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2 Solutions to Exercises

Problem Set 1.1, page 8

1 The combinations give (a) a line inR3 (b) a plane inR3 (c) all of R3.

2 v C w D .2; 3/ andv � w D .6; �1/ will be the diagonals of the parallelogram withv
andw as two sides going out from.0; 0/.

3 This problem gives the diagonalsv C w andv � w of the parallelogram and asks for
the sides: The opposite of Problem 2. In this examplev D .3; 3/ andw D .2; �2/.

4 3v C w D .7; 5/ andcv C dw D .2c C d; c C 2d/.

5 uCv D .�2; 3; 1/ anduCvCw D .0; 0; 0/ and2uC2vCw D . add first answers/ D
.�2; 3; 1/. The vectorsu; v; w are in the same plane because a combination gives
.0; 0; 0/. Stated another way:u D �v � w is in the plane ofv andw.

6 The components of everycv C dw add to zero.c D 3 andd D 9 give .3; 3; �6/.

7 The nine combinationsc.2; 1/ C d.0; 1/ with c D 0; 1; 2 andd D .0; 1; 2/ will lie on
a lattice. If we took all whole numbersc andd , the lattice would lie over the whole
plane.

8 The other diagonal isv � w (or elsew � v). Adding diagonals gives2v (or 2w).

9 The fourth corner can be.4; 4/ or .4; 0/ or .�2; 2/. Three possible parallelograms!

10 i �j D .1; 1; 0/ is in the base (x-y plane).i Cj Ck D .1; 1; 1/ is the opposite corner
from .0; 0; 0/. Points in the cube have0 � x � 1, 0 � y � 1, 0 � z � 1.

11 Four more corners.1; 1; 0/; .1; 0; 1/; .0; 1; 1/; .1; 1; 1/. The center point is.1
2
; 1

2
; 1

2
/.

Centers of faces are.1
2
; 1

2
; 0/; .1

2
; 1

2
; 1/ and.0; 1

2
; 1

2
/; .1; 1

2
; 1

2
/ and.1

2
; 0; 1

2
/; .1

2
; 1; 1

2
/.

12 A four-dimensional cube has24 D 16 corners and2 � 4 D 8 three-dimensional faces
and24 two-dimensional faces and32 edges in Worked Example2.4 A.

13 SumD zero vector. SumD �2:00 vectorD 8:00 vector. 2:00 is 30ı from horizontal
D .cos�

6
; sin �

6
/ D .

p
3=2; 1=2/.

14 Moving the origin to6:00 addsj D .0; 1/ to every vector. So the sum of twelve vectors
changes from0 to 12j D .0; 12/.

15 The point
3

4
v C 1

4
w is three-fourths of the way tov starting fromw. The vector

1

4
v C 1

4
w is halfway tou D 1

2
v C 1

2
w. The vectorv C w is 2u (the far corner of the

parallelogram).

16 All combinations withc C d D 1 are on the line that passes throughv and w.
The pointV D �v C 2w is on that line but it is beyondw.

17 All vectorscv C cw are on the line passing through.0; 0/ andu D 1
2
v C 1

2
w. That

line continues out beyondv C w and back beyond.0; 0/. With c � 0, half of this line
is removed, leaving aray that starts at.0; 0/.

18 The combinationscv C dw with 0 � c � 1 and0 � d � 1 fill the parallelogramwith
sidesv andw. For example, ifv D .1; 0/ andw D .0; 1/ thencv C dw fills the unit
square.

19 With c � 0 andd � 0 we get the infinite “cone” or “wedge” betweenv andw. For
example, ifv D .1; 0/ andw D .0; 1/, then the cone is the whole quadrantx � 0,
y � 0. Question: What if w D �v? The cone opens to a half-space.co
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Solutions to Exercises 3

20 (a) 1
3
u C 1

3
v C 1

3
w is the center of the triangle betweenu; v andw; 1

2
u C 1

2
w lies

betweenu andw (b) To fill the triangle keepc �0, d �0, e �0, andcCd Ce D 1.

21 The sum is.v � u/ C .w � v/ C .u � w/ D zero vector. Those three sides of a triangle
are in the same plane!

22 The vector1
2
.u C v C w/ is outsidethe pyramid becausec C d C e D 1

2
C 1

2
C 1

2
> 1.

23 All vectors are combinations ofu; v; w as drawn (not in the same plane). Start by seeing
thatcu C dv fills a plane, then addingew fills all of R3.

24 The combinations ofu andv fill one plane. The combinations ofv andw fill another
plane. Those planes meet in aline: only the vectorscv are in both planes.

25 (a) For a line, chooseu D v D w D any nonzero vector (b) For a plane, choose
u andv in different directions. A combination likew D u C v is in the same plane.

26 Two equations come from the two components:c C 3d D 14 and2c C d D 8. The
solution isc D 2 andd D 4. Then2.1; 2/ C 4.3; 1/ D .14; 8/.

27 The combinations ofi D .1; 0; 0/ andi C j D .1; 1; 0/ fill the xy plane inxyz space.

28 There are6 unknown numbersv1; v2; v3; w1; w2; w3. The six equations come from the
components ofv C w D .4; 5; 6/ andv � w D .2; 5; 8/. Add to find2v D .6; 10; 14/
sov D .3; 5; 7/ andw D .1; 0; �1/.

29 Two combinations out of infinitely many that produceb D .0; 1/ are�2u C v and
1
2
w � 1

2
v. No, three vectorsu; v; w in the x-y plane could fail to produceb if all

three lie on a line that does not containb. Yes, if one combination producesb then
two (and infinitely many) combinations will produceb. This is true even ifu D 0; the
combinations can have differentcu.

30 The combinations ofv andw fill the planeunlessv andw lie on the same line through
.0; 0/. Four vectors whose combinations fill4-dimensional space: one example is the
“standard basis”.1; 0; 0; 0/; .0; 1; 0; 0/; .0; 0; 1; 0/, and.0; 0; 0; 1/.

31 The equationscu C dv C ew D b are

2c �d D 1
�c C2d �e D 0

�d C2e D 0

Sod D 2e
thenc D 3e
then4e D 1

c D 3=4
d D 2=4
e D 1=4

Problem Set 1.2, page 19

1 u � v D �1:8 C 3:2 D 1:4, u � w D �4:8 C 4:8 D 0, v � w D 24 C 24 D 48 D w � v.

2 kuk D 1 andkvk D 5 andkwk D 10. Then1:4 < .1/.5/ and48 < .5/.10/, confirming
the Schwarz inequality.

3 Unit vectorsv=kvk D .3
5
; 4

5
/ D .:6; :8/ andw=kwk D .4

5
; 3

5
/ D .:8; :6/. The cosine

of � is v
kvk � w

kwk D 24
25

. The vectorsw; u; �w make0ı; 90ı; 180ı angles withw.

4 (a) v � .�v/ D �1 (b) .v C w/ � .v � w/ D v � v C w � v � v � w � w � w D
1C. /�. /�1 D 0 so� D 90ı (noticev �w D w�v) (c) .v�2w/�.vC2w/ D
v � v � 4w � w D 1 � 4 D �3.co
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4 Solutions to Exercises

5 u1 D v=kvk D .3; 1/=
p

10 andu2 D w=kwk D .2; 1; 2/=3. U 1 D .1; �3/=
p

10 is
perpendicular tou1 (and so is.�1; 3/=

p
10). U 2 could be.1; �2; 0/=

p
5: There is a

whole plane of vectors perpendicular tou2, and a whole circle of unit vectors in that
plane.

6 All vectorsw D .c; 2c/ are perpendicular tov. All vectors.x; y; z/ with xCy Cz D 0
lie on aplane. All vectors perpendicular to.1; 1; 1/ and.1; 2; 3/ lie on aline.

7 (a) cos� D v � w=kvkkwk D 1=.2/.1/ so� D 60ı or �=3 radians (b) cos� D 0
so � D 90ı or �=2 radians (c) cos� D 2=.2/.2/ D 1=2 so � D 60ı or �=3

(d) cos� D �1=
p

2 so� D 135ı or 3�=4.

8 (a) False:v andw are any vectors in the plane perpendicular tou (b) True:u � .v C
2w/ D u � v C 2u � w D 0 (c) True,ku � vk2 D .u � v/ � .u � v/ splits into
u � u C v � v D 2 whenu � v D v � u D 0.

9 If v2w2=v1w1 D �1 thenv2w2 D �v1w1 orv1w1Cv2w2 D v�w D 0: perpendicular!

10 Slopes2=1 and�1=2 multiply to give�1: thenv�w D 0 and the vectors (the directions)
are perpendicular.

11 v � w < 0 means angle> 90ı; thesew’s fill half of 3-dimensional space.

12 .1; 1/ perpendicular to.1; 5/ � c.1; 1/ if 6 � 2c D 0 or c D 3; v � .w � cv/ D 0 if
c D v � w=v � v. Subtractingcv is the key to perpendicular vectors.

13 The plane perpendicular to.1; 0; 1/ contains all vectors.c; d; �c/. In that plane,v D
.1; 0; �1/ andw D .0; 1; 0/ are perpendicular.

14 One possibility among many:u D .1; �1; 0; 0/; v D .0; 0; 1; �1/; w D .1; 1; �1; �1/
and.1; 1; 1; 1/ are perpendicular to each other. “We can rotate thoseu; v; w in their3D
hyperplane.”

15 1
2
.x C y/ D .2 C 8/=2 D 5; cos� D 2

p
16=

p
10

p
10 D 8=10.

16 kvk2 D 1 C 1 C � � � C 1 D 9 sokvk D 3I u D v=3 D .1
3
; : : : ; 1

3
/ is a unit vector in9D;

w D .1; �1; 0; : : : ; 0/=
p

2 is a unit vector in the8D hyperplane perpendicular tov.

17 cos˛ D 1=
p

2, coš D 0, cos D �1=
p

2. For any vectorv, cos2 ˛Ccos2 ˇCcos2 
D .v2

1 C v2
2 C v2

3/=kvk2 D 1.

