - P ( t )  I p2(t) " 
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Then we have from Eqs. (71)  and (53) ,  

Using the upper triangular structure, it is easy to see that 

where a,(. ,  .) is the transition matrix associated with A, + y - 2 B e 1 B d l P ( t ) ,  
and W e  is the controllability Gramian, 

From Eqs. (70) ,  (71)  and (72)  we have 

[ : [ : ; I  = [ - : ( O )  y ]  n ( h )  [ P f h )  y ]  [ : [ : ; I  
" 1 2  ] ( h )  [ : [ : ; I  . = ['tl nZ2 - nZ1n;n l2  (75)  

By Eqs. (73)  and (75) ,  

Invoking the structure of the matrices A, and B e l ,  we have 

It follows that the associated state transition matrix @ , ( h ,  0 )  and Gramian 
matrix W e  can be expressed in terms of the matrices A, B1 and 8 2  defined 
in Theorem 4 as 

The formulas to be proved follow from Eqs. ( 7 7 ) ,  (76) ,  (67) ,  and ( 7 0 ) .  

VI. A DUAL-RATE CONTROL PROBLEM 

An important generalization of the standard sampled-data control system 
described in Section I1 is the dual-rate control problem, where the sam- 
pling and hold elements operate at  different rates. The rate by which the 
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measured signal can be sampled may for example be limited, whereas the 
hold function can operate at a faster rate. A more complex situation still is 
the multirate control problem, where various outputs are sampled at differ- 
ent rates, and various control inputs are generated by hold elements which 
operate at different rates. Provided the sampling and control rates are syn- 
chronized, i.e. they are rationally related, the multirate control system is 
periodic, and the sampled-data dual-rate and multirate control problems 
can be solved by a generalization of the lifting technique described in Sec- 
tion III, in which the system is described in terms of an equivalent lifted 
discrete system [38, 39]. A possible drawback of this approach is, however, 
that  the period of the multirate system may be long, which results in a 
lifted system description having high order. 

In this section we study the Hoo-optimal control of dual-rate sampled- 
data systems, in which the sampling and hold elements operate at different 
rates. Instead of using the lifting technique, we apply the game-theory 
based approach of Section IV. The solution obtained in this way does not 
require that  the dual-rate system be periodic. Hence the rates of the sam- 
pler and hold elements may be asynchronously related. The H2-optimal 
controller for such asynchronous dual-rate systems has been obtained in 
[40], but the Hoo-optimal control problem does not appear to have been 
studied for this case before. 

In this section we consider the finite-dimensional linear plant 

z ( t )  - A z ( t )  + B l w ( t )  + B2u( t )  , z(O) - 0 

z( t )  - C , x ( t )  h- D 1 2 u ( t )  , t E [0, T] 

~)i - C 2 x ( i s )  + / ) 2 1 ~ 3 i  , i - 0, 1 , . . . ,  [T/s]  

(78) 

where T > 0 is the control horizon. The output in (78) is sampled at time 
instants {is}, where s > 0. It is assumed that  the control signal u(t) is 
generated by a zero-order hold device according to Eq. (3), with the period 
h. The sampler and hold device are assumed to have different periods, 
i.e. s r h. In the dual-rate sampled-data control problem, we consider 
discrete causal control laws {ilk} - K;({~i}), such that  ik is a function of 
only past measurements {~)i " is < kh}. 

The dual-rate Ho~ control problem consists of finding a discrete causal 
controller such that  the worst-case performance bound (6), J(K;) < 7, is 
achieved for a given positive constant 7- The problem can be solved using 
the approach of Section IV and taking into account the dual rate nature 
of the system. By Lemma 3, the dual-rate H ~  problem has a solution if 
and only if the Riccati differential equation with jumps (26) has a bounded 
solution on [0, T], and there exists a causal estimator {re,k} = .T({~)i}) 
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for the system (31), which achieves the performance bound (35). The ex- 
istence of such an estimator is given by the following lemma, which is a 
straightforward modification of Lemma 4 to the dual-rate problem. 

L e m m a  10. Consider the system 

it(t) - A ( t ) x ( t )  + e l ( t )v ( t ) ,  x(O) -- 0 

§ - - G , k z ( k h )  

Yi - C2x(ih) +/)21~3i , t t5 [O,T] 

(79) 

Assume that assumption (142) holds. There exists a discrete causal filter 
{§  .T({~)i}) such that 

2 72 2 I1§ §162 < [llvll~ + il~ll,=] (80) 

holds for all (v, i;) # (0,0), if and only if there exists a bounded symmet- 
ric positive semidefinite matrix N(t)  which satisfies the Riccati differential 
equation with jumps, 

]V(t) - f t ( t )N( t )  + N( t ) f t ' ( t )  + B l ( t ) [~  (t) , t # kh, is 

N(is)  - U ( i s - ) [ I  + C~([92119~21)-l(J2N(is-)] -1 , if is # kh 

N ( k h ) -  N(kh- )E-~  1 (81) 

2- ,  N ( k h - )  , if kh 7s is Ek - I - 7 -  Cl,kVl,k 

~k -- I + [0~(b21 ^tD21)-I 0 2 - 7 - 2 C , ,  0 1 , k ] N ( k h -  ) , if kh - is, 

N(O-) - O, t E [O,T], 

such that the matrices Ek, k -  0, 1 , . . . ,  [T/h], have only positive eigenval- 
ues. In this case, the estimator 

~ ( t ) -  A(z)~(t),  t # i~ 
&(is) -- &(is-) 

+ N(is-)C~[b21[Y21 + C2N( i s - )C~]- l ( y i  - C2&(is-)) 

~ , ~  - G , k ~ ( k h )  , ~ ( o -  ) - o 

(82) 

achieves the performance bound (80). 

It is useful to introduce the following relation between the closed-loop 
Hoo-optimal filtering result of Lemma 10 and the open-loop filtering result 
of Lemma 5 associated with the system (78). 

L e m m a  11. Assume that the Riccati differential equation with jumps (26) 
has a bounded solution S(t) on [0,7'] with boundary condition S ( T )  - O. 
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Then there exists a bounded symmetric positive semidefinite solution N(t )  
to the Riccati differential equation with jumps (81), where A,(t), [31(t), and 
Cl,k are defined by Eq. (32), if and only if the following conditions hold: 
(i) There exists a bounded positive semidefinite matrix Q(t) which satisfies 

the Riccati differential equation with jumps, 

(~ - AQ + QA' + 7-2QC~ C~ Q + B~ B~ , t E [is, is + s) 

Q(is) - Q( i s - )  - Q( is - )C~[D2,b~l  + C2Q(is - )C~]- lC2Q(is  - )  

Q(O-) - 0 , i - O, 1, . . . , [T/s] (83) 

(ii) p ( S l l ( t ) Q ( t ) )  < ,,f2 for all t e [0, T]. 

When these conditions are satisfied, the matrix N(t )  of Eq. (81) is 
given by 

g ( t )  - Q ( t ) ( I -  7 -2S l l ( t )Q( t ) )  -x.  (84) 

We can now state the main result of this section, which gives the 
solution of the dual-rate sampled-data H~  control problem. Let (I)(., .) 
denote the state transition matrix associated with the system matrix A(.) 
of the system (79), and define 

r ( t , t ' )  . -  (85) 

where .A(t) and/}2(t) are defined by Eq. (32). Introduce also the definitions 

kp(t) "-- max{k" k integer, kp < t} (86)  

and 
t(t) "-- max{kh( t )h ,k , ( t ) s } .  (87) 

We now have the following characterization of the solution to the dual rate 
Hoo-optimal control problem (cf. Theorem 3). 

T h e o r e m  6. Consider the sampled-data system defined by Eq. (78) and the 
hold function (3). Assume that assumptions (A1) and (A2) hold. There 
exists a discrete causal controller ft = Eft which achieves the performance 
bound J(K)  < 7 on [0, 7"] if and only if the following conditions are satisfied: 
(i) The Riccati differential equation with jumps (26) has a bounded positive 

semidefinite solution S(t)  on [0, T] with boundary condition S (T)  = O, 
(it} the Riccati differential equation (83) has a bounded positive semidefi- 

nile solution Q(t) on [0,T l, and 
(iii) p(S l l ( t )Q( t ) )  < 72 for all t E [0,T]. 
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Moreover, when conditions (i)-(iii) are satisfied, a controller which achieves 
the performance bound J(IC) < 7 is given by 

~ ( i s - )  - r  + r ( i s , t ( i s ) ) ~ k . ( , . )  , ~(o) - o 

~(is) - i~(is- ) 

+ N(is-)d;[D21D~21 + C 2 N ( i s - ) d ; ] - l ( y i  - (~2&(is-)) 

ic(kh) - eP(kh,t_(kh))ic(t(kh)) + r ( k h , t ( k h ) ) ~ k ~ ( k h )  

ilk - - $ 2 ) ( k h ) S i 2 ( k h ) } ( k h )  

(88) 

where N(t )  is given by Eq. (84). 

Note that the Riccati equations with jumps (26) and (83) can be re- 
duced to discrete Riccati equations according to Lemma 7. In analogy 
with Lemma 9, we can derive explicit formulas for the matrices (I)(., .) and 
F(.,.) which appear in the expression (88) for the U~-optimal dual-rate 
controller. For this purpose, consider the 2(n + rn2) x 2(n + rn~) exponen- 
tial matrix (46), and recall that the blocks Iill and II12 can be partitioned 
according to Eq. (67). 

L e m m a  12. For kh <_ t' <_ t < kh + h, the stale transition matrix (I)(t, t') 
associated with the system matrix A(t) and the matrix r ( t , t ' )  in Eq. (85) 
are given by 

~P(t ' t t ) -  I-[llll(At)-~ II1211(At)Sll(t') (89) 

F(t, t ' ) -  II~2(At)+ I I121~(At)S12( t ' )  

where At  "- t ' - t  and the matrices S~,(.) and S~2(.) are defined by Eq. (~7) 
and the partition (25). 

Proofi  The proof is analogous with Lemma 9. o 

VII.  O P T I M A L  S A M P L I N G  P R E F I L T E R  F O R  
H~ C O N T R O L  

In the above treatment, the sampling prefilter has been assumed given a 
priori, and is included as part of the system equations (1). It is, however, 
also of interest to study the problem of optimal sampling prefilter design 
in the context of Hoo control. In linear quadratic gaussian control, for ex- 
ample, it is known that the optimal sampling prefilter consists of a Kalman 
filter for the continuous-time plant [6]. 

In this section we consider the sampled-data H~ control problem in 
the case when the selection of the sampling prefilter is included as part of 
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the design problem. It is convenient to write the system equations in the 
form 

k(t)  = Ax( t )  + B1 w(t) + B2u(t) , x(O) = 0 

z(t) = Cl x(t) + Dx2u(t) (90) 

y(t) = C2x(t) + D21w(t) , t e [0, Nh] 

where the measurement disturbance, which is now a continuous-time signal, 
is included as part  of the vector w(t). We assume that  assumption (A1) 
holds and the matrices D21 and B1 satisfy 

D21D~1 > 0 (91a) 

D21B~ - 0 .  (91b) 

In contrast to the discrete measurement case, Eq. (2), it is now necessary 
to assume that  the matrix D~I has full row rank for the problem to be 
well posed. Assumption (91b) implies that  the plant and measurement 
noise are independent. This assumption is not restrictive, but is made for 
convenience, as it results in significantly simpler formulas. 

The controller now consists of a sampling prefilter to process the contin- 
uous output  y(t), and a discrete control law which acts on sampled outputs  
of the sampling prefilter. The control signal u is thus given by 

u = "HICS.T'y, (92) 

where 3 c : L2 ---+ L2 is a continuous-time causal sampling prefilter, S : L2 
12 is the sampling operator defined by 

= h > O, (93) 

/C : 12 --~ 12 is a discrete causal transfer function, and 7/ : 12 ~ L2 is the 
hold function (3), 

(7-/fi)(t) : fik ,t E [kh, kh + h). (94) 

Note that  the sampling operator S is an unbounded operator, whereas the 
hold function 7-/is a bounded operator. 

The performance bound is defined in analogy with Eqs. (5) and (6). 
The problem to be considered is thus to design a controller (92), such that  

sup{ Ilzll   } < (95) 
IIWllL  

where the supremum is taken over w r 0 in L2[0, Nh]. 
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In [41], a sampling prefilter was designed in a way analogous to the 
approach in Section IV, in which the Hc~-optimal state-feedback controller 
(27a) of Theorem 2 is first obtained, and using Lemma 3, an Hoo-optimal 
sampling prefilter § = S .Ty  (L2 ---* 12) is then constructed for the system 
(31). This procedure leads to a linear sampling prefilter which has the 
property that it is periodically time-varying, even in the infinite-horizon 
case when the plant is time-invariant. This is due to the fact that the esti- 
mated variable rk in (31) is discrete, while the filter operates in continuous 
time. It is, however, possible to represent the controller (92) in such a 
way that  the sampling prefilter .T becomes time-invariant in the stationary, 
time-invariant case [42]. Here this result will be derived by constructing the 
controller in terms of the adjoint system, and transforming the final result 
back to the original system. 

If there exists a controller of the form (92) which achieves the perfor- 
mance bound (95), then there exists a feedback law (92) with linear jc and 
K; which achieves (95) [41]. Moreover, the filter ~ is such that the operator 
S.T is bounded. We may therefore assume that the operators f" and K; are 
linear and $9 c is bounded. Write the system (90) in operator notation as 

[z]_ [ 11  12] [w]  96, 
Y ~21 ~22 IL " 

The closed-loop system (90), (92) then becomes 

(97) 

The performance bound (95) is then equivalent to 

11~11 + ~12( I - - ? ~ K S S G 2 2 ) - 1 ~ / C S ~ 2 1 1 1  < 7, (98) 

or, in terms of the adjoint, 

IIG[1 +G* (s~-)*/c* * G* ( S ~ ' ) * ] ( ~ * ~ * - 1  �9 21 ~ [ I -  ~ ] G~II < ~ (99) 

It is straightforward to show that the adjoint system 

g .  ~7. ( loo)  
12 22 7] 

has the state-space representation 

- v  - A'p + C~.  + C;,~,  p (Nh)  - 0 

q - Btlp + D~I 

s - B~p + D~2v , t E [0, NL]. 

(101) 
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The feedback law 

then gives 

71 = (S:F)* K*7-l*s (102) 

q [~11-t-~21(S'~)*K~ ~ [I ~22( ) K:*~-/ - 12] /1. (103) 

Hence the problem of finding a controller (92) such that (98) holds is equiv- 
alent to the problem of finding an anticausal feedback (102) such that  

Ilqll 2 - ~211~1122 < 0 ,  all  v # 0, (104) 

holds for the adjoint system (101). This problem may be solved along 
standard lines. First, we have the following result. 

L e m m a  13. Consider the adjoint system (101). Assume that there is a 
bounded symmetric positive semidefinite matrix P(t)  which satisfies the fol- 
lowing Riccati differential equation associated with (101), 

P(t)  - AP(t )  + P(t)A' - P(t)C~(D21D~1)-XC2P(t) 

+ 7 - 2 P ( t ) C ~ C l P ( t ) +  B1B~ ,t E [0, g h ] ,  

P(O) = O. (105) 

Then 

~0 N h ~0 N h (q'q - 72v'v)dt - (7 / -  ~7~ (r l - ~7~ 

_ ~ (~, _ ~ , o ) , ( ~ , _  ~,O)d t 

wh e re 

77 ~ (t) - - (D21D; ,  )-1 C2 P(t)p(t)  

v~ = 7-2C1P(t)p( t ) .  

(106a) 

(106b) 

Proof: The result is standard in dynamic game theory [33], and it can be 
shown in the same way as Lemma 2. t~ 

From Lemma 13 the following state feedback result for the adjoint 
system (101) is obtained. 

L e m m a  14. Consider the adjoint system (I01). There exists a linear anti- 
causal slate feedback law r I = .7:*p such that (104) holds for the closed loop 
if and only if the Riccati equation (105) has a bounded symmetric positive 
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semidefini te  solution on [0, Nh].  In that case, the state feedback law (106a) 
achieves the performance bound (10.4). 

Proof: This is a standard result in continuous-time H a  control theory [33, 
34], and it can be proven in the same way as Theorem 2. o 

Introduce the variable transformation 

q "-- (D21D~l)1/2(r/- 7/~ (107a) 

~, "-  v - v ~ . (107b) 

Then the adjoint system (101) can be written 

- p  - (A + 7 - 2 p ( t ) C ~ C 1 ) ' p +  C~D + C~r I , p ( i h )  - 0 

- (D21D~21)- l /2C2P( t )p( t )+ (D21D'21)l/2q (108) 

s - (B2 + 7 - 2 p ( t ) C ~  D12)'p(t) + Di2~. 

From Lemma 13, we have 

II@ll~ - v=ll~ll~ -Ilql]~ - "~211t']l~. 

Hence, the feedback law (102) achieves the performance bound (104) when 
applied to the adjoint system (101) if and only if the Riccati differential 
equation (105) has a bounded solution on [0, Nh], and it achieves the per- 
formance bound 

Ilqll~ - ~=!!~11~ < 0 ,  all V # 0, (109) 

when applied to (108). Now write (108)in operator form as 

[..][] __ ~11 ~21 /~ (110) 

With the feedback law (102), we have 

__ [~* ~* ~ ,  �9 --r (S,~E-),K~,,~, 1", ] q G~ + 2~(S~)* 7t [I 22 ]- G12 V. 

The performance bound (109) is thus equivalent to 

IGl1+ 2~ I-* G* ( s f ) * J c * u ' [ i -  -" J:* *] ~-* G22(s )/c*~r - G,211 < 7, 

or 

I10,~ + GI~(I- ~/CSYO22)-1'H/CSTO2xII < 7. (111) 
Now consider the adjoint of (110), 

y ~22 u " 
(112) 

co
nt

ro
len

gin
ee

rs
.ir



248 HANNU T. TOIVONEN 

Then, the problem of finding a feedback (102) such that the performance 
bound (104) holds for (101)is equivalent to finding a feedback (92), 

u = 7-IKSFy, 

such that the performance bound (111) holds for the adjoint system (112), 
or equivalently, 

I1 11  - 7211~11~ < 0 ,  all t~ r O. (113) 

Now, the system (112) has the state space representation (cf. Eq.(108)) 

;k(t) - (A + 7-2 P(t)C~ Cl ) YC(t) -k- P(t)C~(D21D'2x )- ~/2~b(t) 

+ (B2 + 7-2P(t)C~Da2)u(t) , ~(0) - 0 

5(t) = C15:(t)+ DleU(t) 

y(t) - C25:(t)+ (D21D~21)1/2 ff)(t). 

(114) 

Note that a knowledge of the output y(t) implies that the disturbance tb(t), 
and hence the state 5~(t), is known, since 

tb(t) - ( D 2 1 D ~ I )  -1 /2  ( y ( t )  - C 2 x ( t ) ) .  

The problem of finding a controller (92) such that (113) holds for the system 
(114) thus reduces to a sampled-data Ho~ problem with complete state 
information for the system (114). This problem in turn can be solved 
according to Theorem 2. 

To sum up, the sampled-data Hoo problem with optimal sampling pre- 
filter can be characterized according to the following lemma. Introduce the 
matrices 

f i e ( t ) ' - [  A + 7-2P(t)C~C1 B2+ 7-2p(t)C~Dx2] 
0 0 ' 

[1el(t) "--[ P(t)C~2(D21D~21)-1/2 ] 0 , G'el "-[Cx D12]. 

(115) 

L e m m a  15. Consider the system (90). There exists a causal controller 
(92) which achieves the performance bound (95) if and only if the following 
conditions are satisfied: 
(i) there is a bounded solution P(t) on [O, gh]  to the Riccati equation 

(105), 
(it) there is a bounded matrix 

S ( t )  "-  $22 ( t )  , t E [0, Nh), (116) 
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which satisfies the following Riccati differential equation with jumps, 

- S ( t )  - .4'e(t)S(t) + S( t ) f te( t )  + 7-2S(t ) f3~l( t )B'el ( t )S( t )  

+ ClelCel, t r kh, 
S(kh-)-  ['ll(kh-) 0] 

0 0 ' 

S~  (kh-  ) - S~  (kh) - S~(kh)Sf~ x (kh)S~(kh) ,  

S ( U h - ) - O  , k -  N - 1 , . . . , a , o .  

(117) 

Moreover, when conditions (i) and (ii) are satisfied, the performance 
bound (95) is achieved by the controller 

x(t) - (A + 7-2P( t )C[Ct )k ( t )  + (B2 + 7-2P(t )C[D,2)u( t )  

+ P(t)C~(D2, D~2,)-' (y(t) - C~iz(t)) , ~(0) - 0 

fik - -S2~(kh)S'12(kh)x(kh) , k - O, 1, . . .  ,W - 1 

- , t e [kh,  kh  + h) .  

(118) 

Note that the controller (118) has the form (92). In analogy with 
the sampled-data control problem described in Section IV, the controller 
(118) can be expressed in terms of the sampled-data state-feedback problem 
solution for the system (90) (Theorem 2) and the continuous-time filter of 
Lemma 14. The following theorem is analogous with Theorem 3. 

Theo rem 7. Consider the system (90). A control law (92) which achieves 
the performance bound (95) exists if and only if the following conditions 
are satisfied: 
(i) The Riccati differential equation with jumps (26) has a bounded solu- 

tion S(t) on [0, Uh), 
(ii) the Riccati differential equation (105) has a bounded solution P(t) on 

[0, Nh),  and 
(iii) p(Sal(t)P(t))  < 72 for all t E [0, Nh).  

