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Ir. P.M. Bruijn, Technische Universiteit Delft

Ir. P.M. Bruijn heeft als begeleider in belangrijke mate
aan het totstandkomen van het proefschrift bijgedragen.

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Jager, René
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1
Introduction

Nowadays, fuzzy control is a hot topic. Journals and books on fuzzy set theory are
published, symposia on fuzzy modeling and control are organized and software

packages for fuzzy control are released. Despite all the publications on fuzzy sets and
fuzzy control this thesis has been written, because, in our opinion, there exists much
misunderstanding about fuzzy control. This thesis aims at providing an analysis of fuzzy
control to clear this up this misunderstanding.

The first section of this chapter describes the reasons for writing this thesis in more detail.
The second section briefly addresses the place of fuzzy control within the field of control.
In this thesis a controller is considered as a (static) function. This “functional approach” to
control is discussed in section 1.3.1. Stability issues are briefly addressed in section 1.3.2.
The place of fuzzy logic and fuzzy control within the field of artificial, or computational,
intelligence is addressed in section 1.4. The last section can be used as a road-map for
this thesis: it helps you to avoid areas in the field of fuzzy control that you are already
familiar with, and it can serve as a guide to direct you to areas of your own interest.

1.1 Why yet another work on fuzzy control?

When reaching for this thesis, one might ask: “Why yet another thesis on fuzzy control?”.
Considering the available amount of books, journals and conference proceedings, this
question might seem legitimate. However, on one hand, many books and journals are very
mathematical and are not focused on fuzzy control. On the other hand, many books and

1

co
nt

ro
len

gin
ee

rs
.ir



2 Introduction

articles only focus on simple fuzzy control problems and applications, and are incomplete
with respect to the theoretical framework in which fuzzy control resides. The contributions
that do focus on fuzzy control, including the contributions to the enormous number of
symposia and workshops on fuzzy systems, do, in our opinion, not place fuzzy control in
the right perspective. There is still a lot of vagueness and misunderstanding around the
topic, which, we think, is not necessary. Thus, this more or less answers the question why
this thesis is written: a demystification of fuzzy control and on the same time a profilation
of fuzzy control. The aim of this is to place fuzzy control in the right perspective. For
this reason, only half of this thesis focuses on fuzzy control and the other half is used
for underlying concepts, necessary for a good understanding of fuzzy control, and more
general topics related to fuzzy logic and fuzzy control.

Nowadays books are being published which are written for people not yet or barely familiar
with fuzzy logic and fuzzy control. Fuzzy control is treated as such, without questioning
the underlying concepts. However, those underlying concepts are very important, as will
be shown in this thesis, and can lead to conclusions that suggest the elimination of fuzzy
calculus within fuzzy control and use well-known interpolation techniques: in that case
the fuzzy part is limited to user-interfacing. In the field of fuzzy control many software
tools are available and are mostly promoted with slogans which state that fuzzy control
is the solution to all our problems. Considering this hype around fuzzy control and the
resulting misconception is reason enough to take a close look at what a fuzzy controller
actually is and how it works.

Approximate reasoning, based on fuzzy set theory and possibility theory, provides sev-
eral techniques to reason with fuzzy and uncertain concepts in knowledge-based systems.
Applying fuzzy techniques in knowledge-based systems can provide a knowledge rep-
resentation and inference which is closer to the way humans express their knowledge
and reason with it than in the case of conventional knowledge-based systems based on
“classical logic”. This comes very close to the field of natural language understanding
and processing. It is hard to imagine oneself talking with someone else which cannot
distinguish between “fairly true” and “very true”, although both qualifications are rather
vague. Fuzzy logic and approximate reasoning enable us to (partly) model human rea-
soning by means of computer implementations. When we take a look into the future and
imagine humans communicating with computers on a, compared to nowadays, high level
of intelligence, then this requires the modeling of human reasoning and natural language.
Approximate reasoning provides a theoretical framework to perform this modeling. Fuzzy
control can be regarded as a small part within the framework of approximate reasoning.
For this reason a chapter is dedicated to fuzzy logic in knowledge-based systems, extend-
ing the “narrow” view used in fuzzy control literature to the “broader” framework where
fuzzy control resides in.
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1.2 Why fuzzy control and where does it fit in? 3

1.2 Why fuzzy control and where does it fit in?

Today, a lot of interest from industry in fuzzy systems can be noticed. In western countries,
this is currently mostly limited to an orientation to the field of fuzzy control. One of the
reasons for this orientation towards fuzzy control is because competing companies (mostly
Japanese) are using or starting to use fuzzy control in competing products and advantages
of doing so are reported in literature. Many examples of fuzzy control applications exist
in consumer product.
Hence, the growing interest in fuzzy control is understandable, but the question then rises
why do the (competing) companies use fuzzy control? Considering the discussions in
literature and on newsgroups � and mailing lists � the following reasons can be extracted:

1. Fuzzy control is a “new technology” and therefore can be used to avoid patent-
claims of similar solutions for technical problems, which are based on a different
technique.

2. Nowadays, in Japan, fuzzy is “wanted” by consumers, since it represents “high-
tech”. In this case fuzzy techniques are mostly used as a marketing tool.

3. The development of fuzzy controllers is easier to learn and requires less skilled
personnel than the development of conventional controllers. This results in cheaper
production.

4. Fuzzy controllers provide more robustness than conventional control.

5. Fuzzy controllers are more appropriate to control nonlinear processes.

For academia, reasons 1 and 2 should not play a role, so in the following we will focus on
the last three reasons.

Fuzzy controllers are represented by if-then rules and thus can provide a user-friendly
and understandable knowledge representation. One can see this as a (very) high-level
programming language, where the program consists of if-then rules and the compiler
and/or interpreter results in a nonlinear control algorithm. Hence, programming by means
of qualitative statements, represented by means of if-then statements, to obtain a program
working on quantitative domains, provided by sensor and actuator signals. Intuitively,
this entails loss of information, because there is no unique translation from a qualitative
entity to a quantitative representation except for some special cases. For example, there	

The main newsgroup on fuzzy systems is comp.ai.fuzzy.

A major mailing list in this field isfuzzy-mail@vexpert.dbai.tuwien.at,which also mirrors

newsgroup comp.ai.fuzzy.
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4 Introduction

is no unique translation from “large voltage” to a real-valued voltage and vice versa.
Because in control the results of a controller are expected to be precise quantities since those
results are signals for actuators of motors, valves, pumps, heaters, etc., special additional
techniques are necessary for the translation of qualitative information to quantitative
information. It is an advantage though, that (complex) control strategies which are
“known” by operators or process engineers in the form of experience and/or domain
knowledge, can be “programmed” and maintained in a user-friendly and understandable
way.

It is often claimed that fuzzy control provides more robustness. However, no research
results has been found that prove that fuzzy controllers are more robust than conventional
controllers in general. As will be shown in this thesis, a fuzzy controller is in fact a static
nonlinearity and whether this is more robust than a conventional controller depends on the
rules defining this static nonlinearity.
However, when the variations of process parameters are (partly) known, a fuzzy controller
can be designed to be less sensitive for those parameter changes and thus be more robust
than a comparable linear controller. Indeed, this can be compared to gain-scheduling
(Åström and Wittenmark, 1984) with the difference that a fuzzy controller implicitly
provides bumpless transfers from one set of controller parameters to another.
So, fuzzy controllers are more robust should be interpreted as fuzzy controllers can be
more robust to known parameter changes. How to device a fuzzy controller which is more
robust still remains a problem since it depends mainly on knowledge of the process to be
controlled.

Another claim often made about fuzzy control is that fuzzy control is more appropriate
to control nonlinear processes. Whether a fuzzy controller, or a nonlinear controller in
general, is in principle able to control a nonlinear process sufficiently, depends primarily
on the chosen inputs of the controller.
Fuzzy controllers are often said to be superior to their corresponding linear controller to
control nonlinear processes. For fuzzy PID-like controllers, this is only true for a small
set of problems, namely when the nonlinearity of the process can be written as a function
of the error and its derivatives, being the input signals of the controller. This is normally
not the case, because the error and error change are not only determined by the process,
but also by the externally defined reference signal. If it is desired that a controller is able
to “capture” nonlinearities of the process to be controlled, the controller should not be
based on the error and its derivatives: one could use, for example, the reference signal or
the process output (and their derivatives) as additional inputs of the controller.
In general it can be stated, based on the same controller inputs, that: a fuzzy controller
can control a nonlinear process as least as good as its corresponding linear controller
can do, just because a fuzzy controller can control a linear process as least as good as
its corresponding linear controller can do. Thus, in principle, a fuzzy controller is more
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1.2 Why fuzzy control and where does it fit in? 5

capable of controlling a nonlinear process, but additional knowledge of the nonlinearities
of the process is needed.

Summarizing the previous discussion, we can state the following: fuzzy control provides
a method to construct controller algorithms in a user-friendly way and provides the ability
to capture the nonlinear control behavior of humans which has proven to be appropriate
for many complex tasks. Having a design method for controllers which is closer to human
thinking and perception can reduce development time and requires less skilled personnel
to design controllers. The economical benefit of this is trivial. It should be noted that the
robustness of human controllers is primarily due to their ability to adapt to a changing
environment and their learning capability. Building this ability into fuzzy controllers
is beyond today’s application of fuzzy control in consumers products, but research on
adaptive fuzzy control has been done for quite some time.

When the current state of fuzzy control is considered, it can be stated that the main areas
in which fuzzy control can be applied, are the following:

1. Processes which can be adequately controlled by humans and the controller to be
designed has sensors to provide similar information used by humans to control the
process. Examples are the application of fuzzy logic in automatic transmission for
cars, washing machines, etc. Nowadays, there are many applications of fuzzy logic
in consumer products.

2. Processes which are currently controlled by (basically) linear control algorithms
and need further development resulting in nonlinear control algorithms which are
known by operators or process engineers. Mamdani (1994) states that:

“Fuzzy logic is successful because it replaces the classical PID con-
troller. When tuned, the parameters of a PID controller affect the shape
of the entire control surface. Because fuzzy logic control is a rule-based
controller, the shape of the control surface can be individually manipu-
lated for the different regions of the state space, thus limiting possible
effects to neighboring regions only.”

As a starting point for a fuzzy controller, the linear controller that is currently used
to control the process in question can be used, because, under certain conditions
(section 4.5.2), a fuzzy controller can be designed to “emulate” a linear controller.

A more or less critical point of view on fuzzy control is given by Elkan (1994), who states
that fuzzy controllers are characterized by the following properties:� fuzzy controllers use typically fewer than 100 rules; often even fewer than 20 rules;
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6 Introduction

� the knowledge within a fuzzy controller is usually shallow, both statically and
dynamically;� the knowledge within a fuzzy controller typically reflects correlations between
controller inputs and outputs;� the numerical parameters of a fuzzy controller are tuned in a learning process;� fuzzy controllers use fuzzy logic operators.

Elkan (1994) states that the success of fuzzy control is mainly because of the first four
properties and that the use of fuzzy logic is not essential. In our opinion these statements
about fuzzy controllers are mostly correct, but it should be expressed that these properties
do not have to be interpreted as being negative, since it allows user-friendly development
of (nonlinear) controllers. Although the rest of Elkan’s provocative article does not show a
deep understanding of fuzzy logic and related topics in our opinion, it started a discussion
on fuzzy logic and fuzzy control which contributes to further discussion of the strengths
and limitations of fuzzy logic (Zadeh, 1994b).

1.3 Fuzzy control and control systems theory

In this section we describe the view on control that is used in this thesis. An important
issue is the way a controller is considered. This is described in the first subsection. The
second subsection addresses briefly the aspect of stability.

1.3.1 Controllers as static functions

Today, most controllers are implemented by computer algorithms. This implies that the
controller inputs are measured at certain sampling rates. For example, the linear part of a
classical PID � controller can be represented by:������������������������� �"!# ��%$&�(')$�����* '+������',� (1.1)

where ������ is the control signal fed to the process to be controlled and ��-�.� is the error
signal: the difference between the desired and measured process output. A computer
implementation of a PID controller can be expressed as a difference equation:�0/,1325476+8 �9�:/�132�4;6=<�>?80�@6 � �A4;6+8+�@6 ��B �)4;6+8+�@6 *CBED �)4;6+8 (1.2)	

Proportional-Integral-Differential.
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1.3 Fuzzy control and control systems theory 7

with: B �A476+8F�G�A476+8H<��A476�<I>J8B D?�A476+8K� B �)4;6+8L< B �A4;6�<I>?8
When we consider a PI or PD controller, the following difference equations can be derived:

�0/,1M4;6+8N�O�0/,1P4;6=<I>?80�F6,1%�A4;6+8+�@6,/ B �A476+8 (1.3a)� /,2 476+8��O6 / �A4;6+8+�@6 2 B �)4;6+8 (1.3b)

Equations (1.2), (1.3a) and (1.3b) can be compared with the algebraic representations of
a (hyper)plane:Q"�SR # � TUV3W0X R VZY0V (1.4)

A schematic representation for (1.3a) and (1.3b) is shown in figure 1.1. When we consider
a mapping from controller inputs to controller outputs in general (MIMO � system), the
controller function is represented by a mapping:[ �O\]%^_� (1.5)

This is the way controllers are considered in this thesis: controller outputs are static
functions (mappings) of the controller inputs. Dynamical behavior of a controller, like
differential or integral action, are “emulated” by extending the controller function to more
inputs. Those inputs are delays or differences of other inputs and outputs. Hence, a con-
troller is considered to consist of a static controller function and additional “prefiltering”
and “postfiltering” parts to obtain delayed inputs, input differences, integrations, limited
signals, etc. Note that this approach is generally also used in the field of neural networks.

To be consistent with the above described “functional view” of controllers, the variable
naming in the rest of this thesis will be conform (1.5). Hence, controller output(s) will be
addressed as Q ’s and input(s) will be addressed as

Y
’s. Moreover, this notation is used for

fuzzy systems in general in this thesis. Using the same variable naming convention for
both models of processes and controllers is because the functional behavior of a model or
a controller is similar in our opinion; they both have to fit a certain (non)linear mapping
of inputs to outputs, meeting a number of predefined criteria.	

Multiple-Inputs-Multiple-Outputs.
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8 Introduction

+

– Xa`)baced
f `LX Q"�gU V3W0X R VhY:V process

YKXY DY g Q

Figure 1.1: Example of PI and PD controllers regarded as a static
mapping using “prefiltering” and “postfiltering” blocks. Parameters
are chosen as follows: R X �i> , R D �O6 1 and R g �S6 / for a PI controller,
and R X �9j , R D �96 / and R g �O6 2 for a PD controller.

1.3.2 Stability issues

Leaving the aspect of stability out of a thesis on control is hardly possible. Therefore
the stability issue is addressed in this section, but it is also the only place where it is
addressed. This is based on two reasons. Firstly, fuzzy controllers can be regarded as
nonlinear controllers and for this reason it is difficult to obtain general results on the
analysis and design of fuzzy controllers (Driankov et al., 1993). The second reason is
clearly expressed by Mamdani (1993):

“Industry has never put forward a view that the mathematical stability anal-
ysis is a necessary and sufficient requirement for the acceptance of a well
designed control system. That is merely the view that control system scientists
wished to put forward, but it has never gained currency outside academic
circles. �k�k� Prototype testing is more important than stability analysis; stabil-
ity analysis by itself can never be considered a sufficient test. Moreover, in
any practically useful methodology, a stability analysis step would need to be
made a desirable but an optional step; it cannot be a necessary step.”

These statements might seem rather strong and indeed Mamdani was much criticized for
these statements, but in our opinion his statements contain a lot of truth. The stability
proofs for fuzzy controllers found in literature are restricted to the cases where fuzzy
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1.4 Relation to artificial and computational intelligence 9

controllers are simple, for example PID-like fuzzy controllers, and where the process to
be controlled is stable itself; see for example the article of Malki, Li and Chen (1994).
In most cases the stability “proofs” are trivial due to the simplicity of the controller and
process. If the process cannot be modeled mathematically, for example the control of
cement kilns (Östergaard, 1990), then stability proofs cannot be given at all. Because
the first applications of fuzzy control were controllers for processes which could not (and
cannot) be modeled mathematically, like cement kilns, the criticism that fuzzy control does
not allow stability analysis was not valid since stability analysis is based on a mathematical
model of the process and such models were not available (Mamdani, 1993). Considering
the numerous applications of fuzzy control in consumer products, one can question the
need for a mathematical stability analysis for these, in this case rather simple, control
problems. We conclude with another quote from Mamdani (1993), because his paper
“Twenty years of fuzzy control: experiences gained and lessons learnt” contains a view
on control which closely resemblances ours, including the following statement:

“Stability is still an important issue but a different way has to be found to study
it. In the final analysis all one may be able to do is to build prototypes for
the purpose of approval certification. This is a well tried and tested approach
used in industry and there is no reason why it may not suffice with control
systems as well.”

1.4 Relation to artificial and computational intelligence

Fuzzy logic is regarded as one of the artificial intelligence (AI) techniques, from which
“conventional” expert systems, neural networks and genetic algorithms are well known. It
can be disputed whether, for example, neural networks and genetic algorithms should be
considered as artificial intelligence techniques. Zadeh (1994a) proposes the denomination
soft computing to address the field of neural networks, genetic algorithms, fuzzy logic
and combinations of those. Today, the field of fuzzy control and modeling is in many
publications considered to overlap with the field of neural networks. Many publications on
these “neuro-fuzzy systems” or “fuzzy neural networks” can be found in literature. In our
opinion this overlap of neural networks and fuzzy systems is purely based on functional
equivalence and not based on the underlying ideas. However, considering this functional
equivalence and the many publications addressing the merging of these techniques, it
seems valid to address those techniques by one name.

An important concept of fuzzy set theory and fuzzy logic is the linguistic variable (Zadeh,
1994a). In their survey, Dubois and Prade (1991) state that “the main motivation of
fuzzy set theory is apparently the desire to build up a formal, quantitative framework that
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10 Introduction

captures the vagueness of human knowledge as it is expressed via natural languages”.
From this point of view, fuzzy logic can be regarded as part of the field of artificial
intelligence, because fuzzy logic and approximate reasoning (see chapter 6) can provide
a framework for natural language understanding and processing, and modeling of the
way humans reason and communicate. Although many authors claim fuzzy logic to be
a suitable framework for dealing with uncertainty in expert systems, one can hardly find
a real application of such a system (Elkan, 1993). As opposed to the large number of
theoretical papers on fuzzy logic in expert systems, there exist only a small number of
reported prototypes of such systems (Graham, 1991).

But what about the large number of reported applications of fuzzy control in consumer
products? In our opinion these applications are not successful because they are applications
of AI, but because they provide a user-friendly method to implement nonlinear controller
functions. In other words: “Fuzzy controllers have encountered great success by providing
an efficient way of implementing an interpolative mechanism, not only in small, but also
in very large and complex problems” (Dubois et al., 1994). Zadeh (1994b) expressed
the comparison between (fuzzy) control and more general knowledge-based systems
as follows: “Basically, what differentiates control applications from knowledge-based
systems applications is that in control the main problem that has to be addressed is that
of imprecision. By contrast, in the case of knowledge-based systems, one has to come to
grip with both imprecision and uncertainty”. This becomes also clear when one notices
that fuzzy control can be considered as only a small part of the theoretical framework of
approximate reasoning.

1.5 What to expect: a road-map for this thesis

Before providing a road-map for this thesis, it should be stated that this thesis does
not contain parts which describe applications of fuzzy control for a specific industrial or
laboratory set-up. This is considered not necessary since there exist numerous commercial
applications of fuzzy control in consumer products as already pointed out in section 1.2.
When appropriate, small examples are used to clarify described methods or algorithms.
The aim of this thesis is to investigate the fundamentals of fuzzy control and to provide
an insight in the underlying theory, not to show the success in some application areas.

In the remainder of this section a road-map to this thesis is presented. This makes it
possible for the reader to exclude parts through which he or she already is already familiar
with, or directly go to parts of personal interest. Before giving a short description of the
contents of following chapters in this thesis, it should be noticed that each chapter has a
final section in which conclusions and/or a short summary are given. Most chapters also
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1.5 What to expect: a road-map for this thesis 11

contain a section which addresses practical aspects, mainly based on issues concerning
computer implementation.

The next chapter describes partly the theory of fuzzy sets. This includes the basic notion of
a fuzzy set, properties of fuzzy sets and operations on fuzzy sets. The aim of this chapter
is not to be complete, but to provide the parts of fuzzy set theory which are necessary to
understand the remainder of this thesis.

Chapter 3 will address the basics of fuzzy logic and reasoning. This assumes that the
reader is familiar with fuzzy set theory (chapter 2). Different logical operations will be
described and discussed, including logical connectives and implications. Reasoning with
fuzzy logic is described for single rules and sets of fuzzy rules (rule bases).

Fuzzy control is described and discussed in chapter 4. A detailed description is given
as well as advantages and disadvantages of different approaches. In this chapter fuzzy
control is considered to be based on fuzzy rules which directly “connect” controller inputs
to controller outputs (“flat” rule base). This type of fuzzy control is mostly applied and
chaining of fuzzy rules is not considered. An analysis of fuzzy controllers with respect to
different controller parameters is provided.

Adaptive fuzzy control is an extension of fuzzy control and is described in chapter 5.
Two main approaches within the field of adaptive fuzzy control can be distinguished:
approaches based on the self-organizing controller introduced by Procyk and Mamdani
(1979) and approaches based on gradient-descent adaptation. Adaptive fuzzy controllers
or models based on the latter approach are often referred to as “fuzzy neural networks” or
“neuro-fuzzy systems”. Both types are addressed in this chapter.

In chapter 6 approximate reasoning is addressed. Approximate reasoning provides a
framework to model natural language understanding and human reasoning. Within this
field of research one can distinguish several points of view and approaches, which will be
described in this chapter. The practical application of approximate reasoning is not always
straightforward and difficulties encountered are also discussed in this chapter. The basics
of possibility theory, as part of the approximate reasoning framework, are explained in
this chapter, but a good understanding of fuzzy set theory and fuzzy logic (chapters 2 and
3) is assumed.

The last chapter gives conclusions based on the contents of this thesis, general remarks on
addressed topics and suggestions for further research.co
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2
Fuzzy sets and

relations

This chapter contains the basics of fuzzy set theory that are necessary for a correct
understanding of the rest of this thesis. If the reader is already familiar with the field

of fuzzy set theory, this chapter will probably contain nothing new. If the reader is not
familiar with the field it will serve as an introduction to fuzzy set theory. This chapter
will start with a section about what fuzzy sets are and how they are related to classical
(ordinary) set theory. After this, a number of properties of fuzzy sets are given in section
2.1.2. A special type of fuzzy set, referred to as fuzzy numbers, is described in section
2.1.3. The extension principle is one of the basic concepts in fuzzy set theory and allows
mathematical concepts to be extended for use with fuzzy sets, and is addressed in section
2.1.4. The union and intersection of fuzzy sets, and the complement of fuzzy sets, are
presented in section 2.3. Linguistic modifiers, usually referred to as hedges, are addressed
in section 2.2. Section 2.4 deals with fuzzy relations. A final section summarizes this
chapter.

2.1 Fuzzy sets

Zadeh (1965) introduced fuzzy sets, although the underlying idea or ideas close to it had
already been recognized earlier by others, mainly by philosophers. A comprehensive

13
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14 Fuzzy sets and relations

overview is given in the introduction of the readings in “Fuzzy Sets for Intelligent Sys-
tems”, edited by Dubois, Prade and Yager (1993). Fuzzy sets as defined by Zadeh are
described in this section. In addition to a basic description and some examples, properties
of fuzzy sets are addressed (section 2.1.2). Section 2.1.3 describes a special type of fuzzy
set: fuzzy numbers and intervals. Extending mathematical operations to operate on fuzzy
sets is possible by applying the extension principle, which is described in 2.1.4.

2.1.1 What are fuzzy sets?

Classical set theory is well known, and in the field of fuzzy set theory is usually called
“classical set theory” instead of just “set theory”. The membership lnm  Y � of

Y
of a

classical set o , as subset of the universe p , is defined by:

l m  Y �C�rq >,s iff

Yut oj+s iff

Ywvt o (2.1)

This means that an element

Y
is either a member of set o  l m  Y ���i>x� or not  l m  Y ���9jy� .

Classical sets are also referred to as crisp sets. For many classifications, however, it is
not quite clear whether

Y
belongs to a set o or not. For example, if set o represents PCs

which are too expensive for a student’s budget, then it is obvious that this set has no clear
boundaries. Of course, it could be said that a PC priced at $2500 is too expensive, but
what about PCs priced at $2495 or $2502? Are those PCs too expensive or not? Clearly, a
boundary could be determined above which a PC is too expensive for the average student,
say $2500, and a boundary below which a PC is certainly not too expensive, say $1000.
Between those boundaries, however, there remains a vague interval in which it is not quite
clear whether a PC is too expensive or not. In this interval, a grade could be used to
classify the price as partly too expensive. This is where fuzzy sets come in: sets of which
the membership has grades in the interval [0,1].

A fuzzy set, introduced by (Zadeh, 1965), is a set with graded membership in the real
interval: l m  Y � t 47jLsk>?8 . A fuzzy set o , a fuzzy subset of p , is denoted by:

o � zU V3W0X l m  Y0V �a{ Y0V (2.2a)� l�m  Y X �M{ Y X �I|k|k|,� l m  Y z �a{ Y z (2.2b)

where l m  Y � is known as the membership function, and where p is known as the universe
of discourse. When p is not finite, a fuzzy set o is defined by:o � �x} l m  Y �M{ Y (2.2c)
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2.1 Fuzzy sets 15

In this thesis the latter is primarily used to denote fuzzy sets. A simple example of a
fuzzy set is one representing PCs too expensive for a student’s budget. This fuzzy set is
depicted in figure 2.1. One can see that if the price is below $1000 the PC is certainly not
too expensive, and if the price is above $2500 the PC is fully classified as too expensive.
In between, an increasing membership of the fuzzy set too expensive can be seen. It is
not necessary that the membership linearly increases with the price, nor that there is a
discontinuous transient for $1000 and $2500, as will be seen later in this thesis. The
choice of the membership function of the fuzzy set is arbitrary.

j

>

$1000 $2500

~ ��-��

Y
too expensive

Figure 2.1: Fuzzy set o representing PCs too expensive for
a student’s budget. The price is represented by variable

Y
.

2.1.2 Properties of fuzzy sets

In this section a number of properties of fuzzy sets is given. The aim of this section is not
to be complete, but to provide those parts of fuzzy set theory necessary to make the rest
of this thesis understandable. It is mostly a list of commonly used fuzzy set properties.

The height of a fuzzy set o , hgt  o � , is defined by:�0���  o �C�G�P�0��k� } l m  Y � (2.3)
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16 Fuzzy sets and relations

and fuzzy sets with a height equal to 1 are called normal. Fuzzy sets called subnormal
are characterized by hgt  o ����> . The core of a fuzzy set, also referred to as kernel or
nucleus, is a crisp subset of p :�?���a�) o ���i� Yut p ��l m  Y �C�i>,� (2.4)

The support of a fuzzy set is also a crisp subset of p :�P�0�0�� o �C�i� Y�t p �kl m  Y ����j+� (2.5)

If the support of a fuzzy set is finite, it is called compact support. Figure 2.2 shows
schematically the height, core and support of a fuzzy set.

j

>
~ �� ��

Y
height

core

support

Figure 2.2: Height, core and support of a fuzzy set.

The elements of

Y
where l m  Y ��� XD are called crossover points. The � -cut of a fuzzy set

is defined by:

� - �?� �  o ���i� Y�t p �xl m  Y ��� � � (2.6)

An � -cut of a fuzzy set is often referred to as a level set. A strong � -cut is defined by:

� - �?� �  o ���i� Y�t p �xl m  Y ��� � � (2.7)
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2.1 Fuzzy sets 17

Thus the core of a fuzzy set can be defined by an � -cut, with � �i> :�?���a�) o ���i> - �?� �  o �
and the support of a fuzzy set can be defined by a strong � -cut ( � -cut), with � �Sj :�P�0�0�� o �C� j - �J� �  o �
Another property of fuzzy sets used in this thesis is whether a fuzzy set is convex or not.
A convex fuzzy set is characterized by:� Y&X s Y D s Y g t p s YKX��IY D �OY g¡  l m  Y D ���I¢¤£¦¥K l m  YKX �§s l m  Y g �M� (2.8)

where

Y&X
,

Y D and

Y g are values in p . Hence, the fuzzy set in figure 2.2 is convex.
Convexity of a fuzzy set can play an important role when analysing a fuzzy controller in
combination with another important property of fuzzy sets: whether the fuzzy sets form a
fuzzy partition. When ¨�m fuzzy sets oª© are fuzzy subsets of universe p , such a tuple of
fuzzy sets  o X s �k�k� s o«© s �k�¬� s oª ® � is called a fuzzy partition when:

� Y�t p s  ®U© W0X l m)¯  Y ���r> (2.9)

provided that o © v�O° and o © v� p . An example of a fuzzy partition is given in figure 2.3.
A fuzzy partition formed by fuzzy sets which are normal and convex, does not contain
more than two overlapping fuzzy sets.

2.1.3 Fuzzy numbers and intervals

A fuzzy number is a special type of fuzzy set. A fuzzy set ± is a fuzzy number, usually a
fuzzy subset of ² , if it meets the following criteria:� the fuzzy set is convex, as defined by (2.8);� the fuzzy set is normalized: hgt  ± ���i> ;� the membership function of the fuzzy set is piecewise continuous;� the core of the fuzzy set consists of one value only.
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18 Fuzzy sets and relations

j

>
~ ��-��

Y
Figure 2.3: A fuzzy partition.

j

>

3 4 5 6 7

~7³´� ��

Y
(a)

“about 5”

j

>

1 2 3 4 5 6 7 8 9

~ µ ³¶%·³¸¹
� ��

Y
(b)

“from about 2 to about 7”

Figure 2.4: Fuzzy sets representing fuzzy number “about 5” and fuzzy
interval “from about 2 to about 7”.co
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2.1 Fuzzy sets 19

Thus a fuzzy number is always a fuzzy set, but a fuzzy set is not always a fuzzy number. An
example of a fuzzy number “about 5” is shown in figure 2.4a. Mathematical operations
like addition, subtraction, etc. can be extended for use with fuzzy numbers by means of
the extension principle, which is addressed in section 2.1.4.

In addition to fuzzy numbers one can consider fuzzy intervals (Dubois and Prade, 1988). A
fuzzy interval is a fuzzy set with the same restrictions as these defined for fuzzy numbers,
but with the exception that the core is no longer restricted to one point only. An example
of the fuzzy interval “from about 2 to about 7” is shown in figure 2.4b.

2.1.4 The extension principle

The extension principle was introduced by Zadeh (1975) and is one of the most important
elements of fuzzy set theory. As Dubois and Prade (1980) put it: it provides a general
method for extending non-fuzzy mathematical concepts in order to deal with fuzzy quan-
tities. The extension principle allows the extension of a mapping \ from points in p to
fuzzy subsets of p :\] o �C�O\] l X { Y X �S|k|k|,� l T { Y T � (2.10a)º� l X {x\n YKX ���I|k|k| l T {e\n Y T � (2.10b)

A simple example is given by the following. Consider the fuzzy set “about 5” with a
discrete universe,

YKV�t¼»
and mapping \ representing the square. Then the application of

the extension principle results in: “about 5” �½D_�i XD {k¾¿�À>x{xÁÂ� XD {xÃy�(D��G XD {)>kÃÂ�Ä>�{xÅ�Á¡� XD {xÆ�Ãy�
The extension principle applied to a function or mathematical operation \n YÇX s �k�k� s Y T � is
defined by:

l�È ÉQ:��� �½�H�� d½ÊÌËÌËÌËÌÊ �JÍÎ WHÏeÐ � d§ÊÌËÌËÌË Ê � Í?Ñ l�m 
Y X s �k�k� s Y T � (2.11a)� �½�H�� d½ÊÌËÌËÌËÌÊ � ÍÎ WHÏeÐ � d§ÊÌËÌËÌË Ê �JÍ Ñ ¢Ò£Ó¥K l m d 

YKX ��s �k�¬� s l m Í  Y T �M� (2.11b)

where the Cartesian product o X�Ô |¬|k| Ô o T is used to represent the multi-dimensional
fuzzy set o , because the fuzzy set o is usually not available. This implies o to be the
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20 Fuzzy sets and relations

largest set whose projections on p X s �k�k� s p T are o X s �¬�k� s o T , respectively (Dubois et al.,
1993a). See section 2.4.1 for more details on projections.

Hence, the extension principle allows the derivation of a fuzzy set Õ on Q by Õ �\n o X s �k�¬� s o T � , where o V are fuzzy sets in p V . In other words: the extension principle can
be used to extend normal mathematical operations to operations with fuzzy sets. Another
way to write (2.11a) is:

Õ �I\] o X s �¬�k� s o T � (2.11c)� � } d�ÖyËÌËÌË×Ö } Í ¢¤£¦¥K l m d  Y&X �§s �k�k� s l m Í  Y T �a�a{e\n Y&X s �k�k� s Y T � (2.11d)

To clear things up, here is a small example. Suppose the addition of two fuzzy numbers
is desired, then the extension principle can be used to derive a resulting fuzzy set for
the outcome of the addition. Let us take the fuzzy number also used in section 2.1.3,
“about 5” with membership function l]Ø0Ù  YKX ���I¢NÚ�ÛKM>Ü< XD � YKX <FÁ � s�j)� , shown in figure
2.7a, and a fuzzy number to add to this, “about 2”, with membership function l5Ø D  Y D �Ý�¢NÚxÛKa>ª< � Y D <FÅ � s�jy� , shown in figure 2.7b.

“about 5”
“about 2”

j

>

YKX Y D
Figure 2.5: Cartesian product of “about 5” and “about 2”.

The Cartesian product of about 5, projected on an

Y
-axis, and about 2, projected on a Q -axis,

is shown in figure 2.5. In figure 2.6, a contour plot of the Cartesian product space p X5Ô p D
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2.1 Fuzzy sets 21

>
Å
Æ

Æ ¾ Á Ã Þ

� ¶

Y&X

#dß
dàáßX

Î W+â Î W Ù Î W+ã Î WHä

Î W+å Î W+æ Î W0X #

Figure 2.6: Contour plot for product space p X Ô p D with fuzzy
sets lçØ0Ù  YKX �O� ¢NÚxÛKa>¤< XD � Y&X <èÁ � s�jy� and l�Ø D  Y D �O� ¢éÚ�ÛKa>Ò<� Y D <êÅ � s�jy� . Isolines for Q � ¾0s�ÁLs �k�k� s¬>kj and isocurves for¢NÚ�ÛH lçØ0Ù  YKX ��s l�Ø D  Y D �M�C�IjLs XD s �k�k� s¬> are shown.
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22 Fuzzy sets and relations

is shown with isolines for Q . The rectangles represent isocurves of min  l�Ø0Ù  YKX ��s l�Ø D  Y D �M�
for a number of membership values: j , Xâ , XD , gâ and > (which is only one point). The next
step in applying the extension principle is to take the supremum of min  l Ø0Ù  Y X ��s l Ø D  Y D �M�
for each isoline in order to obtain the membership value for l]È ÉQ:� with Qé� Y X � Y D . In
figure 2.6 several of those lines are shown. The resulting membership function lnÈ %Q0� is
max a>�< Xg � Q�<�Þ � s§jy� , shown in figure 2.7c. In figure 2.7, the calculus of the fuzzy numbers
is shown schematically. When the universes are discrete,

Y V�tw»
, the example simplifies

to the following:

“about 5” � “about 2” �i XD {¬¾¡�À>x{xÁ¡� XD {eÃy���ëa>�{eÅy�� XD {xÃÂ�À>�{�ÞÂ� XD {xì

#
X

g â Ù ãªä YKX
(a)íLîLï.ðhñyòÉó

ô
#
X

X D g Y D
(b)íLî+õaðhñ,õMó

ö #
X

â Ù ãªä_åÜæAX # Y D
(c)íLîLï.ðhñyòÉó)÷"íLîLõ.ðhñ,õPó

Figure 2.7: Addition of two fuzzy numbers using extension principle.

Using triangular-shaped membership functions, the determination of the outcome is more
or less trivial for addition and subtraction. However, in the case of more complexly shaped
membership functions, the application of the extension principle can involve a rather severe
calculational load due to calculus on product spaces. Also in the case of more complex
functions or mathematical operations, the application of the extension principle often
cannot be simplified. For example, calculation of the product instead of the addition of
two fuzzy numbers will change the isolines for Q in figure 2.6 into hyperbolic isocurves.
The product of two fuzzy numbers with triangular-shaped membership functions will
therefore not result in a triangular-shaped membership function for the outcome. From
the extension principle it can be derived that an operation \nM|ø� on fuzzy sets which are
fuzzy subsets of the same universe can be written as (Kandel, 1986):\] o X s o D �C� ùú,�,û # Ê X�ü \n � -cut  o X ��s � -cut  o D �a� (2.12)
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2.1 Fuzzy sets 23

Since the level sets are crisp intervals (or combinations of them), the operation \nM|ø� can be
applied straightforwardly. However, in practice � t�ý jLsk>?8 forces a discretization of � for
many cases. Only in specific cases is an analytical solution “easy” to obtain, for example
the addition of two fuzzy numbers as shown in figure 2.7.

2.1.5 Fuzzy set representations

In fuzzy set theory most operations are defined for continuous universes. The definitions
include operations on discrete universes as special cases. In practice fuzzy sets are stored
in computer memory by data structures and operations on fuzzy set are implemented by
computer algorithms. Since most applications of fuzzy set theory are computer-based, it
is necessary to consider fuzzy set representations (Yamamoto, 1994). The following three
types of fuzzy set representation can be distinguished:

1. Functional representation. This type of fuzzy set representation uses functional
descriptions to represent fuzzy sets:

l m  Y �C�S\n Y � (2.13)

An example is the functional description of a triangular-shaped fuzzy set:

l m  Y �C� � Y <FR �þ
Using functions to represent fuzzy sets in practice poses difficulties when combi-
nations with other fuzzy sets are being made. The use of symbolic calculus is only
limited to simple cases due to the complexity of the operations. Although it is
possible to “store” operations in a symbolic way, the results of operations cannot be
derived symbolically and thus an approximation of the result of an operation has to
be made. Hence, discretizations are necessary in practical applications.

2. Paired representation, defines a fuzzy set by:

l m  Y �C� l X { Y&X � l D { Y D �I|k|k|,� l T { Y T (2.14)

This representation is natural for fuzzy sets on discrete domains. For example,
consider a fuzzy set “friends of John”, which is a set of persons identified by their
name (

Y V
) and a grade ( l V ) attached to them, representing the degree of friendship.
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24 Fuzzy sets and relations

3. Level-set representation describes a fuzzy set by its level sets ( � -cuts):l m  Y �C� �P�0�ú,�,û # Ê X�ü � - �J� �  l m  Y �a� (2.15)

Since � tFý j+sk>J8 , this representation method is only applicable if � is discretized.

From the above listed types of fuzzy set representation it can be derived that for discrete
universes of discourse the paired representation is the obvious choice for computer im-
plementation. For continuous domains the function representation is only useful in case
of simple operations. Using approximations of the fuzzy set, several choices are possible,
each with its own advantages and disadvantages:

1. Vector representation represents a fuzzy set on a continuous domain by a paired
fuzzy set with an equidistant discretized domain. This type of representation is
called vector representation, since only the membership values are stored as a
vector. This type of approximation of a fuzzy set can lead to a problem when a
numerical value has to be represented. For example, a fuzzy set represented by
only one point (singleton), which does not match one of the discretizations, cannot
be represented using a vector representation. As an approximation of a singleton
membership function l m  Y � it is possible to assign values to the neighboring two
membership grades lÇÿ and l�� , which fulfill:lçÿ Y ÿ � l�� Y �l�ÿ � l�� � l `LXm M>�� (2.16a)l ÿ � l � �i> (2.16b)

which would result in:

lçÿ � l `LXm a>x�]< Y �Y ÿ < Y � (2.17a)l � �i>�< l ÿ (2.17b)

Note, however, that this approximation fuzzifies the originally crisp set (numerical
value).

2. Point-wise representation is a paired representation on a nonequidistant discretized
domain. Intermediate points are obtained by means of interpolation. This type of
representation can eliminate the representation problem due to equidistant dis-
cretizations (see vector representation). This point-wise representation is often used
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2.2 Hedges: linguistic modifiers 25

in commercial software for fuzzy control. A simple example is a triangular-shaped
fuzzy set which only needs three points l V { Y V to represent the membership function
of the fuzzy set. More complex shaped fuzzy sets can be approximated to any
degree which provides a trade-off between memory requirements and accuracy of
the fuzzy set representation.

3. Discrete level-set representation. Discretizations of the levels results in a discrete
approximation of a fuzzy set, which can be stored as a set of intervals (each interval
is a classical set) with a grade attached to it. The support of the fuzzy set can be
included as an open interval. In case non-convex fuzzy sets are involved, a level set
can consist of more than one interval. Operations on fuzzy sets which are subsets of
the same universe can be defined as operations on their level sets as shown by (2.12)
in section 2.1.4. In case of operations on product spaces the use of the level-set
representation can be quite complicated and the number of operations on classical
set can depend exponentially on the number of fuzzy sets involved in the operation.

Summarizing, we can state that in computer implementation it is in most cases unavoidable
to use discretized approximations of fuzzy sets. When analytical solutions exist for certain
operations it is advisable to use the analytical descriptions of the fuzzy sets involved.
Therefore it is desired to have fuzzy sets stored in such a way that it can provide different
types of representations when needed, because for different operations different fuzzy set
representations are more appropriate.

2.2 Hedges: linguistic modifiers

Linguistic modifiers can be used to modify the meaning of a fuzzy set. For example, the
linguistic modifier very can be used to change the meaning of big to very big. Several
authors (Hellendoorn, 1990; Zimmermann, 1985) have addressed linguistic modifiers for
fuzzy sets, also known as hedges. Examples of hedges are: very, slightly, more-or-less,
etc. The following two approaches to hedges can be distinguished:� powered hedges (Zimmermann, 1985)� shifted hedges (Lakoff, 1973)

These two approaches to hedges are described in the next two sections. Section 2.2.3
addresses a type of shifted hedge, referred to as scaled hedge, that has some of the
characteristic properties of powered hedges.
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26 Fuzzy sets and relations

2.2.1 Powered hedges

The powered hedges operate on grades of membership and are represented by (Zimmer-
mann, 1985):

���� o ���O� } l � m  Y �a{ Y (2.18)

where ��� is the linguistic modifier and � is a parameter specific to a certain linguistic
modifier and � t�ý j+s¬>?8 . For most hedges default values for � are chosen, like Å for very,
XD for more-or-less, etc. For example:

�)�k�
	  o �]� � } l Dm  Y �a{ Y

j

>
~�� � ���-�
�

Y
� �SÅ

� � X D

Figure 2.8: Fuzzy set o (solid) and resulting fuzzy
sets very  o �è� o D (dashed, inner set, � � Å ) and
more-or-less  o �N��� o (dotted, outer set, � � X D ) using
powered hedge operations.

In figure 2.8, an example is given for the linguistic modifiers very and more-or-less. The
advantage of the powered-hedges approach is that for each hedge a standard operation can
be defined by choosing a standard value for � . Note the following properties of ��� for
values of � :jE� � � >�� fuzzy set is dilated: � �  o ��� o
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2.2 Hedges: linguistic modifiers 27

� �G> � fuzzy set is not modified: ���x o ��� o� � > � fuzzy set is concentrated: ���e o � �Io
Other characteristic properties of powered hedges are the fact that the support and core of
a fuzzy set are not changed by the operation defined for powered hedges, since > � �À>
and j � �Oj for allowed values for � .

2.2.2 Shifted hedges

The shifted hedges (Lakoff, 1973; Hellendoorn, 1990) are defined by:

���� o �C�S� } l m  Y <��,�M{ Y (2.19)

where ��� is a linguistic modifier and � represents the magnitude of the shift. The value
of � has different values within one hedge. Several authors, among which Pétieau et al.
(1990), have provided schemes for applying a shifted hedge to a fuzzy set. When applying
the shifted-hedge approach of the linguistic modifier very on a trapezoidal-shaped fuzzy
set, the value of � will be positive on the left side of the center of the fuzzy set and negative
on the right side. In this way the fuzzy set is concentrated, resulting in ���� o � �Ào .
Dilation of a fuzzy set, for example the hedge more or less, is obtained by an inverse
operation: ���� o ��� o .

The method described by Pétieau et al. (1990) applied to a fuzzy set o is shown in figure
2.9. In the case of the hedge very, the method consists of making the support of the fuzzy
set equal to the core and reducing the core by the same quantity, if possible. For example,
in the case of triangular-shaped membership functions, such a reduction of the core is not
possible since the core consists of only one point. For the linguistic modifier more-or-less
a complementary method is applied, since it is considered dual to very (see figure 2.9).
For different types (shapes) of fuzzy sets, different schemes can be defined.

2.2.3 Scaled hedges

To combine the advantageous property of powered hedges, namely that a standard oper-
ation on a fuzzy set can be defined for a specific hedge, with the property of the shifted
hedges approach that the “shape” of the fuzzy set is contained after applying the hedge,
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28 Fuzzy sets and relations

j

>
~��  � ���-�
�

Y
Figure 2.9: Fuzzy set o (solid) and resulting fuzzy sets
very  o � (dashed, inner set) and more-or-less  o � (dotted,
outer set) using shifted hedge operations according to
Pétieau, Moreau and Willaeys (1990).

let us define scaled hedges. The general form of the modifier function used with scaled
hedges is:

��!a o �C� �x} l #"� Y <%$ m ����$ m �M{ Y � �e} l &" Y �Sa>ª<%"k�'$ m �a{ Y (2.20)

where:

" : scaling factor of modifier � !$ m : reference point for fuzzy set o
The scaling factor " can be standard for a specific linguistic modifier. The same values
as those for the powered hedges can be chosen; for example, using the linguistic modifier
very ( "«�9Å ) can be defined by:

�)�k�
	  o �]� �k} l ÉÅ+ Y <�$ m ���($ m �M{ Y � �k} l ÉÅ Y <�$ m �M{ Y
The reference point $ m is a characteristic point of fuzzy set A. In the case of convex
membership functions, the value of this reference point can be chosen to the center of the
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2.2 Hedges: linguistic modifiers 29

core of the membership function. In the case of monotonic membership functions, this
reference point could be chosen equal to the supremum of p , if it exists. If the supremum
of p does not exist or is not usable in practice, an arbitrary reference point has to be
chosen, which acts as a virtual supremum.

0

1

$ m

~ � )� ��� �
�

Y"��OÅ

"�� XD

Figure 2.10: Fuzzy set o (solid) and resulting fuzzy sets
very  o � (dashed, inner set, "@� Å ) and more-or-less  o �
(dotted, outer set, " � XD ) using scaled hedge operations
relative to $ m .

In figure 2.10, a fuzzy set, together with the results of the linguistic modifiers very and
more or less are shown. As can be seen, the modifiers preserve the original shape of the
basic membership function. This is also the case in the shifted-hedges approach, but is
not the case in the powered-hedges approach. Applying the scaled-hedges approach as a
special case of the shifted-hedges approach, the operation on fuzzy sets is defined by the
hedge which is used and not by the hedge in combination with the type or shape of fuzzy
set. For example, the method shown in figure 2.9 for application of the shifted-hedges
approach in the case of trapezoidal-shaped fuzzy sets cannot be applied in the same way
if the fuzzy set is crisp, although the membership function of a crisp set can be seen as a
special case of a trapezoidal-shaped membership function.
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30 Fuzzy sets and relations

2.3 Operations on fuzzy sets

As operations are defined on classical sets, similar operations are defined on fuzzy sets.
The intersection and union of two sets and the complement of a set are known from
classical set theory. Set-theoretic operations like intersection, union and complement are
uniquely defined for classical sets and are shown in table 2.1.

Table 2.1: Set-theoretic operations in classical set theory.

o Õ o+*�Õ o-,ÂÕ .�o
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

These operations are also defined in fuzzy set theory. However, due to the fact that
membership values are no longer restricted to �xj+s¬>,� but can have any value in the interval47jLsk>?8 , these operators cannot be uniquely defined. In the following subsection we go
further into detail with respect to union and intersection of fuzzy sets (section 2.3.1) and
the complement of a fuzzy set (section 2.3.2).

2.3.1 Union and intersection

The extension of the intersection and union of two classical sets to the intersection and
union of two fuzzy sets is not uniquely defined. It is clear that intersection and union
operations for fuzzy sets should be subject to the intersection and union of classical sets,
because a classical set can be seen as a special case of a fuzzy set. Zadeh (1965) proposed
to use the following definitions:

l m0/�È � ¢Ò£Ó¥K l m  Y �§s l È  Y �a� (intersection)l m01�È � ¢éÚ�Û0 l m  Y ��s l È  Y �a� (union)

If we restrict l m  Y � and l È  Y � to values in �xj+sk>�� , then indeed these operators reduce to
the intersection and union as defined for classical sets. However, an infinite number of
possible definitions can be chosen to implement intersection and union. General forms
of intersection and union are represented by triangular norms (T-norms) and triangular
conorms (T-conorms or S-norms), respectively.
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2.3 Operations on fuzzy sets 31

A T-norm is a two-place function from 4;j+sk>J8 Ô 47jLsk>?8 to 4;j+sk>J8 satisfying the following
criteria:

T-1 2 %RKsk>x�Ý�9R
T-2 2 %RKs þ � � 2 &"xs�'+� , whenever R � " , þ � '
T-3 2 %RKs þ ��� 2  þ s�R0�
T-4 2  2 ÉR&s þ �§s3"e��� 2 %RKs 2  þ s3"k�a�

Triangular norms satisfy the restriction:

254 %RKs þ � � 2 ÉR&s þ � � ¢¤£¦¥K%RKs þ � (2.21)

where 6�7 is the T-norm according to Weber (1983), also known as drastic product and
defined by:

2 7 %RKs þ ��� 89: 9; RKs if
þ �i>þ s if R �i>jLs otherwise

(2.22)

The upper and lower boundary for a general T-norm are shown in figure 2.11a and 2.11c,
respectively. The conditions defining a T-conorm (S-norm) are, besides T-2, T-3 and T-4:

S-1 < ÉR&s�j)�C�OR
These criteria restrict a general T-conorm by:¢NÚxÛK%RKs þ � � < %RKs þ � � < 4 %RKs þ � (2.23)

where =�7 is the S-norm (T-conorm) according to Weber (1983), also known as drastic
sum and defined by:

<>7 %RKs þ ��� 89: 9; RKs if
þ �9jþ s if R �9j>�s otherwise

(2.24)

and is shown in figure 2.11d. Figure 2.11b shows the lower boundary for a general S-norm:
the max operator. A fairly complete overview of T- and S-norms is given by Bellman and
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j
>

R þ

¢¤£Ó¥�%RKs þ �

(a)
Upper boundary for T-norm.

j
>

R þ

¢NÚ�ÛKÉR&s þ �

(b)
Lower boundary for T-conorm.

j
>

R þ

2 4 %RKs þ �

(c)
Lower boundary for T-norm, given by
(2.22).

j
>

R þ

< 4 ÉR&s þ �

(d)
Upper boundary for T-conorm, given by
(2.24).

Figure 2.11: Upper and lower bounds for T-norms and T-conorms.co
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2.3 Operations on fuzzy sets 33

Giertz (1973) and Gupta and Qi (1991b). In table A.2 in appendix A a large number of
T-norms and -conorms are given.

A property of the combination of a T-norm and an S-norm which is used in the rest of this
thesis is the c-duality of a T-norm and -conorm. A T-norm and an S-norm are c-dual if the
following holds:

2 ÉR&s þ �C�I�� < É�,%R0��s��� þ �a�a� (2.25)

where c is a fuzzy complement. The complement of a fuzzy set is described in the
following section.

2.3.2 Complement of fuzzy sets

The complement o of a fuzzy set o is defined by:

c-1 �,Éjy�C�i>
c-2 �,ÉR:�C�S�, þ � , whenever R¤� þ
c-3 �,É�,%R0�a���9R

Besides "�ÉR:�Â� >=<iR , which is the original representation according to Zadeh, the?
-complement according to Sugeno (1977) could be used:

l m�@  Y ��� >Ü< l m  Y �>_� ? l m  Y � (2.26)

with
? � j . An example of the

?
-complement of a fuzzy set for several values of

?
is

given in figure 2.12.

However, if more severe requirements are introduced, for example, by Gaines (1976):

c-4a l m  Y X ��� l m  Y D �Ý��> , whenever l m  Y X ��� l�m  Y D �Ý�r>
requiring that if the sum of two fuzzy sets is > , the sum of the complements of those sets
also equals > , or by Bellman and Giertz (1973):

c-4b l m  YKX �]< l m  Y D ��� l m  YKX ��< l m  Y D �
requiring that a change in the membership function has the opposite change in the com-
plement of the membership function, then "x%R0���i>Ü< R is the only solution. Table A.1 in
appendix A presents a summary of commonly known fuzzy complement operators.
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?
:

Figure 2.12: Example of
?
-complement of fuzzy

set for different values of
?
.

2.4 Fuzzy relations

So far only fuzzy sets with membership functions of one variable have been considered.
Fuzzy sets can, however, be extended to have higher dimensional membership functions.
These multi-dimensional fuzzy sets are normally referred to as fuzzy relations. An B -ary
fuzzy relation C in p X Ô |k|k| Ô p T is a (multi-dimensional) fuzzy subset of p X Ô |k|k| Ô p Tand is denoted by:

C ��� l�D  YKX s �k�¬� s Y T �a{A YKX s �k�¬� s Y T � � Y&XÜt p X s �k�¬� s Y T t p T � (2.27)

or using a notation analog to (2.2c):

C � � } d �k�k� � } Í l�D  YKX s �k�k� s Y T �a{A YKX s �k�k� s Y T � (2.28a)�S� } d�ÖFEGEGE×Ö } Í l�D  YKX s �k�k� s Y T �a{A YKX s �k�¬� s Y T � (2.28b)

Such a fuzzy relation can represent an association or correlation between elements of the
product space. An example of such an association is the linguistic statement approximately
equal, of which the fuzzy relation C Ø  Y s§Q:� is shown in figure 2.13.
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2.4 Fuzzy relations 35

j

>

Y Q

l�Ø  Y s�Q0�

Figure 2.13: Fuzzy relation representing approximately
equal with membership function lnØ  Y s�Q:� .

In a discrete form, using discretizations at integer values in the range 47j+s¬>kj�8 , this fuzzy
relation is described by:

CªØ �i>�{A%jLs�jy�]� XD {)M>,s�j)�n� XD {)Éj+sk>x�n�S>�{Aa>,s¬>��� XD {A%Å+s¬>��]� XD {)M>,s�Å)�n�S>�{)ÉÅ+s�Å)�n� XD {)%ÆLs�Åy��I|k|k|,� XD {)M>kjLs3Hy��� XD {)#H+sk>¬jy���S>�{Aa>kjLsk>kj)�
In the continuous case, assuming

Y
and Q are real numbers, the fuzzy relation from figure

2.13 would be denoted by:

C Ø � � } ÖJI l D�K  Y s�Q:�M{) Y s§Q:� (2.29a)

with the membership function:

l�D�K  Y s�Q0���I¢NÚxÛKa>Ü< XD � Y <FQ � s�j)�a{) Y s�Q:� (2.29b)

Although an increasing fuzziness for increasing values of the variables

Y
and Q would

be closer to the way humans tend to interpret approximately equal, it is not relevant
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36 Fuzzy sets and relations

right now; the important thing to remember is that fuzzy relations can be used to model
linguistic associations, correlations, relations or, following Dubois and Prade (1980),
correspondences. This includes statements like, for example, smaller than, about twice
as old, much cheaper than, �k�k�
The properties of fuzzy sets and operations on fuzzy sets are extendable to properties of
fuzzy relations and operations on fuzzy relations (being regarded as multi-dimensional
fuzzy sets). Properties like height and support can be determined for fuzzy relations in
the same manner as for fuzzy sets. Operations like � -cut, T-norms and T-conorms can be
applied to fuzzy relations only when the relations are fuzzy subsets of the same universe(s).

2.4.1 Projection and cylindrical extension

Zadeh (1975) defined the projection of a fuzzy relation C in p V � p V d Ô �¬�k� Ô p VML , by:�0�M�ONJ CQPap V �C� �k}SR �P�0�� ¯ d ÊÌËÌËÌË Ê � ¯UT l�D  Y0V d s �¬�k� s Y0V L �M{) Y0V d s �k�k� s Y0V L � (2.30)

where C is a fuzzy subset of p T � p X=Ô �k�k� Ô p T and p V Ô p © � p T . The indicesV X s �k�¬� s V ÿ are a complementary to W X s �k�k� s W&X with respect to the indices >�s �k�k� s B . This
definition might seem complicated, but it is actually very simple. In fact, the projection
mechanism eliminates dimensions of the product space a fuzzy relation is a fuzzy subset of,
by taking the supremum of the membership function for the dimension(s) to be eliminated.
In figure 2.14 an example is given which shows the projection defined by (2.30) of a fuzzy
relation on p ÔZY

to a fuzzy set on

Y
:

Õ ���0�M�ONJ CQP Y �C� � I �P�0�Î l�D  Y s�Q:�M{xQ (2.31)

Besides the projection mechanism for fuzzy relations, Zadeh (1975) defined the cylindrical
extension of a fuzzy relation (or set) by:�?�¬Û �  C[Pap T ��� � } Í l D  Y V d s �k�k� s Y VML �M{) Y X s �k�k� s Y T � (2.32)

where C is a fuzzy relation on p V
. This means that a fuzzy relation or set is extended over

an enclosing Cartesian product space with the restriction that, if C is a fuzzy set on p T
and p T �9p z :

C ���0�M�ONJ%�?�¬Û �  C[Pap z � Pap T � (2.33)
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2.4 Fuzzy relations 37

l È %Q0� l�D  Y s�Q:�

j

>

Y Q

Figure 2.14: Example of projection mechanism for fuzzy
relations, where Õ ���0�M�ONJ CQP Y � .