18 kvk2 D 42 C 22 D 20 andkwk2 D .�1/2 C 22 D 5. Pythagoras isk.3; 4/k2 D 25 D
20 C 5.

19 Start from the rules.1/; .2/; .3/ for v�w D w�v andu�.vCw/ and.cv/�w. Use rule.2/
for .vCw/�.vCw/ D .vCw/�vC.vCw/�w. By rule.1/ this isv�.vCw/Cw�.vCw/.
Rule.2/ again givesv � v C v � w C w � v C w � w D v � v C 2v � w C w � w. Notice
v � w D w � v! The main point is to be free to open up parentheses.

20 We know that.v � w/ � .v � w/ D v � v � 2v � w C w � w. The Law of Cosines writes
kvkkwk cos� for v �w. When� < 90ı thisv �w is positive, so in this casev �v Cw �w
is larger thankv � wk2.

21 2v�w � 2kvkkwk leads tokvCwk2 D v�vC2v�wCw�w � kvk2C2kvkkwkCkwk2.
This is.kvk C kwk/2. Taking square roots giveskv C wk � kvk C kwk.

22 v2
1w2

1 C 2v1w1v2w2 C v2
2w2

2 � v2
1w2

1 C v2
1w2

2 C v2
2w2

1 C v2
2w2

2 is true (cancel4 terms)
because the difference isv2

1w2
2 C v2

2w2
1 � 2v1w1v2w2 which is.v1w2 � v2w1/2 � 0.co
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Solutions to Exercises 5

23 cosˇ D w1=kwk and siň D w2=kwk. Then cos.ˇ�a/ D cosˇ cos˛Csinˇ sin˛ D
v1w1=kvkkwk C v2w2=kvkkwk D v � w=kvkkwk. This is cos� becausě � ˛ D � .

24 Example 6 givesju1jjU1j � 1
2
.u2

1 C U 2
1 / andju2jjU2j � 1

2
.u2

2 C U 2
2 /. The whole line

becomes:96 � .:6/.:8/ C .:8/.:6/ � 1
2
.:62 C :82/ C 1

2
.:82 C :62/ D 1. True: :96 < 1.

25 The cosine of� isx=
p

x2 C y2, near side over hypotenuse. Thenj cos� j2 is not greater
than 1:x2=.x2 C y2/ � 1.

26 The vectorsw D .x; y/ with .1; 2/ � w D x C 2y D 5 lie on a line in thexy plane.
The shortestw on that line is.1; 2/. (The Schwarz inequalitykwk � v � w=kvk D

p
5

is an equality when cos� D 0 andw D .1; 2/ andkwk D
p

5.)
27 The lengthkv � wk is between2 and8 (triangle inequality whenkvk D 5 andkwk D

3). The dot productv � w is between�15 and15 by the Schwarz inequality.
28 Three vectors in the plane could make angles greater than90ı with each other: for

example.1; 0/; .�1; 4/; .�1; �4/. Four vectors couldnot do this (360ı total angle).
How many can do this inR3 or Rn? Ben Harris and Greg Marks showed me that the
answer isn C 1: The vectors from the center of a regular simplex inRn to its n C 1
vertices all have negative dot products. IfnC2 vectors inRn had negative dot products,
project them onto the plane orthogonal to the last one. Now you haven C 1 vectors in
Rn�1 with negative dot products. Keep going to 4 vectors inR2 : no way!

29 For a specific example, pickv D .1; 2; �3/ and thenw D .�3; 1; 2/. In this example
cos� D v � w=kvkkwk D �7=

p
14

p
14 D �1=2 and � D 120ı . This always

happens whenx C y C z D 0:

v � w D xz C xy C yz D 1

2
.x C y C z/2 � 1

2
.x2 C y2 C z2/

This is the same asv � w D 0 � 1

2
kvkkwk: Then cos� D 1

2
:

30 Wikipedia gives this proof of geometric meanG D 3
p

xyz � arithmetic mean
A D .x C y C z/=3. First there is equality in casex D y D z. OtherwiseA is
somewhere between the three positive numbers, say for examplez < A < y.

Use the known inequalityg � a for the twopositive numbersx andy C z � A. Their
meana D 1

2
.x C y C z � A/ is 1

2
.3A � A/ D same asA! So a � g says that

A3 � g2A D x.y C z � A/A. But .y C z � A/A D .y � A/.A � z/ C yz > yz.
Substitute to findA3 > xyz D G3 as we wanted to prove. Not easy!

There are many proofs ofG D .x1x2 � � � xn/1=n � A D .x1 C x2 C � � � C xn/=n. In
calculus you are maximizingG on the planex1 C x2 C � � � C xn D n. The maximum
occurs when allx’s are equal.

31 The columns of the 4 by 4 “Hadamard matrix” (times1
2
) are perpendicular unit

vectors:

1

2
H D 1

2

2
64

1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

3
75 :

32 The commandsV D randn .3; 30/I D D sqrt .diag .V 0 � V //I U D V \DI will give
30 random unit vectors in the columns ofU . Thenu 0 � U is a row matrix of 30 dot
products whose average absolute value may be close to2=�.co
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6 Solutions to Exercises

Problem Set 1.3, page 29

1 2s1 C 3s2 C 4s3 D .2; 5; 9/. The same vectorb comes fromS timesx D .2; 3; 4/:

"
1 0 0
1 1 0
1 1 1

# "
2
3
4

#
D

"
.row 1/ � x
.row 2/ � x
.row 2/ � x

#
D

"
2
5
9

#
:

2 The solutions arey1 D 1, y2 D 0, y3 D 0 (right sideD column1) andy1 D 1, y2 D 3,
y3 D 5. That second example illustrates that the firstn odd numbers add ton2.

3
y1 D B1

y1 C y2 D B2

y1 C y2 C y3 D B3

gives
y1 D B1

y2 D �B1 CB2

y3 D �B2 CB3

D
"

1 0 0
�1 1 0

0 �1 1

# "
B1

B2

B3

#

The inverse ofS D
"

1 0 0
1 1 0
1 1 1

#
is AD

"
1 0 0

�1 1 0
0 �1 1

#
: independent columns inA andS !

4 The combination0w1 C 0w2 C 0w3 always gives the zero vector, but this problem
looks for otherzerocombinations (then the vectors aredependent, they lie in a plane):
w2 D .w1 C w3/=2 so one combination that gives zero is1

2
w1 � w2 C 1

2
w3:

5 The rows of the3 by 3 matrix in Problem 4 must also bedependent: r2 D 1
2
.r1 C r3/.

The column and row combinations that produce0 are the same: this is unusual.

6 c D 3

"
1 3 5
1 2 4
1 1 3

#
has column3 D 2 .column1/ C column2

c D �1

"
1 0 �1
1 1 0
0 1 1

#
has column3 D � column1 C column2

c D 0

"
0 0 0
2 1 5
3 3 6

#
has column3 D 3 .column1/ � column2

7 All three rows are perpendicular to the solutionx (the three equationsr1 � x D 0 and
r2 �x D 0 andr3 �x D 0 tell us this). Then the whole plane of the rows is perpendicular
to x (the plane is also perpendicular to all multiplescx).

8

x1 � 0 D b1

x2 � x1 D b2

x3 � x2 D b3

x4 � x3 D b4

x1 D b1

x2 D b1 C b2

x3 D b1 C b2 C b3

x4 D b1 C b2 C b3 C b4

D

2
64

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

3
75

2
64

b1

b2

b3

b4

3
75 D A�1b

9 The cyclic difference matrixC has a line of solutions (in4 dimensions) toCx D 0:

2
64

1 0 0 �1
�1 1 0 0

0 �1 1 0
0 0 �1 1

3
75

2
64

x1

x2

x3

x4

3
75 D

2
64

0
0
0
0

3
75 whenx D

2
64

c
c
c
c

3
75 D any constant vector.
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Solutions to Exercises 7

10
z2 � z1 D b1

z3 � z2 D b2

0 � z3 D b3

z1 D �b1 � b2 � b3

z2 D �b2 � b3

z3 D �b3

D
"�1 �1 �1

0 �1 �1
0 0 �1

# "
b1

b2

b3

#
D ��1b

11 The forward differences of the squares are.t C 1/2 � t2 D t2 C 2t C 1 � t2 D 2t C 1.
Differences of thenth power are.t C 1/n � tn D tn � tn C ntn�1 C � � � . The leading
term is the derivativentn�1. The binomial theorem gives all the terms of.t C 1/n.

12 Centered difference matrices ofevensize seem to be invertible. Look at eqns.1 and4:

2
64

0 1 0 0
�1 0 1 0

0 �1 0 1
0 0 �1 0

3
75

2
64

x1

x2

x3

x4

3
75 D

2
64

b1

b2

b3

b4

3
75

First
solve
x2 D b1

�x3 D b4

2
64

x1

x2

x3

x4

3
75 D

2
64

�b2 � b4

b1

�b4

b1 C b3

3
75

13 Odd size: The five centered difference equations lead tob1 C b3 C b5 D 0.

x2 D b1

x3 � x1 D b2

x4 � x2 D b3

x5 � x3 D b4

� x4 D b5

Add equations1; 3; 5
The left side of the sum is zero
The right side isb1 C b3 C b5

There cannot be a solution unlessb1 C b3 C b5 D 0.

14 An example is.a; b/ D .3; 6/ and.c; d/ D .1; 2/. The ratiosa=c andb=d are equal.
Thenad D bc. Then (when you divide bybd ) the ratiosa=b andc=d are equal!

Problem Set 2.1, page 40

1 The columns arei D .1; 0; 0/ andj D .0; 1; 0/ andk D .0; 0; 1/ andb D .2; 3; 4/ D
2i C 3j C 4k.

2 The planes are the same:2x D 4 is x D 2, 3y D 9 is y D 3, and4z D 16 is z D 4. The
solution is the same pointX D x. The columns are changed; but same combination.