Moreover, when the conditions (i)-(iii) hold, a controller which achieves 
the performance bound (95) is given by Eq. (118), where 

S ( t ) -  S ( t ) ( I - 7 - 2  [ P(t)O 00] S(t))-  

In analogy with Theorem 3, the infinite-horizon, stationary case may be 
obtained as a limiting case from Theorem 7 and the corresponding station- 
ary stabilizing solutions of the Riccati equations (47) and (105), assuming 
stabilizability of the pairs (-A, B2) and (A, Ba)in (11)and (90), respectively, 
and detectability of the pairs (C~,A) and (CI ,A) in  (90), cf. [42]. 
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VIII .  R O B U S T  S T A B I L I T Y  OF S A M P L E D - D A T A  

S Y S T E M S  

In analogy with the standard continuous-time and discrete-time H~ prob- 
lems, the sampled-data Ho~ problem studied in the previous sections is 
closely related to the robust stability issue. The robust stability problem 
in sampled-data control has been studied in a number of papers. Chen 
and Francis [24] obtained a sufficient stability condition for additive plant 
uncertainties using a small gain argument. Sivashankar and Khargonekar 
[25] obtained sufficient and necessary stability conditions for the class of lin- 
ear and time-varying uncertainties. Sufficient and necessary conditions for 
linear time-invariant uncertainties have been obtained for SISO system by 
Bai [43] and Dullerud and Glover [44], and in the general case by Dullerud 
and Glover 45]. 

In this section sufficient and necessary conditions for robust stability 
of sampled-data systems are given in terms of an Hoo-type performance 
bound. The conditions given in [25] are shown to be sufficient and necessary 
also in the case when the uncertainty is assumed to belong to the set of 
causal time-invariant (nonlinear) operators. 

,, 

H 

A [ 

w j  

6 

f K L 
F 

I 
s i 

Fig. 2. Feedback connection for robust stability analysis. 

Consider the sampled-data feedback system with plant uncertainty 
shown in Figure 2. A wide class of plant uncertainties can be rearranged 
into the form shown in the figure [25]. Here G denotes the nominal time- 
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invariant continuous-time plant assumed to be described by Eq. (1), S is 
the sampler described by Eq. (93), K: is the discrete controller, Eq. (4), and 
7 / i s  the hold function described by Eq. (94). The operator A : L2 ~ L2 
represents a plant uncertainty assumed to belong to some specified set. The 
feedback system in Figure 2 is defined to be robustly stable in the L~-norm 
if the nominal system is internally asymptotically stable and the operator 
taking (Ul,U2,lI3,U4) E 1 2 0 1 2 0 L 2 0 L 2  to (el,e2, e3, e4) E 120120L~OL2 
is bounded for all A in the specified uncertainty set [25]. 

Here we will present sufficient and necessary conditions for robust sta- 
bility of sampled-data systems for two different uncertainty sets in terms of 
a related Hoo-type performance bound. The first class consists of bounded, 
linear h-periodic causal operators. For this uncertainty set sufficient and 
necessary conditions were obtained in [25]. The second class to be con- 
sidered is the class of bounded, nonlinear time-invariant operators. The 
sufficient and necessary robust stability conditions presented here for this 
uncertainty set is new. 

Introduce the notation Tz~, for the closed-loop operator L2 ---+ L2 tak- 
ing w to z in Figure 2, 

Tzw := Gll + G127-/K~(I - SG227-/)u)-lSG21 �9 (119) 

T h e o r e m  8. Consider the sampled-data system in Figure 2. The following 
statements are equivalent: 
(a) The closed-loop system in Figure 2 is robustly stable for all linear, h- 

periodic and causal A :  L2 ~ L2 such that IlzXll < a, 
(b) the closed-loop system in Figure 2 is robustly stable for all causal, time- 

invariant A :  L2---* L2 such that IIAII < 1, 
(c) the nominal closed-loop system (A = O) in Figure 2 is internally 

asymptotically stable and IIT~II _< 1. 

Proof." (a) r (c): This result proved in [25]. 
(c) :=> (b) : The result follows in a straightforward way from the small gain 
theorem, cf. [25]. The signals el, e2, e3 and e4 in Figure 2 are given by 

el = K~e2 + Ul 

e2 = SG227-lel + SG21e3 + u2 

e3 = Ae4q-u3 

e4 = G127"le 1 + G1 le3 + u4. 

(120) 

Solving for el-e4 in terms of Ul- -U  4 gives 

el = M1 (I + K.SG21(I - ATz,.)-lAG127-lM1)Ul 

+ M1K~(I + S G 2 1 ( I -  ATz,.)-lAG12"HM1K.)u2 
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+ M~ IESG2~ (I - AT:w )= ~ u3 + M~ K.SG2~ (I - ATzw )- x Au4 

+ M:(I + Sa:~(I - ,~T:=)-'AC,:UM, JC)u: 

+ M28G21( I -  ATzw)-lu3 + M28G21( I -  ATzw)-IAu4 
~ = ( i -  AT~=)-IAa~2~tM,~, + ( I -  AT~=)-~Aa12UM~ICu~ 

+ ( I -  AT~w)-~u3 + ( I -  ATzw)- lAu4 

e4 = ( I -  TzwA)-aG12~M~ul + ( I -  TzwA)-~G12?-lM~l~u2 
+ ( I -  T~=A)-~T~=ua + ( I -  T~=A)-'~,~. 

(121) 

where Mi := (I-KYSG227/) -1 and M2 := ( I -  ,.qG227"/K:) -1. By internal 
stability of the nominal system, the operators Mi and M2 exist and are 
bounded. Likewise, internal stability of the nominal system implies that the 
operators MIK~, M1KSG21, M23G22"H, M2SG21, G127"lM1, and G127tMllC 
in (121) are bounded. Moreover, IIT~=II _< 1 and II~Xll < 1 imply that 
( I -  ATz~) -x exists and is bounded. Hence the robust stability result (b) 
follows from (c). 
(b) ~ (c) : Internal stability of the nominal system is obviously a necessary 
condition for the robust stability property (b). In order to prove that the 
norm bound in (e) is also a necessary condition, it will be assumed that 
][T~]] > 1, and a causal nonlinear time-invariant A with [IAi[ < 1 will then 
be constructed such that the system in Figure 2 is unstable. 

Our construction will be somewhat similar to one used by Poolla and 
Ting [46] in a study of robust stabilization with nonlinear time-varying 
controllers. Introduce the truncation operator IIt, defined as the orthogonal 
projection from L2[0, oo) onto L2[0, t]. Let L2e[0, oo) denote the extension 
of L2[0, oo) [47], such that for w E L2~[0, oo), IItw E L2[0, t] for all t > 0. 
Assuming that llTz,~]] > 1, there exist w E L2~[0, oc) and e > 0 such that 

lim IlII,w[[ = oc, (122) 
t---* oo 

and 
lira " " [lIItTz:w[[ > 1 +  e. (123) 

, - ~  IIn,wll 
In order to show this, one can use the fact that a similar result has been 
shown to hold in the /2-norm for discrete time-varying systems [46]. The 
continuous-time result (122), (123) then follows by approximating the L2- 
signals by sequences of step functions and the operator Tzw by a corre- 
sponding discrete operator, and using the fact that the space of piecewise 
constant functions is dense in L2. By Eq. (123), there exists to > 0 such 
that 

[]IItTzwwl[ > 1 + e, all t > to. (124) 
I[n,~il 
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Define the signal ~._{0, t < t o  
w, t > t o  (125) 

and let y "- Tz~w. For any v E L2e[0, ec), introduce 

p(v) " - i n f { t  �9 v(t) :f- 0}, (126) 

and 

and define 

, ( v )  . -  p (v )  - p ( v ) ,  ( 127 )  

t(v) " - inf{ t  >_ p(v) ' l lv( t ) l l  < I l y ( t -  s(v))ll }. ( 28) 

Now define the operator A according to 

A(v) "- II,(,)(7,(v)O) (129) 

where % is the translation operator; (% O)( t ) :=  ~ ( t -  s). By construction, 
the operator A is nonlinear, strictly causal and time-invariant, and IIAII _~ 
1 / ( l + e )  < 1. Moreover, we have ( I -  AT ,  w)w = w -  s = w -  (v = 
IItow. Hence ( I -  AT~to)-llI tow = w, and since IIllt0w[I < oc, while w by 
assumption has unbounded norm in L~[0, c~), cf. Eq. (122), it follows that 
the operator ( I -  ATzw) - i  is unbounded. Hence, in view of Eq. (121), the 
system in Figure 2 does not satisfy the robust stability property (b). t~ 

R e m a r k .  Note that by the small gain theorem, the norm condition in 
Theorem 8(c) is sufficient conditions for robust stability for general norm- 
bounded uncertainties with llAII < 1. This has been used to obtain a suf- 
ficient condition for robust stability for various uncertainty classes, cf. for 
example [24, 26, 48]. Theorem 8 shows that the norm condition (c) is also 
a necessary condition in the classes of linear h-periodic and nonlinear time- 
invariant uncertainties, respectively. It appears hard to make the result of 
the theorem more strict. For linear time-invariant uncertainties, the con- 
dition (c) is in general conservative. For this case, sufficient and necessary 
conditions for robust stability have been derived in [43, 44, 45]. 

I X .  C O N C L U S I O N S  

For sampled-data systems, a natural generalization of the standard Hoo 
control problem consists of the minimization of the L2-induced norm of 
the closed loop. This problem is related to the robustness and worst-case 
performance of sampled-data control systems. The sampled-data Hoo con- 
trol problem has been completely solved for a range of situations, including 
various types of sampling and hold elements, different sampling rates, etc. 
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In this contribution an overwiew of various approaches to solve the 
sampled-data control has been given. We have also shown (Section V) that  
various discretization methods which preserve the induced norm can be 
treated in a unified way, thus indicating that  there are connections between 
different solution methods. Some special topics have also been discussed, 
including dual-rate control and optimal sampling prefilter design. For the 
sake of clarity, it has been assumed throughout that the hold element is a 
fixed zero-order hold function. It is, however, straightforward to generalize 
the procedures to generalized hold functions [20, 21, 26], or the case when 
the hold function is not given a priori, but is part of the design problem [18, 
20, 21, 32]. Another possible generalization of the approaches discussed here 
is the multirate control of sampled-data systems. The multirate sampled- 
data control problems can be solved via the lifting technique approach 
described in Section III [38, 39]. It would also be interesting to apply 
the approach described in Section VI to more general multirate control 
problems. 

A P P E N D I X  A 

Proof of Theorem 2: [Sufficiency:] Assume that  the Riccati equation (26) 
has a bounded solution on [0, N h). Let fik - ft~,k - 0, 1 , . . . ,  N -  1. Then 
w -  w ~ is given by 

~(t) - A x ( t ) -  B~S~) (kh )S~(kh )x (kh )+  B~ w(t), x(0) - 0 

( w -  w~ - - 7 - 2 B ' [ S 1  (t)x(t) S12(t)S~21(kh)S~2(kh)x(kh)] + w(t) 1 1 - -  

t E [kh, kh + 1) , k = 0, 1 , . . . , N  - 1. 

It is easy to see that  there exists c > 0 such that  I [ w -  w~ >_ cl[w[I [23]. 
Hencewe have from Lemma 2, 

Ilzl 2 72 2 _ 7 2  o 2c 2 - llL~to,Nhl <-- Ilwll~ to,Nhl - -  [ L 2 [ O , N h ]  - -  W - - ' ) '  2 

< 0 ,  if w :p- 0. 

The state feedback law (27a) thus achieves the performance bound (28). 
[Necessity:] In order to prove that the Riccati equation (26) also provides a 
necessary condition for the performance bound (28) to be achieved by state 
feedback, assume that  there exists a state feedback law fi = K({x(kh)})  
such that  the inequality (28) holds. It will be shown that the Riccati 
equation with jumps (26) has a bounded solution on [0, Nh). Consider on 
the sampling interval [ k h -  h, kh) the system 

191 ( t )  __ A e  "f B e l  B e l  - - 
ib2(t) -C~1C~1 -A'~ p2(t) ' p 2 ( k h - ) - S ( k h  )pl(kh ). 

(A.1) 
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Introduce the state transition matrix associated with (A.1), 

p2(t) cb21(t, kh-)  p l ( k h - ) ,  Cb2x(kh-,kh-) S ( - )  " 

If the transition matrix O11(t,kh-) is nonsingular on [ k h -  h, kh), then 
the matrix S(t) "- dp~l(t, kh-)O-[l:(t, kh-  ) is a solution to the Riccati dif- 
ferential equation (26) on [ k h -  h, kh), and p2(t) = S(t)pl(t). To prove 
the required result, it is thus sufficient to show that  the transition matr ix  
O11(t, kh- )  is nonsingular on [ k h -  h, kh) for k = N, N -  1 , . . . ,  1. 

Suppose on the contrary, that  for some k* E { 1 , . . . , N } ,  t* c= [k*h-  
h,k*h) is the largest time on [O, Nh) such that  4pll(t*,k*h-) is singular. 
Then there is a nontrivial p: (k* h - )  such that  

px(t*) - r k* h- )p: (k* h- ) - O. 

Then p2(t) ~ 0 on [t*, k'h), since if p2(t*) - O, it would follow from (A.1) 
that  pl( t )  - p2(t) - 0 on [t*, k 'h ) ,  which contradicts our assumption on 
pl. Define the signal 

0 , 0 < t < t *  
- - 2  , (t , t *  k* ~ ( t )  . -  "r B~:p2 ) <_ t < h 

w~ , k*h < t < Nh. 
(A.2) 

The signal t~ is not identically zero on [t*,k*h), since if B~elp2(t) = 0 on 
[t*,k*h), then by (A.1), i01 = Aepx, and since pl(t*) = 0 by assumption, it 
would follow that  pl( t )  = 0 on [t*,k*h), which again leads to a contradic- 
tion. Hence tb(t) ~ 0 on [t*, k 'h ) .  

Now suppose fi is the control signal generated by the feedback law 
it = lC({x(kh)}), when w = t~. Then x(t) = 0 for t E [0, t*], and fik = 0 
for k < k*, because z(0) = 0 and t~(t) = 0, t < t*. With tb(t) given 
by (A.2), pl and [x', u']' in (25) satisfy the same differential equation on 
[t*,k*h). Since p:(t*) = [x'(t*), u'(t*)]', it follows that  pl( t )  = [x'(t), u'(t)] '  
on [t*,k*h). Direct calculation gives 

d 
d-~ ([~', ~'] 'p~) - - z ' z  + r~c~'~. 

Integrating from t* to  k* h,  and using the relation p2(t) - S ( t ) p l ( t )  and the 
boundary value for S ( k * h - ) i n  (26) gives 

j:" ~t k'h d [ z ' z  - 7 2 ~ ' c v ] d t  - . ~([z', u ' ] ' p 2 ) d t  

-- x'(k*h)Sx1(k*h-)x(k*h) 
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and we obtain 

Ilzl ~ ~ ~ ~~'~ [L2[O,Nh] I1~11 - --  L2.[O,Nh] - -  �9 [z'z - 72 tb't~] dt 

+ [ z ' z - ~ ' ~ l d t  
"h 

k ' h  N - 1  

- f t" [ z ' z - 7 ~ w ' ( v ] d t  + E (irk - i t~) 'S22(kh)( f tk  - itS) 
k=k* 

+ x ' ( k * h ) S 1 1 ( k * h - ) x ( k ' h )  
N - 1  

= ~ ( ~  - ~ ; ) ' S ~ ( k h l ( ~  - ~ )  >_ o. 
k=k*  

Here we have used the identity in Lemma 2 to express the integral in the 
interval [k 'h,  Nh].  Since t~ -r 0, this contradicts the assumption that there 
exists a feedback law which achieves the inequality (28). [] 

A P P E N D I X  B 

Proof  of  L e m m a  4" The result can be proved by taking the estimation 
problem into an equivalent standard discrete H ~  estimation problem. Let 
if(., .) denote the state transition matrix associated with the system matrix 
5,(.). Then we have from Eq. (36), 

f 
k h + h  

z ( k h  + h) - f i k z ( k h )  + 3p(kh + h, r ) /}~(r)v(r)dr  (B.1) 
d k h  

where Fk "-  ~ ( k h + h ,  kh) .  Introduce the finite-dimensional discrete system 

�9 (kh + h) - ~ ( k h )  + / ~ w k ,  ~(0)  - 0 

§ - ~ , k ~ ( k h )  (B.2)  

flk - C 2 x ( k h )  + D21i~k, k - O, 1, . . . , g 

where/~k is defined according to 

f k  k h + h  [3k[3' k - d~(kh + h , A ) B I ( A ) B ~ ( A ) ~ ' ( k h  + h, A)dA. (B.3) 
h 

By Lemma C.l(b), the discrete filter § - .T~) achieves the performance 
bound (37) for the system (36) if and only if it achieves the performance 
bound 

2 72 2 2] all (tb ~) r (0 0) (B.4) I1§  § < [11,~11,~ + I1~11,~ , , , , 
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for the discrete system (B.2). The problem of finding a discrete filter which 
achieves the bound (B.4) is a standard discrete Hoo filtering problem, the 
solution of which is known in the literature. By the results on discrete Hoo 
estimation described in the literature [33, 49], there exists a discrete filter 
~e = U9 which achieves the performance bound (B.4) for the system (B.2) 
if and only if there exists a solution to the discrete Riccati equation 

Uk+l -- z#kUkP-~-I/>~ +/3k/3~, 

Y:,k -- I + [C~(/)21b~a)-l(72 - 7-2C~,kC'l,k]U~, (B.5) 

N 0 - 0 ,  k -  0 , 1 , . . . , N ,  

such that 

^,  -1  - N k C l , k  > 0 , k -  O, 1, .  . . , N ,  7 2 I -  G'l,k[I + Nk(~(b21021) 02] 1 -, 

or equivalently, that the matrices Ek, k - 0, 1 , . . . ,  N, have only positive 
eigenvalues. When the Riccati equation (B.5) has a solution, a filter which 
achieves the performance bound (B.4) is given by 

~ ( k h  + h - )  - F k ~ ( k h ) ,  ~(0)  - 0 

5:(kh)  - x ( k h -  ) (8.6) 
^ t " t  - 1  + + - 

§ - C l , k3c (kh )  , k - O, 1 , . . . , N .  

The proof is completed by observing that (B.5), (B.6) can be written in the 
form (38), (39), with N ( k h - ) " -  N k .  o 

A P P E N D I X  C 

The following lemma is used in Theorems 1, 4 and 5. The result has been 
used in a number of papers on sampled-data control, and various proofs it 
can be found in [15, 22, 23, 26, 50]. 

Here we consider linear operators ~: R n ---+ L2[0, h] and F: L2[0, hi 
R n. Let 7~(~) := ~ R  n denote the range space of ~. Then the output 
space L2[0, h] of �9 can be decomposed as L2[0, h] = T~(~) • 7~(~) • With 
respect to this decomposition, @ has the representation 

�9 - [r  
0 

(c.1) 

Similarly, let A f ( F ) " -  {w C L2[0, h] �9 Fw - 0} denote the null space of 
F. Then the initial space L2[0, h] of F can be decomposed as L2[0, h] - 
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Af(r)  • q~ Af(I'). With respect to this decomposition, I' has the representa- 
tion 

r - [~  0] �9 ~r  • �9 N ( r )  -~ R". (C.2) 

Since the spaces T~(@) and N'(I') • are finite-dimensional, the operators 
and f' in the decompositions (C.1) and (C.2) have finite-dimensional matr ix 
representations. 

L e m m a  C.1.  (a) Consider the linear operator @: R n ---. L2[0, h]. The lin- 
_ 

ear operator ~ in the decomposition (C.1) has a finite-dimensional matrix 
representation M defined according to 

M ' M - @ * @  (C.3) 

where ~* denotes the adjoint operator. 
Moreover, if �9 is given by 

( ~ ) ( r  c ( ~ ) e ( ~ ,  o ) ~ ,  ~ e [0,h], (C.4) 

where r .) is a state transition matrix, and the matrix C(r)  is a piecewise 
continuous bounded function of r, then 

jfo h M ' M  - ~'()~, 0)C'(,~)C(A)O(,~, 0)d,~. (c.5) 

(b) Consider the linear operator F" L2[0, h] ---. R n. The linear operator F in 
the decomposition (C.2) has a finite-dimensional matrix representation N 
defined according to 

N N ' -  r r * .  (C.6) 

Moreover, if r is given by 

h 
Fw - fo O(h, r )B(r )w(r )dr ,  (C.7) 

where ~(.,  .) is a state transition matrix, and the matrix B(r )  is a piecewise 
continuous bounded function of r, then 

h 
N N '  - fo ~(h, ,~)B(A)B'(A)~'(h, ~)dA. (C.8) 

Proof: (a) The operator ~* ~" R ~ --. R n has an n x n matrix representation, 
and hence there exists a matrix M which satisfies (C.3). The matr ix M is 
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a matrix representation of the operator ~ if and only if for any xa,x2 in 
/~ ,  

M ~ Mx2 < ~t~Xl, ~t~X 2 > - -  X 1 

But this follows from the definition of M, since 

' M 'Mx2  < ~I/Xl,  ~I/x 2 > - -  < X l , l I / * / I / x 2  > - -  x 1 

The second claim follows from the fact that the adjoint is given by 

- foh ep'(r, O)C(r)w(r)dr.  ~t* w 

(b) The linear operator r has a representation (C.2) if and only if the adjoint 
operator F* :R  n ~ L2[0, h] has a representation 

r "  - - R -  x ( r )  �9 

The result then follows by applying (a) to the adjoint F*. n 
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I. INTRODUCTION 

Active controls are becoming an increasingly important means to enhance 

the performance of aircraft. Because the process of designing multi-input/multi- 

output (MIMO) digital control laws uses relatively untested theoretical methods, 

it is crucial to evaluate the performance of desigaed control laws through exper- 

imentation. In this chapter performance of the control is measured in terms of 

stability and robustness. A stable system is one in which all the poles of the 

system are on the left-hand side of the complex plane and robusmess means the 

tolerance of system stability to plant uncertainty, which can be measured in 

terms of minimum singular values or gain and phase margins. The results of 

the performance evaluations can then be used to help evaluate the design 

methods. For classical single-input/single-output (SISO) control systems, 

analysis tools such as Nyquist diagrams are often used to determine the stability 

and robusmess of the closed-loop system. For MIMO systems, Nyquist 

techniques are inadequate. Consequently, analytical methods based on the use of 

singular values of return-difference matrices at various points in the control loop 

were developed (references [ 1] - [3]) to examine the stability and robustness of a 

control system (SISO or MIMO). 