In figure 2.15, an example is given of a fuzzy set on p and its cylindrical extension onp ÔZY
. Using (2.33) the cylindrical extension shown in figure 2.15 is given by:

C �S�?�kÛ �  o\Pap ÔZY �C� �k} ÖJI l m  Y �a{) Y s�Q:� (2.34)

The cylindrical extension “extends” the product space of which a fuzzy set or relation is
a subset of without any loss of information, which is shown by (2.33).

2.4.2 Composition of fuzzy relations

The composition is defined as follows (Zadeh, 1973): suppose there exists a fuzzy relationC in p Ô]Y
and o is a fuzzy set in p , then fuzzy subset Õ of

Y
can be induced by o ,

given the composition of C and o . This is denoted by:

Õ � o+^_C (2.35a)
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j

>
~ ��-��

Y
(a)

Fuzzy set A with membership functionía` ðhñ,ó .
j
>

Y Q

l�D  Y s§Q:�

(b)
Cylindrical extension of b in cedgf .

Figure 2.15: Example of cylindrical extension C of fuzzy
set o , where C �S�?�kÛ �  o\Pap ÔZY � .

and is defined by:

Õ ���0�M�ONJ Cih �?�¬Û �  o\Pap ÔZY � P Y � (2.35b)

Assuming the cylindrical extension as implicit the composition of relations can be regarded
as consisting of two phases: combination and projection. Zadeh proposed to use sup-min
composition, which leads to the following implementation of the composition where o is
a fuzzy set with membership function l�m  Y � and C is a fuzzy relation with membership
function l D  Y s§Q:� :

l È ÉQ:���9�½�0�� ¢¤£Ó¥K l m  Y ��s l�D  Y s§Q:�M� (2.36)

where the cylindrical extension of o is implicit and sup and min represent the projection
and combination phase, respectively. Various others, among which Hellendoorn (1990),
have pointed out that this could be generalized by taking a general T-norm and T-conorm
for the min and sup operator, respectively. However, considering continuous domains,
a general T-conorm cannot be taken, since its working is not defined. For example,
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2.4 Fuzzy relations 39

R�� þ <FR þ cannot be determined for a continuous interval. Therefore the composition of
fuzzy relations is normally represented by:

l È ÉQ:���9�½�0�� 2  l m  Y �§s l�D  Y s�Q0�a� (2.37)

where 6 is a general T-norm. Here, however, the sup-min-implementation proposed by
Zadeh is mostly used. For example, if we use the examples given in previous sections, the
fuzzy set “about 5”:

lçØ0Ù  Y ���I¢NÚxÛKa>Ü< XD � Y <FÁ � s�jy�
and the fuzzy relation representing approximately equal:

lçØ  Y s�Q0���I¢NÚxÛKa>Ü< XD � Y <FQ � s�j)�
then the composition operation provides a means to obtain a fuzzy set representing the
value of Q . Using the composition according to Zadeh, the membership function l È ÉQ:�
of the resulting fuzzy set Õ is:

l�È ÉQ:���9�½�0�� ¢¤£Ó¥K l Ø0Ù  Y �§s l Ø  Y s�Q0�a��9�½�0�� ¢¤£Ó¥K-¢NÚ�ÛKM>Ü< XD � Y <FÁ � s�jy�§sa¢NÚ�ÛKM>�< XD � Y <wQ � s�jy�M��S¢NÚ�ÛKM>Ü< Xâ � Q�<FÁ � s�j)�
Note that the result given above cannot easily be obtained, although this is just a simple
example. The different stages during the composition according to (2.36) of l5Ø0Ù  Y � andl�Ø  Y s�Q:� , as well as the result of the composition is shown in figure 2.16.

A discretized version of C Ø was given in section 2.4. If the compositional rule of
inference is applied on discretized universes, with

Y s§Qé�rj+sk>�s�Å+s �¬�k� , in the range 47jLsk>kjx8 ,
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j
>

Y Q
(a)íLî ðhñkj&lJó

j
>

Y Q
(b)íLî+ïaðhñ,ó

j
>

Y Q
(c)m_npoxðÓíLîLï.ðhñ,ó'j�íLîKðZñ>j&lJó�ó

j
>

Y Q
(d)qsrutv mgnpoxð¦íLî+ï�ðZñ�ówj-íLî&ðZñ>j&lJó�ó

Figure 2.16: Example of composition for which the fuzzy relation (a), the
cylindrical extension of the data (b), the intersection (c) of the relation
and the cylindrical extension of the data, and the projection on

Y
(d)
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2.4 Fuzzy relations 41

then it results in:

l È ÉQ:���

l�Ø0Ù  Y �x y
z {|}}}}}}}}}}}}}}}}}}}}
~

jjjj XD> XDjjjj

�&��������������������
�

^

l�Ø  Y s�Q:�x y�z {|}}}}}}}}}}}}}}}}}}}}
~

j j j j j j j j j XD >j j j j j j j j X D > X Dj j j j j j j XD > X D jj j j j j j X D > XD j jj j j j j X D > XD j j jj j j j X D > XD j j j jj j j XD > X D j j j j jj j XD > XD j j j j j jj XD > XD j j j j j j jX D > XD j j j j j j j j> XD j j j j j j j j j

�&��������������������
�

�

¢¤£¦¥  l�Ø0Ù  Y �§s l�Ø  Y s�Q0�a�x y�z {|}}}}}}}}}}}}}}}}}}}}
~

j j j j j j j j j j jj j j j j j j j j j jj j j j j j j j j j jj j j j j j j j j j jj j j j j XD > X D j j jj j j j X D > XD j j j jj j j X D > XD j j j j jj j j j j j j j j j jj j j j j j j j j j jj j j j j j j j j j jj j j j j j j j j j j

� ��������������������
�

� ¢NÚ�Û� ¢¤£¦¥K l Ø0Ù  Y ��s l Ø  Y s�Q0�a�x y
z {� j j j XD XD > XD X D j j j��
When one looks at the result, also shown in figure 2.17, it is clear that this is not a
discretization of the result when the composition was applied on continuous universes, as
shown in the same figure. Therefore, one should take care when using discretizations of
fuzzy sets and relations to implement a fuzzy system.
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42 Fuzzy sets and relations

j

>
~ ��s��

Q
Figure 2.17: Comparison of results obtained
from composition on continuous domains and
discretizations of those.

2.5 Summary and remarks

Fuzzy sets are sets without sharp (crisp) boundaries: membership of a fuzzy set is a
grade in the interval 4;j+sk>J8 . Fuzzy sets can be used to model linguistic labels, where the
“vagueness” of the label is modeled by the non-crisp boundaries of the fuzzy set used to
represent the label. Linguistic modifiers (hedges) can be used to modify the linguistic
meaning of fuzzy set. Different approaches to hedges are possible as discussed in section
2.2.

An important concept within fuzzy set theory is the extension principle, described in
section 2.1.4. This allows the extension of classical (mathematical) concepts to fuzzy
ones (Dubois and Prade, 1980). In practice, the extension principle cannot be applied
easily in many cases. If the mathematical operation to be fuzzified operates on fuzzy
sets which are fuzzy subsets of the same universe, a simplification based on level sets is
possible.

The composition of relations, using projection and cylindrical extension (see section 2.4.1),
is an important concept in the field of fuzzy logic and reasoning, which is addressed in
the next chapter. As shown in section 2.4.2, the approximation of fuzzy relations using
discretizations can lead to quite different results than the analytical results obtained by the
composition of relations.
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3
Fuzzy logic and

reasoning

Fuzzy logic and reasoning is addressed in this chapter. As classical set theory serves
as the basis for classical logic, fuzzy set theory serves as the basis for fuzzy logic.

This means that theoretic operations on fuzzy sets are a base for logical operations. The
operations defined for sets, like union, intersection and complement, have a corresponding
logical meaning, like or, and and not, respectively. However, as described in 2.3, in the
case of fuzzy sets, the set-theoretic operations have many representations instead of just
one as in classical set theory. This, of course, holds also for the logical operators in fuzzy
logic.

First the basic primitives of fuzzy logic are described: fuzzy propositions (section 3.1).
A fuzzy proposition represents a statement “

Y
is o ”, where

Y
is a variable and o is a

linguistic label, represented by a fuzzy set. In section 3.2 the modeling of fuzzy rules and
fuzzy rule bases is addressed. The modeling of fuzzy rules is based on fuzzy implications
and a fuzzy rule base is a set of parallel fuzzy rules which are aggregated. Section (3.3)
describes how fuzzy rules and rule bases can be used for reasoning. This chapter focuses
only on the basics of fuzzy reasoning. For a more detailed discussion of fuzzy reasoning,
the reader is referred to chapter 6.

43
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44 Fuzzy logic and reasoning

3.1 Fuzzy propositions

An important concept in fuzzy logic is a fuzzy proposition. Fuzzy propositions represent
statements like “

Y
is big”, where “big” is a linguistic label, defined by a fuzzy set on

the universe of discourse of variable

Y
. Fuzzy (linguistic) labels are also referred to as

fuzzy constants, fuzzy terms or fuzzy notions. Fuzzy propositions connect variables with
linguistic labels defined for those variables.

These fuzzy propositions are the basis for fuzzy logic and reasoning. Fuzzy propositions
can be combined by means of logical connectives like and and or. Linguistic modifiers
can be used to modify the meaning of the linguistic label used in a fuzzy proposition. For
example, the linguistic modifier very can be used to change “

Y
is big” to “

Y
is very big”.

3.1.1 Logical connectives

As in classical logic, fuzzy propositions can be combined by using the logical connectives
and and or. The and and or connectives are implemented by T-norms and T-conorms,
respectively. As shown in 2.3 there are an infinite number of T-norms and T-conorms.
There are no general guidelines as to which T-norm or T-conorm to choose in a specific
situation. However, based on some properties of T-norms and T-conorms the use of specific
T-norms and T-conorms can be intuitively justified in some cases. Examples of results
using the T-norm and T-conorm according to Łukasiewicz compared to the T-norm and
T-conorm according to Zadeh are shown in figure 3.1. Here the operations are performed
on the same universe of discourse.

The operators originally proposed by Zadeh have the advantage that redundancy is ignored:
the combination of two equal fuzzy propositions will after combination represent the same
information:

l m�/xm  Y �C��¢¤£Ó¥K l m  Y ��s l m  Y �a�C� l m  Y � (3.1a)l�m�1xm  Y �C�u¢NÚ�ÛK l m  Y ��s l m  Y �a��� l�m  Y � (3.1b)

which does not hold for any other T-norms and T-conorms. However, when fuzzy propo-
sitions are not equal but correlated or interactive it can be justified to use other operators
than min and max. The correlation or interactivity of fuzzy propositions represent cases
where dependencies exist between the fuzzy propositions. For example, it can be justified
that using the T-norm and T-conorm according to Łukasiewicz is appropriate in the case
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j

>

Y
(a)m����xð¦ía`��PðZñ�ó)÷"ía`>�aðZñ�ók����j&�Jó

j

>

Y
(b)m_npo,ð¦ía`��PðZñ�ówj-ía`>�aðZñ�ó�ó

j

>

Y
(c)mgnpo�ðÓía`��Pðhñ,ó)÷"ía`>�aðhñ,ó'j��Mó

j

>

Y
(d)m�����ðÓía`��Pðhñ,ó'j�ía`>�aðhñ,ó-ó

Figure 3.1: Results of Łukasiewicz’s type of T-norm (a) and T-conorm (c)
and Zadeh’s type of T-norm (b) and T-conorm (d) for logical connectives
and and or. Note that the result in figure (a) is j .co
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46 Fuzzy logic and reasoning

of complete interactivity:l m d /�m à  Y ���S¢NÚ�ÛK l m d  Y ��� l m à  Y �ç<I>,s�j)� (3.2a)l m d 1�m à  Y ���S¢¤£Ó¥K l m d  Y ��� l m à  Y �§sk>�� (3.2b)

where the above-given T-norm is also known as the bounded sum. As shown in figure
3.1c, the or connective of two fuzzy propositions results in a fuzzy set which also has
complete membership for values of the variable “between” the fuzzy sets (provided the
membership functions sum up to 1 or higher). When only two fuzzy propositions are
considered, the noise level is high and the noise level is low, intuitively the result when
using the operators according to Łukasiewicz can be regarded as more appropriate than
the operators according to Zadeh. When the fuzzy sets used in two previously mentioned
propositions for a fuzzy partition, the combined proposition the noise level is high or
low will cover the complete universe of discourse when the or connective according to
Łukasiewicz is used. However, as stated before, only some indications can be given, since
each T-norm and -conorm has advantages and disadvantages. The choice of T-norms
and T-conorms for the logical connectives depends on the meaning and context of the
propositions and the relations between them. The most frequently used operators in fuzzy
logic are the ones given in table 3.1.

Table 3.1: Frequently used operators for and and or con-
nectives in fuzzy logic.

and or remark¢¤£¦¥K%RKs þ � ¢NÚ�ÛKÉR&s þ � Zadeh¢NÚxÛK%R�� þ <I>�s�jy� ¢¤£Ó¥�%R � þ sk>x� ŁukasiewiczR þ R�� þ <FR þ probability

Thus far, we have only considered cases where the propositions are related to the same
universe of discourse. If the propositions are related to different universes, a logical
connective will result in a fuzzy relation. For example, consider the following proposition:

� :

Y&X
is o X and

Y D is o D
where o X and o D have membership functions l m d  YKX � and l m à  Y D � . The proposition �
can then be represented by the fuzzy relation � with membership function:l �  Y X s Y D �C� 2  l m d  Y X �§s l m à  Y D �M� (3.3)
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3.2 Fuzzy rules 47

where 6 is a general T-norm that is used to model the and-connective. Such a combination
of propositions, in fact a proposition itself, can be the premise of a fuzzy rule.

3.1.2 Negation in fuzzy propositions

Similarly, the logical connectives can be related to the intersection and union of fuzzy
sets, the negation within a fuzzy proposition can be related to the complement of a fuzzy
set. A simple example of a fuzzy proposition with a negation in it, is:

the noise level is not high

and using the standard complement "�ÉR:�C�i>Ü<FR results in:

l����w�a�3���&�  Y ���i>ª< l��3���&�  Y �
More general, the negation in a fuzzy proposition

Y
is not o results in:¥0� �  o �C�O� } �, l m  Y �a�M{ Y (3.4)

where the complement complies with the criteria c-1,2,3 given in section 2.3.2. Although
several fuzzy complements are possible, generally the standard complement:

l ���w� Ð m Ñ  Y ���i>Ü< l m  Y �
is used. From (3.4) one can see the resemblance with hedges, linguistic modifiers for
fuzzy sets as described in section 2.2.

3.2 Fuzzy rules

In order to reason with fuzzy logic, fuzzy rules have to be represented by an implication
function. Such a fuzzy implication has the same function as the truth table of the classical
implication in classical logic. In classical logic the implication is denoted by:

o   Õ (3.5)

which can be seen as a representation of the statement:
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48 Fuzzy logic and reasoning

if o then Õ
In fuzzy logic these types of statements are often referred to as fuzzy if-then statements or
fuzzy rules.

Table 3.2: Truth table of classical implication.

o Õ o   Õ
0 0 1
0 1 1
1 0 0
1 1 1

The truth table of the classical implication is given in table 3.2. The next section shows
how a fuzzy rule can be represented by a fuzzy relation by means of a fuzzy implication
function. The section thereafter describes fuzzy implications which are used in fuzzy logic.
Besides fuzzy implications which comply with the classical implication as defined by table
3.2, fuzzy implications which are interpreted as (fuzzy) conjunctions are used. In section
3.2.4, a general classification of fuzzy implications is given. Section 3.2.3 describes how
a set of parallel fuzzy rules is combined by means of an aggregation operator.

3.2.1 Representation of a fuzzy rule

A fuzzy rule is an if-then statement where the premise and the consequent consist of
fuzzy propositions as described in section 3.1. The premise can contain a combination
of propositions by means of the logical connectives and and or (section 3.1.1). It is also
possible that a fuzzy proposition is based on a negation (section 3.1.2). For the sake of
simplicity the following rule is considered:

if

YKX
is o X and

Y D is o D then Q is Õ
When fuzzy sets o X , o D and Õ are identified by the membership functions l m d  YKX � ,l m à  Y D � and l È ÉQ:� , the following fuzzy relation C representing the fuzzy rule can be
constructed:

C ���� 2  o X s o D ��s Õ � (3.6)
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3.2 Fuzzy rules 49

where 6 is a conjunction based on a general T-norm and � is a fuzzy implication function.
As the T-norm 6 represents (or models) the and connective, the fuzzy implication function� represents (or models) the implication: the if-then connective. Hence, a fuzzy rule can
be represented by a fuzzy relation. The membership function of C of the above-given
example is given by:l�D  YKX s Y D s�Q:������ 2  l m d  YKX ��s l m à  Y D �a�§s l È ÉQ:�M� (3.7)

Fuzzy implication functions are described in the following two sections. The implication
function � is mostly denoted by � %RKs þ � where RKs þ t 47jLsk>?8 .
3.2.2 Fuzzy implications

As any operator in classical set theory and classical logic has an infinite number of possible
representations in fuzzy set theory and fuzzy logic, this is also the case for the implication.
Besides fuzzy implications complying with the classical implication as defined by table
3.2, the implication is sometimes interpreted as a conjunction, in which case the “causality”
relation dictated by the if-then statement is not preserved in the fuzzy relation representing
the implication. Hence, if necessary, the direction of the if-then statement needs to be
preserved as background knowledge, since the conjunction of two propositions looses the
causality represented by the fuzzy rule. Dubois and Prade (1991) made a summary of the
different types of fuzzy implications, and they distinguish the following types of fuzzy
implications:� Implications in fuzzy logic based on the classical implication; a fuzzification of

material implication (where R   þ
is defined by . R , þ ):��ÉR&s þ ��� < %�,ÉR:�§s þ � (3.8)

which are referred to as S-implications (Dubois and Prade, 1991).� Fuzzy implication based on the implication in quantum logic:��ÉR&s þ ��� < %�,ÉR:�§s 2 %RKs þ �a� (3.9)

where 6 and = are " -dual (see (2.25) in section 2.3.1). These types of implications
is known as QL-implications (Dubois and Prade, 1991), where ’QL’ stands for
quantum logic. Lee (1990a) referred to this type of implication as propositional
calculus and also lists the extended propositional calculus :��ÉR&s þ ��� <  2 %��%R0��s��, þ �M��s þ � (3.10)

which results from (3.9) when R and
þ

are replaced by >C< þ
and >C<ÂR , respectively.
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50 Fuzzy logic and reasoning

� Fuzzy implications reflecting partial ordering on propositions:

��ÉR&s þ ��� 89: 9; >,s if R � þj+s if R=�i> * þ �Ojt 47jLsk>J §s otherwise
(3.11a)

Most implications of this type belong to the R-implications (the ’R’ stands for
residuated; Dubois and Prade, 1991):

��ÉR&s þ ���O�P�0���¢¡ t 47j+s¬>?8 �£2 %RKs�¡�� � þ � (3.11b)

where 6 is a general T-norm. Lee (1990b) refers to this type of fuzzy as general-
ization of modus ponens and also lists the generalization of modus tollens � :

��ÉR&s þ ���i>Ü<¿£¦¥k¤¬�¢¡ t 4;j+sk>J8 �a<  þ s�¡��C�OR&� (3.12)

which results from (3.11b) when R and
þ

are replaced by >&< þ and >K<ER , respectively.� Interpretation of the implication as a conjunction:

��ÉR&s þ ��� 2 ÉR&s þ � (3.13)

where 6 is a T-norm. This type of implication is clearly not a generalization
of the classical implication, but complies with the classical conjunction. Fuzzy
implications which are represented by a conjunction are usually used in fuzzy
control; this is described and analyzed in more detail in chapter 4.	

In the original paper Lee (1990b) denotes the generalization of modus tollens as:¥ ð§¦Oj&P̈ó�©�npo¢ª�«
¬®°¯ �Jj
�²±F³µ,́ð§¨¶js¬�ó�·�¦J¸
which is not correct (probably due to a typing error), because there is no solution in case ¨º¹�¦ . Lee (1990b)
probably meant (3.12) which can easily be derived, using (3.11b) and replacing ¦ by ���»¨ and ¨ by ���¼¦
(modus tollens):

¥ ð§¦Oj&P̈ó�©�q½rut>«�¬®¾¯G�Jj
�²±F³¶¿�ð#���¾¨¶js¬�óÀ·]���°¦u¸©Á���°npo¢ª'«
¬JÂ>°¯G�uj��&±0³�¿�ð#���°¨3j�����¬uÂ¦ó�·Ã���¾¦J¸©Á���°npo¢ª'«
¬JÂ>°¯G�uj��&±0³¢���¾Áð§¨3j½¬uÂ3ó�·Ã���¾¦J¸©Á���°npo¢ª'«
¬ Â °¯G�uj��&±0³3,́ðU¨3js¬ Â ó�Ä�¦J¸
where ¬ Â ©+�Å�»¬ and Æ and Ç are È -dual. Hence, the · in Lee’s version should be a Ä and a negation
should be added to obtain (3.12).
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3.2 Fuzzy rules 51

� As the implications reflecting partial ordering on propositions are related to the
classical implication, a similar class of implications can be defined relating to the
classical intersection:

��ÉR&s þ ��� 89: 9; j+s if R � þ � >>,s if R=�i> * þ �i>tFý jLsk>?8És otherwise
(3.14a)

with the following subclass (compare R-implications):

��ÉR&s þ ���I£¦¥k¤¬�¢¡ t 47j+s¬>?8 �a< a>Ü<FRKs�¡��C� þ � (3.14b)

It is clear that this is type includes the classical intersection as a special case.

Other fuzzy implications, which cannot be categorized within the above-listed types of
implications, have been proposed. An example of such an implication is the one proposed
by Yager (1980a):

��%RKs þ ��� þ�É
(3.15)

The S-implications represent straightforward fuzzy interpretations of the classical im-
plication R   þ

. An example of this type of fuzzy implication is the Kleene-Dienes
implication:

��%RKs þ ���I¢NÚxÛ0M>�<FRKs þ � (3.16)

and is shown in figure 3.2e. An example of an R-implication is the implication according
to Goguen (1969), shown in figure 3.2f:

��%RKs þ ��� q >,s if R �9j¢¤£Ó¥K£ÊÉ sk>x��s otherwise (3.17)

where the T-norm in (3.11b) is the product operator. Another implication which reflects
partial ordering on propositions is the implication according to Gaines (1976):

��%RKs þ ��� q >,s if R � þj+s otherwise (3.18)
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52 Fuzzy logic and reasoning

which, however, is not an R-implication. Well-known examples of implications based on
conjunctions (T-norms) are the implications used by Mamdani (1974), shown in figure
3.2c:

��%RKs þ ���I¢¤£¦¥K%RKs þ � (3.19)

and Larsen (1980) (shown in figure 3.2d):

��%RKs þ ���OR þ (3.20)

In figure 3.2, one can see the resulting fuzzy relation, representing a fuzzy rule, for different
implication functions. In table A.3 on page 245, a summary of commonly known fuzzy
implications is given.

3.2.3 Aggregation of fuzzy rules

To here, it has been shown how to translate the premise of a fuzzy rule into a fuzzy relation
and to translate an if-then statement into a fuzzy relation. Thus we are able to translate
fuzzy rules into fuzzy relations. If there is more than one proposition in the consequences
of fuzzy rules, the fuzzy rules are assumed to be separable with respect to the propositions
in the consequent. The following step is to combine a set of fuzzy rules into one fuzzy
relation. The fuzzy rules are considered as a set of ¨�� parallel rules which have a premise
based on ¨ } variables:

$ X : if

Y X
is o X Ê X and �k�k� and

Y �Ë is o��Ë Ê X then Q is Õ X
else�k�k�
else$ X : if

YKX
is o X Ê X and �k�k� and

Y  Ë is o  Ë Ê X then Q is Õ X
else�k�k�
else$ �Ì : if

YKX
is o X Ê �Ì and �¬�k� and

Y �Ë is o �Ë Ê �Ì then Q is Õ �Ì
The translation of such a set of parallel fuzzy rules into a fuzzy relation is done by
constructing the fuzzy relation C®X for each fuzzy rule $ X and combining these relations
into a single fuzzy relation C . This combining of fuzzy rules into a fuzzy relation is called
aggregation. The way this is done is different for different types of implication functions.
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j
>

Y
(a)í ` ðZñ�ó

j
>

Q
(b)íaÍnð§l?ó

j
>

Y Q
(c)¥ ð§¦Oj&P̈ó�©�m_npo,ð§¦Oj&¨Pó

j
>

Y Q
(d)¥ ð§¦Oj&¨Pó�©Z¦¢¨

j
>

Y Q
(e)¥ ð§¦Oj&P̈ó�©�m®���xð&���¼¦Oj&¨Pó

j
>

Y Q
(f)¥ ð§¦Oj&¨Pó�©�mgnpoxðÏÎÐ j
�aó

Figure 3.2: Fuzzy relations C ���� o s Õ � as result of implication functions according
to Mamdani (c), Larsen (d), Kleene-Dienes (e) and Goguen (f). The two top figures
show the fuzzy sets used in the premise (a) and consequent (b) of the rule: if

Y
is o

then Q is Õ .
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54 Fuzzy logic and reasoning

For the implications which comply with the classical conjunction, this aggregation operator
is a disjunction. For those complying with the classical implication, a conjunction is used
for aggregation. If the ¨ � fuzzy rules $ X are represented by the fuzzy relations C®X , the
resulting fuzzy relation C , which is the aggregation of relations C[X , is determined by:

C ��Ñ X C_X (3.21)

Hence the else connective is interpreted as a disjunction. A more general definition is
possible, which uses an S-norm for the aggregation of the relations C X . Figure 3.3f shows
the aggregation of two fuzzy rules, using the max operator. The two rules can easily be
recognized in this figure. The min operator is used as the implication function for the
fuzzy rules in the figure.

The aggregation of fuzzy rules when the implication function complies with the classical
implication, is performed by a conjunction:

C � h X C X (3.22)

Here also a more general definition is possible, using a T-norm for the aggregation of the
rules. This means that the else connective is interpreted as a conjunction. Figure 3.3e
shows the aggregation, using the min operator, of two fuzzy rules which are modeled by
the Kleene-Dienes implication. From this figure we note that it is not easy to distinguish
the two rules used. This is typical for fuzzy implications which comply with the classical
implication.

After reading this section it might well be possible that one still wonders about the different
types of aggregation for different types of implications. In chapter 6, a justification based
on possibility theory is discussed. For the sake of simplicity, no more details will be
given at this stage; for the next two chapters it is enough to take note of the distinction
between the two basic types of implications and note that for each type a different type of
aggregation has to be used.

3.2.4 Classification of fuzzy implications

In the previous section different types of fuzzy implications were given, using the classi-
fication of fuzzy implications according to Dubois and Prade (1991). In this section, we
will describe a more general classification of fuzzy implications. It is primarily based on
distinguishing between two basic types of implications:
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j
>

Y Q
l�D d  Y s�Q0�

(a)m����xð#���=í ` �Pðhñ,ó'j�íaÍ��PðUlJó-ó
j
>

Y Q
l�D d  Y s�Q0�

(b)m_npoxðÓí ` �Pðhñ,ó'j�íaÍ��PðUlJó-ó

j
>

Y Q
l�D à  Y s�Q0�

(c)m����xð#���=ía`>�aðhñ,ó'j�í Í �aðUlJó-ó
j
>

Y Q
l�D à  Y s�Q0�

(d)m_npoxðÓía`>�aðhñ,ó'j�í Í �aðUlJó-ó

j
>

Y Q
l�D  Y s§Q:�

(e)m_npo,ð¦íaÒ��½ðhñkj#l?ó'j�íaÒ>�aðhñkj#l?ó-ó
j
>

Y Q
l�D  Y s§Q:�

(f)m®���,ð¦íaÒ��PðZñ>j&lJówj-íaÒ>�aðZñ>j&lJó�ó
Figure 3.3: Aggregation of fuzzy rules. The left column shows aggregation in the
case of Kleene-Dienes’ implication; the right column shows aggregation in the case
of Mamdani’s implication. The relation C is the aggregation of C X and C D . See
figure 3.2 for the construction of the relation for each individual rule.
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56 Fuzzy logic and reasoning

I. Fuzzy implications complying with the classical implication:R   þÔÓ . R , þ
which are aggregated by means of a conjunction as in (3.22).

II. Fuzzy implications complying with the classical conjunction:R   þÔÓ R * þ
which are aggregated by means of a disjunction as in (3.21).

Using this basic distinction of two types of fuzzy implications a number of “composi-
tions” can be defined. By composition we mean a combination of implications or nested
implications: a variable is an implication itself. Possible compositions of the two basic
types of implications I and II are:

1. Fuzzy implication based on implication from quantum logic:R   þÔÓ . R , %R * þ �
which can be seen as . R , þ�Õ (type I), where

þ¶Õ
is an implication itself:

þµÕ � R * þ
(type II).

2. Fuzzy implications based on modus tollens interpretation:R   þÔÓ . þ   . R
which can be any type of implication and replaces R and

þ
by . þ and . R , respectively.

3. Fuzzy implications based on symmetry between modus ponens and modus tol-
lens: R   þÔÓ ÉR   þ � *  . þ   . R:�
which combines two implications by means of a conjunction.

The generalization of the two basic types of implication is not based on the use of T-norms
and T-conorms for the generalization of the conjunction and the disjunction, respectively.

co
nt

ro
len

gin
ee

rs
.ir



3.2 Fuzzy rules 57

It allows the generalizations of the binary valued operators to be less restrictive than T-
norms and T-conorms. Let us define a generalization of the classical conjunction, denoted
by Ö :

× ÉR&s þ �C� 89: 9; jLs if R"�Oj , þ �Oj>�s if R"�i> * þ �i>t 4;j+sk>u �s otherwise
(3.23a)

and Ö ÉR&s þ � � Ö &"xs�'+� , whenever R � "xs þ � ' (compare criterion T-2 on page 31). A
generalization of the classical disjunction, denoted by Ø , is obtained in a similar way:

Ù ÉR&s þ �C� 89: 9; >�s if R �r> , þ �i>jLs if R �9j * þ �Ojt@ý j+s¬>?8%s otherwise
(3.23b)

These generalizations of the classical conjunction and disjunction do not have the re-
strictions that they have to be commutative and/or associative. T-norms and -conorms as
defined in section 2.3.1 fall within these definitions as a subclass. A more general subclass
of the Ø - and Ö -operators can be defined by:

× � ÉR&s þ �_� 89: 9; jLs if R�� þ � >>�s if R"��> * þ �i>t 47j+s¬>J �s otherwise
(3.24a)

Ù � ÉR&s þ ��� 89: 9; >�s if R�� þ �i>jLs if R"�Sj * þ �Ojt@ý j+s¬>?8%s otherwise
(3.24b)

which are commutative. It can easily be shown that the class of implications representing
partial ordering on propositions defined by (3.11), with R-implications, defined by (3.11b),
as subclass, is defined by:

�%/aÚ]%RKs þ ��� Ù � M>�<wR&s þ �
This class of implications falls within type I, as defined before. Also the implication
of Yager (1980a) can be seen as a generalization of the classical implication using a
generalization of the classical disjunction:

Ù ÉR&s þ �C� þ Xa` É
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58 Fuzzy logic and reasoning

which results in � %RKs þ ��� Ø a> <FRKs þ ��� þ Xa`0Ð3Xa` É Ñ � þ É
.

The following fuzzy implication (Zadeh, 1975):

��%RKs þ ���I¢NÚxÛ0M>�<FRKsa¢¤£¦¥0%RKs þ �a�
is a composition according to the implication in quantum logic, namely R   Ó . R , ÉR * þ � .
This can be interpreted as nested implications: a classical-implication-based implication��Û � (type I) applied to the antecedent and the result of a classical-conjunction-based
implication � Û�Û (type II) applied to the antecedent and the consequent:

�'ÜkÝH%RKs þ �����'Þ 1 %RKs3�'ÞaÞ %RKs þ �a� (3.25)

Lee (1990b) referred to the implication from quantum logic as propositional calculus and
also mentions extended propositional calculus:

��%RKs þ ���I¢NÚxÛ0 þ sa¢Ò£Ó¥Ka>ª<FRKsk>_< þ �a�
which can be written as the implication from quantum logic based on modus tollens:

��%RKs þ ����� ÜkÝ  . þ s . R0��I¢NÚxÛ0M>�<IM>Ü< þ �§sa¢¤£Ó¥KM>Ü< þ s¬>Ü<FR:�M��I¢NÚxÛ0 þ sa¢Ò£Ó¥Ka>ª<FRKsk>_< þ �a�
When these two implications are combined to obtain symmetry for the variables, usingR   þßÓ %R   þ � *  . þ   . R0� , the result is the implication proposed by Willmott
(1980):

� 4áà %RKs þ ����¢Ò£Ó¥��¢NÚxÛ0a>ª<FRKs þ �§sa¢NÚxÛ+ÉR&s¬>Ü< þ sa¢Ò£Ó¥K þ sk>Ü<FR0�a�M� (3.26)

because this can be written as the combined implication:

� 4áà %RKs þ ����¢Ò£Ó¥�&� ÜkÝ ÉR&s þ �§s3� ÜkÝ a>Ü< þ sk>Ü<FR:�M� (3.27a)

where:

� ÜkÝ %RKs þ �����NR Y a>Ü<wR&sM¢¤£Ó¥KÉR&s þ �a� (3.27b)
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3.2 Fuzzy rules 59

Table 3.3: Simplification for different relations between R and
þ

with implica-
tion proposed by Willmott (1980): � 4áà ÉR&s þ ���I¢Ò£Ó¥K�¢éÚ�ÛKa>)<�RKs þ ��sa¢éÚ�ÛL%RKsk>)<þ sM¢¤£Ó¥K þ sk>Ü<FR0�a�M� .

R and
þ � 4áà %RKs þ � ¢Ò£Ó¥K&�'ÜkÝH%RKs þ ��s3�'ÜkÝLa>ª< þ sk>Ü<FR0�a�>Ü< þ � >ª<¿R � R � þ R ¢Ò£Ó¥K%RKs þ �>Ü< þ � R � >�<wR � þ >Ü<FR ¢Ò£Ó¥Ka>Ü<FRKs þ �þ � >Ü<FR � R � >�< þ >Ü<FR ¢Ò£Ó¥Ka>Ü<FRKsk>Ü<FR0�þ � R � >Ü<FR � >�< þ >Ü<FR ¢Ò£Ó¥Ka>Ü<FRKsk>Ü<FR0�>Ü<FR � >Ü< þ � þ � R þ ¢Ò£Ó¥K þ s þ �>Ü<FR � þ � >�< þ � R þ ¢Ò£Ó¥K þ s þ �R � >Ü< þ � þ � >�<FR þ ¢Ò£Ó¥Ka>Ü<FRKs þ �R � þ � >Ü< þ � >�<FR >Ü< þ ¢Ò£Ó¥Ka>Ü<FRKsk>Ü< þ �

To prove the equality of those two, we consider eight different possible inequalities
concerning R ,

þ
and their negations. The results for (3.26) are shown in table 3.3. It can

easily be checked that the same results are obtained for (3.27).

Hence, a general classification of fuzzy implications can be made distinguishing two
basic types and three types of composition/modification when allowing non-commutative
and non-associative generalizations of the classical conjunction and disjunction. This
distinction is used in the remainder of the thesis. For example, in section 3.2.3, the
aggregation of a set of rules was described and the aggregation operator is different for
the two basic types of implication. This property plays an important role in the inference
of a set of fuzzy rules. See section 3.3.2 for more details on inference of a parallel set of
fuzzy rules, also known as a fuzzy rule base.

3.2.5 Rule base properties

In the following section a number of properties of a fuzzy rule base are considered:
consistency, continuity and completeness of a fuzy rule base. These properties provide
classifications of rule bases which are used in the remainder of this thesis.
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60 Fuzzy logic and reasoning

3.2.5.1 Continuity of a rule base

Continuity of a rule base requires that rules with “adjacent” premises have “adjacent”
consequents. To clarify this, let us first explain the notion of adjacent fuzzy sets by means
of an ordered set of fuzzy sets:

o X � o D ��|k|k|K� o VÓ`yX � o V � o Vãâ0X �G|¬|k| (3.28)

where o VÓ`LX and o V are adjacent fuzzy sets, as well as o V and o VMâHX are. Here, it is assumed
that the adjacent fuzzy sets overlap. A good example is a fuzzy partition, where only
adjacent fuzzy sets overlap. This is considered in most cases where continuity of a rule
base is addressed in this thesis.

Here, a rule base is said to be continuous in case the premises of rules are “adjacent”
as well as the consequents. Rule premises are considered adjacent when they contain
the same conditions (fuzzy sets) except for one, in which case the fuzzy sets in these
conditions have to be adjacent. To explain this, consider the following example. Suppose
a rule base containing the following rules:

$ X : if

YKX
is o X Ê X and

Y D is o D Ê X then Q is Õ X
The premises of rules $ X and $ X�ä , with 6 Õ v� 6 , are considered adjacent when one of the
following holds:

1. o X Ê X = o X Ê X äk*uo D Ê X and o D Ê X ä are adjacent

2. o D Ê X = o D Ê X äk*uo X Ê X and o X Ê X ä are adjacent

The rule base is said to be continuous when Õ X and Õ X ä are adjacent for the above-given
cases, where it is assumed that the rule base is complete (see section 3.2.5.3 on this topic).
Note that the case where o X Ê X and o X Ê D are adjacent, and o D Ê X and o D Ê D are adjacent, does
not imply adjacent premises in this definition. Hence, the definition of continuity of a rule
base as given above is less strict than a definition purely based on overlapping of fuzzy
sets used in the rule premises. As will be shown in section 4.2.1, the continuity of a rule
base plays an important role when fuzzy implications which comply with the classical
implication are used to model the fuzzy rules.
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3.2 Fuzzy rules 61

3.2.5.2 Consistency of a rule base

Consistency of a rule base addresses the consistency of the knowledge represented by that
rule base. A well-known example of an inconsistent rule base is the following, where two
fuzzy rules co-exist in the rule base used for the control of a robot and the data “obstacle
in front” is considered:

if obstacle in front then go left
if obstacle in front then go right

One might state that “this is a badly designed rule base”. That may be right, but these
inconsistencies are hardly unavoidable in complex rule bases. Also the use of or connec-
tives in rule premises can lead to this kind of problem. A simple example showing this is
the following rule base:

if

YKX
is o or

Y D is å then Q is æ
if

YKX
is Ö or

Y D is ± then Q is �
if

YKX
is Õ and

Y D is Ø then Q is ç
which leads to ambigious conclusions about Q as shown in table 3.4. From this table one
can see the ambigious conclusions in case

YçX
is o and Q is ± , and in case

Y�X
is Ö and

Y D iså . In this simple example it is clear that the previous stated two rules will give ambigious
conclusions for some situations, but in the case of larger, more complex rule bases this
phenomena cannot be recognized easily. A similar problem can occur when using the not
operator in rule premises.

Table 3.4: Examples of possible inconsistencies in rule base.YKXáè Y D o Õ ÖØ æ ç �å æ æ æ s �± æ s � � �co
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3.2.5.3 Completeness of a rule base

In the following we discuss the completeness of a fuzzy rule base, which can be used as a
measure to denote the completeness of the knowledge represented by the rule base.

An incomplete rule base has so-called blank spots: for certain situations of the input space
(on the semantic level) no output actions are defined. This does not mean that the result
of inference of an incomplete rule base does not exist. The fuzzy sets used in the rule
premises play a role in this. Using the fuzzy sets in combination with the rules, a measure
of completeness of a fuzzy rule base can be defined:

×�é É^ �C� �ÌUX W0X � �ËêV3W0X l m Rãë L  Y V ��� (3.29)

where ^ is a numerical data vector. The completeness measure Ö�ì %^_� has a value
greater than j in case one or more fuzzy rules have the data vector ^ in the support of
their premise. Using the completeness measure as defined by (3.29), we can summarize
the following about the completeness of the fuzzy rule base for a certain data vector:

×�é É^ �C�Oj � incomplete (blank spot)jE� ×�é É^��G>í� subcomplete×�é É^ �C�i> � strict complete×�é É^��G> � overcomplete (redundant)

It is obvious that a fuzzy rule base can have different properties for different regions in the
input space. For example, certain regions can be overcomplete while other regions can
be subcomplete. Subcompleteness, strict completeness and overcompleteness of a fuzzy
controller are grades of completeness, as opposed to incompleteness.

From (3.29) it is clear that the completeness of a fuzzy rule base is strict in case the fuzzy
sets on the universes of discourse of each universe used in the rule premises are fuzzy
partitions (see section 2.1.2) and the rule base contains all possible rules which can be
defined using the fuzzy sets defined on the universes. Incompleteness of the rule base is
something which should be avoided, if possible, because it represents a lack of knowledge
(“blank spot” on a semantic level). Kóczy and Hirota (1993) propose a method to perform
inference with a sparse fuzzy rule base by means interpolative reasoning (see section
4.6.3.1). However, this method is based on T-implications. Research in the redundancy
of fuzzy rule bases consisting of certainty rules and gradual rules was reported by Dubois
and Prade (1994b). In section 4.6.3 it will be shown that incompleteness of a fuzzy rule
base can lead to undesired control behavior in fuzzy control.
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3.3 Fuzzy reasoning

This section discusses reasoning with fuzzy logic. As described in the previous section,
there exists a large number of possible fuzzy implications to model a fuzzy rule. A fuzzy
rule can be used to infer knowledge about the consequent of the rule using data which
is a fuzzy subset of the same universe as the premise of the rule. First we focus on the
inference of a single rule. After this, a set of parallel fuzzy rules is considered.

3.3.1 Inference of a fuzzy rule

The inference of a single fuzzy rule is a straightforward application of the composition
of fuzzy relations. Zadeh (1973) introduced this in fuzzy logic as the compositional
rule of inference, sometimes abbreviated to CRI in the remainder of this thesis. Also
generalizations of the reasoning schemes from classical logic, generalized modus ponens
and generalized modus tollens, are described in section 3.3.1.2.

3.3.1.1 Compositional rule of inference

The compositional rule of inference (CRI) was introduced by Zadeh (1973) and it assumes
that a fuzzy rule:

if

Y
is o then Q is Õ

is represented by a fuzzy relation C . A result Õ Õ can then be inferred (from C by o Õ )
through the composition of o Õ and C :

Õ Õ � o Õ ^gC (3.30)

The composition of relations was described in section 2.4.2. Hence, the CRI assumes that
a fuzzy relation representing the rule exists. This fuzzy relation can be one of the fuzzy
implications as described in section 3.2.2. When a suitable implication operator is chosen,
the composition operators should be chosen. Normally the sup-min composition is used,
but other combinations are possible. Next, it is shown how the CRI can be used within
generalized modus ponens and tollens.
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64 Fuzzy logic and reasoning

3.3.1.2 Generalized modus ponens and tollens

The generalized modus ponens was introduced by Zadeh (1973). It is a generalized version
of the well-known inference rule from classical logic. It is based on an if-then relation:

if

Y
is o then Q is ÕY

is o ÕQ is Õ Õ
where o Õ represents the data and Õ Õ the inferred result. The truth table for the (classical)
modus ponens is given in table 3.5. To solve this using the compositional rule of inference,
a relation representing the if-then rule is necessary. There are many possible ways to
represent an if-then rule by a relation; see section 3.2.2.

Table 3.5: Truth table for modus ponens.

o Õ o   Õ Õ Õ
1 1 1
0 1 ?

An example of the (generalized) modus ponens is the following: suppose the rule “if there
is smoke then there is fire” and the data that “there is smoke” then “there is fire” can be
inferred using the modus ponens. This inference is normally defined by the CRI:

Õ Õ � o Õ ^gC
where C is the fuzzy relation representing the fuzzy rule “if

Y
is o then Q is Õ ”.

The generalized modus ponens is not always the same as the compositional rule of
inference. Many other inference schemes are possible which are based on the modus
ponens, but not on the composition of fuzzy relations. Different types of reasoning are
presented in chapter 6. One can view the generalized modus ponens as a reasoning scheme
which includes the compositional rule of inference as a special case, namely, when the
rule and data are represented by fuzzy relations.

Like the modus ponens, the modus tollens can be generalized: generalized modus tollens.
The inference scheme is:
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if

Y
is o then Q is ÕQ is Õ ÕY

is o Õ
The truth table for the (classical) modus tollens is given in table 3.6. Using the example
presented for explaining the modus ponens, the modus tollens can be used to infer from
“if there is smoke then there is fire” and “there is no fire” that “there is no smoke”.

Table 3.6: Truth table for modus tollens.

Õ Õ o   Õ o Õ
1 1 ?
0 1 0

For solving the modus tollens, the compositional rule of inference can be used, assuming
a fuzzy relation for the if-then rule exists. This is normally denoted by:

o Õ � C � Õ Õ
where C is the fuzzy relation representing the fuzzy rule “if

Y
is o then Q is Õ ”.

3.3.1.3 Criteria for generalized modus ponens

In classical logic the criteria which the modus ponens has to meet are unique. However, in
fuzzy logic there are more possibilities. Several criteria, proposed by a number of authors
are discussed in this section. To date, much work has been done on the investigation of
implication functions and the generalized modus ponens. Baldwin and Pilsworth (1980)
proposed the following conditions to be met by the generalized modus ponens, where ^ zstands for the sup-m composition and � is a (pseudo-)conjunction (Dubois and Prade,
1991):

GMP-1 Õ Õïî Õ , which means that “nothing better” than Õ can be inferred fromo   Õ ;

GMP-2 Õ ÕXáð Õ ÕD if o Õ Xáð o Õ D , requiring monotonicity;

GMP-3 Õ Õ � Y
if o Õ � o , meaning that the negation of o results in Õ Õ is unknown;

co
nt

ro
len

gin
ee

rs
.ir



66 Fuzzy logic and reasoning

GMP-4 if Õ Õ � o Õ ^ à �� o s Õ � then o Õ � Õ Õ ^ à �� o s Õ � , requiring symmetry
between modus ponens and modus tollens (see also section 3.3.1.2 for the
generalized modus tollens);

GMP-5 Õ Õ � Õ if o Õ vð o , meaning that if o Õ is less restrictive that o , Õ Õ can never
be more restrictive than Õ .

Other (partly overlapping) conditions to be met by the generalized modus ponens were
proposed by Fukami, Mizumoto and Tanaka (1980):

GMP-6 o+^ñà �� o s Õ �C� Õ , which demands that Õ Õ � Õ in case o Õ � o . This is
known as the fundamental property;

GMP-7a �)�k�
	  o � ^¢à �� o s Õ �Ü� Õ , where very is a powered hedge: lóò'ôUõUö Ð m Ñ  Y ���l Dm  Y � ;
GMP-7b �)�k�
	  o � ^ñà �� o s Õ ���Ô�)�¬��	� Õ � , which is even stronger that GMP-6;

GMP-8 ¢¤���a� -��� - ÷ �x�a�J o � ^ à �� o s Õ �n�I¢Ò�,�a� -ø $ - ÷ �e�a�? Õ � , which is similar to GMP-
6 and GMP-7b;

GMP-9a o-^ à �. o s Õ �]� Y
, which is the same as condition GMP-3;

GMP-9b o+^ à �� o s Õ ��� Õ , demanding that a negation of the premise results in a
negation of the consequent (compare a conjunction).

Driankov (1987) also, besides conditions GMP-3, GMP-6, GMP-7a and GMP-8, proposed
the following conditions to be met by the generalized modus ponens (Hellendoorn, 1990):

GMP-10 Õ Õ � Y
if o Õ � p , stating that if o Õ is unknown, then Õ Õ is unknown;

GMP-11 Õ Õ �eù I "e{eQ if o Õ �eù } "e{ Y , which represents that if o Õ is undefined, thenÕ Õ should be undefined. Normally undefined is represented by "Ü�Oj .
It can be seen from the above-listed criteria that several of those criteria are conflicting. For
each fuzzy implication it can be checked whether it fulfills a number of desired criteria
or not. Hence, to meet certain criteria considered necessary for a specific application,
appropriate implication functions can be chosen. Després (1989) proposed a tool for
fuzzy rule acquisition which chooses appropriate implication functions to satisfy the
expected behavior which is stated by the knowledge engineer.

Criterion GMP-1 has been considered quite often in research, since it is trivial in classical
logic. Trillas and Valverde (1985) proposed to use implication generating functions for
the generalized modus ponens. A modus ponens generating function, denoted by �ÂÉR&s þ � ,
has to meet the following conditions:
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3.3 Fuzzy reasoning 67

M-1 ¢ÂÉR&s3��ÉR&s þ �a� � þ
M-2 ¢ÂM>,sk>x���i>
M-3 ¢ÂÉj+s þ ��� þ
M-4 ¢ÂÉR&s þ � � ¢Â&"xs þ �a� � þ

if R � "
The generalized modus ponens is then the application of a sup-m composition:

l Èóä %Q0�C�I�P�0�� ¢¼ l m0ä  Y ��s��. l m  Y �§s l È ÉQ:�M�a� (3.31)

Based on a sup-m composition condition, GMP-1 can be met by using an m-operator
related to the used implication � . For example, Trillas and Valverde (1985) show that for
an S-implication, where � %RKs þ ��� = &"x%R0��s þ � , the m-operator defined by:¢ÂÉR&s þ �]�I£Ó¥>¤k�¢¡ t 47jLsk>?8 �a< É�,%R0��s
¡Ç�5� þ � (3.32)

will result in satisfying condition GMP-1. This is in fact a multi-valued non-commutative
conjunction; see also section 3.2.4 for use of this type of operator for implication modeling.
When R-implications are considered, where:

��%RKs þ ���O�P�0���¢¡ t 4;j+sk>J8 �£2 %RKs�¡�� � þ �
the following m-operator is to be used to satisfy condition GMP-1:¢ÂÉR&s þ �]� 2 %RKs þ � (3.33)

The use of different types of composition for different implications as Trillas and Valverde
(1985) proposed indeed results in satisfying GMP-1, but this does not imply that it also
results in intuitively correct behavior for other data. Trillas and Valverde (1985) chose the� -operator to satisfy criterion GMP-1 for a specific implication function � in the sup-min
composition:

Õ � o+^ à �� o s Õ �
This can also be reversed: Dubois and Prade (1984) proposed to meet criterion GMP-1 by
choosing an implication function, which in combination with a known � -operator used
in the sup-m composition, satisfies criterion GMP-1.
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68 Fuzzy logic and reasoning

3.3.1.4 Inference of a rule modeled by a T-implication

When the implication function is a T-norm, the inference can be simplified in many cases.
Assume the following rule:

$ X : if

YKX
is o X Ê X and

Y D is o D Ê X then Q is Õ X
where the conjunction and implication are represented by a T-norm. In general, the
following holds because of criterion T-4 on page 31:

Õ ÕX � 2  o Õ X s o Õ D � ^uú°C X (3.34a)� 2  o Õ X s o Õ D � ^uú�2  2  o X Ê X s o D Ê X �§s Õ X � (3.34b)� 2  2  �H�,�  2  o Õ X s o X Ê X �M��s �0���  2  o Õ D s o D Ê X �M��s Õ X � (3.34c)

where ^Jú stand for sup-T composition. In most cases the T-norm is chosen to be either
a min operator or a product operator. This simplification is possible, provided that the
conjunction, implication and composition are based on the same T-norm. If the conjunction
is based on another T-norm, denoted by 6 Û , then the T-norm for the implication and
composition, denoted by 6 � , then the simplification is only partly possible:

Õ ÕX � 2 ÞÇ o Õ X s o Õ D � ^uúaû�C X� 2 ÞÇ o Õ X s o Õ D � ^uú û 2 1  2 Þ� o X Ê X s o D Ê X �§s Õ X �� 2 1  �0���  2 1  2 Þ� o Õ X s o Õ D ��s 2 Þ  o X Ê X s o D Ê X �a�M��s Õ X �
In the following, we focus on the cases where the T-norm is the min operator or the product
operator.

When the min operator is used for the conjunction and implication, a major simplification
of the inference of a fuzzy rule can be achieved. Then the CRI, when using a min operator
for the and connective, results in:

l È äL ÉQ:�C� �P�0�� dPÊ � à �) l m äd  Y&X � *¤l m äà  Y D �M� *¤l�D L  YKX s Y D s�Q0��� (3.35a)� �P�0�� dPÊ � à �) l m äd  Y&X � *¤l m äà  Y D �M� *4ø l m d ë L  Y&X � *¤l m à ë L  Y D �a� *Nl È L %Q0�%8%� (3.35b)�i�K�P�0�� dPÊ � à 4ø l m äd  YKX � *Òl m äà  Y D �M� *
co

nt
ro

len
gin

ee
rs

.ir



3.3 Fuzzy reasoning 69

 l m d ë L  Y&X � *¤l m à ë L  Y D �a�É8%� *¤l È L ÉQ:� (3.35c)�i�x�P�0�� d  l m äd  YKX � *Nl m d ë L  YKX �a� *�½�0�� à  l m äà  Y D � *Nl m à ë L  Y D �a�§� *Òl È L %Q0�a� (3.35d)� �H�,�  o Õ X huo X Ê X � * �H�,�  o Õ D hNo D Ê X � *¤l È L ÉQ:� (3.35e)

Hence, the inference reduces to “clipping” the fuzzy set Õ X in the consequent of rule $ X
by a numerical value ü X :

ü X � �ËýV3WHX �P�0�� R ¢Ò£Ó¥K l m äR  Y0V ��s l m Rpë L  Y0V �a� (3.36a)

�  ËýV3WHX �0���  o ÕV huo V Ê X � (3.36b)

The numerical values ü X are referred to as support values, degree of fulfillment or degree
of matching between data and premise of the rule. And indeed, this eliminates the
calculations on product spaces, since the composition of relations is eliminated. The
inference is reduced to a simple calculation scheme. It is clear that there is no distinction
between numerical (crisp) or fuzzy data. In the chapter about fuzzy control it is shown
that the “max-min” inference method is often used in fuzzy control (section 4.2.3.1). The
inference of a rule is shown schematically in figure 3.4.

The inference of a fuzzy rule can also be simplified when the implication function and
the conjunction are chosen to be the product operator, and the sup-product composition
is used. This is shown in figure 3.4. The fuzzy set Õ X is multiplied (scaled) by a support
value ü X , given by:

ü�X �  ËýV3WHX �P�0�� R l m äR  Y V � l m Rpë L  Y V � (3.37a)

� �ËýV3WHX �0���  o ÕV�þ o V Ê X � (3.37b)

where

þ
represents the conjunction of fuzzy sets implemented by the product operator.

This provides a calculation scheme similar to the previously described method based on
the min operator.

Õ ÕX � o Õ ^ � C_X (3.38a)
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ÿ � : if

�
� � � ��

� �
� � � � �	� �

(a)
 � �� � �� ��� � �� � � � �

and

�� � � �� �� � � �
� � � � �	� �

(b)
 � �� �� � �� ��� � � �

then

� �
�

!
" �" � �

(c)#  � $% & � 
 � � � 
 � � �

ÿ � : if

�� � � �� � �
� � � � �	� �

(d)
 � �� � �� ��� � �(' � � � �
and

�� � � �� �� � � �
� � � � �	� �

(e)
 � �� �� ) �� ��� � � �

then

� �
�

!
" �

" � �

(f)#  � 
 � � 
 � �

Figure 3.4: Inference of one rule when the conjunction, implication and composition are based on the min operator,
(a), (b) and (c), or the product operator, (d), (e) and (f). The left column shows the case of fuzzy data (a) and (d). The
center column shows the case of a crisp (numerical) data. The rule ÿ � is: if � � is � � � � and � � is � � � � then ! is " � .
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3.3 Fuzzy reasoning 71

� o Õ ^ �  o X þ Õ X � (3.38b)� �0�,�  o Õ þ o X � þ Õ X (3.38c)

where ^ � denotes the sup-product composition. In section 4.2.3.2 this method is addressed
as a typical inference scheme in fuzzy control, known as the “max-product” inference
method.

3.3.2 Inference of a fuzzy rule base

In section 3.3.1.1, it was explained how a fuzzy rule, represented by a fuzzy relation, could
be used to obtain new data by applying composition of the relation describing the data
and the relation describing the rule. Normally, however, the knowledge is represented
by a set of parallel fuzzy rules: a fuzzy rule base. In section 3.2.3, the aggregation of
fuzzy rules was addressed; different types of aggregation operators for different types of
implications. Before giving a more detailed description of specific types of implications,
different approaches to the inference of a set of parallel rules will be discussed.

3.3.2.1 Local versus global inference

When considering a set of (parallel) rules, it is possible to infer results from individual
rules and combine those results into an overall result. This approach is normally used
in conventional expert systems. Another approach is to combine all rules beforehand
(aggregation, see section 3.2.3) and infer the overall result from this. Hence, a distinction
can be made between two approaches to the inference of a set of parallel rules:� the local inference approach performs inference with individual rules (using C X )

and aggregates the results afterwards;� the global inference approach, which assumes a relation C to represent the rule
base and C is the aggregation of the fuzzy relations C X representing the individual
rules.

With this nomenclature of the two approaches to the inference of a set of parallel rules we
follow Dubois and Prade (1992). Other terminology is possible; for example, Driankov,
Hellendoorn and Reinfrank (1993) use individual-rule based inference and composition
based inference to address local and global inference, respectively.