3 The solution is not changed! The second plane and row 2 of the matrix and all columns
of the matrix (vectors in the column picture) are changed.

4 If z D 2 thenx C y D 0 andx � y D z give the point.1; �1; 2/. If z D 0 then
x C y D 6 andx � y D 4 produce.5; 1; 0/. Halfway between those is.3; 0; 1/.

5 If x; y; z satisfy the first two equations they also satisfy the third equation. The line
L of solutions containsv D .1; 1; 0/ andw D .1

2
; 1; 1

2
/ andu D 1

2
v C 1

2
w and all

combinationscv C dw with c C d D 1.

6 Equation1 C equation2 � equation3 is now0 D �4. Line misses plane;no solution.

7 Column3 D Column 1 makes the matrix singular. Solutions.x; y; z/ D .1; 1; 0/ or
.0; 1; 1/ and you can add any multiple of.�1; 0; 1/; b D .4; 6; c/ needsc D 10 for
solvability (thenb lies in the plane of the columns).

8 Four planes in 4-dimensional space normally meet at apoint. The solution toAx D
.3; 3; 3; 2/ is x D .0; 0; 1; 2/ if A has columns.1; 0; 0; 0/; .1; 1; 0; 0/; .1; 1; 1; 0/,
.1; 1; 1; 1/. The equations arex C y C z C t D 3; y C z C t D 3; z C t D 3; t D 2.

9 (a) Ax D .18; 5; 0/ and (b) Ax D .3; 4; 5; 5/.co
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8 Solutions to Exercises

10 Multiplying as linear combinations of the columns gives the sameAx. By rows or by
columns:9 separate multiplications for3 by 3.

11 Ax equals.14; 22/ and.0; 0/ and (9; 7/.

12 Ax equals.z; y; x/ and.0; 0; 0/ and (3; 3; 6/.

13 (a) x hasn components andAx hasm components (b) Planes from each equation
in Ax D b are inn-dimensional space, but the columns are inm-dimensional space.

14 2x C 3y C z C 5t D 8 is Ax D b with the 1 by 4 matrix A D Œ 2 3 1 5 �. The
solutionsx fill a 3D “plane” in 4 dimensions. It could be called ahyperplane.

15 (a) I D
�

1 0
0 1

�
(b) P D

�
0 1
1 0

�

16 90ı rotation fromR D
�

0 1
�1 0

�
, 180ı rotation fromR2 D

�
�1 0

0 �1

�
D �I .

17 P D
"

0 1 0
0 0 1
1 0 0

#
produces.y; z; x/ andQ D

"
0 0 1
1 0 0
0 1 0

#
recovers.x; y; z/. Q is the

inverse ofP .

18 E D
�

1 0
�1 1

�
andE D

"
1 0 0

�1 1 0
0 0 1

#
subtract the first component from the second.

19 E D
"

1 0 0
0 1 0
1 0 1

#
andE�1 D

"
1 0 0
0 1 0

�1 0 1

#
, Ev D .3; 4; 8/ andE�1Ev recovers

.3; 4; 5/.

20 P1 D
�

1 0
0 0

�
projects onto thex-axis andP2 D

�
0 0
0 1

�
projects onto they-axis.

v D
�

5
7

�
hasP1v D

�
5
0

�
andP2P1v D

�
0
0

�
.

21 R D 1

2

�p
2 �

p
2p

2
p

2

�
rotates all vectors by 45ı . The columns ofR are the results from

rotating.1; 0/ and.0; 1/!

22 The dot productAx D Œ 1 4 5 �

"
x
y
z

#
D .1 by 3/.3 by 1/ is zero for points.x; y; z/

on a plane in three dimensions. The columns ofA are one-dimensional vectors.

23 A D Œ 1 2 I 3 4 � andx D Œ 5 �2 � 0 andb D Œ 1 7 � 0. r D b�A�x prints as zero.

24 A � v D Œ 3 4 5 � 0 andv 0 � v D 50. But v � A gives an error message from 3 by 1
times 3 by 3.

25 ones.4; 4/ � ones.4; 1/ D Œ 4 4 4 4 � 0; B � w D Œ 10 10 10 10 � 0.
26 The row picture has two lines meeting at the solution (4; 2). The column picture will

have4.1; 1/ C 2.�2; 1/ D 4(column 1)C 2(column 2)D right side.0; 6/.

27 The row picture shows2 planesin 3-dimensional space. The column picture is in
2-dimensional space. The solutions normally lie on aline.co
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Solutions to Exercises 9

28 The row picture shows fourlines in the 2D plane. The column picture is infour-
dimensional space. No solution unless the right side is a combination ofthe two columns.

29 u2 D
�

:7
:3

�
andu3 D

�
:65
:35

�
. The components add to 1. They are always positive.

u7; v7; w7 are all close to.:6; :4/. Their components still add to 1.

30

�
:8 :3
:2 :7

� �
:6
:4

�
D

�
:6
:4

�
D steady states. No change when multiplied by

�
:8 :3
:2 :7

�
.

31 M D
"

8 3 4
1 5 9
6 7 2

#
D

"
5 C u 5 � u C v 5 � v

5 � u � v 5 5 C u C v
5 C v 5 C u � v 5 � u

#
; M3.1; 1; 1/ D .15; 15; 15/;

M4.1; 1; 1; 1/ D .34; 34; 34; 34/ because1 C 2 C � � � C 16 D 136 which is4.34/.

32 A is singular when its third columnw is a combinationcu C dv of the first columns.
A typical column picture hasb outside the plane ofu, v, w. A typical row picture has
the intersection line of two planes parallel to the third plane.Then no solution.

33 w D .5; 7/ is 5u C 7v. ThenAw equals5 timesAu plus7 timesAv.

34

2
64

2 �1 0 0
�1 2 �1 0

0 �1 2 �1
0 0 �1 2

3
75

2
64

x1

x2

x3

x4

3
75 D

2
64

1
2
3
4

3
75 has the solution

2
64

x1

x2

x3

x4

3
75 D

2
64

4
7
8
6

3
75.

35 x D .1; : : : ; 1/ givesSx D sum of each rowD 1C� � �C9 D 45 for Sudoku matrices.
6 row orders.1; 2; 3/, .1; 3; 2/, .2; 1; 3/, .2; 3; 1/, .3; 1; 2/, .3; 2; 1/ are in Section 2.7.
The same6 permutations ofblocksof rows produce Sudoku matrices, so64 D 1296
orders of the9 rows all stay Sudoku. (And also1296 permutations of the9 columns.)

Problem Set 2.2, page 51

1 Multiply by `21 D 10
2

D 5 and subtract to find2x C3y D 14 and�6y D 6. The pivots
to circle are 2 and�6.

2 �6y D 6 givesy D �1. Then2x C 3y D 1 givesx D 2. Multiplying the right side
.1; 11/ by 4 will multiply the solution by 4 to give the new solution.x; y/ D .8; �4/.

3 Subtract�1
2

(or add 1
2
) times equation 1. The new second equation is3y D 3. Then

y D1 andx D5. If the right side changes sign, so does the solution:.x; y/D.�5; �1/.

4 Subtract̀ D c
a

times equation 1. The new second pivot multiplyingy is d � .cb=a/
or .ad � bc/=a. Theny D .ag � cf /=.ad � bc/.

5 6x C 4y is 2 times3x C 2y. There is no solution unless the right side is2 � 10 D 20.
Then all the points on the line3x C2y D 10 are solutions, including.0; 5/ and.4; �1/.
(The two lines in the row picture are the same line, containing all solutions).

6 Singular system ifb D 4, because4x C 8y is 2 times2x C 4y. Theng D 32 makes
the lines become thesame: infinitely many solutions like.8; 0/ and.0; 4/.

7 If a D 2 elimination must fail (two parallel lines in the row picture). The equations
have no solution. Witha D 0, elimination will stop for a row exchange. Then3y D �3
givesy D �1 and4x C 6y D 6 givesx D 3.co
nt
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10 Solutions to Exercises

8 If k D 3 elimination must fail: no solution. Ifk D �3, elimination gives0 D 0 in
equation 2: infinitely many solutions. Ifk D 0 a row exchange is needed: one solution.

9 On the left side,6x � 4y is 2 times.3x � 2y/. Therefore we needb2 D 2b1 on the
right side. Then there will be infinitely many solutions (two parallel lines become one
single line).

10 The equationy D 1 comes from elimination (subtractx C y D 5 from x C 2y D 6).
Thenx D 4 and5x � 4y D c D 16.

11 (a) Another solution is1
2
.x CX; y CY; z CZ/. (b) If 25 planes meet at two points,

they meet along the whole line through those two points.

12 Elimination leads to an upper triangular system; then comes back substitution.
2x C 3y C z D 8

y C 3z D 4

8z D 8

gives
x D 2

y D 1 If a zero is at the start of row 2 or 3,
z D 1 that avoids a row operation.

13 2x � 3y D 3

4x � 5y C z D 7

2x � y � 3z D 5

gives
2x � 3y D 3

y C z D 1

2y C 3z D 2

and
2x � 3y D 3

y C z D 1

� 5z D 0

and
x D 3

y D 1

z D 0

Subtract 2� row 1 from row 2, subtract 1� row 1 from row 3, subtract 2� row 2 from
row 3

14 Subtract2 times row 1 from row 2 to reach.d �10/y�z D 2. Equation (3) isy�z D 3.
If d D 10 exchange rows 2 and 3. Ifd D 11 the system becomes singular.

15 The second pivot position will contain�2 � b. If b D �2 we exchange with row 3. If
b D �1 (singular case) the second equation is�y � z D 0. A solution is.1; 1; �1/.