CONTROL AND DYNAMIC SYSTEMS, VOL. 71 263 

co
nt

ro
len

gin
ee

rs
.ir



264 CAROL D. WIESEMAN ET AL. 

For examining the stability and robusmess of digital control systems during 

testing, the plant is excited by a known input. Experimental time-history data 

consisting of the excitation and system responses (both plant and controller out- 

puts) are acquired. These time history data are then transformed to the frequency 

domain using Fast Fourier Transform (FFI') methods so that transfer matrices 

and the return-difference matrices can be computed. Singular values are then de- 

termined to obtain measures of system stability and robusmess. The steps from 

acquiring the data through interpreting the singular values comprise a methodol- 

ogy referred to herein as Controller Performance Evaluation (CPE). The 

methodology is genetic in nature and can be used in many types of multi-loop 

digital controller applications including flight control systems, digitally 

controlled spacecraft structures, and actively controlled wind-tunnel models. 

These CPE methods were employed during recent actively controlled wind-tunnel 

testing to check the stability of the closed-loop system to reduce the risk of dam- 

age to the wind-tunnel model and the tunnel. 

The present chapter describes the implementation of the CPE capability, 

structure of the data flow, signal processing methods used to process the data, 

and the software developed to generate transfer functions. A brief development of 

the equations used to obtain the open-loop plant, controller transfer matrices, and 

return-difference matrices are given. Results of applying the CPE methodology 

to provide on-line evaluation of digital flutter suppression systems tested on the 

Rockwell Active Flexible Wing (AFW) wind-tunnel model (references [4]-[6]), 

using the AFW digital controller described in reference [7], are presented to 

demonstrate the CPE capability. 

II. NOTATION AND DEFINITIONS 

I identity matrix 

deft-) determinant 
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controller output transfer matrix 

plant output transfer matrix 

maximum singular value 

minimum singular value 

frequency 
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Subscripts 

A 

MI 

MO 

additive uncertainty 

multiplicative uncertainty at plant input point 

multiplicative uncertainty at plant output point 

excitation 

controller output 

plant output 

Sub-subscripts 

signal added at the command location 

signal added at the sensor location 

III. CONTROLLER PERFORMANCE EVALUATION 

Block diagrams of the basic open- and closed-loop control problems with 

negative feedback are presented in Figure 1. The plant to be controlled is repre- 

sented mathematically by a frequency domain transfer matrix, G, with ns outputs 

and na inputs, where ns is the number of control-law-input sensor measurements 

and na is the number of control-law-output actuator commands. The controller 

is represented mathematically with a transfer matrix, It, with ns inputs, and na 

outputs. 
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The excitation is used to derive transfer functions between outputs and 

inputs in either the open- or closed-loop system. The open-loop system is one 

in which either the control law outputs (commands required for controlling plant 

response) are not fed back into the system as in figure 1 (a), or the sensors are not 

fed back into the controller as in figure 1 (b). 

Uc 1 + . .  , ~_~ 

Uc2 ~ Plant t l  o ~  Plant ~.. ,~Dq~[ 

Ucna" ~ G y ~ l  / "[.~---[ G ~ l L Y 2 L Y n s  

XnalX2 ~ _ _ . _  C o n ~ o l l e r ~  yns Xna[ ~C~ Olle !!!s 

a) ()ix'n-loop actuator excitation b) Open-loop sensor excitation 

ucl ~ 
- + Plant 

Ucna x 2 i x i ~  Yl 
Xna Con~loller 

c) Closed-loop actuator excitation 

r "  Plan, L__._. 

Yns Xnal'[x  - -LL 
[ ~Controller ~ ~ . .  us l 
I ~  H -" -+ + i us2 

l - --~ ".~--- Usns 

d) Closed-loop sensor excitation 

Figure 1. Controller- plant diagrams depicting the control problem with 
negative feedback. 

Figures 1 (a) and (c) depict the case when the external excitation, u, used to 

excite the system is added at the plant input point. Specifically, in l(a), the i'th 
plant input, Uci, is equal to u and the others are zero. In the closed-loop system, 

1 (c), the i'th input, Uci-Xi, is equal to u-xi, and the others are -xi. When there 

are more sensor inputs than control outputs, then the excitation is added at the 

controller input point as depicted by figures 1 (b) and (d). Specifically, the i'th 
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input to the controller, Usi, is equal to u and the others are zero in the open-loop 

case. In the closed-loop case, 1 (d), the i'th controller input, Yi + Usi, is equal to 

Yi + u and the others are yj. In both cases 1 (c) and (d), the negative of the 

controller outputs are input to the plant 

When the number of sensors is equal to the number of control outputs, 

excitations can be applied at either location. 

Controller performance evaluation is a two-mode, four-step process. The 

two modes are open- and closed-loop, and each mode consists of two steps. The 

process is outlined conceptually for the flutter suppression system application as 

follows: 

A. OPEN-LOOP 

Step 1: 

Step 2: 

Verify the controller, H, by comparing with the designed control 

law transfer matrix. 

Predict closed-loop performance based on the open-loop performance 

to determine whether the control law will stabilize or destabilize the 

system when the loop is closed. 

B. CLOSED-LOOP 

Step 1: 

Step 2: 

Determine the stability margins of the closed-loop system during the 

closed-loop testing by evaluating the singular values of return- 

difference matrices, (I+GH), (I+HG), and H(I+GH) "I. 

Determine open-loop plant stability during the closed-loop testing to 

determine the open-loop flutter boundary. co
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CPE COMPUTATIONS AND PROCEDURES 

The CPE computations involve generating frequency domain transfer func- 

tions of plant outputs, y, and control law feedback commands, x, due to an exci- 

tation, u. Fast Fourier Transform techniques are used to convert time-domain 

data to the frequency domain and transfer functions are calculated from the corre- 

sponding frequency-domain functions. The controller, H, and the return-differ- 

ence matrices and their singular values are then calculated using matrix opera- 

tions. The computations are described in the following paragraphs. Figure 2 is a 

flowchart which outlines the CPE procedures. 

A. TRANSFER FUNCTION CALCULATIONS 

The method used to compute transfer functions is described in reference [8]. 

The method therein was extended in the present study to include additional data- 

windowing capabilities and overlap averaging. Although most control designers 

used Hanning windows to help smooth data when evaluating their control laws 

during actual testing, windowing capabilities also include ramp-in/ramp-out, co- 

sine taper, and cosine bell. The overlap-averaging capability allows long time 

histories to be partitioned into shorter time spans, taking advantage of long peri- 

ods of time history data to average out noise thereby increasing the statistical 

quality of the data sample. A zero-fill capability is available to zero fill time 

history data to an exact block-size needed for FFF computations. The overlap- 

averaging capability with zero-fill provided optimum use of the experimental 

time history data which were obtained. The controller-output transfer matrix, 

X u, is the matrix of ratios of the cross-spectra, Sux, of the controller outputs, 

x, due to the excitations, u, to the auto-spectra, Suu of the excitations, u; all 

spectra are obtained from the FTT's of the time histories. Each i,j element of 

the transfer matrix is given by equation 1. 
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Repeat for 
each 
excitation 

, , ,  , , , 

Load time history data [ 

, , T ,,|=, , 

CalculateFFFs and ! 
transfer functions . 

, T |, 

Combine transfer functions 
Save in MATLAB format 

,, T , , , 

MATLAB CPE COMPUTATIONS 

Load open- or closed-loop transfer function matrices 
Yu and X u 

,, , T 

[ Select frequency range ! 

OPEN-LOOP 

i Compute: 
H, GH ,, 

l 

Key: 
HG =Open-loop Compute: 

plant output o'(I+GH) 
tratt~fer o(I+HG) 
function det(l+HG) 
matrix 

GH=Open-loop o(H[I+GH] -1) 
.,. 

CLOSED-LOOP 

. . T , 

Compute: 
G,H,GH and HG 

plant input ]~ 
trar~fer Plot: 
function min/max ~J(I+HG) 
matrix minimax ~(I+GH) 

det(l+HG) 
1/~max(H[I+GH]-l) 

Save open- ! 
loop i 
matrices: i 
H,(;,(;H i 
and HG 
(optional) ! 

-----_------_---_---_-----_ . . . . . . .  - - - � 9  

I I I  I I  
I I  

Figure 2. Flowchart of CPE procedures 
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N ~,I( S uixj(C0)) m 

m=l 
[Xu(C~ = N (1) 

~ ( S u i u i ( r 1 7 6  m 

m=l 

where N is the number of time history segments. Similarly, each element of the 

plant-output transfer matrix, Yu, is given by Eq. (2). 
N 

~ (  S uiyj ( c~  

m=l 
[Yu(~ = N (2) 

~ (  S u iu i ( r176  

m=l 

The two matrices, Xu and Y u, are the basis of all subsequent CPE 

computations. Note that if excitations are added at the command location, 

figures 1 (a) and (c), the dimensions of Xuc and Yuc are na x na and ns x n a , 

respectively; whereas, if the excitations are added at the sensor location, figures 

1 (b) and (d), the dimensions of Xus and Yus are n a x ns and ns x ns. 

B. CPE PROCEDURES 

For both open- and closed-loop analysis, the return difference matrices are 

required. This involves computing HG and GH as well as the plant, G, and the 

controller, H. Table 1 summarizes the order in which these matrices are 

computed and the basic equations used in calculating them for both the open- and 

closed-loop cases in which excitation is added to either the command input to the 

plant or the sensor input to the controller as depicted in figures 1 (a)-(d). To 

avoid rank-deficient matrices in Eqs. (5), excitations should be added at the 

command location, figures 1 (a) and (c), corresponding to equations 5(a) and (c), if 
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n a > ns; and they should be added at the sensor location, figures 1 (b) and (d), 

corresponding to equations 5(b) and (d), if n a < n s. Reference [9] provides a 

more detailed development of the equations for the case in which the excitations 

are added at the command location. 

i 

Command Excitation 

G = Yuc (3a) 

H G  = X uc (4a) 

H=([Yuc YucT] -1 [Yuc XucT])T 

G H = G - H  
I I I I I 

Table 1. Basic CPE Matrix Equations 

. . . . . . .  I Open Loop . . . . .  

Sensor Excitation [ 
,,, , , , , ,  

H = Xus (3b) ] 
| 

GH = "Yus (4b) [ 
T]-I [Xu Yus T] G=- [Xus Xus s 

(5a) (5b) 

(6a) H G = H o G  (6b) i 
I I I �9 II I 

i Clomd,L , o o p  . . . . . . . . . . . . .  

Sensor Excitation I 
I IIII 

H = ( [ I - Y u s T ] ' I X u s T )  T <3d) 

G H = - ( [ I - Y u s T ] ' I Y u s T )  T (4d) 

T] 1 [X u YusT])T G=-([Xus Xus s 

ii i 

Command Excitation 
I I I II 

G = ( [ I -XucT] ' IYucT)T (3C) 

H G =  ( [ I  XucTI 1XucT) T (4c) 

H = ([Yuc YucT] -1 [Yuc XucT])T 

(5c) 

GH = G �9 H (6c)  
I � 9  I 

(5d) 

HG = H �9 G (6d) 
II I 

* All matrices are functions of co. 

1. OPEN-LOOP 

To perform the first step of the open-loop CPE, the controller transfer 

matrix, H, computed using either Eq. (5a) or Eq. (3b) is compared with the 

designed control law transfer matrix to .verify the implementation of the 
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controller. Specifically, the transfer functions are compared for each 

output/input pair. 

To perform the second step in the open-loop CPE (predicting closed-loop 

performance based on the open-loop performance to decide whether the control 

law will stabilize or destabilize the system when the loop is closed), it is 

convenient with a MIMO system to evaluate robustness with respect to plant 

uncertainties. Multiplicative uncertainties at the plant input and plant output 

points by examining the minimum singular valuest of the retum-difference 

matrices: 

~Mi(Co) = Cmin ((I+HG)(~)) and 

CrMo(CO) = Crmin ((I+GH)(o))) (7) 

and robustness with respect to an additive uncertainty by examining: 

OA(CO) = ( 1 ) 
Omax ((H[I+GHI-1)(e0)) " 

(8) 

The matrix product HG is obtained from either Eq. (4a) or (6b). The matrix 

product GH can be obtained using (6a) or (4b). The singular values of the 

retum-difference matrices can then be determined and observations of the 

minimum and maximum values over the entire frequency range can be made. 

A system crosses the stability boundary at frequencies when I+HG or 

I+GH is singular and the minimum singular value becomes zero. Therefore the 

proximity to zero indicates where the system is prone to go unstable and 

provides a quantitative measure of robustness. Reference [3] contains a 

derivation which relates guaranteed gain and phase margins to minimum singular 

"]" The singular values, o, of any matrix F are equal to 4 L(F*F) where k are the 
eigenvalues. The singular values, c, are always non-negative real and F* is the 
complex conjugate transpose of F. 
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values. This relationship is shown in Figure 3 of the present paper, which is a 

reproduction of figure 2 from reference [3], and will be referred to later when 

discussing results. 

1.4 

1.2 " 

1.0 

~min X 
( I + H G )  

0.8-  

0 .6"  

0 .4-  

0 .2 -  

0.0 
- 10 -8 -6 -4 

N ~  ~ -91~PhaseMargin+_,  - 

o 

4 0  ~ ~ . . . . ~  

_ _ r  _ _ 

/ ........ , ! 1 ,  , ..... , 

-2 0 2 4 6 8 10 
Gain margin (dB) 

Figure 3. Universal gain and Phase Margin Diagram 

The ratio of the maximum to minimum singular values of a return- 

difference matrix is the condition number. If a minimum singular value 

approaches zero (has low stability margins), the size of the condition number, 

especially when it is much larger than one, becomes an important indicator of 

the uncertainty in the measure of system stability; i.e. large condition numbers 

indicate that the predicted stability margin is very uncertain. 
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The determinant of the return difference matrix (I HG) can be used to 

determine open-loop system stability when the loop is closed. The locus of the 

determinant as a function of frequency has the property that if the open-loop 

system is stable, a clockwise encirclement of the critical point (0,0) indicates 

that the controller is destabilizing. Furthermore, the proximity of the 

determinant locus to the critical point is a direct indication of how near the 

control system is to an instability. For SISO controllers, this is analogous to 

the Nyquist plot since in that case 

det(l+HG) = det(I+GH) = det(1) + det(GH) = 1 + det(GH). (9) 

Hence, for a SISO system only, the Nyquist plot is simply a translation of 

the plot of the determinant of the return-difference matrix about a different 

critical point, namely (-1,0). 

2. CLOSED-LOOP 

The main difference between the closed-loop and open-loop computations is 

that the measurements of x and y are obtained experimentally from the closed- 

loop system rather than the open-loop system. The transfer matrices, G and H, 

therefore be extracted from the closed-loop system. The matrix product HG is 

obtained using either Eq. (4c) or (6d), and the matrix product GH can be obtained 

using (6c) or (4d). Singular values of the return difference matrices can then be 

determined as for the open-loop case. The singular-value robustness plots are 

interpreted the same way for closed-loop testing as they were for open-loop 

testing. The det(I+HG) can be used to predict open-loop plant instability from a 

stable closed-loop system. Care must be taken however, in interpreting the 

determinant plots. If the closed-loop plant is stable and the open-loop plant is 

stable, there should be no net encirclement of the origin. On the contrary, if the 

closed-loop plant is stable and the open-loop plant is unstable with a pair of 
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complex unstable poles, then the determinant plot will show one net counter- 

clockwise encirclement of the origin. As with the open-loop case, the proximity 

of the determinant locus to the critical point and the proximity of the minimum 

singular values to zero are used as measures of closed-loop stability margins. 

To obtain results for step 2 of the closed-loop mode, the minimum of the 

inverse maximum singular value (IMSV) 

m i n (  1 ) )  
co Omax iG (0~) 

(10) 

of the open-loop plant transfer matrix, G defined by either Eq. (3c) or (5d), is an 

excellent indicator of poles in the proximity of the imaginary axis. The 

frequency of instability is determined by where the minimum of the IMSV of the 

plant approaches zero with increasing dynamic pressure. Tracing values of 

closest approach was a useful way of determining the open-loop plant flutter 

boundary with respect to some changing test condition, such as dynamic 

pressure. 

V. PLANT ESTIMATION 

To determine the plant in the case when there is no control law operating, 

the plant transfer matrix can be derived directly from the calculated transfer 

functions. In the case when there was a control law operating, the plant has to 

be extracted from the closed-loop system. In either case, the purpose of plant 

determination is two-fold. The first is to provide transfer function data to 

engineers for their use in redesigning control laws and the second purpose is to 

use the open-loop plant to evaluate open-loop plant stability. Some elements of 

the plant transfer matrix can be extracted during CPE calculations; however, an 
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additional capability is required to calculate the remaining elements of the plant 

transfer matrix. 

Figure 4 shows a block diagram of the plant and controller. The "c" 

subscript refers to the control law elements. The "e" subscript refers to elements 

external to the control law tested. Table 3 outlines the equations needed in order 

to calculate all the elements of the plant transfer matrix: 

C, ce c ~  

u e n 

y 

Plant 

G 

Control Law 

Ye 
v 

Y C  
y 

Figure 4. Controller-Plant diagrams depicting the control problem with 
negative feedback 

:r 
Table 3. Basic Plant Equations 

Ooen-Looo 

Gcc = Ycc 

Gec = Yec 

Gce = Yce 

Gee = Yee 
i i  

Closed-Loop 

"cc = (~I-  XcTJ - 1y cc T) T 

Gec = ( [ I -  XcT]" 1 y ec T) T 

Gce =Yce+GccXe 

Gee =Yee+GecXe 

/ 

* All matrices are functions of co. 
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In the table, X c and X e are the transfer functions of the control law outputs, 

x, with respect to Uc (excitations of control surfaces used by the control law) 

and u e (those not used by the control law). Ycc and Yce are the transfer 

functions of the plant outputs, Yc, used by the controller with respect to Uc and 

u e, respectively. Yec and Yee are the transfer functions of the plant outputs, Ye, 

not used by the controller with respect to u c and u e, respectively. 

VI. SUMMARY OF FLUTIER-SUPPRESSION TESTING 

During flutter suppression testing, the control systems were operated in 

both open-loop and closed-loop modes. For the purpose of maintaining both 

model and tunnel safety, each candidate control law was initially tested open loop 

to insure that the control law itself would not destabilize the wind-tunnel model 

during closed-loop tests. The feedback was digitally switched open at the control 

law output point, figure 1 (a) and the responses and excitation were collected at 

the control law input and the control law output locations. The appropriate 

transfer functions were generated from these responses and then the CPE 

capability was exercised to predict the closed-loop system stability while the 

loop was still open (figure 2). If the control law was predicted to be stable, the 

switch was closed and the closed-loop flutter suppression (FS) testing for that 

candidate control law commenced. During the closed-loop testing, the same 

excitations were inserted and responses were saved as during initial open-loop 

testing. At each test point, stability margins and open-loop plant stability were 

determined before proceeding to the next test point. co
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DESCRIPTION OF THE CPE IMPLEMENTATION 

The digital excitation, actuator commands, and sensor measurements used by 

the control law were transferred during testing to a SUN 3/160 computer with a 

SKY Warrior II array processor board where the FVI" computations were performed 

using a FORTRAN 77 program, optimized to take advantage of the vector 

processing capabilities of the array processor. Each 2k FFT calculation took 

approximately .003 seconds. The matrix computations to obtain the singular 

values of return-difference matrices were also performed on the SUN 3/160 using 

MATLAB software operations (reference [10]). Figure 2 outlines the separate 

codes. 

VIII. RESULTS AND DISCUSSION 

Both SISO and MIMO flutter suppression control laws were designed for the 

AFW wind-tunnel model. During the wind-tunnel test, four FS control laws 

were tested using the AFW Digital Controller (reference [7]). Experimental data 

were used to evaluate their performance using the CPE capability presented in 

this paper. The process of obtaining experimental data and evaluating 

performance is described in the following. 

The data for performing CPE was obtained by exciting, one at a time, all 

pairs of control surfaces used by the control law. Results from two tests per- 

formed in 1989 and in 1991 are presented in this paper. The excitation usually 

used in the 1989 tests was a 150 sec. logarithmic sine sweep (LogSS) over a fre- 

quency range varying from 4 to 35 Hz. However, low amplitude excitations, 

having low signal to noise ratios, were required at high dynamic pressures in or- 

der to keep the excitation itself from inducing flutter. The resulting CPE was 

poor and sometimes inconclusive. In the 1991 tests of the same model, a 

periodic pseudo noise (PPN) over a frequency range varying from 3 to 20 Hz was 
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generally used. The PPN (described in Appendix A) was designed to maximize 

the amplitude of the excitation (allowing maximum signal to noise ratio) within 

the actuator rate limits for a prescribed frequency range and specified frequency 

resolution. Typical transfer functions at one test condition resulting from both a 

logarithmic sine sweep and a PPN excitation are shown in figure 5. These 

results demonstrate that the higher amplitude PPN excitation, over the frequency 

range for which it was designed, provides smoother and more reliable results than 

the LogSS excitation. 

10 

0 
Magn 
(dB) 

= ,  , ,  , , , | , ,  , , 

.... PPN 
. . . . .  LogSS " "~ Ii 

~ l J l 0  ID 

-20 ~ 

200 

Phase 

(deg.)200 

0 20 
Freq (Hz) 

Figure 5. Comparison of transfer function ztip ] ~teo for periodic random 

noise and logarithmic sine sweep excitation. 

When FS control laws were required to control both symmetric and 

antisymmetric flutter, the CPE excitation was added to the control surfaces either 

symmetrically or antisymmetrically depending upon which symmetry was being 

evaluated. The responses, y, were then summed or differenced, depending upon 
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symmetry, before saving. While stability computations were being performed for 

symmetric control, the antisymmetric excitations could be performed and the 

transfer matrices generated. For this test, final results and plots were available 

within two minutes after the last excitation was performed, allowing near real- 

time controller performance evaluation. 