In the following sections a more detailed description is given of specific types of implica-
tions. Using T-implications, there is no difference between the results of local and global
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72 Fuzzy logic and reasoning

inference. Using implications which comply to the classical implication will result in
differences between local and global inference.

3.3.2.2 Rules modeled by classical-conjunction-based implications

When the implications are represented by T-norms (T-implications), a simplification of the
CRI can be obtained without loss of final results. As will be shown in the following, when
the aggregation is performed by means of a disjunction, the results of local and global
inference are equal. This also holds for implications which comply with the classical
conjunction but which are not T-norms. See sections 3.2.2 and 3.2.4 for more details on
implications.

The relation C , representing the rule base, is the aggregation of the relations C�X :
C ��Ñ X C X (3.39)

where C X is the fuzzy relation representing rule $ X . The application of the CRI on the set
of rules can be simplified:

Õ Õ � o Õ ^gC (3.40a)� o Õ ^ * Ñ X C X,+ (3.40b)�íÑ X � o Õ ^_C X � (3.40c)�íÑ X Õ ÕX (3.40d)

Hence, the results from local inference and global inference are equal. This does not mean
that the calculus on product spaces (fuzzy relations) is completely eliminated, since the
inference of each individual rule still has to be performed by composition: Õ ÕX � o Õ ^�C X .
However, it is possible to obtain analytical results for Õ ÕX in some cases. In section 3.3.1.4
this was shown for some T-implications in combination with a specific choice for the
composition.

3.3.2.3 Rules modeled by classical-implication-based implications

In this section, we consider the inference of a set of rules, where the rules are modeled by
implications which comply with the classical implication. Hence, a conjunction is used

co
nt

ro
len

gin
ee

rs
.ir



3.3 Fuzzy reasoning 73

for aggregation of the individual fuzzy relations C X to obtain the overall fuzzy relation C .
Assuming the min operator for aggregation, inducing a fuzzy set Õ Õ from relation C by
data o Õ results in:Õ Õ � o Õ ^_C (3.41a)� o Õ ^ * h X C X-+ (3.41b)ð h X � o Õ ^gC_X � (3.41c)

From this it is clear that the result obtained from global inference, as in (3.41a,b), and the
aggregation of results obtained from local inferences, as in (3.41c), can differ. A simple
example showing the inefficiency of the local inference approach is the following (Dubois
and Prade, 1991). Suppose two rules, o X   Õ X and o D   Õ D , and data o Õ � o X Ñ o D ,
where o X , o D , Õ X and Õ D are classical subsets of p and

Y
, respectively. Then the global

inference results in:o Õ ^_C � Õ X Ñ Õ D (3.42)

whereas the local inference approach results in:� o Õ ^áC X � h � o Õ ^_C D � � Y
(3.43)

where the result

Y
stands for unknown, and indeed Õ X Ñ Õ D ð Y

. However, using local
inferences, the result obtained contains no informationwhatsoever: Õ Õ � unknown. Using
global inference, the result is the disjunction of Õ X and Õ D , which is the correct result.
This simple example shows that less restrictive results can be obtained when using local
inference in combination with implications which comply to the classical implications, in
the case of fuzzy inputs.

However, in the case of a numerical input R Õ (a fuzzy set with a singleton as its membership
function) this problem is eliminated. When the data o Õ is represented by the singleton R Õ ,
the following can be derived:Õ Õ �OR Õ ^_C (3.44a)�OR Õ ^ * h X C X + (3.44b)� h X �xR Õ ^_C X � (3.44c)� h X �xR Õ ^ �� o X s Õ X ��� (3.44d)� h X �. �0�,� %R Õ hNo X �§s Õ X � (3.44e)
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74 Fuzzy logic and reasoning

In general the results obtained by local inference are less “restrictive” than the results
obtained by global inference. The results of local inference are not wrong, only less
informative than they could be, based on the available data and knowledge. See section
6.4.2 for a method to obtain analytical solutions for the inference of complex (higher
dimensional) rule bases.

3.4 Summary and remarks

Fuzzy propositions are the basic elements for fuzzy logic and reasoning. Combinations
of propositions related to different universes are represented by fuzzy relations. Logical
connectives can be used to combine fuzzy propositions. Different operators can be used
in different contexts or to represent correlation or interactivity between propositions.

Fuzzy rules are if-then statements with fuzzy propositions in the antecedent and consequent
of the rules. This is often referred to as fuzzy if-then statements. The fuzzy relation
representing a fuzzy rule is an implication function applied to a fuzzy set representing
the premise of the fuzzy rule, and fuzzy set representing the consequences of the fuzzy
rule. As seen in the previous sections, this can be done in several ways. The distinction
can be made between implication functions which satisfy the truth table of the classical
implication (table 3.2) and implication functions which satisfy the truth table of the
classical conjunction.

Two approaches to the inference of a set of parallel fuzzy rules can be distinguished:
local and global inference. When the data is numerical, there is no difference between
the results of the two approaches. When the rules are modeled by implications which
comply with the classical conjunction, the results of local inference and global inference
are always equal, because of the disjunction used for aggregation. This is not the case for
implications which comply with classical implication. Then the results of local inference
are (possibly) less restrictive (informative) than the results obtained from global inference.

co
nt

ro
len

gin
ee

rs
.ir



4
Fuzzy control

Fuzzy control is addressed in this chapter. The amount of literature on fuzzy control
has grown enormously over the last few years. Today, fuzzy control applications

can be found in numerous consumer products, and many software tools for the design
and development of fuzzy controllers are available these days. In this chapter we do not
focus on applications of fuzzy control, but describe and analyze the working of a fuzzy
controller. It is shown in this chapter that fuzzy control can in many cases be simplified by
“translation” to a situation where the use of fuzzy logic is not necessary anymore. Then
fuzzy set theory is merely used for user interfacing during the design and development
stages. This concept can be compared to that of high-level programming languages: a
compilation phase translates the high-level coded “program” to a lower-level code. During
execution of the resulting low-level code, the high-level code is no longer important.

Using the theory given in the previous chapter, a theoretic approach to fuzzy control is
given in the first section (4.1). The practical approach to fuzzy control is derived from
this theoretic approach and is described in section 4.2. The practical approach is based on
local inference of fuzzy rules as described in section 3.3.2.2 of the previous chapter. Also
other types of implications with their properties are addressed. Section 4.3 describes the
two types of fuzzy rules which are currently in use. The use of linear model structures,
where the model parameters are defined by fuzzy rule bases, and controllers based on
these models, is described in section 4.4. In section 4.5, a fuzzy controller is described
as an input-output mapping and it is shown that a fuzzy controller can “emulate” a linear
controller. Section 4.6 analyzes the effect of different aspects of a fuzzy controller on
its behavior, defined by the resulting control hypersurface. Some concluding remarks are
made in the final section.
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76 Fuzzy control

4.1 Theoretical approach to fuzzy control

Basically, fuzzy control is the application of the compositional rule of inference as de-
scribed in section 3.3.1.1. Given a relation C , representing the controller, and a relationo Õ , representing the controller input, a fuzzy output Õ Õ can be obtained by composition ofo Õ and C :

Õ Õ � o Õ ^gC
However, the in- and outputs of a controller are normally numerical values, so a translation
is necessary from the numerical inputs to a fuzzy input, and a translation from the fuzzy
output to numerical outputs. The first translation is known as fuzzification, the latter as
defuzzification. A schematic representation of a fuzzy controller is given in figure 4.1.

fu
zz

ifi
ca

tio
n Õ Õ � o Õ ^áC

de
fu

zz
ifi

ca
tio

no Õ Õ ÕY Õ Q Õ

Figure 4.1: Schematic representation of fuzzy controller.
The numerical (crisp) measurement

Y Õ
is “fuzzified” intoo Õ . The fuzzy output Õ Õ is “defuzzified” into a numerical

output Q Õ .
The control algorithm is represented by fuzzy rules. For example, rules have classifications
of controller inputs in the premise of the rule, and classifications of an increment of the
controller output as consequent. It was already shown in section 3.2.2 how fuzzy rules can
be represented by fuzzy relations using fuzzy implication functions and how those relations
possibly can be combined into one relation by aggregation (section 3.2.3). The resulting
fuzzy relation C is used to represent the controller. The following sections describe the
fuzzification and defuzzification, respectively.
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4.1 Theoretical approach to fuzzy control 77

4.1.1 Fuzzification of inputs

The fuzzification phase of the fuzzy controller as depicted in figure 4.1 is the construction
of a fuzzy input relation. It is possible that the input is represented by a fuzzy relation,
in which case fuzzification is not necessary. However, normally the fuzzy input relationo Õ , which is used with the compositional rule of inference, is not available and thus
fuzzification is necessary. Then the fuzzy input relation o Õ is the conjunction of the ¨ }
fuzzy input sets o ÕV , where ¨ } is the number of controller inputs. The fuzzy sets o ÕV are
fuzzy representations of the controller inputs

Y ÕV
:

o ÕV �+¤-�/.0.) Y ÕV � (4.1)

where fuzz is a fuzzifier function: an operator which translates a numerical value into a
fuzzy set representation. When an input is just a numerical value (read: no uncertainty
at all), which is normally the case in controllers, the fuzzy set o ÕV is simply given by a
singleton:

l m äR  Y0V �C� q >,s if

Y V � Y ÕVj+s otherwise (4.2)

Uncertainty, imprecision or inaccuracy in the inputs can be modeled by using fuzzy
numbers to represent the inputs (see section 2.1.3 for definition of fuzzy numbers). The
complete fuzzy input relation is determined by combining the fuzzy sets for each input:

o Õ � �e} dJÖFEGEGE;Ö }21 Ë43 652V3W0X l m äR  Y0V �87"{) YKX s �k�k� s Y  Ë � (4.3)

where 6 is the T-norm used to perform the conjunction in the premise. This shows that
the input data is in fact represented by: o Õ X and �k�¬� and o ÕV and �k�k� and o Õ Ë .

4.1.2 Defuzzification of output

Defuzzification is needed to translate the fuzzy output of a fuzzy controller to a numerical
representation. When we consider a fuzzy controller from the theoretical point of view,
the fuzzy output can be a multi-dimensional fuzzy set (fuzzy relation). This assumes that
the controller can have multiple outputs (SIMO � or MIMO system) which causes the fuzzy	

Single-Input Multiple-Outputs.
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78 Fuzzy control

output of the controller to be a multi-dimensional fuzzy set. For the defuzzification of
fuzzy relations two basic methods are available: center-of-gravity and mean-of-maxima.
The center-of-gravity method is first described. Section 4.1.2.2 addresses a modifier for
this defuzzification method. The mean-of-maxima method can be derived as a special
case and will be discussed in section 4.1.2.3. Another defuzzification method is the
center-of-area method, which is described in section 4.1.2.4.

4.1.2.1 Center-of-gravity defuzzification

Intuitively, defuzzification can be done using an averaging technique. The center-of-
gravity method is nothing but the same method employed to calculate the center of gravity
of a mass. The difference is that the (point) masses are replaced by the membership
values. This method is often called the center-of-area defuzzification method in the
case of 1-dimensional fuzzy sets. In section 4.1.2.4, however, another defuzzification
method for fuzzy sets is described for which the name “center-of-area” suites better. The
center-of-gravity defuzzification method is defined by:

�?� �  Õ Õ �C� � I l Èóä %Q0�LQ�')Q� I l È ä ÉQ:�L')Q (4.4a)

and the discrete form is defined by:

�?� �  Õ Õ �C�
:9U; W0X l È ä ÉQ ; �LQ ;:9U; W0X l È ä ÉQ ; � (4.4b)

where ¨ ; is the number of quantizations used to discretize membership function l È ä ÉQ:�
of fuzzy output Õ Õ . In figure 4.2 examples are given of both the continuous (figure 4.2a)
and the discrete (figure 4.2b) center-of-gravity defuzzification method.

The application of the center-of-gravity defuzzification method is not limited to 1-
dimensional fuzzy sets. It is a defuzzification method of a B -ary fuzzy relation. To
obtain a numerical value for the

V � � dimension the following holds:

�?� � Î ¯  Õ Õ �C� � I l ÈÀä  [ �LQ © ')Q� I l È ä  [ �L')Q (4.5a)
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j

>

�?� �  Õ Õ �
~ � <� ��

Q
(a)

continuous COG

j

>

�?� �  Õ Õ �
~ �<� ��

Q
(b)

discrete COG

Figure 4.2: Examples of continuous (a) and discrete (b) center-of-gravity
(COG) defuzzification method. See also figure 4.4.

where

Y
is the product space of the output universes and [ represents the controller

outputs as a vector. In discrete form, the center-of-gravity defuzzification method to
obtain a numerical value for the

V �>= dimension is defined by:

�?� � Î ¯  Õ Õ �C�
?9U; W0X l�Èóä  [ ; �yQ © Ê ; 9U; W0X l Èóä  [ ; � (4.5b)

where ¨ ; is the number of quantizations used for the discretization of membership functionl ÈÀä  [ � of fuzzy output relation Õ Õ . The point [ ; is the @ �M� quantization of the product spaceY
of the output universes. Mostly, the defuzzification methods are used for 1-dimensional

fuzzy sets, however.

4.1.2.2 Indexed defuzzification methods

Indexed (or threshold) defuzzification methods (here identified by idfz) are used to discrim-
inate part of a fuzzy output of which the membership values are below a certain threshold
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ü ! : £BAF¤C.) Õ Õ s ü ! �C�DAa¤C.) Õ Õ hu� - �?� �  Õ Õ s ü ! �a� , with � � ü ! (4.6a)�DAa¤C.) Õ Õ h�ü ! - �?� �  Õ Õ �a� (4.6b)

where dfz denotes a defuzzification method and idfz is the indexed version of that method.
The defuzzification method dfz is only applied on the part(s) of the fuzzy output, which
has a membership value greater than or equal to ü ! . This discrimination provides a way
to let the defuzzification of the fuzzy output tend towards the maxima of the fuzzy output.
In figure 4.3a, an example is given of the indexed center-of-gravity with ü ! �

X D . One
can see indexed defuzzification methods as a sort of filter for the fuzzy output. The next
section describes the mean-of-maxima defuzzification method which can be defined as an
indexed center-of-gravity defuzzification method.

j
XD
>

£h�?� �  Õ Õ s XD �
~ � <� ��

Q
(a)

indexed COG (ICOG)

j

>

¢¤�,¢Â Õ Õ �
~ �<� ��

Q
(b)

mean-of-maxima

Figure 4.3: Examples of indexed (threshold) COG (a) and mean-of-maxima
(MOM) defuzzification method (b). See also figure 4.4.

4.1.2.3 Mean-of-maxima defuzzification

Besides the center-of-gravity method, another basic defuzzification method is the mean-
of-maxima defuzzification method (MOM), which is defined by:¢¤��¢Â Õ Õ �C�I£Z�?� �  Õ Õ s �H�,�  Õ Õ �M� (4.7a)
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j

>

1 2 3 4 5 6 7 8 9

~ � <�s��
Q

(a)
membership function

method AF¤C.A o � £BAF¤C.) o s XD �
cont. COG ¾ âæ ¾ âD æ
discr. COG ¾ âæ ¾

COA ¾ XD ¾ XX(ã
MOM Æ XD Æ XD

(b)
numerical results

Figure 4.4: The membership function of a fuzzy set Õ Õ (a) and the numer-
ical results of different defuzzification methods (b). The discrete COG uses
discretizations at 0,1,2, �¬�k� . See also figures 4.2, 4.3 and 4.5.

�O�?� �  Õ Õ hu� - �?� �  Õ Õ s �0���  Õ Õ �M�a� (4.7b)

where icog is an indexed- or threshold-version of the center-of-gravity defuzzification
method as defined by (4.6). In figure 4.3b one can see an example of determining
mom  Õ Õ � . It is obvious that this defuzzification method ignores a great deal of the
information provided by the fuzzy set due to the application of an � -cut with � � hgt  Õ Õ � .
4.1.2.4 Center-of-area defuzzification method

Probably the best-known defuzzification method (by name) is the center-of-area defuzzi-
fication method (COA). However, almost always another defuzzification method is meant,
namely the center-of-gravity defuzzification method, described in section 4.1.2.1 and
4.2.4.1. We make this distinction because, although the names are interchanged fre-
quently in literature, there are two different defuzzification methods with the same name.
In this thesis the center-of-area is defined by:�FE �HG Ð È ä Ñ

inf
I Î l Èóä %Q0�L')Q=� � sup

I ÎE �HG Ð È ä Ñ l Èóä ÉQ:�L')Q (4.8)
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resulting in a numerical value Q E �HG Ð ÈÀä Ñ which divides the area under the membership
function into two equal parts. In figure 4.5, an example of the center-of-area defuzzification
method is shown. It is clear that this defuzzification method is primarily ment for 1-

j

>

�?�)ÚL Õ Õ �

~ � <� ��

Q
Figure 4.5: Example of center-of-area defuzzification
method; the dark and the light areas are equal in magnitude.
See also figure 4.4.

dimensional fuzzy sets (considering the word “area” in its name), although an extension
to multi-dimensional fuzzy sets is possible. For example, a 2-dimensional fuzzy set with
membership function lçÈ ä ÉQ X s�Q D � can be defuzzified by finding a value Q ÕX and Q ÕD for which:

� sup
I à Î à

inf
I à Î à � Î äd

inf
IJd Î d l ÈÀä %Q X s�Q D �L')Q X ')Q D �O� sup

I à Î à
inf
I à Î à � sup

IJd Î dÎ äd l Èóä %Q X s�Q D �L')Q X ')Q D
� Î äà

inf
I à Î à � sup

IJd Î d
inf
IJd Î d l ÈÀä %Q X s�Q D �L')Q X ')Q D � � sup

I à Î àÎ äà � sup
IJd Î d

inf
IJd Î d l�Èóä %Q X s�Q D �L')Q X ')Q D

In practice, the application of this defuzzification method would normally be done by using
discretizations of the fuzzy sets to defuzzify, although one should note that in practice
usually 1-dimensional fuzzy outputs are considered. In section 4.2.4.3, a parameterized
version of the COA method is described: the extended center-of-area defuzzification
method (XCOA).

co
nt

ro
len

gin
ee

rs
.ir



4.1 Theoretical approach to fuzzy control 83

4.1.3 Example of theoretical approach

A simple example of a fuzzy controller is given in this section. The fuzzy controller is
based on the theoretical approach to fuzzy control as described in the previous sections
and shown schematically in figure 4.1. The fuzzy controller is a SISO � system and can be
considered as a nonlinear P controller when the controller input is the difference between
the desired and actual process output.

First the fuzzy sets for the controller input and output have to be chosen. In figure 4.6,
the fuzzy sets for the input (figure 4.6a) and output (figure 4.6b) are shown. This choice
is rather arbitrary, but 5 to 9 sets per universe is quite common in fuzzy control. The
following step is to set up the fuzzy rule base. The rule base contains the following fuzzy
rules:

$ X : if

Y
is NB then Q is NB$ D : if

Y
is NS then Q is NB$ g : if

Y
is AZ then Q is AZ$ â : if

Y
is PS then Q is PS$ Ù : if

Y
is PB then Q is PB

where:

AZ : about zero
NB : negative big
NS : negative small
PB : positive big
PS : positive small

For each rule a fuzzy relation C X has to be constructed. To obtain the fuzzy controller
relation C , the fuzzy relations C X are aggregated. The fuzzy relation C is shown in
figure 4.6c. What is now left is to choose a defuzzification method. The center-of-gravity
defuzzification method is used in this example. At this stage the design of the fuzzy
controller is complete when the knowledge represented by the rules is assumed to be
correct.

To determine the behavior of the fuzzy controller a numerical controller input

Y Õ
is

considered as shown in figure 4.6a. In figure 4.6d, one can see the result of the composition
of the input relation o Õ (a singleton in this case) and the controller relation C . This fuzzy
result has to be defuzzified to obtain a numerical controller output.	

Single-Input Single-Output.
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j

>

j Y Õ Y
NB NS AZ PS PB

o Õ

(a)

j

>

j Q
NB NS AZ PS PB

(b)

Y Õj
>

Y Q
l�D  Y s�Q0�

(c)

j

>
~ �<� ��

Q
(d)

Figure 4.6: Example of theoretical approach to fuzzy control. Upper figures
shown fuzzy sets for input (a) and output (b) universe. The fuzzy controller
relation C (c) and result after composition with fuzzy input relation o Õ (d)
which is the singleton shown in (a).co
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4.2 Practical approach to fuzzy control 85

It should be noted that the implementation of a fuzzy controller based on the theoretical
(relation-based) approach requires the fuzzy relations to be discretized for storage in
computer memory. To minimize errors due to the discretization (see also section 2.4.2)
the discretization step chosen should be small enough.

In the above-given example, the result Õ Õ can also be obtained by:

l È ä %Q0�C��¢NÚxÛK�¢¤£¦¥K l /JI 5  Y Õ ��s l /JILK %Q0�a�§sa¢¤£¦¥0 l /NM 5  Y Õ �§s l /-MOK ÉQ:�M�a�
This is in fact the method that is mostly used in fuzzy control. Here, this is referred to as
the practical approach to fuzzy control and is addressed in more detail in the following
section.

4.2 Practical approach to fuzzy control

In the description of the theoretical approach to fuzzy control, it was shown that the
fuzzy control algorithm consists of three phases: fuzzification, composition of fuzzy input
and controller relation, and defuzzification. This involves a quite complex calculus with
multi-dimensional functions (fuzzy relations), which is undesirable in practice in terms of
memory requirements and calculational load. Thus, in practice, fuzzy control is applied
using local inferences; see section 3.3.2.1 for an explanation of local and global inference
of fuzzy rules.

For the sake of simplicity, numerical inputs are considered for most cases described in
this section. This is not a severe restriction, since in (low-level) control the controller
inputs are normally numerical values, for example signals read from sensors. In addition
to the practical approach to the inference method (section 4.2.1), practical approaches to
the fuzzification (section 4.2.2 and defuzzification (section 4.2.4) are discussed.

4.2.1 Fuzzy inference in practice

In the practical approach to fuzzy control, the inference of a rule base is based on local
instead of global inference. Using local inference, the inference of a rule base is broken
down to inference of individual fuzzy rules and the results are aggregated afterwards. It
has been shown in section 3.3.2.1 that the results of local inference equal the results of
global inference if the controller inputs are assumed to be numerical. In the following
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86 Fuzzy control

sections a practical fuzzy inference scheme � is described and properties of different fuzzy
implications with respect to control are addressed.

4.2.1.1 Practical fuzzy inference scheme

In section 4.1, the fuzzy inference scheme according to the “theoretical approach” was
shown in figure 4.1. In the following we focus on a fuzzy inference scheme according to
the “practical approach”, which is primarily characterized by local inference. Basically
the inference in fuzzy control is represented by the following steps:

1. Matching of fuzzy propositions

Y
is o V Ê X , used in the premises of fuzzy rules $ X ,

with the numerical data

Y ÕV
(controller inputs):

� V Ê X � l m Rpë L  Y ÕV �
where � V Ê X is a numerical value representing the matching. In the case of fuzzy
inputs o ÕV the matching is normally represented by: � V Ê X � �0���  o ÕV huo V Ê X � .

2. Determining the degrees of fulfillment (DOF) üºX for each rule $ X :
ü X �  Ë2V W0X � V Ê X

where 6 is the T-norm representing the and connective in the premises of the rules.
If the or connective is used, this T-norm has to be replaced by an S-norm. Of
course, both the and and the or connective can be used in the same premise. In that
case some values � V Ê X have to be combined by means of a T-norm (and connective),
others by means of an S-norm (or connective).

3. Determining the result Õ ÕX of each individual rule $ X :
l È äL %Q0�Ý���� ü X s l È L %Q0�a�

where � is the implication used to model the fuzzy rules. This can be classical
conjunction-based fuzzy implications or classical implications-based fuzzy impli-
cations.	

Today, many commercial software packages, sometimes in combination with dedicated hardware, are
available for developing fuzzy controllers. The fuzzy controllers developed with these tools are primarily
based on the practical approach to fuzzy control as described in this section.
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4.2 Practical approach to fuzzy control 87

4. Aggregation of the overall result Õ Õ of the results Õ ÕX of the individual fuzzy rules$ X :
l È ä %Q0��� 8: ; Ñ X l È äL %Q0��s for classical conjunction-based implicationsh X l È äL %Q0��s for classical implication-based implications

The different aggregation operators for different types of implications were dis-
cussed in section 3.2.2.

As can be observed from the above given fuzzy inference scheme, the fuzzification
as depicted in figure 4.1 is more or less embedded in the practical inference scheme:
there is no construction of a fuzzy input relation. In section 4.2.2 we discuss a way of
matching fuzzy propositions with the available data which is sometimes referred to as
“fuzzification” in the application of fuzzy control. A number of cases for specific types
of fuzzy implications are discussed in the following sections.

4.2.1.2 Inference with T-implications

In section 3.3.2.2, it was shown that the inference can be simplified when T-norms are
used for the implication function. First of all, the results of local and global inference are
equal, even in the case of fuzzy inputs:

o Õ ^ q�ù X C XJP �Où X � o Õ ^_C X � (4.9)

Considering only numerical controller inputs (singletons), the fuzzy inference of each rule
is reduced to matching the data with the premise of the rule:

l È äL ÉQ:�C� 2  ü X s l È L %Q0�a��s with (4.10a)

ü X �  Ë2V W0X l m Rpë L  Y ÕV � (4.10b)

where

Y ÕV
are the (numerical) controller inputs. Hence, each consequent Õ X is restricted

by the value ü X by means of a T-norm, representing the implication. The fuzzy output is
obtained by the aggregation of those subresults using the max operator:

l Èóä %Q0�C��¢NÚxÛX l È äL %Q0� (4.11)
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This yields a simple and straightforward way to obtain analytical results for the fuzzy
controller output without severe calculational load and memory requirements. This method
is primarily used in the application of fuzzy control. A simple example is given by the
following rule:

if error is small and error change is big then reduce control signal

which can be part of a PI-like fuzzy controller. Considering literature on fuzzy control,
one might get the impression it is the only means of fuzzy inference. Indeed, in the field
of fuzzy control mostly T-implications are used. In the next section we describe other
implications and their effects in the application of fuzzy control.

4.2.1.3 Inference with S-implications

In the case of S-implications, complying with the classical implication, the results of local
inference only equal the results of global inference when the inputs are not fuzzy. Because
this is normally the case in control, we assume this also in this section. The fuzzy output
of the controller is then determined by:

l È ä %Q0�C��¢¤£¦¥X l È äL ÉQ:� (4.12a)��¢¤£¦¥X < M>Ü< ü X s l È L %Q0�a��s with ü X � �Ë2V3W0X l m Rpë L  Y ÕV � (4.12b)

where

Y ÕV
are the numerical inputs. This result might seem as simple and straightforward

as in the case of T-implications, but applying S-implications in fuzzy control can lead
to some results which are undesired in control. These problems occur because after
the fuzzy output of the controller is obtained, this fuzzy output has to be defuzzified to
obtain a numerical output. Fuzzy results which are “correct” from a logical point of view
can result in an undefined controller output since defuzzification is meaningless in some
cases. In the following we focus on characteristic properties of fuzzy controllers based on
S-implications.

A problem when using S-implications in fuzzy control is the possible indetermination of
the fuzzy output. This is because the following holds for S-implications:

�� ü X s�jy�C� < a>Ü< ü X s§jy�C�i>Ü< ü X
This implies that in case the consequents ÕQX of the rules (at least two rules with different
consequents), for which üÀX � ü , have an empty intersection, and üóX ��j for all other
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4.2 Practical approach to fuzzy control 89

rules, the fuzzy output l È ä %Q0�C� >ª< ü is obtained because the aggregation is performed
by means of the min operator. Hence, defuzzification is useless to obtain a numerical
controller output. Although such a situation is not likely to occur often, it can occur and
thus using S-implications in the application of fuzzy control can lead to an undetermined
controller output.

To avoid empty intersections of the consequents of the rules, continuity of the rule base is
desired (see also section 3.3.2.3 and 3.2.5). For specific S-implications the indetermination
can occur under less severe conditions. For example, in the case of the Kleene-Dienes
implications, � %RKs þ �Ü� max a> <IR&s þ � , the output can even be undeterminated when the
rule base is continuous and complete (see section 3.2.5.3) and ü � X D .
When we consider more than one input, continuity of the rule base is not sufficient. For
example, consider the S-implication according to Łukasiewicz, � %RKs þ �]� min a>0<�RÇ� þ sk>x� .
In the case of two inputs it is possible that the situation occurs that ü X � ü for a number
of rules and ü X ��j for others. The result is undetermined when there are more than two
output fuzzy sets for which ü X � ü and the fuzzy sets for the output are a fuzzy partition.
An example showing this possible indetermination is given in figure 4.7.

Another problem related to the required continuity of the rule base is that the inference,
when using S-implications, ignores results of individual rules in favor of the result of the
rule with the highest value for üóX (DOF) when the rule base is not continuous. In figure
4.8 an example is shown. It can be seen that one subresults influences the height of the
other. From a logical point of view, this can be explained as having a contradiction in the
rule base and the inference causes a choice for the conclusion with the highest degree of
fulfillment ü X : the inference forces a decision in favor of the rule with the highest DOF.

It is clear that averaging defuzzification methods are not suitable in the case of S-
implications, since these will take the complete universe into account and thus produce a
bias. The mean-of-maxima method does not have this drawback, but stresses the decision
already forced by the inference when the rule base lacks continuity. In fuzzy control, this
will result in a crisp transition from one consequent to another due to the defuzzification,
which is necessary to obtain numerical controller outputs. This even holds for continuous
rule bases when the Kleene-Dienes implication is used. In case the rule base is continuous,
the inference performs “interpolation” when using the Łukasiewicz in combination with
the mean-of-maxima defuzzification method. However, indetermination of the output in
the case of more than one input is possible as discussed above.

To summarize, S-implications are not well suited for the application of fuzzy control since
they can lead to undetermined (fuzzy) outputs. Another important property is that the
inference makes a decision in favor of the rule with the highest degree of fulfillment. This
decision making can cause discontinuous transitions from one numerical controller output
to another.
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j

>

Q

Õ X Õ D Õ g

(a)
fuzzy sets for output

j

>

Q

Õ ÕX Õ ÕD Õ Õg

(b)
inferred subresults

j

>
~ � <�s��

Q
(c)

overall result (solid)

Figure 4.7: Example showing possible indetermination in the case of S-
implications; Łukasiewicz in this case, ��%RKs þ �n�I¢Ò£Ó¥Ka>ª<FR � þ sk>�� .co
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j
j � Æ
>

Q

Õ X Õ D

(a)í Í/Q � ð§lJó�©�m®����ð&���SR)ò3j�íaÍ��Pð§l?ó-ó ,
with RyòÀ©��UTWV

j
j � Ã
>

Q

Õ X Õ D

(b)í ÍXQ� ðUlJó�©�m®���xð&���YR,õ�j�íaÍ>�½ð§lJó�ó ,
with R�õó©��UT Z

j
j � Æ
j � Ã
>

Q
(c)í Í Q ðUlJó�©�mgnpoxð¦í Í Q� ð§l?ó'j�í Í Q� ðUlJó�ó

Figure 4.8: Example showing a possible problem when using S-implications
(where ��%RKs þ � �è¢NÚxÛKa> <IRKs þ � in this case) in fuzzy control: the inference
forces a decision in favor of the consequent with the highest degree of fulfill-
ment.co
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4.2.1.4 Inference with other implications

The use of implications that comply with the classical implication, and are not S-
implications, are discussed in this section. The results of local inference equal the results
of global inference when the inputs are not fuzzy and, as in the previous section, for this
reason only numerical controller inputs are considered. The fuzzy output of the controller
is determined by:

l È ä %Q0�C��¢¤£¦¥X �� ü X s l È L %Q0�a��s with ü X � �Ë2V W0X l m Rpë L  Y ÕV � (4.13)

As in the case of S-implications, applying other types of classical-implication-based
implications in fuzzy control can result in “undesired” outcomes.

A major problem which might occur is that the fuzzy output is undetermined. If we
consider implications which are restricted by:

�� ü X s l È L ÉQ:�M���Oj+s if l È L %Q0�C�Oj (4.14)

and suppose that the intersection of the consequents Õ X of the rules for which ü X �Gj is
empty, then l È ä %Q0��� j . Many R-implications (except those R-implications which are
also S-implications, like Łukasiewicz’s implication) suffer from this. This problem is
because the aggregation is based on the min operator. In figure 4.9 an example is shown
using Gödel’s implication. Using this type of implication requires continuity of the rule
base: “adjacent” rules should have “adjacent” consequents. This continuity of rule bases
is addressed in section 3.2.5. In the previous section it was shown that continuity of the
rule base is not sufficient in the case of multiple inputs in combination with S-implications.
This also holds for the implications meeting the condition given by (4.14). When, for
example, the fuzzy sets for the output are a fuzzy partition and the rule base is continuous
and complete, indetermination of the output occurs when at least three rules have a DOFü X �Sj . This situation is very well possible when the controller has more than one input,
which is normally the case in control problems.

The restriction that the continuity of the rule base is required is something which is probably
not met in the practical application of fuzzy control. Moreover, requiring continuity of
the rule base (as described in section 3.2.5.1) is not sufficient in the case of multiple
controller inputs, which is normally the case in practice. This makes implications based
on partial ordering, among which R-implications (see section 3.2.2), not really suitable
for fuzzy control based on the inference scheme given in section 4.2.1.1. In the previous
section, it was shown that S-implications also had a number of disadvantages with respect
to application in fuzzy control. Hence, in general it can be stated that implications which
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j
j � Þ
>

Q
(a)í Í Q�\[ ] ð§l?ó�© ¥ ð^R ò`_ a j�í Í �\[ ]�ðUlJó ,

with R a ©Z�bTWV
j

j � ¾
>

Q
(b)í Í Q�c[ ] ð§l?ó�© ¥ ð\R õd_ a j�í Í �>[ ].ð§l?ó ,

with R a ©Z�bT Z
Figure 4.9: Possible problem when using R-implications in fuzzy control
(Gödel’s implication in this case, given by (3.11b) with 2 Ó ¢¤£Ó¥ ): the
resulting fuzzy output is j , yielding indetermined controller output.

comply with the classical implication are not suitable for application in fuzzy control based
on the inference scheme given in section 4.2.1.1, since indetermination of the controller
output is possible, even when the rule base is continuous and complete.

4.2.2 Input fuzzification

In the practical approach to fuzzy control, the fuzzification is not the construction of
a fuzzy input relation. In section 4.2.1.1 the fact that the fuzzification is more or less
embedded in the inference mechanism was discussed. With this in mind, it can be stated
that the “fuzzification” phase consists of determining the matching between the controller
inputs and the fuzzy sets that represent the linguistic labels for the inputs in rule premises.
This is normally not a preprocessing phase like the construction of a fuzzy input relation in
the theoretical approach. When evaluating the premise of a rule, the necessary matching
values can be calculated on the fly. This prevents the unnecessary calculation of matching
values, since they are only calculated when needed. In section 3.3.2.1 it was shown that
the results of local inference and global inference can be different when fuzzy inputs are
considered. In section 4.2.1 it was shown that the use of implications which comply with
the classical implication have the disadvantages that indetermination of the output can
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occur. Therefore, in the following, only the fuzzification is considered for fuzzy control
where T-implications are used to model the rules.

Since fuzzification in the practical approach in fact consists of determining the matching
between inputs and linguistic labels used in the premises of rules, the “fuzzification” in
the case of T-implications is normally determined by (compare with (3.36) on page 69):

� V Ê © � �H�,�  o ÕV hNo V Ê © �
where � V Ê © represents the matching between the data o ÕV for input

Y:V
and the

V �M� fuzzy seto V Ê © on the universe of discourse of

Y&V
. Using this type of matching in combination with

certain types of modifications of the consequent (step 3 in the enumerated steps on page
1) do not conform to the theoretical approach based on the composition of relations. In
section 4.2.3 a number of commonly used practical inference methods are described. For
some types of inference it is shown that certain combinations of matching (step 1 and 2)
and modification (step 3) do not conform to the composition of fuzzy relations.

In figure 4.10, examples are shown of the matching of (fuzzy) inputs and fuzzy sets defined
for a specific input. The matching of numerical inputs with the rule premises is a special
case of the matching of a fuzzy input with the rule premises.

Sometimes fuzzification in fuzzy control is presented as a transformation of an input to a
vector containing degrees of matching for every linguistic label available on the universe
of discourse of that input. When the example given in figure 4.10 is considered, the
following vector with degrees of matching for inputs

Y
can be constructed:e � 47j �k�k� j � V � Vãâ0X j �k�k� jx8

where � V represents the matching between the data o Õ and the fuzzy set o V on the universe
of discourse of

Y
:

� V � q �0���  o ÕV huo V ��s in generall m R  Y Õ �§s for numerical input

However, if shifted hedges are allowed to be used within the premise of fuzzy rules (see
section 2.2.2 for shifted hedges and section 2.2.3 for scaled hedges as a special case of
shifted hedges), this method is not applicable, because, in that case, there is no fixed
number of fuzzy sets o V on the universes of discourse of the input that can be used in the
premises of fuzzy rules. This is because shifted hedges do not operate on the membership
function, but on its domain.
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j
� V>

Y

o V o VMâHXo Õ

(a)
fuzzy input

j�
V
>

Y

o V o VMâHXo Õ

(b)
numerical input

j
� Vãâ0X

>

Y

o V o VMâHXo Õ

(c)
fuzzy input

j

� VMâHX>

Y

o V o VMâHXo Õ

(d)
numerical input

Figure 4.10: “Fuzzification” in practice when using T-implications for fuzzy
rules: matching between (fuzzy) inputs and fuzzy sets representing linguistic
labels used in the premise of fuzzy rules. Matching for both fuzzy input, (a)
and (c), and numerical input, (b) and (d), is shown.co
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96 Fuzzy control

If powered hedges (see section 2.2.1) are to be used, this “fuzzification” method is
indeed applicable, provided that the controller inputs are numerical, since powered hedges
operate on the membership functions and not on their domains. Hence, the value � V Ê zgfrepresenting the matching between the numerical input

Y Õ
and the proposition “

Y
is� �  o V � ” is determined by:� V Ê zhf � l à f Ð m R Ñ  Y Õ �� l � m R  Y Õ �� � � V

where ��� is the linguistic modifier according to the powered hedges approach. This leaves
a simple and easy-to-implement algorithm to determine the matching values of numerical
data and fuzzy proposition used in the rules in the fuzzy controller’s rule base if powered
hedges are used in the fuzzy propositions.

4.2.3 Common “inference” methods

In literature, one can find statements such as “we used sum-product inference” or “max-
dot inference method was used”. The most common inference methods applied in fuzzy
control are described in the following sections. Some of these methods are based on the
practical approach to fuzzy inference as described in section 4.2.1.1, although some of
these methods can also be represented in the theoretical approach and are, in fact, based
on the analytical solution of fuzzy inference which is based on the composition of fuzzy
relations.

Before discussing various inference methods, it should be noted that some people confuse
the different aspects of fuzzy inference. What some people refer to as “composition” is
in fact aggregation. Composition consist of two phases: a combination and a projection
phase. See section 2.4.2 on the composition of fuzzy relations, and section 3.3.1.1 on
the compositional rule of inference. Aggregation is the combining of fuzzy relations,
representing fuzzy rules, into a single fuzzy relation. In the discussion on common fuzzy
inference methods, which operation is represented by an operator or function is denoted.

These inference methods are, however, not always what they seem to be. The inference is
in most cases the same as that in the compositional rule of inference, namely by means of
sup-min composition. The implication function that is used to represent the fuzzy rules,
is what is really addressed by the second part of an “inference method”. The first part
represents the aggregation operator in most cases. The sup (inf) and max (min) operators
are interchanged frequently in the nomenclature of inference methods. For example, the
max-min method is sometimes refered to as sup-min method.
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4.2 Practical approach to fuzzy control 97

4.2.3.1 Max-min method

The fuzzy controller introduced by Assilian (1974) and Mamdani (1974) used what is
known as the max-min method. Choosing a min operator for the conjunction in the
premise of the rule as well as for the implication function and a max operator for the
aggregation, the application of the compositional rule of inference results in:

l�Èóä %Q0�C� aggregationx y�z {¢NÚxÛX ¢¤£Ó¥z {
x y
implication

 ü�X s l�È L ÉQ:�M� (4.15a)

with:

ü X �conjunction in premisex y�z {¢¤£¦¥V � V Ê X (4.15b)

� V Ê X � projectionx
y�z�{�½�0�� ¢¤£¦¥z {�x y
combinationz {�x y

composition

 l m äR  Y0V �§s l m Rãë L  Y0V �a� (4.15c)

This is exactly the inference described by (3.35) in section 3.3.1.4. Although, in principle,
another operator could be used for the conjunction in the premise of the rule, in literature
one normally finds the min operator in combination with the max-min method. As shown
by (3.34), the conjunction, implication and composition are required to be based on the
same T-norm in order to obtain a simple analytical solution for the fuzzy inference. In
figure 4.11 a schematic representation of fuzzy inference in practice using the max-min
method is shown. Of the two controller inputs, one is fuzzy ( o Õ X ) and one is numerical
( o Õ D ). The fuzzy output is the aggregation (max) of the two “clipped” fuzzy sets.

4.2.3.2 Max-prod method

The max-product inference method is another commonly applied inference method in
fuzzy control. The max-product method is also known as max-dot method. This inference
method is characterized by scaling (product) the consequent Õ[X of a fuzzy rule $ X with
the degree of fulfillment üÀX of that rule and aggregating these result Õ ÕX to obtain the fuzzy
controller output by means of a max operator:

l�Èóä %Q0�C� aggregationx y�z {¢NÚxÛX ü�X þ i
implication

l È L %Q0� (4.16)
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(a)

and

�� � � �� � �
� � � � � � � ��	� �

(b)

then

� �kj� � � �
�

!
" �

(c)
ÿ � : if

�� � � �� � �� � � � � � � �
�	� �

(d)

and

�
� � � ��

� �� � � � � � � �
�	� �

(e)

then

� �lj� � � � � !
" �

(f)

Figure 4.11: Practical fuzzy reasoning according to max-
min method; using min operator for both and-connective
and implication. Sup-min composition is used for the com-
positional rule of inference. The matching of the data, � � �

(fuzzy) and � � � (numerical), and the premise, (a), (b) and
(d), (e), determine the fuzzy result of each rule, (c) and (f),
respectively. The subresults are aggregated to obtain a fuzzy
controller output (g). The two rules are: if � � is � � � � and� � is � � � � then ! is " � , form j � nWo .

� � �
�

!
" � " �

(g)
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4.2 Practical approach to fuzzy control 99

where ’

þ
’ represents multiplication. Note that the aggregation is the same as in the max-

min method. The implication represented by the product operator is known as Larsen’s
implication (Larsen, 1980).

There are two distinguishable variations of the max-product method with respect to the
determination of the support value üóX . Either the min or the product operator is used for
the combination of the matching values � V Ê X and thus representing the conjunction in the
rule premises:

ü X � 89: 9; ¢Ò£Ó¥V � V Ê Xê�V � V Ê X (4.17)

This operation represents the conjunction in the premise of the fuzzy rules. From a
theoretical point of view, based on the compositional rule of inference as described in
section 3.3.1.1, we can identify which operations are used for the conjunction in the
premise, the implication and the composition. In table 4.1, a number of combinations
of different operators in the max-product inference method is shown and their theoretical
counterpart.

Table 4.1: Different combinations of operators in the max-product inference
method and their counterparts in the CRI-based point of view. The CRI-
based counterparts are identified by three operators: conjunction in premise
( 2 Þ ), implication ( 2 1 ) and max-T the sup-m composition ( ^ à ). The operator^ denotes “standard” max-min composition. A question mark represents
unknown.

2 Þ , 2 1 , ^ à ü X �I¢¤£¦¥V � V Ê X ü X � êaV � V Ê X
� V Ê X � �0���  o ÕV hNo V Ê X � ¢¤£¦¥ ,

þ
, ^-p þ

,

þ
, ^-p� V Ê X � �0�,�  o ÕV þ o V Ê X � ¢¤£¦¥ ,

þ
, ^ � þ

,

þ
, ^ �

From table 4.1, it can be seen that some combinations of operators, marked by a question
mark, by do not have a straightforward counterpart in the theoretical approach. In table
4.1, it is assumed that the implication is a product, and the conjunction in the premise is
represented by the same operator used to combine the matching values � V Ê X to obtain the
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100 Fuzzy control

support value ü X . If the controller inputs are numerical, there is no problem since in that
case: �0��� ÉR ÕV hNo V Ê X �Ý� �0�,� %R ÕV þ o V Ê X � (4.18)

where R ÕV is the singleton (fuzzy set) representing the numerical input

Y ÕV
. However, in the

case of fuzzy inputs, the operator � in the sup-m composition has to be determined from:

�P�0�� ¢¼ l m ä  Y ��s l m L  Y � l È L %Q0�a��� * �½�H�� ¢¤£¦¥K l m ä  Y ��s l m L  Y �a� +¡l È L %Q0�
There is no solution for the operator � if only the fuzzy relations o Õ X and C X � o X þ Õ X
are considered. When o X and Õ X are separated a solution is possible, but then � is no
longer a binary operator and thus not a (pseudo-)conjunction.

However, as stated previously, it is justifiable to only consider numerical inputs, since
this is normally the case in control. Hence, the problems described are solved because
of (4.18). This simplifies the determination of the support values ü X , since the matching
values are given by � V Ê X � l m Rãë L  Y ÕV � , where

Y ÕV
are the numerical inputs. In figure 4.12, an

example is given of the fuzzy output using the max-product inference method.

4.2.3.3 Sum-prod method

The sum-product or sum-dot method uses the product operator in the same way as the
max-product method as discussed in the previous section. In literature, one can find
examples of using a product operator, as well as examples of using a minimum operator
to represent the conjunction in the premises. This is also similar to the way in which
the degrees of fulfillment are determined in case of the max-product inference method.
Therefore we focus on the type of aggregation that is used in the sum-product inference
method. The aggregation in the sum-product method is mainly a sum operator, but there
exist several variations which are described and discussed in the following.� The aggregation of the (sub)results Õ ÕX of all individual fuzzy rules $ X is done by

means of summation:l È ä %Q0��� U X ü X l È L %Q0� (4.19)

This could result in values ü&© � > for a certain fuzzy set ÕÜ© , defined on the output
universe, resulting in a supernormal fuzzy set, which does, in fact, not conform to
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j
ü Xü D

>
~ � <� ��

Q

Õ X Õ D

Figure 4.12: Schematic representation of the result of practical fuzzy rea-
soning with max-product inference method: the consequents Õ X and Õ D are
scaled by ü X and ü D , respectively, and aggregation is performed by means of
the max operator. The values ü X and ü D are determined by (4.17). Compare
also with figure 4.11g.

fuzzy set theory. Because of the defuzzification, necessary in fuzzy control, this is,
however, a minor problem from the practical point of view. The use of a bounded
sum is also possible, resulting in:

l È ä %Q0���I¢Ò£Ó¥� U X ü X l È L ÉQ:�§sk>�� (4.20)

which eliminates the possibility of supernormal fuzzy sets and thus conforms to
fuzzy set theory.� Only the fuzzy results of rules with equal consequent are aggregated by summation,
after which everything is aggregated by a max operator:

l Èóä %Q0���I¢éÚ�Û© 8: ; U X�¯ ü XÉ¯rq st l È+¯ ÉQ:� (4.21)
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where 6 © is used to identify the rules which have a consequent Õ X � Õ © . Here also
a bounded summation can be used:

l�Èóä %Q0���I¢éÚ�Û© 8: ; ¢¤£¦¥K U X�¯ ü�X�¯ sk>�� q st l È+¯ %Q0� (4.22)

which will avoid ü © �À> and thus preserve correctness with respect to fuzzy set
theory.

In the above list of possible use of aggregation by means of a summation, it was stated that
in some cases the support values for a specific fuzzy set on the output universe can be greater
than > . This is, in fact, not according to fuzzy set theory since its implies supernormal
fuzzy sets. However, when the fuzzy sets for the input universes are considered fuzzy
partitions, only numerical inputs are considered and the and connective in the premise is
represented by a product, then the following holds:U X ü X � U X q êaV � V Ê X-P

� U X q êaV l m Rpë L  Y ÕV � P� > (4.23)

where the equality holds when the rule base is complete (see section 3.2.5.3). This means
that the in case of fuzzy partitions for the input universes and numerical inputs, the problem
of supernormal fuzzy sets does not exist, because, in that case, aggregation by means of a
summation equals aggregation by means of a bounded summation. The same property of
a fuzzy system meeting the above-mentioned criteria is used in section 4.5.2, where it is
used to “emulate” linear controllers by fuzzy controllers. A proof for this can be found in
appendix B.

Usually this method is used in combination with the fuzzy-mean defuzzification which
eliminates the aggregation phase if all rules are considered individually, neglecting whether
the consequents are “equal” or not. The fuzzy-mean defuzzification is, in fact, a weighted
sum and can be considered a special case of the discrete center-of-gravity method. This
defuzzification method is described in the next section.

4.2.4 Defuzzification in practice

In section 4.1.2, the center-of-gravity, center-of-area and the mean-of-maxima defuzzifica-
tion methods were described. Some of these are discussed again in this section, but from a
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4.2 Practical approach to fuzzy control 103

more practical point of view. In this section, we consider only 1-dimensional fuzzy output
sets. First the center-of-gravity related defuzzification methods are addressed. Section
4.2.4.2 addresses defuzzification methods which focus on the height of the fuzzy output
set. Lastly, related defuzzification methods which are a merge of basic defuzzification
methods are described.

4.2.4.1 Averaging defuzzification methods

In a practical set-up, simplifications of the center-of-gravity defuzzification method are of-
ten used. The discrete version of the method was given in section 4.1.2.1 and this method
is mostly used in fuzzy control. In this section related and similar averaging defuzzi-
fication methods, like the fuzzy-mean defuzzification method, are described. However,
first we focus on the nonlinearity which is introduced by the centre-of-gravity method in
combination with commonly used operators for aggregation.

When applying the center-of-gravity method, the result of defuzzification is a nonlinear
function of the controller inputs in most cases. This is normally the case for fuzzy
controllers, but the introduced nonlinearity is not trivial: it is inherent in the combination
of operators and defuzzification method. The nonlinearity is mainly due to the max
aggregation in combination with the center-of-gravitymethod. To show this, two examples
are given in figure 4.13, where the numerical input

Y Õ
goes from R X to R D . Because of the

numerical input and the fuzzy sets shown in figure 4.13a, ü X �i>�< ü D .
When it is required that the controller output is a linear function of the controller input for
the given examples in figure 4.13, the choice for the T-norm and S-norm are product and
summation operator, respectively, since in that case:

Q Õ � � I � ü X l È d %Q0��� ü D l È à ÉQ:�§�nQ�')Q� I � ü X l È d %Q0��� ü D l È à ÉQ:�§�]')Q (4.24a)

� ü X � I l�È d %Q0�LQC')Q�� ü D � I l�È à ÉQ:�LQ�')Q
ü X � I l È d ÉQ:�L')Q � ü D � I l È à ÉQ:�L')Q s (4.24b)

with ü X ��>�< ü D and � I l È d %Q0�L')Q"� � I l È à ÉQ:�L')Q
� ü X � I l�È d %Q0�LQC')Q� I l È d ÉQ:�L')Q � ü D � I l�È à ÉQ:�LQ�')Q� I l È à %Q0�L')Q (4.24c)
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(a)
input universe
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þ X þ D Q
Õ X Õ D

(b)
output universe

þ X
þ D

R X R D
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Y
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result for min implication
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þ D

R X R D
�

Y
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Figure 4.13: Nonlinearities in controller output as function of controller input
when center-of-gravity defuzzification method is used in combination with max
aggregation. The dotted lines represent linear interpolation.co
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4.2 Practical approach to fuzzy control 105

� ü X þ X � ü D þ D (4.24d)

Hence, center-of-gravity defuzzification in combination with aggregation operators other
that the summation operator can introduce nontrivial nonlinearities in the controller func-
tion. In the following, defuzzification methods are described which are related to the COG
method, but avoid the previously discussed problem.

The fuzzy-mean (FM) defuzzification method is close to the discrete form of the center-
of-gravity defuzzification method as defined by (4.4b): it performs a weighted sum.
The difference between the discrete COG method and the FM method is that the COG
discretizes the fuzzy output of the controller, and the FM method uses numerical repre-
sentations of the fuzzy sets on the output universe. Hence, the “discretization” in the case
of the FM does not have to be equidistant, which is normally the case with the discrete
COG. The fuzzy-mean defuzzification method is defined by:

¤-¢Â Õ Õ �C�
:uU© WHX ü © þ ©?uU© W0X ü © (4.25)

where ¨ È is the number of fuzzy sets defined on the universe of discourse of the controller
output, ü © denote the degrees of fulfillment for membership function Õ © as the result of
the inference and

þ © represent the numerical representations of Õ © . Here it is assumed that
the the support values ü © for each fuzzy output set Õ © are determined. It is also possible
that each rule is treated individually, which yields:

¤-¢Â Õ Õ �C�
�ÌUX W0X ü X þ X�ÌUX W0X ü X (4.26)

where ¨®� is the number of fuzzy rules. The difference between (4.26) and (4.25) is the
possibly multiple occurrences of the same consequent Õ © , represented by the numerical
value

þ © . Hence, the effect of multiple rule with the same consequent is accumulated.
Using the FM method this way in fact combines the aggregation and defuzzification phase
into one operation, and it is thus more than a defuzzification method. From a theoretical
viewpoint, this can lead to supernormal fuzzy sets, which is not in accordance with fuzzy
set theory. See also section 4.2.3.3 on this topic. Hence, the results from the inference are
not considered a set, but are considered a bag (Yager, 1994).
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Since the numerical representations
þ © of the fuzzy sets Õ © can be precalculated, the

fuzzy-mean defuzzification method is very suitable when the calculation load of the fuzzy
controller should be small. The numerical representation

þ
of a fuzzy set Õ is normally

chosen to be the “center” of that set:þ © �DAF¤C.A Õ © � (4.27)

where dfz is a defuzzification method, in most cases the mean-of-maxima method.

A weighted version of the fuzzy-mean method, weighted fuzzy-mean (WFM), is defined
by (Jager et al., 1992):

v5¤-¢Â Õ Õ �C�
:uU© WHXxw © ü © þ ©?uU© W0X/w © ü © (4.28)

in which
w © are weights assigned to the membership functions on the universe of discourse

of the controller output to emphasize certain membership functions. When the weights
are chosen as:w © �9Ú��a�eÚ+ Õ © �C� � I l È+¯ %Q0�L')Q (4.29)

then the FM method more or less mimics the COG method. In which case, each fuzzy
set Õ © on the output universe is interpreted as a crisp set Õ Õ© with support equal to

w © , and
thus: Úx�a�xÚL Õ Õ© �Ý�9Ú��a�eÚ+ Õ © �C� w © (4.30)

Obviously, the weights
w © can be normalized, since they are used in a weighted sum. The

main characteristic of this defuzzification method is the fact that “relative importance”
of fuzzy sets defined for the output can be embedded. In the COG method this is
implicit, since the whole output universe is taken into account and not just numerical
representations of each fuzzy set. When the WFM method is compared with the COG
method, the WFM method avoids the nonlinearity which is introduced when using the
COG method in combination with the max aggregation in the same way as shown by
(4.24): the aggregation is done by summation.
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4.2 Practical approach to fuzzy control 107

4.2.4.2 Height-related methods

In literature, the height-related defuzzification method generally used is the mean-of-
maxima method as described in section 4.1.2.3. Other height-related defuzzification
methods which are sometimes used are the first-height (FHGT), or first-maximum, and
last-height (LHGT), or last-maximum, defuzzification method. These defuzzification
methods take the most left- or right-hand side value of the part of the domain where the
membership function equals the height of the fuzzy set:

¤ �0���  Õ Õ �C�IQ Õ s with l ÈÀä %Q Õ ��� �H�,�  Õ Õ � and
� Q=��Q Õ s l Èóä ÉQ:��� l ÈÀä ÉQ Õ � (4.31)÷ �0�,�  Õ Õ ���IQ Õ s with l È ä %Q Õ ��� �H�,�  Õ Õ � and
� Q=��Q Õ s l È ä ÉQ:��� l È ä ÉQ Õ � (4.32)

The usability of these methods is very application dependent and they are not further con-
sidered here. In the following, we take a closer look at the mean-of-maxima defuzzification
method.

Although the mean-of-maxima method is an obvious method for defuzzification (Dubois
and Prade, 1980), applying it in fuzzy control if T-implications are used, reduces the
“fuzziness” of the controller completely in many cases. If the mean-of-maxima method
is used for defuzzification of the fuzzy output, the membership functions describing the
inputs can even be chosen to be crisp (classical) sets, without having any effect on the
numerical output (Jager et al., 1992). This can best be shown by a simple example. In
figure 4.14, an example is given which shows that the fuzzy controller acts as a multi-level
relay because of the mean-of maxima defuzzification (Kickert and Mamdani, 1978). Note
that there is an intermedial value for the output at the crossover points of the input sets. It
is clear that a similar multi-level relay function can be obtained by using classical sets for
the input classification and, hence, eliminating the need for fuzzy sets.

Another disadvantage of the mean-of-maxima method is the fact that non-symmetrical
fuzzy sets defined for the output can result in undesired behavior. In figure 4.15, two
situations are depicted which show that a shift of the fuzzy output can possibly result in a
shift of the numerical output in the opposite direction.