16 (a)
Example of
2 exchanges

0x C 0y C 2z D 4

x C 2y C 2z D 5

0x C 3y C 4z D 6

(exchange 1 and 2, then 2 and 3)

(b)

Exchange
but then
break down

0x C 3y C 4z D 4

x C 2y C 2z D 5

0x C 3y C 4z D 6

(rows 1 and 3 are not consistent)

17 If row 1 D row 2, then row 2 is zero after the first step; exchange the zero row with row
3 and there is nothird pivot. If column2 D column 1, then column2 has no pivot.

18 Examplex C 2y C 3z D 0, 4x C 8y C 12z D 0, 5x C 10y C 15z D 0 has 9 different
coefficients but rows 2 and 3 become0 D 0: infinitely many solutions.

19 Row 2 becomes3y � 4z D 5, then row 3 becomes.q C 4/z D t � 5. If q D �4 the
system is singular—no third pivot. Then ift D 5 the third equation is0 D 0. Choosing
z D 1 the equation3y � 4z D 5 givesy D 3 and equation 1 givesx D �9.

20 Singular if row 3 is a combination of rows 1 and 2. From the end view, the three planes
form a triangle. This happens if rows1C2 D row 3 on the left side but not the right
side:xCyCz D0, x�2y�z D1, 2x�y D4. No parallel planes but still no solution.

21 (a) Pivots2;
3
2

;
4
3

;
5
4

in the equations2x C y D 0;
3
2

y C z D 0;
4
3

z C t D 0;
5
4

t D 5

after elimination. Back substitution givest D 4; z D �3; y D 2; x D �1. (b) If
the off-diagonal entries change fromC1 to �1, the pivots are the same. The solution is
.1; 2; 3; 4/ instead of.�1; 2; �3; 4/.

22 The fifth pivot is 6
5

for both matrices (1’s or�1’s off the diagonal). Thenth pivot is
nC1

n
.co
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Solutions to Exercises 11

23 If ordinary elimination leads tox C y D 1 and2y D 3, the original second equation
could be2y C `.x C y/ D 3 C ` for any `. Then` will be the multiplier to reach
2y D 3.

24 Elimination fails on

�
a 2
a a

�
if a D 2 or a D 0.

25 a D 2 (equal columns),a D 4 (equal rows),a D 0 (zero column).
26 Solvable fors D 10 (add the two pairs of equations to getaCbCcCd on the left sides,

12 and2 C s on the right sides). The four equations fora; b; c; d aresingular! Two

solutions are
�

1 3
1 7

�
and

�
0 4
2 6

�
, A D

2
64

1 1 0 0
1 0 1 0
0 0 1 1
0 1 0 1

3
75 andU D

2
64

1 1 0 0
0 �1 1 0
0 0 1 1
0 0 0 0

3
75.

27 Elimination leaves the diagonal matrix diag.3; 2; 1/ in 3x D 3; 2y D 2; z D 4. Then
x D 1; y D 1; z D 4.

28 A.2; W/ D A.2; W/ � 3 � A.1; W/ subtracts3 times row1 from row2.
29 The average pivots for rand(3)withoutrow exchanges were1

2
; 5; 10 in one experiment—

but pivots 2 and 3 can be arbitrarily large. Their averages are actually infinite !With
row exchangesin MATLAB’s lu code, the averages:75 and :50 and :365 are much
more stable (and should be predictable, also for randn with normal instead of uniform
probability distribution).

30 If A.5; 5/ is 7 not11, then the last pivot will be0 not4.
31 Rowj of U is a combination of rows1; : : : ; j of A. If Ax D 0 thenU x D 0 (not true

if b replaces0). U is the diagonal ofA whenA is lower triangular.

32 The question deals with 100 equationsAx D 0 whenA is singular.

(a) Some linear combination of the 100 rows isthe row of 100 zeros.
(b) Some linear combination of the 100columnsis the column of zeros.

(c) A very singular matrix has all ones:A D eye(100). A better example has 99
random rows (or the numbers1i ; : : : ; 100i in those rows). The 100th row could
be the sum of the first 99 rows (or any other combination of those rows with no
zeros).

(d) The row picture has 100 planesmeeting along a common line through0. The
column picture has 100 vectors all in the same 99-dimensional hyperplane.

Problem Set 2.3, page 63

1 E21 D
"

1 0 0
�5 1 0

0 0 1

#
; E32 D

"
1 0 0
0 1 0
0 7 1

#
; P D

"
1 0 0
0 0 1
0 1 0

# "
0 1 0
1 0 0
0 0 1

#
D

"
0 1 0
0 0 1
1 0 0

#
.

2 E32E21b D .1; �5; �35/ but E21E32b D .1; �5; 0/. WhenE32 comes first, row 3
feels no effect from row 1.

3

"
1 0 0

�4 1 0
0 0 1

#
;

"
1 0 0
0 1 0
2 0 1

#
;

"
1 0 0
0 1 0
0 �2 1

#
M D E32E31E21 D

"
1 0 0

�4 1 0
10 �2 1

#
:co
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12 Solutions to Exercises

4 Elimination on column 4:b D

2
64

1

0

0

3
75

E21!

2
64

1

�4

0

3
75

E31!

2
64

1

�4

2

3
75

E32!

2
64

1

�4

10

3
75. The

original Ax D b has becomeU x D c D .1; �4; 10/. Then back substitution gives
z D �5; y D 1

2
; x D 1

2
: This solvesAx D .1; 0; 0/.

5 Changinga33 from 7 to11 will change the third pivot from 5 to 9. Changinga33 from
7 to 2 will change the pivot from 5 tono pivot.

6 Example:

2
64

2 3 7

2 3 7

2 3 7

3
75

2
64

1

3

�1

3
75 D

2
64

4

4

4

3
75. If all columns are multiples of column1,

there is no second pivot.

7 To reverseE31, add 7 times row1 to row 3. The inverse of the elimination matrix

E D

2
64

1 0 0

0 1 0

�7 0 1

3
75 is E�1 D

2
64

1 0 0

0 1 0

7 0 1

3
75.

8 M D
�

a b
c d

�
andM * D

�
a b

c � `a d � `b

�
. detM * D a.d � `b/ � b.c � `a/

reduces toad � bc!

9 M D
"

1 0 0
0 0 1

�1 1 0

#
. After the exchange, we needE31 (notE21) to act on the new row 3.

10 E13 D
"

1 0 1
0 1 0
0 0 1

#
I
"

1 0 1
0 1 0
1 0 1

#
I E31E13 D

"
2 0 1
0 1 0
1 0 1

#
: Test on the identity matrix!

11 An example with two negative pivots isA D
"

1 2 2
1 1 2
1 2 1

#
. The diagonal entries can

change sign during elimination.

12 The first product is

"
9 8 7
6 5 4
3 2 1

#
rows and
also columns
reversed.

The second product is

"
1 2 3
0 1 �2
0 2 �3

#
.

13 (a) E times the third column ofB is the third column ofEB. A column that starts
at zero will stay at zero. (b)E could add row2 to row 3 to change a zero row to a
nonzero row.

14 E21 has�`21 D 1
2
, E32 has�`32 D 2

3
, E43 has�`43 D 3

4
. Otherwise theE ’s matchI .

15 aij D 2i � 3j : A D
"�1 �4 �7

1 �2 �5
3 0 �3

#
!

"�1 �4 �7
0 �6 �12
0 �12 �24

#
. The zero became�12,

an example offill-in . To remove that�12, chooseE32 D
"

1 0 0
0 1 0
0 �2 1

#
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Solutions to Exercises 13

16 (a) The ages ofX andY arex andy: x � 2y D 0 andx C y D 33; x D 22 and
y D 11 (b) The liney D mx C c containsx D 2, y D 5 andx D 3, y D 7 when
2m C c D 5 and3m C c D 7. Thenm D 2 is the slope.

17 The parabolay DaCbxCcx2 goes through the3 given points when
aC bC c D 4
aC 2bC 4c D 8
aC 3bC 9c D 14

.

Thena D 2, b D 1, andc D 1. This matrix with columns.1; 1; 1/, .1; 2; 3/, .1; 4; 9/
is a “Vandermonde matrix.”

18 EF D
"

1 0 0
a 1 0
b c 1

#
, FE D

"
1 0 0
a 1 0

bCac c 1

#
, E2 D

"
1 0 0

2a 1 0
2b 0 1

#
, F 3 D

"
1 0 0
0 1 0
0 3c 1

#
:

19 PQ D
"

0 1 0
0 0 1
1 0 0

#
. In the opposite order, two row exchanges giveQP D

"
0 0 1
1 0 0
0 1 0

#
,

If M exchanges rows2 and3 thenM 2 D I (also.�M /2 D I ). There are many square

roots ofI : Any matrixM D
�

a b
c �a

�
hasM 2 D I if a2 C bc D 1.

20 (a) Each column ofEB is E times a column ofB (b)

�
1 0
1 1

� �
1 2 4
1 2 4

�
D

�
1 2 4
2 4 8

�
. All rows of EB aremultiplesof

�
1 2 4

�
.

21 No. E D
�

1 0
1 1

�
andF D

�
1 1
0 1

�
giveEF D

�
1 1
1 2

�
butFE D

�
2 1
1 1

�
.

22 (a)
P

a3j xj (b) a21 � a11 (c) a21 � 2a11 (d) .EAx/1 D .Ax/1 D
P

a1j xj .

23 E.EA/ subtracts4 times row1 from row 2 (EEA does the row operation twice).
AE subtracts2 times column2 of A from column1 (multiplication byE on the right
side acts oncolumnsinstead of rows).

24
�
A b

�
D

�
2 3 1
4 1 17

�
!

�
2 3 1
0 �5 15

�
. The triangular system is

2x1 C 3x2 D 1
�5x2 D 15

Back substitution givesx1 D 5 andx2 D �3.

25 The last equation becomes0 D 3. If the original 6 is 3, then row 1C row 2D row 3.

26 (a) Add two columnsb andb�
�

1 4 1 0
2 7 0 1

�
!

�
1 4 1 0
0 �1 �2 1

�
! x D

�
�7

2

�

andx� D
�

4
�1

�
.