Figure 6 shows an h-line (dynamic pressure vs. Mach number) plot with 

three test points identified which correspond to the points at which test results 

are presented herein. Points A and B correspond to cases for which a SISO 

control law is operating closed-loop and the plant is stable (A), and unstable (B). 

Point (C) identifies a test point at which another control law (in this case a 

MIMO) would have destabilized a stable plant if the loop were closed. CPE 

results are presented in the following discussions. 

250 

Dynamic 
pressure 

(psf) 

200 

150 

Open-loop flutter 

.3 .35 .4 .45 
Mach 

Figure 6. Atmospheric h-line showing flutter boundary and points for which 
results will be presented. 

co
nt

ro
len

gin
ee

rs
.ir



A~ 

TECHNIQUES IN ON-LINE PERFORMANCE EVALUATION 

SISO CONTROL LAW 
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Typical CPE results for a symmetric SISO control law obtained during the 

closed-loop wind-tunnel tests are shown in figures 7 and 8. The determinant plot 

in figure 7 shows no encirclement about the origin (the critical point) at a 

dynamic pressure of 200 psf where the open-loop plant is known to be stable 

(point A of figure 6). Figure 8 shows the CPE results of a closed-loop system 

where the plant is unstable (point B on figure 6). Since there is one net 

counterclockwise encirclement of the critical point, these plots indicate that the 

controller is stabilizing the plant. Using the minimum singular value from 

figure 8, guaranteed stability margins can be obtained from the universal gain 

and phase diagram of figure 3. Since the minimum of CrMo is 0.29, the gain 

margin for zero phase margins are approximately -2.2 dB and +3.0 dB. For a 10 

degree phase margin, however, the gain margins are -1.8 dB and +2.5 dB. 

3( 

OM 0 

0 0 

m~n(~Mo)= ] 25 

Imag ~ 

~ Freq, Hz 20 25 
~25 

- Real 25 

a) Singular value plot. b) Determinant plot. 

Figure 7. Closed-loop CPE results for a symmetric SISO con~ol law (open- 
loop plant is stable), M=.42, q=230 psf. co
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30 

OM 0 

min(~Mo)=o 
0.29 at 
6.9 Hz 

]~ Freq, Hz 

25 

Imag 

00 20 -2525 
- Real 25 

a) Singular value plot. b) Determinant plot. 

Figure 8. Closed-loop CPE results for a symmetric SISO control law (open- 
loop plant is unstable), M=.43, q=240 psf.. 

B. MIMO CONTROL LAW 

Results for a MIMO FS control law design (reference [6] with increased 

gain) are presented next. The initial open-loop testing performed at 150 psf indi- 

cated that the controller would not destabilize the model; hence, the loop was 

closed and testing continued. At approximately 175 psf, the closed-loop system 

appeared to become unstable where the open-loop plant was known to be stable. 

Consequently, open-loop testing was performed at 175 psf. The plots of ~ / I  I 

and ~VIo for the MIMO system are shown in figure 9 along with the maximum 

singular values, CMi and ~VIo, in order to provide a visual indication of the 

condition number. As discussed previously, large condition numbers indicate 

uncertainty in the computation of the minimum singular values. Referring to 

the upper plot of figure 9, the ratio of the maximum, CMo, to the minimum 

singular value, ~2Mo, (i.e. condition number) is large only in the vicinity of 7 

Hz. Therefore, the low stability margins indicated by the minimum singular 

values in the vicinity of 20 Hz are fairly certain. Figure 9 also contains the 
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singular values for the evaluation of the additive perturbation, OA. The locus of 

the determinants of I+HG (lower fight) shows an encirclement of the origin 

where the open-loop plant is known to be stable, thus indicating that the MIMO 

control law would be destabilizing as indicated during previous closed-loop 

testing. Upon further investigation, one of the elements of this destabilizing 

controller transfer matrix was examined and plots of the transfer function showed 

a peak magnitude close to 20 Hz. 

8 8 

~ I 

0 
0 

o" A 

0 0 

m~n(o'Mi)~o.~ 1 at 
�9 Hz 

---  maximum 
minimum 

Freq, Hz ~ 35 

min(oA)--O.03 at 
03 20.8 Hz 

Freq, Hz~  35 

r 0 

0 

3 

Imag 

�9 min(~..)---0.16 at 
to "'*o 196Hz 

l| - --  maximum 

ii I'~, minimum 

Freq, Hzj [ 35 

de,t(i +HG) , 

-3 
-3 Real 3 

Figure 9. Open-loop results for a symmetric MIMO control law (open-loop 
plant is stable), M=0.36, q=175 psf. co
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FLLU'I~R BOUNDARY PREDICTION 

One of the objectives of the wind-tunnel testing was to determine the open- 

loop flutter dynamic pressure from closed-loop experimental data. A method of 

determining whether the open-loop plant is stable or unstable is to count 

encirclements of the critical point in the determinant plot, as described in section 

IV. Figure 7 shows no net counterclockwise encirclement of the critical point. 

Since the closed-loop system is stable, this indicates the open-loop plant is 

stable. Figure 8 shows one counterclockwise encirclement of the critical point 

indicating the open-loop plant is unstable with one unstable pole (for positive 

frequencies). Figures 7 and 8 established that the flutter boundary was between 

230 and 240 psf for the single-input single-output control system. Even though 

this prediction does not give a definite quantitative measure of the flutter 

boundary, it does set limits on where open-loop flutter occurs by setting upper 

and lower boundaries of where the open-loop system reaches neutral stability. 

A more quantitative definition of the open-loop flutter boundary is obtained 

by tracking the minimums of the inverse maximum singular values (IMSV) (Eq. 

10) of the plant extracted from closed-loop experimental data as a function of 

dynamic pressure. To do this, the IMSV are plotted as a function of frequency at 

each dynamic pressure. An example for a dynamic pressure of 150 psf is given 

in figure 10. The global minimum of the curve, identified by the arrow, 

indicates the mode which is going unstable and its frequency. The magnitude of 

this point approaching zero, indicates the proximity of the flutter mode of the 

open-loop system to neutral stability. Curves with two minimums approaching 

zero would indicate flutter is probably a result of two modes coalescing. In this 

case, the frequencies of the two modes coalesce at flutter. 

A plot of the minimums from figures such as figure 10 are then plotted as a 

function of dynamic pressure. In this example, shown in figure 11, only one 

"global" minimum is being traced. Since the number of test points was limited, 
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the dashed part of the curve indicates the "best estimate" of the trajectory toward 

an instability. The point at which the inverse maximum singular values is zero 

is the point at which open-loop flutter occurs. This point, approximately 232 

psf, is the predicted flutter dynamic pressure. Later open-loop testing to 

determine the actual open-loop flutter boundary indicated that the actual 

symmetric boundary point was 235 psf which corresponds well with the flutter 

prediction using plant transfer matrices extracted from closed-loop experimental 

data. 

20 

1 

~'(G) 

10 

0 0 

, | , , 

minimum indicated by 

j ..m 
,,I ,. I ,,, I , ,, 

5 ~ 10 15 20 
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Figure 10. Plot of inverse maximum singular values of the open-loop plant 
transfer matrix, q= 150 psf. 
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b N ." 
150 200 250 

Dynamic Pressure, psf 

Figure 11. Flutter prediction using closed-loop CPE results. 

X. CONCLUSIONS 

A Controller Performance Evaluation (CPE) methodology was developed to 

evaluate the performance of multivariable, digital control systems. The method 

was used and subsequently validated during the wind-tunnel testing of an 

aeroelastic model equipped with a digital flutter suppression controller. Through 

the CPE effort, a wide range of sophisticated real-time analysis tools were 

developed. These tools proved extremely useful and worked very well during 

wind-tunnel testing. Moreover, results from open-loop CPE were the sole 

criteria for beginning closed-loop testing. In this way, CPE identified 

potentially destabilizing controllers before actually closing the loop on the 

control system, thereby helping to avoid catastrophic damage to the wind-tunnel 

model or the tunnel. CPE results also proved useful in determining open-loop 

plant stability during closed-loop test conditions. 
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X. APPENDIX A 

287 

The periodic pseudo noise (PPN) excitation developed for use in the AFW 

wind-tunnel test was developed to have a specific frequency content and to allow for 

maximum excitation mnplitude subject to constraints on the rate. It is similar to 

periodic random noi~ or pseudo random noise described in reference [ 11], but it is 

not truly random and has a specified frequency content. It is generated by picking a 

block size which determines the frequency resolution. Time histories of sine 

sweeps with these frequencies over a finite time range defined by the block size are 

added or subtracted. Whether they are added or subtracted depends on which causes 

the least amount of increase in the maximum rate. After all the time histories 

have been combined the excitation is divided by the maximum amplitude to obtain 

an excitation with a unity maximum amplitude. The time histories are combined 

together starting with the sine sweep of the highest frequency. 
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I. INTRODUCTION 

A variety of examples in the literature show the importance of 
impulse control problems in the theory of stochastic processes; inventory 
models, resource allocation problems and maintenance-replacement 
systems are some particular examples. In all these cases, control is taken 
by intervention, that is, the decision to act is taken at discrete times, in 
response to the random evolution of the system, and the process moved 
to a new point in the state space. Problems of this kind were first studied 
by Bensoussan and Lions [1], in the context of diffusion processes, as an 
application of variational and quasi-variational inequalities, and further 
developed in [2], [3]. Kushner [4], [5] considered similar problems, 
approximating the diffusion by controlled Markov chains. In [6] Lepeltier 
and Marchal considered the impulse control problem of right processes 
under very general assumptions by formulating it as a sequence of 
optimal stopping problems, an approach due to Robin [7]. Impulse 
control problems for Feller processes with the long run average cost were 
studied in [8], [9], [10], [11], [12]. Problems involving interventions in 
Markov decision drift processes [13] can be viewed as impulse control and 
have been analyzed in [14], [15] by discrete-time approximations and in 
[16], [17] by a direct deduction of optimality conditions. 

CONTROL AND DYNAMIC SYSTEMS, VOL. 71 
Copyright �9 1995 by Academic Press, Inc. 
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Piecewise deterministic Markov processes (PDP's) were introduced by 
Davis [18] as a general family of non-diffusion stochastic models suitable 
for formulating many optimization problems in several areas of 
operations research [19]. The motion of a PDP depends on three local 
characteristics, namely the flow r the jump rate )~ and the transition 
measure Q, which specifies the post-jump location. Starting from x the 
motion of the process follows the flow r until the first jump time T 1 
which occurs either spontaneously in a Poisson-hKe fashion with rate 
,~(r or when the flow hits the boundary of the state space. In either 
case the location of the process at the jump time T 1 is selected by the 
transition measure Q ( .  ;r and the motion restarts from this new 
point as before. 

There are several different ways of approach to impulse control of 
PDP's. Dempster and Ye [20] transformed the problem of continuous 
control plus impulse control of PDP's into an equivalent continuous 
control problem. Gatarek [21], [22], [23] treated the impulse control 
problem by means of variational and quasi-variational inequalities with 
integral and first order differential terms. In this work we develop a more 
direct approach by formulating the impulse control of PDP's as a 
sequence of optimal stopping problems and using the special structure of 
PDP's to obtain recursive methods to characterize the value function of 
the problem. By taking this direct approach more specific results can be 
obtained and in particular the convergence of a discretization technique 
which leads to computational methods is derived. 

This work is organized in the following way. Optimal stopping and 
impulse control are closely related since the latter can be regarded as an 
implicit optimal stopping problem where the gain function depends on 
the value function of the impulse control problem. Therefore optimal 
stopping constitutes an important step towards solving the more general 
problem of impulse control of PDP's and it is analyzed in section II. 
Characterization results for the value function, optimality conditions and 
discretization techniques leading to computational methods are 
presented. Our computational technique is attractive in that it reduces to 
a sequence of one-dimensional minimizations. In section III we apply the 
results of section II to obtain some recursive methods which characterize 
the value function of the impulse control problem of PDP's as well as 
provide a discretization technique. An illustrative example of this 
approximation method to the optimal maintenance of complex systems is 
presented. Finally in section IV some characterization results and 
optimality conditions for the value function of the long run average 
impulse control problem of PDP's are presented. 
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II. OPTIMAL STOPPING OF PDP's 

A. PRELIMINARIES 

In this section we deal with characterization results and 
approximation techniques for the optimal stopping of a PDP. The results 
obtained here are essential for the impulse control problem which we will 
see in sections III and IV. PDP's are right processes (but not Feller 
processes) and therefore the general theory in [6] can be applied. However 
due to the special features of PDP's more specific results can be obtained 
by a direct approach. 

This section is organized in the following way. In subsection B we 
give the main definitions and general assumptions. Gugerli [24] showed 
that the value function of the optimal stopping problem of a PDP is 
"continuous along trajectories" of the flow r provided that the gain 
function also satisfies this property. However under general assumptions 
it is not to be expected that the "implicit" gain function of an impulse 
control problem of a PDP (seen as an "implicit" optimal stopping 
problem) will be "continuous along trajectories". But this result will hold 
if we replace "continuity along trajectory" by "lower semi-analicity". 
Subsection C presents an extension of the results in [24] to the case when 
the gain function is lower semi-analytic so that this generality can be 
applied in section III for the impulse control problem. In subsection D 
some optimality equations similar to the ones in [17] are derived. In 
subsection E we present a computational technique for solving the 
optimal stopping problem of a PDP. We construct a discretized PDP 
which retains the main characteristics of the original process and we 
show convergence of the payoff functions. This technique reduces the 
optimal stopping problem to a sequence of one dimensional 
minimizations. The results of this section follow those derived in [25]. 

B. NOTATIONS AND DEFINITIONS 

For any Borel space % we denote by tr(~;) the Borel or-field generated 
by % and by B*(%) (B(%), C(%) respectively) the space of real valued 
bounded lower semi-analytic (Borel measurable, continuous) functions on 
~g. The set of non-negative integers {0,1,...} and non-negative reals is 
denoted by N and R+ respectively. Let E be an open subset of R d, 0E the 
boundary of E, E the borel or-field of E and ~I(E) the universally 
measurable ~r-field of E. Let f /denote the space of E-valued functions on 
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[0,c~) which are right continuous and have left hand limits at each 
t < cr xt(w)=w t for every w e fl, ~~ s _< t} and ~~ We will 
consider a PDP taking values in E and determined by the following 
parameters :  

a) the flow r of a Lipschitz continuous vector field L (of. [18]). 

b) the jump rate X(.)" E --o R+.  

c) the transition measure Q(.;.): Ex(E U 0*E)~[0,a] where 

0 * E : =  { z E O E ; r  E E  for a l l t E ( 0 , e )  a n d s o m e e  > 0} .  

Note that 0*E represents those boundary points at which the flow 
exits from E. We define 

t * ( x ) ' - i n f {  t > 0 ;  r E 0*E } 

for every x E E. The general assumptions of the PDP, which we shall 
denote by (Xt) , are as in Davis [18]. In addition to those assumptions we 
will also suppose that  ,~ is bounded. The motion of the process (Xt) 
starting from x is constructed in the following way. Take a random 
variable T 1 such that �9 

t 
exp (- ; A(r , t < t*(x) 

P(T  1 > t ) -  0 
0 , t >_ t*(x) 

Now select independently an E-valued random variable having 
distribution Q (.;r  The trajectory of X t for t _<_ T 1 is given by 

f 

_ J  r ,t  < T1 
x t z I , t - T 1 

Starting f rom XT1 Z 1 we now select the next inter-jump time T2-T 1 

and post-jump location XT2-- Z 2 in a similar way. This gives a piecewise 

deterministic trajectory for the process (Xt) with jump times T1, T2, .... 

and post-jump locations Z1, Z2, . . . .  It is convenient to write that  T o - 0 

and Z 0 = x (the initial point). We will denote Px the probability law on 

(f~,~o) of the PDP starting at x. We assume that  
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nli__m T n - o C  Px-a.s..  

Fo rx  E Ewedef ine"  

I v(y)Q(dy;x) v E B*(E). Q(.;x) �9 i) q v ( x ) - -  E where Note that E-o[O,1] 

can be uniquely extended to U(E) and thus the above integral is well 

defined on the measurable space (E,U(E)). 

t 

A(t,x) " - /A( r  where 0 _< t _< t*(x). ii) 

0 

Finally we say that g E Bc(n) if g E B(E), g(r [0,t*(x))-,R 

is continuous and t--~t*lim(x)g(r exists whenever exp (-A(t*(x),x)) :/: 0. 

C. CHARACTERIZATION RESULTS 

Let ff be the universal completion of if0 and ~ t  the right continuous 
0 universal completion of fit" We denote by ~i, the set of all fit-stopping 

times which are Px-a.s. finite for all x E E. We will consider the following 

optimal stopping problem for x E E 

p'(x) "- inf Ex( g ( X r )  ). (1) 
rE.2~ 

In [24] Gugerli studied (1) when g E SC(E). In this subsection we will 

extend the results in [24] to the case when g E B*(E). As mentioned 

before this extension is needed to study the impulse control problem of 

PDP's. 

For x E E, 0<_ t < t*(x) and Vl, V 2 in B*(E) define 

a) J(Vl,V2)(t,x ) "- Ex( Vl(d(t,x))l{Tl>t} + v2(Z1)I{T 1 _< t} ) -  

t 
Vl(r -A(t'x) + ~ Qv2(r162 e-A(s'x)ds 

0 
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t*(x) 
b) Kv2(x ) " -  Ex(v2(Zl)  ) - ~ Qv2(r162 + 

0 

Qv 2( r t* (x), x))e-A(t* (x),x) 

c) L(Vl,V2)(x ) "-  { inf J(Vl,V2)(t,x)} A Kv2(x ). 
0 <_ t < t*(x) 

It follows from the semi-group property of the drift r that 

L(Vl,V2)(r  eA(t,x)({ inf J(v,,v2)(s,x)} A Kv2(x ) - 
t _< s < t*(x) 

Ex(v2(Zl)I{T 1 _< t})) " (2) 

We can easily show that L(v,,v2) ( . )" E-~R is in B*(E) . Define the 
sequence of functions Pm, m E N by 

P0 "-  g ,  P m + l  "= L(g'Pm)" 

Then Pm E B*(E) for a l l m  E N a n d s i n c e P l  -< g '  P m + l  -< Pm for 
all m E N.  Therefore 

p "-- inf Pm - mli_,mocPm 

exists and from Lemma 7.30(2) of [26], p E B*(E). Corollary 1 of 
Gugerli [24] is readily modified to show the following results. 

Proposition 1 �9 L e t  p and Pm be defined as above . Then 

a) P m + l  - L(Pm'Pm)" 

b) p is the biggest solution of 

v -  L(g,v) 

v E B*(E). 

c) p is the biggest solution of 

v -  L(v,v) 

v _< g , v E B*(E). 
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Function p can also be characterized in the following way; 

Proposition 2 �9 p is the biggest solution of 

v(x) _< Ex(v(X t A T  1 

v < g , v E B*(E) 

) ) , V t  E [0,t*(x)] , V x  E E 
(3) 

Proof" Noting that 

L ( p , p ) ( x ) -  { inf Ex(P(Xt A T1))} A Ex(P(Zl) ) 
0 <__ t < t*(x) 

it follows from Prop. lc) that for any x E E 

p(x) < Ex(P(XtAT1))  for all t E [0,t*(x))and p(x) < Ex(P(Z1) ) . 

Hence p is a solution of Eq. (3). Suppose v is another solution of Eq. (3). 
We use induction in m to show that Pm > v f o r a l l m  E N. F o r m -  0, 
Po - g > v. Suppose now that Pm >- v. It follows from Prop. la) that 
P m + l -  L(Pm'Pm) -> L(v,v) __ v. Therefore 

p -  mli_.mcx)Pm >__ v, 

proving the Proposition. [3 

The importance of the function p is that it equals the value function 
of the optimal stopping problem p' defined in Eq. (1) for all points in E, 
that is, the following result, which was proved in [25], holds: 

Proposition 3" p(x) - p ' (x)for  all x E E. 

D. OPTIMALITY EQUATIONS 

This subsection is devoted to show a connection between the 
solutions of v - L(g,v) and the optimality equations of the kind 
presented in [17] for the optimal stopping problem of a PDP. Let BaC(E) 
denote the space of functions g in BC(E) such that for each x E E, 
g(r [0,t*(x)) ---. R is absolutely continuous. First we are going to 
show an auxiliary result .  Define 

L(g,v)(t,x) "-  { inf J(g,v)(s,x) } A Kv(x) ,  t E [0,t*(x)). 
t _< s<t*(x) 
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Proposi t ion 4"  Suppose that  g E Bat (E)  and v E B ( E ) .  Then for every 

x E E ,  L (g ,v ) ( .  ,x)"  [ 0 , t * ( x ) ) ~  R is absolutely continuous.  

Proof"  Since g ( r  ,x)) is absolutely continuous it is clear tha t  

-a t -A( t ,x )  t -as-A (s, x) A(r (s, x))Qv( r (s,x))ds J ( g , v ) ( t , x ) -  e g(r  + ; e 
0 

is also absolutely continuous in t. Therefore for every compact  set (2 of 
[O,t*(x)) given e > 0 there exists ~ > 0 such that  for each finite collection 
[ti,ri] , i - 1,...,n of non-overlapping intervals of (2 

n n 

~-'~ [ J(g,v)(r i ,x)  - J(g,v)( t i ,x)  ] < e if ~ ( r i -  t i )  
i - 1  i - 1  

< ~ .  

For each i - 1,...,n we have one of the possibilities below �9 

i) L(g,v)( t i ,x  ) - J (g ,v)( t i ' ,x  ) for some t i _< t.'~ < r i and in this case it is 

clear tha t  ~ 

L(g,v)(ri ,x) - L ( g , v ) ( t i , x ) -  L(g,v)(ri ,x ) - L ( g , v ) ( t i ' , x ) -  

L(g,v)(ri ,x) - J(g,v)( t i ' ,x)  < J(g,v)(r i ,x  ) - J(g,v)( t i ' ,x)-  

Note also t h a t r  i - t . '~  _< r i - t  i. 

ii) L(g,v)( t i ,x  ) - L(g,v)(ri ,x ) and in this case we define t i' - r i . 