4.2.4.3 Extended defuzzification methods

Several extensions and adaptations of defuzzification methods can be found in literature.
In this section, we briefly describe these extended defuzzification methods.
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(a)
input universe
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þ X þ D þ g þ â Q
Õ X Õ D Õ g Õ â

(b)
output universe

þ Xþ D
þ gþ
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R X R D R g R â

�

Y
(c)

controller function

Figure 4.14: Example showing controller output as function of controller
input (c) in the case of mean-of-maxima defuzzification. The fuzzy sets for
input and output are shown in figures (a) and (b), respectively. The controller
is based on four rules: if

Y
is o X then Q is Õ X , for 6é��>,s �¬�k� sa¾ . The resulting

controller functions shows that the controller output “jumps” from one level
to another. Note the intermedial values between two levels.co
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j

>

Q Õ Q
(a)

j

>

Q Õ Q
(b)

j

>

Q Õ Q
(c)

Figure 4.15: Undesired result of mean-of-maxima method in the case of non-
symmetrical fuzzy sets: possible shift of numerical output opposite to shift in
fuzzy output. The upper figure (a) shows the fuzzy output for a certain input.
The left figure (b) shows another situation as result of the max-min inference
method. The “symbolic” meaning is “shifted” to the left, but the defuzzified
value shifts to the right! The right figure (c) shows the result obtained by the
max-product inference method. Here the numerical output is the same as in
figure (a).co
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Filev and Yager (1991) introduced the BADD defuzzification method, where BADD
stands for BAsic Defuzzification Distributions. It is a modification of the center-of-gravity
defuzzification method and defined by � :

y Ú-AXA  Õ Õ sLzy��� � I lh{È ä %Q0�LQC')Q� I l2{Èóä %Q0�L')Q s with z��Sj (4.33)

where z is the parameter which is used to “tune” the defuzzification method, with the
following special cases:y Ú-AXA  Õ Õ sLz��i>x� �S�?� �  Õ Õ �y Ú-AXA  Õ Õ sLz   | �Ý��¢¤��¢Â Õ Õ �
Another extended defuzzification method proposed by Yager and Filev (1993) is the SLIDE
method, where SLIDE stands for Semi-LInear DEfuzzification and which is defined by:

� ÷ £>AL�) Õ Õ s � s ü ��� a>Ü< ü � � I0} l È ä ÉQ:�LQ�')Qr� � I�~ l È ä %Q0�LQ�')Qa>ª< ü �L� I } l ÈÀä %Q0�L')Qr� � I ~ l Èóä %Q0�L')Q (4.34a)

with � t 47jLs hgt  Õ Õ �É8 and ü t 4;j+sk>J8 and:YX� �i�xQ t Y �xl È ä %Q0�C� � � (4.34b)YX� �i�xQ t Y �xl È ä %Q0�C� � � (4.34c)

and with the following special cases:� ÷ £>AL�) Õ Õ s � �Sj+s ü � �O�?� �  Õ Õ �� ÷ £>AL�) Õ Õ s � ��j+s ü �Oj)� �O�?� �  Õ Õ �� ÷ £>AL�) Õ Õ s � � �0�,�  Õ Õ �§s ü �i>x�C�I¢¤�,¢¼ Õ Õ �	
Note that the modification consists of taking the membership function to the power. This same

principle could be noticed in the implication Yager (1980a) proposed, defined by (3.15), as well as the
negation proposed by Yager given in table A.3.
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4.2 Practical approach to fuzzy control 111

This defuzzification method is characterized by two parameters, a confidence level � and
a rejection parameter ü . For ü � > all membership values lÇÈóä %Q0� � � are rejected. In
case � � hgt  Õ Õ � , the parameter ü can be used to continuously go from the COA ( ü �Oj )
to the MOM ( ü �G> ).
Runkler and Glesner (1993) proposed an extension of the center-of-area defuzzification
method, denoted by XCOA:

�F� E �HG Ð È ä Ê � Ñ
inf
I Î l � È ä %Q0�L')Q"�S� sup

I Î� E �HG Ð È ä Ê � Ñ l � È ä ÉQ:�y')Q (4.35)

which includes the COA and the MOM defuzzification methods as special cases:

ÛH�?�)ÚL Õ Õ s
¡��i>x� �S�?�AÚ+ Õ Õ �ÛH�?�)ÚL Õ Õ s
¡   | �Ý��¢¤��¢Â Õ Õ �
It is claimed by Runkler and Glesner (1993) that the computational effort of the XCOA
method is much smaller than of the BADD method. However, in fuzzy control the COG
defuzzification is in many cases reduced to the FM method which has a much smaller
calculational effort than the COG method; see section 4.2.4.1.

The main characteristic of these extended defuzzification methods is the possibility to
“filter” out parts of the fuzzy output. This filtering should be understood as giving
preference to the higher membership values. It gives the operator or designer of a fuzzy
controller the opportunity to tune its defuzzification controller to met some constraints.
This filtering can also be noticed in the case of index defuzzification methods as described
in section 4.1.2.2. Yager and Filev (1993) proposed an adaptation method for the SLIDE
method to tune the defuzzification part automatically.

However, one could question whether it is necessary to have parameterized defuzzifica-
tion methods. In section 4.5, a fuzzy controller (system) is considered as an input-output
mapping, and it is shown that all combinations of logical operators and defuzzification
methods, except some specific combinations, will result in nontrivial nonlinearities in the
input-output mapping performed by the fuzzy system. It can be disputed whether the be-
havior of a fuzzy controller should be altered by means of adaptation of the defuzzification
method used. In our opinion, the behavior should be altered by modifying the rule base
since the fuzzy rules represent the knowledge to control the process in question.
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112 Fuzzy control

4.3 Fuzzy control rules

In fuzzy control, we can distinguish two types of fuzzy rules: Mamdani rules and Sugeno
rules. The Mamdani rules are the rules we have considered thus far in this thesis. The
Sugeno rules are based on a different principle: the consequents of those rules are (linear)
functions of the controller inputs. These two types of fuzzy rules are described in the
following sections.

4.3.1 Mamdani fuzzy rules

This type of fuzzy rule was used in the first reported applications of fuzzy control (Mam-
dani, 1974; Assilian, 1974; Mamdani and Assilian, 1975) and has the following general
form:

$ X : if

YKX
is o XX and �k�k� and

Y  Ë is o X 5
then Q X is Õ XX , �k�k� , Q h� is Õ Xh�

This is the same type of fuzzy rule considered thus far in this thesis. An example of such
a fuzzy control rule is:

if error is big and error change is small then control signal is big

which can be compared to a discrete PD controller algorithm: the controller output is
based on the error (difference between the process output and the desired process output)
and its first difference. The use of other variables are possible. For example, using the
process output change instead of the error change, or using an additional classification of
the reference signal to be able to “capture” nonlinearities of the process. However, this is
merely a design issue and is not further discussed here.

Normally the min operator is used for conjunction and implication, the max operator for
aggregation and max-min composition (Mamdani and Assilian, 1975). This is known as
the max-min inference method (section 4.2.3.1). Mamdani and co-workers used this type
of fuzzy rule and were the first ones to report in literature on the application of fuzzy
logic in control, and therefore this type of rule is referred to as the Mamdani rule in this
thesis. With this nomenclature we do not refer to the operators used by Mamdani and
co-workers, but to the fact that the fuzzy rules have fuzzy propositions as consequences,
and the implication is represented by a conjunction (T-implication).

It can be stated that using a limited number of membership functions for the output
restricts the control hypersurface if the fuzzy sets for the input are normal and form a
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4.3 Fuzzy control rules 113

fuzzy partition, and numerical inputs are assumed. Considering a fuzzy controller with
single input and single output, the resulting controller function is limited to an interpolation
between the characteristic points as shown in figure 4.16. This limitation occurs because
the consequents of the fuzzy rules use only one of the linguistic labels defined for the
output of the system. When the numerical input

Y Õ
is at the center of a fuzzy set o V , the

membership value lçm R  Y Õ ���i> and only one rule is active.

The limitation of the control hypersurface can be reduced by defining more fuzzy sets
for the input universe(s). This results in an increasing number of possible rules and
increases the complexity of the system, making the rule base less understandable. Another
possibility is to allow fuzzy rules to have multiple weighted consequents (Jager et al.,
1991), for example:

if error is big and error change is medium
then control change is medium (80%), control change is big (20%)

This makes it possible to obtain any control hypersurface desired. For example, the solid
curve shown in figure 4.16 can also be placed between points on a vertical line as is shown
by the dotted curve. Allowing multiple weighted consequents is, in fact, a trick, and the
same result can be obtained by using constant numerical consequents or consequents with
fuzzy numbers, like about 3.5. As an advantage of the weighted fuzzy consequents, it
can be stated that its representation is still on the linguistic level, e.g., it is still based on
linguistic labels like “big”, “medium”, etc., and thus can be related to the knowledge of
the designed or user (operator).

4.3.2 Sugeno fuzzy rules

Another fuzzy rule type is here referred to as Sugeno rules, because of the introduction
of this type of rule by Takagi and Sugeno (1983) which was further exploited by Sugeno
and co-workers. This type of rule is also referred to as Takagi-Sugeno rules, or TS-rules,
for short. The general form is as follows:

$ X : if

YKX
is o X Ê X and �k�k� and

Y  Ë is o  Ë Ê X
then Q X �I\ X Ê X  YKX sk|¬|k|ks Y  Ë � , �¬�k� , Q h� �O\ h� Ê X  YKX sk|k|¬|ks Y  Ë �

which shows that the consequents of these fuzzy rules are functions ( \ © Ê X ) of the controller
inputs

Y V
. In the remainder of this section only one output is considered, without loss of

generality. Sugeno and co-workers used linear functions in the consequents of the fuzzy
rules:
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j

>

R X R D R g R â Y
o X o D o g o â

(a)

j

>

þ X þ D þ g þ â Q
Õ X Õ D Õ g Õ â

(b)

þ Xþ D
þ gþ
â

R X R D R g R â
�

Y
(c)

Figure 4.16: Restriction of controller function (c) using Mamdani rules. The
controller output as function of the controller input is restricted to a function
which connects points from left to right in a monotonic way between two
points. In figures (a) and (b) the fuzzy sets for the input and output are given.
Compare also figure 4.14. The solid curve shown in figure (c) represents a
possible result when using the sum-product inference method and the fuzzy-
mean defuzzification method. The controller in this case is based on four
rules: if

Y
is o X { o D { o g { o â then Q is Õ D { Õ X { Õ g { Õ â , for 6 �ë>,s �k�¬� sa¾ . It

is important to note that the controller function is restricted to interpolation
between a fixed number of tuples %R V s þ © � . The dotted curve is produced by
using multiple weighted consequents; the rule “if

Y
is o D then Q is Õ X ” is

replaced by “if

Y
is o D then Q is Õ X (50%), Q is Õ D (50%)”.
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4.3 Fuzzy control rules 115

$ X : if

YKX
is p XX and |k|k| and

Y  5 is p X65 then Q � þ # Ê X �  ËU V W0X þ V Ê X Y0V
with constant parameters

þ V Ê X and
þ # Ê X . An example of such a fuzzy rule is:

if � is big and B � is small then ����¾L�_�@Å B �
where � is a control signal and � and B � are the error and its first difference. Successful
use of this type of fuzzy rule in the control of a model car was reported by Sugeno and
Murakami (1984), Sugeno and Nishida (1985) and Sugeno and Murakami (1985). The
Sugeno rules can be even more simplified for

þ V Ê X �Äj+s W � >,s �k�k� s ¨ } , resulting in a
constant numerical consequent

þ # Ê X . A set of Sugeno rules can be seen as a set of local
controllers. A simple weighted sum as defuzzification is used to obtain the final controller
output and is an interpolation between the outputs of the local controllers. Compare the
fuzzy-mean defuzzification method described in section 4.2.4.1. In the case of linear
consequent functions this results in:

Q Õ � �ÌUX WHX ü X � þ # Ê X �  ËU V3W0X þ V Ê X Y0V � ÌUX W0X ü X
�  ÌUX WHX ü�X þ # Ê X � �ËU V3W0X �  ÌUX W0X ü�X þ V Ê X Y V � ÌUX W0X ü X� þ Õ# � �ËU V3WHX þ ÕV Y0V

where ü X is the support value for rule $ X and:

þ Õ# � �ÌUX W0X ü X þ # Ê X�ÌUX W0X ü X
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116 Fuzzy control

þ ÕV � �ÌUX W0X ü X þ V Ê X�ÌUX WHX ü X
s for W ��>,s �k�k� s ¨ }

The above shows that application of a fuzzy controller based on Sugeno rules can be seen
as a fuzzy “supervisor” which changes the parameters of a linear controller. An example of
this is a fuzzy controller consisting of Sugeno rules with a PID algorithm as consequents.
A system like this is equal to a system consisting of a fuzzy supervisor based on Sugeno
rules and a conventional PID controller, where the supervisor changes the parameters of
the conventional PID controller (see also section 5.3.1 on fuzzy supervisory control).

From another point of view, a rule base with Sugeno rules can be seen as a set of local
controllers each with its own set of controller parameters. This mechanism is in fact
the same as gain scheduling, although it is not known as “fuzzy” technique: different
controller parameters for different input combinations/situations are defined. The use
of fuzzy sets and inference and defuzzification result in “fuzzy gain scheduling”, where
the transition from one set of controller parameters to another is smooth. However, the
problem of discontinuous transitions from one set of controller parameters to another was
recognized a long time ago, and the solution is known as “bumpless” transfers (Åström
and Wittenmark, 1984).

When using Sugeno rules, the resulting controller output is, in fact, a weighted sum of
functions of the controller inputs. Because of this weighted sum, an interpolation between
the functions (consequents) is performed. Interpolation between (linear) functions, how-
ever, has the disadvantage that the result is possibly not what was intuitively expected,
especially when the Sugeno rules are designed in a graphical way. A typical example is
the one given by the following rules:

$ X : if

Y
is o X then � X �=Q=��" XMY �@' X$ D : if

Y
is o D then � D �=Q=��" D Y �@' D

where the parameters " X , " D , ' X and ' D are chosen in such a way that the lines � X and� D intersect between the centers of the membership functions representing the linguistic
labels o X and o D for controller input

Y
. Assuming that the fuzzy sets defined for

Y
form a

fuzzy partition (see section 2.1.2), the controller output has values between the functions� X and � D . An example of the resulting controller output as a function of the input is shown
in figure 4.17. Clearly, this may not be the control function that is desired: the linear
consequents do not describe the local approximations of the resulting controller function
with respect to the derivative of the desired controller function! These problems occur
because of the bias caused by the constant parameters

þ # Ê X v�Oj . A more detailed analysis
is described by Babuška, Jager and Verbruggen (1994).
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j

>

R X R D Y
o X o D

(a)

R X R D
�

Y� X
� D

(b)

Figure 4.17: Possible controller output (b) as function of inputs using Sugeno-
rules with linear consequent functions; R X and R D represent the centers of fuzzy
sets o X and o D (a).

4.3.3 Differences and similarities

Although one can distinguish the Mamdani rules from the Sugeno rules, in practical set-
ups the Mamdani rules are quite often similar to Sugeno rules with constant consequents.
For example, see Batur and Kasparian (1991), Harris and Moore (1989) and Matsuoka
(1991) for cases where there is, in fact, no difference when Mamdani or Sugeno rules are
used. This is because of the defuzzification method used to obtain a numerical output of
the controller, namely the fuzzy-mean defuzzification method, and the fact that rules are
not aggregated but all contribute individually to the output. This is the same as applying
a summation as aggregation operator, but note that it is, in principle, not a bounded-sum
operator and thus is not a set-theoretic operator like a T-norm or T-conorm. See section
4.2.4 for details of defuzzification methods, and section 2.3.1 for set-theoretic operators
like T-norms and T-conorms.

When the fuzzy-mean defuzzification method is applied the Mamdani rules simplify to:

$ X : if

Y X
is o XX and �k�k� and

Y �Ë is o X�Ë then Q X is
þ XX , �k�k� , Q  � is

þ X �
where

þ X© are numerical values. This is precisely the simplest case of a Sugeno rule as
described in section 4.3.2, where the only difference is the ’=’ instead of a symbolic ’is’.
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4.4 Fuzzy linear control

By fuzzy linear control, we mean the control of (nonlinear) processes based on linear
model structures with parameters that are determined by a fuzzy system. Such a fuzzy
system can be regarded as a supervisor, but the time scale on which such a supervisor
operates is the same as the time scale on which the process is controlled (see also section
5.3). In the following the parameters of the controller, determined by such a fuzzy system,
are refered to as “fuzzy parameters”. The models and the controllers based on these
fuzzy linear models have a linear structure and one or more fuzzy parameters. The fuzzy
parameters of the linear models depend on signals related to the process, such as process
input or output signals, or external signals, and thus the complete model is (possibly) a
nonlinear process model. The use of fuzzy parameters in a linear model or controller can
be seen as an extension of the purely linear case.

Another approach to make a controller based on linear controller structures is to design a
set of fuzzy control rules, each based on a local model, where the fuzzy rules are according
to Takagi and Sugeno (1983). First, fuzzy linear models are described (section 4.4.1).
Fuzzy linear control is described in section 4.4.2. In the remaineder of this section, a pole-
placement controller structure is used to explain the concept. Some simple experiments
given in section 4.4.3 show the possible use of these controllers based on fuzzy linear
models.

4.4.1 Fuzzy linear models

In this section, we describe the idea of a fuzzy linear model. The model that is described is
used to design a pole-placement controller (Jager et al., 1993a). The following nonlinear
process is considered:$ ÉQ:���Q0������FQK������O� %Q0�P��-�n< 6?� � (4.36a)

with: $ ÉQ:�O� �h� � ü6�L� Q � (4.36b)� ÉQ:�C� �h� � `J����� Î � (4.36c)

The fuzzy linear model for this process is described by the following ARX model with
“variable” parameters:Q�476��I>J8 ���R z 476+8hQ 4;6+8)� �þ z 4;6+8Z�]4;6 �@',8 (4.37)
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4.4 Fuzzy linear control 119

where parameters �R z and
�þ z are described by fuzzy rules or, for example, a look-up table

based on a fuzzy rule base in combination with an interpolation algorithm. Any (fuzzy)
modeling technique method could be used to obtain the fuzzy relations between the model
parameters and the signals they depend on. The model can also be described by a number
of Sugeno rules:

$ © : if absolute value of Q�476L8 is about Q © then Q�476��S>?8��OR © Q�476+8L� þ © �n4;6��F',8
where the linear consequent is modeled using conventional modeling techniques. Each
rule represents a submodel and the fuzzy premises of the rules (about Q © ) in combination
with the compositional rule of inference provides interpolation between the submodels.
To obtain an interpolation without nonlinearities which are not trivial (see section 4.6),
the sum-prod “inference” method is used.

To obtain a fuzzy linear model, standard modeling techniques can be used to determine
“local” models. When, for example, it is known that the DC gain of the process is
related to the process output, this relation can be determined by probing the process (van
Graafeiland, 1992). In the following we do not go into further detail on (fuzzy) modeling
techniques, but focus on controllers based on fuzzy models (which are assumed to be
present).

4.4.2 Fuzzy linear controllers

In figure 4.18, the scheme for applying the fuzzy pole-placement controller is shown.
The polynomials C , = and 6 are the controller polynomials. The polynomials o and Õ
represent the model of the process transfer function.

The controller contains a feedback and a feedforward part:

C  @ �(�n4;6+8 � 6  @ �H��476+8A< =  @ � w 4;6+8 (4.38)

where C  @ � , =  @ � and 6  @ � are the discrete controller polynomials and where:

�]476L8 : control signal fed to process��476+8 : reference signalw 476+8 : process output
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6 +

–

>C Õ o
=

� � w

Figure 4.18: Fuzzy pole-placement controller scheme.

The process model æ Éf+� is:

æ %f+�C� Õ %f+�o Éf+� � �þf�<��R (4.39)

where �R and
�þ

represent the “fuzzy” parameters of o %f+� and Õ %f+� , respectively. These
parameters are determined by a fuzzy rule base each sampling time. In section 4.4.3 this
is described in more detail.

The desired closed-loop transfer function æ z Éf+� is chosen to be a second-order transfer
function:

æ z %f+�C� Õ z %f+�o z %f+� � a>Ü� � X � � D �(f `LX>«� � X f `LX � � D f ` D (4.40)

where:

� X �i< Ån�kÛL��a<��0� 6 �a�L�?�A�kc� 6 �L� >ª<�� D �
� D �I�kÛL��M< År�0� 6 �a�

with: � : desired damping ratio� T : desired natural frequency (bandwidth)6 � : sampling time
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4.4 Fuzzy linear control 121

The controller parameters � and � T can be chosen to define a desired process response.
This results in the following settling time and overshoot for step responses:

�H� ô � � ¾�0� seconds (4.41)�A� �S�kÛ+���0< � �0�� � >Ü<4� DN��� (4.42)

The controller polynomials are derived from:Õ�6o C � Õ°= � Õ zo z (4.43)

When polynomial C %f+� is chosen to minimize the steady-state error �U�\� , the following
controller polynomials can be derived:

C Éf+�_��>�<Ff `yX (4.44)

= %f+��� � X ���R �S>�þ � � D <��R�þ f `LX (4.45)

6 %f+�Ü� >«� � X � � D�þ (4.46)

The next section shows the results of some experiments made using the fuzzy pole-
placement controller described in this section.

4.4.3 Experiments with fuzzy pole-placement controller

The fuzzy relations between � %Q0� and $ %Q0� , and � Q � is determined by five simple fuzzy
rules each, and five membership functions on the universe of � %Q0� , $�%Q0� and � Q � . Table
4.2 show the centers of the membership functions for the five fuzzy rules. In section 4.4.1
it was described how such a fuzzy linear model can be determined. The reference model
parameters where chosen as:� �Oj � H,Á� T �OÆ � Á6 � �Oj � >6?� �Oj � >
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Table 4.2: Centers of membership functions used in fuzzy
pole-placement control experiment.

� Q � 0 0.25 0.5 0.75 1� %Q0� 2 1.75 1.2 0.95 0.75$�%Q0� 0.5 0.75 1 1.25 1.5

The nonlinear proces used in the experiments is given by:

 XD � � Q � �z {
x y� Ð Î Ñ �QK������@Q&-�.���IÅ)� `�� Î �z {
x y� Ð Î Ñ �����< 6:� � (4.47)

where 6:� �Ij � > . The used sampling time is 6 �Ý�Oj � > . The experimental results are shown
in figure 4.19.

Figure 4.19 shows the performance improvement when the pole-placement controller is
based on the fuzzy linear model. In this example this is equal to using a Takagi-Sugeno
model (Sugeno-rules). The first approach performs interpolation between parameters
of the continuous model, the second approach performs interpolation between different
outputs of the discrete controller. This means that less fuzzy rules are needed in the case
of fuzzy linear control if the nonlinearities of the process can be “decoupled”.

4.4.4 Remarks and considerations

The modeling of processes using linear model structures and fuzzy parameters provides a
way to model nonlinear processes. These models with “fuzzy” parameters, depending on
a priori chosen signals, can compensate for non-linearities of the process to be modeled.
Controllers based on (linear) process models can be extended to use the (local) parameters
of the fuzzy linear model of the process. Experiments with a pole-placement controller
show how a non-linear process gain can be compensated for by using a model with fuzzy
parameters, or by using a fuzzy model consisting of Sugeno rules. Experiments have
shown that in some cases local models can be obtained which are instable. However, the
control signals resulting from these instable local models force the process into regions
where the local models are stable and, hence, do not result in a “global” instability (van
Graafeiland, 1992; Jager et al., 1993a).
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X
#`LX # X D g â Ù ã äÀå æ�X # ! Ð Ö X # � Ñ

(a)
linear PPC - set-points and process

X
#`LX # X D g â Ù ã äÀåêæOX # ! Ð Ö X # � Ñ

(b)
fuzzy PPC - set-points and processX

#`LX # X D g â Ù ã äÀå æ�X # ! Ð Ö X # � Ñ
(c)

linear PPC - control signal

X
#`LX # X D g â Ù ã äÀåêæOX # ! Ð Ö X # � Ñ

(d)
fuzzy PPC - control signal

Figure 4.19: Results of fuzzy pole-placement controller (PPC) experiments.
The left column shows the results in case a linear process model is used
( $¡� >,sJ� ��> ): linear pole-placement controller. The right column shows
the results of the fuzzy pole-placement controller.
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The preliminary result given in the previous section show no significant differences be-
tween the results obtained from using a linear model with fuzzy parameters and the results
obtained from using a fuzzy model according to Takagi and Sugeno. Whether the in-
terpolation should be performed on the continuous model parameter level (linear model
with fuzzy parameters) or on the discrete controller output (Takagi-Sugeno-model) is not
very clear, and more research has yet to be done on this topic. The number of fuzzy rules
in a Takagi-Sugeno model depends exponentially on the number of signals the model
uses to model the nonlinearities of the process, since for every input combination a rule
should exist. Such a model has a local model for every input combination. In the case
of a linear model structure with fuzzy parameters, this dependency is a linear one when
the nonlinearity of a parameter depends on only one signal. Hence, a decoupling of the
nonlinearities of the process parameters is performed.

The next interesting step is to perform experiments with the described method of fuzzy
linear modeling and control in the field of predictive control. Using fuzzy linear models
will still provide the possibility of using linear model structures. Another interesting topic
for further research is the on-line adaptation of the fuzzy parameters of the model. This
should be done by some supervisory level, for stability reasons. Fuzzy linear control could,
for example, provide a way of “learning” a time-varying nonlinearity caused by “wearing
out” or changes in the environment of the process to be controlled. The experiments have
so far focussed on the simulation of nonlinear processes which were time-invariant (van
Graafeiland, 1992; Jager et al., 1993a; Jager et al., 1993b).

4.5 Fuzzy controller as input-output mapping

This section describes a fuzzy controller (system) as an input-output mapping. When we
look at a fuzzy controller as a (static) transformation of controller inputs to control outputs,
then a fuzzy controller is actually a (non)linear function. Therefore, a fuzzy controller
maps controller inputs to controller outputs and this mapping is in most cases a nonlinear
one. A general notation for this mapping is:[ �O\]%^_� (4.48)

The numerical output [ Õ is the defuzzification of the fuzzy output Õ Õ , which in turn is the
result of applying the compositional rule of inference:[ Õ �9\n%^ Õ ��� dfz  Õ Õ �C� dfz  o Õ ^gC � (4.49)

Clearly, this is not a function that can be easily analyzed. However, this mapping can be
regarded as the result of interpolation between points in a multi-dimensional space, when
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4.5 Fuzzy controller as input-output mapping 125

some conditions are met. These conditions are given in the next section. In section 4.5.2,
it is shown that under certain conditions, a fuzzy controller can emulate a linear controller.

4.5.1 Fuzzy system as universal approximator

In the previous introduction, it was stated that a fuzzy controller (or model) can be
regarded as an input-output mapping: [ � \n%^_� The fuzzy rules are supposed to define
the characteristic of the mapping \]%^_� since they represent the knowledge on which the
fuzzy controller or model is based. Among others, Kosko (1992) proved that fuzzy systems
are universal approximators. With universal approximators, systems are addressed which
can approximate any mapping (function). This implies that:� ^ t p s �;± %^C�]<F\n%^_� � �¡  (4.50)

where ± %^_� is the function to be approximated and   can be chosen to be arbitrarily small.
When we regard the fuzzy system as a discretization of ± %^Ý� , and know that between
these discretizations interpolation is performed by means of fuzzy inference, it is clear
that increasing the number of rules can provide a better approximation. This is similar to
the approximation of a continuous function by a number of points: the higher the number
of points is the better the approximation of the continuous function can be.

The fuzzy system can be regarded as an interpolation between a number of points, each
defined by a fuzzy rule. It should be noted that the interpolation is only done between
at most Å  Ë characteristic points, each represented by one of the Å  Ë fuzzy rules, if the
following conditions are met:� the fuzzy sets defined for the inputs and the outputs form fuzzy partitions as defined

by (2.9);� the membership functions are convex and normal; this results in case of fuzzy
partitions in no more than two overlapping fuzzy sets (see section 2.1.2);� the rule base is complete (see section 3.2.5 for completeness of rule bases).

When these conditions are met, there are at most Å  Ë rules active, resulting in an inter-
polation between the consequents of those active fuzzy rules in a ¨ } -dimensional space.
In the following section this is described in more detail, because it is used to obtain a
linear mapping. Besides the fact that the mapping can be nonlinear as a result of the fuzzy
rules, the mapping can also be nonlinear because of the chosen operators, membership
functions, etc. The analysis of the effects these parameters have on the nonlinearity of the
mapping are described and discussed in section 4.6.
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126 Fuzzy control

4.5.2 Linear controller ¢ fuzzy controller

Below we discuss the relation between fuzzy and linear control. It is shown that any
linear controller can be described as a fuzzy controller: fuzzy control can be seen as a
superset of linear control or linear control as a subset of fuzzy control. When designing
a fuzzy controller and applying specific choices for the shape of membership functions,
logical operators and the scaling of in- and outputs, the fuzzy controller can emulate a
linear controller. From this point of view, linear control can be seen as a subset of fuzzy
control. As in previous sections, only numerical inputs are considered. In the case of a
linear controller the mapping is considered as a linear algebraic equation:

Q"�¡£x¤�^��F'"�  ËU V3WHX " VZY0V �@' (4.51)

where ' is an offset. The fuzzy controller function Q��ê\]%^_� can emulate the linear
controller (4.51) when meeting the following criteria:

L-1 the membership functions of the fuzzy sets on the universe of discourse of the inputs
are triangularly shaped and normal;

L-2 the fuzzy sets for each input form a fuzzy partition: the sum of the membership
functions equals 1;

L-3 the fuzzy rule base is complete;

L-4 a T-norm is used for the implication function (T-implication);

L-5 the operator for the conjunction in the premises of the fuzzy rules is the product
operator;

L-6 the (bounded) sum operator (union according to Łukasiewicz) is used for the aggre-
gation and for the or connective if it is used;

L-7 the defuzzified consequents (constant numerical representations) of the individual
fuzzy rules are chosen according to equation (4.51);

L-8 the fuzzy-mean defuzzification method is used; this implies the choice for the
aggregation operator in L-6.

In many fuzzy controllers found in literature, criteria L-1 to L-4 are met. The criteria L-1
to L-4 imply that there exist a fuzzy rule for every input combination. Although not always
explicitly stated, many fuzzy controllers normally also meet criterion L-8 (see also section
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4.5 Fuzzy controller as input-output mapping 127

4.2.4). This leaves criteria L-5 to L-7 to be the main differences between “standard” fuzzy
controllers and linear controllers. Using the summation and product operators instead
of the max and min operators, respectively, is necessary because the emulation of linear
controllers requires operators that result in linear interpolation.

The most important criterion to be met is L-7, because, due to the rest of the criteria, the
output of a fuzzy controller with ¨ } inputs results in a weighted sum of Å  Ë points in a¨ } -dimensional space. The numerical consequents of the at most Å  Ë contributing fuzzy
rules determine whether or not a linear relation by interpolating between these points
(hyperplane), exists. When this hyperplane exists, the input-output mapping of the fuzzy
system equals (4.51).

Summarizing the above, one can state that a fuzzy system (controller or model) can
emulate any linear system, if the linear system is represented by a static functional
description. The minimum number of necessary rules is Å  Ë in the case of ¨ } inputs.
The proof is given in appendix B. It is shown in figure 4.20 how a linear PD controller
can be emulated by a fuzzy controller based on four fuzzy rules. When changing the
control signal � to the control signal change B � in the consequents of the rules, a linear PI
controller can be emulated (see also the example given in the introduction, section 1.3.1).
In the application of fuzzy control, this emulation of a linear controller can provide an
initial fuzzy controller based on a linear controller, which can already exist, and which
can be tuned by adding and modifying fuzzy rules.

In the case of Sugeno rules with (non-constant) functions as consequents (see section
4.3.2), there is also another way to emulate a linear controller by a fuzzy controller.
The method is very simple: all rules should have (4.51) as consequent. Because of the
weighted sum of the subresults of the individual rules, this results in a controller output
which equals (4.51):

Q"� �ÌUX W0X ü X ¥£O¤ X ^Â�F'+��ÌUX W0X ü X (4.52a)

� ¥£O¤�^¼�@'+� �ÌUX W0X ü X�ÌUX W0X ü X (4.52b)

�¡£ ¤ ^��F' (4.52c)
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j
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� T s B � T j �3�es B �3� ��s B �
neg. pos.

(a)
input universes
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<�> j > �
¨ o§¦ �

(b)
output universe

B � è � neg. pos.
pos. o§¦ �
neg. ¨ o§¦

(c)
rule base
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>

� B �

�

(d)
control surface

Figure 4.20: Fuzzy controller emulating PD controller. The error � and first
difference B � are the controller inputs (a); the control signal � is the output
(b). The rule base is shown in (c) and the resulting control surface is given
by (d). Note that if � t 4 � T s?�3��8 and B � t 4 B � T s B �3��8 , the control surface is
linear.co
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4.6 Fuzzy controller analysis 129

As (4.52) shows, there are no restrictions on the membership functions or the T-norm used
in the rule of inference for the and connective. The only restriction is that there should at
least be one active fuzzy rule. This is because in Sugeno rules, each consequent can be a
(local) linear controller.

Although this approach to emulating a linear controller seems trivial and rather useless, it
can be used as a starting point for a nonlinear controller. Because a fuzzy controller with
Sugeno rules can be seen as a collection of local linear controllers in between which is
interpolated, the local linear controllers can initially be equal (an overall linear controller)
and tuned separately, giving a “more optimal” non-linear controller. However, as shown
in section 4.3.2, the use of functional consequents can lead to interpolation, which causes
counter-intuitive results when not properly applied.

4.6 Fuzzy controller analysis

The influence of specific parts of a fuzzy controller are analyzed in this section. The
analysis is done on the practical approach to fuzzy controllers as described in the previous
sections. It was shown in the previous section that a fuzzy controller can be regarded as
a nonlinear mapping from inputs to outputs. The following subsections use this fact to
analyze the influence of specific parts of a fuzzy controller. In section 4.6.1 the role of the
fuzzy sets is addressed. Additionally, the role of different types of operators is analyzed
in section 4.6.2. Aspects of the rule base and its influence on the controller function are
discussed in section 4.6.3.

4.6.1 Role of fuzzy sets

In the following subsections, a number of aspects concerning the influence of membership
functions in the application of fuzzy control are addressed. It is shown that the shape of
the membership functions can introduce nonlinearities and that more that two overlapping
membership functions on a universe of discourse leads to a “filtering” of the controller
function.

4.6.1.1 Number of fuzzy sets

When building a fuzzy controller, one of the first questions which arises, after having
chosen the inputs, is that of how many fuzzy sets are needed and how the fuzzy sets should
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j

>

j Y
NB NM NS AZ PS PM PB

(a)
linear division

j

>

j Y
NB NM NS AZ PS PM PB

(b)
logarithmic division

Figure 4.21: Commonly used divisions of fuzzy sets on a universe of discourse.
Abbreviations: N(egative), P(ositive), A(bout), B(ig), M(edium), S(mall) and
Z(ero).

be divided on the universes of discourse of the inputs. More or less standard types of
fuzzy sets on a universes of discourse of controller inputs are shown in figure 4.21.

Whether to use a linear (figure 4.21a), a non-linear, for example the one in figure 4.21b, or
another set of fuzzy sets on the universe of discourse of an input, depends on the problem
to be dealt with. It is not very unlikely that one can find a paper where the fuzzy sets for
the input are chosen as those shown in figure 4.21b, and the fuzzy sets for the outputs are
chosen as those shown in figure 4.21a, and an averaging defuzzification method is used.
The resulting controller function Q"�S\n Y � is just a “bad” approximation of the following
function if the rule base is continuous (see section 3.2.5):

\] Y �C�O� � ¥� Y ��6 � � Y �
This principle also holds in the case of more inputs. What we want to show with this
example, is that a number of fuzzy controllers represent a controller function which
approximates a (non)linear function, which, in fact, can be implemented more easily by a
mathematical description of that (non)linear function. One can imagine that, after a fuzzy
controller is designed, an analysis of the resulting controller function shows that a simpler
(and faster) implementation is possible by using a “similar” mathematical expression.
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4.6 Fuzzy controller analysis 131

The higher the density of the fuzzy sets on a certain part of the universe of discourse, the
more complex the controller output as function of the controller inputs can be defined.
Actually, the choice of the number of fuzzy sets and how those fuzzy sets are divided
over the universes of discourse requires knowledge of how the controller output should be
related to the controller inputs. For example, designing a fuzzy controller for controlling
a non-linear process requires knowledge of the non-linearity of the process. There is no
standard design scheme that can be employed to choose the number and positions of the
fuzzy sets, and too few people realize that this is a problem.

The number and positions of the fuzzy sets define the control hypersurface, and proper
design of this control hypersurface requires process knowledge. When this process knowl-
edge exists in the form of operator expertise, then one has to deal with the knowledge
acquisition problem known from the field of expert systems. When a process engineer has
knowledge of nonlinearities of the process to be controlled, then this knowledge can be
used to choose the number and positions of the fuzzy sets of the fuzzy sets. For example,
if the process exhibits a dead zone, a fuzzy set can be used to “cover” this dead zone. Then
this fuzzy set can be used in a rule to “compensate” for the dead zone. This is similar
to compensating for (simple) nonlinearities like it is done in the case of conventional
controllers in practice.

4.6.1.2 Overlapping fuzzy sets

The influence of overlapping fuzzy sets is discussed in this section. The overlapping of
fuzzy sets together with fuzzy inference and defuzzification result in interpolation. If the
membership functions are convex and normal and the sets are a fuzzy partition, then the
interpolation depends only on the “nearest” surrounding characteristic points and each
characteristic point is uniquely defined by a fuzzy rule. This is because there are no more
than two overlapping membership functions on the universes of discourse. See also section
4.5.2, where this property was used to emulate a linear controller by a fuzzy controller.

When there are more than two overlapping fuzzy sets the interpolation does not only
depend on the “nearest” surrounding characteristic points. More characteristic points
influence the output value and, for example, in the case of Gaussian membership functions
all characteristic points influence the output which means that all fuzzy rules are fired.
It can be shown that having more than two overlapping fuzzy sets can lead to a sort
of “smoothening” of the control hypersurface that would result from having only two
overlapping fuzzy sets. The latter represents the case where each rule really represents
a point of the controller function. To show this phenomenon we consider the following
three rules:
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$ X : if

Y
is o X then Q is Õ X$ D : if

Y
is o D then Q is Õ D$ g : if

Y
is o g then Q is Õ g

where o X , o D and o g all overlap. For the sake of simplicity, the fuzzy-mean defuzzifi-
cation is assumed, using only numerical representations

þ X
,
þ D and

þ g of Õ X , Õ D and Õ g ,
respectively. The resulting output Q Õ based on input

Y Õ
is determined by:

Q Õ � l m d  Y Õ � þ X � l m à  Y Õ � þ D � l m á  Y Õ � þ gl m d  Y Õ ��� l m à  Y Õ ��� l m á  Y Õ �
When, for example,

þ X s þ g � þ D , then the output
� Y Õ sKQ Õ � þ D , since o X , o D and o g all

overlap. This means that extreme characteristic points of the controller function become
less extreme due to the overlapping of the fuzzy sets, and a fuzzy rule is never the only
one that is “active”.

In figure 4.22, the smoothening effect on the output Q as a function of the input

Y
is shown,

which occurs when more than two overlapping fuzzy sets on a universe of discourse exist.
This interference, due to more than two overlapping fuzzy sets leads to effects on the
controller hypersurface which are not easy to see a priori. Changing the consequences
of fuzzy rules will not have a trivial change in the controller mapping, because the
change is “filtered” by other rules which are active at the same moment.

4.6.1.3 Shape of fuzzy sets

The influence of the shape of the membership functions of fuzzy sets is analyzed in this
section. As discussed in the previous subsection, more than two overlapping fuzzy sets
will result in some nontrivial characteristics of the controller hypersurface. Therefore, we
restrict ourselves in this section to fuzzy sets that form a fuzzy partition for a universe of
discourse. Zadeh defined a bell-shaped membership function, known as the � -function,
which is symmetrical. A more general representation is given by:y � ÷ ÷  Y s�RKs þ s3"xs�'+�n�S¢¤£Ó¥KÉ�½£ � ¢NÚ+ Y s�R&s þ �§sk>C<F�½£ � ¢NÚ+ Y s3"�s§'+�a� (4.53)

with:

�P£ � ¢éÚ+ Y s�RKs þ �n� 899999: 99999;
j+s if

Y �IRÅ Ð � ` É Ñ àÐ Ê ` É Ñ à s if R �IY�� XD ÉR�� þ �>�<FÅ Ð � ` Ê Ñ àÐ É ` Ê Ñ à s if

XD %R � þ � �OYN� þ>,s if

Y � þ (4.54)
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Figure 4.22: Membership functions, Gaussian (a) and triangular (c), and
resulting (solid) controller functions (b) and (d), respectively. The piece-wise
linear curves (dotted) represent the case of a fuzzy partition with triangularly-
shaped membership functions (linear interpolation). The points in (b) and
(d) are the characteristic points of the controller function, each representing
a rule, between which is interpolated.co
nt

ro
len

gin
ee

rs
.ir



134 Fuzzy control

A general membership function using straight lines is given by:

� ��Ú��ç Y s�RKs þ s�"�s�'+��� 89999: 9999;
>,s if

þ �SY�� "Ð � ` É ÑÐ Ê ` É Ñ s if R¤� Y � þÐ � ` � ÑÐ ! ` � Ñ s if " � Y �I'j+s otherwise

In figure 4.23, the two defined types of membership functions are shown: bell-shaped
(figure 4.23a) and trapezoidally shaped (figure 4.23b). The “straight” membership func-
tions, like trapezoidally shaped membership functions, represent the linear approach, the
continuous membership functions, like the bell-shaped membership function, represent
the non-linear approach.

j

>XD
R þ " ' Y

(a)¨-©Hª«ª ðhñkj&¦£j&¨3j È j`¬¬ó
j

>XD
R þ " ' Y

(b)¥® �¶t)ðhñkj#¦Oj&¨3j È j8¬kó
Figure 4.23: Different types of membership functions.

When the output of the fuzzy controller is regarded as a function of the inputs, which
is determined by the interpolation between the numerical results of the individual fuzzy
rules, then this interpolation is non-linear in the case of membership functions other than
trapezoidally shaped. By using non-linear membership functions a non-linear character-
istic is introduced in the fuzzy controller, which is not trivial. In figure 4.24, bell-shaped
membership functions, with a core of only one point and forming a fuzzy partition, and
the corresponding controller function are shown. In the same figure, the results are shown
of when the corresponding straight membership functions are used (triangularly shaped).
Clearly this nonlinear interpolation can provide the control surface desired, but this is, in
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4.6 Fuzzy controller analysis 135

our opinion, not according to the basic idea of a fuzzy controller: the nonlinearity of
the fuzzy controller should be defined by the fuzzy rules, including the number and
positions of the fuzzy sets, because these rules are the representation of the operator or
process knowledge.

j

>

Y
(a)

o o

o

o

o

o o

�
Y

(b)

Figure 4.24: Membership functions (a) and the resulting (solid curve) con-
troller function (b). The piece-wise linear curves (dotted) represent the case
of a fuzzy partition with triangularly-shaped membership functions (linear
interpolation). The points in (b) are the characteristic points of the controller
function, each representing a rule, between which is interpolated.

4.6.1.4 Fuzzy sets for the output

In many cases, fuzzy sets are defined on the universe of discourse of the output of a
fuzzy controller. This, however, is not always the case as shows in section 4.3. If fuzzy
sets are defined for the controller output, this is normally done using a set of equidistant
membership functions for the fuzzy sets. It is hard to make any general remark concerning
the “fuzzification” of the output, because its effect depends for a great deal on the fuzzy
rules.

Because of the interpolative character of a fuzzy controller, a chosen set of membership
functions does not limit the resolution of the controller output, assuming an averaging
defuzzification method (see also sections 4.1.2 and 4.2.4). The number and positions
of the membership functions on the universe of discourse of the output, in combination
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with the fuzzy rules and the universes of discourse of the controller inputs, should be
chosen according to the control hypersurface desired; and this is exactly the problem with
nonlinear controller design: how should the control hypersurface be shaped.

Supposing the rules describe the shape of the control hypersurface, any number of sets
for the output will restrict this hypersurface. In section 4.3.1, it was discussed that a
static set of fuzzy sets for the controller output restricts the resulting controller function.
Hence, it seems reasonable to use (constant) numerical consequents for the the fuzzy
rules instead of fuzzy consequents chosen from a predefined number of fuzzy sets
on the universe of discourse of the output. This means that during design, the rules are
based on an input classification and a (numerical) consequent which is not predefined, but
determined “on the fly”. This allows fast and easy adjustment of the rule consequents and
thus easy tuning of the fuzzy controller in the case of optimization based on trial-and-error.
This more or less implies that Sugeno rules and fuzzy-mean defuzzification method are
used.

4.6.2 Role of operators

The mapping which is obtained by a fuzzy controller depends on the fuzzy sets as shown
in the previous section, but also on the operators used to represent the logical connectives.
The implication is not considered since numerical inputs, T-norms for implications, and
fuzzy-mean defuzzification are assumed. Also the aggregation is not considered in this
section, since fuzzy-mean defuzzification is assumed. Further, fuzzy partitions for the
inputs and numerical consequents are assumed. These assumptions are made because the
analyses described in previous section(s) imply the following:� numerical inputs are normally the case in (fuzzy) control;� other implications that T-implications have severe drawbacks (section 4.2.1);� numerical consequents do not limit the control function (see section 4.6.1.4) as

opposed to fuzzy sets chosen from a predefined number of fuzzy sets;� fuzzy-mean defuzzification is very suitable in the case of numerical consequents
which are considered independently;� aggregation is “embedded” in the fuzzy-mean defuzzification when all consequents
are considered independently (see section 4.2.4.1 and 4.2.3.3).

In the following subsections, the influence of the logical connectives and and or, as well
as the negation not, is considered.
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4.6 Fuzzy controller analysis 137

4.6.2.1 Negation in rule premises

For the sake of convenience the not operator is sometimes used in the premises of fuzzy
rules. This can lead to inconsistency, which is demonstrated by the following. Suppose
that on the universe of discourse of variable

Y
and Q the fuzzy sets o X , o D , o g and Õ are

defined. Now suppose the following rules:

$ X : if

Y
is not o X then Q is Õ$ D : if

Y
is o D or o g then Q is Õ

In the case o X , o D and o g are the only possible linguistic labels for

Y
, then these two rules

are logically equivalent. However, the application of fuzzy reasoning normally results in
different outcomes. In figure 4.25, the result for the two cases is shown in the case when
the or connective is implemented by the max operator.

j

>

Y

o X o D o g

(a)b © b ò
j

>

Y

o X o D o g

(b)b © b õ6¯ b�°
Figure 4.25: Resulting fuzzy set (shaded) when using negation in a fuzzy rule
premise (a) or disjunction of other sets (b).

When the fuzzy sets form a fuzzy partition (see section 2.1.2), it is possible to obviate
these inconsistencies by meeting the following criteria:� the bounded sum (bsum operator) is used for the or connective;
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� standard complement is used for negation (not).

It can be suggested that the use of the bounded sum for the or connective is only suitable
when the fuzzy propositions it operates on are “highly correlated”, which is indeed the
case when the or connective operates on two fuzzy sets on the same universe of discourse.
In section 4.6.2.3 we go into more detail about the or connective.

4.6.2.2 Logical and connective

The and connective is essential to fuzzy control when there are two or more inputs. It is
used to combine fuzzy propositions in the premises of the fuzzy rules. The underlying
operator can be any T-norm, which poses the question of which T-norm to use. Many fuzzy
controllers described in literature use the min operator for the and connective. However,
is this a justified choice? Is the min operator used because it was first proposed by Zadeh,
or because it was found to be the best choice for a certain problem? In many cases the
use of the min operator for the and connective in the application of fuzzy control can be
disputed, because it introduces non-linearities which are not trivial. To demonstrate this,
let us give an example of a rule base with the following rules:

$ X : if

Y&X
is negative and

Y D is negative then Q is negative$ D : if

Y&X
is negative and

Y D is positive then Q is zero$ g : if

Y&X
is positive and

Y D is negative then Q is zero$ â : if

Y&X
is positive and

Y D is positive then Q is positive

In figures 4.26 the fuzzy sets are shown for

Y X
,

Y D and Q . Using the min operator for the and
connective, the resulting controller output as function of the input is shown in figure 4.26c.
Note that the type of implication function, assuming it is a T-implication function, does
not have any influence, because the fuzzy-mean defuzzification method is used. Figure
4.26d shows the result when the product operator is used for the and connective. As can
be seen, this is a linear function, which is obvious, because of the obtained results reported
in section 4.5.2.

From these results it can be concluded that using the min operator for the and connective
is questionable since it results in nonlinearities in the controller function which cannot
be influenced. � In fact, any other T-norm besides the product operator will have similar	

Gupta and Qi (1991a) described studies which are based on a simple (4 rules) PI-like controller as
shown in figure 4.26. They showed that different operators yield different control behavior for this simple
fuzzy controller. This is obvious since different T-norms result in different types of interpolations, and
because only 4 rules are considered, the interpolation (solely) determines the control surface. Hence, the
results from these studies cannot be generalized to fuzzy controllers in general.
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(c)
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(d)
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Figure 4.26: Results obtained using min operator (c) and product operator (d)
for the and connective, and fuzzy sets for

YçX s Y D (a) and Q (b). The controller
output is normalized to 4ø<�>�sk>?8 . Note the nonlinear interpolation in case of
the min operator (c). See also figure 4.20.co
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results. This can easily be shown by looking at the sensitivity to changes in the inputs for
a general T-norm. If the sensitivity for all inputs has to be constant, but not equal zero, for
the whole range, then the sensitivity for the inputs has to be independent of those same
inputs. In other words, the partial derivative should be constant and unequal zero:½ 2  Y0V s �¬�k� s Y  Ë �½ Y0V |¬|k| ½ p �Ë �Ô"xs with "��Ij (4.55)

The only T-norm which satisfies this condition is the product operator ( "��i> ). Any other
operator will introduce nonlinearities which cannot be influenced in a trivial way.
Hence, these nonlinearities are not adjustable like the fuzzy rules themselves.

4.6.2.3 Logical or connective

As stated in 4.6.2.1, it is convenient to use the not operator in fuzzy rule bases. Also the
use of the or connective provide a means for convenient rule base design. The number of
rules can be decreased by use of the not operator and or connective. Besides the problem
occuring when using the not operator (see section 4.6.2.1), the or connective can lead
to similar problems. To solve the problem of the not operator it was suggested to use a
bounded sum for the or connective, provided that it operates on the same universes. Ex-
tending this to fuzzy rules, it can be suggested to combine rules with the same consequent
by means of the or connective. For example, the following rules:$ X : if

Y X
is o X Ê X and

Y D is o D Ê X then Q is Õ$ D : if

Y X
is o X Ê D and

Y D is o D Ê D then Q is Õ$ g : if

Y X
is o X Ê g and

Y D is o D Ê g then Q is Ö
can, on a semantic level, be transformed in:

$ X Ê D : if (

Y&X
is o X Ê X and

Y D is o D Ê X ) or (

Y&X
is o X Ê D and

Y D is o D Ê D ) then Q is Õ$ g : if

Y&X
is o X Ê g and

Y D is o D Ê g then Q is Ö
Assuming the max operator for the or connective and aggregation, and the min operator
for the the and connective and implication, this results in:

C X �i� o X Ê X héo D Ê X � Ô Õ s for 6¤�i>,s�Å
C X Ê D �i�)� o X Ê X héo D Ê X �áÑÂ� o X Ê D hNo D Ê D �)� Ô Õ�i�)�)� o X Ê X héo D Ê X � Ô Õ �5ÑÂ�)� o X Ê D hNo D Ê D � Ô Õ ���� C X Ñ C D
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4.6 Fuzzy controller analysis 141

As can be seen in the above equations, the use of the or connective can be used to combine
rules with equal consequents. This leads to a minimal number of rules within a fuzzy rule
base: if ¨ È different consequents exist, then the minimal number of fuzzy rules is ¨�È .
However, this combining of rules with equal consequents results in different outcomes
of the inference in most cases. In fact, it is only possible when the used operators for
implication and logical connectives meet certain conditions. The example given above is
an example of this, but when, for example, the or connective is represented by the bounded
sum operator, the transformation does not hold. The transformation does hold when the or
connective is represented by the bounded sum operator, the fuzzy sets used in the premises
form fuzzy partitions, and the implication is represented by the product operator. Hence,
the usage of the or connective and its effect on the controller function is strongly related
to the operators chosen for other connectives and implication.

4.6.3 Role of the rule base

The fuzzy rule base contains the rules of a fuzzy controller and represents the knowledge
which is used to control the process. A number of problems can be detected with respect
to the design of a rule base. In section 3.2.5 a number of properties of rule bases were
addressed. In this section we will address incompleteness of a rule base and its effect
on the controller function. Additionally, some aspects of exception handling and rule
precedence are discussed.

4.6.3.1 Incompleteness and interpolation

Incompleteness of a rule base can result in undesired controller behavior. When the blank
spots result in keeping the outputs of the fuzzy controller constant, the control hypersurface
can exhibit discontinuous behavior. In figure 4.27 an example is given which shows this.
As can be seen, keeping the output constant when no rule can be fired can lead to effects
like hysteresis. In case the controller output is a change of the control signal fed to the
process, similar effects occur if no control change is made when none of the rules are
fired.

A solution to the problem described above, is interpolation between the fuzzy rules.
Interpolation in sparse rule bases is described by Kóczy and Hirota (1993). The proposed
mechanism is based on distances between � -cuts of the fuzzy sets. When the following
two rules and data are considered:

if

Y
is o X then Q is Õ X , for 6¤�i>,s§ÅY

is o Õ
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l�D d  Y s§Q:� l�D à  Y s§Q:�
j
>

Y Q
l�D  Y s�Q0�

(a)

þ X
þ D

R X R D
�

Y
(b)

Figure 4.27: Example of controller function (b) as result of incompleteness
of the rule base. The fuzzy relation representing the rule base is shown in (a).
The value of

Y
goes from R X to R D (dashed) and back (dotted). The  Y s�Q0� -

tuples ÉR X s þ X � and %R D s þ D � represent the centers of the membership functionsl�D d  Y s�Q:� and l�D à  Y s�Q0� , respectively. The controller output is kept constant
when non rules are fired.

then the interpolation is determined by:

' ú Ê ÿ  o X s o Õ �' ú Ê ÿ  o D s o Õ � � ' ú Ê ÿ  Õ X s Õ Õ �' ú Ê ÿ  Õ D s Õ Õ � and
' ú Ê �  o X s o Õ �' ú Ê �  o D s o Õ � � ' ú Ê �  Õ X s Õ Õ �' ú Ê �  Õ D s Õ Õ � (4.56)

where:

' ú Ê ÿ  o X s o D � : distance between the most left values within the supports of
the level sets ( � -cuts) of o X and o D' ú Ê �  o X s o D � : similar as above, but now for the most right values

An example of this interpolation technique is shown in figure 4.28. Kóczy and Hirota
(1993) also show extensions of this mechanism for the cases of multiple rules and multiple
propositions in the rule premises.
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j
# Ë ä Ù>

Y' X ' D

o X o Do Õ

(a)
premises

j
# Ë ä Ù>

Q' X ' D

Õ X Õ DÕ Õ

(b)
consequents

Figure 4.28: Example of interpolation in a sparse rule base accord-
ing to Kóczy and Hirota (1993), with ' X � ' ú W # Ë ä Ù Ê ÿ  o X s o Õ � and ' D �' ú W # Ë ä Ù Ê ÿ  o D s o Õ � .

4.6.3.2 Exceptions and rule precedence

The rule bases that are used in fuzzy control are normally “flat”. This means that there is no
chaining of rules: rules “connect” the controller inputs directly to the controller outputs.
Therefore, only flat rule bases are considered in the following. When we consider a set
of rules, a number of problems can be detected. We briefly address the problem of rule
exceptions and precedence which are closely related. To show the problem, let us consider
the following two rule in a rule base:

$ X : if

Y
is o then Q is Õ X$ D : if

Y
is very  o � then Q is Õ D

where very  o � ð o . An example of this is shown in figure 4.29. Interpretation of these
two rules and the meaning of the hedge very favors the idea that rule $ D should overrule$ X . However, when

Y
has full membership in very  o � , it also has full membership in o

and thus both rule will contribute to the output. In that case the fuzzy sets very  o � ando can be considered as full overlapping, resulting in a “filtering” of the control function
(see also section 4.6.1.2 on this). A solution to this problem can be the transformation of
the rules $ X and $ D to the following rules:

co
nt

ro
len

gin
ee

rs
.ir



144 Fuzzy control

j

>

Y
o very  o �

Figure 4.29: Fuzzy sets o (dotted) and very  o � (solid)
where very  o � ð o .

$ ÕX : if

Y
is o�h very  o � then Q is Õ X$ ÕD : if

Y
is very  o � then Q is Õ D

This mechanism can also be applied for the cases of other types of linguistic modifiers.
In general it can be stated that the rule with more restrictive (more specific) premises have
to take precedence over the rules with less restrictive (less specific) premises. Similar
problems occur when we consider a rule base which contains general rules and rules
which express exception. The inference algorithm should fire the general rules when the
exception rules cannot be fired. The solution is in fact based on the same principle that is
used in the above-given example with the two rules. It should be noted that rule exceptions
and rule precedence are normally not considered in fuzzy control.