27 (a) No solution ifd D0 andc ¤0 (b) Many solutions ifd D0Dc. No effect froma; b.

28 A D AI D A.BC/ D .AB/C D IC D C . That middle equation is crucial.co
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14 Solutions to Exercises

29 E D

2
64

1 0 0 0
�1 1 0 0

0 �1 1 0
0 0 �1 1

3
75 subtracts each row from the next row. The result

2
64

1 0 0 0
0 1 0 0
0 1 1 0
0 1 2 1

3
75

still has multipliersD 1 in a 3 by 3 Pascal matrix. The productM of all elimination

matrices is

2
64

1 0 0 0
�1 1 0 0

1 �2 1 0
�1 3 �3 1

3
75. This “alternating sign Pascal matrix” is on page 88.

30 Given positive integers withad � bc D 1. Certainlyc < a andb < d would be
impossible. Alsoc > a andb > d would be impossible with integers. This leaves

row 1 < row 2 OR row 2 < row 1. An example isM D
�

3 4
2 3

�
. Multiply by

�
1 �1
0 1

�
to get

�
1 1
2 3

�
, then multiply twice by

�
1 0

�1 1

�
to get

�
1 1
0 1

�
. This shows

thatM D
�

1 1
0 1

� �
1 0
1 1

� �
1 0
1 1

� �
1 1
0 1

�
.

31 E21 D

2
664

1

1=2 1

0 0 1

0 0 0 1

3
775, E32 D

2
664

1

0 1

0 2=3 1

0 0 0 1

3
775, E43 D

2
664

1

0 1

0 0 1

0 0 3=4 1

3
775,

E43 E32 E21 D

2
664

1

1=2 1

1=3 2=3 1

1=4 2=4 3=4 1

3
775

Problem Set 2.4, page 75

1 If all entries ofA; B; C; D are1, thenBA D 3 ones.5/ is 5 by 5; AB D 5 ones.3/ is 3
by 3; ABD D 15 ones.3; 1/ is 3 by 1. DBA andA.B C C/ are not defined.

2 (a) A (column 3 ofB) (b) (Row 1 ofA) B (c) (Row 3 ofA)(column 4 ofB)
(d) (Row 1 ofC )D(column 1 ofE).

3 AB C AC is the same asA.B C C/ D
�

3 8
6 9

�
. (Distributive law).

4 A.BC/ D .AB/C by theassociative law. In this example both answers are

�
0 0
0 0

�

from column1 of AB and row2 of C (multiply columns times rows).

5 (a) A2 D
�

1 2b
0 1

�
andAn D

�
1 nb
0 1

�
. (b) A2 D

�
4 4
0 0

�
andAn D

�
2n 2n

0 0

�
.

6 .A C B/2 D
�

10 4
6 6

�
D A2 C AB C BA C B2. But A2 C 2AB C B2 D

�
16 2
3 0

�
.

7 (a) True (b) False (c) True (d) False: usually.AB/2 ¤ A2B2.co
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Solutions to Exercises 15

8 The rows ofDA are3 (row 1 of A) and5 (row 2 of A). Both rows ofEA are row2 of A.
The columns ofAD are3 (column1 of A) and5 (column2 of A). The first column of
AE is zero, the second is column1 of A C column2 of A.

9 AF D
"

a a C b

c c C d

#
andE.AF / equals.EA/F because matrix multiplication is

associative.

10 FA D
"

a C c b C d

c d

#
and thenE.FA/ D

"
a C c b C d

a C 2c b C 2d

#
. E.FA/ is not

the same asF.EA/ because multiplication is not commutative.

11 (a) B D 4I (b) B D 0 (c) B D
"

0 0 1
0 1 0
1 0 0

#
(d) Every row ofB is 1; 0; 0.

12 AB D
"

a 0

c 0

#
D BA D

"
a b

0 0

#
givesb D c D 0. ThenAC D CA gives

a D d . The only matrices that commute withB andC (and all other matrices) are
multiples ofI : A D aI .

13 .A � B/2 D .B � A/2 D A.A � B/ � B.A � B/ D A2 � AB � BA C B2. In a typical
case (whenAB ¤ BA) the matrixA2 � 2AB C B2 is different from.A � B/2.

14 (a) True (A2 is only defined whenA is square) (b) False (ifA is m by n andB is n
by m, thenAB is m by m andBA is n by n). (c) True (d) False (takeB D 0).

15 (a) mn (use every entry ofA) (b) mnp D p�part (a) (c) n3 (n2 dot products).

16 (a) Use only column 2 ofB (b) Use only row 2 ofA (c)–(d) Use row 2 of firstA.

17 A D

2
64

1 1 1

1 2 2

1 2 3

3
75 hasaij D min.i; j /. A D

2
64

1 �1 1

�1 1 �1

1 �1 1

3
75 hasaij D .�1/iCj D

“alternating sign matrix”.A D

2
64

1=1 1=2 1=3

2=1 2=2 2=3

3=1 3=2 3=3

3
75 hasaij D i=j (this will be an

example of arank one matrix).

18 Diagonal matrix, lower triangular, symmetric, all rows equal. Zero matrix fits all four.
19 (a) a11 (b) `31 D a31=a11 (c) a32 � .a31

a11
/a12 (d) a22 � .a21

a11
/a12.

20 A2 D

2
6664

0 0 4 0

0 0 0 4

0 0 0 0

0 0 0 0

3
7775 ; A3 D

2
6664

0 0 0 8

0 0 0 0

0 0 0 0

0 0 0 0

3
7775 ; A4 D zero matrix forstrictly triangular A.

ThenAv D A

2
6664

x

y

z

t

3
7775 D

2
6664

2y

2z

2t

0

3
7775 ; A2v D

2
6664

4z

4t

0

0

3
7775 ; A3v D

2
6664

8t

0

0

0

3
7775 ; A4v D 0.
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16 Solutions to Exercises

21 A D A2 D A3 D � � � D
"

:5 :5

:5 :5

#
butAB D

"
:5 �:5

:5 �:5

#
and.AB/2 D zero matrix!

22 A D
�

0 1
�1 0

�
hasA2 D �I ; BC D

�
1 �1
1 �1

� �
1 1
1 1

�
D

�
0 0
0 0

�
;

DE D
�

0 1
1 0

� �
0 1

�1 0

�
D

�
�1 0

0 1

�
D �ED. You can find more examples.

23 A D
"

0 1

0 0

#
hasA2 D 0. Note: Any matrixA D column times rowD uvT will

haveA2 D uvTuvT D 0 if vTu D 0. A D

2
64

0 1 0

0 0 1

0 0 0

3
75 hasA2 D

2
64

0 0 1

0 0 0

0 0 0

3
75

butA3 D 0; strictly triangular as in Problem 20.

24 .A1/n D
�

2n 2n � 1
0 1

�
, .A2/n D 2n�1

�
1 1
1 1

�
, .A3/n D

�
an an�1b
0 0

�
.

25

2
4

a b c

d e f
g h i

3
5

2
4

1 0 0

0 1 0
0 0 1

3
5D

2
4

a

d
g

3
5

�
1 0 0

�

C

2
4

d

e
h

3
5

�
0 1 0

�

C

2
4

c

f
i

3
5

�
0 0 1

�

.

26
Columns ofA
times rows ofB

"
1
2
2

#
�
3 3 0

�
C

"
0
4
1

#
�
1 2 1

�
D

"
3 3 0
6 6 0
6 6 0

#
C

"
0 0 0
4 8 4
1 2 1

#
D

"
3 3 0

10 14 4
7 8 1

#
D AB.

27 (a) (row 3 ofA) � (column 1 ofB) and (row 3 ofA) � (column 2 ofB) are both zero.

(b)

"
x
x
0

#
�

0 x x
�
D

"
0 x x
0 x x
0 0 0

#
and

"
x
x
x

#
�

0 0 x
�
D

"
0 0 x
0 0 x
0 0 x

#
: both upper.

28
A timesB
with cuts A

� ˇ̌
ˇ̌

ˇ̌
ˇ̌

ˇ̌
ˇ̌

�
,

�
����

�
B,

�
����

� � ˇ̌
ˇ̌

ˇ̌
ˇ̌

ˇ̌
ˇ̌

�
,

� ˇ̌
ˇ̌

ˇ̌
ˇ̌

� �
����
����

�

29 E21 D
"

1 0 0
1 1 0
0 0 1

#
andE31 D

"
1 0 0
0 1 0

�4 0 1

#
produce zeros in the2; 1 and3; 1 entries.

Multiply E ’s to getE D E31E21 D
"

1 0 0
1 1 0

�4 0 1

#
. ThenEA D

"
2 1 0
0 1 1
0 1 3

#
is the

result of bothE ’s since.E31E21/A D E31.E21A/.

30 In 29, c D
�

�2
8

�
, D D

�
0 1
5 3

�
, D � cb=a D

�
1 1
1 3

�
in the lower corner ofEA.

31

�
A �B
B A

� �
x
y

�
D

�
Ax � By
Bx C Ay

�
real part
imaginary part.

Complex matrix times complex vector
needs4 real times real multiplications.co
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Solutions to Exercises 17

32 A timesX D Œ x1 x2 x3 � will be the identity matrixI D Œ Ax1 Ax2 Ax3 �.

33 b D
"

3
5
8

#
givesx D 3x1 C 5x2 C 8x3 D

"
3
8

16

#
I A D

"
1 0 0

�1 1 0
0 �1 1

#
will have

thosex1 D .1; 1; 1/; x2 D .0; 1; 1/; x3 D .0; 0; 1/ as columns of its “inverse”A�1.

34 A� onesD
�

a C b a C b
c C d c C d

�
agrees withones�A D

�
a C c b C b
a C c b C d

�
whenb D c
anda D d

ThenA D
�

a b
b a

�
.