Then from the fact tha t  L(g,v)(t ,x)  is increasing in t we have 

n n 

~ I L(g 'v)(r i 'x)  - L(g 'v)( t i 'x)  [ -  Z (  L (g 'v ) ( r i ' x ) -  L ( g ' v ) ( t i ' x ) ) -  
i=1 i = l  

n n 

(L(g,v)(ri ,x) - L(g,v)( t i ' ,x))  < ~[]  (J(g,v)(ri ,x) - J (g ,v)( t  ' x)) < 
- i ' - 

i = 1  i=1 
n 

~ ]  [ J(g,v)(r i ,x)  - J(g ,v)( t i ' ,x)  I < e  
i = l  

n n 

since Z ( r i - t . ' ) ,  _< ~ ] ( r i - t i )  
i=1 i=1 

< ~ .  
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Consider v E B(E) such that v(x) - L(g,v)(x), g E BaC(E) for all 
x E E. Since from Eq. (2), 

t c~s-A(s,x) v(r - ea t+A(t 'x) (L(g ,v) ( t ,x)  - f e- A(r162 
0 

it is clear from Proposition 4 that v E BaC(E). Let s and f~ be 
respectively the vector field and the extended generator of the PDP (Xt). 
The domain of ~, ~(ft) , has been characterized in Theorem 5.5 of Davis 
[18]. We have that if v E BaC(E) and v ( x ) : =  Qv(x) for x E 0*E we get 
v E 2)(/~) and 

f~v(x) -  Zv(x) + A(x)[ ( v (y) -  v(x) )Q(dy,x), V x E IF 
J E 

where 

dv(r exists at x } E "-  { x E E ;  s - D+v(x) "= dt I t -O 

(recall that since v(r . ,x)) is absolutely continuous the derivative exists 
almost everywhere on [O,t*(x))). 

Proposition 5 �9 For g E BaC(E) let v be a solution of 

v ( x ) -  L(g,v)(x), V x E E  
v e BaC(E) 

Then 

~ v ( x ) - . v ( x )  > 0 . V x e E  

v(x) < g(x) . V x e E  

( av(x) -  . v ( x ) ) ( v ( x ) - g ( x ) )  - o V x E E  

Proof" Since L(g ,v)( .  ,x)"  [O, t*(x))~  R is absolutely continuous and 

increasing we have that 

positive. From 

dL(g,v)(t,x) 
dt 

exists almost everywhere and is 

t 
I -~s-A(s.x) v ( r  ea t+A(t 'x) (L(g ,v) ( t ,x)  - e A(r162 

0 
we get that for x E F" 
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L v ( x ) -  D + v ( x ) -  (e~ + A(x))v(x) + O+L(g,v)(0,x) - A(x)Qv(x) 

and thus 

s + ,~(x)[ (v(y) - v(x))Q(dy;x) - c~v(x) I 

d E 

a v ( x ) -  av(x) - D+L(g,v)(0,x) _ 0 .  

From v(x) = L(g,v)(x) it is immediate that  v(x) _ g(x), ~' x E E. Now 

if for x ~ E, L(g,v)(0,x) = v(x) < g(x) = J(g,v)(0,x) then from 

continuity of L(g,v)(.,x) and J(g,v)(.,x) we have that  for some c > 0, 

L(g,v)(t,x) < ,l(g,v)(t,x) for all t E [0 ,c )and  therefore L(g ,v ) ( t , x ) i s  

constant on [ 0 , c ) .  It means that if v(x) < g(x) and x E E then 

D+L(g,v)(0,x) - 0 - / ~ v ( x )  - av(x), proving the Proposition. V! 

E. DISCRETIZATION RESULTS 

1. AUXILIARY RESULT 

In this subsection we will consider the discounted optimal stopping 
problem 

p'(x) = inf Ex(e-arg(  X r )) 
r E dtl, oc 

where a > 0 and ")~'oc represents the set of all ~t-stopping times 
(including or The results of subsection C can be readily modified for 
this case and, as we saw in Prop. 3, p is equal to p' for all points in E. 
Suppose g E B*(E) is defined and bounded on c0*E. For x E r set: 

Pm+l(X) "-  g(x)A Ex(Pm(Z1) ), p 0 ( x ) " -  g(x) 

p(x) "-- g(x) A Ex(P(Z1) ). 

Remark �9 Note that  for x E 0*E, p'(x) - Ex(P(Z,) ) and thus may be 
different from p(x). 

Define E " -  E U0*E. The following Proposition can be easily 
proved. 

Proposition 6" F o r x  E l~ and m E N 

0 _~ Pm(X) - p(x) _< Ex(e-aTm( g( Z m ) -  p(Zm))) . 
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2. ASSUMPTIONS 

We add the following assumptions to the previous ones: 

1) t*(.) �9 E ~ R +  U { oo ) is continuous (t*(x) "-  0 for x E 0*E). 

2) $(r ---, A(r as y --~ x Lebesgue a. s. on [0,t*(x)) for all x E E. 

3) For every v E C(E) 

3.i) Qv(.) : E---,R is continuous. 

3.ii) Qv( . ) :  0 * E ~ R  is continuous. 

4) g is continuous and bounded by a I on 1~. 

5) A(t*(x),x) = oo whenever t*(x) = oo. 

From the assumptions above we can easily show the following 
Proposition. 

Proposition 7 "  A(.,.): {(t,x); x E 1~, 0 <  t <  t * ( x ) } ~ R + U { c x ~ }  is 

continuous. 

For x E  l~ let us denote by #x the joint probability measure of 
X (TI,Z1) when Z 0 - x ((TI,Z1) for short) on (Rd+l,cr(Rd+l)). We have 

that for a n y t  E R+U{oo}  a n d A  E E 

t A t*(x) 
Px( T1 < t ,  Z 1 E A ) -  f Q( A ; r )A(r 

0 

+ Q(A;r [t*(x),oo] ) ( t ) .  

Denoting by ~ (R  d+l) the space of all probability measures over 
a(Rd+l) ,  we have the following Proposition: 

Proposition 8 �9 p(.)" 1~ ~ ~P(R d+l) is continuous with respect to the weak 

topology on ~(Rd+I).  

Outline of the p roof :  It is enough to show that for every real valued 

continuous and bounded function f on R+ x E and arbitrary x E E U cg*E, 

lim Ey(f(T 1 Z1) ) - Ex(f(T1,Z1) ). El y---*x 
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3. DISCRETIZED PROCESS 

Let D : =  {Zl,Z2,... ) be a countable dense set in E and D N := 

{Zl,...,ZN). Define the sets {A N N }i=1 in the following form: 

B N ' -  {zEE;  [ z - z i l  __ I z - z j l f o r e v e r y j -  1 , . . . , N } , i -  1,...,N 

i-IAN A N ' -  B N, A N ' -  B N-j__U 1 j i -  2,. . . ,N. 

The discretized PDP, denoted by (xtN), is determined by: 

a) the flow r 

b) the jump rate ~. 

c) the transition probability QN defined as follows" 

QN({ zi } ; x ) ' -  Q ( A  N ; x )  f o r i -  1,..., N a n d  a l l x E l ~ .  

Therefore jumping from x the discretized process can go to a finite 
number of points {zl,...,ZN} only. From now on whenever necessary we 
will use the superscript N to distinguish the discretized process from the 
original one. 

We will be concerned now with the construction of (T1,Z1) and 

(TN,zN). For arbitrary x E l~ we have seen in Prop. 8 that #y---*Px 

weakly as y---,x . Let P denote the Lebesgue-[0,1] measure. Then using 

Skorohod's Theorem (Billingsley [27] page 337) we can construct (T1,Z1) y y 
x and (T 1,Z1) measurable functions from the probability space 

([0,1],cr([0,1]),P) into (R d+l a'(Rd+l)) such that Y y , ( T  1 ,z  1) has distribution 

py, (T1,  Z1) has distribution Px and 
y x 

(TY,ZI)--~ (T1,Z1) as y--*x P - a . s . .  

For the discretized case the construction is the following: for every 
u E E a n d u  E [0,1] 

Ti(u) 

zNv(u) - z i if Z ~ ( u ) E  A N �9 
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It is easy to show t h a t (  T Nv, Zl NV ) as defined above agrees with the 
definition of the discretized process ( X N ). For the next result_ we 
consider the construction seen above for some arbi t rary fixed x E E. 

Proposition 9 �9 Zl  Ny----~Z x 1 as y --, x and N ---, oo P-a.s,  . 

Y Zl(U ) y ~ x  }. As we Proof"  Define the set U " -  { u E [0,1] ; Zl(U ) --* as 
saw above, P ( U ) -  1. F i x u E U .  For a n y e  > 0 t h e r e e x i s t s z  i E D s u c h  
that  

I Z i (u ) - z i l  < , / 2  

because D is dense in E. Take 6 > 0 such that  

I Z[(u) - Z l ( u ) I  < ( /4  whenever I x - y l  < 6 

and N 0 E N s u c h  that  z l E D  N whenever N _  N O . Thus for N _ N O and 
I x - y l  < 6 ,  

I E l ( U ) - z N Y ( u )  I _ I Z l ( U ) - Z Y ( u ) I - ] - I  ZY(u) - z1NY(u) I 

Y E l ( U ) -  I ] Z~ (u ) -Z l (U)  ] + I z i 

where the last inequality follows from the definition of the sets {AN}. 
Hence 

x Ny _ Zl(U) Y ZY(u) - I [ Z l ( u ) -  Z 1 (u) I < [ - Z l (u )  ] -~- I zi 

zl(u) I + I Zi ( . ) -  __( ]z l(u)-  I I Zl 

- - 2 1  Zl(U ) -  El(U) I + I E l ( U ) -  zi I < C 

which proves the Proposition. 

The following result follows from the above Proposition: 

Proposition 10" For every m E N 

a) E(.)( exp{-aTm} ) �9 E ~ R+  is continuous. 

b) E~ (exp { -awNm } ) ~  Ex (exp { - a T  m }) as y ---, x and N ~ or for 

every x E l~. 

Proof"  We show b) only since the proof of a) is similar. For arbi t rary  x 
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in E we use the construction seen above and prove the Proposition by 

induction on m. For m - 0 the result is clear. Suppose b) holds for m. 

Define for z e X(z)"- E, (exo(- Tm}) nd xN(z)"-- EN(exo(- TN}). 

Then from time homogeneity and the strong Markov property 

N(exp a N E N E N N T N {- Tm+l} ) (exp{-aT N } (exp{-a Ey -- Y (Tin+ 1- 1)}/~ )) 

Ey N(exp{-c~TN}xN(Z1N) ) -- E(exp{-aTNY}xN(ZlNY) ) (4) 

where the last expectation is over [0,1] with measure P. Then from the 
y 

construction of T Ny ( - T 1 ) ,P rop .  9 and the induction hypothesis for m 

exp{-aT1Ny } xN(z1Ny) --, exp{-aT1} x(Z1) (5) 

as y - ,  x and i --~ oc P-a.s. From (4), ( 5 ) a n d  the bounded convergence 

theorem we obtain the desired result. V! 

4. CONVERGENCE RESULTS 

Define the following discretized optimal stopping problem 

p N ' ( x ) -  inf EN( e -C~rgN(xN))  
r E .,,~ N oo 

where gNE B*(E), gN is defined and bounded on 0*E, and gN --~ g 
uniformly on compact sets of I~ as N ~ oo. We allow this extra 
generality on gN to use the results we get here in the i ulse control 
problem. From the results of subsection C we have Pm ~ P as m ~ oo. 
The following equivalence will be used in the sequel: 

Proposition 11 �9 Suppose v: 1~ ~ R is continuous. 

s tatements are equivalent �9 

a) v N N---.cx3 v uniformly on compact sets of 1~. 

b) vN(y) ~ v ( x )  a s y - - - , x a n d N  ~cx~ for a l l x  E l~. 

The following 

Continuity of p and convergence of pN to p will follow from the next 

Theorem. 
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Theorem 1 �9 For every rn E N 

a) Pro(" )" t~--~ R is continuous. 

b) pN(y) --o pro(x) as y --*x and N--~oo for every x E l~. 

P roof -  Again we show b) only by applying induction on m. For m - 0 

the result is immediate from the hypothesis and using Prop. 11 (p0N(y) -- 

gN(y) ._, g(x) -- P0(X) as y ~ x and N --, cr Suppose b) holds for m. 

We will show the result for x E E  (the proof for the case x E 0 * E  is 

similar). The proof follows from the following steps �9 

Step 1 �9 For any t E [0,t*(x)) 

i )  EN(exp{-c~TN}pm( -N/zN~ 
1 )I{T~" < t} Y 

as y--,x and N~oo .  

)--* Ex(exp{-aT1}Pm(Z1)l{T 1 < t} ) 

N(z1N)) Ex(exp{-c~T1}Pm(Z1) ) as y ~ x  and N ~ c r  ii) EN(exp{-c~TN}pm --, 

Step 2 �9 For any sequence Yk ~ x as k ---,cr 

{ x - t *  Tlk  t* } lim P T 1 (x) < (Yk) -- 0. 
k--~ (:x:) 

Step 3 �9 For any sequence Yk "-'* x, N k ---, cr t k ---, t < t*(x) 

where t k < t*(Yk) for all k, we have that  

E k _aTiNk N k Nk tk}) yN k ( exp{ k~_~ 
}Pm ( E l ) I { T 1 N  k < 

{ Ex( exp { -aT1}Pm(Z1) l{T  1 < t} ) 

Ex( exp { - a T 1 } P m ( Z 1 ) l { T l < t }  ) 

if t < t*(x) 

if t - t*(x) 

Step 4 �9 

N --~oo ~ 

inf jN(gN,pN)( t ,y) - - ,  inf J (g,pm)(t,x) 
0 < t<t*(y)  0 < t<t*(x)  

as k---~or 

as y---,x and 
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From the construction of T Ny, Proposition 11, the induction 

hypothesis for m, the bounded convergence theorem and the fact that 

P ( T  1 -  t ) -  Px (TI  - t )  - 0 

we get step 1. It is clear that 

P{TYk < t*(Yk), Tl=t*(x)  } - P{ Tl=t*(x)  } - P{ Tlk=t*(Yk) } + 

P{ TYk=t*(Yk), T l < t * ( x ) } - e - A ( t * ( x ) , x ) _  e-A(t*(Yk),Yk) + 

P{wYk=t*(Yk), Tl<t*(x)  } . 

From continuity of A(t*(.  ) , .  ) on E we get 

( x . ) ( x<t.(x) } aim sup P TYk<t*(Yk), T l - t  (x) - a i m  sup P TYk=t*(Yk), T 1 
k--,cr k - - ~  

< P(  aim sup {Tlk=t*(Yk)}, T~<t*(x)) .  (6) 
k---4cx) 

1 x But since T k T 1 as k --<x3 P-a.s. and t*(Yk) --, t*(x) as k --~ cx3 it 

follows that aim sup ~TYk=t*(Yk)~ C ~T x - t * ( x )  ~ P-a.s.; thus (6)equals 
k - - ) c o  k - ) k • J 

zero proving step 2. If t < t*(x) then P (TI= t  ) - 0 and it is clear that 

- ' ~  x I{TYk�9 _<t} I{T l_<t} a sk - - , cx~P-a . s . .  

This, in conjunction with step 1, shows the first part of step 3. Suppose 

now that t = t*(x). Then we get 

_aT yk x, N "  -aT x x 
E I e i Pmk(ZlkSk)l{TYk_~ tk } _ e lpm(Zl ) l{Tl< t . (x )}  [ - 

Yk aT x x )1 
E [ ( e - a T l  pNk(zNkYk)l{TYk < tk}-  e - l p m ( Z l ) { T l < t * ( x ) }  I +  

-aT yk ~, N - 
E[ (e  1 Pmk(ZlkYk)l{TYk_< tk}) l{Tl=t , (x)  } 1. (7) 

x Since T yk ~ T 1 

that I{TYk _< t k} 

as k --~ ee P-a.s. and t k ~ t*(x) as k -~ cx~ it is clear 

-~ 1 as k ~ cx) P-a.s. on {Tl<t*(x)}. Therefore as in 
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the proof of step 1 the first term of (7) goes to zero as k---~oo. The second 

{ 1 x *(x)} 0 k ~ ~ 1 7 6  fr~ term is majorized by a lP  T k_< t*(Yk),Tl= t ---, as 

step 2, proving step 3. Let us show now step 4. Consider any sequence Yk 

---, x and N k ---+ oc as k ---, exp. We will show that  

i) lim sup ( inf 
k----,oo 0 < t<t*(Yk) 

jNk(gNk,pNk) (t,Yk)) < in f .  J (g,pm)(t,x) 
- 0 < t <  (x) 

ii) lim inf ( intf * jNk(gNk,pNk) (t,Yk)) > inf J (g,pm)(t,x). 
k---*cr 0 _ t<  (Yk) - 0 < t<t*(x)  

Let us show i) first. Given c > 0 take t C < t*(x) such that  t C is e-optimal 

for the right hand side of i). By virtue of continuity of t*( . ) we can get 

k 0 E NI such that  t C < t*(Yk) for k > k 0. It is clear then that  for k > k o 

inf J(g,pm)(t,x) } < in/, jNk(gNk'pNmk)(t'Yk) } -  { 0 < t<t*(x)  
{ 0 < t <  (yk) 

jNk(gNk,pNk)(tr - J(g,pm)(tc,x) + c  _< 

(gNk(r _ g(r 'x) ) + 

(EN:( e-C~T1 Nk N 
Pmk(ZNk)l{TNk < tc} ) -  Ex(e-C~Tlpm(Zl)l{T1 _< tc}) ) + e. 

By virtue of continuity of A( . , . ) and the assumptions on gN and g the 
first term above goes to zero as k --. co. From step 1 we see that  the 
second term also goes to zero as k --. :~. Thus 

lim sup { 
k---*oo 

inf jNk(gNk,p"k)(t,Yk)~ - ~ '  3 inf J(g,pm)(t ,x) < e 
0 __~ t< t , (Yk)  m j 0 _~ t< t* (x )  -- 

and since it holds for every c > 0, part  i) is proved . Let us show ii) now. 
Given c > 0 we can find for each k E N, s k < t*(Yk) which is c-optimal for 

inf jNk(gNk,pNmk) (t,Yk). 
0 __~ t<t*(Yk) 
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Consider now any convergent subsequence 

N k jNki(gNki,Pm i)(ski,Yki ) of jNk(gNk,pNk)(Sk,Yk). 

There is no loss of generality in assuming that converges to some s in Sk i 

R+ U {cr Since Ski < t*(Yki ) ~ t*(x) as i ~ co it is clear that s _< t*(x). 

If s < t*(x) then 

J(g,pm)(S,X) - jNki(gNki,pNki)(ski,Yki ) -- 

(g(r -A(s'x) Nk -A(Ski,Yki) ) 
g i(O(Ski,Yki))e + 

aTNkip 
(Ex( e-C~Tlpm(Zl)l{T < s } ) -  ENki( e- Nmki(zNki)l 

1 -- Yk i 
)) 

{T Nki _< Sk i} 

which goes to zero as i---<x) from the assumptions on gN and g, continuity 
of A and step 3. If s - t*(x) then from continuity of g on t~ we have 

( lim J(g ,pm)( t ,x ) )  - jNki(gNki,pNki)(ski,Yki ) -- 
t---*t*(x) 

(g(r e-A(t*(x)'x) N k ~Yk i) g i(r -A(ski ) 

(Ex(e-aTlpm(Z1) 1 {T1 <t.(x) }) _ ENki (e-aTNkipNki (zNki) 1 
Yk i 

+ 

{ T Nki _< Sk i} 

)) 

which goes to zero as i---,cx) from the assumptions on gN and g, continuity 
of A and step 3 . Then we can conclude that 

inf J(g,pm)(t,x) < lim jNki(gNki,pNmki)(ski,Yki ). 
0 < t< t* (x)  -- i---*oo 

Since it is true for any convergent subsequence of jNk(gNk,pNk)(Sk,Yk), 
we get that 

inf J(g,pm)(t,x) < lim inf {jNk(gNk,pNmk)(Sk,Yk) } 
- k---~oo 0 _~ t < t*(x) 

< lim inf { inf jNk(gNk,pNk)(t,Yk)} + e  
-- k--'~cr 0 __~ t<t*(Yk) 

proving step 4. From step 1.ii) and step 4 we get 
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lim ({ Pm+l(Y) - lim inf 
y---~x y--*x 0 < t < t * ( y )  

N---~OO N--*C<) -- 

jN(g, ) } A K N N PN)(t,Y Pm(Y)) - -  

lim { 
y---~x 

N---,oo 

N t inf jN(g,pm) ( , y ) } )  A ( 
0 < t<t*(y) 

lim KNpNm(y))-- 
y---~x 

N---,oo 

{ inf J(g,pm)(t,x) } A KPm(X ) - Pm+l(X) 
0 _~ t<t*(x) 

proving the Theorem. 

The next results show continuity of p and convergence of pN to p. 

309 

Corollary 1 �9 p is continuous on I~. 

Proof" From Prop. 6 we have for any x E t~ 

0 < Pm(X) - p(x) < Ex(e-aTm(g(Zm) - p(Zm))) < 2a lEx(e-aTm).  

The sequence Ex(e - aTm)  is obviously decreasing and converges to zero as 

m --, c~. From Prop. 10, E(.)(e -c~Tm) is continuous on 1~. By virtue o f  

Dini's Theorem (see [28] page 135) Ex(e -c~Tm) ~ 0 as m ---, cr uniformly 

on compact sets of I~. So it is clear that  Pm ---* P as m ---, oo uniformly 

on compact sets of l~. From Theorem 1, Pm is continuous on l~ which 

implies that  p is continuous on t~. D 

Corollary 2 pN N --, �9 --, p uniformly on compact sets of l~. 