4.7 Conclusions and remarks

A number of fuzzy control aspects have been addressed in this chapter. This section
summarizes the main topics and give a number of conclusions based on the analysis of
fuzzy controllers as described in the foregoing.

A distinction has been made between the theoretical and practical approach to fuzzy
control. The theoretical or relation-based approach represents fuzzy control based on fuzzy
relations and the composition of fuzzy relations. The practical or rule-based approach is
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4.7 Conclusions and remarks 145

based on a “matching” phase and a “modification” phase. The matching phase matches
the fuzzy rule premises with the available data, yielding degrees of fulfillment for the
fuzzy rules. The modification phase uses these support values to modify the consequents
of the fuzzy rules to obtain the result of a specific fuzzy rule. Those results of the
individual fuzzy rules are aggregated to obtain the overall result of the fuzzy inference.
Some practical inference schemes (rule-based, local inference) are analytical solutions of
the relation-based approach (relation-based, global inference; see section 4.2.3). Others
are practical inference schemes which do not have a counterpart in theory; an example
was given in section 4.2.3.2.

A number of defuzzification methods were discussed in sections 4.1.2 and 4.2.4. The
basic defuzzification methods are center-of-gravity, mean-of-maxima and center-of-area.
Extended defuzzification methods, described in section 4.2.4.3, have these basic defuzzi-
fication methods as special cases. The defuzzification, necessary in control to obtain
numerical controller outputs, is one of the aspects which provide the interpolative behav-
ior of fuzzy controllers. The mean-of-maxima defuzzification reduces a fuzzy controller
to a multi-level relay. The centre-of-gravity defuzzification introduces nonlinearities in
combination with aggregation operators other than summation. The fuzzy-mean defuzzi-
fication in combination with summation as aggregation operator provides an interpolation
which does not introduce nontrivial nonlinearities.

In the practical approach to fuzzy control two types of fuzzy rules can be distinguished:
rules with symbolic consequents (Mamdani rules) and rules with functions of the controller
inputs as consequents (Sugeno rules). The Sugeno rules are based on a purely practical
approach to fuzzy control (and modeling). Under certain restrictions these types of
rules are equal (section 4.3.3). In section 4.2, different types of implications have been
considered. It has been shown that implications based on the classical implication can
lead to a number of problems which makes them less suitable for fuzzy control based
on local inference (section 4.2.1.3 and 4.2.1.4). Using a conjunction to represent the
implication (T-implications) has several advantages over an implication based on the
classical implication and it leads to simple and straightforward inference schemes (section
4.2.3). The classical-conjunction-based implications are the types of implications which
are normally used in fuzzy control. The type of conjunction does not play a rule in the
case of Sugeno rules because of the weighted sum (fuzzy-mean) to obtain the controller
output.

Fuzzy linear control is based on linear controllers of which the parameters are determined
in-line by a fuzzy system (section 4.4). This is close to a controller based on Sugeno rules.
The difference with such a controller is that in the case of Sugeno rules, the controller
output is the weighted mean of the results of “local” controller outputs, and in the case
of a fuzzy linear controller, the parameters of the controller are determined by a fuzzy
system. Hence, fuzzy linear control focuses on the controller parameters. This entails
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146 Fuzzy control

that the number of required rules is at most equal to the number of rules required by a
controller based on Sugeno-rules.

A fuzzy controller can be regarded as an input-output mapping. This mapping can be made
equal to the mapping performed by a linear controller. When viewing a fuzzy controller as
an input-output mapping, several aspects concerning the operators and types of fuzzy sets
to be used can be analyzed. In section 4.6, we showed the influence of logical operators
and types of membership functions, and stressed that many nontrivial nonlinearities can
be introduced. In our opinion, nonlinearities of the control hypersurface should be
determined by the fuzzy rules, since these rules represent the knowledge the controller
is based on. When using the product operator for conjunction in combination with the
fuzzy-mean defuzzification method, yielding summation for aggregation, a interpolation
is obtained which does not introduce nontrivial nonlinearities in the control hypersurface.
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Adaptive fuzzy

control

Adaptivity of a controller can provide robustness for time-varying behavior or nonlin-
earities of the process to be controlled. Adaptivity can also provide auto-tuning of a

controller of which the design is based on a model of the process. In literature, adaptivity
of a controller has been addressed many times for all kinds of controllers. Also, adaptive
fuzzy controllers have been reported many times. In the seventies the self-organizing con-
troller was introduced by Procyk and Mamdani (1979) and since then many authors have
reported research based on this type of controller, or on modifications and improvements
of this controller. In recent years, numerous contributions could be found in literature
which deal with fuzzy neural networks, also referred to as neuro-fuzzy systems. These
fuzzy systems (controller or model) use a gradient-descent adaptation algorithm to adapt
parameters of the fuzzy system.

First, the self-organizing controller and related methods are addressed in section 5.1. In
section 5.2, an adaptation method for fuzzy controllers is described which uses a fuzzy
relation as an associative memory: the same fuzzy relation is used for both modeling and
control. These fuzzy systems adapt the control algorithm by identifying or enhancing a
model of the process to be controlled. Section 5.3 addresses the adaptation of controllers
by means of supervisors. Adaptive fuzzy systems based on gradient-descent adaptation
rules are discussed in section 5.4. In section 5.5, comparisons are made between fuzzy
systems and “comparable” learning algorithms, like the radial-basis function network
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(RBFN) and the (generalized) cerebellar model articulation controller (CMAC). The
final section summarizes and concludes this chapter.

5.1 Self-organizing fuzzy control

The self-organizing controller � (SOC) was introduced by Procyk and Mamdani (1979) and
is a well known method of adaptation for fuzzy controllers. Applications and studies into
self-organizing control can be found in literature (Brown et al., 1991; de Neyer et al., 1990;
Shao, 1988; Sugiyama, 1988). Examples of applications of self-organizing fuzzy control
are robot control (Wakileh and Gill, 1990) and application to muscle relaxant anaesthesia
(Linkens and Hasnain, 1991). The SOC consists of two parts: a fuzzy controller and an
adaptation mechanism. The adaptation mechanism acts directly on the parameters (read:
fuzzy rules) of the fuzzy controller.

5.1.1 Self-organizing controller scheme

The schematic representation of the self-organizing controller is given in figure 5.1. The
fuzzy controller in this scheme is based on Mamdani rules as described in chapter 4. The
adaptation mechanism consists of a module which determines a performance measure
and a module which modifies the rules of the fuzzy controller based on the performance
measure, using a minimal process model. The performance measure is given by a fuzzy
rule-based system that is based on the same inputs as the fuzzy controller, the error and
error change, except for the fact that the conclusions of the rules represent a performance
measure instead of a control action. This performance measure � 476 6 8 is a numerical value
obtained from what Procyk and Mamdani (1979) refer to as a decision table, usually based
on the error and its first difference:

� 476 6 8 �O\]½�A476 6 8%s B �A476 6 8�� (5.1)

where \ is a look-up table. The decision table represents, in fact, a reference model: the
more the process deviates from the implicit reference model, the worse the performance is
classified. The main idea is that the better the performance is, the more the performance
measure equals zero and that the sign and magnitude of the performance measure denote	

Today this type of control is usually referred to as self-organizing fuzzy control (SOFC) or self-organizing
fuzzy logic control (SOFLC) to stress the application of fuzzy (logic) control. Here, we use the abbreviation
SOC to address the controller proposed by Procyk and Mamdani (1979) and SOFC to address this type of
controller in general.
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+

–

fuzzy

controller

rule
modifier

minimal
model

performance
measure

process� Q

� 476 6 8
$L476 6 8

Figure 5.1: Self-organizing fuzzy controller scheme.

a direction and relative magnitude for improvement of the systems performance. To sum-
marize, the working of the self-organizing controller according to Procyk and Mamdani
(1979):

The rule base modifier modifies the fuzzy rule base of the fuzzy controller
according to the result of the performance measure, using a minimal model
of the process.

Since the performance measure represents a measure of how to change the controller
output(s), a process model is needed which can relate these changes to control signal
changes. Hence, an incremental model is needed. The inverse of this incremental process
model is used to determine the changes that should be made to the inputs of the process if
certain output changes of the process are desired. The incremental model ¾ is determined
by: ¾ � 6À¿ (5.2)
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150 Adaptive fuzzy control

where ¿ is the Jacobian of the process model and 6 is the sampling time. Therefore,
if the process to be controlled is modeled by a linear first-order system, the most simple
incremental model is the sign of the DC gain of the process, assuming the magnitude of
the DC gain is compensated for by scaling factors of the inputs and outputs of the SOC.
However, this is not valid for higher-order processes and in that case the partial derivatives
have to be determined. Although an incremental model is probably easier to obtain than
a transfer function, determining the partial derivatives needed for the Jacobian ¿ can still
be a hazardous task. Procyk and Mamdani therefore state that it is easier to keep the
incremental model ¾ constant and hope that by means of subsequent adaptations the
inaccuracies caused by this approximation will be overcome. Hence, each adaptation
can be seen as a step in the direction of a better performing system. It is clear that the
self-organizing controller is based on local optimization, which hopefully results in global
optimization.

When the minimal process model is determined, the changes (reinforcements) to the con-
troller outputs, denoted by Á 476 6 8 , have to be determined. As stated before, Procyk and
Mamdani used numerical performance measures obtained from a look-up table. Each sam-
pling instant a performance measure � 476 6 8 is determined. The reinforcement values Á 476 6 8
are determined by means of the numerical performance measure � 4;6 6 8 in combination
with the minimal process model ¾ :Á 476 6 8 � ¾ `LX

� 4;6 6 8 (5.3)

When ¾ is simplified to be constant and a SISO process is considered, (5.3) can be
reduced to:

$L476 6 8 �96 � 476 6 8 (5.4)

where 6 is a scalar. The user has to have (some) knowledge of the dynamics and delay
times of the process to be able to determine which tuple of the inputs and outputs was
responsible for the current performance. The “most” responsible tuple of the inputs
and outputs will be used to update the fuzzy controller. Distribution over a number of
responsible tuples is possible and Procyk and Mamdani (1979) state that distribution over
2 or 3 samples improves the initial response and the convergence rate. On convergence in
general they state the following:

It should be borne in mind that in general convergence, when it takes place,
is not global but only local to the set-point changes being applied. Never-
theless, this serves as a useful indication of the convergence properties of the
controller.
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5.1 Self-organizing fuzzy control 151

At this point, two approaches can be distinguished: the relation-based approach and the
rule-based approach. Both methods have their advantages and drawbacks and they are
discussed in the following subsections. For the sake of simplicity, a controller with only
one output is considered in the rest of this section.

5.1.2 Relation-based approach

In the relation-based approach, the modification of the rule base takes place using fuzzy
relations. This is done by applying the update rule (Procyk and Mamdani, 1979; Harris
and Moore, 1989; Pedrycz, 1989):

C 4;6 6 � 6 8 �� C 476 6 8 h CÃÂ�GdÄ 476 6 8Z��Ñ C5� ôCÅ 4;6 6 8 (5.5)

where C 4;6 6 8 is the fuzzy relation representing the fuzzy controller at time 6 6 and C Â�GHÄ
and C � ô¥Å are the relations describing the “bad” rule to be eliminated and the new “better”
rule, respectively. The updating of C by (5.5) can be explained as extracting the “bad
rule” C Â�GHÄ from the controller, represented by C , and inserting the “new rule” C � ô¥Å (which
hopefully improves performance). However, since relations are involved, there is no clear
distinction between rules within relation C after subsequent adaptations. The rules to be
extracted and inserted are created instantly and are based on the in- and output history of
the controller.

The relation CÆÂ É � is based on the controller inputs and outputs (

Y�V
and Q , respectively)

which are responsible for the current process state and is constructed by:

CÇÂ�GHÄ 476 6 8 ��¤-�X.0.) YKX 476 6 <�� 6 8�� Ô |k|k||k|k| Ô ¤-�X.È.) Y  Ë 4;6 6 <%� 6 8-� Ô ¤-�X.È.)%Q�476 6 <�� 6 8�� (5.6)

where fuzz is a fuzzification operator which translates a numerical value to a fuzzy set (see
section 4.1.1) and � is the number of samples it takes before a controller output change
effects the process output. Hence, � includes the delay time of the process as well as
delays due to zero-order hold functions. It can also include system dynamics which are
to be neglected in order to obtain model reduction. The new relation C � ôCÅ is constructed
in a similar way by:

C �ÈÉ>Ê �-¤§�Kf)f0 Y X 4;6 6 < � 6 8-� Ô |k|k||¬|k| Ô ¤§�&f)f0 Y  Ë 476 6 <�� 6 8�� Ô ¤§�&f)f0ÉQ 4;6 6 <%� 6 8L��$L476 6 8-� (5.7)
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where the only difference with (5.6) is the term $L476 6 8 , which represents the reinforcement
of the controller output, determined by the performance measure according to (5.3). Be
aware that Q denotes the output of the fuzzy controller, not the process output!

The fuzzification operator fuzz could simply result in a singleton membership function,
but conversion to a fuzzy number is also possible. Converting the in- and outputs to fuzzy
numbers will result in a generalization of the effects obtained by applying (5.5). The main
disadvantage of the relation-based approach is the fact that using relations to apply self-
organizing control requires a substantial amount of memory to store the fuzzy relation(s)
and can cause the calculational loads necessary to perform the calculations according to
(5.6), (5.7) and (5.5) for higher order systems to be severe. Another disadvantage is the fact
that individual rules cannot be distinguished in the relational approach, which makes an
interpretation after adaptation difficult. The advantage of this method is, however, the fact
that memory requirements are constant and calculational efforts can be determined a priori.
Shao (1988) proposed a self-organizing control algorithm which eliminates the application
of (5.5) by directly modifying the fuzzy controller relation C . This modification decreases
the amount of necessary computer memory and the calculational effort.

Next a numerical example showing the adaptation of relation C is given. The rule-based
approach to self-organizing control is discussed in section 5.1.3.

5.1.2.1 Numerical example of the relation-based approach

An example to show the working of the relation-based approach of self-organizing control
(Procyk and Mamdani, 1979) follows. Consider a fuzzy rule base with the following rules:

$ X : if

Y
is o X then Q is Õ X$ D : if

Y
is o D then Q is Õ D

where the fuzzy sets are defined on discrete universes:

o X �i>x{)>Ü�Fj � Áy{eÅ��Fj){xÆo D �Oj){)>Ü�Fj � Áy{eÅ��I>x{xÆ
For the sake of simplicity, the fuzzy sets Õ X and Õ D are chosen equal to o X and o D ,
respectively. The relation C is given by:

C � C X ,ÃC D
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5.1 Self-organizing fuzzy control 153

�� o X Ô Õ X � ,  o D Ô Õ D ��ÌËÍÎ > j � Á jj � Á j � Á jj j jÐÏÒÑÓ», ËÍÎ j j jj j � Á j � Áj j � Á >ÔÏÒÑÓ
�ÌËÍÎ > j � Á jj � Á j � Á j � Áj j � Á > ÏÒÑÓ

When a numerical input

Y Õ � Å � ¾ is considered, the value is rounded off to the nearest
point on the discrete universe of discourse, resulting in the fuzzy set:

o Õ �9jy{)>Ü�I>x{xÅ��@jy{eÆ
Applying the CRI yields:

Õ Õ � o Õ ^gC �Oj � Áy{)>Ü�Fj � Á){xÅ �Fj � Áy{eÆ
which results in the numerical output Q Õ � Å by means of the MOM defuzzification
method. Now suppose the performance table in combination with the inverse minimal
model, according to (5.3), results in the reinforcement value $N� > , then the “bad” and
“new” relations are determined by:

CÇÂ�GHÄ ��¤-�X.0.) Y Õ ; � Ô ¤-�/.0.)%Q Õ �C � ôCÅ ��¤-�X.0.) Y Õ ; � Ô ¤-�/.0.)%Q Õ �($A�
where

Y Õ ; represents the value of

Y Õ
rounded off to the nearest point on the discrete universe

of discourse. When the fuzzification operator is chosen to translate the numerical values
in singleton fuzzy sets, the adaptation of relation C results in:

C Õ �i C+* CÃÂ�GdÄ � ,�C�� ô¥Å
� |}}
~ ËÍÎ > j � Á jj � Á j � Á j � Áj j � Á > Ï ÑÓ * ËÍÎ j j jj > jj j j Ï ÑÓ �&��� , ËÍÎ j j jj j >j j j Ï ÑÓ

�ÕËÍÎ > j � Á jj � Á j >j j � Á > ÏÒÑÓ
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When the same input is provided as before (

Y Õ ��Å � ¾ ), then the fuzzy output by applying
the CRI, is:

Õ Õ � o Õ ^gC Õ �Oj � Á){)>Ü�Fjy{eÅ��I>x{xÆ
which gives the numerical output Q Õ �OÆ by means of the MOM defuzzification method.

The above-given example is very simple, but is sufficient to show the different steps
involved in the relation-based approach to self-organizing fuzzy control. The use of the
MOM defuzzification method is one of the reasons why the result after one adaptation
step is the desired result. When the COG defuzzification method is considered, the initial
output is also Å , but the output after adaptation would be Å Xg and not Æ as obtained by the
MOM method. When another adaptation step is considered with the same value for

Y Õ
, the

output remains Å Xg because rounding off this value yields Å , causing C Â�GHÄ to be the same
as before. Hence, after the first adaptation step, the fuzzy controller relation C remains
constant and the adaptation does not “improve” by subsequent adaptations:

C Õ �i C+* CÃÂ�GdÄ � ,�C�� ô¥Å
� |}}
~ ËÍÎ > j � Á jj � Á j j � Áj j � Á >ÖÏÒÑÓ»* ËÍÎ j j jj > jj j jÐÏÒÑÓ �&��� , ËÍÎ j j jj j >j j jÐÏÒÑÓ

�ÕËÍÎ > j � Á jj � Á j >j j � Á >FÏÒÑÓ� C
By applying the CRI in combination with the data

Y Õ �OÅ � ¾ , this results in a fuzzy output:

Õ Õ � o Õ ^gC Õ �Oj � Á){)>Ü�Fjy{eÅ��I>x{xÆ
which is the same result that was obtained after the first adaptation. When using COG
defuzzification, again the result Q Õ �9Å Xg is obtained.

Note that the fuzzification of numerical values is chosen to produce singleton fuzzy sets
in the above-given example. A fuzzification operator resulting in a fuzzy set, instead
of a fuzzy singleton as in the above-given example, is possible. Then the adaptation is
generalized over more elements of the (discrete) relations.
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5.1 Self-organizing fuzzy control 155

5.1.3 Rule-based approach

Another approach to self-organizing control is the rule-based approach . Procyk and Mam-
dani (1979) propose this method to obviate severe memory requirement and calculational
loads. This approach uses the fact that the fuzzy controller relation is the disjunction of
the fuzzy relations representing the fuzzy rules:

C � �ÌùX WHX C_X (5.8)

where the fuzzy relation C X , representing rule $ X , is the Cartesian product of the rule
premise and consequent:

C X � o X Ê X Ô |k|k| Ô o  Ë Ê X Ô Õ X (5.9)

This yields for (5.5):

C � � �ÌùX W0X C_X h o Â�GHÄX Ô |k|k| Ô o Â�GHÄ�Ë Ô Õ Â�GHÄ �Ñ � o � ôCÅX Ô |k|k| Ô o � ôCÅ Ë Ô Õ � ôCÅ � (5.10a)

which, by applying the De Morgan’s laws, results in:

C �×�  ÌùX W0X � o X Ê X h o Â�GHÄX � Ô |k|k| Ô o  Ë Ê X Ô Õ X � Ñ |¬|k|
|k|k|aÑD� �ÌùX W0X o X Ê X Ô |k|k| Ô � o  Ë Ê X h o Â�GdÄ Ë � Ô Õ X �
ÑØ�  ÌùX WHX o X Ê X Ô |¬|k| Ô o �Ë Ê X Ô � Õ X h Õ Â�GdÄ � �Ñ � o � ôCÅX Ô |k|k| Ô o � ôCÅ�Ë Ô Õ � ôCÅ � (5.10b)

This means that each rule in the rule base is replaced by at most  ¨ } �O>x� fuzzy rules;
this shows immediately the disadvantage of this approach, namely a constantly growing
number of fuzzy rules in the rule base. Only rules which overlap with the bad rule have
to be considered when applying (5.10). Further note that, when a fuzzification operator is
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156 Adaptive fuzzy control

used which translates a numerical value to a fuzzy set, consequents of new fuzzy rules can
be subnormal and non-convex, because of the term  Õ X h Õ Â�GHÄ � in (5.10b). The growing
number of rules can be limited by using some sort of garbage-collection mechanism. This
garbage-collection mechanism should remove rules which have similar premises as the
new added rule, and also the rules which are “equal” should be reduced to only one rule.
However, mechanisms like these are time consuming and time is a critical issue in direct
control.

Procyk and Mamdani (1979) also propose another solution, namely replacing the conse-
quent of rules which overlap the most with the rule to be extracted (the bad rule). If such
a rule cannot be found, then a new rule should be inserted right away. In the next section,
an even simpler method is described, based on the view that a fuzzy controller can be
regarded as a mapping. When a certain mapping is implemented by a look-up table and
an interpolation algorithm, the self-organization can be simplified and the need for large
amounts of memory or garbage collection is eliminated; see also section 4.5.

5.1.4 Simplified rule-based approach

When a fuzzy controller is regarded as a combination of a look-up table and an inter-
polation algorithm, a major simplification of the self-organizing controller is possible.
This simplification of the fuzzy controller and its adaptation mechanism also provides a
means for speeding up the self-organizing controller scheme. The modification consists of
changing the consequents of responsible rules, using a history of fired rules. Just as in the
original scheme, there must be some knowledge of the time delays and time constants of
the process. The simplified adaptation mechanism only changes the consequents of rules
and, hence, (5.6) and (5.7) are not applied. The resulting controller can be interpreted as
being based on Sugeno rules with constant consequents and a weighted sum (fuzzy mean)
for defuzzification (considering rule consequents independently). If the adaptation delay
is � samples, rules $ X that fired � samples ago, are described by:

$ X : if

YKX
is o X Ê X and �k�k� and

Y �Ë is o �Ë Ê X then Q �9Q X 4;6 6 <�� 6 8
and are changed to:

$ ÕX : if

YKX
is o X Ê X and �k�k� and

Y  Ë is o  Ë L then Q �9Q X 4;6 6 <�� 6 8)��$L476 6 8
by the adaptation mechanism and where $L476 6 8 is given by (5.3). It is possible to update all
rules that fired � samples ago, but the rules to be updated could also be selected by using
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5.2 Fuzzy relations as associative memories 157

a certain threshold above which the support value of a rule should be: adapting the “most”
responsible rules. A simple example of the adaptation is show in figure 5.2. As can be
seen from the results, the performance improves in time because of the adaptation of the
elements of the look-up table and hence the rule consequents. In figure 5.3, the controller
function is shown after 1000 samples. The controller function was initially completely
“empty” (0 everywhere).

A similar adaptation scheme can be achieved from another point of view: extend Mamdani
rules to have multiple weighted consequents (see the example on page 113) and let the
adaptation mechanism change the weights of the rule consequents. Hence, similar results
can be obtained as when using the method described earlier in this section. This method
was described by Jager et al. (1991), van Kesteren (1991) and Jager (1992). A translation
of the reinforcement value $L476 6 8 to changes of the consequent weights is necessary.
The mechanism used is quite simple and an example of the adaptation of weighted rule
consequents is shown in figure 5.4. Because a fuzzy-mean defuzzification method is used,
the use of two weighted consequents is functionally equivalent to a constant numerical
consequent which equals the defuzzification of those two weighted consequents. Hence,
the result is the same as that obtained when using Sugeno rules, except that the user has a
limited set of symbolic consequents to choose from, although a combination of (weighted)
symbolic consequents is allowed. As stated in section 4.3.1, this can be seen as a trick, but
it can provide a way to (still) express rules linguistically. This also works the other way
around: after adaptation the numerical values in the look-up table can be translated into a
combination of two weighted fuzzy sets on the output universe, thus providing a linguistic
interpretation of the results after adaptation. Therefore, the multiple weighted consequents
are not necessary on the level of implementation, but can be used for “user-interfacing”.

5.2 Fuzzy relations as associative memories

A fuzzy relation can be seen as “describing” a relation between variables and it can be
used (i.e. the fuzzy relation) as associative memories (Harris et al., 1993). In this method
a fuzzy “system” is used both as a model and a controller at the same time. Suppose the
fuzzy model to be identified is based on rules like:

$ X : if

YKX
is o X L and

Y D is o D L then Q is Õ X
co

nt
ro

len
gin

ee
rs

.ir



158 Adaptive fuzzy control

X #
#

`yX # # Ù #P# X #P#P#

re
fe

re
nc

e,
pr

oc
es

s

time (s)

(a)X #
#

`yX # # Ù #P# X #P#½#

co
nt

ro
l

time (s)

(b)

Figure 5.2: Example of simplified self-organizing control. The simulated
process has the transfer function æ &�,�C�OÅ)� ` � {Aa>¬jO���I>x� . The sampling rate6 is > second and the adaptation is done by updating all rules that fired two
samples ago. The rules had initially j as their consequent.
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Figure 5.3: Controller function after adaptation ( >kj�j,j samples). It can
be seen that situations which have not yet been encountered, for example
( ���ÄÁLs B ���ê>x� , still have B �9�ëj as their corresponding table element
(numerical rule consequent).

j

>
~ �«Ù�s��

Q

Õ X Õ D Õ g

(a)
before adaptation

j

>
~ �«Ù�s��

Q

Õ X Õ D Õ g

(b)
after adaptation

Figure 5.4: Adaptation of consequent weights of rule with multiple weighted
consequents. The consequent of the rule is changed from “ Q is Õ X (20%), Õ D
(80%)” (a) to “ Q is Õ D (60%), Õ g (40%)” (b).
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This implies that the model is based on two inputs and one output. The membership
function of the fuzzy relation representing a set of these rules is represented by:

l�D  YKX s Y D s�Q:��� �ÌÚX W0X l�D L  YKX s Y D s§Q:� (5.11a)

� �ÌÚX W0X l m d ë L  Y&X � * l m à ë L  Y D � * l È L %Q0� (5.11b)

where other operators than the min operator for conjunction and implication are possible.
When a simple first-order process is considered, the following signals can be chosen:YKX

: control signal of � samples agoY D : process output at previous sampleQ : current change in process output

where � represents an appropriate approximation of delay times of the system, including
delay times caused by zero-order hold circuits. New data, represented by tuples  Y]X s Y D s�Q0� ,
can be “added” to the fuzzy model by updating the fuzzy relation C . Assume Ø is a fuzzy
relation, 3-dimensional in this case, constructed with new measured data:

Ø 476 6 8��-¤-�/.0.) YKX � Ô ¤-�/.0.) Y D � Ô ¤-�X.0.)ÉQ:� (5.12)

Only the elements of C which are “affected” by the new data Ø have to be considered.
Thus, for all non-zero elements l *  Y Õ X s Y Õ D s�Q Õ � in relation Ø , the corresponding elementsl�D  Y Õ X s Y Õ D s§Q Õ � of fuzzy relation C are updated according to:

l�D  Y Õ X s Y Õ D s�Q Õ �C�I¢NÚxÛK ? l�D  Y Õ X s Y Õ D s�Q Õ �§s l *Ü Y Õ X s Y Õ D s�Q Õ �M� (5.13)

where
? t 47jLsk>?8 is a forgetting factor. Now, the fuzzy relation C is constantly updated

and can be used as an associative memory. This method considers the fuzzy relation C
as a description of the “correlation” between

YçX
,

Y D and Q . In other words, constructing
a fuzzy relation C based on Q as a function of

YçX
and

Y D , but using the resulting fuzzy
relation C to infer a fuzzy representation of

YçX
when

Y D and Q are given. In other words,
using C as a fuzzy relation which is based on rules like:

$ X : if ÛY D is o D L and �Q is Õ X then

YKX
is o X L
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5.2 Fuzzy relations as associative memories 161

where ÛY D is the current process output, assuming �ê� > , or an estimation of the process
output over #� <�>x� samples when a delay time is assumed. A more concrete example of
such a rule is the following:

if the process output is high
and the desired process output change is positive large
then make the control signal positive medium

although the process identification was based on rules like:

if the control signal was positive medium
and the process output was high
then the process output change is positive large

This is known as causality inversion; sometimes referred to as linguistic inversion (Harris
et al., 1993). To apply this method, some type of reference model is needed, because
deriving a control action needs the process output and a desired process output change �Q .
When a delay time is considered, an estimation of future process outputs are necessary to
derive a control action.

In figure 5.5 a run is shown of this method applied on a first-order process. A second-
order reference model is used and no time delays are assumed. From figure 5.5, it can
be seen that, although the system starts with a relation l D  YKX s Y D s�Q:�E�Àj , the derived
control actions are able to control the process. Parts of the relation C which are not yet
filled in appropriately (for example, the glitches after the last step change) can cause high
frequencies in the control signal, which are undesired.

Now let us summarize some properties of this method. Besides providing an adaptive
controller, a process model which can be used for analyzing the process is also obtained.
It is clear that increasing the order of the model and thus of the controller results in the
exponential growth of fuzzy relation C since it is based on the relational approach. Suppose
this method is implemented by using discretized fuzzy relations where >,> discretizations
of each domain are used, then for a simple first-order process model to begin with >¬Æ,Æ+>
( �i>�> g ) elements are necessary to store relation C . Using a second-order process model,
which would probably be more appropriate for real problems, would require >J¾)Ãx¾0> ( ��>,> â )
elements to store C . Note that 11 discretizations for a universe is not so many and thus
the number of required memory elements given above is a rather optimistic estimation.

Another problem with this method, and probably the biggest objection to it, is the fact
that a causality inversion takes place. The application in the case of processes with either
no delay time or very small delay times can be done without much difficulties by using
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Figure 5.5: Experimental results using a fuzzy relation as associative memory:
process output (a) and controller output (b). The reference model is a second-
order system.co
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5.3 Adaptation by fuzzy supervisors 163

a suitable reference trajectory (see example in figure 5.5). However, when the process
has a considerable time delay (or system dynamics which can be modeled by a large time
delay), the control rules require a prediction of the process output over multiple samples.
This poses the need for a process model. Note that this principle is also used in predictive
control. If there is a “good” process model, adaptation methods which result in less severe
calculational effort and memory requirements can be used. The fuzzy relation C can also
be used to predict the process output, but this requires that relation C is already a good
representation of the process. Of course, different possibilities can be combined: first
using an existing model to predict future process outputs and then using the relation C
when it is “reliable” enough. The advantage of using the relation C is that this relation
can constantly be adapted to process parameter changes.

5.3 Adaptation by fuzzy supervisors

Besides the adaptation schemes described in the previous sections, another approach to
adaptation can be distinguished: adaptation of a controller by a supervisor. In the field of
fuzzy control different approaches to this type of adaptation are known. One possibility
is to have a fuzzy supervisor which adapts a conventional controller. In the next section
we will describe this method, where the conventional controller is a PID controller. More
generally, hierarchical fuzzy control can be considered, where the controller consist of
different modules: modules for direct control and modules to adapt other modules. An
example of such a hierarchical fuzzy controller is briefly described in section 5.3.2.

5.3.1 Fuzzy supervised PID-control

In this section we describe fuzzy supervisory PID control, where a fuzzy system is used
to supervise a conventional PID controller. Several examples of fuzzy supervisory PID
control can be found in literature and in the following we address the methods described
by Tzafestas and Papanikolopoulos (1990), van Nauta Lemke and De-Zhao (1985), van
Nauta Lemke and Krijgsman (1991) and Li, Bruijn and Verbruggen (1994).

Tzafestas and Papanikolopoulos (1990) describe an approach which they refer to as
“incremental fuzzy expert PID control”. The system consists of a conventional discrete
PID controller of which the proportional, integral and derivative gains, �Ò� , �=� and ��*
respectively, are changed by a fuzzy supervisor each sampling time. The method has been
developed to improve the characteristics of step responses with the idea that it should be
supplemental to existing industrial PID controllers. The controller parameters are at each
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164 Adaptive fuzzy control

sampling instant defined by:� Õ� 476+8������¤�@6 X ×ÝÜ �,�A476+8És B �A4;6+8-�� Õ� 4;6+8"���=���F6 D ×ÝÜ �,�A476+8És B �A4;6+8%�� Õ* 476+8 ��� * �F6 g ×ÝÜ �,�)4;6+8%s B �A4Ì6+8%�
where ÖSÞ �,�A476L8%s B �A476+8É� is the value obtained from a look-up table; � and B � are discretized
to be used as indices for the look-up table. The scaling parameters 6 X , 6 D and 6 g are used
to tune the adjustments to ��� , � V and � � , respectively. The look-up table contains the
knowledge used for adaptation and can be regarded as a nonlinear function of � and B � .
Hence, a similar controller function can be obtained by using Sugeno rules where the
consequents of the rules are “local” PID controllers. Since the look-up table is constant,
this method is in fact not adaptive in the sence that the control performance can be improved
over time.

In the article by Tzafestas and Papanikolopoulos (1990), several improvements obtained
when using this adaptation method are shown. An interesting point is that for the adapta-
tions of the parameters of the PID controller the same look-up table is used. This entails
that changes of the PID gains have the same sign (direction) when the scaling parameters6 X , 6 D and 6 g all have the same sign; in the experiments presented in their paper, 6 X , 6 D
and 6 g are positive. However, when supervising a PID controller, it is very well possible
that in a certain situation the proportional gain should be increased and the integral gain
should be decreased. In the following, a fuzzy PID supervisor is described which allows
these adaptations.

The fuzzy PID supervisor described by van Nauta Lemke and De-Zhao (1985) and van
Nauta Lemke and Krijgsman (1991) is also based on a fuzzy supervisor and a PID
controller, but in their scheme the fuzzy supervisor has a rule base in which the fuzzy
rules have consequents which address the gains of the PID controller. Hence, the fuzzy
supervisor has three “outputs”: B �\� , B � V and B � � which result in different parameters
of the PID controller each sampling instant:� Õ� 476 6 8n��� � � B � � 476 6 8� Õ� 4;6 6 8 ���=��� B �=��476 6 8� Õ* 476 6 8&����*Â� B ��*ª4;6 6 8
The inputs of the fuzzy supervisor are the error �A476 6 8 and its first difference B �A476 6 8 . The
controller scheme is shown in figure 5.6. In addition to the basic scheme, consisting of
a PID controller and a fuzzy supervisor, an auto-tuning module is used to optimize the
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5.3 Adaptation by fuzzy supervisors 165

fuzzy supervisor. This auto-tuning module uses rules which classify the behavior of, for
example, a step response to optimize the fuzzy supervisor. This classification is expressed
as a performance measure and optimization is used to improve the performance measure.
The optimization employs simulations. Hence, these adaptations of the fuzzy supervisor
are performed on a larger time scale than the adaptation of the PID controller. When
we consider the functionality of the controller scheme, without the auto-tuning module, a
similar controller function can be implemented by Sugeno rules, of which the consequent
is a “local” PID controller. However, this is no longer the case when different scaling of
the input universes are considered which is possible when for each parameter of the PID
controller a seperate rule base if used.

+

–
PID

controller

fuzzy
supervisor

auto-tuning

module

operator

process

B ����s B ���ks B ��*

Figure 5.6: Fuzzy PID supervisor as described by van Nauta Lemke and
Krijgsman (1991).

Adaptation schemes, where adaptation of a conventional controller is done each sampling
instant, can be approximated by Sugeno rules. The advantage of using a supervisor is the
fact that adaptations are expressed as changes of parameters of the conventional controller
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166 Adaptive fuzzy control

to be supervised, and these are directly derivable from the knowledge of an operator or
process engineer. This also implies easier maintainability of the rule base of the supervisor.
In case of Sugeno rules, local PID controllers have to be designed, which is less attractive
than identifying an “overall” PID controller with changes to the controller parameters for
certain situations.

Another interesting example of fuzzy supervisory control is the “expert supervisory control
system for cascade PID control” reported by Li, Bruijn and Verbruggen (1994). The
proposed control scheme is shown in figure 5.7. A pattern recognition module is used to
extract performance indices from reponses of the closed-loop system to set-point changes
and load disturbances. Additionally, test signals are used when the outputs of the master
and slave loops are in steady state. The supervisory module is a small expert system with
a fuzzy rule base, implemented by means of the RICE � software library (see appendix E
for details on RICE). The rule base contains rules for tuning the master PID controller,
rules for tuning the slave controller and rules to supervise the cooperation of the master
and slave loop tuning mechanisms.

+
–

master
PID

controller
+
–

slave
PID

controller

secondary
process

primary
process

expert supervisory
control system

� z �Ï�

Figure 5.7: Fuzzy expert suspervisory system for cascade PID control ac-
cording to Li et al. (1994).

	
Routines for Implementing C Expert systems.
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5.3.2 Adaptive fuzzy expert controller

A hierarchical adaptive fuzzy control system is described in this section. The system
has modules for direct control, a module for in-line adaptations and a module for on-line
adaptations by a supervisory module. The original system was based on classical sets
(Jager et al., 1991) and a “fuzzy” version was described by Jager, Verbruggen, Bruijn and
Krijgsman (1991) and Krijgsman (1993). In the following this hierarchical fuzzy control
system is described in detail.

The knowledge in the control system is divided in several knowledge layers, each having
its own specific task. Using these knowledge layers is primarily useful when applying the
progressive reasoning principle (Lattimer Wright et al., 1986; Broeders et al., 1989). See
also section 6.1.2 on this topic. In table 5.1 the tasks of the knowledge layers are given.
The inference session of a certain knowledge layer is started when the inference of the
“lower” knowledge layer is finished.

Table 5.1: Knowledge layers and their tasks in fuzzy expert controller.

layer task
1 perform classifications of the measurements
2 reach setpoint using error and error difference
3 reach setpoint according to reference behaviour
4 perform in-line adaptations of controller
5 perform on-line adaptations of controller

The hierarchical control system consist of a module to perform preprocessing (layer 1),
two direct control modules (layer 2 and 3) and two modules to perform adaptations (layer
4 and 5). The preprocessing module performs input filtering, pattern recognition to extract
characteristics of set-point responses, and (fuzzy) classifications of these data, which are
used in the higher layers. The relation between the control and adaptation modules are
shown in figure 5.8. In the following paragraphs the working of the layers 2 to 4 are
described.

Knowledge layer 2 is a basic fuzzy controller as described before in this thesis. The result
is a new control signal (or control signal change) based on the error and error change.
This is, in fact, a PI-like or PD-like fuzzy controller.

The behavior reference control module (layer 3) determines a control signal (change) based
on a predicted behavior and a reference behavior. This predicted behavior is determined
by a line through the current state ß 4;6 6 8 and the previous state ß 4;6 6 < 6 8 . The reference
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direct
control

B �� behavior
reference
control

behavior

in-line
adaptations

B �� on-line
adaptations

6 õ � � ô6 � ô �ø �

�
Figure 5.8: Fuzzy expert control system (Jager et al., 1990; Jager et al.,
1991; Krijgsman, 1993) with variables 6 õ � � ô (rise time), 6 � ô � (settling time),ø � (overshoot), � (error), B � (error change, first difference of error) and �
(control signal).

behavior is given by a line through the current state ß 476 6 8 and the origin (steady state) in
the phase plane. This line represents a first-order reference model, but note that this model
is different each sampling instant. This is the reason why this approach is referred to as
“behavior reference control” instead of “model reference control”. How the classification
takes place is shown in figure 5.9. Compare this control strategy to taking a bend with a
car at considerable speed: each moment the “ideal curve” is adjusted with respect to the
current/predicted behavior.

In-line adaptations (layer 4) are (possibly) performed each sampling time. It consists of a
zoommechanism, used to improve steady state control, of mechanisms to adapt the margins
of the behavior reference control module, and of a mechanism to achieve a constant steady
state value for the control signal in case of limit cycles. In addition to this, the margines
(fuzzy sets) of layer 2 and 3 are adapted, for example, by means of scaling.

Knowledge layer 5 is used for on-line adaptation and is, in fact, the only supervisory
module. Decisions of the knowledge base made in this layer are based upon the overall
behaviour of the system and therefore works on a time scale which is several times the
slowest time constant of the system. The on-line adaptations are performed to improve
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Figure 5.9: Classification of “behaviour” in phase plane
according to Jager et al. (1990).

the overall performance of the controller. To achieve this, detections and classifications
are made of the following characteristics of the step responses of the process: overshootø � , rise time (10-90%) 6 õ � � ô and settling time 6 � ô � . Additionally, the delay time 6g� is used.

The above-described hierarchical adaptive fuzzy control system is able to control various
processes although a very simple (almost none) process model is required. Nonlinear
processes as well as non-minimum phase processes can be controlled satisfactory after
adaptation (Jager et al., 1990). Experimental results have shown that fuzzification of
the expert system improves the performance of the control system (Jager et al., 1991).
Implementations have been done in DICE � (Krijgsman et al., 1990; Krijgsman et al., 1991;
Krijgsman and Jager, 1993a) and RICE (see appendix E).

	
Delft Intelligent Control Environment.
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5.4 Gradient-descent adaptation

More and more references to “fuzzy neural networks” or “fuzzy-neuro systems” can be
found in literature. Only a few really use neural networks which are initialized by a
fuzzy rule base. One example is the work of Horikawa, Furuhashi and Uchikawa (1993)
which translates a fuzzy system into a neural network and use this neural network to
learn a model. Most of the publications on fuzzy neural networks address adaptation of
fuzzy systems based on a gradient-descent adaptation method for optimization. However,
gradient-descent adaptation (optimization) is not specific to neural networks. Several
authors have applied gradient-descent adaptation methods to fuzzy systems. What those
methods have in common is that they minimize a similar objective function å as is done
in case of the learning rules in neural networks, as well as in many other gradient-descent
optimization methods:

å � XD %Q�<ä�Q0� D (5.14)

where �Q is the reference for the fuzzy system output Q . In the following subsections,
these methods are described and discussed. It should be noted here that only one-layered
systems are considered; no chaining of rules is assumed, just as in the previous chapter
on fuzzy controllers. This is usually not the case in the field of neural networks, where in
many cases multi-layered systems are used. An example of a multi-layered fuzzy system
which is adapted by means of back propagation of errors is described by Uehara and Fujise
(1993). This approach is not described in this section since the method is based on fuzzy
truth values which is beyond the scope of this chapter. Fuzzy truth values are addressed
in the next chapter. In this section we focus on fuzzy systems which are comparable
to the fuzzy controllers as described in the previous chapter. It should be noted that the
application of “fuzzy neural networks” is primarily in the field of modeling. However, this
modeling is not restricted to the modeling of a process, but can also include the “learning”
of the control behavior of a working controller, for example, a human operator.

5.4.1 The basic adaptation scheme

The first methods for adaptation (often called learning in this field) were rather basic.
The fuzzy systems were in fact more regarded as simple neural networks, than as fuzzy
systems reflecting human knowledge. A well known reference from literature is the work
of Nomura, Hayashi and Wakami (1991). They consider triangularly-shaped membership
functions for the inputs, Sugeno rules with constant consequent and the product operator
for conjunction. The implication function is an arbitrary T-norm, because of the use of
Sugeno rules and fuzzy-mean defuzzification. The rules have the following form:
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5.4 Gradient-descent adaptation 171

$ X : if

Y X
is o X Ê X and �k�k� and

Y V
is o V Ê X and �k�k� and

Y �Ë is o��Ë Ê X then Q � þ X

j

>

É Rpë L ` � Rpë LD R V Ê X É Rãë L â � Rpë
L
D

~ ��å>æÙ�-� ç�
Y0V

Figure 5.10: Membership function used by Nomura et al.
(1991) in gradient-descent adaptation of fuzzy system. Note
that the parameters R V Ê X and � V Ê X are related to rule $ X .

The membership functions are symmetrical and triangularly-shaped and thus characterized
by their center R V Ê X and support � V Ê X . Such a membership function is depicted in 5.10.
Minimizing error function (5.14) leads to the following adaptation rules:

B R V Ê X � Å)� É ü X 0�Q�<FQ:�§ þ X <FQ0�P� � ¥� Y0V <FR V Ê X ��ÌUX ä W0X ü X
ä � V Ê X l m Rpë L  Y:V � (5.15a)

B � V Ê X � �¾� ü X 0�Q�<wQ:�§ þ X <FQ:�§a>Ü< l m Rpë L  Y0V �a��ÌUX�ä W0X ü X ä � V Ê X l m Rãë L  Y0V � (5.15b)

B þ X � � Ê ü X 0�Q�<FQ0��ÌUX ä W0X ü X�ä (5.15c)

where � É , � � and � Ê adaptation (learning) factors for R V Ê X , � V Ê X and
þ X respectively, and�Q is the reference for output Q . The adaptation according to (5.15) has been extended by

Guély and Siarry (1993) for a number of cases:
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172 Adaptive fuzzy control

� asymmetric triangular membership functions;� min operator for and connective instead of product operator;� non-constant consequents: standard Sugeno rules with linear functions of the inputs
as consequents.

The adaptation of the membership functions of the fuzzy sets is based on a local error
for each fuzzy rule. Initially equal fuzzy sets in different rules are adapted independently
as if they were different fuzzy sets. However, the fact that the relations between fuzzy
sets on the same universe of discourse are not accounted for in the update rules enables
shifting of fuzzy sets along the universe of discourse, regardless of their linguistic meaning.
Summarizing, the following can be concluded about this method:� Initially equal membership functions can differ after adaptation, thus membership

functions lose there linguistic meaning. For example, “small” has different mem-
bership functions in different rules, although defined on the same domain. The
“swapping” of membership functions is possible, so logical interpretation can be
lost after adaptation. For example, “small” in one rule can become bigger than “big”
in another rule.� The adaptation can cause a complete rule base on the linguistic level (see also
section 3.2.5) which is incomplete on the numerical level (compare also section
4.6.3). In that case the adaptation results in fuzzy sets for an input which do not
cover the complete universe. Typical for gradient-descent adaptation according
to the above-given method is that discontinuities of the function to learn result in
non-overlapping fuzzy sets (Guély and Siarry, 1993).

Considering these conclusions, it is clear that this method can lose linguistic interpretation
of the rules after adaptation. Hence, if it is necessary to obtain a linguistically interpretable
rule base after adaptation, this method is less attractive. Note that this does not mean that
this method does not work properly; in literature, successful use of this learning method
or similar methods has been reported by many authors, among which, Ishibuchi, Nozaki
and Tanaka (1993), Chien and C.C.Teng (1993) and Jang (1993). In the following section
the learning rules are modified to meet certain restrictions.

5.4.2 Restrictions on adaptation

A modification of the adaptation as described in the previous section has been reported
by Bersini, Nordvik and Bonarini (1993). This FUNNY � system relates membership	

FUNNY is an acronym of fuzzy and neural network.
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5.4 Gradient-descent adaptation 173

functions to the universe on which they are defined. In other words, fuzzy sets keep
the same linguistic meaning in all rules: for example, “small” in one rule is the same as
“small” in another rule when they are defined on the same universe of discourse. However,
the other disadvantage noticed about the method according to Nomura et al. (1991) is not
eliminated: after adaptation blank spots on a numerical level can occur. In figure 5.11, a
membership function is depicted as used by Bersini et al. (1993). Note that the parameters
defining these membership functions are not related to the 6 � � rule, but to the

V � � fuzzy
set on the universe of discourse of variable

Y&V
.

j

>

É Rpë ¯ ` � Rpë ¯D R V Ê © É Rpë ¯ â � Rpë ¯D
~ � å æè� � ç�

Y0V
Figure 5.11: Membership function used by Bersini et al.
(1993) in gradient descent adaptation of fuzzy system. Note
that the paremeters R V Ê © and � V Ê © are related to the

V ! = fuzzy
set on the W ! = input universe, not to rule $ X as in figure 5.10.

Because the membership functions are not “related” to the rules but to the universe
on which they are defined, minimizing error function (5.14) leads to slightly different
adaptation rules than (5.15):

B R V Ê © � Å)� É 0�Q�<wQ:� |}~  ® Rpë ¯UX W0X ü X þ X <FQ  ® Rpë ¯UX W0X ü X
�&�
� �áé B  Y0V <FR V Ê © ��ÌUX W0X ü X � V Ê © l m Rãë ¯  Y:V � (5.16a)
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174 Adaptive fuzzy control

B � V Ê © � �¾�?È�Q�<FQ0� |}~  ® Rpë ¯UX W0X ü X þ X <FQ  ® Rpë ¯UX WHX ü X
�&�
� M>�< l m Rpë L  Y0V �M��ÌUX WHX ü X � V Ê © l m Rpë ¯  Y0V � (5.16b)

B þ © � � Ê ?ê ¯UX W0X ü�X 0�Q�<FQ:��ÌUX W0X ü X (5.16c)

where � É , �¾� and � Ê adaptation (learning) factors for R V Ê © , � V Ê © and
þ © , and �Q is the reference

for output Q . Note that 6@��>,s �k�k� s ¨ Ê ¯ refer to all rules that have
þ © as consequent and6¤�i>,s �¬�k� s ¨ m Rpë ¯ refer to all rules which have o V Ê © in their premise. This method optimizes

the fuzzy sets related to a universe, not the fuzzy sets related to a rule. Although this method
yields results that are more related to a linguistic representation than the method according
to Nomura et al. (1991), still the problem of possible blank spots on the numerical level
due to nonoverlapping fuzzy sets remains. In the next section, a method is presented
which eliminates this problem by maintaining fuzzy partitions on the input universes.

5.4.3 Maintaining fuzzy partitions

In the previous section we discussed the learning rules according to Bersini, Nordvik and
Bonarini (1993), which obviates the ambiguous meaning of fuzzy labels, for example,
after adaptation, “small” has the same meaning in all rules. However, the possibly
resulting blank spots in the input-output mapping was not eliminated by their method.
In this section, an adaptation method is given which maintains fuzzy partitions on the
input universe(s). To achieve this, triangular-shaped fuzzy sets are used and, hence, the
support of a fuzzy set is determined by the centers of adjacent fuzzy sets (see figure 5.12).
This ensures that the fuzzy sets on a universe of discourse always form a fuzzy partition,
keeping the sum of the membership functions equal to 1.

The learning algorithm could be seen as the gradient-descent adaptation of a look-up table,
of which not only the elements are adapted, representing the rule consequents

þ X , but also
a (nonlinear) mapping of the index vectors of the look-up table. The index vectors contain
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j

>

R V Ê © `LX R V Ê © R V Ê © â0X
~ �Wå æè�-� ç�

Y0V
Figure 5.12: Membership function used by modified
gradient-descent adaptation of fuzzy system: maintaining
fuzzy partitions on input universe(s).

the centers R V Ê © of the membership functions. The learning rules are:

B R V Ê © �

8999999999999999999999999: 999999999999999999999999;

� É %Q�<ë�Q:�ÉR V Ê © <¿R V Ê © `LX � ËÍÎ l�m Rpë ¯  Y V �l�m Rpë ¯ cxd  Y V � �®
Rpë ¯ cxdUX ä W0X ü X ä  þ X ä <FQ:�

<  ® Rpë ¯UX ä W0X ü X�ä  þ X
ä <FQ0� ÏÒÑÓ s if R V Ê © `LX � Y0V �IR V Ê ©� É %Q�<ë�Q:�ÉR V Ê © <¿R V Ê © â0X � ËÍÎ l m Rãë ¯  Y0V �l m Rpë ¯cì d  Y:V �  ® Rãë ¯Cì dUX�ä WHX ü X ä  þ X ä <FQ0�
< �® Rpë ¯UX ä W0X ü X ä  þ X ä <FQ0� ÏÒÑÓ s if R V Ê © � Y0V ��R V Ê © â0XjLs otherwise

(5.17a)

B þ X �G� Ê ü X ÉQ�<��Q0� (5.17b)

where � É and � Ê are adaptation (learning) factors for R V Ê © and
þ X , and �Q is the reference

for the output Q . Note that 6 �ê>�s �k�k� s ¨�m Rãë ¯ refer to all rules which have o V Ê © in their
premises. Like the previously described methods, additional restrictions are necessary to
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176 Adaptive fuzzy control

prevent the swapping of fuzzy sets. In this case the centers of fuzzy sets can be swapped
and adaptation should be restricted by maintaining:R V Ê X � R V Ê D � �k�¬� � R V Ê  ® R (5.18)

where ¨ m R is the number of fuzzy sets for the W � � input universe. This is important when
the fuzzy system is represented by a (look-up) table and the “inference” is performed by
interpolation. In appendix C, the complete derivation of this adaptation method is given.
The main characteristic of this method is that it optimizes the fuzzy partitions on the
input universe(s), not the fuzzy rules. This entails that blank spots, for example due to
discontinuities in the function to learn, are not possible.

5.5 Comparison with other “learning” systems

In literature, there are a number of publications which discuss the resemblance between
adaptive fuzzy systems and other adaptive (or learning) single-layer feedforward systems.
Examples of these systems are the radial basis function network (RBFN) and the cerebellar
model articulation controller (CMAC). The similarities and differences between these
systems and fuzzy systems are discussed in the following subsections. Here we do not
focus on the adaptation or learning method, but on the functional equivalence between the
different systems.

5.5.1 Relation to radial-basis function networks

This section contains a comparison of a fuzzy system (controller or model) with a radial
basis function network (RBFN). A radial basis function network performs a mapping from
inputs ^ to output Q by means of radial basis functions í X :

Q"�S\nÉ^«���  ÌUX W0X w X0í�X ïî�^ <ð£ X îk� (5.19a)

� �ÌUX W0XXw X í X &$ X � (5.19b)

where £ X is the center of radial basis function íáX and $ X �ñî ^¿<�£ X î is the distance of
input data ^ from center £ X . For a detailed description of RBFNs see the work of Brouwn
(1993). To make the comparison of a one-layered (without chaining of rules) fuzzy system
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5.5 Comparison with other “learning” systems 177

with a RBFN is trivial when it is noticed that both have a one-layered structure and use
a weighted sum to obtain the output(s) (Krijgsman, 1993). When we consider a fuzzy
system with Sugeno rules (see also section 4.3.2) with constant consequents:

$ X : if

YKX
is o X Ê X and �k�k� and

Y  Ë is o  Ë Ê X then Q is
þ X

then the output of the system, obtained by a weighted sum (like fuzzy-mean defuzzifica-
tion), can be written as:

Q"�S\nÉ^«��� �ÌUX W0X
8: ;  ËêV W0X l m Rpë L  Y:V � q st þ X ÌUX W0X �ËêV W0X l m Rpë L  Y:V � (5.20)

To make the two systems equal, there are some restrictions to be met for both methods.
When identifying these restrictions it should be noted that the radial basis functions
operate on î ^¿<ò£ X î , while the membership functions operate on one of the ¨ } input
universes. When the premise of a rule is constructed as a relation, a Cartesian producto X Ê X Ô |k|k| Ô o  Ë Ê X based on the product operator, the resulting relation should be a function
of î_^u<ó£ X î . Hence, the relation between the membership functions and the radial basis
functions can be given by: ËêV3W0X l m Rãë L  Y0V �C� í X ïî ^¡<ð£ X îk� (5.21)

A trivial solution for (5.21) is to choose the membership functions as:

l m Rpë L  Y0V ���OR Ð � R ` ! Rpë L Ñ àáôw� LX (5.22)

since the product of these functions will give: ËêV3WHX l m Rãë L  Y0V �Ý�  ËêV3W0X R Ð � R ` ! Rpë L Ñ àHô'� LX (5.23)�9Rxõ 1 ËRÒö d Ð � R ` ! Rpë L Ñ àHô'� LX (5.24)�9R�÷ ^ ` £ L ÷ àHô'� LX (5.25)
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j

>

" V Ê X s	£ X~ � å æÙ� ��ùø
úHû�Cü�

Y s3$
(a)

l m d ë L � m à ë L  YKX s Y D ��s í X &$,�
j
>

Y X Y D
(b)

Figure 5.13: Gaussian radial basis function í X &$,� with center £ X or fuzzy
set o V Ê X with center " V Ê X is shown in (a). A 3-dimensional plot is given in (b):$��Fî�^ <ð£ X î D .

which can be regarded as a radial basis function that, with $ X �ñîÜ^¡<ý£ X î , is defined by:í X #$,�Ý�9R � àL ôw� LX (5.26)

A well-known example is the Gaussian radial basis function, shown in figure 5.13:í X #$,�Ý�S�kÛ+��a<�$ DX {0þ D � (5.27)

Hence, R X and � X are the same for all radial basis functions: R X �À� and � X �ê<ÿþ ` D .
The resemblance between a fuzzy system based on Gaussian membership functions and
an RBFN based on Gaussian basis functions has already been reported by Jang and Sun
(1993), but other functions are possible as long as (5.21) is satisfied. More specifically,
considering (5.21), it can be noted that the membership functions are required to have
unbounded support. The membership functions defined by (5.22) have unbounded support,
but are not defined to be convex or not. The membership functions will be convex when� X � j . With respect to the corresponding RBF, this means that its value tends to zero
outside the region where the function is centered. This property is normally desired when
using RBFNs, because RBFs without this property may grow to infinity and cause stability
problems (Brouwn, 1993).
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5.5 Comparison with other “learning” systems 179

Thus far, only the “weights” of the weighted sum, which is performed by both, have been
considered. When considering the output, it follows from (5.19), (5.20) and (5.21) that:w X � þ X ËÎ �ÌUX ä WHX  ËêV3W0X l m Rãë L ä  Y:V � ÏÓ

`yX
(5.28a)

� þ X�� �ÌUX ä W0X í�X
ä #$ X�ä ���
`yX

(5.28b)��� X þ X (5.28c)

and thus the weights
w X in an RBFN correspond to weighted consequents � X þ X of the

rules in the fuzzy system. The weights � X are not constant, but depend on ^ . Hence, the
translation of a fuzzy system based on Sugeno rules, given by:

Q"�S\nÉ^«���  ÌUX W0XXw X í X &$ X ��ÌUX W0X í�X #$ X � (5.29)

differs from the original RBFN algorithm (5.19). This means that
w X are functions of ^

and thus the learning rules for RBFNs are no longer valid. To choose
w X � þ X will cause

the membership functions problems, since
w X � þ X would result in the restriction: ËêV3W0X l m Rãë L  Y0V �C� í�X &$ X ��ÌUX
ä WHX í X ä &$ X ä � (5.30)

which does not have a straightforward solution for l m Rpë L  Y0V � . In fact, two contradicting
criteria can be defined. On the one hand the fuzzy sets on each domain should be a fuzzy
partition, resulting in the denominator in (5.29) being equal to 1, resulting in

w X � þ X . On
the other hand, the fuzzy sets should have unbounded support to fulfill (5.21). Concluding
the comparison of RBFNs and fuzzy systems, we can state that fuzzy systems are not
equal to RBFNs, although the similarities between the two approaches are obvious. The
main difference between a RBFN and a comparable fuzzy system is the normalization in
the fuzzy system by means of a weighted sum. Kecman and Pfeiffer (1994) refer to a
fuzzy system as a “Soft RBFN” as opposed to a (classical) RBFN in order to stress the
normalization by means of a weighted sum. When the normalization is also part of the
RBFN, the functional equivalence is obvious (Jang and Sun, 1993).
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180 Adaptive fuzzy control

Because of the similarities, one can think of a fuzzy system which is used to initialize
an RBFN. The RBFN can then be adapted by using the adaptation methods available
for RBFNs. This provides a mechanism to initialize the RBFN with already available
knowledge. Now the question arises as to whether it is possible to translate a RBFN into
a fuzzy system? In this case each radial basis function has to be translated into a fuzzy
rule, where the projection of the radial basis function on the input universes can be used to
obtain the fuzzy sets for each rule. The problem, however, is how to obtain the consequent
of the fuzzy rule. Simply taking

w X from the RBFN is not sufficient since these values are
obtained by the learning rules based on (5.19), while the fuzzy system is based on (5.29).
Hence, a direct translation is not possible, but the radial RBFN can be used to extract a
rule base. In that case, the consequents of the rules have to be computed from the valuesw X of the RBFN and an additional value to compensate for the influence of overlapping
RBFs. This assumes that the centers of the RBFs represent characteristic points of the
nonlinear input-output mapping. If the RBFN also incorporates the normalization as
discussed before, a translation to and from a fuzzy system is trivial, since in that case the
systems are functionally equal.