35 A D

2
64

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

3
75 ; A2 D

2
64

2 0 2 0
0 2 0 2
2 0 2 0
0 2 0 2

3
75 ;

aba, ada cba, cda
bab, bcb dab, dcb
abc, adc cbc, cdc
bad, bcd dad, dcd

These show
16 2-step
paths in
the graph

36 Multiplying AB D(m by n)(n by p) needsmnp multiplications. Then.AB/C needs
mpq more. MultiplyBC D (n by p)(p by q) needsnpq and thenA.BC/ needsmnq.

(a) If m; n; p; q are2; 4; 7; 10 we compare.2/.4/.7/ C .2/.7/.10/ D 196 with the
larger number.2/.4/.10/ C .4/.7/.10/ D 360. SoAB first is better, so that we
multiply that7 by 10 matrix by as few rows as possible.

(b) If u; v; w areN by 1, then.uTv/wT needs2N multiplications butuT.vwT/ needs
N 2 to findvwT andN 2 more to multiply by the row vectoruT. Apologies to use
the transpose symbol so early.

(c) We are comparingmnp C mpq with mnq C npq. Divide all terms bymnpq:
Now we are comparingq�1Cn�1 with p�1Cm�1. This yields a simple important
rule. If matricesA andB are multiplyingv for ABv, don’t multiply the matrices
first .

37 The proof of.AB/c D A.Bc/ used the column rule for matrix multiplication—this
rule is clearly linear, column by column.

Even for nonlinear transformations,A.B.c// would be the“composition” of A with B
(applyingB thenA). This compositionA ı B is justAB for matrices.

One of many uses for the associative law: The left-inverseB = right-inverseC from
B D B.AC/ D .BA/C D C .

Problem Set 2.5, page 89

1 A�1 D
�

0 1
4

1
3

0

�
and B�1 D

�
1
2

0

�1 1
2

�
and C �1 D

�
7 �4

�5 3

�
.

2 A simple row exchange hasP 2 D I soP �1 D P . HereP �1 D
"

0 0 1
1 0 0
0 1 0

#
. Always

P �1 = “transpose” ofP , coming in Section2:7.co
nt

ro
len
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18 Solutions to Exercises

3

�
x
y

�
D

�
:5

�:2

�
and

�
t
z

�
D

�
�:2

:1

�
so A�1 D 1

10

�
5 �2

�2 1

�
. This question solved

AA�1 D I column by column, the main idea of Gauss-Jordan elimination.

4 The equations arex C 2y D 1 and3x C 6y D 0. No solution because3 times equation
1 gives3x C 6y D 3.

5 An upper triangularU with U 2 D I is U D
�

1 a
0 �1

�
for anya. And also�U .

6 (a) Multiply AB D AC by A�1 to find B D C (sinceA is invertible) (b) As long

asB � C has the form
�

x y
�x �y

�
, we haveAB D AC for A D

�
1 1
1 1

�
.

7 (a) In Ax D .1; 0; 0/, equation 1C equation 2� equation 3 is0 D 1 (b) Right
sides must satisfyb1Cb2 D b3 (c) Row 3 becomes a row of zeros—no third pivot.

8 (a) The vectorx D .1; 1; �1/ solvesAx D 0 (b) After elimination, columns 1
and 2 end in zeros. Then so does column3 D column1 C 2: no third pivot.

9 If you exchange rows1 and2 of A to reachB, you exchangecolumns1 and2 of A�1

to reachB�1. In matrix notation,B D PA hasB�1 D A�1P �1 D A�1P for thisP .

10 A�1 D

2
64

0 0 0 1=5
0 0 1=4 0
0 1=3 0 0

1=2 0 0 0

3
75 andB�1 D

2
64

3 �2 0 0
�4 3 0 0

0 0 6 �5
0 0 �7 6

3
75 (invert each

block ofB).

11 (a) If B D �A then certainlyACB = zero matrix is not invertible. (b)A D
�

1 0
0 0

�

andB D
�

0 0
0 1

�
are both singular butA C B D I is invertible.

12 Multiply C D AB on the left byA�1 and on the right byC �1: ThenA�1 D BC �1.

13 M �1 D C �1B�1A�1 so multiply on the left byC and the right byA W B�1 D
CM �1A.

14 B�1 D A�1

�
1 0
1 1

��1

D A�1

�
1 0

�1 1

�
: subtract column 2 ofA�1 from column 1.

15 If A has a column of zeros, so doesBA. ThenBA D I is impossible. There is noA�1.

16

�
a b
c d

� �
d �b

�c a

�
D

�
ad � bc 0

0 ad � bc

�
.

The inverse of each matrix is
the other divided byad � bc

17 E32E31E21 D
"

1
1

�1 1

# "
1

1
1 1

# "
1

�1 1
1

#
D

"
1

�1 1
0 �1 1

#
D E.

Reverse the order and change�1 to C1 to get inversesE�1
21 E�1

31 E�1
32 D

"
1
1 1
1 1 1

#
D

L D E�1. Notice the1’s unchanged by multiplying in this order.

18 A2B D I can also be written asA.AB/ D I . ThereforeA�1 is AB.co
nt
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Solutions to Exercises 19

19 The .1; 1/ entry requires4a � 3b D 1; the .1; 2/ entry requires2b � a D 0. Then
b D 1

5
anda D 2

5
. For the5 by 5 case5a � 4b D 1 and2b D a give b D 1

6
and

a D 2
6

.

20 A � ones.4; 1/ is the zero vector soA cannot be invertible.

21 Six of the sixteen0 � 1 matrices are invertible, including all four with three 1’s.

22

�
1 3 1 0
2 7 0 1

�
!

�
1 3 1 0
0 1 �2 1

�
!

�
1 0 7 �3
0 1 �2 1

�
D

�
I A�1

�
;

�
1 4 1 0
3 9 0 1

�
!

�
1 4 1 0
0 �3 �3 1

�
!

�
1 0 �3 4=3
0 1 1 �1=3

�
D

�
I A�1

�
.

23 ŒA I� D
"

2 1 0 1 0 0
1 2 1 0 1 0
0 1 2 0 0 1

#
!

"
2 1 0 1 0 0
0 3=2 1 �1=2 1 0
0 1 2 0 0 1

#
!

"
2 1 0 1 0 0
0 3=2 1 �1=2 1 0
0 0 4=3 1=3 �2=3 1

#
!

"
2 1 0 1 0 0
0 3=2 0 �3=4 3=2 �3=4
0 0 4=3 1=3 �2=3 1

#
!

"
2 0 0 3=2 �1 1=2
0 3=2 0 �3=4 3=2 �3=4
0 0 4=3 1=3 �2=3 1

#
!

"
1 0 0 3=4 �1=2 1=4
0 1 0 �1=2 1 �1=2
0 0 1 1=4 �1=2 3=4

#
D

ŒI A�1�.

24

"
1 a b 1 0 0
0 1 c 0 1 0
0 0 1 0 0 1

#
!

"
1 a 0 1 0 �b
0 1 0 0 1 �c
0 0 1 0 0 1

#
!

"
1 0 0 1 �a ac � b
0 1 0 0 1 �c
0 0 1 0 0 1

#
.

25

"
2 1 1
1 2 1
1 1 2

#�1

D 1

4

"
3 �1 �1

�1 3 �1
�1 �1 3

#
I
"

2 �1 �1
�1 2 �1
�1 �1 2

# "
1
1
1

#
D

"
0
0
0

#
so B�1 does

not exist.

26 E21AD
�

1 0
�2 1

� �
1 2
2 6

�
D

�
1 2
0 2

�
. E12E21AD

�
1 �1
0 1

� �
1 0

�2 1

�
A D

�
1 0
0 2

�
.

Multiply by D D
�

1 0
0 1=2

�
to reachDE12E21A D I . ThenA�1 D DE12E21 D

1
2

�
6 �2

�2 1

�
.

27 A�1 D
"

1 0 0
�2 1 �3

0 0 1

#
(notice the pattern);A�1 D

"
2 �1 0

�1 2 �1
0 �1 1

#
.

28

�
0 2 1 0
2 2 0 1

�
!

�
2 2 0 1
0 2 1 0

�
!

�
2 0 �1 1
0 2 1 0

�
!

�
1 0 �1=2 1=2
0 1 1=2 0

�
.

This is
�
I A�1

�
: row exchanges are certainly allowed in Gauss-Jordan.

29 (a) True (IfA has a row of zeros, then everyAB has too, andAB D I is impossible)
(b) False (the matrix of all ones is singular even with diagonal 1’s:ones(3) has 3 equal
rows) (c) True (the inverse ofA�1 is A and the inverse ofA2 is .A�1/2/.co
nt
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20 Solutions to Exercises

30 This A is not invertible forc D 7 (equal columns),c D 2 (equal rows),c D 0 (zero
column).

31 Elimination produces the pivotsa anda�b anda�b. A�1 D 1

a.a � b/

"
a 0 �b

�a a 0
0 �a a

#
.

32 A�1 D

2
64

1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

3
75. When the triangularA alternates 1 and�1 on its diagonal,

A�1 is bidiagonalwith 1’s on the diagonal and first superdiagonal.

33 x D .1; 1; : : : ; 1/ hasP x D Qx so.P � Q/x D 0.

34

�
I 0

�C I

�
and

�
A�1 0

�D�1CA�1 D�1

�
and

�
�D I

I 0

�
.

35 A can be invertible with diagonal zeros.B is singular because each row adds to zero.

36 The equationLDLD D I says thatLD D pascal .4; 1/ is its own inverse.

37 hilb(6) is not the exact Hilbert matrix because fractions are rounded off. Soinv(hilb(6))
is not the exact either.

38 The three Pascal matrices haveP D LU D LLT and theninv.P / D inv.LT/inv.L/.

39 Ax D b has many solutions whenA D ones .4; 4/ D singular matrix andb D ones
.4; 1/. Anb in MATLAB will pick the shortest solutionx D .1; 1; 1; 1/=4. This is the
only solution that is combination of the rows ofA (later it comes from the
“pseudoinverse”AC D pinv(A) which replacesA�1 whenA is singular). Any vec-
tor that solvesAx D 0 could be added to this particular solutionx.