Proof" For any x E I~ we get from Prop. 6 , Prop. 10 and Theorem 1 
N 

[p (x ) -  pN(y)[_< [p (x ) -  Pm(X)[ + [Pm(X)-  Pm(Y)[ + 

N pN 
I Pm(Y) - (Y) I 

c~T m < 2a lEx(e-aTm)  + j Pm(X) - pN(y) [ + 2alE~( e- ) 

4alEx(e - aTm)  a s y ~ x a n d N ~ o r  

Taking the limit as m ~ oc we obtain that  pN(y) __~ p(x) as y --,x and 
N ---, cr and from Proposition 11 the Corollary is proved. D 
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III. IMPULSE CONTROL PROBLEM 

A. PRELIMINARIES 

In the previous section we presented some characterization results 
and a numerical technique for the optimal stopping problem of a PDP. 
In this section we will apply these results to the impulse control problem. 
We characterize the value function by some reeursive methods rather 
than by variational inequalities. From the general theory of impulse 
control of right processes (see [6]) such problems can be written as a 
sequence of optimal stopping problems and therefore by using the results 
of the previous section we can develop a numerical technique for 
computing optimal impulse controls for PDP's. 

This section is organized in the following way. We keep the same 
notations, definitions and general assumptions as in subsection II, B. In 
subsection B we give the formulation of the problem. In subsection C we 
study the impulse control of PDP's  under general conditions. We show 
that by iteration of the single-jump-or-intervention operator we obtain a 
sequence of functions converging to the value function of the problem. In 
subsection D a connection between the representation results of 
subsection C and the Bellman inequalities as defined by Yushkevich [17] 
is presented. In subsection E we present a numerical technique for the 
impulse control of PDP's. This technique consists of solving a sequence of 
one dimensional minimizations. We conclude that subsection by 
presenting a numerical example. The results of this section follow those 
obtained in [29]. 

B. PROBLEM FORMULATION 

We shall now describe the construction of the canonical space which 
we shall use for the formulation of the impulsive control problem. Let 
{A} be a cemetery state and let (2 be the space of functions ~ �9 R+ 
E t_J {A} which satisfies one of the following properties �9 

- ~ E f~ ; in this case we define r/(~) "-  cxz . 

- for some a E R+ wt is right continuous with left limit in [0,a] and &t 

= A for t E (a,c~) ; we define r/(&)"- a .  

- ~b t -  A for every t E R+ ; in this case we denote ~bby A a n d  define 

. -  0 .  
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^0 _ a{ 2 s ; S  < t } ~ 0 . _  q o c a n d  For & E ~ define ~ t ( ~ ) - -  ~t, ~ t "  - , 

the universal completion of ~o. Let (~i,~i) be a copy of the measurable 
cx)~ ~0 cx3^ 

space (fi,q). Now define 'W"-- II a i ,  "-  tr{ilIl~ i ) and 0 the universal 
i--1 

completion of g0. We will denote the elements of W by w - (~51,~52,...). 
k ^ k ^ 

Let W" k :=i__l-Ilai , O~ "-  a{i=l-II~i } ,  Ok the universal completion of g~ and 

w k �9 W" ---. W" k the projection map Wk(W ) -- (~51, ... ,&k )" We now set 

k 
~k(w) -- ~k(Wk) "-- 52 O(w~) 

i=1 

r~(w) "-  lim rk(W ) 
k----)cx3 

and define the path (Yt (w)  )t > 0 by 

Y o ( w ) - -  ~0(~1) 

Yt(w) "-  { ~:t-r~w)(~i+l)A 
if "ri(w ) < t < 7"i+l(W ) 

if t > r ~ ( w )  

Let F be an analytic set of E x E and let F(x) denote the x-section of 

F, i.e., F(x) - {y E E" (x,y) E F}. We impose the following conditions" 

i) { F(x) }x E E is a family of non-empty sets of E. 

ii) for every x E E and y E F(x) ,  r ( y ) c  r(x).  

We define the class of admissible strategies 5 as the set of sequences 

"-- ( Sn ,  R n )n~__l which verify" 

a) for every n > 1, Rn(. )" ~ n  ~ E U {A} is a universally measurable 

random variable such that  

Rn(wn) { A if Vn(Wn)-  cx) 
E F(z~,(~n) (&n)) otherwise 

b) for every n >_ 2, Sn(.,. )" Wn_IXQ ~ R! - U {oo) is such that  for w E ~2 

fixed, Sn(.,w ) is a universally measurable function and for Wn_ 1 E ~n-1 

fixed, Sn(Wn_l, . ) is an ~Yt-stopping time of a PDP (Xt) starting from 

co
nt

ro
len

gin
ee

rs
.ir



312 OSWAkDO L. V. COSTA 

Rn_l(Wn.1). For n = l  , S 1 is an ~t -s topping time of a P D P  (Xt) s tar t ing 

from x. 

c) for every n >__ 2, Sn(wn_i, . ) is zero if there is k _< n-1 such tha t  

- 

d) for every n >__ 2, S n is strictly positive except for case c). 

R e m a r k "  Note that  given Wn_ ] E ~,rn_ 1, (Rn_l(Wn.]), Sn(wn_],.)) defines 

a mapping  ~ from fl into ~ in the following way. If Rn_ l(wn_l) - A then 

~(w)  - Ll E (~ for all w E f~. Consider now Rn_l(Wn_]) ~ A. If 

Sn(Wn_ i ,~  ) - (x) then ~(w) - w E ~ ; otherwise 

xt(w ) if t _< Sn(wn_],,~ ) 
xt (~(w))  - A if t > S n ( w n _ i , ~  ) 

and thus ~ ( w ) E ( ~ .  From the definition of ~ we have q(RJ(w)) = 

Sn(wn_ 1,~), V ~ E ~. 

Suppose ~ - ( S n ,  R n )n%1 satisfy the conditions a), b), c) and d) 

1 (~1, ~ ). above. Then S 1 and Px will induce a probabil i ty measure /~x on 1 

Given Wn_ 1 we define /tn({A);Wn_l) - 1 if Vn_l(Wn_l) -- cx); otherwise 

Sn(wn_ 1 ) and P will induce a probabil i ty measure #n( Wn_l ) 
'" Rn_l(Wn_l) "' 

( u r , g ) .  on (~n,~Yn). The family (#n) defines a probabil i ty measure P x on 

The last condition for Y be admissible is the following" 

e) r o c - ~  e x - a ' s ' "  

Let f "  E ~ R +  and c �9 F ---, R +  be bounded Borel functions 

satisfying the following conditions: 

C1) c(x,y) >_ Co> 0 for some c o E R +  and every (x,y) E F; c(x,A) -- 0, for 

any x E E. 

C2) for every x E E , y E F(x) and z E F(y) C F(x), c(x,y) + c(y,z) _ 

c(x,z), 

For each admissible strategy ~f E $ we associate the following cost �9 
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Too OO 
V~f(x) "-Ex~( I e-aSf(Ys)ds + E e-aric(Yri 'Yri+) ) 

0 1=1 

where a > 0 and the expectation is over W with probability measure P:f X" 
The value function of the impulsive control problem is �9 

D'(x) " - i n f  V1f(x). 

C. CHARACTERIZATION RESULTS 

For x E E, 0 < t <  t*(x) and v1,  v 2 in B'(E) we re-define the 
monotone operator J, K and define M, M. in the following way" 

T1At  

a) J(Vl,V2)(t,x ) : -  Ex( . [ e-CtSf(r + e-atvl(r  + 

0 

-aT 1 
e v2(Zl)l{T 1 _< t} ) 

T1 

I - a t l v 2 ( Z  ) ) ( - - J ( v  v2)(cx3,x)) b) Kv2(x ) "- Ex( e-aSf(d(s,x))ds A- e 1 1' 

0 

c) Mv2(x ) "- inf 
y E F(x) 

{ c(x ,y)+ v2(y ) } 

d) Jtv2(x ) "- 
T 

inf Ex( f e-aSf(Xs)ds + e-arMv2(Xr) ) .  
r E 3boo 

0 

Recall that the definition of L is" 

e) L(Vl,V2)(x ) "-  { inf J(Vl,V2)(t,x ) } A Kv2(x ). 
0 < t<t*(x) 

Since M maps B*(E)into B*(E) ([26], Prop. 7.47) we have from the 
results for the optimal stopping of PDP's (Propositions 1 and 3) that A 
also maps B*(E)into B*(E). Define 

CX) 
h(x) "- Ex( ~ e-aSf(Xs)ds ) 

0 
which corresponds to the cost of "no intervention" strategy. 
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The following Proposition can be easily proved. 

Proposition 12 �9 The function h is the smallest solution of the system 

v -  Kv 
v > 0 , v E B(E) 

Moreover if we def inehn+ 1 - Khn, h 0 -  0 t h e n h  n ] ' h a s n  ~ c ~ .  

Since .,4 is monotone, it is clear that .Anh, n - 0,1, ... is a decreasing 
sequence of functions in B*(E) (note that  for n - 1, Ah _< h by 
definition of the operator .A). Therefore we have that  the limit of A.nh as 
n goes to infinity exists and from Lemma 7.30(2) of [26] it is in B*(E). 
From the general results of Lepeltier and Marchal [6] on impulse control 
of right processes and the fact that  PDP's  are right processes we have 
that  the following result holds: 

Proposition 13 �9 jb' is the biggest solution of the system 

v - A v  
v E B*(E) 

M o r e o v e r / 3 ' -  lira Anh. 
n---->cx:) 

Outline of the p roof"  The second part of the s tatement follows from 
Propositions 22 and 23 of [6] (see also [29]). From the bounded 
convergence Theorem it is clear that  

T 

- inf .An+lh(x) - inf inf E x ( [  e-aSf(Xs)ds + e-aZ'M.Anh(Xr)) ~'(x) 
n n r E .2o~ J 

0 

T 

= inf Sx( I e-aSf(Xs)ds 
r E ~,cr 

0 

+ e-C~rM(inf.Anh)(Xv) ) - .AtS'(x ) " 

Moreover if v - Av, v E B*(E) then clearly v - Av _< h and thus 
using monotonicity of .A again we have 

V -  .,~.nv ~ .Anh n--~oo t5,. 

D 

From the above representation we have that ]~' is the limit of a 
sequence of optimal stopping problems. Note also that  the function Anh 
can be regarded as the value function of the impulsive control problem 
which allows only n interventions. For v E B*(E) define the operator 
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L(v)(x) "-  L(Mv,v)(x). This operator when applied to v can be seen as 
the value function of the single-jump-or-intervention problem with gain 
function v. The next proposition links the operator L with f~'. 

Proposition 14 �9 The cost function/3'  is the biggest solution of the system 

v -  L(v) 
v < h , v E B*(E) (8) 

Moreover if we define P ' n + l  - L(/)'n)' /)'0 - h then /3' n ~ k' as n --, cr 

Proof"  By induction arguments and monotonicity of the operator L, it is 
clear that  the sequence of functions i)'n is decreasing in B*(E) (note that  
k'l(X) - [,(h)(x) _< Kh(x) - h(x) from Prop. 12). Therefore 

e(x)  " - l i m  /5'n(X ) 
n---+oo 

exists and is in B*(E). From the same arguments as for the proof of the 
first part  of Proposition 13 we get that  ~ is the biggest solution of system 
(8). It remains to show that  /~ - k'. From the optimal stopping 
results and the fact that  jb'=attS' we obtain that  

]9'= L ( M ~ ' , / 3 ' ) -  L(/9') (from optimal stopping), 

k' < h ( f r o m / 5 ' - a t k '  and definition of the operator at). 

So ]9' is a solution of (8) which implies that  ]9' <__ e since e is the biggest 
solution of (8). If we show that  e - Ae then from Proposition 13, e < /3' 
and the result will be proved. So all we need to show is that  e - ate. 
From the theoretical results for optimal stopping we know that  

. A e -  inf en where e n "-  L(Me,en) /~o "-  Me. n +1 ' 

We will use induction on n to prove that/~ < e n for all n E N. For n - 0 
we have, by virtue of e - L(e) - L(Me,e), that  e < Me - e 0. Suppose 
now that  e < e n. Then 

- L ( e ) -  L(Me,Q < L ( M e , g n ) -  gn+l  

proving that  g < e n for all n E N. Taking the infimum over n we obtain 
e < ate. From the bounded convergence theorem we have 

 te(x) 
T 

- inf E x ( I  e-aSf(Xs)ds + e -a rM(  innf~'n )(Xr)  ) = 
r E .Al, or 

0 
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inf ( 
n 

T 

inf Ex( S e-aSf(Xs)ds 
r E .A~,oo 

0 

+ e - a r M / 5 ' n ( X r )  ) ) -  i n f A ~ ' n ( X  ) .  n 

We will show by induction that  A/5' n <_ }~'n+l for all n E N .  For n - 

0 we get A/5' 0 - Ah _< h ( by definition o f A  ) and by virtue of the 

results for opt imal  stopping, Ah - L(Mh,Ah) .  Thus  A/5' 0 - .Ah - 

L(Mh,Ah)  < L(Mh,h) - L(h) - /31'. Suppose .A}~'n_ 1 < P'n" Then 

.Ajb' n < .A/3'n_ 1 ( since/3' m , m E N is decreasing ) < /3' n and .A/3' n = 

L(MP 'n ,AP 'n )  < L(M/3'n,}~'n) - L(}~'n) - P ' n + l  proving that  .A}~' n < 

/3'n+ 1 , V n E N. Hence Ae - infA/3' n n  - < i n f / 3 ' n+ l  = e " I"1 

It is interesting to note that  the function /3' n can be understood as 
the value function of the impulse control problem of a P D P  where only n 
j umps  plus interventions are allowed and after that  there are no further 
interventions.  

Suppose now that  v 0 E B*(E) and v 0 > h. Define Vn+ 1 " -  L(vn).  

The following result, established in [29], shows that  we only need to find 
an upper bound for h in order to get a sequence of functions converging 
to ]9'. 

Proposit ion 15" lim Vn(X ) - k ' (x)  for all x E E .  
n---+cc 

In [30] chapter  9, Zabczyk studies the properties of the operator  .A 
when the process is Feller and there is cont inui ty of the parameters  c, f 
and of the operator M. Theorem 9.2 of [30] can be readily modified to 
show the following Proposition. Let f be bounded by a 3 and recall that  
c(x,y) _ c o for all (x,y) E F. Define v := 1/(1 + (aco/a3)) .  

Proposi t ion 1 6 " F o r a l l x  E E a n d m  E N 

0 < .A.m-lh(x) - .Amh(x) ( v m . A . m - l h ( x )  �9 

Remark  �9 From Prop. 16 it follows that  

vm-t-1 v m + l  
0 _< .Amh(x)-/3'(x) _< 1-v h(x) _< c~(l_v)a3. 
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D. OPTIMALITY EQUATIONS 

The purpose of this subsection is to show a connection between the 
solutions of v - L(v) and the optimali ty equations obtained in [17] when 
there is only impulse control. Define for v E B*(E), 

~v (x )  " -  f(x) + A(x) f E(v(y) - v(x)) Q(dy;x). 

We have the following result" 

Proposition 17 �9 Suppose that  for every x E E, v E B*(E) satisfies 

v(x) -  L(v)(x), v(x)> 0. 

Then for all x E E, 

i) v(x)<_ Mv(x) 

ii) v ( r  ,x)) �9 [0,t*(x)) --~ R is a Borel function, its derivative exists 
almost everywhere and 

t 
(q.l.v(r c~v(r > v (x ) -  v(r 

0 

(9) 

for all t E [0,t*(x)). If moreover for some x E E, Mv(r is continuous 

on [0,t*(x)) then for each open interval (Sl,S2)E Rx (the complement of 

Rx) , where Rx "-  {0 _ < t <  t*(x); v(r - Mv(r the function 

v(r is absolutely continuous on [Sl,S2] ([Sl,OO) if s 2 - c~) and 

~162 - av(r  + 

almost everywhere on Is 1's2]. 

dv(r 
dt 

= o  

Proof"  Equation ( 9 ) i s  immediate from v(x) - L(v)(x). Equation (2) 

(modified to include a and f) yields for any t E [0,t*(x)) 

v ( r  ea t+h( t ' x ){L(Mv,v) ( t ,x )  - 

t 

0 
where 
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L ( M v , v ) ( t , x ) -  ( J(Mv,v)(s,x) ) A Kv(x) . inf 
t < s<t*(x) 

Since L(Mv,v)(t,x) is increasing on [0,t*(x)) it is clear that it is a Borel 

function and by virtue of Theorem 2 on page 96 of [33] dL(Mv,v)(t,x) 
' dt 

exists almost everywhere on [0,t*(x)). From (12) it f~llows that v(r 

is Borel measurable, has derivatives almost everywhere and 

dv(r 
dt 

+ CU.v(r - c~v(r - 

c~t+h(t,x) dL(Mv,v)(t,x) 
e dt > 0 (13) 

a.e. on [0.t*(x)) where the last inequality is due to the fact that 

L(Mv,v)(.,x) is increasing. It is clear from (13) that for t E [0,t*(x)) 

t t 

I( vI0/sx), ov,0(sx),) I 
0 0 

and to show (10) it remains to prove 

t 
I d v ( r 1 6 2  v(x). ds < 

ds 
0 

By applying again Theorem 2, page 96, of [33] on the increasing function 

at+A(t ,x)  a/'(t) "-  e L(Mv,v)(t,x) 

we get that it is differentiable a.e. on [0.t*(x)), the derivative is Borel 
measurable and 

t 
I d~C(s) 

ds ds < ~c(t)- V(0). (14) 

0 
Since the function 

t 
%(t) " - - e  c~t§ I (f(r + Qv(r162 

0 
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is absolutely continuous on [O,t*(x)) we have for any t E [O,t*(x)) 

Equations (12), (14) and (15) yields 

and  since Y(0) = L(Mv,v)(O,x) = v(x) , %(O) = 0, it is clear tha t  

proving (10). Finally suppose Mv($(t,x)) is continuous on [0,t8(x)) for 

some x E E. Then clearly J(Mv,v)(t,x), L(Mv,v)(t,x) and v(4(t ,x))  are 

continuous on [O,t*(x)). Also, v(+(t,x)) < Mv(4(t,x)) iff L(Mv,v)(t,x) < 
J(Mv,v)(t,x). For any open interval (sl,s2) E Si: and every t E (sl,s2) , 
v(d(t,x)) < Mv(4(t,x)) and thus L(Mv,v)(t,x) < J(Mv,v)(t,x). Therefore 

L(Mv,v)(t,x) must be constant on (sl,s2) and from continuity of 

L(Mv,v)(t,x), i t  is constant on [sl,s2] ([sl,co) if s2 = 00). By virtue of 

(12) and (13) we get that  v(4(t,x)) is absolutely continuous on [sl,s2] and  

(1  1) holds since 
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E. DISCRETIZATION RESULTS 

1. ASSUMPTIONS 

In this subsection we extend the definition of the sets F(y) to the 
points y in 0*E and assume that F(y) is non-empty in E for y E 0*E. 
Conditions C1 and C2 of subsection III, B are modified replacing E by E. 
We extend the domain of the operator A to B*(I~) in the following way: 
for v E S(l~) a n d x  E E, Av(x) is defined as before and f o r x  E 0*E, 
.Av(x) = Mv(x)A Ex(Av(Z1) ) where the process jumps instantaneously 
when it starts from any point in 0*E. Note that this definition is 
consistent since Z 1 E E and we first evaluate .Av(x) for x E E. We can 
easily show that Propositions 12 and 16 still hold replacing E by l~. 

Define for x E l~ ~(x) "- lim Anh(x). Note that ~'(x) - ~(x) for x E E 
n----+oo 

but for x E 0*E,  k(x) may be less than ]~'(x) (= Ex(k'(Z1))). 

Let 2 g denote the collection of all non-empty compact sets of l~. The 

Hausdorff metric d(.,.) in 2 t~ is defined in the following way (see 

Bertsekas-Shreve [26] appendix C)" for A, B in 2 g and x in l~, 

d(x,A) "-  min {x-al d ( A , B ) " -  max { max d(a,B), max d(b,A)}. 
a E A  ' a E A  b E B  

For x E l~ let ['(x) be the closure of F ( x ) i n  l~. In addition to 

Assumptions 1, 2, 3 and 5 of subsection II, E, 2 we impose that: 

6) ['(.) is a continuous set-valued mapping from I~ into 2 g with respect to 

the Hausdorff metric in 2 g. 

7) c ( . , .  )" ]~ x E ~ R+ is bounded ( by a 4 ) and continuous. 

8) f ( .  )" E ~ R+ is bounded ( by a 3 ) and continuous. 

2. AUXILIARY RESULTS 

For v E C(I~) and x E 1~ define 

19Iv(x) : :  rain (c(x,z)  + v(z) }. 
e f(x) 

From our assumptions it is clear that Mv(x) = l~lv(x). From Proposition 
C.3 (appendix C) of Bertsekas-Shreve [26] and our assumptions the 
following result can be proved (cf. [293): 
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Proposition 18" M maps C(l~)into C(l~). 

Let D " -  {Zl,Z2,... } be the countable dense set in E seen in subsection 
-N N 

II, E, 3 and D y "-  {Zl,...,Zy}. Define the sets { A i }i=1 as" 

13~:= {z E I~; I z - z i l  < I z - z j l  for every j -  1, . . . ,N}, i -  1,...,Y 

~Y -N ~N -N i - l ~ N  
A1 "-  B1 ' Ai "-  Bi - j~ l  J i -  2,...,N. 

So clearly A N - .~N i - 0 * E ' F ~  E N a n d x E l ~ d e f i n e  
s 

FN(x) "-- { z i E DN; i M ~(x) # 0 } (16) 

and for v N E B*(l~) 

MNvN(x) "-- rain { c ( x , y ) +  vN(y) }. 
y E FN(x) 

With these definitions we have the following Proposition �9 

Proposition 19 Suppose v E C(I~), vNE B*(I~)and v N N --, " "--# V 

uniformly on compact sets of 1~. Then MYv y N ~ oo Mv uniformly on 

compact sets of E. 