5.5.2 Comparison with generalized CMAC

In this section, a comparison is made between a fuzzy system (controller or model) and
the cerebellar model articulation controller (CMAC), which was introduced by Albus
(1975a,b) and used by many others for modeling or control (Krijgsman, 1993; Brown and
Harris, 1991). A brief description of the CMAC algorithm and a generalized version of
it can be found in appendix D; for those not familiar with CMAC, it is advised to read
this before continuing. In literature relations or similarities between and combinations
of CMAC and fuzzy systems have been described several times, for example, by Nie
and Linkens (1993) and Pedrycz (1993). In this section it is investigated whether these
similarities also induce (partial) equivalence.

Albus used a binary generalization function (also known as a kernel function) to generalize
the input vector of the CMAC algorithm. This generalization function can be seen as a
classical set. Hence, the generalization function can also be implemented by a fuzzy set,
as described, among others, by Brown (1990), Krijgsman (1993), Krijgsman and Jager
(1993b). The generalized version of CMAC allows generalization functions which are
not two-valued É\nÉ^ � t �xj+sk>��,� , but are real-valued in the interval 47jLsk>?8 (compare fuzzy
sets). We refer to this modified CMAC algorithm as the generalized cerebellar model
articulation controller (GCMAC). The rest of this section will assume GCMAC, because
this enables us to compare fuzzy systems and the (G)CMAC algorithm. The memory cells
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in the table are updated by:

"��A476��I>J8���"��A4;6+8+� ? í É^ 4;6+8%s�^	�x�K0�Q 4;6+8K<¿Q�476+8-� (5.31a)

Q�476+8 � 	
U� W0X í É^ª476+8És��̂�A476L8��'"���4;6+8�
U� W0X í É^�4;6+8%s§̂�A4;6+8�� (5.31b)

where éÒ�i>,s �k�k� s ¨ � is used to denote the input vectors within the generalization of ^�4;6+8
and:

"��A476+8 : é �M� memory cell in table at time 6 addressed by
generalization^ª476L8 : input vector at time 6^�� : input vector within generalization of ^Q�476+8 : output at time 6�Q�476+8 : desired output at time 6?

: learning factorí M|ø� : kernel function for generalization

When we regard the GCMAC table with memory cells as being a rule base, we can notice
that for every element in the table a rule exists, and due to the generalization of the inputs
the rule base has a great amount of redundancy: an input combination is covered by many
rules due to the great number of overlapping membership functions on the input universe.
As shown in section 4.6.1.2, the overlapping of more than two membership functions on
a universe will result in smoothening/filtering of the controller hypersurface. In GCMAC
this phenomena explicitly appears when the GCMAC system has learned one data point
with a learning factor equal to one. It seems reasonable that if the GCMAC is given that
same input, the learned output would be produced. This, however, is not the case because
of the “fuzzy” generalization of the inputs. In the following this will be shown.

For the learning of one data vector ^ with learning factor equal to > and assuming " © 47j�8��Oj
(and thus Q�47j�8��Oj ), this will result in:

" � 4ø>J8Ç� í %^Üs�^ � �U�Q (5.32)
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and the recall using the same input vector will produce:

Q�4ø>J8 � �
U� W0X í %^Üs�^��x�'"��A4ø>J8 
U� WHX í %^Üs�^��x� (5.33a)

�  
U� W0X í D %^Üs�^��x�U�Q	
U� W0X í É^Üs�^ � � (5.33b)

� �Q �
U� WHX í DkÉ^«s§^��x��
U� W0X í É^«s§^��,� (5.33c)

Hence, the recall will reproduce the learned output when the kernel function is a binary one í M|ø� t �xj+sk>��,� , since this entails í D a|3��� í M|ø� . In the case of “fuzzy” kernel functions
the reproduction Q�4ø>J8 of �Q does not equal �Q , as can be seen from (5.33), since í D M|ø� � í a|3� .
When the GCMAC table is sufficiently filled with learned data points, this can be seen as a
set of fuzzy rules with a lot of overlapping fuzzy sets and thus the consequents of the fuzzy
rules (data points) do not correspond with the actual output of the system. This system
which is highly interactive because of the (many) overlapping membership functions is
therefore closer to neural networks than a fuzzy system. A straightforward linguistic
interpretation is not possible.

Note that the above shown “differences” between a GCMAC system and a fuzzy system
does not lead to conclusions about the use of “fuzzy” kernel functions. Experiments
showed that the use of fuzzy kernel functions provide better learning capabilities than
binary kernel functions in many cases (Krijgsman and Jager, 1993b; van Kats, 1993).
However, this topic is beyond the scope of this thesis.

5.6 Conclusions and remarks

In this chapter, we have focussed on adaptive fuzzy control. Four main types of fuzzy
adaptive systems were considered. In the following we briefly summarize these types of
adaptive fuzzy control and give conclusions.
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Adaptive fuzzy controllers based on the self-organizing controller was proposed by Procyk
and Mamdani (1979) and is described in section 5.1. These controllers adapt the fuzzy
relation or rule base based on a “reinforcement” value derived from a performance measure.
The performance measure, mostly stored in a performance table, can be regarded as
an implicit reference model. The adaptation is local and hopefully results in global
optimization. A simplified method is based on the adaptation of (the elements of) a look-
up table and described in section 5.1.4. Inference is performed by means of interpolation
between the elements of this look-up table.

Adaptive fuzzy control according to the associative memory approach, described in section
5.2. In this approach a fuzzy relation is used to model the process and the same fuzzy
relation is used to derive control actions (causality inversion). The advantage of this
approach is that control can be improved and a process model is obtained at the same time.
It is important to note that in the case of delay times a process model is needed to estimate
future process outputs in order to derive the current control action.

Adaptation of controllers by fuzzy supervisors, for example, fuzzy supervised PID control
was described in section 5.3.1. Many systems consisting of a fuzzy supervisor and a
conventional control algorithm can be expressed as a fuzzy controller which is based on
Sugeno rules. However, this is less “user-friendly” that a conventional control algorithm
and a supervisor which supervises and adapts this controller. In section 5.3.2 a hier-
achical system was described where several fuzzy systems performed in-line and on-line
adaptations of direct and indirect controller parts.

Adaptation of fuzzy systems by means of gradient-descent optimization algortihms was
described in section 5.4. This type of adaptation is often used in the field of neural
networks and has led to the term “fuzzy-neuro systems” and “fuzzy neural networks”.
Many proposed learning rules will decrease the linguistic interpretability of the fuzzy
system after learning. Simplification of the learning rules which maintain fuzzy partitions
can prevent this (section 5.4.3).

In addition to describing and analysing the different approaches to adaptive fuzzy control,
comparisons were made with other learning systems: radial basis function network and
CMAC. It was shown that these systems are different from fuzzy systems in section
5.5, although they are similar and in some cases even functionally equivalent. The main
difference between a fuzzy system and an RBFN is the fact that normally no normalization
is performed in an RBFN. A GCMAC memory/table can be regarded as a rule base with
many rules which have overlapping premises (section 5.5.2). This overlapping of premises
yields a “filtering” of the control hypersurface as was shown in section 4.6.1.2.

Despite the different approaches and numerous publication on this topic, there are almost
no applications reported as far as we know. Applications of fuzzy controllers are numerous,
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see the previous chapter, but adaptive fuzzy control is probably not yet “accepted” like
fuzzy control is.
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6
Fuzzy logic in

knowledge-based
systems

The use of fuzzy logic in knowledge-based systems is addressed in this chapter. Con-
sidering the numerous applications of fuzzy control, one can state that it is a more or

less accepted type of control. However, applications of approximate reasoning or derived
reasoning schemes can barely be found in literature. In our opinion approximate reasoning
can provide a user-friendly knowledge representation and a reasoning method which can
model human reasoning in higher level expert systems. In the field of control, this entails
planning, scheduling and plant-wide supervision. To apply approximate reasoning in
these fields, (more) software tools should be developed and become available for industry.
For these reasons this chapter is part of this thesis.

Various approaches to reasoning based on fuzzy logic are described and discussed in this
chapter. Other uncertainty management systems, such as, for example belief functions �
(Shafer, 1976), Bayesian networks (Pearl, 1990) and the certainty factor model (Buchanan
and Shortliffe, 1984), are not addressed in this chapter. For comparisons of those methods	

For those familiar with belief functions: possibility distributions can be regarded as consonant plaus-
ability functions (Shafer, 1987).
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186 Fuzzy logic in knowledge-based systems

with possibility theory, the reader is referred to the work of Dubois and Prade (1990), who
have made extensive studies on the subject. Uncertainty management based on possibility
and necessity measures (see section 6.2.2) is not considered in detail. Also, fuzzy inference
schemes in which only discrete universes are considered, are not addressed in this chapter.

In this chapter, we focus on knowledge-based systems where reasoning is used for retriev-
ing (new) information from knowledge, represented by production rules, objects, frames,
etc., and data. An overview is given of different approaches to the application of fuzzy
logic in knowledge-based systems (for control). Besides describing proposed methods
from literature, problems and disadvantages are discussed, and possible solutions or im-
provements are suggested. Section 6.1 addresses knowledge-based systems and various
knowledge representations including some additional requirements in the case of appli-
cation of knowledge-based systems in real-time control. A summarizing section with
conclusions ends this chapter.

6.1 Knowledge-based systems for control

Today, the use of knowledge-based systems for control is growing gradually. In the
increasing complexity of high level control, for example plant-wide control, the need is
emerging for knowledge-based techniques (Verbruggen and Åström, 1989). Also in low-
level control, the proliferation of knowledge-based systems is increasing. Examples are
the applications of fuzzy control in consumer electronics and process control. Knowledge-
based techniques in low-level control do not eliminate the need for conventional control
methods, but add an alternative or supplementary technique which can provide a way to be
economically more “efficient”; in other words: a working control system for less money.
Knowledge-based techniques applied on higher levels, like supervisory and plant-wide
control, provide techniques to embed human knowledge and reasoning, and thus assist or
even (partly) replace human supervision.

In the following sections some characteristic knowledge-based techniques are discussed.
Also requirements of knowledge-based systems related to real-time control are addressed.

6.1.1 Knowledge representation

Knowledge-based systems, or more specifically, expert systems, have a knowledge base
which contains the knowledge of some specific domain. Roughly speaking, an expert
system consist of an inference mechanism, a knowledge base, containing the domain
knowledge, and a data base, containing the inferred data. Several types of knowledge
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6.1 Knowledge-based systems for control 187

representations are possible. In the following list we follow Mylopoulos and Levesque
(1984) who distinguish the following four types of knowledge representations (Luger and
Stubblefield, 1989) to which, if considered necessary, comments are added.

1. Logical knowledge representations represent knowledge by expressions in formal
logic. The best known logical representation scheme is first-order predicate logic.
The logical programming language PROLOG � can be used to implement logical
representations schemes. Fuzzy extensions of PROLOG are FPROLOG � by Martin,
Baldwin and Pilsworth (1987) and FRIL � (Baldwin and Zhou, 1984).

2. Procedural knowledge representations represent knowledge as a set of instruc-
tions for solving a specific problem. Production systems, based on if-then rules, are
examples of a procedural knowledge representation, since a rule can be interpreted
as a procedure to achieve a goal. The rule describes the procedure to perform
the following: solve the premise in order to solve the goal (consequent). Within
this class fall also the fuzzy controllers, as discussed in chapter 4. A well-known
rule-based system shell is CLIPS � and a “fuzzy version” is nowadays available as
FUZZYCLIPS (NRC/KSL, 1994). An extension of LISP � based on fuzzy sets and
logic is FLISP ÷ (Sosnowski, 1990).

3. Network knowledge representations represent knowledge by means of graphs
in which nodes represent object or concepts, and relations or associations between
those objects and nodes are embodied by arcs connecting the nodes in the graph. Ex-
amples of network representations are: semantic networks and conceptual graphs.

Semantic networks use nodes to represent concepts and arcs to represent relations
between concepts. The arcs are labeled to denote the relation between the nodes
which are connected by arcs. The first program implementing semantic networks
was reported by Quillian (1968).

Conceptual graphs are graph representations in which the nodes are either concepts
or conceptual relations (Sowa, 1984). The arcs in a conceptual graph are not labeled
and arcs can only connect concept nodes to conceptual relation nodes and vice versa.
This type of graph is close to semantic networks.

4. Structured knowledge representation schemes are extensions of the above de-
scribed network representation schemes. Nodes are extended to complex data struc-	

PROLOG stands for PROgramming in LOGic and was developed by Alain Colmeraurer and associates
at the University of Marseilles in the early 1970s.


FPROLOG stands for Fuzzy PROLOG.�
FRIL stands for Fuzzy Relational Inference Language.�
CLIPS is an acronym for C Logical Inference Production System.�
LISP stands for LISt Processing and was developed by John McCarthy in the late 1950s.�
FLISP stands for Fuzzy LISP.
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188 Fuzzy logic in knowledge-based systems

tures with identifiable slots with values, which can be numerical, symbolic, other
structures, procedures, etc. Examples of these types of knowledge representation
schemes are summarized in the following list.� Frames, which are a further development (and improvement) on semantic

networks (van de Ree, 1994). A frame describes an object or concept by slots
which consist of facets, and which on their turn have values. The concept of
a frame is close to or, better, included by, the concept of an object, which is
described further on.� Scripts (Schank and Abelson, 1977) describe a (standardized) sequence of
events for a particular domain. In natural language understanding, scripts are
used to organize a knowledge base in terms of a situation which is understand-
able by the system (Luger and Stubblefield, 1989).� Objects, as used in object-oriented programming languages, are data struc-
tures like frames, of which the slots can represents variables or procedures
(encapsulation). Relations between objects are represented through class hi-
erarchies (inheritance) and message passing between objects. Examples of
object-oriented languages are SMALLTALK (Goldberg and Robson, 1983), OB-
JECTIVE C � , C++ or object-oriented environments built upon LISP. Also the
programming language ADA is extended to provide object-oriented program-
ming techniques. Commercially available systems shells for real-time control
are, for example, G2 (Gensym Corporation) and COGSYS (COGSYS Ltd.).
In the field of fuzzy logic, only a few authors have reported work in this field,
for example, Leung and Wong (1992) and Rine (1991).

Although many approaches to knowledge representation can be distinguished, in this thesis
we mainly consider rule based knowledge representation. To restrict ourselves to rules
only does not limit the derived results from it, since many properties of the object-oriented
knowledge representation can be described by means of rules. In general, the methods
employed for inference of rules and object-oriented systems are similar with respect to
the underlying knowledge.

6.1.2 Real-time control requirements

The application of knowledge-based systems in a real-time environment requires extra
facilities. A real-time (expert) systems is subject to requirements concerning correct
results, but also concerning the time it takes to achieve these results. O’Reilly and
Cromarty (1986) state the following:	

Objective C is an object-oriented extension to the C programming language with many features from
SMALLTALK.
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6.2 Possibility theory 189

A hard real-time system is a system in which correctness of the solution not
only depends on the logical results of a computation or reasoning process,
but also depends on the time in which these results are produced.

If the system is an algorithm which has to be run on a computer, then the application of
faster hard- and software can solve many of the real-time requirements. However, when
the control system can be interrupted and real-time reaction is required, in addition to the
continuous performance of tasks, then the system should be able to solve conflicts in a
well-defined manner. In many systems, this is accomplished by giving priorities to tasks.

Another important aspect of real-time systems is the fact that information can change
over time. For example, measurement are updated every sampling time in a control
system. This requires that data structures include temporal information, and that the
inference mechanism is capable of reasoning about past, present and future of data,
using the temporal information of data structures. This is known as temporal reasoning
(Krijgsman, 1993).

Nonmonotonic reasoning is a type of reasoning which deals with data which loses its
validity due to some external event. This requires a so-called truth-maintenance system
(TMS), which updates the data base when necessary. The TMS keeps track of the
reasoning and dependencies between derived data, and is responsible for keeping the data
base consistent while the growth of the data base is nonmonotonic.

A reasoning mechanism which is specific to real-time expert systems is progressive
reasoning (Lattimer Wright et al., 1986). This reasoning mechanism is based on a layered
knowledge base. The inference proceeds layer by layer, and the knowledge should be
structured in such a way that the inference “higher” layer is based on the results obtained
by inference from a “lower” layer. Thus, the more knowledge layers that are inferred, the
more refined the results become. How many knowledge layers can be inferred depends on
the time available and the initial conditions. Hence, when there is little time, the obtained
results will not be “optimal”, but progressive reasoning is based on the assumption that
some result is better than no result at all. The application of this type of reasoning
is described by Jager et al. (1990, 1991) and an adaptive fuzzy control system based
progressive reasoning was described in section 5.3.2.

6.2 Possibility theory

An introduction to possibility theory is given in this section. This theory is based on
representing (un)certainty by means of possibility distributions. Possibility theory is
based on fuzzy set theory and was introduced by Zadeh (1978). Major research on this
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190 Fuzzy logic in knowledge-based systems

topic has been done by a number of researchers, among which, Dubois and Prade (1988)
and Yager (1983).

6.2.1 Possibility distributions

Zadeh (1978) introduced the concept of possibility distributions. Possibility distributions
are part of the theory of approximate reasoning (see section 6.3) and Zadeh (1981b) states
that the imprecision that is intrinsic in natural languages is, in the main, possibilistic rather
than probabilistic in nature. In the following subsections, the concept of a possibility
distribution, the relations to fuzzy sets and different interpretations of propositions and
their influence on possibility distributions are addressed.

6.2.1.1 The concept of a possibility distribution

In this section, the concept of a possibility distribution is explained. Possibility distri-
butions associate a degree of possibility with each element of the domain the possibility
distribution is defined on. Consider the proposition the ship is large. This proposition can
imply that we are talking about the length of the ship and is denoted by:� ���É� � £¦� �a��� large

where:��É� � £¦� � Ó the length of the ship

and C denotes the (fuzzy) restriction which is placed on the length of the ship; C should
not be confused with a fuzzy relation denoted by C in previous chapters. Thus, o a|ø� is
used to denote the implied property length of the ship and C a|3� denotes the restriction
which is posed on the length of the ship. To state this more formally, let us consider the
following proposition:�

is o
which induces a possibility distribution ��� that, by definition, is equal to the fuzzy set o ,
denoted by:� � � o (6.1)
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6.2 Possibility theory 191

This is known as the possibility assignment equation (Zadeh, 1981b). This possibility
distribution implies that the possibility of

� � Y
is given by the membership

Y
has in o :� �  Y � º� �K�)�a�J� � � Y � � l m  Y ��s Y�t p (6.2)

where l m  Y � is a membership function for linguistic label o and � �  Y � is the possibility
distribution function of possibility distribution ��� . This means that the possibility that� � Y

, is equal to the membership

Y
has in o . Further on in this section, we give

Dubois and Prade’s view (1991), which includes different interpretations of the possibility
assignment equation. When we consider the proposition the ship is large, from before,
then the following can be derived:� � �3���  Y ��� l·àÒG õ � ô  Y �
where � � �3���  Y � is the possibility distribution function and l2àÒG õ � ô  Y � is the membership
function of the fuzzy set large.

6.2.1.2 Fuzzy sets and possibility distributions

After the previous section, the reader is probably wondering what the difference between a
fuzzy set and a possibility distribution is. To clarify this consider the following (classical)
set Þ containing a number of valves:Þ �i�¢��Ú ÷ �)� X s
�,Ú ÷ �)� D �
When the valves connected to a certain pipe are considered, there is a difference between
the following cases:Þ Û � Þ s valves connected to the pipe� Û � Þ s valves possibly connected to the pipe

Hence, in the case of Þ Û , we know for certain that both valves are connected to the pipe,
and in the case of � Û , we know that the valves are possibly connected to the pipe. The
latter can even be interpreted in a way that only one of the two valves is connected to the
pipe (exclusive-or operator). This simple example shows that possibility distributions are
used to represent uncertainty.

Whether a fuzzy set can be interpreted as a possibility distribution is usually clear from
the context (Zadeh, 1981b). However, it should be stated that fuzzy sets can be used in
the following ways (Dubois and Prade, 1994a):
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192 Fuzzy logic in knowledge-based systems

� Fuzzy sets that model the gradual nature of properties. This is how fuzzy sets
discussed in the previous chapters were used. The higher the membership

Y
has in

a fuzzy set o , the more true it is that x is A. Here, the fuzzy set models the linguistic
uncertainty. Consider the fuzzy proposition the water level is high. Since there is
no unique definition of the linguistic label high, the fuzzy set used to model high
represent the uncertainty, or, better, ambiguity, of this linguistic label. When the
level is precisely known, the “truth” of the water level is high can be determined.� Fuzzy sets that represents incomplete states of knowledge, where the fuzzy set
is in fact a possibility distribution; see the possibility assignment equation (6.1) on
page 190. When considering that it is only known that x is A and thus

Y
is not

precisely known, then the fuzzy set o can be considered a possibility distribution:
the higher the membership l�m  Y Õ � , the higher the possibility that

Y � Y Õ
. Taking

the same example that was used previously, and only knowing that the water level
is high, the fuzzy set high represents a possibility distribution, since the higher the
membership l �3���&�  Y Õ � , the higher the possibility that the water level is indeed

Y Õ
.

Thus, on the one hand, fuzzy sets can be used to model linguistic uncertainty, on the other
hand fuzzy sets can be used to model an incomplete state of knowledge, in which case the
fuzzy sets plays the role of a possibility distribution (Dubois and Prade, 1994a).

6.2.1.3 Different interpretations of propositions

Recall the possibility assignment equation (6.1) given before. According to Dubois and
Prade (1991), one can distinguish two ways of specifying a possibility distribution, which
results in two derived versions of (6.1). They state that the proposition U is A can be
interpreted as:� �

is o is possible
This means that all values

Y
which are in o are completely possible:� Y¤t o s � �  Y �C��>

and the possibility of values

Y
outside o is unspecified. This lead to the inequality:� Y¤t p s l m  Y � � � �  Y � (6.3)

This is less restrictive than the possibility assignment equation (6.1) on page 190.
Here the membership function l�m  Y � is a lower bound of the possibility distribution
function � �  Y � . A possibility qualification which is not complete can be represented
by:
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6.2 Possibility theory 193�
is o is � -possible

When interpreted as it is at least � -possible that
�

is o , this leads to the following
restriction for the possibility distribution function:� Y¤t p s�¢¤£¦¥K l m  Y ��s � � � � �  Y � (6.4)

Note that the possibility qualification is numerical, for example,
gâ
-possible. If� �i> , the statement U is A is possible is obtained.� �

is o is certain
The proposition implies that values for

Y
outside o are impossible and thus:� YÂvt o s � �  Y �C�Sj

The possibility of values

Y
within o are unspecified and this leads to the inequality:� Y¤t p s l m  Y �C� � �  Y � (6.5)

An incomplete certainty qualification is represented by:�
is o is � -certain

resulting in the following restriction for the possibility distribution function when it
is interpreted as it is at least � -certain that

�
is o :� Y¤t p s�¢NÚxÛK l m  Y ��s¬>Ü< � ��� � �  Y � (6.6)

The proposition U is A is certain is obtained if � ��> .
Hence, the possibility assignment equation as in (6.1) can be interpreted as a special case,
representing a proposition x is A is possible and certain. This proposition restricts the
possibility distribution � �  Y � from below and above and thus:

see (6.3)x y
z {l�m  Y � � � �  Y � see (6.5)x y�z {� l m  Y �! � �  Y �C� l�m  Y � (6.7)

These different interpretations of a proposition are used in section 6.4.1, where different
interpretations, in terms of (conditional) possibility distributions, of if-then rules are
described. In the next section, the principles of minimum and maximum specificity are
explained. The two principles are opposite and are closely connected to the different
interpretations of a proposition.
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194 Fuzzy logic in knowledge-based systems

6.2.2 Possibility and necessity measures

In possibility theory, a measure of possibility � M|ø� and a measure of necessity (certainty)" M|ø� are defined. Assuming a Boolean proposition,

Y
is o , where o is thus a classical set,

and an actual state of knowledge represented by the possibility distribution ��#  Y � , these
measures are defined by:�  o ���O�P�0��k� m �$#  Y � (6.8a)"  o ���è£¦¥k¤�k� m M>Ü< �%#  Y �a�C��>�< �  o � (6.8b)

If we consider conjunctions or disjunctions of (Boolean) propositions, the following can
be derived:� 'Ñ V o V �C�I¢NÚxÛV �  o V � (6.9a)"  h V o V �C�I¢¤£¦¥V "  o V � (6.9b)

and also, although less restrictive:�  h V o V � � ¢¤£¦¥V �  o V � (6.9c)" 'Ñ V o V � � ¢NÚxÛV "  o V � (6.9d)

Only if o V are independent (subsets of different universes) the equalities in the previous
equations are valid. In figure 6.1, a simple example is given which shows that �  o X hCo D �_��  o X � h&�  o D � in the case where o X and o D are dependent.

To here, only Boolean propositions have been considered. When this is extended to the
fuzzy proposition

Y
is o , where o is a fuzzy set, the possibility and necessity measures

from (6.8) become:�  o ���O�P�0�� ¢¤£Ó¥K l m  Y ��s �%#  Y �M� (6.10a)"  o ���I£¦¥k¤� ¢NÚ�ÛK l m  Y ��sk>Ü< �%#  Y �M��i>Ü<F�P�0�� ¢¤£Ó¥KM>�< l�m  Y ��s � #  Y �M��i>Ü< �  o � (6.10b)
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j

�  o X �
�  o D �

�  o X héo D ��

Y
Figure 6.1: Example showing that �  o X hNo D ��� �  o X � h�  o D � if o X and o D are dependent.

Now, suppose a fuzzy proposition x is A and some data x is A’ with membership functionl m ä  Y � . Using (6.1) and (6.10) we can obtain:

�  o\P�o Õ �C�O�P�0�� ¢¤£Ó¥K l m  Y ��s l m�ä  Y �M� (6.11a)"  o\P�o Õ �C�I£¦¥k¤� ¢NÚ�ÛK l m  Y ��sk>Ü< l m ä  Y �a��i>ª<¿�P�0�� ¢¤£Ó¥KM>�< l m  Y ��s l m�ä  Y �a��i>ª< �  o[P�o Õ � (6.11b)

where  o\P�o Õ � is used to denote

Y
is o , given

Y
is o Õ . To summarize, note the following.

The possibility measure represents the matching between a proposition and the avail-
able information (data), the necessity measure represents the certainty of the proposition
considering the available information. These measures can be used to represent the match-
ing between propositions and data. As shown in section 6.4.1, these measures play an
important role in different types of rules and can be used in performing (local) inference.
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196 Fuzzy logic in knowledge-based systems

6.2.3 Principles of minimum and maximum specificity

In this section, the principle of minimum specificity and the principle of maximum speci-
ficity are described. In the previous section, two different interpretations of a proposition x
is A were discussed. The principles of minimum and maximum specificity are each meant
for one of the interpretations and are addressed in the following subsections.

6.2.3.1 Principle of minimum specificity

The principle of minimum specificity (Yager, 1983) states that the possibility distribution
that represents a combination of pieces of information from different sources, is given
by the least specific possibility distribution that satisfies the set of constraints induced by
those pieces of information (Dubois and Prade, 1991).

When we consider the proposition
�

is o , where o has the membership function l m  Y � ,
then any possibility distribution �'#  Y � � l m  Y � is allowed, but the least specific possibility
distribution is given by �'#  Y �Ü� l m  Y � . In section 6.2.1.3 this type of qualification was
denoted as

Y
is o is certain. Applying the principle of minimum specificity to a proposition

like

Y
is o is certain and Q is Õ is certain leads to the assumption that the joint possibility

distribution is given by:�%# Ê (  Y s�Q0� � ¢¤£¦¥K �%#  Y ��s � ( %Q0�a� (6.12)

since
� Q t Y s �%# Ê (  Y s�Q0� � �%#  Y � and

� YNt p s �$# Ê (  Y s�Q:� � � ( ÉQ:� . When the equalities
are valid, the variables

Y
and Q are noninteractive � (Zadeh, 1975), resulting in �'# Ê (  Y s§Q:���¢¤£¦¥  �$#  Y ��s � ( %Q0�a� .

When the variables

Y
and Q are interactive, then in fact � # Ê (  Y s�Q0� � ¢Ò£Ó¥K � #  Y ��s � ( %Q0�a�

for some values É�Çsº�:� , which does not mean that (6.12) is not correct, but that it gives an
upper bound of the possibility distribution ��# Ê (  Y s�Q0� and thus it might be less informative
than the “actual” joint possibility distribution.

6.2.3.2 Principle of maximum specificity

In the previous section, the principle of minimum specificity was explained for certainty
qualifications: x is A is certain (see section 6.2.1.3). If possibility qualifying propositions	

The noninteractivity in possibility theory plays the same role as independency in probability theory.
However, stochastic independency does not lead to bounding properties as noninteractivity does, since
stochastic independency assumes an actual absence of correlation while noninteractivity expresses a lack of
knowledge about the correlation (Dubois and Prade, 1991).
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6.2 Possibility theory 197

are considered, then the principle of minimum specificity is to be reversed and leads to
what Dubois and Prade (1991) refer to as the principle of maximum specificity. This
entails that the most specific possibility distribution which represent the proposition x
is A is possible is given by � #  Y � � l m  Y � , although any possibility distribution which
satisfies � #  Y ��� l m  Y � is correct. Considering the statement U is A is possible and V is
B is possible will lead to a joint possibility distribution given by:�%# Ê (  Y s�Q0�C��¢NÚxÛK �%#  Y �§s � ( %Q0�a� (6.13)

since
� Q t Y s �%# Ê (  Y s�Q0� � �%#  Y � and

� Yèt p s �%# Ê (  Y s�Q0� � � ( %Q0� . Hence, the
combination is performed in a union-like manner (Dubois and Prade, 1991). When the
variables

Y
and Q are noninteractive �'# Ê (  Y s§Q:�Ü��¢NÚ�ÛK �$#  Y ��s � ( %Q0�a� . When

Y
and Q are

interactive, this equality represents the upper bound for �# Ê (  Y s�Q:� , but is less informative
than the “actual” joint possibility distribution.

6.2.4 Rules and conditional possibility distribution

In possibility theory, an implication is considered to be a conditional possibility distribu-
tion. Consider the following rule:

if
�

is o then Þ is Õ
From this, a conditional possibility distribution � ( � # can be induced with conditional
possibility distribution function:� ( � #  Y s�Q0���Ô�� l m  Y ��s l È %Q0�a� (6.14)

where the fuzzy sets o and Õ are interpreted as possibility distributions. The implication� is a fuzzy implication as discussed in section 3.2.2.

In (6.14), an assignment is used and hence, the conditional possibility distribution� ( � #  Y s�Q:� equals the fuzzy relations representing fuzzy rules as described in section
3.2.2. This assumes the possibility assignment equation to be at work. However, in
section 6.2.1.3 we discussed how the possibility assignment equation can be loosened,
resulting in different interpretations of a proposition. Applying this in the case of rules
will result in different interpretations of rules and, hence, result in different restrictions for
the conditional possibility distributions representing the rules. Different interpretations of
rules are addressed in section 6.4.
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6.3 Approximate reasoning

The concept of possibility distributions was explained in section 6.2.1. Approximate
reasoning was introduced by Zadeh (1979) and can be seen as an application of possibility
theory: vague and imprecise knowledge is represented by possibility distributions. New
knowledge can be inferred by applying the rules of possibility theory in combination with
existing knowledge and data. This section describes the main aspects of approximate
reasoning as well as practical considerations.

The methodology of approximate reasoning can be regarded as the propagation of fuzzy
restrictions. Zadeh (1981b) defines a fuzzy restriction as follows:

a fuzzy restriction is a fuzzy set which serves as an elastic constraint on the
values that may be assigned to a variable. A variable which is associated
with a fuzzy restriction or, equivalently, with a possibility distribution, is a
fuzzy variable.

Various aspects of approximate reasoning are described in the following sections: differ-
ent types of reasoning, referred to as reasoning modes and different representations of
knowledge, referred to as translation rules.

6.3.1 Reasoning modes

Within the framework of approximate reasoning, Zadeh (1992) distinguishes different
modes of reasoning:

1. Categorial reasoning represents a reasoning mode in which the premises are fuzzy
propositions, but contain no fuzzy quantifiers like, for example, “most”, or fuzzy
probabilities like, for example, “likely”. An example is the following:

the level of tank 1 is high
the level of tank 2 is much higher

From this, a possibility distribution for the level of tank 2 can be derived by:� à ôsò'ô à Ð �\G&�*) D Ñ %Q0���O�P�0�� ¢¤£Ó¥K � à�+ E �ó�3���&� ô õ  Y s�Q0��s � à ôsòwô à Ð �^G&��) X Ñ  Y �M� (6.15)

where

Y
and Q denote the levels of tank 1 and 2, respectively. This is, in fact, the

composition of relations as described in section 2.4.2. There, an example is given,
which uses a relation approximately equal in combination with a fuzzy number.
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6.3 Approximate reasoning 199

2. Syllogistic reasoning enables inference in the case premises contain fuzzy quanti-
fiers. A well known example is (Zadeh, 1992):

most Swedes are blond
most blond Swedes are tall

from which it can be derived that:

most D Swedes are blond and tall

where most D represents an intensification of most, hence, a smaller proportion. This
intensification is not based on the type of intensification as used in the case of
hedges, but is based on fuzzy arithmetic. Considering most a fuzzy number on the
unit interval 47jLsk>?8 , most D is the square of most.

3. Dispositional reasoning underlies nonmonotonic and default reasoning. An exam-
ple is given by:

(almost all) birds fly

By means of dispositional reasoning it can be derived that, when it is known that an
animal is a bird, that this animal can fly to a high degree of certainty. In the field
of control, one could think of assumptions about the states of a process which are
considered true as long as they are not “proven” otherwise.

4. Qualitative reasoning � uses knowledge represented by if-then rules. Many exam-
ples of this type of reasoning can be found in literature, especially in the field of
fuzzy control (see chapter 4).

In expert systems, these different types of reasoning are normally not used, except the
qualitative reasoning mode. In systems based on classical logic, only based on true and
false, it is not possible to apply the various types of reasoning as listed above, since
they do not provide sufficient mechanisms to incorporate them. For example, the case of
dispositional reasoning requires the embedding of all exceptions of a default rule in the
knowledge base of the system, since there are only two possibilities: a bird does fly or
it does not. To allow exceptions to this, all exceptions should be listed. In approximate
reasoning, these different types of reasoning provide a better modeling of human-like
reasoning; this includes, for a great deal, natural language understanding, since reasoning
by humans is for a great deal based on imprecise and uncertain knowledge and data.	

The terminology qualitative reasoning should not be confused with the pure symbolic reasoning with
the same name proposed by Kuipers (1986).
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200 Fuzzy logic in knowledge-based systems

6.3.2 Translation rules

To translate statements in natural language into a system able to perform approximate
reasoning, Zadeh (1981b) distinguishes the following basic types of translation rules:

1. Modification rules, which modify the meaning of a fuzzy proposition. This is
basically the application of hedges as described in section 2.2 and is thus not further
addressed.

2. Composition rules, which are used to combine fuzzy propositions by means of and
and or. Also if-then statements fall in this category. This is what was described in
chapter 2 and 3 and is not further addressed.

3. Quantification rules, which are used to interpret statements , �
’s are o , where, is a fuzzy quantifier. An example is most chemical processes are hard to model,

where most is the fuzzy quantifier. This type of translation rule is discussed in
section 6.3.2.1.

4. Qualification rules, which are used for fuzzy propositions with an additional lin-
guistic qualification. Three types of qualifications are considered: truth qualifi-
cations ( �k�k� is true), probability qualifications ( �k�k� is likely) and possibility quali-
fications ( �¬�k� is possible). This type of translation rule(s) is described in section
6.3.2.2.

In the following two sections, the latter two types are discussed in more detail, since they
have not previously been addressed before in this thesis. This is because only the first
two, and mainly the second, are found in fuzzy control applications. The reason why
the latter two types of translation rules are addressed in this thesis is that they can be
usefull in “higher” levels of knowledge-based control systems, for example, plant-wide
supervisory control systems. In low-level direct control, where controller inputs and
outputs are numerical and no or little interfacing with humans is necessary, these two
types of translation rules are less usefull.

6.3.2.1 Quantification rules

Quantification rules are rules in which a fuzzy quantifier is used. The general form is as
follows:, �

’s are o
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6.3 Approximate reasoning 201

where , is a fuzzy quantifier, for example, most, few, etc. The representation of this
type of knowledge is based on the notion of the power of a fuzzy set, also known as the
cardinality a fuzzy set:� o"� � UxV l m  Y0V � (6.16)

provided the support of fuzzy set o is finite. The cardinality of a fuzzy set is used to
determine the proportion of o in

�
(Zadeh, 1981b):�0�M�,�� o { � ��� �Ìo-h � �� � � (6.17)

When the support of the fuzzy sets is not finite, a density function is needed to determine
the proportion:�0�M�,�� o �C�O� } þK Y � l m  Y �P' Y (6.18)

where þK Y � is a density function defined on p . The proposition , �
’s are o induces a

possibility distribution on the density function þK Y � , resulting in (Zadeh, 1981b):� Cþ0�Ý� l	- %� } þK Y � l m  Y �L' Y � (6.19)

where þK Y �P' Y is the proportions of
�

’s whose value lies in the interval 4 Y s Y �F' Y 8 .
Suppose the proposition most chemical processes are hard to model. Here the following
can be retrieved:, : most�

: chemical processo : hard to model

When a proposition like this is contained by the knowledge base, , can be seen as the
proportion of chemical processes that are hard to model:�0�M�,�� o { � ��� most

However, when the knowledge base contains the proportion of chemical process with
respect to processes in general, and the proportion of process that are hard to model with
respect to process in general, then a query “are chemical processes hard to model?” can
be evaluated by the expert system using (6.17). It is clear that this type of knowledge is
not the type that is used in direct control. Its place is in the higher levels of knowledge
within an expert system, for example, management and decision support systems.
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202 Fuzzy logic in knowledge-based systems

6.3.2.2 Qualification rules

In the following, qualification rules are described. Qualification rules are statements or
propositions which contain linguistic qualifiers. The following types can be distinguished:
truth-qualifying, probability-qualifying and possibility-qualifying statements, and they are
described hereunder.

Truth-qualifying statements
Truth-qualifying statements are propositions like

Y
is o is $ , where $ is a linguistic truth

value. Here $ can be seen as a fuzzy truth value. Fuzzy truth values (also referred to as
fuzzy truth qualifiers), are fuzzy sets defined in the truth value space (Zadeh, 1981b):

l � ���� t 47jLsk>?8És with � t 47jLsk>?8 (6.20)

Examples are fairly true, absolutely false, very true, etc. The fuzzy truth value true is, by
definition, given by:

l�� õ + ô ����C�I� (6.21)

When a statement like

Y
is o is interpreted as

Y
is o is true, then true is defined by

(6.21). The examples given in the paragraph above (like fairly true) can be represented
by �Â��
$x� ��� , where � is a linguistic modifier or hedge (see section 2.2 for hedges) or the
negation. The membership function of false is given by the negation of true:

l
ã G`à � ô -�.��� l����'� Ð � õ + ô Ñ �����i>Ü< l�� õ + ô -�.��i>Ü<¿� (6.22)

Hence, true and false are each others complement, which is intuitively correct. A statementY
is not o is $ , where $ is a fuzzy truth value, can be converted to

Y
is o is ant( $ ), where

ant( $ ) is the antonym of $ and is defined by (Zadeh, 1981b):

l G²��� Ð � Ñ ������ l � a>Ü<¿��� (6.23)

This means that a statement like x is not A is fairly true is not translated to

Y
is o is not

fairly true, but is translated to

Y
is o is ant(fairly true) resulting in

Y
is o is fairly false.

Note that when $ is true (false) in (6.23), the antonym equals the complement, resulting
in false (true).
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6.3 Approximate reasoning 203

When it is known that

Y
is o Õ then a fuzzy truth value $ m can be constructed so that

Y
iso is $ m “equals”

Y
is o Õ . The fuzzy truth value $ m is determined by (Zadeh, 1981b):

l?�%® -���Ý� 8: ; j0s if l `LXm -�����G°�½�0�� � l�m�ä  Y � �xl m  Y ���I�J�,s otherwise (6.24)

A common notation for l2�%® ���� is l m  o Õ � . However, when we know that

Y
is o is $ m , then

the principle of minimum specificity (see section 6.2.3.1) leads to (Zadeh, 1981b):

l m�ä  Y �C� l:� ®  l m  Y �M� (6.25)

This provides a method to express a proposition

Y
is o is $ m by a simpler proposition

Y
iso Õ .

Probability-qualifying statements
As fuzzy truth values can be used to perform truth qualifications of propositions, fuzzy
probability values can be used for probability qualifying statements. For example, it is
possible to use statements like

Y
is o is likely or, equivalently,

Y
is o is probable within

a knowledge base. Probability-qualifying statements (propositions) result in a possibility
distribution, acting as a fuzzy restriction, on the probability density function for a specific
event. Considering a general probability qualifying statement,

Y
is o is

?
, this possibility

distribution is defined by:

�  � �C� l�. 3 �e} l m  Y � �  Y �P' Y 7 (6.26)

where �  Y � is a probability distribution (density function) on p and l/. � 4;j+sk>J8   4;j+sk>J8 is
the membership function of the probability qualification

?
. An example is the statement

it is unlikely that the pressure is high, which will induce a possibility distribution on the
probability distribution of the proposition pressure is high:

�  � a|3�a�C� l0+ �LàG��) ô à ö 3 � } l �3���&�  Y � �  Y �P' Y 7 (6.27)

where the variable

Y
represents the pressure. In section 6.3.2.1 fuzzy quantifiers were

described. These fuzzy quantifiers are closely related to fuzzy probability qualifiers. For
example, considering the fuzzy quantifier most, we can assume lºà � � � Ó l àG��) ô à ö . This
makes it possible to interpret the statement most chemical processes are hard to model as
a probability qualifying statement it is likely that the process is hard to model if it is a
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204 Fuzzy logic in knowledge-based systems

chemical process, or more formally: if the process is a chemical process then it is hard to
model is likely.

When several probability qualifying statements are considered, it is possible to derive
the linguistic probability of another statement. For example, consider the following two
statements:Y

is o X is
? XY

is o D is
? D

and suppose we want to obtain the probability qualification in the statement

Y
is o is?

. Then the solution is obtained by solving the following variational problem, which is
obtained by means of the extension principle (Zadeh, 1981a):

l. s¡��Ý�S¢NÚ�Û� * l�. d 3 � } l m d  Y � �  Y �P' Y 7 * l. à 3 � } l m à  Y � �  Y �(' Y 7 + (6.28a)

subject to:

¡��9� } l m  Y � �  Y �P' Y (6.28b)

where ¡ is the numerical probability for the statement

Y
is o is

?
. It is obvious that, when

considering a number of probability qualifying propositions, the reasoning with this type
of knowledge is “difficult” to implement by means of a computer program in the case of
continuous universes. Hence, approximations by means of discretized universes are to be
used.

Possibility-qualifying statements
Besides the fuzzy truth- and probability-qualifying propositions, possibility-qualifying
propositions can be considered. Analogous to the use of fuzzy probability values, fuzzy
possibility values in a possibility-qualifying proposition induce a possibility distribution
on the possibility distribution for a variable:

�  � M|ø�M�Ý� l�1 3 �P�0�� ¢¤£¦¥  l m  Y ��s �  Y �M�`7 (6.29)

which corresponds to a proposition

Y
is o is þ and where þ is a fuzzy possibility value

with membership function l 1 a|3� and �  Y � is a possibility distribution on p . An example
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6.3 Approximate reasoning 205

of such a proposition is it is almost impossible that the tank is full, resulting in a possibility
distribution:�  � M|ø�M�Ý� l:G`à à � � �O� à �Ï� �\� �WÂLà ô 3 �½�H�� ¢¤£¦¥K l

ã + àWà  Y ��s �  Y �M� 7 (6.30)

where the variable

Y
represents the level of the tank and �  Y � is the possibility distribution

representing the knowledge about

Y
(the tank volume or level in this example).

Another approach to possibility-qualifying statements is based on numerical possibility
qualifications; see section 6.2.1.3.

6.3.3 Practical considerations

The basics of approximate reasoning have been previously described. Next we focus
on the practical applicability of approximate reasoning. More than a decade ago, Zadeh
(1981b) stated that:

In a decade or so from now - when the performance of natural language
understanding and question-answering will certainly be much more impres-
sive than it is today - it may well be very hard to comprehend why linguistics,
philosophers, logicians and cognitive scientists have been so reluctant to come
to grips with the reality of the pervasive imprecision of natural languages and
have persisted so long in trying to fit their theories of syntax, semantics and
knowledge representation into the rigid conceptual mold of two-valued logic.

However, although much research has been done since, there are barely any commercial
products which provide a tool for applying approximate reasoning in knowledge-based
systems. It is true that there are many software tools (and additional hardware like
“fuzzy” chips) for fuzzy control. However, those tools are merely based on a very
limited part of fuzzy set theory and approximate reasoning. � The question is: Why are
there no commercial expert system tools for applying approximate reasoning? When
we consider the first academic application of approximate reasoning, the PRUF � system
(Zadeh, 1981b), then examples show that, in these systems (intuitively) better modeling of	

The tools available for fuzzy control are based on what in chapter 4 was referred to as the “practical
approach” to fuzzy control. Most tools only provide means to use one of the standard inference schemes as
described in section 4.2.3.


PRUF stands for “Possibilistic Relational Universal Fuzzy” and was developed by Zadeh and co-workers
at the University of Berkeley.
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206 Fuzzy logic in knowledge-based systems

human reasoning and natural language is possible than in systems based on classical logic.
A good example given by Zadeh (1992) is the evaluation of a statement like “over the
past few years Naomi earned far more than most of her friends”. Evaluating a statement
like this using two-valued logic will result in either true or false. Using the concept of
approximate reasoning with different types of reasoning (section 6.3.1) and translation
rules (section 6.3.2) a statement like the example previously given can be evaluated more
intuitively and can, for example, result in “fairly true” or “absolutely true”, which are
probably more meaningful to humans than just “true” in either case.

However, a major problem in practice is the calculational load and memory requirements
when applying approximate reasoning. Many parts of the inference involve calculations
on product spaces with multi-dimensional functions (possibility distributions and mem-
bership functions). In cases where the universes are discrete, the calculational load and
memory requirements can be severe, but implementation is straightforward. In the case of
continuous universes one has to discretize the universes, resulting in loss of information,
or obtain analytical solutions, which is only possible for a limited number of restricted
cases (see, for example, section 6.4.2). This may be the reason that most types of fuzzy
reasoning are based on local inference and analogical reasoning, using conjunctions for
implications (see section 3.3.2), or reasoning based on similarity measures as described
in section 6.5.2.

6.4 Reasoning with possibility distributions

Reasoning with possibility distributions is described in this section. In section 6.2.1, the
concept of a possibility distribution was explained, and in section 6.2.4, how a rule can
be represented by a conditional possibility distribution was described. In the following
sections first different interpretations of rules are discussed and then the resulting modeling
by conditional possibility distributions. In section 6.4.2, a method is described which
“breaks up” the inference of a rule base under certain criteria.

6.4.1 Interpretation of rules

When we consider an if-then rule, it is obvious that this rule can be interpreted in different
ways. For example, a rule stating that if a ship is big, then its turning speed is slow
is normally understood to imply that the bigger the ship, the slower its turning speed.
However, a rule if a house is big then it is wanted does not automatically imply that
the bigger the house, the more it is wanted, because many people do not want a house
that is too big for their budget. From this, it can be concluded that rules represent more
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6.4 Reasoning with possibility distributions 207

knowledge than just a straightforward implication expressed by an if-then rule. Hence,
the interpretation of rules can be different, although they have the same if-then structure.
This implies that the modeling of rules with different meanings should be different in
approximate reasoning. Dubois and Prade (1991) distinguish three types of fuzzy rules:� Truth-qualifying or gradual rules. The if o then Õ rule in fact described a the

more o Õ is o , the more Õ Õ is Õ relation between the premise and the consequent
of the rule. An example of this is the well-known “tomato”-rule if a tomato is red
then a tomato is ripe, which actually represents the knowledge the more a tomato
is red, the more a tomato is ripe.� Certainty-qualifying rules represent knowledge which can be formulated by: the
more o Õ is o , the more certain Õ Õ is Õ .� Possibility-qualifying rules are the type of rules that are normally used in fuzzy
control. The rule if o then Õ represents the more o is o Õ , the more possible Õ Õ
is Õ . In section 6.4.1.4, the relation between this type of rule and fuzzy control is
explained.

In the following sections we go into more detail on the different types of rules.

6.4.1.1 Possibility-qualifying rules

Possibility-qualifying rules (or possibility rules for short) are modeled by a conjunction as
implication. The aggregation of a set of possibility-rules is done by using a max operation.
As shown in section 3.3.2.1, using a conjunction for the implication leads to a simplified
inference which eliminates the need for global inference, since the results from local
inference equal the results from global inference. Therefore, possibility rules are well
applicable in fuzzy expert systems, provided that they represent the meaning of the rules
they model.

Considering the general rule if

Y
is o then Q is Õ , the inferred Õ Õ is simply given by:l�Èóä %Q0�C�I�P�0�� ¢Ò£Ó¥K l�m�ä  Y ��s 2  l m  Y ��s l È %Q0�a�M� (6.31)

where 6 is the T-norm chosen to model the conjunctive implication. Since the implication
is modeled by a conjunction, o Õ � o does not result in Õ Õ � unknown.

Dubois and Prade (1992) state that the inferred possibility distribution for Õ is restricted
by: � ( � #  Y s�Q0�C��¢¤£¦¥K l m  Y ��s l È %Q0�a� (6.32)

co
nt

ro
len

gin
ee

rs
.ir



208 Fuzzy logic in knowledge-based systems

Hence, this leaves the min operation the only possibility for the T-norm used in (6.31)
when the principle of minimum specificity has to be fulfilled. However, this restriction
can be loosened for the fuzzy result from the inference, although the general idea of this
type of rule should be preserved: the inferred result is a restriction of the consequent of
the rule. Using another T-norm than the min operator in (6.31) is not in contradiction
with restriction (6.32), if we interpret the inferred result Õ Õ as Õ Õ is possible for Q , which
restricts the possibility distribution � ( %Q0� by:� ( ä ÉQ:�C� l È ä ÉQ:� (6.33)

This restriction is always valid since the result:

l È ä %Q0�C� 2  ü s l È %Q0�a� � ¢¤£¦¥K ü s l È ÉQ:�M� � � ( ä ÉQ:� (6.34)

In other words, the inferred membership function lÇÈóä ÉQ:� contains extra (subjective) in-
formation by choice of the T-norm, other than the min operator. The possibility rules are
the fuzzy rules which are normally used in fuzzy control. In chapter 4, fuzzy controllers
were discussed in detail. It was shown there that common choices for the conjunctive
implication are the min and product operation. This shows that fuzzy controllers can be
considered special cases of approximate reasoning: reasoning with possibility qualifying
rules. See also section 6.4.1.4 on this topic.

6.4.1.2 Certainty-qualifying rules

Certainty-qualifying rules (or certainty rules, for short) are modeled by S-implications
in approximate reasoning based on possibility distributions. The use of this type of rule
requires operations on Cartesian product spaces. The inference results in:

l È ä %Q0�C�I�P�0�� ¢Ò£Ó¥K l m ä  Y ��s < a>Ü< l m  Y �§s l È ÉQ:�M�a� (6.35)

The possibility distribution function � ( %Q0� is restricted by (Dubois and Prade, 1992):� ( ä ÉQ:� � ¢NÚxÛ0M>�< "  o\P�o Õ �§s l È ÉQ:�M� (6.36)

where
"  o\P�o Õ � is the necessity measure as defined by (6.10) and >)< "  o P§o Õ � is interpreted

as the uncertainty of
�

is o , knowing
�

is o Õ . This restriction on � ( ä %Q0� is the result of
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the restriction Dubois and Prade (1991) place on the conditional possibility distribution
representing the rule:� ( � #  Y s�Q0� � ¢NÚxÛKa>Ü< l m  Y ��s l È %Q0�a� (6.37)

However, this does not restrict the inferred membership function for Õ Õ , since:

l È ä %Q0��� � ( ä ÉQ:� (6.38)

when the inferred result is interpreted as Õ Õ is certain for Q . This provides more or less
a justification to use any S-implication for modeling certainty rules, but the problem of
calculus on Cartesian product spaces still exists when a set of parallel rules is considered.
The possibly extensive calculational load and memory requirements of this type of rule, is
a disadvantage for its use in fuzzy knowledge-based systems in the case global inference
is to be applied. To overcome the disadvantages of calculus on Cartesian product spaces,
a practical method could be devised which has a similar property: the less the data and
the premise of the rule match, the more uncertain the conclusion will be. However,
this approach is based on local inference with the disadvantage that the results are less
restrictive than they could be, based on the available knowledge; see also section 3.3.2.1.
In section 6.4.2, a solution to avoid the calculus on product spaces (under certain criteria)
is described.

Next, some approaches based on local inference are described. Prade (1983) proposed the
following general model for the modus ponens based on local inference:

l�Èóä %Q0�C� 89: 9; >,s if l È ÉQ:�C��>t 4Ì¢NÚ�ÛHa>ª< ü s l�È ÉQ:�M��sk>J8%s if j=� l È ÉQ:���O>>Ü< ü s if l È ÉQ:�C�Sj (6.39)

where ü represents a comparison between o and o Õ , namely a necessity measure. Magrez
and Smets (1989) proposed a special case of the above-given model by Prade (1983).
They state that the shape of indetermination criterion should be fulfilled by the modus
ponens in fuzzy inference � :

o Õ î o  2 ü t 4;j+sk>J8%s � Q t Y � l Èóä ÉQ:�C� <  ü s l È ÉQ:�M� (6.40)	
In their article Magrez and Smets (1989) state that none of the implications they consider, fulfill criterion

(6.40). Among the implications they checked is also the implication ð#� �Q¦kóU¯á¨ . Using this implication and
max-min composition will result in:í Í Q ð§l?ó�©�qsrutv mgnpoxð¦ía` Q ðhñ,ó'j½m����¬ð&���=ía`�ðZñ�ówj-í Í ð§lJó�ó-ó
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where ü represent the uncertainty due to the matching of the data and the premise of the
rule, which is a necessity measure (see section 6.2.2). This means that an indeterminationü (a level of uncertainty) is added to the whole universe

Y
by means of a T-conorm

(S-norm) and that the shape of o Õ should not influence the shape of Õ Õ . In other words: if
an indetermination should appear on the consequent, then that indetermination is allowed
for all elements of

Y
. Magrez and Smets (1989) state:

Indeed, there is no information in a material implication which could allow
us to assign different degrees of indetermination to different elements of the
conclusion domain. The implication rule is unable to constrain more some
subset of the domain than other for attributing ignorance.