40 The inverse ofA D

2
64

1 �a 0 0
0 1 �b 0
0 0 1 �c
0 0 0 1

3
75 is A�1 D

2
64

1 a ab abc
0 1 b bc
0 0 1 c
0 0 0 1

3
75. (This

would be a good example for the cofactor formulaA�1 D C T= detA in Section 5.3)

41 The product

2
64

1
a 1
b 0 1
c 0 0 1

3
75

2
64

1
0 1
0 d 1
0 e 0 1

3
75

2
64

1
1

1
f 1

3
75 D

2
64

1
a 1
b d 1
c e f 1

3
75

that in this order the multipliers showsa; b; c; d; e; f are unchanged in the product
(important for A D LU in Section 2.6).

42 MM �1 D .In�U V / .InCU.Im �V U /�1V / .this is testing formula3/
D In�U V CU.Im�V U /�1V �U V U.Im�V U /�1V .keep simplifying/
D In�U V CU.Im�V U /.Im�V U /�1V DIn .formulas1; 2; 4 are similar/

43 4 by 4 still with T11 D 1 has pivots1; 1; 1; 1; reversing toT � D UL makesT �
44 D 1.

44 Add the equationsCx D b to find0 D b1 C b2 C b3 C b4. Same forF x D b.

45 The block pivots areA and S D D � CA�1B (and d � cb=a is the correct
second pivot of an ordinary 2 by 2 matrix). The example problem has

S D
�

1 0
0 1

�
�

�
4
4

�
1

2

�
3 3

�
D

�
�5 �6
�6 �5

�
.co
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Solutions to Exercises 21

46 Inverting the identityA.I C BA/ D .I C AB/A gives.I C BA/�1A�1 D A�1.I C
AB/�1. SoI CBA andI CAB are both invertible or both singular whenA is invertible.
(This remains true also whenA is singular : Problem 6.6.19 will show thatAB andBA
have the same nonzero eigenvalues, and we are looking here at� D �1.)

Problem Set 2.6, page 102

1 `21 D 1 multiplied row 1;L D
�

1 0
1 1

�
times

�
1 0
1 1

� �
x
y

�
D

�
5
2

�
D c is Ax D b:

�
1 1
1 2

� �
x
y

�
D

�
5
7

�
.

2 Lc D b is
�

1 0
1 1

� �
c1

c2

�
D

�
5
7

�
, solved byc D

�
5
2

�
as elimination goes forward.

U x D c is

�
1 1
0 1

� �
x
y

�
D

�
5
2

�
, solved byx D

�
3
2

�
in back substitution.

3 `31 D 1 and`32 D 2 (and`33 D 1): reverse steps to getAu D b from U x D c:
1 times.xCyCz D 5/C2 times.yC2z D 2/C1 times.z D 2/ givesxC3yC6z D 11.

4 Lc D
"

1
1 1
1 2 1

# "
5
2
2

#
D

"
5
7

11

#
; U x D

"
1 1 1

1 2
1

# "
x

#
D

"
5
2
2

#
; x D

"
5

�2
2

#
.

5 EA D
"

1
0 1

�3 0 1

# "
2 1 0
0 4 2
6 3 5

#
D

"
2 1 0
0 4 2
0 0 5

#
D U . With E�1 asL, A D LU D

"
1
0 1
3 0 1

#
U .

6

"
1
0 1
0 �2 1

# "
1

�2 1
0 0 1

#
A D

"
1 1 1
0 2 3
0 0 �6

#
D U . ThenA D

"
1 0 0
2 1 0
0 2 1

#
U is

the same asE�1
21 E�1

32 U D LU . The multipliers̀ 21; `32 D 2 fall into place inL.

7 E32E31E21 A D
"

1
1

�2 1

# "
1

1
�3 1

# "
1

�2 1
1

# "
1 0 0
2 2 2
3 4 5

#
. This is

"
1 0 1
0 2 0
0 0 2

#
D U . Put those multipliers2; 3; 2 intoL.ThenA D

"
1 0 0
2 1 0
3 2 1

#
U D LU .

8 E D E32E31E21 D
"

1
1

�c 1

# "
1

1
�b 1

# "
1

�a 1
1

#
D

"
1

�a 1
ac � b �c 1

#
.

The multipliers are justa; b; c and the upper triangularU is I . In this caseA D L and
its inverse is that matrixE D L�1.

9 2 by 2:d D 0 not allowed;

"
1 1 0
1 1 2
1 2 1

#
D

"
1
l 1
m n 1

#"
d e g

f h
i

#
d D 1; e D 1, thenl D 1
f D 0 is not allowed
no pivot in row 2co
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22 Solutions to Exercises

10 c D 2 leads to zero in the second pivot position: exchange rows and not singular.
c D 1 leads to zero in the third pivot position. In this case the matrix issingular.

11 A D
"

2 4 8
0 3 9
0 0 7

#
hasL D I (A is already upper triangular) andD D

"
2

3
7

#
I

A D LU hasU D A; A D LDU hasU D D�1A D
"

1 2 4
0 1 3
0 0 1

#
with 1’s on the

diagonal.

12 A D
�

2 4
4 11

�
D

�
1 0
2 1

� �
2 4
0 3

�
D

�
1 0
2 1

� �
2 0
0 3

� �
1 2
0 1

�
DLDU ; U is LT

"
1
4 1
0 �1 1

# "
1 4 0
0 �4 4
0 0 4

#
D

"
1
4 1
0 �1 1

# "
1

�4
4

# "
1 4 0
0 1 �1
0 0 1

#
DLDLT.

13

2
64

a a a a
a b b b
a b c c
a b c d

3
75D

2
64

1
1 1
1 1 1
1 1 1 1

3
75

2
64

a a a a
b � a b � a b � a

c � b c � b
d � c

3
75. Need

a ¤ 0 All of the
b ¤ a multipliers
c ¤ b are`ij D 1
d ¤ c for thisA

14

2
64

a r r r
a b s s
a b c t
a b c d

3
75 D

2
64

1
1 1
1 1 1
1 1 1 1

3
75

2
64

a r r r
b � r s � r s � r

c � s t � s
d � t

3
75. Need

a ¤ 0
b ¤ r
c ¤ s
d ¤ t

15

�
1 0
4 1

�
c D

�
2

11

�
givesc D

�
2
3

�
. Then

�
2 4
0 1

�
x D

�
2
3

�
givesx D

�
�5

3

�
.

Ax D b is LU x D
�

2 4
8 17

�
x D

�
2

11

�
. Forward to

�
2 4
0 1

�
x D

�
2
3

�
D c.

16

"
1 0 0
1 1 0
1 1 1

#
c D

"
4
5
6

#
givesc D

"
4
1
1

#
. Then

"
1 1 1
0 1 1
0 0 1

#
x D

"
4
1
1

#
givesx D

"
3
0
1

#
.

Those are the forward elimination and back substitution steps for

Ax D
"

1
1 1
1 1 1

# "
1 1 1

1 1
1

#
x D

"
4
5
6

#
.

17 (a)L goes toI (b) I goes toL�1 (c) LU goes toU . Elimination multiply byL�1!

18 (a) Multiply LDU D L1D1U1 by inverses to getL�1
1 LD D D1U1U �1. The left

side is lower triangular, the right side is upper triangular) both sides are diagonal.
(b) L; U; L1; U1 have diagonal1’s soD D D1. ThenL�1

1 L andU1U �1 are bothI .

19

"
1
1 1
0 1 1

# "
1 1 0

1 1
1

#
D LIU I

"
a a 0
a a C b b
0 b b C c

#
D (sameL)

"
a

b
c

#

(sameU ). A tridiagonal matrixA hasbidiagonal factorsL andU .

20 A tridiagonalT has 2 nonzeros in the pivot row and only one nonzero below the pivot
(one operation to find̀ and then one for the new pivot!).T D bidiagonalL times
bidiagonalU .co
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Solutions to Exercises 23

21 For the first matrixA; L keeps the 3 lower zeros at the start of rows. ButU may not
have the upper zero whereA24 D 0. For the second matrixB; L keeps the bottom left
zero at the start of row 4.U keeps the upper right zero at the start of column 4. One
zero inA and two zeros inB are filled in.

22 Eliminatingupwards,

"
5 3 1
3 3 1
1 1 1

#
!

"
4 2 0
2 2 0
1 1 1

#
!

"
2 0 0
2 2 0
1 1 1

#
D L. We reach

a lower triangularL, and the multipliers are in anuppertriangularU . A D UL with

U D
"

1 1 1
0 1 1
0 0 1

#
.

23 The 2 by 2 upper submatrixA2 has the first two pivots5; 9. Reason: Elimination onA
starts in the upper left corner with elimination onA2.

24 The upper left blocks all factor at the same time asA: Ak is LkUk .

25 Thei; j entry ofL�1 is j=i for i � j . And Li i�1 is .1 � i/=i below the diagonal

26 .K�1/ij D j.n � i C 1/=.n C 1/ for i � j (and symmetric):.n C 1/K�1 looks good.

Problem Set 2.7, page 115

1 A D
�

1 0
9 3

�
hasAT D

�
1 9
0 3

�
; A�1 D

�
1 0

�3 1=3

�
; .A�1/T D .AT/�1 D

�
1 �3
0 1=3

�
;

A D
�

1 c
c 0

�
hasAT D A andA�1 D 1

c2

�
0 c
c �1

�
D .A�1/T.

2 .AB/T is notATBT except whenAB D BA. Transpose that to find:BTAT D ATBT.

3 (a) ..AB/�1/T D .B�1A�1/T D .A�1/T.B�1/T. This is also.AT/�1.BT/�1.
(b) If U is upper triangular, so isU �1: then.U �1/T is lower triangular.