Proof -  For arbitrary x E 1~ consider any sequence yk--Ox and Nk---,oo as 

k ~ .  For some ~x E ['(x), l~lv(x) - c(X,~x ) + V(~x) and, from 

continuity of [', we can find ~k E ['(Yk) such that ~'k ~ ~x as k ---+ oo. 

Define for each k E N, 

N k N 
~k " - z j w h e r e j E { l " ' " N  k} is such t h a t ~ k  E ~ j k .  

N k From Proposition 9 it follows that ~k ---+ ~x as k ~ oo. From the above 

Nk E construction it is clear that ~k FNk(yk) Thus 

MNkvNk(yk) < c ( Y k , ~ k  ) + vNk( Nk - ~ k  ) - *  c ( X ' ~ x )  § v (19x)  - lVlv(x) 

as k --, oo where we have used above continuity of c on I~ x I~, continuity 

of v on ]~ and uniform convergence of v N to v on compact sets of E (see 

Proposition l l ) .  Therefore lim sup MNkvNk(Yk) < 1Vlv(x). Consider 
k --, oo N k now ~k E FNk(Yk)such that 
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MNkvNk(Yk)-  c (Yk ,~k  ) 4" v N k ( ~ k )  �9 

N k For each ~k we have from the definition of the set FNk(yk) (see Eq. 

(16)) that  
N k -- ~'k zj where j E { 1,...,Nk} and ['(yk) n .A Nk # 0. 

N 
Thus associated to each ~'k k there is at least one ~k E ['(Yk) such that 

N .  of and ~k E A k From continuity of f' we can find a subsequence Yki Yk 
i ---~ oo 

~,ki of ~k such tha t  ~k i --, ~x  E r'(x) and  

lim inf MNkvNk(Yk)- lim inf (  c(Yk,~o~k ) + vNk(~o~ k) ) 
k - + o o  k - + o o  

N k N k. N k. 
-- lim ( c(Yki,~Oki i)4" v ~(~Oki ~) ) .  

i - -+  o o  

Nk i 
Then again by virtue of Proposition 9 we get ~Ok. -+ ~o x as i --+ oo and 

1 

as before due to continuity of c on Ext~,  continuity of v on E and 

uniform convergence of v N to v on compact sets of I~ we obtain that 

lira inf MNkvNk(yk)-  lim ( c(Yki,~k Nki) 4" vNki(~N, ki) ) 
k --+ oo i ~ o o  

= > M v ( x ) .  

N k N k So lira sup MNkvNk(Yk) < ]~v(x) < lim inf M v (Yk) and hence 
k ~ ~  - - k ~ o o  

MNkvNk(Yk) k-~oo 1VIv(x) - My(x). 

Since it holds for every sequence Yk -+ x, N k -+ oo as k -+ oo and x is 

arbitrary in 1~ we get that MNvN(y) --+ My(x) as y -+ x and N -+ oo for 

all x E E. The result follows from Proposition 11 and continuity of Mv on 

]~ (Proposition 18). ['1 

3. CONVERGENCE RESULTS 

We will consider the impulse control problem for the discretized PDP 
(X~) as defined in subsection It, E, 3 with the sets {FN(y)}y E 1~ as 

defined in (16) above. We will use the superscript N to distinguish the 
discretized problem from the original one. The following Proposition can 
be easily proved: 
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Proposition 20 �9 h E C(l~) and h N --, h as N ---, oc uniformly on compact 

sets of l~. 

The next Proposition is important  to show continuity of/)  on l~. 

Proposition 21 �9 For every n E N, Anh E C(l~). 

P r o o f "  We use induction on n to show the result. For n - 0 it is 
immediate from the previous Proposition. Suppose it holds for n, that  is, 
.Anh E C(I~). Then from Proposition 18, MAnh E C(]~). Since An+ih  is 
the value function of an optimal stopping problem with gain function 
M.Anh we obtain by virtue of Corollary 1 that  .An+lh E C(E) proving the 
Proposition . 17 

From uniform convergence of .Anh to /3 (Proposition 
continuity of Anh on l~ the next Corollary is immediate. 

16) and 

Corollary 3"]~ E C(]~). 

The next Proposition is needed to show convergence of/3 N to i). 

Proposition 22 �9 For every n E N, (~(N)nhN --* .Anh as N ---, oc uniformly 

on compact sets of E. 

Proof"  We again use induction on n . For n - 0 the result is clear from 

Prop. 20. Suppose it holds for n, that  is, (AN)nh N N ~ --+ .Anh uniformly 

on compact sets of l~. Since .Anh E C(E) (Prop. 21) and (.AN)nh N E 

B*(]~) we have from Proposition 19 that  MN(~tN)nh N N ---* --+ MAnh 

uniformly on compact sets of l~. As mentioned before .An+lh 

((.AN)n+lhN respectively) is the value function of an optimal stopping 

problem of the original (discretized) process with gain function MAnh 

(MN(AN)nh N ). By virtue of Corollary 2 

(.AN)n+lhN N ---* oo 1 -* A n+ h 

uniformly on compact sets of 1~ proving the Proposition. 13 

Noting that  the constant v seen in Prop. 16 is the same for both the 
original problem and the discretized problem we obtain the following 
result- 
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Corollary 4 /~N N--,oo 
�9 --, ~ uniformly on compact sets of l~. 

Proof-  1~-  ~bNI < (A.nh - ~ ) + I.Anh - ( .AN)nhN[+ ((~AN)nh N - / 3  N) 

vn+ la3 
_< 2 0 - v - ~  + ] A n h -  ('AN)nhN [ 

N---*cr v n + l a 3  
2 

(1-v)c~ 

uniformly on compact sets of E by virtue of Proposition 22. Taking the 
limit as n ---, oc we obtain the desired result. !"1 

4. NUMERICAL EXAMPLE 

Let us consider the following example of preventive maintenance of 
complex systems to illustrate our method. This example is similar to the 
one presented in [31] which was solved for the long run cost using the 
theory of generalized Markovian decision processes. It was also solved via 
linear programming [32] using a state space and time discretization. We 
consider a system with two units which, once operating, are subject to 
random failures. These units operate separately but they share one repair 
facility. It means that  a queuing situation for the repair facility may 
arise. We assume that  each unit has a fixed maintenance/repai r  time ri, 
a failure rate Ai(s ) and a return rate Ci(s ) where i=1,2 and s is the age of 
unit i. Upon unit failure there is an immediate cost Bi(s ) plus the repair 
cost Mi(s ). If a unit is taken out of operation preventively and the repair 
facility is available, only repair costs Mi(s ) have to be paid; but if the 
repair facility is engaged then a stopping cost Si(s ) is incurred plus the 
repair cost Mi(s ) (where again i = 1,2 and s is the age of unit i). We also 
assume that  when the age of unit i reaches t7 then unit i is taken out of 
operation with no extra costs incurred but Mi(s ). If an unit is out of 
order and the repair facility is available then it is immediately sent to be 
repaired. 

The above model can be seen as a PDP with a 15-components state 
space. The three main state space components are : 

n I -- [0,tl)x[0,t2) where units 1 and 2 are working 

E 2 - [0,t~)x[0,r2) where unit 1 is working and unit 2 is under repair 

E 3 - [0,ri)x[0,t~) where unit l is under repair and unit 2 is working 

The other components are mainly cemetery states and are not impor tant  
for the dynamic of the system. The decision maker can at any time send 
unit 1 or 2 to maintenance when the process is in E 1 and stop unit 1 (2 
respectively) when the process is E 2 (E3). We want to minimize the total 

co
nt

ro
len

gin
ee

rs
.ir



IMPULSE CONTROL OF PIECEWISE DETERMINISTIC SYSTEMS 

discounted cost. The parameters  considered are shown in Table I" 

325 

parameters  
, .  

Barrier t~ 

Maintenance/repair  t ime r i 

Failure rate Ai(s ) 

Failure cost Bi(s ) 

Maintenance/repair  costs Mi(s ) 

Stopping costs Si(s ) 

Rate of return Ci(s ) 

unit 1 

20 

0.05 

9 + 0.55s 

2 + 0.01s 2 

0.5 

8 .5-  0.55s 

unit 2 

10 

0.13s ~ 

2.20 

0.5 + 0.35s 

0.1 

8.1 - 0.58s 

Table I: Parameters  of the numerical simulation 

Three values for the discount factor a were considered, c~ - 0.5, 0.25 
and 0.1. Figure I shows the results obtained. 

10 

9 
,..._ 

e, 

T, 
a : 0 . 5  R E P A I R  U N I T  2 

6. ~a 
�9 ~ __ ,e- - -  R E P A I R  U N I T  2 ...__ 

4t -=~  o . . . .  . )  

" ' t  5 t 
' l  " ' " ' "  ~  ) ~  '! 

0 1 2 3 4 8 6 7 8 9 10  

R E P A I R  l 
U N I T  1 

1;1 12 13 

a g e  o f  u n i t  1 

Fig. I. Intervention boundary for the numerical example 
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IV. LONG RUN AVERAGE IMPULSE CONTROL PROBLEM 

A. PRELIMINARIES 

In this section we present some characterization results and 
optimality equations for the long run average impulse control of a PDP. 
First we consider in subsection B the case when there are no restrictions 
to where the system can be sent to after an intervention and the cost for 
impulses from x to y is in a separated form c(x)+d(y).  These 
assumptions will imply that we can concentrate on the class of strategies 
which always return to the same point after an intervention and use the 
same stopping time as intervention time (thus the process with 
intervention will be a regenerative process). These hypothesis simplify 
considerably the problem and an iterative technique which consists of 
solving a sequence of optimal stopping problems is derived. In subsection 
C we consider the more general case where constrains on the location of 
the process after an intervention are imposed and the cost per 
intervention may not be in a separated form. An optimality equation for 
this case is derived. The results of subsections B and C below follow 
those derived in [34] and [35] respectively. Convergence of discretization 
methods similar to those seen in the previous sections can also be 
obtained for these cases and the reader is referred to [34], [35], [36]. 

The construction of the admissible strategies and the assumptions 
for the impulse control problem are defined as in subsection III, B. 
Associated to an admissible strategy ~f E $ we define the long run average 
cost as 

ExY(Gt) 
VY(x) "-  lim i n f ~  

t---.oc t 

where 

i t  c~ 
Gt "-  f(Vs )ds + E I { r  i < t )c(Vri 'Yri  + ) "  

0 i=0 - 

We re-define i)' as the payoff function of the long run average 
impulse control problem in the following way: 

,b'(x) . -  inf v~f(x). 
YES  
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B. THE CASE W I T H  NO RESTRICTIONS A F T E R  IMPULSE 

1. ASSUMPTIONS AND AUXILIARY RESULTS 

The assumptions on the PDP are the same as in subsection II, B. We 
assume that  F(x) - E for all x e E, c(x,y) - c(x) + d(y) for any x,y E E, 
where c is a strictly positive function on BC(E) (thus there exists c o > 0 
such that  c ( x ) >  c o for all x E E) and d is a positive function on B(E). 
Besides these assumptions, we also consider the following ones. Let AI"= 
{ x E E; t*(x) < oc } and A 2 " -  { x E E; t*(x) - cr ). 

Assumption A1 �9 T h e r e  exis t  Ama x > 0, Ami n > 0, tma x > 0 such  t h a t  

i) A(x) < )ima x for all x E E 
ii) A(x) > )imi n for all x E A 2 and t*(x) < tma x for all x E i I 

Assumption A2 (Doeblin condition for the embedded Markov chain) �9 
There exist a finite valued non zero measure ~, an integer m* > 1 and 
positive c* such that  for all A E g and x E E, 

~(A) < e* ::r P x ( Z  . E A )  < l - e *  
- m - 

Note that  Assumption Al.ii)  implies that  for some a 0 > 0, 
E x ( T m ) <  ma 0 for all x E E  and m - 0,1,2, . . . .  We assume that  f i s  a 
positive function on B(E) and, to avoid trivialities, ]] fll > 0 (the sup 
norm). Define 

Ex( f(Xs)ds + c(Xr) ) + d(x) 
f l * ' -  inf inf 0 (17) 

x E E r E .Agm Ex(r )  

where if Ex( r  ) - oo, then 

rf(Xs)ds + c(Xr) ) + d(x) Ex(I o 
. m  

w 

E x ( I  r A tf(Xs)ds + c(Xr  A t) ) + d(x) 

lira inf 0 . (18) 
t ---,c~ Ex( r  A t) 

By using the general results of optimal stopping of PDP ' s  obtained 
by Gugerli [24], the first part  of Theorem 1 (section 2 ) o f  [12] can be 
modified to show the following result: 
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Proposition 23 �9 h'(x) - fl* for all x E E. 

Therefore in order to solve the long run average impulse control for 
PDP's we have to find the solutions of (17). For m - 1,2,... , x E E and 
fl E R+ define 

I r A T m  ) 
Cm(~,x) - -  inf Ex( ( f ( X s ) - ~ ) d s  + c(X r A T  m) 

r E -~oo 0 

lm(fl) . -  inf (r + d(x) ) 
x E E 

�9 - s u p  { ~ E R+; lm(3 ) > 0 for a l l m - l , 2 , . . .  }. 

We have the following results. 

Proposition 24 �9 There exists ~ E R+ such that lm(~ ) > 0  for all 

m=l,2,. . ,  and f l - / ~ .  

Proof" It is easy to see that 0 E { f l E R + ;  lm(~ ) > 0  for a l lm=l ,2 ,  ...} 

-7/: 0 since f, c and d are positive. Fixing x ' E  E and noting that 

0 < Ex,(T1) < a 0 we have that for all/3 > II f II + 

and thus 

{fl E R+; lm(fl ) > 0 for all m-l ,2, . . .}  C [0, II fll + 

[ [c l l+ l ld[ I  11(fl) < 0 
Ex,( T1 ) ' 

II c II + II d II 
Ex,( T1 ) ]" 

Let ~k E {~ E R+; lm(~ ) _ 0 for all m=l,2,  ...} be an increasing 

sequence converging to ~ < oc as k -~ oo. Then it is easy to see from 

Assumption A1 and the bounded convergence theorem that 

lm(~ ) lm(s~p ~k) inf inf (inf Ex( I  r A T m  _ _ (f(Xs) - ~k)ds 
x E E  rE3~,oo \ k 0 

r A T  
) ) - i n f  inf inf ( ( I  m(f(Xs)_~k)dS + + c(Xr A T m) + d(x) _E x_ 

k x E E  rE.At, oo ~ ~ 0 

c(X r A Tm)) + d(x)) - inf lm(~/k) > 0 
k 

for all m - 1,2, ... which proves the desired result. 0 
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Proposition 25" ~ -  ~*. 

Proof" For any x E E and r E ~oo  such that 0 < Ex(r  ) < cx), 

Ex( I v  A Tmf(xs)ds + c(XrA T m ) ) +  d(x) 
0 /3 _< for all m - 1,2, . . . .  

Ex(r A Tm) 

Letting m---.oo we have by virtue of the bounded convergence theorem 
and T m---+co Px a.s. that 

Ex( f(Xs)ds + c(Xr) ) + d(x) 
0 

< Ex( ) " 

From the definition for the case Ex(r ) - co (see (18)) it is clear that 
_ fl*. On the other hand for all m - 1,2, ... 

v > 0  

( Ex( f(Xs)ds + c(X r A T m) + d(x) 
0 

Ex(r A Tm) 

[ 
inf | E x ( r A T  m) 

r E  31,oo \ 

and therefore 13" < ~ which completes the proof. 

A non-empty set A E E is called invariant for the embedded Markov 

chain (PDP respectively) if Px(Zm E A) - 1 for all x E A and m=l,2, . . .  

(Px(Xt E A) for all x E A and t E R+) and it is minimal if it does not 

contain another invariant set B such that ~ ( B ) <  ~p(A). Assumption A2 

implies the next two Lemmas (cf. [37], pp 191-215). 

Lemma 1 �9 There exists a maximal sequence of disjoint minimal 

invariant sets El, ... , E r for the embedded Markov chain (Zm). Moreover 
d i 

there is a decomposition Cil,...,Cidi, Cik M Cij - 0 for k ~: j, of E i j__t=31Cij 
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and a family of measures 7rij on E, constants b 1 E R+,  u 1 E [0,1) such 

that  for all i - 1,...,r, j - 1,...,di, k - O,...,d i - l, x E Cij and A E E, 

I Px( Zndi+ k e A ) -  7rim(A ) I -< bl  t~ 1 (19) 

where m - j  + k (mod di) . Moreover the measures 
d i 

1 
7ri(') "-- dii Z 7rik(')' i -  1,..., r 

k=l  
are invariant for the Markov chain and any invariant measure for the 

Markov chain belongs to the convex hull generated by r i . 

r 
L e m m a 2 -  D e f i n e F ' -  E -  U E  i. Then there exists b 2 > 0 a n d u  2E[0 ,1)  

i=l 
such that  for all x E E and m = 0,1,2,..., 

P x ( Z m E F ) <  b 2u~ n. (20) 

From Assumption A1 and the equivalence results in [38] we have 
that  there exists a one to one mapping between the invariant measures 
for the PDP and the invariant measures for the embedded Markov chain. 
Thus denoting by ~t i the invariant measure for the PDP associated to 7ri, 
i - 1,...,r, we have from Lemma 1 that  any invariant measure for the 
PDP belongs to the convex hull generated by #i" From [38] we know that  
for h E B(E), 

S I t*(x) e-A(t h(r 'X)dt r i (dx ) 

E 0 (21) 
h(y) #i(dy) - t*(x) " 

I E  I E S 0  e-h( t 'x )d t  r i (dx ) 

Remark : Although Assumption A2 implies (19) and (20), we cannot say 
that  Px(Xt E A) will converge as t ~ er Indeed consider 

E = [0,1), ~ = 0, Q({0};1) = 1 and r = x + t. 

Then 7r({0}) = 1 = Px(Zm=0)  for all m = 1,2, ... and all x E E. However 
it is easy to see from (21) that  ~([0,()) = ( for ( E [0,1) is the invariant 
measure for the PDP but Px(Xt E [0,()) = 0 or 1 does not converge to 
as t --* cr Thus we can conclude that  the Doeblin condition for the 
embedded Markov chain does not imply the Doeblin condition (as in [37], 
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p. 256) for the PDP. The reverse in general is not true either but if for 
all t E R+,  

lim Px(Tm < t) - 0 uniformly in E m ~ o o  

then we can show that the Doeblin condition for the PDP implies the 
Doeblin condition for the embedded Markov chain. In most practical 
applications this result will hold. Another reason to use the latter is 
because when we look at the discretization technique (see [34]) it is easier 
and more general to formulate the assumptions in terms of the embedded 
Markov chain rather than the PDP itself. 

Define for i - 1,...,r, 

]~i "-  {x E E; x - r some z E E i, some t E [0,t*(z))} U 

{xEcOni; r E E i f o r a l l t  E (0 ,e ) , somee  > 0 } 

~" "-  E -  t~ t~i, fi " -  I f(y) Pi(dY) 
i -1  E 

r 

f(x) "-  ~ fi ll~i(x) + [I f Ii l ~ ( x ) .  
i - 1  

The next two Propositions are consequences of Lemmas 1 and 2, and 
the proofs can be found in [34]. 

Proposition 2 6 "  The sets Ei, i=l , . . . , r  are invariant for the PDP and 

 in j-  fori # j. 

Proposition 27 �9 The function 

cx~ T m +  1 
v(x).- Z Ex(f 

m=0 " J  Tm 
( f (Xt )  - f(Xt) ) dt ) ,  x E E 

is bounded on E. Moreover for any r E-Al, oo 
have that  

such that Ex(v ) < cx~, we 

fT 
( f ( X t ) - f ( X t ) ) d t  + v(Xv) ) .  v(x) - E x ( 0 (22) 
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2. POLICY ITERATION TECHNIQUE 

We shall describe now a policy iteration technique to obtain the 
value /3* defined in (17). This technique consist of solving a sequence of 
t runcated optimal stopping problems, where the truncation is on the 
number of jumps allowed for the PDP. As m, the maximal  number of 
jumps allowed goes to infinity, a sequence tim of positive numbers 
converges to /3*. Define ~ "-  min {fi; i - 1,...,r}. From ( 1 8 ) a n d  
Proposition 27 it is clear that /3* < f*. 

Policy-iteration a lgor i thm" 

1) start  with/30 - f* 

2) for m = 1,2,... iterate 

3) if 1 m(/3 m_ 1) >--- 0 then tim 

4), 5 ) a n d  6) below. 

4) for everyc  > 0, o b t a i n x  m E E a n d r  m E 3goo such that  

f r~n A Tm C(Xrm A T I )  ) E y e (  ( f ( X s ) - f l m _ l ) d S  + + d(X~n) _< 
""In', 0 

lm(flm_l ) + e 

" ~n( c A T m )  5) calculate Pm - lira sup E x r m 
e----~0 

-- tim-1 and go to 2); otherwise perform steps 

(23) 

lm(flm_l) 
6) t i m -  tim-1 + Pm ; go to 2). 

Auxiliary definition �9 We also define for every c > 0, m - 1,2, ... and X~n, 

rme qm" ~(rme A T m )  as in step 4 above, - lim inf E x 
e----~0 

Remark �9 In step 4) above we have to work with c-optimal solutions since 
in general we cannot guarantee the existence of exact solutions. 

Proposition 28 �9 For every m - 1,2,... 

i) 0 < tim < tim-1 
c O 

ii) if lm(flm_l ) < 0 then qm > ii f ii (recall that  I[ f II >o) 
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Proof"  The proof follows by using induction on m. We shall show only 
the case m - 1, since the proof that  (m ::~ m + l )  is identical. Suppose 
1 l(f*) _< O. Then for all e > O, 

-II f II Ex~(r~ A T1) + c o _~ 

f v~ATI ) 
Exi( 0 (f(Xs)- P )ds + c(Xr~AT 1) +d(x~) _< 

l l ( P )  + c _< 

and thus Ex~(r ~ A T1) 
we have 

- {'* Ex~ ( r~ A T 1 ) _< 

and thus 

l l (P ' )  > 
~ - i ' * +  pl - 

(24) 

c o - ~ c o 
>__ ]]fj j .  It follows that  ql >-- Ilfl[ " From (24) 

ll(f* ) + e 

f * -  i~* ( nx~ ( 7"~ A T  1 ) + • ) /  P l "  

Taking the limit superior as c --, 0 we obtain fll ~-- ~* ( 1 - q l / P l  ) ~- 0. 