This is correct when certainty rules are considered. However, in many cases if-then rules
represent more than an implication in the classical sense. Rules can, for example, in©�qsrutv m®���xð�m_npo,ð¦í ` Q ðZñ�ówj
���=í ` ðZñ�ó�ó'j½m_npoxðÓí ` Q ðhñ,ó'j�íaÍ�ðUlJó-ó�ó©�m����xð qsrJtv m_npo,ð¦ía` Q ðZñ�ówj
���=ía`�ðZñ�ó�ó'j½qsrutv mgnpoxð¦ía` Q ðhñ,ó'j�í Í ðUlJó-ó�ó©�m����xð qsrJtv m_npo,ð¦í ` Q ðZñ�ówj
���=í ` ðZñ�ó�ó'j�íaÍ�ð§l?ó-ó
which meets criteria (6.40), since it equals Ç ð^R�j�í Í ðUlJó�ó choosing S to be the max operation and:R�©�q½rutv mgn o�ð¦í ` Q ðZñ�ówj-í ` ðZñ�ó�ó
In addition, they state that using max- Æ Ł composition instead of max-min composition, will result in most
S-implications to meet the criterion which states that 3 should be inferred from b5463 and b . This is
true, but using max- Æ Ł composition in combination with Łukasiewicz-implication will also meet criterion
(6.40), since:í Í Q ð§l?ó�©�qsrutv TŁ

ð¦ía` Q ðZñ�ówjsmgn o�ð#���=ía` ðhñ,ó)÷=í Í ð§l?ó'j��Mó
©�qsrutv m®���xðÓí ` Q ðZñ�ó)÷¼m_npo,ð#����í ` ðZñ�ó+÷=íaÍnð§lJówj
�aók����j&�Jó©�m_npoxð&��j½qsrutv ð¦ía` Q ðZñ�ók�=ía` ðhñ,ó-ó)÷"í Í ðUlJó-ó

And this meets criterion (6.40) when S equals the conjunction according to Łukasiewicz and:R�©�q½rutv ðÓía` Q ðhñ,ók�=ía` ðhñ,ó-ó
Therefore the method proposed by Magrez and Smets in their article “Fuzzy modus ponens: a new model
suitable for application in knowledge-based systems” (1989) is functionally equivalent to the combination
of the Łukasiewicz implication and the max- Æ Ł composition.
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6.4 Reasoning with possibility distributions 211

addition to the basic implication, also represent some gradual notion (for truth-qualifying
or gradual rules, see section 6.4.1.3).

6.4.1.3 Truth-qualifying rules

In this section truth-qualifying rules, also referred to as gradual rules, are addressed.
Gradual rules if

Y
is o , then Q is Õ are interpreted as the more

Y
is o , the more Q isÕ (Dubois and Prade, 1992). The use of less instead of more requires the use of the

complements of the label in the propositions. For example, the less

Y
is o can be replaced

by the more

Y
is not o , where the membership function of not o is >ª< l m  Y � . A well-

known example of a gradual rule is if a tomato is red, then a tomato is ripe, which can
be interpreted as the more a tomato is red, the more a tomato is ripe. Hence, a tomato
which is very red can be considered very ripe. Two types of truth-qualifying rules are
distinguished by Dubois and Prade (1991):

� core-widening gradual rules, which interpret the rule if

Y
is o , then Q is Õ as the

more

Y
is o and the more Q is related to

Y
according to the rule, the more Q is Õ .� support-shrinking gradual rules, which interpret a fuzzy rule as the more

Y
is o

and the less Q is related to

Y
according to the rule, the less Q is Õ .

The following subsections address these two types of gradual rules in more detail.

Core-widening gradual rules
The core-widening gradual rules pose the following restriction on the conditional pos-
sibility distribution (Dubois and Prade, 1991):� Y�t p s � Q t Y sÝ¢¤£¦¥K l m  Y �§s �07 � �  Y s�Q0�a� � l È %Q0� (6.41)

The solution for the conditional possibility distribution ��7 � �  Y s§Q:� representing the rule,
is the restriction:

� Y�t p s � Q t Y s � 7 � �  Y s§Q:� � q >,s if l m  Y � � l È ÉQ:�l È %Q0��s otherwise (6.42)

and can be interpreted as if

Y
is o , then Q is Õ is at least lÇm  Y � -true. A closer look at

(6.41) reveals the use of an R-implication as defined by (3.11b), in which the T-norm is
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212 Fuzzy logic in knowledge-based systems

chosen to be the min operation. A generalized restriction for ��7 � �  Y s§Q:� could be obtained
by defining the conditional possibility distribution as:�07 � �  Y s�Q0�C�I�P�0�]�¢¡ t 4;j+sk>J8 �O2  l m  Y ��s�¡�� � l�È %Q0��� (6.43)

which is the definition of an R-implication (see (3.11b) in section 3.2.2 on page 50).
This restriction for � 7 � �  Y s�Q0� can be loosened to require that the conditional possibility
distribution is greater than or equal to an implication function based on partial ordering as
defined by (3.11):

�07 � �  Y s�Q0�C� 89: 9; >,s if l m  Y � � l È %Q0�j+s if l m  Y �C�G> *¤l È ÉQ:���9jt 4;j+sk>u �s otherwise
(6.44)

In section 3.3.2.1, it was explained that in knowledge-based systems local inference
is preferred, and calculus on product spaces should be avoided for obvious reasons.
However, in section 3.3.2.1, it was discussed that local inference can lead to results
being less restrictive in terms of possibility distributions than the results obtained by
global inference. Analytical solutions for local inference can be determined for many
implications which fulfill (6.43), but analytical solutions for the global inference of a set
of parallel core-widening truth-qualifying rules are not generally available.

Support-shrinking gradual rules
The support-shrinking gradual rules are characterized by the following restriction for
the conditional possibility distribution representing the rule:� Y�t p s � Q t Y sÝ¢NÚxÛKa>Ü< l m  Y �§s � 7 � �  Y s§Q:�M�C� l È %Q0� (6.45)

which results in the following solution for the conditional possibility distribution�07 � �  Y s�Q0� :
� Y�t p s � Q t Y s �07 � �  Y s§Q:� � q j+s if l m  Y ��� l È %Q0� � >l È %Q0��s otherwise (6.46)

This can be interpreted as if

Y
is o , then Q is Õ is at least M>=< lÇm  Y �M� -true. Like

inequality (6.41) can be obtained by swapping � 7 � �  Y s§Q:� and l È %Q0� in (6.32), we can
obtain a restriction for the conditional possibility distribution for support-shrinking gradual
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6.4 Reasoning with possibility distributions 213

rules by swapping �'7 � �  Y s�Q0� and l È ÉQ:� in (6.45), which results in (6.46). A generalization
for the restriction of � 7 � �  Y s�Q0� is defined by:�07 � �  Y s�Q0� � £¦¥k¤¬�¢¡ t 47jLsk>?8 �O< a>ª< l m  Y ��s
¡Ç��� l È ÉQ:�§� (6.47)

which in the extremes (only 0 and 1 are considered) equals the logical and operation. This
restriction can be loosened even more by requiring:

� 7 � �  Y s�Q0� � 89: 9; j+s if l m  Y ��� l È ÉQ:� � >>,s if l m  Y �C�G> *¤l È ÉQ:���r>tFý j+sk>J8%s otherwise
(6.48)

Clearly, the two-valued logical and operation falls in this class. Since support-shrinking
truth-qualifying rules are modeled by pseudo-conjunctions, the result of global inference
can be obtained by means of local inference. Considering a set of parallel rules of this
type, the inference can be done for each individual rule after which the results can be
aggregated by means of the max operator; see also section 3.3.2.1.

6.4.1.4 Fuzzy control rules in terms of rule types

Considering the results addressed in the previous sections, it is possible to describe fuzzy
controllers in terms of possibility and certainty qualifications. From the viewpoint of
possibility theory, the fuzzy controller according to Mamdani (1974) can be viewed as
being based on rules like (considering a 2-input-1-output controller):

$ X : if

YKX
is o X Ê X is possible

and

Y D is o D Ê X is possible
then Q is Õ X is possible

and the rule base contains the fuzzy rules:

( $ X else $ D else �k�k� else $ X else �k�¬� )
When applying the restrictions on possibility distributions induced by the propositions, this
will result in the following conditional possibility distribution to represent the combination
of all rules $ X :

� 7 � � d½Ê � à  Y&X s Y D s�Q0��� elsex y�z {¢NÚxÛX ¢Ò£Ó¥z {
x y
if-then

 andx y
z {¢Ò£Ó¥� l m d ë L  YKX ��s l m à ë L  Y D �a��s l È L %Q0�a� (6.49)
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214 Fuzzy logic in knowledge-based systems

where

Y&X
and

Y D are assumed noninteractive. For each rule $ X the inference, assuming a
general T-norm for the implication, results in:

Õ ÕX � 2  �  o\P�o Õ ��s Õ X � (6.50)

where 6 is the T-norm used for the implication (possibility rule, see section 6.4.1.1).

The aggregation is done by the max operator since the rules can be considered possibility
qualifications and the rule base can be seen as a combination of a number of possibility
qualifications ( $ X else $ D else �¬�k� ). The left min operator in (6.49) is the implication
function used by Mamdani and co-workers (and many others). Other combinations of
operators for the conjunction in the rule premises and for the implication modeling the
rules are possible. However, using, for example, product for conjunction indicates that
the controller inputs are considered to be interactive, since it would lead to � � Ê 7  YKX s Y D �_�¢¤£¦¥  l m d ë L  Y&X �§s l m à ë L  Y D � for some values  Y&X s Y D � .
Yager (1994) also considers certainty qualifications in the rule premises. When we still
consider the rule as a possibility qualifying rule, this results in:

$ X : if

YKX
is o X Ê X is certain

and

Y D is o D Ê X is certain
then Q is Õ X is possible

Then, the result of the inference of rule $ X is given by:

Õ ÕX � 2  "  o\P�o Õ ��s Õ X � (6.51a)� 2 a>ª< �  o[P�o Õ ��s Õ X � (6.51b)

where
"  o\P�o Õ ���r>�< �  o P§o Õ � represents the certainty of the proposition

Y
is o .

It is important to note that in case the data o Õ is a singleton, the different interpretations
all reduce to the same type of inference:

Õ ÕX � 2 %R Õ s Õ_X � (6.52)

where R Õ � l m  Y Õ � is the “fuzzy” representation of the numerical data

Y Õ
. This reduction

of different rule interpretations to the same type of inference in the case of numerical
inputs is because �  o\P R Õ ���r>�< �  o\P R Õ ��� "  o\P R Õ � .
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6.4 Reasoning with possibility distributions 215

6.4.2 An inference break-up method

It has been noted in previous sections that the application of approximate reasoning on
continuous domains poses the problem that analytical solutions of global inference can
usually not be obtained when implications are used which comply with the classical
implication. In this section, this problem is addressed, and a solution is proposed which
minimizes the calculational load and memory requirements which occur when the domains
are discretized and all calculations are done on product spaces. This break-up method
breaks up the inference of a rule base into the inference of a number of rule bases of which
the inference is easier to perform or has analytical solutions.

First, it is shown how the inference of a rule base with complex rules, modeled by
implications which are based on the classical implication, can be reduced to the inference
of a number of rule bases with simple rules. After this, a number of possible simplifications
for the inference of these derived rule bases with simple rules are given. In section
6.4.2.1, a method is discussed to obtain the analytical solution of inference of a rule base
with simple rules. Section 6.4.2.2 discusses further simplifications. The last subsection
(6.4.2.3) summarizes the results and address some implementation issues.

6.4.2.1 Breaking up the inference

In this section, it is shown how the inference of a rule base with complex rules (rules
with two or more independent variables in their premise) can be simplified to a number of
inferences of rule bases with simple rules (only one variable in their premise). Mizumoto
(1985) showed explicitly for eight different implication functions that complex rules can
be broken up in simple rules. Demirli and Turksen (1992) give a more general solution,
since they show that a complex rule modeled by a general S- or R-implication can be
broken up into a set of simple rules. The proof of Demirli and Turksen (1992) is only
valid for sup-min composition and the min operation for conjunction in the premise, and
is based on the fact that S- and R-implications are non-increasing with respect to their first
argument. When the rule:

if

YKX
is o X and

Y D is o D then Q is Õ
is considered, the resulting conditional possibility distribution is given by:

�� o X huo D s Õ ������ o X s Õ ��Ñ��. o D s Õ � (6.53)

where the extension principle is assumed where necessary. In section F.1, the proof for
(6.53) can be found, and it should be noted that the proof can be generalized to cases
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216 Fuzzy logic in knowledge-based systems

with more than two variables in the rule premises. However, Demirli and Turksen (1992)
considered only one rule although normally a rule base consists of more rules than just one.
It is now shown, that the inference of a rule base with more than one rule can be broken
up into the inference of a number of rule bases with simple rules. When considering a
rule base with two rules and rules as above, the rule base break-up results in:

Õ Õ �i o Õ X huo Õ D � ^ �u�� o X Ê X huo D Ê X s Õ X � h �� o X Ê D hNo D Ê D s Õ D �§� (6.54a)� o Õ X ^ �u�� o X Ê X s Õ X � h �. o X Ê D s Õ D ����Ño Õ D ^ �u�� o D Ê X s Õ X � h �. o D Ê D s Õ D ����Ñ�L4 o Õ X ^ �. o X Ê X s Õ X �%8 h 4 o Õ D ^ �� o D Ê D s Õ D �%8É�+Ñ�L4 o Õ X ^ �. o X Ê D s Õ D �%8 h 4 o Õ D ^ �� o D Ê X s Õ X �%8É� (6.54b)

The proof can be found in section F.3. The result of the inference break-up can easily
be extended to a larger number of rules or more complex rules. The number of parts
resulting from the inference break-up can become quite large � , but many simplifications
are possible and are discussed in section 6.4.2.2.

The fuzzy sets o Õ X and o Õ D are assumed to be normalized. When subnormal fuzzy sets are
considered, the following modification of o Õ X and o Õ D is necessary:

o ÕGÕX � �0�,�  o Õ D � *uo Õ Xo ÕGÕD � �0�,�  o Õ X � *uo Õ D
Since the min operator is used for conjunction and the sup-min composition is used for
inference, the influence of subnormal fuzzy sets is compensated for when using o ÕGÕX ando ÕGÕD , instead of o Õ X and o Õ D , respectively.

6.4.2.2 Reduction of inference break-up

In section 6.4.2.1, it was shown that the inference of a rule base with complex rules
(“complex” rule base) can be divided into the inference of a number of rule bases with
simple rules (from now on referred to as “simple” rule bases). Since the number of those
simple rule bases can be very large, the calculational load due to the inference phase can be
very high. In this section a number of concepts are discussed which can greatly simplify	

The structure of (6.54) can be determined by considering a structure like ðhñ0ò`_ÌòM÷_ñ�õd_Ìò�÷98�8:87÷�ñ<;U_ÌòÉó(ðhñyò`_ õJ÷ñ,õH_ õ)÷=8�8�8-÷�ñ<;U_ õ½ó>8:8�8�ðhñyò`_ ?�÷=ñ�õd_ ?�÷@8�8:8-÷�ñ<;U_ ?�ó , in the case of A variables in the premises of the B rules.
The number of cross-products is A ? .
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6.4 Reasoning with possibility distributions 217

the inference. Because of the break-up of the inference, only simple rule bases have to be
considered.

Non-overlapping fuzzy sets in premises
It was shown that in section 6.4.2.1 the inference engine only has to consider the rules
in the rule base of which the premise overlaps with the data. This results in a conflict
set (of rules), and only the rules in the conflict set has to be considered for the inference
break-up method. After the breaking-up of the inference a number of simple rule bases
can be distinguished

A simplification of the inference of a simple rule base can be achieved when the rule base
can be divided into a set of simple rule bases which do not interact. This interaction of
rules (or rule bases in this case) is because the premises of the rules overlap. In case a
simple rule base can be separated into two or more simple rule bases with rules that do not
have overlapping premises, then these separable simple rule bases do not interact, since� %j+s þ �C��> for the implications considered by the inference break-up method. To explain
the possible simplification more clearly, consider the following two rules:

$ X : if

Y
is o X then Q is Õ X$ D : if

Y
is o D then Q is Õ D

where it is assumed that o X hÒo D �G° . Because of the empty intersection of the premises,
there is no interaction between the rules, which simplifies the inference of this simple rule
base:

Õ Õ � o Õ ^ #�� o X s Õ X � h �� o D s Õ D �a� (6.55a)�i o Õ h �P�0�0�� o X �M� ^ �� o X s Õ X �ZÑ o Õ h �P�0�0�� o D �M� ^ �� o D s Õ D �ZÑ�H�,�  o Õ h �P�0�0�� o X h o D �a� (6.55b)

Hence, rule $ X is used in combination with the part of o Õ which overlaps with o X , rule$ D is used in combination with the part of o Õ which overlaps with o D . The results of
the inferences of these two combinations is aggregated by means of a disjunction and an
additional indetermination is “added” to the aggregated result by means of a disjunction.
The indetermination is determined by the height of the parts of o Õ which do not overlap
with o X and o D .
If no (sets of) noninteractive rules can be distinguished, it is possible to separate the
inference of a simple rule base into the inference of a set of simple rule bases by breaking
up the data o Õ . To show this, consider the following three rules:
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218 Fuzzy logic in knowledge-based systems

$ X : if

Y
is o X then Q is Õ X$ D : if

Y
is o D then Q is Õ D$ g : if

Y
is o g then Q is Õ g

where o X héo D v�G° , o D hNo g v�O° and o X huo g �G° . When the data o Õ is split up by:o Õ X � o Õ h �x�½�H�0�� o X � h �½�H�0� o D h �P�0�0�� o g ���o Õ D � o Õ h �x�½�H�0�� o X � h �½�H�0� o D h �P�0�0�� o g ���o Õg � o Õ h �x�½�H�0�� o X � h �½�H�0� o D h �P�0�0�� o g ���o Õ X Ê D � o Õ h �x�½�H�0�� o X héo D � h �P�0�0�� o g ���o Õ D Ê g � o Õ h �x�½�H�0�� o X � h �½�H�0�� o D héo g �
then the inference of the three rules can be written as:Õ Õ � o Õ X ^ �� o X s Õ X �ZÑ o Õ D ^ �� o D s Õ D ��Ñ o Õg ^ �. o g s Õ g ��Ño Õ X Ê D ^ �u�� o X s Õ X � h �. o D s Õ D �§�+Ñ o Õ D Ê g ^ �u�� o D s Õ D � h �� o g s Õ g �§� (6.56)

This shows that in many cases the inference of simple rule bases can be represented by
the inference of even simpler rule bases using only parts of the data o Õ .
When this result is generalized to ¨[� rules, and the premises of the rules are assumed
to take fuzzy sets which form a fuzzy partition and which are convex and normalized,
resulting in no more than two overlapping fuzzy sets, then it can be derived that the number
of necessary simple rule bases is given by ÉÅ ¨�m <O>�� , where ¨ m is the number of fuzzy
sets defined on the domain of the variable in question. Here, it is assumed that the rule
base is complete and, hence, ¨ � � ¨ m . This number of necessary rule bases %Å ¨�m <¡>x� is
less than the number of simple rule bases to be used for inference when no fuzzy partition
is assumed, which is given by: ®U V3WHX � ¨ mW � (6.57)

Hence, this is the maximum number of rule bases to be used for inference and is only
necessary is all ¨ m fuzzy sets overlap.

Bounded support of data
Because of the sup-min composition, only rules of which the premise overlaps with the
data, represented by fuzzy set o Õ , have to be considered, since:�½�H�� Ê C ® ä Ð � Ñ W # ¢¤£¦¥K l m ä  Y ��s l�D  Y s�Q0�a���Oj
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6.4 Reasoning with possibility distributions 219

Hence, if the data o Õ has a bounded support, the number of rule premises that overlap witho Õ is normally less than the total number of rules in a simple rule base (assuming the fuzzy
sets in the rule premises also have bounded support, which is normally the case). Thus
the inference can be done using a reduced simple rule base and other inference reduction
methods can then be applied to it; for example, the possible inference reduction in the
case of non-overlapping rule premises as described before.

6.4.2.3 Summary of inference break-up

This section is used to summarize the previously described inference break-up method.
In the inference break-up method, the following steps can be distinguished:

1. A complex if-then rule with � conditions in the premise can be broken up into� simple rules (with only one condition in their premises) when the conjunction
of the � conditions in the premises is represented by the min operator and the
implication function complies with the classical implication (Demirli and Turksen,
1992). The subresults of the inference of the simple rules are aggregated by means
of disjunctions to obtain the results of the inference of the complex rule.

2. The inference of a rule base with B complex rules, with � conditions in their
premises, can be broken up into the inference of B D <Â> simple rule bases, consisting
only of simple rules. The combination of the subresults of the inference of the simple
rule bases requires � T <�� conjunctions and � T < > disjunctions (for aggregation),
all on one-dimensional universes. The same requirements as stated in step 1 are to
be met.

3. The inference of a simple rule base in which the Kleene-Dienes implication, defined
by ��ÉR&s þ �N�ê¢NÚxÛKa>=<GRKs þ � , is used to model the rules, can be broken up into
calculations on one-dimensional universes only. Considering a simple rule base
with B rules, the break-up will results in Å T subresults which have to be aggregated
by means of a disjunction.

The three steps as enumerated above provide a method to deal with fuzzy rules in expert
systems, which is close to the inference as applied in “conventional” expert systems. First,
a conflict set is determined, consisting of fireable rules. Next, the rules in this conflict
set are used to obtain new knowledge. In conventional expert systems, based on a two-
valued logic, one or more rules from the conflict set are selected to fire by means of local
inference. In the case of fuzzy rules (certainty rules in this case), the rules in the conflict
set are fired in parallel without ignoring the interaction between the fuzzy rules when the
break-up method is applied.
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220 Fuzzy logic in knowledge-based systems

An interesting possibility concerning the inference break-up is a dedicated (co)processor
which performs composition of a fuzzy set and a (two-dimensional) fuzzy relation. The
inference break-up method can be applied off-line and, hence, the run-time calculations
can be performed by such a highly optimized processor. Obviously, instead of a dedicated
processor, a speed-up of the inference can be achieved by using optimized code to perform
the composition of a fuzzy set and a fuzzy relation. Because of the inference break-up, the
code optimization can be applied to specific parts (composition in this case) of a software
implementation.

6.5 Other and derived approaches to fuzzy reasoning

Various approaches to fuzzy reasoning have been proposed in literature. In this section,
we describe those different approaches using the following classification:� fuzzy reasoning as originally proposed by Zadeh (1975);� reasoning with fuzzy truth values (Baldwin, 1979);� fuzzy reasoning based on similarity measures (Yager, 1980a).

Since fuzzy reasoning according Zadeh (1975) has been described in chapter 3 and previous
sections in this chapter, it is not treated in this section. The other two approaches have not
yet been described in this thesis and are discussed in the following subsections.

6.5.1 Reasoning with fuzzy truth values

The approach to fuzzy reasoning proposed by Baldwin (1979) is different from the one
originally proposed by Zadeh (1975). The reasoning method Baldwin proposed is not
based on the composition of relations representing the data and the rule or rule base, but
on fuzzy truth values as described in section 6.3.2.2 (page 202). Several others have also
proposed fuzzy reasoning methods based on fuzzy truth values, which are also described
in the following subsections.

6.5.1.1 Baldwin’s method

Baldwin (1979) proposed a fuzzy reasoning method based on fuzzy truth values. In the
previous section, the concept of fuzzy truth values was addressed. It was shown how a
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6.5 Other and derived approaches to fuzzy reasoning 221

fuzzy proposition

Y
is o Õ can be derived from

Y
is o is $ m and vice versa. To explain the

reasoning method, consider the following inference scheme:

(if

Y
is o then Q is Õ ) is $ �

(

Y
is o Õ ) is $ �Q is Õ Õ

where $ � is a fuzzy truth value concerning the rule as a whole and $ � is a fuzzy truth value
concerning the data. Initially $ � and $ � were not considered. In the following they are
considered, since the case where one or both are not considered are special cases. By
taking those fuzzy truth values equal to $ � õ + ô ����C��� they will be ignored. The inference is
done by the following steps:

1. use the fuzzy truth value $ � to obtain a fuzzy set for the data: l m0ä ä  Y �Ý� l:�ED  l m0ä  Y �a� ;
2. determine $ m using (6.24) from page 203: $ m � l m  o ÕGÕ � ;
3. determine the relation � %$ � õ + ô s§$ � õ + ô � where the implication � is an implication as

described in section 3.2.2 and apply the fuzzy truth value $ � : $ �  � É$ � õ + ô s§$ � õ + ô �M� ;
4. determine $ È by composition: $ È �S$ Õm ^ $ �  � É$ � õ + ô s�$ � õ + ô �a� ;
5. calculate l È ä %Q0��� l?� u  l È ÉQ:�M� .

If $ � � true, hence l2� D ���� � � , step 2 is obsolete. The included adjustment using $ � in
step 4 is obsolete if $ � � true.

To show the reasoning method according to Baldwin (1979), let us consider an example
with the following rule and data:

if

Y
is o then Q is ÕY

is o Õ
where the membership functions of o , o Õ and Õ Õ are given by:

l m  Y �u�I¢NÚ�ÛHa>ª< � Y <¿¾ �Æ s�jy�
l m ä  Y �C�I¢NÚ�ÛHa>ª< � Y <FÁ �Æ s�jy�
l È ÉQ:�u�I¢NÚ�ÛHa>ª< � Q�<¿¾ �Æ s�jy�
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and are shown in figures 6.3a and 6.3d, respectively. For the sake of simplicity, fuzzy
truth values for the rule ( $ � ) and data ( $ � ), as denoted on page 221 are not considered. The
fuzzy truth value $ m is determined by:

l?�%® -����� l m  o ÕGÕ ��s with (6.58a)l m ä ä  Y �C� l?��FHGJI�K  l m ä  Y �a�C� l m ä  Y � (6.58b)

and is shown in figure 6.3b. The inference to obtain $ È is based on the “paper-and-pencil”
method (Baldwin and Pilsworth, 1980) shown in figure 6.2. In this example the Kleene-
Dienes implication, I ÉR&s þ �]� max a>�<¿RKs þ � , is used. The resulting fuzzy truth value $ È is
given in figure 6.3c. The result Õ Õ is obtained by:

Õ Õ �O$ È  Õ � (6.59)

and is shown in figure 6.3d. The result Õ Õ equals the result that is obtained by inference
based on composition of relations: the compositional rule of inference.

L

M

L M
N �O~ �
� PQ�

l m R ² LR ² L>STMR ² L>SVUR ² L>SVWR ² L>S�XR ² L>SVYR ² L>SVZR ² L>SH[R ² L>SV\R ² L>SV]R ² M

Figure 6.2: Paper-and-pencil method to determine $ È ä
(Baldwin and Pilsworth, 1980).
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j

>

X D g â Ù ã ä å æ~ �� ��ùø~ �<
�-��

Y

oèo Õ

(a)
fuzzy sets b and b Â

L

M

L M
~_^ `� a�

�
(b)

fuzzy truth value b `

L

M

L M
~ ^ c� a�

�
(c)

fuzzy truth value b Í
j

>

X D g â Ù ã ä å æ~ �� �� ø~ � <
�s��

Q

Õ Õ Õ

(d)
fuzzy sets 3 and 3 Â

Figure 6.3: Results of inference with fuzzy truth values according to Baldwin (1979).co
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6.5.1.2 Tsukamoto’s method

The reasoning method proposed by Tsukamoto (1977) is also based on fuzzy truth values,
but is based on a different approach to obtain the fuzzy truth value $ È to determine the
result Õ Õ of the inference. Consider the following inference scheme:

(if

Y
is o then Q is Õ ) is $ �Y

is o ÕQ is Õ Õ
where no fuzzy truth value for the fuzzy proposition

Y
is o Õ is included, but this can be

done without problems; note step 2 in section 6.5.1.1. The fuzzy truth value $ È is obtained
from: $ � ����%$ m s§$ È � (6.60)

where it is important to note that the implication � is implemented using fuzzy arithmetic.
Since $ m and $ � are known, $ È can be solved from (6.60) by means of the extension
principle as described in section 2.1.4:

l?� u %Q0��� �½�0�! d½Ê ! à! à W 1 Ð ! d½Ê ! Ñ ¢¤£¦¥K l:�É® ��
X �§s l:�#Ì -� D �a� (6.61)

To solve (6.61), Tsukamoto used a method based on level sets ( � -cuts). The fuzzy truth
values $ m and $ � are represented by their level sets according to:$¤�íÑ ú,�,û # Ê X�ü $ ú �íÑ ú,�,û # Ê X�ü 4Ì� ú Ê ÿ sM� ú Ê � 8 (6.62)

The fuzzy truth value $ È is determined by its level sets which are obtained from:$ úÈ �G�k� �,± `LX -��� h %$ úm h $ ú� � v�G°L� (6.63)

where ± `LX -��� is the inverse of ± �� X sM� D � , which is the solution of (6.60) for � when
numerical truth values are considered. The inverse ± `LX ���� of ± �� X sa� D � is, by definition,
given by:� � t 47jLsk>?8És ± `LX -�.� º�i�)-� X sa� D � t 4;j+sk>J8 Ô 4;j+sk>J8 � � t ± -� X sa� D �§� (6.64)
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6.5 Other and derived approaches to fuzzy reasoning 225

To clarify the method of Tsukamoto (1977), consider the Kleene-Dienes implication as
was used previously. For numerical truth values, the solution for � is given by:

± �� X sa� D �Ý� 89: 9; � D s if >ª<¿� X �F� D47jLsk>�< � X 8%s if >ª<¿� X ��� D°Ls otherwise
(6.65)

When the fuzzy truth value $ � is considered to be $ � õ + ô , with l:��FHGJI�K �� D ���G� D , its level sets
are given by:$ ú� �i4Ì� ú Ê ÿD sa� ú Ê �D �i>?8 (6.66)

and the following solution for $ úÈ can be obtained (Tsukamoto, 1977):

$ úÈ �iq 4;j+sk>J8%s if � ú Ê ÿX �w� ú Ê ÿD � >4Ì� ú Ê ÿD sk>J8%s otherwise
(6.67)

When the data of the example in the previous section is assumed, the final results for $ È
and Õ Õ are the same as the results obtained by Baldwin’s method, shown in figure 6.3.

6.5.1.3 Mizumoto’s method

Another fuzzy reasoning method based on fuzzy truth values is the method proposed by
Mizumoto (1981). In this method the implication function is also considered to be based
on fuzzy arithmetic. Considering the following inference scheme:

if

Y
is o then Q is ÕY

is o ÕQ is Õ Õ
then $ È is given by:$ È �I$ m * ��É$ � õ + ô s�$ � õ + ô � (6.68)

where ��É$ � õ + ô s�$ � õ + ô � is based on fuzzy arithmetic and is thus a fuzzy truth value itself.
Hence, this fuzzy reasoning method is purely based on fuzzy number/interval calculus.
This entails a straightforward implementation when approximations by means of level
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226 Fuzzy logic in knowledge-based systems

sets are used (see also previous section). Extension of the inference scheme above to the
ones considered in sections 6.5.1.1 and 6.5.1.2 can be done by adjusting the two parts
on the right-hand side. The main idea of this method is denoted in (6.68): using fuzzy
number/interval calculus to obtain $ È and hence Õ Õ using (6.25).

When we consider the same example that was used in the previous sections, the obtained
result is different than that was obtained by the methods described so far. Based on the
data shown in figure 6.3a, the results $ È and Õ Õ for this method are shown in figure 6.4.
The result Õ Õ has the undesired property that it is not convex.

#

X

# X
~_^ c� a�

�
(a)

fuzzy truth value b Í
j

>

X D g â Ù ã ä å æ~ ��s��ùø~ �<
�s��

Q

Õ
Õ Õ

(b)
fuzzy sets 3 and 3 Â

Figure 6.4: Results of inference with fuzzy truth values according to Mizumoto
(1981).

6.5.2 Fuzzy reasoning based on similarity measures

In this section, another approach to fuzzy reasoning is addressed: fuzzy reasoning based
on similarity measures. We describe briefly the work of Yager (1980a) and Turksen and
Zhong (1990). Both methods overlap with the fuzzy reasoning according to Zadeh as
described in chapter 3. Additionally, a method based on domain scaling is described.
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6.5 Other and derived approaches to fuzzy reasoning 227

6.5.2.1 Yager’s method

Yager (1980a) proposed a method for fuzzy reasoning in which the following similarity
measures are defined:

< é ! � �0���  o�huo Õ ��0�,�  o Õ � (6.69)

< é Ï �I� X# l m ä  Y �a{ l m  Y � (6.70)

The first similarity measure SM ! results in a crisp number

t 47j+s¬>?8 , the second one SM

Ï
results in a fuzzy measure. This second measure SM

Ï
is known as the compatibility of o Õ

with o (Zadeh, 1981b) and was also described in section 6.3.2.2 (page 202) where SM

Ï
was referred to as a fuzzy truth value. Note that if o Õ is normalized  hgt  o Õ � � >x� , the
similarity measure SM ! equals the possibility measure �  o\P§o Õ � as defined by (6.11a) on
page 195.

Yager introduced the fuzzy implication � %RKs þ �n� þ É
which is used in the fuzzy reasoning

method he proposed. The result Õ Õ of inference is given by:

Õ Õ � Õ I�d (6.71)

where SM is either the similarity measure SM ! or SM

Ï
. When SM

Ï
is used, the resultingÕ Õ will be a type-2 fuzzy set. So far this type of fuzzy sets have not been addressed in

this thesis. Type-2 fuzzy sets are fuzzy sets of which the membership grades are fuzzy
themselves. � When practical applicability is considered, the use of type-2 fuzzy sets is
less attractive and we will focus on the case of the crisp similarity measure SM ! . Focusing
on similarity measure SM ! , the resulting membership function for Õ Õ is given by:

l�Èóä %Q0�C� l I�dfeÈ ä ÉQ:� (6.72)

Hence, when SM ! � j the result is unknown and when SM ! �ë> it results in Õ Õ � Õ .
From (6.72), the resemblance to the powered hedges described in section 2.2.1 is clear.
The method based on the crisp similarity measure can be summarized by stating that the
result Õ Õ is a modification of the consequent Õ by means of a modification function using
the obtained similarity between premise o and data o Õ . In the next section, the method
proposed by Turksen and Zhong (1990) is described, where also other similarity measures
and modification functions are used.	

The notion of type-2 fuzzy sets can be extended to type-n fuzzy sets (Dubois and Prade, 1980). A
“standard” fuzzy set can be regarded as a type-1 fuzzy set: membership grades are crisp numbers.
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228 Fuzzy logic in knowledge-based systems

6.5.2.2 Turksen and Zhong’s method

Using the idea of a similarity measure and a modification function, Turksen and Zhong
(1990) proposed the approximate analogical reasoning schema (AARS). This fuzzy rea-
soning method uses a similarity measure SM which is obtained from a distance measure
DM by:

< é � >>_� Ù é (6.73)

Turksen and Zhong give a number of different distance measures. We do not list all the
different distance and derived similarity measures, but show the measures which overlap
with other methods to emphasize how this method fits in the collection of other fuzzy
reasoning methods. The relation with other fuzzy reasoning methods becomes clear when
considering the following similarity measure:

< é X  o s o Õ �C� �H�,�  o+hNo Õ � (6.74)

This measure is derived from what is referred to as the disconsistency measure by Turksen
and Zhong. The similarity measure is used by a modification function MF which entails
a modification of the rule consequent to obtain the result. The modification functions
Turksen and Zhong list, stating there are many possible modification functions, are:éhg X � l È ä %Q0���I¢¤£¦¥Ka>,s l È %Q0�a{ < é � (6.75)éhg D � l È ä %Q0��� l È ÉQ:� þ < é (6.76)

The modification function MF

X
is referred to as the more or less form since it results

in Õ � Õ Õ . The second modification function, MF D , is named the membership value
reduction form since it results in Õ Õ � Õ . Note the resemblance with fuzzy reasoning based
on T-norm implications if the similarity measure according to (6.74) is used, namely Õ Õ �
MF D  Õ s SM

X ��� Õ þ SM

X
which is similar to the result obtained when the product operator

is used for the implication as described in section 4.2.3.2, and where it was noted that
this method does not have a counterpart in fuzzy inference based on the composition of
relations.

Turksen and Zhong give a complete algorithm to evaluate a set of parallel rules. In their
algorithm, it is possible to assign threshold values to avoid firing fuzzy rules of which
the similarity between the premise and data is below such a threshold value. We do
not go further into detail about the reasoning method, but note that in this algorithm a
clear distinction between the matching phase, determining similarity measures, and the
modification phase is made. This approach also characterizes the practical approach to
fuzzy control as discussed in section 4.2.1.1.
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6.5 Other and derived approaches to fuzzy reasoning 229

6.5.2.3 Reasoning with domain scaling

In this section, a method of fuzzy reasoning is described which uses a similarity measure
to determine Õ Õ from Õ by means of domain scaling. The result Õ Õ is determined by:

l È ä %Q0�C� l È É\ È %QKs ü �a� (6.77)

where \ È %QKs ü � is a function which performs a scaling of Q relative to a characteristic point
of l È ÉQ:� . The value of ü is a similarity measure representing the matching of the data
with the premise of the rule. This is similar to the scaled hedges approach as described in
section 2.2.3. Note that the method proposed by Yager (1980b) is similar to the powered
hedges (section 2.2.1) and Hellendoorn (1990) proposed a fuzzy inference method for
increasing notions which is closely related to the shifted hedges approach (section 2.2.2).

Let us show an example of a triangular-shaped lÇÈ ÉQ:� as shown in figure 6.5a. The inferred
result Õ Õ is given by:

l È ä %Q0�C� l È  ü Q �IM>Ü< ü � þ � (6.78)

j

>

þÊ `ji Ê T Ê â%i Ê Ì
~ �� ��

Q
(a)

j

>

þÊ `ki Ê T Ê â%i Ê ÌÊ ` D i Ê T Ê â D i Ê Ì
~ �<�s��

Q
(b)

Figure 6.5: Possibility distributions of original Õ (a) and inferred Õ Õ (b) withü � XD , resulting in l È ä ÉQ:��� l È  XD Q�� XD þ � .
where

þ
is the center of l È %Q0� as shown in 6.5a. In figure 6.5b one can see the resultingl È ä %Q0� if ü � XD . From (6.78) the following can be seen:
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230 Fuzzy logic in knowledge-based systems

� if the matching of the data with the premise of the rule is maximal ( ü � > ), thenÕ Õ � Õ ;� when there is no matching between the data and the rule premise ( ü �ëj ), thenÕ Õ � unknown  l È ä ÉQ:���r>�� ;� the less the matching is between the data and the premise of the rule, ( üml j ) the
more “uncertain” is Õ Õ ;� the more o Õ is a subset of o , the more Õ Õ is a subset of Õ .

Whether the law of noncontradiction is not violated, depends on how the matching between
the data and the premise of the rule is determined. Like the other fuzzy reasoning
methods described in this section, a clear distinction is made between the matching and
the modification phase.

6.5.3 Reasoning with linguistic qualifiers

In this section we briefly address reasoning with linguistic qualifiers. In section 6.3.2.2
different qualifying statements were described. It was also shown that inference with,
for example, linguistic probabilities, is not attractive from a practical point of view. Also
reasoning with possibility distributions suffers from this, although alternative approaches
based on numerical possibility and certainty qualifications are known (see sections 6.2.1.3
and 6.4.1). Dubois and Prade (1991) wrote the following about a fixed set of fuzzy truth
qualifiers with respect to fuzzy reasoning:

�k�¬� may prove useful for an efficient implementation of the generalized modus
ponens, provided that the class of invariant truth-values $ is rich enough to
express various types of input facts “

Y
is o ” �k�k�

This approach is used for linguistic truth, possibility and probability qualifications in the
fuzzy first-order logic proposed by Rhodes and Menani (1991) and is described in the
following. Although this method can be regarded as a multi-valued logic it is addressed
here, because of its relation with the topics addressed before: reasoning with fuzzy truth
values (section 6.5.1.1) and qualifier rules in approximate reasoning (section 6.3.2.2).

Rhodes and Menani (1991, 1992) proposed a propositional fuzzy logic which is analogous
to traditional two-valued logic. They use truth, possibility and probability qualifiers which
are limited to a fixed set of qualifiers. The truth qualifiers are given in table 6.1 and the
corresponding membership functions are shown in figure 6.6. One can distinguish “neg-
ative” and “positive” qualifiers, where the negative qualifiers have monotonic decreasing
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6.5 Other and derived approaches to fuzzy reasoning 231

membership functions and the positive qualifiers have monotonic increasing membership
functions. Negative qualifiers are related to positive qualifiers by the following:l�� ô �  Y �C� l'�Ï� �aM>Ü< Y � (6.79)

which resembles the antonym defined by (6.23). The membership functions of the proba-
bility and possibility qualifiers are chosen equal to the ones for truth qualifiers; likely and
possible correspond to true, unlikely and impossible correspond to false.

Table 6.1: Truth qualifiers and corresponding membership functions chosen
by Rhodes and Menani (1992). Membership functions based on the variableB are limited by B   | . In examples given by Rhodes and Menani (1991) a
value of B �i>kj is chosen. See figure 6.6 for the membership functions.

truth qualifier membership function

absolutely false l2G ã  Y ���i>ª< Í� >ª<Ia>Ü< Y � T
very false l ò

ã  Y ���i>ª< � >Ü<IM>�< Y � D
false l

ã  Y �Ý�r>Ü< Y
fairly false l'n  Y ��� � >Ü< Y D

not absolutely true l���G'�  Y �C� Í� >�< Y T
not absolutely false l���G ã  Y �C� Í� >ª<Ia>Ü< Y � T

fairly true l
ã
�  Y ���ä� >Ü<Ia>Ü< Y � D

true l��  Y �C� Y
very true l ò �  Y ���i>Ü< � >Ü< Y D

absolutely true l G'�  Y ���i>Ü< Í� >Ü< Y T
Also five fuzzy quantifiers are defined (Rhodes and Menani, 1992), namely for all,
most, all, few and there exists, which have membership functions corresponding to the
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j
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j >truth

naf nat
ff ft

tf

vf vt

af at

Figure 6.6: Membership functions of truth qualifiers as
defined by Rhodes and Menani (1991). See table 6.1 for the
definition of membership functions and abbreviations.

“positive” probability qualifiers. Hence, a conversion from fuzzy quantifying propositions
to probability qualifying propositions is possible (see also section 6.3.2.2, page 203, on
this topic):

for all

Y
is o �� Y

is o is absolutely likely
there exists

Y
is o �� Y

is o is not absolutely unlikely

The first-order fuzzy logic proposed by Rhodes and Menani (1992) can be considered
a sort of multi-valued logic, since they focus on a fixed set of truth, possibility and
probability qualifiers. Indeed, logical operations (conjunction, disjunction, implication
and equivalence) concerning truth qualifiers can be defined in truth tables (Rhodes and
Menani, 1991). The operations for possibility qualifiers are equal to the ones for truth
qualifiers. The probability tables, however, also include intervals, identified by two of the
possible probability qualifiers.

The advantage of this approach is that the implementation is not difficult since the pre-
defined tables with results can be used for logical operations. A disadvantage is the fact
that the matching of the data with the rule premises has to be “rounded off” to the nearest
linguistic qualifier from the fixed set of possible qualifiers to be able to use the predefined
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6.5 Other and derived approaches to fuzzy reasoning 233

tables for logical operations. However, interpolation between entries in the tables to ap-
proximate the matching of data and rule premises is possible. When chaining of rules
is considered, this poses a problem since the fuzzy qualifiers no longer matches one the
predefined fixed set of fuzzy qualifiers.

6.5.4 Remarks and considerations

In the previous sections, various approaches to fuzzy reasoning were described. Two
main approaches can be distinguished: those based on fuzzy truth values and those based
on similarity measures. Both approaches overlap with the “conventional” approach to
fuzzy reasoning, based on composition of fuzzy relations. A characteristic property of
both methods is that they are based on local inference. These different approaches are
possible solutions to the problem of the practical applicability of approximate reasoning
as described in sections 6.3 and 6.4.

The fuzzy truth value approaches of Baldwin (1979) and Tsukamoto (1977) produce the
same results as those obtained from composition-based fuzzy reasoning, but are completely
based on local inference. Hence, this is a major drawback when considering the inference
of a set of parallel rules, since this yields less restrictive results than could be expected
from the available knowledge and information. The methods proposed by Mizumoto
(1981) and Tsukamoto (1977) are seldomly referred to in literature; most applications
based on fuzzy truth values are according to Baldwin’s method. With respect to practical
applicability, it can be stated that the method according to Mizumoto (1981) is the most
attractive one, but it should be noted that the results obtained from this fuzzy reasoning
method are questionable; see section 6.5.1.3 for an example.

In the approach according to Yager (1980a), an implication is used which complies with
the classical implication. The similarity measure is close to a possibility measure and the
used implication function has the property that the support of the consequent does not
change, except when the similarity measure equals j . In that case the results is unknown.
When the min operator is used for aggregation in the inference of a set of parallel rules, the
result in the case of local inference can be less restrictive than the result possible based on
the available data. In the case of the similarity measure approach by Turksen and Zhong
(1990), this is not a disadvantage since the approach is similar to fuzzy reasoning where
conjunctions are used for implications. This is also the case for the reasoning based on
domain scaling.

Linguistic qualifiers can provide an easy-to-implement fuzzy reasoning method. A gener-
alization can be considered where the qualifiers are not chosen from a predefined fixed set
of linguistic truth, possibility or probability qualifiers, but are not predefined fuzzy sets.
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234 Fuzzy logic in knowledge-based systems

The disadvantage is that in that case the reasoning becomes less simple, and is similar to
the methods based on reasoning with fuzzy truth values as addressed before.

6.6 Conclusions and remarks

In this chapter a number of approaches to the application of fuzzy logic in
expert/knowledge-based systems have been addressed. The following summarizes this
chapter and contains the main conclusions.

Approaches to fuzzy reasoning based on global inference have the disadvantage that severe
calculational efforts and memory requirements are necessary. There are a number of cases
where the results of local inference equal the results of global inference. One of those
cases is where (pseudo-)conjunctions are used to model implications, which entails that
the results of local inference equal the results of global inference. Also reasoning schemes
based on similarity measures fall into this category (see section 6.5.2). In some cases
analytical solutions are possible, for example, the inference break-up method described in
section 6.4.2. This inference break-up method can also be used to reduce the complexity
of global inference (section 6.4.2.3).

Many practical approaches to fuzzy reasoning are based on local inference. This entails a
loss of specificity in many cases. Reasoning methods based on fuzzy truth values (section
6.5.1) suffer from this also. The main advantage of reasoning with fuzzy truth values is
the fact that it reduces the calculus on product spaces. Different approaches to reasoning
with fuzzy truth values exist and some even reduce the inference to pure fuzzy number
arithmetic (section 6.5.1.3).

Within the framework of approximate reasoning there exists the concept of linguistic
qualifiers. Three types of linguistic qualifiers are distinguished: truth, possibility and
probability qualifiers (section 6.3.2.2). The truth-qualifiers are directly related to the
fuzzy sets used to represent the data and the rule premises. Possibility and probability
qualifications induce possibility distributions on possibility and probability distributions,
respectively. In case of possibility distributions, alternative approaches exist (sections
6.2.1.3 and 6.4.1). Choosing a fixed set of possible qualifiers provide a straightforward
implementation of the reasoning scheme as described in section 6.5.3. It should be noted,
however, that the set of linguistic qualifiers is rich enough to express the various input
data with respect to the rule premises.

Hence, there is a conflict between what can be seen as “correct” from the theory of approx-
imate reasoning and possibility theory, and practical applicability. Many examples given
in literature are based on fuzzy sets defined on discrete domains. This, of course, leads
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6.6 Conclusions and remarks 235

to straightforward implementation. In the case of continuous domains, approximations
can be made, or in some restricted cases analytical solutions exist. Inference based on
fuzzy truth values according to Baldwin (1979) and Tsukamoto (1977) is interesting from
a practical point of view, since approximations of the results can be obtained using level
sets. In that case the membership functions (or possibility distribution functions) are dis-
cretized instead of the universes. When the inference is broken up according to the method
described in 6.4.2, the remaining problem is the inference of a simple rule base in which
the rules interact. It was argued in section 6.4.2.3 that dedicated and (highly) optimized
software or hardware can play a role in this, since only composition on two-dimensional
universes has to be considered.

Using the capability to model vague and imprecise propositions provides the possibility
to “communicate” with humans in a way that is close to the way humans communicate.
The acceptance of expert systems can be improved when the interfacing with humans is
more human-like. Currently, a natural language communication system called FLINS � is
developed at LIFE � . The final goal of FLINS is “to implement a lingual computer that can
communicate and learn, both by being taught and on its own, through the use of a fuzzy
natural language” (Tano et al., 1994; Okamoto et al., 1994). Looking at the still increasing
power of computers these days, the severe memory requirements and calculational loads
are becoming (relatively) less severe. This provides the means to solve by brute force the
problems which cannot be solved analytically.

	
FLINS stands for Fuzzy LINgual System.

The Laboratory for International Fuzzy Engineering in Japan.
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7
Conclusions and

suggestions

Conclusions and some suggestions for further research are given in this final chapter.
The aim of this thesis is to provide a clear view on fuzzy control: a demystification

and at the same time a profilation of the topic. Hopefully, we accomplished in doing so,
by describing fuzzy control in general, analyzing the working of a fuzzy controller and
considering its place within the framework of approximate reasoning. In the following
we only focus on the conclusions and suggestions (a summary is given on page 291).

Fuzzy control provides a method to develop controllers by means of a linguistically
expressed control algorithm. This can be regarded as a high level of programming and
controller design. We can distinguish between a theoretical (relation-based) approach and
a practical (rule-based) approach. The first approach implies global inference, the second
approach implies local inference. Local inference means that each rule in inferred and
the results of the inferences of the individual rules are aggregated afterwards. Global
inference means that the rules are aggregated and used for inference as a whole.
The inference in practical rule-based approach can be characterized by matching the rule
premise with the available data and modification of the rule consequent based on that
matching (section 4.2.1.1). Additionally, defuzzification is necessary to obtain numerical
controller outputs.

In the field of fuzzy control (and modeling) two types of fuzzy rules can be distinguished:
Mamdani rules (section 4.3.1) and Sugeno rules (section 4.3.2). The Mamdani rules
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have fuzzy propositions as consequents and, therefore, conform more to fuzzy set theory.
The Sugeno rules have (linear) functions of the inputs as consequents and are based
on a practical approach to fuzzy modeling and control. The simplest representations
of both types of rules are “functionally” equal in combination with the fuzzy-mean
defuzzification method (section 4.3.3). This simple representation is used in many fuzzy
control applications.

In fuzzy control, the implication functions to model the rules are normally triangular norms
(T-norms), which means that the implication is interpreted as a conjunction (section
4.2.1.2). The rules in fuzzy systems for which a conjunction is used to model the
implication can be regarded as possibility qualifying rules from the viewpoint of possibility
theory (section 6.4.1.4). If the rules are modeled by implications which comply with the
classical implication, a number of problems in the application of fuzzy control can be
noticed. The most important disadvantage of classical-implication-based implications
in fuzzy control is the possible indetermination of the output (sections 4.2.1.3 and
4.2.1.4). A characteristic property of S-implications is the decision-making character of
the inference. In general, it can be concluded that for direct fuzzy control, conjunction-
based implications are the better choice.

When a fuzzy controller is considered as a input-output mapping which is characterized by
tuples in a hyperspace, where each tuple represents a fuzzy rule (modeled by a conjunction-
based implication) in the rule base, the fuzzy inference performs interpolation between
these tuples in combination with the defuzzification method. This interpolation can exhibit
nonlinearities which cannot be influenced by altering the rule base, but are the results of
choices for the used operators and membership functions of the fuzzy sets. A number of
conclusions concerning these nontrivial nonlinearities can be extracted from the analysis
performed in this thesis:� The center-of-gravity defuzzification method introduces nonlinearities when the

aggregation operator is not a summation (section 4.2.4.1).� The mean-of-maxima defuzzification method introduces discontinuities in the con-
trol hypersurface (section 4.2.4.2).� Other than trapezoidally-shaped membership functions of fuzzy sets for the input
result in (nontrivial) nonlinear interpolation (section 4.6.1.3).� Other operators than the product operator for the conjunction in rule premises result
in (nontrivial) nonlinear interpolation (section 4.6.2).

Furthermore, it has been shown that using more than two overlapping fuzzy sets on
input universes yield a “filtering” of the control hypersurface (section 4.6.1.2). This
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Conclusions and suggestions 239

means that fuzzy rules are not solely responsible for a tuple in the control hyperspace and
altering a rule does not have a trivial effect on this control hypersurface.

The nontrivial nonlinearities of the interpolative character of a fuzzy controller can be
avoided by meeting the following conditions:� normal and trapezoidally-shaped fuzzy sets;� no more than two overlapping fuzzy sets;� product operator for conjunction in rule premises;� representing the implication by a conjunction;� using the fuzzy-mean defuzzification method.

Meeting these requirements entails that the fuzzy controller can be regarded as a look-up
table and the inference is performed by means of a weighted-sum interpolation between
the elements of that look-up table (section 4.5). If the elements of the look-up table, which
represent the (numerical) conclusions of the fuzzy rules, are chosen according to a linear
function of the inputs, a linear controller can be “emulated” by a fuzzy controller (section
4.5.2).

In the field of adaptive fuzzy control, several approaches can be distinguished: self-
organizing fuzzy control, fuzzy relations as associative memories, adaptation by fuzzy
supervisors and adaptation by means of gradient-descent optimization.
A characteristic property of the self-organizing controller according to Procyk and Mam-
dani (1979) is that the adaptation is local which hopefully results in global optimization
(section 5.1.1). In the case of nonlinear processes and using the error and its differences
as controller inputs, this is a major disadvantage, since a different set-point requires a new
“learning phase”.
Using fuzzy relations as associative memories provides a method to control a process and
obtain a process model at the same time (section 5.2). A disadvantage is the fact that in
order to obtain a control action, a model is needed to predict future process outputs in case
the process exhibits time delays or dynamics which are represented by time delays. This
property also plays a role in the field of predictive control.
Fuzzy supervisors can be used to perform adaptations of direct controllers, which can be
conventional or fuzzy controllers. Fuzzy supervisors for PID controllers are well-known
examples of fuzzy supervisory systems. In some case fuzzy supervisors do not perform
“global” adaptation and can be reduced to in-line (direct) fuzzy controllers based on
Sugeno rules.
Adaptation by means of gradient-descent optimization (section 5.4) is a technique which
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is used in “fuzzy neural networks”. The membership functions of the fuzzy sets on
the input universes and the (numerical) consequents of the fuzzy rules are adapted by a
gradient-descent learning rule. In many cases the linguistic interpretability is lost after
adaptation. A gradient-descent learning rule which maintains fuzzy partitions on the input
universes does preserve linguistic interpretability (section 5.4.3).
Similarities between adaptive fuzzy systems and other “learning” systems exist. Compari-
son of a fuzzy system and RBFN � shows that the two systems are different (section 5.5.1).
They are functional equivalent when the RBFN performs normalization. A GCMAC �
system can be regarded as a fuzzy system of which the rule base contains many rules with
overlapping premises (section 5.5.2). This results in “filtering” of the control hypersurface
as concluded before.
There exist few applications of adaptive fuzzy control.

Because of the defuzzification, a fuzzy controller (or more general, a fuzzy system)
performs interpolation between tuples in a hyperspace, where each tuple is represented by
a fuzzy rule. Therefore, a fuzzy controller can be “simplified” to a combination of a
look-up table and an interpolation method (section 4.5). The rule base is represented
by the look-up table and the fuzzy inference is represented by the interpolation method.
When this approach is considered with respect to adaptive fuzzy controllers, the following
can be derived. The concept of the self-organizing controller proposed by Procyk and
Mamdani (1979) can be simplified to the interpolation between the elements of a look-up
table of which the elements are adapted.
Fuzzy controllers or models which are adapted by means of gradient-descent optimization
can be simplified to the interpolation between the elements of a look-up table of which
the elements as well as the index vectors are adapted. This approach maintains fuzzy
partitions for the inputs universes.
The above-given simplifications can reduce the fuzzy aspect of fuzzy control to a user-
interfacing concept during the design stage. Together with the fact that fuzzy control uses
only a small part of the framework of approximate reasoning where it resides in, one can
question whether the success of fuzzy control is because of the use of fuzzy logic.

The application of approximate reasoning in knowledge-based systems suffers from a
number of problems. When the implications to model the rules are based on conjunction,
the inference can be analytically solved. Using conjunctions to implement the implication
is usually the case in fuzzy control. For classical-implication-based fuzzy implications
an analytical solution is usually not possible. This is due to the fact that the aggregated
results of local inference of the individual rules do not entail the same result as that would
be obtained when applying global inference using all rules together.
Global inference, however, requires calculations with multi-dimensional functions (fuzzy
relations, possibility distributions) in combination with nonlinear operations. There are	

Radial Basis Function Network.

Generalized Cerebellar Model Articulation Controller.

co
nt

ro
len

gin
ee

rs
.ir



Conclusions and suggestions 241

two ways to tackle this problem: either use approximations based on the implementation
level by means of discretizations, or use local inference instead of global inference.
Approximating fuzzy relations using discretizations results in severe memory requirements
or calculational load (section 6.3.3). Using only local inference of individual rules and
aggregation of the results can lead to less restrictive results than could be obtained based
on the data and knowledge.
In some cases analytical solutions are possible or inference of a rule base can be simplified
to the inference of simpler rule bases. An example of this is the break-up of the inference
of a rule base as presented in section 6.4.2. Within this method one can distinguish three
types of inference break-up:� the inference of a complex rule can be broken up in the inference of a number of

simple rules, provided that the min operator is used for conjunction;� the inference of a complex rule base can be broken up in the inferences of a number
of simple rule bases, provided that the min operator is used for conjunction;� the inference of a simple rule base can be broken up in the inference of a number
of simple rules, provided that the min operator is used for conjunction and the
Kleene-Dienes implication is used to model the rules.