Finally, by definition, it is clear that /31 < f*. [3 

Proposit ion 29 �9 If for some positive integer m 0, lmo(f lm0_l)_  0 then 

lm(~m_l) _< 0 for all m ~_ m 0. 

Proof"  Suppose lmo(flm0_l ) < 0 for some positive integer m o. Let us show 

the result by induction on m. For m - m 0 the result is true by 

assumption.  Suppose lm(~m_l ) < 0 for m > m 0 . Then for every c > 0 
s 

and x ~ ,  7" m as in (23), we have 

lm+l(flm ) - inf ( r  inf ( r  d ( x ) ) <  
x E E  - x E E  - 

17"m A Tm ) 
( (f(Xs) - ~m-~)ds + ~(X.~ ^ Tm ) + d(xm) - Ex~n 0 

lm(t3m_l)Ex~n('r~n A T m ) / p  m _< 
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lm(J3m_l) + e -  lm(~m_l)Ex~n(r~n A Tm) /p  m . 

Taking the limit superior as e --, 0 and recalling that  - lm(flm_l) > 

by the induction hypothesis, we obtain that  lm+l(flm ) _< 0. 

The sequence tim is decreasing and thus /3 '  " -  l i m  tim -- inf tim m--,oo 
exists and /3 '  >_ 0. From the last Proposition we can have two cases: 

a) either lm(~ ) ___ 0 for all m - 1,2, ... and thus 

f l ' - ~ m  - i'* for all m - 1,2,..., 

b) or for some positive integer m0, lm0(~ ) < 0 and from Proposition 29, 

lm(flm_l) _< 0 f o r a l l m  >__ m 0 w i t h f l '  _< ~ m o < ~ .  

We have the fgllowing Theorem. 

Theorem 2 " / 3 ' -  /3*. 

Proof"  Suppose case a) above first. We have from Proposition 24 that  

fl* _ fl' - i'* but since fl* < i'* it is clear that  fl*= ~ - /3'. Suppose case 

b) now. We shall prove the following steps" 

Step 1" fl* <_ fl' 

Step 2" Pm is a bounded sequence 

Step 3" fl* > fl' 

Proof o f s t e o l  For m > m  o, consider c - -  _ " Xm+l ' rm+l  as defined in (23). 

Then 

n x ~ l + l ( I  T~a+ 
0 

1 A T m + I  
(f(Xs) - ~m )ds + c(XT"~n+l A Tm+l  )) + d(xm+ 1) 

< lm+l( f lm)  "k- c _< •. (25) 

From the proof of Proposition 28, 

Exm +1( V~n+l A T m +  1 ) 
C O - 

> II f I1' 

and from (25) with e < c o , 
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Taking the limit as 6 --+ 0 we get that P* 5 Pm and since m is 

arbitrary, p* 5 p'. 

Proof of ster, 2 : By contradiction, suppose pm is unbounded. Then we 

can find a subsequence xi. , 7';. of & , r k  (as defined in (23)) such 
1 

that ci 1 0, mi T oo and E €. ( ~ 2 ,  AT,,) + oo as i T co . From (22), 
A .  1 1 

and from (26) with ci < co , 
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Letting i +co and recalling that v, d and c are bounded we get that 

T* 5 P' which is absurd since, from case b), P' < ?. Then p, must be 

bounded. 

Proof of step 3 : From Step 2 there exists p E R+ such that p, 5 p -- 
for all m = 1,2, ... . Then for all m > m,, , 0 5 - lm(Pm-l) = P,(P,~- 
Pm) 5 P(P,-~-P,) + 0 as m -, co, and it means that for any sequence ci 

+ 0 as i + co we can find mi + co such that lmi+l(P ) + ci 2 0. For 
mi 

any x E E, T E A,, 0 < Ex(r) < co, we have 

and thus 

f(xs)ds + 4% A Tmi+l ) ) + 4x1 + (i 

P' 5 P,. I 
Ex(r A Trni+l) 

Taking the limit as i+cm we have from the bounded convergence 

theorem and T +cm Px-a.s. that 
mi 

and from the definition for the case EX(r) = cm (see (18)) it follows that 

P' I P*. 0 

C. THE GENERAL CASE 

In this subsection we assume that r ( ~ )  is a compact set of E for each 
x E E, and make the same assum~tidns as in subsections 11, E, 2 and 111, 
E, 1. We modify the definitions of the operators J, K and L of subsection 
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II, C in the following way. For Vo, Vl, v2, v 3 in C(l~), x E l~ and 
0 _< t _< t*(x) define 

�9 (Vo,V2)(x) "- Vo(X)+ 

i t  J(vo,vl,v2)(t,x ) . -  e-A(s,x)!l~(Vo,V2)(r + e-A(t'X)vl(r 
0 

i t*(x) -A(s,x) K(vo,v2)(x ) "-  e !ll(Vo,V2)(r + 
0 

A(t*(x) e- 'X)Qv2(r 

L(vo,vl,v2)(x ) "-- inf J(vo,vl,v2)(t,x ) A K(vo,v2)(x ) . 
0 < t < t*(x) 

The following Theorem characterize the optimality equation for the 
general average impulse control of PDP's. 

Theorem 3 �9 If there exists r E C([;) and/3* > 0 such that for all x E l~ 

r  L(f-/3*,MC,r 

then f~'(x) - / 3 *  for all x E E. 

This Theorem will follow from the Lemmas below. 

Lemma 3" The process 
t 

I (f(Xs)-t3*) ds + r 

0 
is an ~t-submartingale. 

Proof" Let us show by induction on m that 

t A T  m 

gm(t 'x) "-  Ex ( I ( f (Xs) - /3*)  as + r  t h T I ) )  -> r 
0 

for all t E R + ,  xEI~  and m - 0,1, . . . .  For m - 0 the result is 
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immediate. Suppose r < $m(t,y) for all y E E and t E R+. Then 

8m+l( t ,  x) 

t A T  1 

-Ex(I 
0 

(f(r - )3*)ds + r162 + 

8m(t-TI'Z1)I{T 1 _< t}) ~ 

 x(I 
0 

t A T  1 

(f(r + r162 + r 1 _< t}) >-- 

L( f -3* , r162  r 

where the last equality follows from Corollary 1 of [24]. Thus we have 

shown that r < 8m(t,x ). Applying the bounded convergence theorem 

and recalling the fact that T m ---. oo as m ~ oo Px-a.s we obtain that 

t 

r < E x ( I  ( f (Xs) -  /~*)ds+ r ) 

0 

for all t E R+ and x E l~. The Lemma follows from time homogeneity 
and strong Markov property of {Xt}. Fi 

Lemma 4 �9 For any :f E $ and x E E, 3* < V~'(x). 

Proof- From Lemma 3, r < Me, and using arguments similar to those in 
the proof of Lemma 7 below we get 

t 

r < Ex~( I ( f ( Y s ) -  3*)ds + 

0 

(x) 

~] c(Yr,,Yr,+) 1 + r  
i=0 " " {ri < t} 

Taking liminf as t ~  and from boundedness of r we obtain the desired 
result. E! 

Optimal stopping problems of PDP's may not have an optimal 
stopping time (cf [24]). Therefore we will need c-optimal solutions, given 
in the next two Lemmas. 
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L e m m a  5 : Let ~r be an integer such tha t  ~r o > 2 II r II (the sup norm).  

For 0 < e < (xc o - 2 IIr  II )/~r we can find a Borel measurable  selector 

R e ( . ) :  E ~ E such tha t  Re(x ) (5 F(x), c(x,Re(x)) + r  Me(x )  + 

(~-1)r and Me(Re(x ) )  > r  + e  for all x E E. 

P r o o f : S e e  [35]. 

L e m m a  6"  Define U e 

Then  the process 

- i n f {  t > 0; M~(Xt )  < r  + e  } for e > 0. 

t A U  e 

f (f(Xs) - fl*)ds + r  t A U e) 

0 

is an ~ t -mar t inga le .  

Proof"  L e m m a  2 in [24] is readily modified to show tha t  

t A U e A T  m 

 x(I 
0 

( f ( X s ) - f l * ) d s + r  t A U  e A T  m ) )  - ,~(x) 

for all m - 0,1,..., t > 0 and x E E. The remainder  of the proof is as in 
L e m m a  3 above, l-I 

For e as in L e m m a  5 let e i - e/2 i, i - 1,2, .. and define the s t ra tegy 

if* by: 

S~(Wl) - Uel(Wl), w 1 E fl, ;o 1 E ~ as in the remark of subsection III, B, 

_ [ Re2(Xr](~i)(~i)  ) if q(&l) < oo, 
R~(Wl) ( A otherwise, 

Wl - (&l) E ~r 1, and for i - 2,3,..., 

_ ~ Ue i (wi ) i fR~_ i (Wi_ l ) r  A, 
S~(Wi_l,Wi) 

t 0 otherwise, 
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wi (5 ~, r176 (5 ~ as in the remark of subsection III, B, and 

R~(wi) - { 
Rei+ 1 (~:r/(wi)" (r176 if r/(~i) < oo and R*l(Wi.1). r A, 

A otherwise, 

w i - (Wl,...,~i)(sWi, where Rq, Uei are as in Lemma 5 and 6 

respectively, replacing e by Q. Note that from the above construction and 

Lemma 5 we get that ri+ 1 > r i (on r i < o0) since that 

Ur > r + c i+1. Lemmas 4 and 7 below completes 

the proof of Theorem 3. 

Lemma 7" For all x (5 E,/3* > V~f*(x). 

Proof" For a l l t  (5 R + , x  (5 E a n d i -  1,2,...define 

tAUQ 

Ci(t,x ) := E x ( f (f(Xs) -/3*) ds + (c(Xuei,Rci+l(XUci)) -F 
0 

r _< t} + r  ) <- r  tr i 

where the inequality above follows from Lemmas 5 and 6. We get that 

t a r .  1 

Ex ( ( f (Vs ) - f l * )d s+  ~(c (Vr j ,Yr j§  1 
0 j= l  �9 {rj _ t} 

tAr j  

" (f(Ys) + ^ t)))- (j-i 
t ^B_ l  

(c(Yrj'Yrj +) + r +) ) l{rj < t} + 
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~b(Yt)l {rj>t} }1 {rj_ 1--< t} + ~b(Vt)l{rj_l>t } ) ) -  

Ex ( ~ (Ej(t-rj-l,Yr?l)l + ~b(Yt)l j= l  " {rJ -1 -< t} {rj_l>t } 
)--- 

:?, i 

Ex ( jq~b(Y,r~lA.= .. t ) )  + ~e" 

Therefore for all i - 1, 2, .. and x E E, 

t a r .  
:f* I" ~ i 

Ex ( J (f(Ys)- /3*)ds + ~c (Yr j ,Yr j+  ) 1 + r + t) ) 
�9 {rj _< t} r i A j -1  

0 

_< ~ ( x ) +  ~ , .  

From the above expression it is easy to check that Px (ri-< t ) <  

(2 II V I[ + gc + fl*t)/ic 0 for any t E R+ and this result yields that 

Px ( lim r i < cx:~)- 0. 
i----~oo 

From the bounded convergence theorem it follows that 

t 

~f* S oo Ex ( 0 (f(Ys)- /~*)ds + jFlC(Yrj'Yr~ ) l { r j  < t} + ~b(Yt) ) - < 

r + xe .  

Dividing by t, taking the liminf as t ~ oo and from boundedness of ~b we 

get the desired result. !"1 
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INDEX 

Classical single-input/single-output (SISO) 
control law, controller performance 
evaluation, 281-282 

Constrained system theory, discrete-time 
linear systems, see  Reachability. input 
constrained discrete-time linear systems 

Deterministic systems, piecewise, see  

Piecewise deterministic systems, 
impulse control 

Digital control systems, multiloop, controller 
performance evaluation, 263-289 

background, 263-264 
closed-loop, 267,274-275 
conclusions, 286 
description, 265-267 
flutter-suppression testing, 275-277 
implementation, 278 
notations and definitions, 264-265 
open-loop, 267, 271-274 
periodic pseudo noise excitation, 287 
plant estimation, 275-277 
procedures, 269, 270-275 

closed-loop, 274-275 
open-loop, 271-274 

results and discussion, 278-286 
flutter boundary prediction, 284-285 
multi-input/multi-output control law, 

282-283 
transfer function calculations, 268, 270 

Discrete-time systems 
Fisher Information Matrix, see  Effective 

Independence Distribution, Fisher 
Information Matrix 

H2 theory, 1-33 
Riccati equation, 3-8 

sampled-data systems. 23-32 
example, 27-32 

state-space approach, 8-23 
output feedback. 14-23 

general case, 22-23 
orthogonal case, 18-21 
special problems, 14-17 

state feedback and disturbance 
feedforward, 9-14 

general case, 13-14 
orthogonal case, 10-12 

linear 
constrained, 157-213; see  a l so  

Reachability. input constrained 
discrete-time linear systems 

feedback control of state-constrained 
systems, 179-199 

closed-loop poles to system zeros, 
184-189 

complementary subspace K e r  G. 

189-192 
design approach, 179-180 
implementation and examples. 

192-195 
with global stability, 195 
without global stability, 193-194 

modifications, 196-199 
robustness improvement, 

198-199 
unstable zeros, 196-198 

positive invariance by 
eigenstructure assignment, 
184-199 

positive invariance of symmetrical 
polytope, 180-183 

example, 183 
Linear Programming, 181-183 
positive invariance and stability, 

180-181 
invariant regulation under control 

constraints. 199-208 
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346 INDEX 

Discrete-time systems, linear, invariant 
regulation under control constraints 
(continued) 

domain of admissible states, 207 
example, 208 
Linear Programming design 

technique, 200-206 
positive invariance approach, 

199--200 
positive invariance relations, 157-163 

basic invariance property, 159-160 
Farkas' lemma, 160-161 
general considerations, 157-158 
homothesis property, 162 
invariance of subspace Ker G, 165 
invariance relations, 161 - 162 
invariant domains of similar 

systems, 165-166 
polyhedral domains of state space, 

159 
positively invariant domains, 158 
stability properties, 162-163 
symmetrical and non-symmetrical 

invariant domains, 163-164 
positively invariant domains 

Jordan system, 168-175 
multiple complex eigenvalues, 

172-174 
real eigenvalues, 169-170 
simple complex eigenvalues, 

170-172 
symmetrical polytopes, 174-175 
polyhedral positively invariant 

domains for stable systems, 
167-168 

polyhedral sets for stable systems, 
176 

simplical invariant symmetrical 
polytopes, 177-178 

time-invariant, see Sampled-data 
systems, multirate 

Effective Independence Distribution, Fisher 
Information Matrix, 131 - 155 

alternative calculation, 137-139 
applications, 147-152 

Kalman filtering, 152 
numerical examples, 147-148 
uniform plate, 148-151 

determinant maximization, 140-146 

eigenvalue problem, 135-137 
general considerations, 131 - 132 
optimal sensor locations, 139-140 
symbols and acronyms, 153-154 
theorem 1, 142-144 
theorem 2, 144-146 
theoretical background, 133-135 

Farkas' lemma, discrete-time constrained 
linear systems, 160-161 

Fisher Information Matrix, discrete-time 
systems, see Effective Independence 
Distribution, Fisher Information Matrix 

Flutter suppression testing, controller 
performance evaluation, 275-277,286 

Gaussian control, quadratic, linear, 97, 
116-119 

H~ control problem, sampled-data, 215-262 
appendix 

lemma 4, 256-257 
theorems 1, 4 and 5,256-257 
theorem 2,254-256 

conclusions, 253-254 
discrete system representation, 219-224 
dual-rate control problem, 239-243 
dynamic game solution, 224-233 

estimation results, 229-231 
solution. 231-233 
state feedback control problem, 

225-229 
general considerations, 215-217 
lemma 1,223 
lemma 2, 226-227 
lemma 3,228-229 
lemma 4, 229-230 

proof, 256-257 
lemma 5,230-231 
lemma 6, 231 
lemma 7, 232-233 
lemma 8, 234-235 
lemma 9, 238-239 
lemma 10. 241 
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lemma 11,241-242 
lemma 12, 243 
lemma 13,246 
lemma 14, 246-248 
lemma 15,248-249 
optimal sampling prefilter, 243-249 
problem formulation, 218-219 
robust stability, 250-253 
theorem 1,223-224 
theorem 2, 227-228 
theorem 3, 231-232 
theorem 4, 235-236 
theorem 5,236-237 
theorem 6, 242-243 
theorem 7, 249 
theorem 8, 251-253 

proof, 254-256 
worst-case sampling approach, 233-239 

INDEX 347 

general case, 336-341 
no restrictions after impulse, 327-336 

assumptions and auxiliary results, 327- 
331 

policy iteration technique, 332-336 
preliminaries, 326 

M 

Markov processes, deterministic, piecewise, 
292; s e e  a l s o  Piecewise deterministic 
systems, impulse control 

MATLAB command, discrete-time H2 theory, 
29-31 

Multi-input/multi-output (MIMO) control 
law, controller performance evaluation, 
282-283 

Impulse control, piecewise deterministic 
systems, s e e  Piecewise deterministic 
systems, impulse control 

Jordan system, 168-175 
multiple complex eigenvalues, 172-174 
real eigenvalues, 169-170 
simple complex eigenvalues, 170-172 
symmetrical polytopes, 174-175 

Kalman filtering 
Effective Independence Distribution. 152 
multirate sampled-data systems, 112-114 

Linear Programming, discrete-time linear 
constrained systems, 181-183,200-206 

Linear quadratic control, 108-109 
Gaussian, 97, 116-119 

Linear systems, discrete-time, s e e  Discrete- 
time systems, linear 

Long run average impulse control, piecewise 
deterministic systems, 326-341 

Optimal stopping, piecewise deterministic 
processes, s e e  Piecewise deterministic 
systems, impulse control, optimal 
stopping 

Periodic pseudo noise excitation, controller 
performance evaluation, 287 

Piecewise deterministic systems, impulse 
control, 291-344 

characterization results, 313-316 
dicretization results, 320-325 

assumptions, 320 
auxiliary results, 320-322 
convergence results, 322-324 
numerical example, 324-325 

general considerations, 291-292 
long run average, 326-341 

general case, 336-341 
no restrictions after impulse, 327-336 

assumptions and auxiliary results, 
327-331 

policy iteration technique, 332-336 
preliminaries, 326 

optimal stopping, 293-325 
characterization results, 295-297 
discretization results, 300-309 

assumptions, 301 
auxiliary result, 300 
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348 INDEX 

Piecewise deterministic systems, impulse 
control ( con t inued )  

convergence results, 304-309 
discretized process, 302-304 

notations and definitions, 293-295 
optimality equations, 297-300 
preliminaries, 293 

optimality equations, 297-300, 
317-319 

preliminaries, 310 
problem formulation, 310-313 

Pole-placement, multirate data systems 
output feedback control, 115-116 
state-feedback control laws, 105-108 
state observers, 110-112 

Policy iteration technique, long run average 
impulse control, piecewise deterministic 
systems, 332-336 

R 

Reachability, input constrained discrete-time 
linear systems, 35-94 

approximated and disturbed, 87-91 
bounded norm reachability, 79-87 
conical constraints, 68-70 
constrained state approach, 70-79 
constrained systems, 44-50 
general considerations, 35-37 
general time-pointwise constraints, 

53-62 
literature survey, 37-39 
notations and terminology, 40-41 
pointwise in time constraints, 52-53 
polyhedral constraints, 64-68 

big bang principle, 66-68 
theorem 1,53-55 
theorem 2, 56-58 
theorem 3, 58-61 
theorem 4, 65 
theorem 5, 65-66 
theorem 6, 69-70 
theorem 7, 73 
theorem 8, 73-74 
theorem 9, 78-79 
theorem 10, 80-83 
theorem 11, 83-84 
theorem 12, 84-85 
theorem 13, 85-86 
theorem 14, 86-87 

theorem 15, 88-91 
theorem 16, 9 l 

Riccati equation, H2 optimization problem, 
3-8; see also Discrete-time systems, H2 
theory; H~ control problem, sampled- 
data 

Rockwell Active Flexible Wing, controller 
performance evaluation, see Digital 
control systems, multiloop, controller 
performance evaluation 

Sampled-data systems, see also Discrete-time 
systems, H2 theory; H~ control problem, 
sampled-data 

H2 optimal, 23-32 
example, 27-32 

multirate, 95-130 
appendix, 125-126 
applications, 95-97 
discrete-time linear time-invariant model 

of plant, 98-102 
output feedback control, 114-119 

linear quadratic Gaussian control, 97, 
1t6-119 

pole-placement, 115-116 
output regulation, 119-124 
research, 97 
solution, 121 - 124 
state-feedback control laws, 

105-109 
linear-quadratic control, 108-109 
pole-placement, 105-108 

state-observers, 109-114 
Kalman filtering, 112-114 
pole-placement, 110-112 

statement, 119-121 
structural properties and zeros, 102-105 
theorem 1, 103 
theorem 2, 103-104 
theorem 3, 104 
theorem 4, 104-105 
theorem 5, 105 
theorem 6. 106 
theorem 8, 107-108 
theorem 9. 109 
theorem 10, 110-111 
theorem 11, 111-112 
theorem 12, 114 
theorem 13, 115-116 
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theorem 14, 118-119 
theorem 15, 121 - 123 
theorem 16, 123-127 

Sensor location methods, 131-132; see  a l so  

Effective Independence Distribution, 
Fisher Information Matrix 

Skorohod's Theorem, 302 
State reconstruction, multirate data systems, 

110-112 
state-feedback control laws, 105-108 

State-space approach, discrete-time H2 
theory, see  Discrete-time systems. H2 
theory 

Two-motor control system, optimal sampled- 
data control, 27-32; see  a l so  Discrete- 
time systems, H2 theory 
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