This method can simplify the inference of complex rule bases. In case the fuzzy sets
defined for the variables used in the premises of the rules meet some requirements,
further simplifications of the inference are possible (section 6.4.2.2). The inference break-
up method does not provide a general solution but offers a mechanism which enables
simplification of inference for some cases. Because of this simplification one can think
of dedicated hardware or highly optimized software to perform inference of simple rule
bases (section 6.6).

Reasoning with fuzzy truth values (section 6.5.1) has been initiated by Baldwin (1979).
This reasoning method does not propagate fuzzy sets or possibility distributions on the
universes of discourse of the used variables, but reasons with fuzzy truth values which
are fuzzy sets defined for the interval 47j+s¬>?8 ; the numerical values j and > correspond
to absolutely false and absolutely true, respectively. Several approaches to reasoning
with fuzzy truth values are known from literature, including methods which reduce the
inference to fuzzy number calculus. The characteristic property of reasoning with fuzzy
truth values is that local inference is performed. This entails that in many cases the result is
less restrictive than it can be, based on the available data and knowledge. Using inference
break-up, this problem can only partly be solved.

Another approach to fuzzy reasoning is reasoning in which a clear distinction is made
between a matching phase and a modification phase (section 6.5.2). These approaches are
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242 Conclusions and suggestions

close, and in some cases equal, to the type of reasoning used in fuzzy control. Different
approaches can be distinguished and they are based on local inference. The local inference
does not pose problems in most cases since implications in these approaches are normally
represented by conjunctions.

Considering the performed analysis of fuzzy control and the framework of approximate
reasoning and derived reasoning schemes, it can be stated that fuzzy control is based on
only a small part of the much broader field of approximate reasoning. Today, considering
the numerous applications, fuzzy control is a more or less accepted type of control.
However, applications of approximate reasoning or derived reasoning schemes can barely
be found in literature. In our opinion approximate reasoning could and should be used,
since it can provide a user-friendly knowledge representation and a reasoning method
which can model human reasoning in higher level expert systems. In the field of control,
this entails planning, scheduling and plant-wide supervision. To apply approximate
reasoning in these fields, (more) software tools should be developed and become available
for industry.

So, finally we return to the issue of stability of fuzzy controllers which, thus far, was only
addressed in the introduction of this thesis. When a fuzzy controller is regarded as a static
nonlinearity, for example represented by a look-up table and interpolation method, this
can provide a starting point for stability analysis if a stability analysis is desired. However,
we still support Mamdani’s view as presented by the quote on page 9. Considering higher
level expert systems for control, requiring a stability analysis is not realistic and “stability”
should be interpreted as “common sense” stability and “proved” by working prototypes.
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A
Fuzzy logic
operators

In this appendix fuzzy set and fuzzy logic operators are summarized. Various fuzzy
complement operators are given in table A.1. Table A.2 lists fuzzy intersection and

union operators. Fuzzy implications are summarized in table A.3. The references in the
tables are partly from Bandler and Kohout (1980), Dubois and Prade (1991) and Gupta
and Qi (1991b).

Table A.1: Fuzzy complements c ÉR:� .
c %R0� parameters references>�<FR Zadeh (1973)>�<FR>_� ? R ? �G> Sugeno (1977)f� M>�<FR � � � �Ij Yager (1980b)
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Table A.2: Fuzzy intersections T oqp n�r s and unions S oqp n�r s .

t uHv wx y z uHv wx y parameters references{|} uHv wx y {~� uHv wx y Zadeh (1973)v x v � x� v x Bandler and Kohout (1980){ ~� u v � x � � w� y {|} uHv � x w � y Łukasiewicz, Giles (1976)� �� ��� w if ��� �� w if� � �� w otherwise

� �� ��� w if ��� �� w if� � �� w otherwise
Weber (1983)v x� � u �� � y uHv � x � v x y v � x � uH� � � yHv x�� u �� � yHv x �� � Hamacher (1978)v x{~� uHv w x w� y v � x� v x� {|} u v w x w �� � y{~� u �� v w �� x w� y � � �� w � � Dubois and Prade (1986)

� � �'� � � ��� � ��� � � ��� � ��� �� � � � �� �� ��� � �� � � � � �� � �� � � � � �� � Dombi (1982)��� � u �� v y:� � u �� x y:�� u �� v y:� u �� x y:� �   v � � x �� v � x � ¡� � Schweizer and Sklar (1961){ ~� u �� � � u �� v y � � u �� x y�� w� y {|} u�   v � � x � w � y ¡¢ � Yager (1980b){~ � u v � x � � � � v x� � � w� y {|} u v � x � � v x w � y �¢ � � Weber (1983)£ ¤¥ ¦ § � � uH¨ �� � y u¨ �� � y¨ � � © �� £ ¤ ¥ ¦ § � � ¨ �� � � ¨ �� �¨ � � © ¨ � � w ¨ ª� � Turksen (1986)
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Fuzzy logic operators 245

Table A.3: Fuzzy implications I %RKs þ � .
��%RKs þ � references¢Ò£Ó¥Ka>Ü<FR�� þ sk>�� Łukasiewicz¢¤£¦¥ M>Ü<FR&sM¢¤£Ó¥KÉR&s þ �a� Zadeh (1975)¢NÚ�ÛKM>Ü<FR&s þ � Kleene (1938)>Ü<FR �FR þ Reichenbachq þ s if R¤� þ>,s otherwise Gödel89: 9; >�<FRKs if

þ �9jþ s if R"��>>�s otherwise
Dubois and Prade

q >,s if R"�Sj¢¤£¦¥K ÊÉ s¬>���s otherwise Goguen (1969)q >,s if R � þj+s otherwise Gaines (1976)q >,s if R � þ¢¤£Ó¥KM>Ü<FR&s þ ��s otherwise Wu (1986)q j+s if R¤� þþ s otherwise Wu (1986)þ É
Yager (1980a)¢¤£¦¥K�¢NÚxÛKa>ª<¿RKs þ ��sa¢NÚxÛ0ÉR&sk>Ü< þ sa¢¤£¦¥K þ sk>Ü<FR0�a�a� Willmott (1980)¢¤£Ó¥�%RKs þ � Mamdani (1974)R þ Larsen (1980)co
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B
Linear controller «

fuzzy controller
proof

In the following, it will be shown that a fuzzy controller can “emulate” a linear controller.
The proof assumes that the criteria are fulfilled which were given in section 4.5.2. These

criteria are:

L-1 the membership functions of the fuzzy sets on the universe of discourse of the inputs
are triangularly shaped and normal;

L-2 the fuzzy sets for each input form a fuzzy partition: the sum of the membership
functions equals 1;

L-3 the fuzzy rule base is complete;

L-4 a T-norm is used for the implication function (T-implication);

L-5 the operator for the conjunction in the premises of the fuzzy rules is the product
operator;
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248 Linear controller ¬ fuzzy controller proof

L-6 the (bounded) sum operator (union according to Łukasiewicz) is used for the aggre-
gation and for the or connective if it is used;

L-7 the defuzzified consequents (constant numerical representations) of the individual
fuzzy rules are chosen according to equation (4.51);

L-8 the fuzzy-mean defuzzification method is used; this implies the choice for the
aggregation operator in L-6.

Because the aggregation is a summation, the fuzzy controller output Q Õ is described by
applying the fuzzy-mean defuzzification directly by using the consequents of all (con-
tributing) fuzzy rules:

Q Õ �  ÌUX WHX ü X þ X�ÌUX W0X ü X (B.1)

where
þ X is the numerical consequent of fuzzy rule $ X ; numerical representation of the

fuzzy consequent Õ X in case of Mamdani rules. Furthermore, because of criteria L-2 to
L-4 and L-6 we can write:�ÌUX W0X ü X � D 1 ËUX W0X ü X (B.2a)

� D 1 ËUX W0X �ËêV W0X � V Ê X (B.2b)

�i � X Ê ÿ � � X Ê � � D
1 Ë cedUX W0X �ËêV3W D �

V Ê X (B.2c)� �k�k�� =êV3W0X  � X Ê ÿ � � X Ê � � D
1 Ë c® ì dUX W0X  ËêV3W = � V Ê X (B.2d)� �k�k�� �ËêV3W0X  � V Ê ÿ � � V Ê � � (B.2e)

�  ËêV3W0X > (B.2f)�i> (B.2g)
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Linear controller ¬ fuzzy controller proof 249

where � V Ê ÿ is the “left” fuzzy set and � V Ê � is the “right” fuzzy set as depicted in figure B.1.

� V Ê ÿ �G>ª< � V Ê �
� V Ê � �i>Ü< � V Ê ÿ Y ÕVY V Ê ÿ Y V Ê � Y0V

Figure B.1: Determining � V Ê ÿ and � V Ê � .
What is left to proove is:

D 1 ËUX W0X ü X þ X ��£ ¤ ^ Õ �@' (B.3)

of which the left-hand side can be written as:

D 1 ËUX W0X ü�X þ X � D 1 ËUX W0X ü�X ¥£ ¤ ^ X �@'+� (B.4a)

� D 1 ËUX W0X ü�X £ ¤ ^ X � D 1 ËUX W0X ü�X ' (B.4b)

��" ¤ D 1 ËUX W0X ü X ^ X � ' D 1 ËUX W0X ü X (B.4c)

��" ¤ D 1 ËUX W0X ü X ^ X � ' (B.4d)
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250 Linear controller ¬ fuzzy controller proof

Hence, the proof is reduced to proving:

D 1 ËU X ü X ^ X �O^ Õ (B.5)

For the W �M� input this can written as:

D 1 ËUX W0X ü X Y0V Ê X � D 1 ËUX W0X �ËêV3W0X � V L Y0V L (B.6a)

� D 1 Ë cedUX W0X
899: 99;e� V Ê ÿ Y0V Ê ÿ �Ëê= W0X=®¯W+V � = L � � V Ê � Y:V Ê � �Ëê= W0X=®¯W+V � = L q

99s99t (B.6b)

�i � V Ê ÿ Y0V Ê ÿ � � V Ê � Y0V Ê � � D
1 Ë cedUX W0X �Ëê= WHX=®¯W+V � = L (B.6c)

� � V Ê ÿ Y0V Ê ÿ � � V Ê � Y0V Ê � (B.6d)

which is equal to

Y ÕV
, because � V Ê � �r>�< � V Ê ÿ and:

� V Ê ÿ � Y V Ê � < Y ÕVY0V Ê � < Y0V Ê ÿ (B.7)

This means that any linear system represented by a static functional description can be
emulated by a fuzzy system. The fuzzy system can be viewed as a look-up table and (linear)
interpolation is performed between the elements of the look-up table. The elements fulfill
the static functional description representing the linear controller (or model).
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C
Derivation of

restricted learning
rule

The derivation of the restricted learning rule as described in section 5.4.3 is given in
this appendix. This learning rule maintains fuzzy partitions on the input universes.

By maintaining these fuzzy partitions on the input universes, the interpretability of the
rules after (and during) adaptation is maintained.

The following criterion is supposed to be minimized (Guély and Siarry, 1993):

å � �°UT W0X å T (C.1a)

� �°UT W0X
XD È�Q T <wQ T �(D (C.1b)

where �Q T is the B th reference for output Q T and ¨ � is the number of samples. Parameters� are updated according to:B � �i< �[�¨ � ½ å½ � (C.2a)
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252 Derivation of restricted learning rule

�i< �[�¨ � �°UT W0X ½ å T½ � (C.2b)

where � � is the learning factor (speed factor) and ¨ � is the number of samples in a batch
used for learning. For simplification � , Q and �Q are used instead of å , Q � and �Qñ� . Thus½ å T { ½ � is denoted by:½ �½ � � ½ �½ Q ½ Q½ � (C.3a)�r%Q�< �Q:� ½ Q½ � (C.3b)

So this leaves me to determine the partial derivatives of Q to the parameters that are to be
adapted. Before determining the partial derivative

½ Q:{ ½ þ X and
½ Q:{ ½ R © V the membership

functions have to be known. The triangularly-shaped membership functions used in the
restricted learning method are defined by:

l m Rpë ¯  Y:V �C� 8999: 999;
Y0V <FR V Ê © `yXR V Ê © <FR V Ê © `LX s if R V Ê © `yX �IY V � R V Ê ©Y0V <FR V Ê © âHXR V Ê © <FR V Ê © â0X s if R V Ê © �IY0V]� R V Ê © â0Xj+s otherwise

(C.4)

Note that these membership functions are convex and form a fuzzy partition on each
universe. Because the product operator is used for and connective, the sum operator is
used for aggregation and the fuzzy-mean method is used for defuzzification, a complete
rule base results in: ÌUX W0X ü X �i> (C.5)

First the partial derivative of Q to
þ X is derived:½ Q½ þ X � ü X�ÌUX W0X ü X

� ü X (C.6)

The partial derivative
½ Q:{ ½ R V Ê © is determined by:½ Q½ R V Ê © � ½ Q½ l m Rãë ¯ cxd ½ l m Rãë ¯ ced½ R V Ê © � ½ Q½ l m Rãë ¯ ½ l m Rpë ¯½ R V Ê © � ½ Q½ l m Rpë ¯cì d ½ l m Rpë ¯cì d½ R V Ê © (C.7)
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where
½ Q:{ ½ l m Rãë ¯ is given by:

½ Q½ l m Rãë ¯ �
 ® Rpë ¯UX ä WHX ü X ä þ X ä <FQ �® Rãë ¯UX ä W0X ü X äl m Rãë ¯  Y V � �ÌUX WHX ü X

� l `LXm Rpë ¯  Y0V � �® Rpë ¯UX ä W0X ü X ä  þ X ä <wQ:� (C.8)

This leaves us to derive the following partial derivatives:½ l m Rãë ¯ cxd½ R V Ê © � 8: ; l�m Rpë ¯  Y V �R V Ê © <¿R V Ê © `LX s if R V Ê © `LX � Y0V �IR V Ê ©j+s otherwise
(C.9)½ l m Rãë ¯½ R V Ê © � 89999: 9999;

< l m Rpë ¯  Y0V �R V Ê © <¿R V Ê © `LX s if R V Ê © `LX � Y0V �IR V Ê ©< l m Rpë ¯  Y0V �R V Ê © <¿R V Ê © â0X s if R V Ê © � Y0V �IR V Ê © â0Xj+s otherwise

(C.10)½ l m Rãë ¯Cì d½ R V Ê © � 8: ; l m Rpë ¯  Y0V �R V Ê © <¿R V Ê © â0X s if R V Ê © � Y0V �IR V Ê © â0Xj+s otherwise
(C.11)

Now, all necessary partial derivatives are derived and result in the learning rules as given
by (5.17) on page 175:

B R V Ê © �

8999999999999999999999999: 999999999999999999999999;

� É %Q�<ë�Q:�ÉR V Ê © <¿R V Ê © `LX � ËÍÎ l m Rpë ¯  Y0V �l m Rpë ¯ cxd  Y0V � �®
Rpë ¯ cxdUX ä W0X ü�X�ä  þ X�ä <FQ:�

<  ® Rpë ¯UX ä W0X ü�X�ä  þ X
ä <FQ0� Ï ÑÓ s if R V Ê © `LX � Y V �IR V Ê ©� É %Q�<ë�Q:�ÉR V Ê © <¿R V Ê © â0X � ËÍÎ l m Rãë ¯  Y0V �l m Rpë ¯cì d  Y:V �  ® Rãë ¯Cì dUX ä WHX ü X ä  þ X ä <FQ0�
<  ® Rpë ¯UX�ä W0X ü X ä  þ X ä <FQ0� ÏÒÑÓ s if R V Ê © � Y0V ��R V Ê © â0XjLs otherwise

(C.12a)

B þ X �G� Ê ü X ÉQ�<��Q0� (C.12b)

Clearly, R V Ê © `LX �IR V Ê © �SR V Ê © â0X should be maintained. Application of this learning rule can
be considered as adaptation of the elements as well as the index vectors of a look-up table.
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D
GCMAC:

Generalized
Cerebellar Model

Articulation
Controller

In section 5.5.2, a comparison was described between a fuzzy system and a CMAC using
kernel functions with values in the interval 4;j+sk>J8 instead of values restricted by �xj+sk>�� .

This appendix will give a small overview of GCMAC, a generalized CMAC (Krijgsman
and Jager, 1993b).

The CMAC algorithm as proposed by Albus (1975b, 1975a), can be seen as a look-up
table with additional extensions. These extensions are the following (Krijgsman, 1993):
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256 GCMAC: Generalized Cerebellar Model Articulation Controller

� Generalization of inputs is performed. This causes “neighboring” input vectors
to be considered when a certain input vector is considered. Hence, distributed
storage is used to store learned input-output combinations.� “Random” mapping is used to map elements in a virtual memory (not bounded
in size) to the actual memory (bounded in size). Collisions can occur because the
virtual memory is mapped onto a smaller actual memory. Because of the randomness
of the mapping, the chances of (systematic) collisions due to this are minimized.

The working of the (G)CMAC is described by the following:� The input vector ^ is generalized into a set of (weighted) input vectors ^±� by means
of a kernel function í %^Üs�^²�x� . Albus (1975b) used a binary kernel function in the
original CMAC:í É^Üs�^��x�Ý� q >,s if î�^¡<F^�� î´³�� 1Dj+s otherwise (D.1)

where þ is a generalization factor. The generalization of the CMAC allows kernel
functions to have values in the interval 4;j+sk>J8 . Hence, (D.1) is generalized to:í É^Üs�^��x� t 47j+s¬>?8 (D.2)

An example is the following kernel function:í É^Üs�^��x�Ý�S¢NÚ�ÛHa>ª< � îÜ^Â<F^�� î T s�jy� (D.3)

where � t ² is a scaling factor and î"|Ãî T is the B -norm and. Examples of such
kernel functions are shown in figure D.1.� Each vector ^/� is mapped into a memory cell "*� of the actual memory Ö by means
of “random” mapping. Collisions occur when different input vectors ^µ� address the
same memory cell "�� .� An output is retrieved by:

Q"� �
U� W0X í É^«s§^��,�F"�� 
U� W0X í %^Üs�^��x� (D.4)

where é is used to index the input vectors ^ � within the generalization of input
vector ^ .
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GCMAC: Generalized Cerebellar Model Articulation Controller 257

� Learning is performed according to a Widrow-Hoff updating rule (Krijgsman,1993).
Each cell " � is updated by:B "�� � ? ��0�Q�<FQ0� í É^«s§^��x� (D.5)

where
? � t 4;j+sk>J8 is the learning factor for memory cell " � and �Q is the desired

output.

j
>

YKX Y D

í É^�s��̂�x�

(a)¶ ð¸·ójE·k¹Jó�©�m®���xð#�º� òº9» · �¼·½¹ » õ j#�?ó
j
>

Y&X Y D

í É^«s§^¾�x�

(b)¶ ð¿·ój�·½¹§ó�©�m�����ð#��� òº9» ·Q�À·½¹ »:Á j&�Jó
Figure D.1: Examples of “fuzzy” kernel functions.

To test the generalized CMAC, the GCMAC algorithm has been implemented in C++ � . The
GCMAC implementation has been used for quite a number of experiments (Krijgsman and
Jager, 1993b; van Kats, 1993; Welling, 1994). These experiments showed that “fuzzy”
kernel functions result in improvements with respect to learning performance compared
to binary kernel functions.

	
The software can be obtained from the author.

co
nt

ro
len

gin
ee

rs
.ir



258

co
nt

ro
len

gin
ee

rs
.ir



E
RICE: Routines for
Implementing C

Expert systems

In this appendix, a short description of RICE � is given. RICE stands for Routines for
Implementing C Expert systems and is a C software library which provides an inference

engine and supporting tools. RICE has been used at the Control laboratory, as well as
outside the laboratory (Peitsman and van Duyvenvoorde, 1993; Peitsman, 1993; Li et al.,
1994). First the inference engine and supporting tools are described in the following
subsection. The use of RICE in simulation or control environments is shown by a simple
example in section E.2.

E.1 The inference engine and supporting tools

The fuzzy inference engine is capable of dealing with two ways of knowledge repre-
sentation: rules and relations. Both approaches influence a grade of possibility or truth	

RICE is available from the author and, among other sites, the CMU Artificial Intelligence Repository
(http://www.cs.cmu.edu/Web/Groups/AI/html/repository.html).
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260 RICE: Routines for Implementing C Expert systems

(corresponding with grade of membership in case of inputs and outputs) of symbolic state-
ments, for example “error is negative big” or “weather is nice”. The inference engine
has several features to perform inference using the knowledge base, containing rules and
relations, and available data. The following list gives an overview of the capabilities of
the RICE library:� Rules are based on simple if-then statements. They have an antecedent, consisting

of conditions, and a consequent, consisting of actions. The conditions can be
combined by an intersection (and) or a union (or). The actions are only fired in
case the antecedent of the rule is not more false than true. The level not more false
than true can be adjusted for each action within a rule. Thus, a fuzzy rule as used
in fuzzy control can be implemented by choosing this level equal to false ( j ). The
actions in the consequent of the rule can be of the then or the else type.� Relations do not have an antecedent and a consequent but only consist of dimensions.
The use of the word dimensions has its origin in the multi-dimensional functions
representing fuzzy rules theoretically. This results in a kind of reversible fuzzy rules,
which can be used by the inference engine to infer one dimension from the rest of
the dimensions by applying a intersection on those. For example, a bi-implication
as used in first-order predicate logic can be achieved by defining a relation with just
two dimensions.� Forward reasoning. Also known as bottom-up or data-driven reasoning. The
inference engine tries to prove as much as possible given an initial set of data. In
case of fuzzy control a control signal will be inferred using the controller inputs and
the knowledge base.� Backward reasoning, also known as top-down or goal-driven reasoning, is used
by the inference engine to prove a priori known goals. In fuzzy control the goal is
to obtain a control signal each sampling instant. To derive a new controller output,
the inference engine uses the knowledge base and the given data (controller inputs).� Progressive reasoning is provided for real-time applications (Lattimer Wright et al.,
1986; Jager et al., 1990; Krijgsman et al., 1991). For the application of progressive
reasoning all knowledge in the knowledge base can hierarchically be divided in
knowledge layers, which are inferred in a specific sequence. A knowledge layer can
be seen as a knowledge base which is an extension of “lower” knowledge layers:
every “higher” knowledge layer contains “higher/deeper” knowledge and “includes”
the knowledge (static as well as dynamic) of the lower ones.� Explanation utilities, although primitive, provide some tools for debugging. Im-
plemented are the so-called how and why facilities.
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E.1 The inference engine and supporting tools 261

� Focus of attention is provided by means of activation or deactivation of knowledge
layers. Using knowledge layers for this purpose does not necessarily imply a
hierarchy among the knowledge layers.� Knowledge base compilation is used to build an internal representation of the
knowledge base. This prevents run-time search through the knowledge base and
thus faster execution. Incremental compilation of knowledge bases is possible.� Linking symbolic statements with C code provides a way to connect the system to
the outside world, a symbolic statement inside the knowledge base can be “linked”
with source code, written in the C programming language. Argument passing by
symbolic statements in the knowledge base to the C code is possible. This offers
the ability to reuse symbolic statements, like programmed routines, and thus limit
the number of symbolic statements and C code. The source code can be used to
perform, for example, classifications of measurements and defuzzification of fuzzy
outputs of the system.

The symbolic statements in the knowledge base are used to represent the “dynamic”
knowledge, the implications and relations are used to represent the “static” knowledge.
The terms “dynamic” and “static” are not to be taken literally, because within the knowl-
edge base it is, for example, possible to alter the grade of possibility/truth of actions of
implications and/or dimensions of relations. This provides on-line adaptation or tuning of
rules.

In the application of rules as well as relations it is possible to have different interpretations
of the intersection and union in the fuzzy inference engine. Several T-norms and S-
norms, like the ones according to Zadeh, Łukasiewicz or probability theory are already
implemented, as well as functions for using several “families” of T- and S-norms (see
section 2.3.1) are offered. Those families or other, user supplied, types of T-norms and
S-norms can be used in the inference engine to represent the and and or operation.

When using the fuzzy inference engine, it is possible that the conditions of rules are actions
of other rules. The first question that arises is: “What happens with the intermediate
results?”. The relevance of this question depends on the way the rule base is composed.
Rules with actions which are used as conditions in other rules can be regarded as a kind
of short-hand notation for implementing more complex rules. In another perspective one
can conclude that such a rule actually has defined a new imaginary membership function
for a specific input. The correctness of this interpretation depends on the conditions and
actions defined in the rule. Whether or not the result of the fuzzy inference engine is
in agreement with the compositional rule of inference, depends on the correctness of the
fuzzy rules implemented and the coherence between them.
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262 RICE: Routines for Implementing C Expert systems

Another possibility is the fact that a rule does not have a condition for every input available,
which is however not relevant when assuming the following:� the antecedent of every rule should imaginary contain a classification of every input;� the membership grade of a “missing” input classification in the antecedent of the

rule is assumed > (true).

From this point of view, rules are defined for every possible symbolic combination of the
inputs, although not every rule is really individually provided in the rule base. Because
missing input classification are assumed to have a membership grade of 1, in fact the
union according to Łukasiewicz is applied on all classifications of the input in question,
assuming consistent choices of membership functions for those classifications; see also
section 4.6.2 on this topic. So, in fact, a large imaginary rule base is defined which has a
fuzzy rule for every situation, but only the relevant parts are actually provided. In this way
it is possible to design fuzzy controllers which use different inputs in different situations:
the inputs which are not relevant are simply ignored by the system.

E.2 Examples using RICE in simulation and control

In this section an example is given in which the fuzzy inference engine is used in a control
system for the level control of a water column, as shown in figure E.1. Although it is a
simple control problem, it is sufficient for showing how the fuzzy inference engine can
be easily embedded in a simulation and/or real-time control environment. First we set
up the knowledge base as shown in listing E.1. The rem keyword is used for comment
(remarks).

Input as in listing E.1 is an easy way of setting up a knowledge base. To do so, two
macro’s were defined to transform this to the maximum number of ¾aH rules, expected by
the compiler of the fuzzy inference engine. In the file included by the knowledge base,
the two necessary macro’s are defined (see listing E.2).

The addition run to the and and then keywords makes the link between symbolic
statements and code in the C programming language. Examples of such links are shown
in listing E.3, where the link and grade are keywords. The link keyword links a
symbolic statement with C code. Thegrade keyword represents the grade of membership
or truth, which can be assigned a value (in a condition) or which its value can be used (in
an action). The first link statement determines the membership value of the error in case
of a trapezoidal (trap( �k�k� )) membership function, the second stores the grade of truth,
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E.2 Examples using RICE in simulation and control 263

Figure E.1: Standpipe used in level control problem.

determined by the fuzzy inference engine, in an array (du grade[] in this example).
This array can be used to determine the crisp value for the control signal change by means
of defuzzification. All symbolic statements in the knowledge base can be linked this way,
if necessary. In this example a total Å+> ( Æ Ô Þ ) linkages between symbolic statements and
C code were defined. This could be limited to Æ when using the possibility to work with
argument passing from symbolic statements in the knowledge base to the C code.

For simulation experiments the fuzzy inference engine was used in the simulation package
CSIM � on an IBM-compatible computer (40486DX/33Mhz). The result of the simulated
level control of the water column is shown in figure E.2a. In order to perform the real-time
experiments, the fuzzy inference engine was used in a simulation and real-time control
environment, called MUSIC � (Cser et al., 1986), running on VAX/VMS � stations. In fact
the fuzzy inference engine can be used on any platform where a ANSI-C compiler is
available (ports of RICE to real-time operating system DECelx and Unix environments
are known to work). In figure E.2b the results of the real-time experiment of the level
control are shown.	

CSIM is developed at the Control laboratory.

MUSIC is an acronym for MUlti-purpose SImulation and Control.�
VAX is a trademark of Digital Equipment.
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Figure E.2: Results of water-level control by fuzzy PI controller implemented
in RICE in combination with simulation package CSIM (a) and real-time
control package MUSIC (b).
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rem the knowledge base as a matrix
rem horizontal : error (e)
rem vertical : error change (ce)
rem contents : control change

include fuzzypi.ki

rem ce\e : NB : NM : NS : AZ : PS : PM : PB
rem .. : .. : .. : .. : .. : .. : .. : ..
PI-row PB : AZ : PS : PM : PB : PB : PB : PB
PI-row PM : NS : AZ : PS : PM : PB : PB : PB
PI-row PS : NM : NS : AZ : PS : PM : PB : PB
PI-row AZ : NB : NM : NS : AZ : PS : PM : PB
PI-row NS : NB : NB : NM : NS : AZ : PS : PM
PI-row NM : NB : NB : NB : NM : NS : AZ : PS
PI-row NB : NB : NB : NB : NB : NM : NS : AZ

Listing E.1: The file fuzzypi.kb containing the knowledge base for the
fuzzy PI controller.

The example and experiments, as discussed in this section, give an idea of the relation
of the developed fuzzy inference engine and the application of fuzzy control. Fuzzy
controllers are easily implemented within a fuzzy inference expert system shell, because
they use only a small part of the capacity of such a tool. The advantage of a fuzzy expert
system shell is the ability to “add” knowledge, exceptions, daemons, etc.
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rem a macro for a fuzzy rule
rem - Zadeh-type of AND-operation (min)
rem - weight/truth value of 1 (true)
rem - logical threshold of 0 (false)

define PI-rule
zandrun error is #1
zandrun error change is #2
pthenrun change contol #3 : 1 : 0

rem a macro for a ’row’ of the fuzzy rule base

define PI-row
PI-rule NB : #1 : #2
PI-rule NM : #1 : #3
PI-rule NS : #1 : #4
PI-rule AZ : #1 : #5
PI-rule PS : #1 : #6
PI-rule PM : #1 : #7
PI-rule PB : #1 : #8

Listing E.2: The included file fuzzypi.ki with macro definitions.

link("error is NM",
grade = trap(e, -4, -3, -2.5, 1);

);

link("change control PS",
du_grade[4] = grade;

);

Listing E.3: Examples of linking symbolic statements with C code, where
grade and link are keywords.
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F
Proofs for inference

break-up method

In this appendix, the proofs are given for the inference break-up method as described in
section 6.4.2. First it is shown how a rule can be broken up. After this, the break-up

of the inference of a single rule is addressed. The last section deals with the inference
break-up of a rule base.

F.1 Rule break-up

Demirli and Turksen (1992) proved for general S- and R-implications that:�� o X huo D s Õ ������ o X s Õ ��Ñ��. o D s Õ � (F.1)

where the cylindrical extension is implicit, and which can be considered element-wise by\nÉR X Ê V d * R D Ê V à s þ © � for any W X s W D s V . Since S- and R-implications are nonincreasing with
respect to their first arguments and the min operation is used for the conjunction in the
premise of the rule, the following two cases can be distinguished:

1. \]%R X Ê V d * R D Ê V à s þ © � �è\]%R X Ê V d s þ © � , when R X Ê V d � R D Ê V à , because of the min operation
for conjunction, and \n%R X Ê V d s þ © � � \nÉR D Ê V à s þ © � , because of the fact that S- and
R-implications are nonincreasing with respect to their first arguments;
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268 Proofs for inference break-up method

2. \]%R X Ê V d * R D Ê V à s þ © �ª� \n%R D Ê V à s þ © � , when R X Ê V d �èR D Ê V à and \]%R X Ê V d s þ © � � \]%R D Ê V à s þ © � ,
for the same reasons as before.

The combination of these two cases results in \nÉR X Ê V d * R D Ê V à s þ © ���O\]%R X Ê V d s þ © � , \nÉR D Ê V à s þ © � ,
which proves (F.1).

Since the proof is based on the property of general S- and R-implications that they are
non-increasing with respect to their first arguments, it can be stated that (F.1) is correct
for any implication which has that property. Hence, (F.1) is correct for all implications
reflecting partial ordening of propositions, including R-implications, but also including the
implication according to Gaines (1976) and several others, among which the implication
proposed by Yager (1980a), � %RKs þ �"� þ É

, since
þ É � þ É â½Â

with  �� j . It should be
noted that implications based on the implication from quantum logic (QL-implications for
short), defined by � %RKs þ ��� = M>_<ÂRKs 6 %RKs þ �a� (where = and 6 are " -dual), do not have the
required property.

F.2 Rule inference break-up

In the previous section it was shown that a complex rule can be represented by a number
of simple rules in case the min operation is used for conjunction in the premises of the
rules. In this section it will be shown that this rule break-up can be used to simplify the
inference of a complex rule. Demirli and Turksen (1992) proved that:

Õ Õ �i o Õ X huo Õ D � ^ �� o X hNo D s Õ � (F.2a)�i� o Õ X ^ �� o X s Õ �§�-Ñê� o Õ D ^ �� o D s Õ �§� (F.2b)� Õ > Õ Ñ Õ Å Õ (F.2c)

The proof given by Demirli and Turksen (1992) assumes that o Õ X and o Õ D are normalized
(hgt  o Õ X �_� > and hgt  o Õ D �_� > ) and is based on (F.1). When for simplicity it is assumed
that o X , o D and Õ are discretized by R V , þ © and " X , respectively, then the following proof
is given by Demirli and Turksen (1992):� 6 sS" ÕX � Ú V Ê © 43%R ÕV * þ Õ© � * \nÉR V * þ © s3" X �É8� Ú V Ê © 43%R ÕV * þ Õ© � * �x\nÉR V s3" X � , \] þ © s�" X ���k8� Ú V Ê © 43�xR ÕV * þ Õ© * \nÉR V s3" X �§� , �xR ÕV * þ Õ© * \n þ © s3" X �§�k8
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� Ú © 4 Ú V �xR ÕV * þ Õ© * \n%R V s�" X ��� , Ú V �xR ÕV * þ Õ© * \n þ © s3" X �§�k8� Ú © 4 Ú V �xR ÕV * þ Õ© * \n%R V s�" X ��� , � þ Õ© * \] þ © s3" X ���k8� Ú V 4 Ú © �xR ÕV * þ Õ© * \n%R V s�" X ��� , Ú © � þ Õ© * \n þ © s3" X �§�k8� Ú�V 4;R ÕV * \nÉR V s3" X �%8 , Ú © 4 þ Õ© * \] þ © s�" X �É8� "�> Õ X , "?Å Õ X
The above given proof by Demirli and Turksen (1992) assumes that o Õ X and o Õ D are
normalized. However, this assumption is not necessary when modifying the sets o Õ X ando Õ D used in (F.2) in the following way:

o ÕGÕX � �0�,�  o Õ D � *uo Õ X (F.3)o ÕGÕD � �0�,�  o Õ X � *uo Õ D (F.4)

Due to the min operation for conjunction and the sup-min composition, this modification
will compensate for subnormal data (hgt  o Õ X � hgt  o Õ D ���G> ).
F.3 Rule base inference break-up

The proof in the previous section showed that it is possible to break-up the inference
of a rule, which is modeled by an implication that is nonincreasing with respect to its
first arguments, when the conjunction is represented by a min operation and the sup-min
composition is used. In this section it is shown that under the same conditions the inference
of a rule base with rules (not just one rule) can be broken-up to the inference of simple rule
bases (rule bases in which the rule have only one variable addressed in their premises).
Next it is assumed that the data o Õ � o Õ X h�o Õ D is normalized. If not, a similar modification
of the data as explained at the end of the previous section will compensate for subnormal
data. The proof will be done for a rule base with two rules with two-dimensional premises.
Extension to more rules and more variables in their premises is straightforward. For the
assumed inference, the following can be derived:

Õ Õ �i o Õ X huo Õ D � ^ �u�� o X Ê X huo D Ê X s Õ X � h �� o X Ê D huo D Ê D s Õ D ��� (F.5a)� o Õ X ^ �u�� o X Ê X s Õ X � h �� o X Ê D s Õ D ���+Ñ
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o Õ D ^ �u�� o D Ê X s Õ X � h �� o D Ê D s Õ D ���+Ñ�L4 o Õ X ^ �. o X Ê X s Õ X �%8 h 4 o Õ D ^ �. o D Ê D s Õ D �%8É�-Ñ�L4 o Õ X ^ �. o X Ê D s Õ D �%8 h 4 o Õ D ^ �. o D Ê X s Õ X �%8É� (F.5b)

Assuming that o X , o D and Õ are discretized by R V , þ © and " X , respectively, the proof is
given by:

� 6 só" ÕX � Ú V Ê © 43%R ÕV * þ Õ© � * �x\n%R X Ê V * þ X Ê © s�" X Ê X � * \n%R D Ê V * þ D Ê © s3" D Ê X ���k8� Ú V Ê © 43%R ÕV * þ Õ© � * �L47\nÉR X Ê V s3" X Ê X � , \n þ X Ê © s3" X Ê X �%8 *47\nÉR D Ê V s3" D Ê X � , \n þ D Ê © s3" D Ê X �%8É�k8� Ú V Ê © 43%R ÕV * þ Õ© � * �L47\nÉR X Ê V s3" X Ê X � * \n%R D Ê V s3" D Ê X �%8 ,47\nÉR X Ê V s3" X Ê X � * \n þ D Ê © s3" D Ê X �%8 ,47\n þ X Ê © s3" X Ê X � * \n%R D Ê V s3" D Ê X �%8 ,47\n þ X Ê © s3" X Ê X � * \n þ D Ê © s3" D Ê X �É8%�k8� Ú V Ê © 43�)�)%R ÕV * þ Õ© � * 47\nÉR X Ê V s3" X Ê X � * \n%R D Ê V s3" D Ê X �%8É� ,�)ÉR ÕV * þ Õ© � * 47\nÉR X Ê V s3" X Ê X � * \n þ D Ê © s3" D Ê X �%8É� ,�)ÉR ÕV * þ Õ© � * 47\n þ X Ê © s3" X Ê X � * \n%R D Ê V s3" D Ê X �%8É� ,�)ÉR ÕV * þ Õ© � * 47\n þ X Ê © s3" X Ê X � * \n þ D Ê © s3" D Ê X �É8%�)�k8� Ú V Ê © �)ÉR ÕV * þ Õ© � * 47\]%R X Ê V s3" X Ê X � * \nÉR D Ê V s3" D Ê X �%8É� ,Ú V Ê © �)ÉR ÕV * þ Õ© � * 47\]%R X Ê V s3" X Ê X � * \n þ D Ê © s3" D Ê X �É8%� ,Ú V Ê © �)ÉR ÕV * þ Õ© � * 47\] þ X Ê © s3" X Ê X � * \]%R D Ê V s3" D Ê X �É8%� ,Ú V Ê © �)ÉR ÕV * þ Õ© � * 47\] þ X Ê © s3" X Ê X � * \] þ D Ê © s3" D Ê X �%8É�� 4 ÚZV �xR ÕV * 47\]%R X Ê V s3" X Ê X � * \]%R D Ê V s3" D Ê X �%8É�k8 ,4 Ú V �xR ÕV * \nÉR X Ê V s3" X Ê X ��� * Ú © � þ Õ© * \n þ D Ê © s3" D Ê X �§�k8 ,4 Ú © � þ Õ© * \] þ X Ê © s3" X Ê X ��� * Ú V �xR ÕV * \nÉR D Ê V s3" D Ê X �§�k8 ,co
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4 Ú © � þ Õ© * 4;\n þ X Ê © s3" X Ê X � * \n þ D Ê © s3" D Ê X �É8%�k8
From this it can be seen that it is inevitable to perform inferences on product spaces. The
break-up of the inference of a rule base results in a combination of inferences of simple
rule bases. From practical point of view, this inference break-up will limit the necessary
product-space calculations to at most 2-dimensional.
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List of symbols

The following general symbols, operators and functions are used throughout this thesis.
Symbols which represent functions are denoted with an additional M|ø� . Some symbols are
also used to denote parameters, but this should be clear from the context.

h (fuzzy) set intersection/conjunctionÑ (fuzzy) set union/disjunction* intersection, logical and, union, logical oro complement/negation of oþ
product^ sup-min composition^uú sup-T composition, where T is a general T-norm^ à sup-m composition, where m is a pseudo-conjunction½
partial derivative¡ linguistic possibility value?
linguistic probability valuel a|ø� membership function" M|ø� possibility measure� M|ø� possibility distribution function��M|ø� probability distribution functionÃ
probability distribution� possibility distribution� M|ø� possibility measure
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286 List of symbols

$ linguistic truth value

In this thesis a number of short-hand notations to denote properties of or operations
on fuzzy sets are used. In text these short-hand notations are printed italic, abbreviations
in capitals. A summary is provided in the following list:y Ú-AXA  o sLzy� BADD defuzzification of fuzzy set o�?�¬Û �  o\Pap � cylindrical extension of o on p�?�AÚ+ o � centre-of-area (COA) defuzzification of fuzzy set o�?� �  o � centre-of-gravity (COG) defuzzification of fuzzy set o�?���a�) o � core of fuzzy set oAF¤C.A o � defuzzification of fuzzy set o¤-¢Â o � fuzzy-mean (FM) defuzzification of fuzzy set o�0���  o � heigt of fuzzy set oW Aa¤C.) o � indexed defuzzification of fuzzy set o¢¤��¢Â o � mean-of-maxima (MOM) defuzzification of fuzzy set o�K�Uv� o � power of fuzzy set o�0�M�ONJ o�Pap � projection of o on p� ÷ £>AL�) o s � s ü � SLIDE defuzzification of fuzzy set o�P�0�0�� o � support of fuzzy set oÛH�?�)ÚL o s
¡Ç� extended centre-of-area (XCOA) defuzzification of fuzzy set ov5¤-¢Â o � weighted fuzzy-mean (WFM) defuzzification of fuzzy set o
For fuzzy systems, including fuzzy controllers and models, the following variables are
used: Y0V W � � numerical input variableY ÕV W � � numerical (measured) input valuep V W � � input universeo V fuzzy set for W � � input universeo V Ê X fuzzy set for W � � input universe in premise of 6 � � ruleo ÕV fuzzy set representing (measured) value for W � � input$ X 6 � � fuzzy ruleC fuzzy relationC X fuzzy relation representing 6 � � fuzzy ruleQ © V � � numerical outputY © V � � output universeÕ © fuzzy set for

V �M� output universe
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Õ © Ê X fuzzy set for
V �M� output universe in premise of 6 � � ruleÕ Õ© fuzzy set for
V �M� output universe resulting from inference

Specific to fuzzy controllers in some cases the following variables are used:� error, difference between reference signal and process outputB � first difference of error� control signalB � control signal change

The notation of variables in text as well as equations are conform the following:R scalar or fuzzy singleton representing a scalaro (fuzzy) setÄ vectorÅ
matrix
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List of abbreviations

The following list summarizes the abbreviations used throughout this thesis:

AI Artificial Intelligence
ARMAX Auto-Regressive Model with eXogeneous inputs
BADD BAsic Defuzzification Distribution(s)
CMAC Cerebellar Model Articulation Controller
COA Centre-Of-Area
COG Centre-Of-Gravity
CRI Compositional Rule of Inference
DICE Delft Intelligent Control Environment
DOF Degree Of Fulfillment
ES Expert System
FM Fuzzy-Mean
FNN Fuzzy Neural Network
GCMAC Generalized Cerebellar Model Articulation Controller
GMP Generalized Modus Ponens
GMT Generalized Modus Tollens
KB Knowledge Base
KBS Knowledge-Based System
MP Modus Ponens
MT Modus Tollens
MIMO Multiple-Input Multiple-Output
MISO Multiple-Input Single-Output
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290 List of abbreviations

MOM Mean-Of-Maxima
MRAC Model Reference Adaptive Control
MSF MemberShip Function
OOKR Object-Oriented Knowledge Representation
RBF Radial Basis Function
RBFN Radial Basis Function Network
RICE Routines for Implementing C Expert systems
SIMO Single-Input Multiple-Output
SISO Single-Input Single-Output
SLIDE Semi-LINear DEfuzzification
SO(F)C Self-Organizing (Fuzzy) Control(ler)
SV Support Value
TMS Truth-Maintenance System
WFM Weighted-Fuzzy-Mean
XCOA eXtended Centre-Of-Area
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Summary

Fuzzy control is a hot topic, considering the large amount of publications on this topic.
However, there still exists a lot of misunderstanding of fuzzy control. In this thesis fuzzy
control is analyzed which hopefully results in a demystification on the one hand, and a
profilation on the other.

Fuzzy sets were introduced by Zadeh (1965) although the underlying concept has been
recognized long before that; an overview is given by (Dubois et al., 1993b). Fuzzy sets
provide the ability to model the ambiguity and impreciseness of human classification.
Many operations on fuzzy sets have been defined. They reduce to operations from
classical set theory when classical sets are involved instead of fuzzy sets. The most
important concept within fuzzy set theory is the extension principle.

Fuzzy logic is based on fuzzy set theory. Set-theoretic operations from classical set theory
have no unique equivalents in fuzzy set theory and a problem is to choose operators
which are suited the most to represent the logical operation in a certain context. Although
some general guidelines can be given, there are no clear rules on when to apply which
“type” of an operation. Fuzzy propositions are the basis of fuzzy reasoning. Within the
field of fuzzy reasoning, two approaches can be distinguished: local inference and global
inference. Local inference means that each rule in inferred and the results of the inferences
of the individual rules are aggregated afterwards. Global inference means that the rules
are aggregated and used for inference as a whole. When implications are modeled by
conjunctions, the results of local and global inference are equal when the aggregation
operator equals the combination operator of the composition method.
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292 Summary

A fuzzy controller is basically the application of the compositional rule of inference. When
the inputs and outputs of the fuzzy controller are numerical, sensor and actuator signals,
translation from numerical values to fuzzy set representations and vice versa are necessary.
The first is known as fuzzification, the latter as defuzzification. In the application of fuzzy
control, the following stages can be distinguished: matching of data with rule premises
(includes fuzzification), determination of degrees of fulfillment for the rules, aggregation
of results of individual rules and defuzzification to obtain a numerical controller output.
Because of fuzzification and defuzzification, a fuzzy controller can be regarded as an
input-output mapping. Regarding a fuzzy controller (or model) as such a mapping, it
can be shown that the mapping is characterized by tuples in a hyperspace and each tuple
represents a fuzzy rule. The fuzzy reasoning performs an interpolation between these
tuples in that hyperspace, resulting in a (nonlinear) input-output mapping.

Based on this idea of interpolation, it can be shown that many non-trivial nonlinearities
can be introduced by the used operators, defuzzification method, shape of membership
functions of fuzzy sets and the relations between fuzzy sets on a universe. If the non-
linearity of the mapping should (only) be defined by the fuzzy rules, the choices for the
fuzzy controller parameters should be as follows: product for conjunction, summation
for disjunction and aggregation, fuzzy-mean defuzzification, fuzzy partitions on the input
universes and a triangular norm for the implication. Using triangular norms for implica-
tions, in fact, means that the implication is interpreted as a conjunction. When using an
implication which complies with the classical implication, the problem of indetermination
of the output can occur. This is highly undesired in in-line control. Therefore, in direct
control, it is better to use conjunctions for implications in fuzzy control applications.

Different approaches to adaptive fuzzy control exist. Well known is the self-organizing
controller. This type of adaptive fuzzy control adjusts the rule base by means of a rule base
modifier which uses the result of a performance table and a minimal model. Typical for the
self-organizing controller is that it is based on local optimization and global optimization
is not guaranteed.
Another approach is modeling a process to be controlled by a fuzzy relation and using this
fuzzy relation to derive control actions by means of causality inversion: fuzzy associative
memories. When the process exhibits time delays or system dynamics which are modeled
by time delays, a process model is needed to estimate future process outputs. These
estimations are necessary to derived control action by causality inversion.
Adaptation by means of gradient-descent optimization is a technique which is used in
“fuzzy neural networks”. The membership functions of the fuzzy sets on the input
universes and the (numerical) consequents of the fuzzy rules are adapted by a gradient-
descent learning rule. In many cases the linguistic interpretability is lost after adaptation.
Adaptation of fuzzy or conventional controllers by fuzzy supervisors is also possible. A
number of examples of this approach exists. In some cases a translation to an in-line
fuzzy controller (without supervisor) is possible, but the main advantage of a conventional
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Summary 293

controller supervised by a fuzzy supervisor is that it can provide a better “interface” to the
control strategy.

Fuzzy control can be regarded as only a small part of the much broader framework of
approximate reasoning and possibility theory. Approximate reasoning provides a method
for modeling human classification and reasoning, including natural language modeling and
understanding. Although much research in this field has been done, there are only a few
applications known these days. A major disadvantage is the lack of practical applicability
due to severe calculational effort and/or memory requirements to perform the reasoning
according to the theory of approximate reasoning.
Analytical solution to inference are only possible in a few restricted cases. An example
of such a case is the inference break-up when the Kleene-Dienes implications is used.
The main problem is that the results of local inference are usually less restrictive (equal at
best) that the results of global inference. An inference break-up can reduce the inference
of a complex rule base to inference of a number of simple rule bases.

Considering the fact that fuzzy control uses only a small part of the framework it resides in,
one can question whether the success of fuzzy control is because of the use of fuzzy logic.
In many cases a fuzzy controller can be simplified to a look-up table and an interpolation
method to provide the “fuzzy inference”. The same idea can be used to simplify adaptive
fuzzy controllers. The self-organizing controller can be simplified by a look-up table
and an interpolation method where the elements of the look-up table, representing the
(numerical) consequents of the fuzzy rules, are adapted. The adaptive fuzzy systems
based on gradient-descent optimization can be simplified to the adaptation of a look-up
table of which the elements and the index vectors, representing the centers of the fuzzy
sets on the input universes, are adapted. Hence, these simplifications can reduce the fuzzy
aspect of fuzzy control to a user-interfacing concept during the design stage.
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Vage logica in de
regeltechniek

Fuzzy control geniet veel aandacht in deze tijd, gezien het grote aantal publikaties over
dit onderwerp. Er zijn echter nog steeds een groot aantal misverstanden wat betreft fuzzy
control. In dit proefschrift is fuzzy control geanaliseerd, hetgeen hopelijk resulteert in een
“demystificatie” aan de ene kant en een “profilering” aan de andere kant.

Fuzzy sets zijn geïntroduceerd door Zadeh (1965), hoewel het onderliggende concept
als zodanig al een lange tijd hiervoor bekend was; een overzicht hiervan is gegeven
door Dubois et al. (1993b). Fuzzy sets maken het mogelijk om de dubbelzinnigheid en
onnauwkeurigheid van menselijke classificatie(s) te modelleren. Er zijn vele operaties op
fuzzy sets gedefinieerd. Deze operaties reduceren tot operaties uit de klassieke set theorie
wanneer klassieke sets in plaats van fuzzy sets worden gebruikt. Het belangrijkste concept
in the fuzzy set theorie is het “extension principle”.

Fuzzy logic is gebaseerd op fuzzy set theorie. Set-theoretische operaties uit de klassieke
set theorie hebben geen unieke equivalenten in fuzzy set theorie en het is een probleem
om te bepalen welke operator het best geschikt is binnen een bepaalde context. Hoewel
een aantal vage richtlijnen kunnen worden opgesteld, zijn er geen algemene vuistregels
voor het gebruik van bepaalde operatoren. Fuzzy proposities zijn de basis elementen voor
fuzzy redeneren.
Bij fuzzy redeneren kunnen twee werkwijzen worden onderscheiden: lokale inferentie en
global inferentie. In geval van lokale inferentie worden alle rules individueel gebruikt voor
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inferentie, waarna de resultaten worden samengenomen. In geval van globale inferentie
worden eerst alle rules samengenomen en daarna wordt er inferentie toegepast. Indien
implicaties gemodelleerd zijn door conjuncties en de aggregatie operator is dezelfde als
de combinatie operator in de compositie methode, is het resultaat van lokale en globale
inferentie gelijk.

Een fuzzy controller is in feite de applicatie van de “compositional rule of inference”. Als
de ingangen en uitgangen van de regelaar numeriek zijn (sensor en actuator signalen), zijn
omzettingen van numerieke waarden naar fuzzy set representaties en vice versa nodig.
Het eerste staat bekend als fuzzificatie, het laatste als defuzzificatie. In fuzzy control
applicaties kunnen de volgende fasen worden onderscheiden: het matchen van data en
de rule premises (inclusief fuzzificatie), het bepalen van de “degrees of fulfillment” voor
elke rule, aggregatie van de resultaten van de rules en defuzzificatie om een numerieke
regelwaarde te verkrijgen.
Vanwege de fuzzificatie en defuzzificatie kan een fuzzy controller worden gezien als een
input-output mapping. Indien een fuzzy controller (of model) wordt beschouwd als een
input-output mapping, kan deze mapping gekarakteriseerd worden door een aantal punten
in een hyperruimte en elk punt hierin representeert een rule. De fuzzy inferentie zorgt voor
een interpolatie tussen deze punten, hetgeen resulteert in een (niet-lineaire) input-output
mapping.

Wanneer men dit idee van interpolatie beschouwt, kan aangetoond worden dat er vele niet-
triviale niet-lineariteiten worden veroorzaakt door de gebruikte operatoren, defuzzificatie
methoden, vormen van fuzzy sets en de relaties tussen fuzzy sets op een (input) domein.
Als de niet-lineariteiten van de input-output mapping enkel door de rules bepaald dienen
te worden, dient er voldaan te worden aan de volgende criteria: product voor conjunctie,
sommatie voor disjunctie en aggregatie, fuzzy-mean defuzzificatie, fuzzy paritities voor
de input domeinen en een triangular norm voor de implicatie. Het gebruik van triangular
norms voor implicaties betekent, in feite, dat de implicatie word opgevat als een conjunctie.
Wanneer implicaties worden gebruikt die op de klassieke implicatie zijn gebaseerd, kan
het probleem van een onbepaalde regeluitgang ontstaan. Dit is zeer ongewenst in in-line
control. Daarom zijn op conjunctie gebaseerde implicaties de betere keuze in (direct)
fuzzy control.

Verschillende types van adapatieve fuzzy control kunnen worden onderscheiden. Een be-
kend voorbeeld is de self-organizing controller. Deze adaptieve fuzzy controller adapteert
de rule base door middel van een rule base modifier, gebruik makend van een performance
tabel en een minimaal model. Karakteristiek voor dit type controller is dat het is gebaseerd
op lokale optimalisatie en dat globale optimalisatie niet gegarandeerd is.
Een andere aanpak is het modelleren van het te regelen process door een fuzzy relatie en
deze relatie te gebruiken om regelakties te bepalen door middel van causaliteitsinversie:
fuzzy associatieve geheugens. Als het proces dode tijd heeft of dynamica welke gemodel-

co
nt

ro
len

gin
ee

rs
.ir



Vage logica in de regeltechniek 297

leerd kan worden door dode tijd, dan is er een proces model nodig om toekomstig proces
gedrag te voorspellen. Deze voorspellingen zijn nodig voor het bepalen van regelakties
vanwege de causaliteitsinversie.
Adaptatie door middel van gradient-descent optimalisatie is een techniek die gebruikt
wordt in “fuzzy neural networks”. De membership functies van de fuzzy sets voor het
ingangsdomein en de (numerieke) consequents van de rules worden geadapteerd door een
gradient-descent leerregel. In veel gevallen gaat de linguistische interpreteerbaarheid door
de adaptatie verloren.
Adaptatie van fuzzy of conventionele regelaars door fuzzy supervisors is ook een mo-
gelijkheid. Er bestaan een aantal voorbeelden van deze aanpak. In sommige gevallen
is er een vertaling naar een in-line, op Sugeno rules gebaseerde, fuzzy regelaar, maar
het belangrijkste voordeel van een conventionele regelaar in combinatie met een fuzzy
supervisor is dat het een betere “interface” van de regelstrategie kan opleveren.

Fuzzy control kan worden beschouwd als slechts een klein gedeelte van het veel grotere
raamwerk van approximate reasoning en possibility theorie. Approximate reasoning
voorziet in een methode om menselijke classificatie en redeneren te modelleren (inclusief
modellering en begrip van natuurlijke taal). Hoewel veel onderzoek op dit gebied is
gedaan, zijn er slechts weining applicaties bekend vandaag de dag. Een groot nadeel is de
praktische toepasbaarheid door de grote benodigde rekencapaciteit en computergeheugen
om approximate reasoning toe te passen volgens de theorie.
Analytische oplossingen voor de inferentie zijn slechts in een aantal gelimiteerde gevallen
mogelijk. Een voorbeeld van zo’n geval is wanneer de “inference break-up” methode
wordt toegepast. Het voornaamste probleem is dat de resultaten van lokale inferentie
over het algemeen minder informatief zijn dan de resultaten van globale inferentie. Een
“inference break-up” kan de inferentie van een complexe rule base reduceren tot de
inferentie van een aantal simpele rule bases.

Gezien het feit dat fuzzy control slechts een klein gedeelte is van het raamwerk waar het
onderdeel van is, kan men zich afvragen of het succes van fuzzy control te danken is aan
het gebruik van fuzzy logic. In veel gevallen kan een fuzzy controller gereduceerd worden
tot een look-up table en een interpolatie methode welke de “fuzzy inferentie” verzorgt.
Hetzelfde idee kan gebruikt worden om adaptieve fuzzy controllers te versimpelen. De
self-organizing controller kan vereenvoudigd worden tot een look-up table en een interpo-
latie methode, waarbij de elementen (numerieke consequents van de rules) van de look-up
table worden geadapteerd. De adaptieve fuzzy systemen die adapteren door middel van
gradient-descent optimalisatie kunnen vereenvoudigd worden tot een look-up table en een
interpolatie methode, waarbij niet alleen de elementen van de look-up table, maar ook de
index vectoren worden geadapteerd. Deze simplificaties reduceren het fuzzy aspect van
fuzzy controllers tot een user-interfacing concept tijdens de ontwerpfase.
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