4 A D
�

0 1
0 0

�
hasA2 D 0. The diagonal ofATA has dot products of columns ofA with

themselves. IfATA D 0, zero dot products) zero columns) A D zero matrix.

5 (a) xTAy D
�
0 1

� �
1 2 3
4 5 6

� "
0
1
0

#
D5 (b) xTA D

�
4 5 6

�
(c) Ay D

�
2
5

�
.

6 M T D
�

AT C T

BT DT

�
; M T D M needsAT D A andBT D C andDT D D.

7 (a) False:

�
0 A
A 0

�
is symmetric only ifA D AT. (b) False: The transpose ofAB

is BTAT D BA when A and B are symmetric
�

0 A
A 0

�
transposes to

�
0 AT

AT 0

�
.

So .AB/T D AB needsBA D AB. (c) True: Invertible symmetric matrices have
symmetric in verses! Easiest proof is to transposeAA�1 D I . (d) True:.ABC/T is
C TBTAT.D CBA for symmetric matricesA; B; andC ).

8 The1 in row 1 hasn choices; then the1 in row 2 hasn � 1 choices . . . (n! overall).co
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24 Solutions to Exercises

9 P1P2 D
"

0 1 0
0 0 1
1 0 0

# "
1 0 0
0 0 1
0 1 0

#
D

"
0 0 1
0 1 0
1 0 0

#
but P2P1 D

"
0 1 0
1 0 0
0 0 1

#
.

If P3 andP4 exchangedifferentpairs of rows,P3P4 D P4P3 does both exchanges.

10 .3; 1; 2; 4/ and.2; 3; 1; 4/ keep4 in place;6 more evenP ’s keep 1 or 2 or 3 in place;
.2; 1; 4; 3/ and.3; 4; 1; 2/ exchange 2 pairs..1; 2; 3; 4/; .4; 3; 2; 1/ make12 evenP ’s.

11 PA D
"

0 1 0
0 0 1
1 0 0

# "
0 0 6
1 2 3
0 4 5

#
D

"
1 2 3
0 4 5
0 0 6

#
is upper triangular. Multiplyingon

the rightby a permutation matrixP2 exchanges thecolumns. To make thisA lower tri-

angular, we also needP1 to exchange rows 2 and 3:P1AP2 D
"

1
1

1

#

A

"
1

1
1

#
D

"
6 0 0
5 4 0
3 2 1

#
.

12 .P x/T.P y/DxTP TP y DxTy sinceP TP DI . In generalP x�y Dx�P Ty ¤ x�P y:

Non-equality whereP ¤ P T:

"
0 1 0
0 0 1
1 0 0

# "
1
2
3

#
�

"
1
1
2

#
¤

"
1
2
3

#
�

"
0 1 0
0 0 1
1 0 0

# "
1
1
2

#
.

13 A cyclic P D
"

0 1 0
0 0 1
1 0 0

#
or its transpose will haveP 3 D I W .1; 2; 3/ ! .2; 3; 1/ !

.3; 1; 2/ ! .1; 2; 3/. bP D
�

1 0
0 P

�
for the sameP hasbP 4 D bP ¤ I:

14 The “reverse identity”P takes.1; : : : ; n/ into .n; : : : ; 1/. When rows and also columns
are reversed,.PAP /ij is .A/n�iC1;n�j C1. In particular.PAP /11 is Ann.

15 (a) If P sends row1 to row 4, thenP T sends row4 to row 1 (b) P D
�

E 0
0 E

�
D

P T with E D
�

0 1
1 0

�
moves all rows:1 and2 are exchanged,3 and4 are exchanged.

16 A2 � B2 (but not.A C B/.A � B/, this is different) and alsoABA are symmetric ifA
andB are symmetric.

17 (a) A D
�

1 1
1 1

�
D AT is not invertible (b)A D

�
0 1
1 1

�
needs row exchange

(c) A D
�

1 1
1 0

�
hasD D

�
1 0
0 �1

�
.

18 (a) 5 C 4 C 3 C 2 C 1 D 15 independent entries ifA D AT (b) L has 10 andD has 5;
total 15 inLDLT (c) Zero diagonal ifAT D �A, leaving4C3C2C1 D 10 choices.

19 (a) The transpose ofRTAR is RTATRT T D RTAR D n by n whenAT D A (anym
by n matrixR) (b) .RTR/jj D (columnj of R)� (columnj of R) D (length squared
of columnj ) � 0.co
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Solutions to Exercises 25

20

�
1 3
3 2

�
D

�
1 0
3 1

� �
1 0
0 �7

� �
1 3
0 1

�
;

�
1 b
b c

�
D

�
1 0
b 1

� �
1 0

0 c � b2

� �
1 b
0 1

�

"
2 �1 0

�1 2 �1
0 �1 2

#
D

2
64

1

�1
2

1

0 �2
3

1

3
75

2
64

2
3
2

4
3

3
75

2
64

1 �1
2

0

1 �2
3
1

3
75 D LDLT.

21 Elimination on a symmetric 3 by 3 matrix leaves a symmetric lower right 2 by 2 matrix.

The examples

"
2 4 8
4 3 9
8 9 0

#
and

"
1 b c
b d e
c e f

#
lead to

�
�5 �7
�7 �32

�
and

�
d � b2 e � bc

e � bc f � c2

�
.

22

"
1

1
1

#
A D

"
1
0 1
2 3 1

# "
1 0 1

1 1
�1

#
;

"
1

1
1

#
A D

"
1
1 1
2 0 1

# "
1 2 0

�1 1
1

#

23 A D

2
64

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

3
75 D P andL D U D I .

This cyclicP exchanges rows1-2 then
rows2-3 then rows3-4.

24 PA D LU is

"
1

1
1

# "
0 1 2
0 3 8
2 1 1

#
D

"
1
0 1
0 1=3 1

# "
2 1 1

3 8
�2=3

#
. If we wait

to exchange anda12 is the pivot,A D L1P1U1 D
"

1
3 1

1

# "
1

1
1

# "
2 1 1
0 1 2
0 0 2

#
.

25 Thesplu code will not end whenabs.A.k; k// < tol line 4 of theslu code on page 100.
Insteadsplu looks for a nonzero entry below the diagonal in the current columnk, and
executes a row exchange. The 4 lines to exchange rowk with row r are at the end of
Section 2.7 (page 113). Tofind that nonzero entryA.r; k/, follow abs.A.k; k// < tol
by locating the first nonzero (or the largestA.r; k/ out of r D k C 1; : : : ; n).

26 One way to decide even vs. odd is to count all pairs thatP has in the wrong order. Then
P is even or odd when that count is even or odd. Hard step: Show that an exchange
always switches that count! Then 3 or 5 exchanges will leave that count odd.

27 (a) E21 D
"

1
�3 1

1

#
puts 0 in the2; 1 entry ofE21A. ThenE21AET

21 D
"

1 0 0
0 2 4
0 4 9

#

is still symmetric, with zero also in its 1, 2 entry. (b) Now useE32 D
"

1
1

�4 1

#

to make the 3, 2 entry zero andE32E21AET
21ET

32 D D also has zero in its 2, 3 entry.
Key point: Elimination from both sides gives the symmetricLDLT directly.

28 A D

2
64

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

3
75 D AT has0; 1; 2; 3 in every row. (I don’t know any rules for a

symmetric construction like this)co
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26 Solutions to Exercises

29 Reordering the rows and/or the columns of
�

a b
c d

�
will move the entrya. So the result

cannot be the transpose (which doesn’t movea).

30 (a) Total currents areATy D
"

1 0 1
�1 1 0

0 �1 �1

# "
yBC

yCS

yBS

#
D

"
yBC C yBS

�yBC C yCS

�yCS � yBS

#
.

(b) Either way.Ax/Ty D xT.ATy/ D xByBC C xByBS � xC yBC C xC yCS �
xS yCS � xS yBS .

31

"
1 50
40 1000
2 50

# �
x1

x2

�
D Ax; ATy D

�
1 40 2
50 1000 50

� "
700
3

3000

#
D

�
6820

188000

�
1 truck
1 plane

32 Ax � y is thecostof inputs whilex � ATy is thevalueof outputs.

33 P 3 D I so three rotations for360ı; P rotates around.1; 1; 1/ by 120ı.

34

�
1 2
4 9

�
D

�
1 0
2 1

� �
1 2
2 5

�
D EH D (elementory matrix) times (symmetric matrix).

35 L.U T/�1 is lower triangular times lower triangular, so lower triangular. The transpose
of U TDU is U TDTU T T D U TDU again, soU TDU is symmetric. The factorization
multiplies lower triangular by symmetric to getLDU which isA.

36 These are groups: Lower triangular with diagonal1’s, diagonal invertibleD, permuta-
tionsP , orthogonal matrices withQT D Q�1.

37 CertainlyBT is northwest.B2 is a full matrix! B�1 is southeast:
�

1 1
1 0

��1 D
�

0 1
1 �1

�
.

The rows ofB are in reverse order from a lower triangularL, so B D PL. Then
B�1 D L�1P �1 has thecolumnsin reverse order fromL�1. SoB�1 is southeast.
NorthwestB D PL times southeastP U is .PLP /U D upper triangular.

38 There arenŠ permutation matrices of ordern. Eventuallytwo powers ofP must be
the same: If P r D P s thenP r � s D I . Certainlyr � s � n!

P D
�

P2

P3

�
is 5 by 5 with P2 D

�
0 1
1 0

�
andP3 D

"
0 1 0
0 0 1
1 0 0

#
andP 6 D I .

39 To splitA into (symmetricB) C (anti-symmetricC ), the only choice isB D 1
2
.ACAT/

andC D 1
2
.A � AT/.

40 Start fromQTQ D I , as in

"
qT

1

qT
2

#
�
q1 q2

�
D

�
1 0
0 1

�

(a) The diagonal entries giveqT
1q1 D 1 andqT

2q2 D 1: unit vectors

(b) The off-diagonal entry isqT
1q2 D 0 (and in generalqT

i qj D 0)

(c) The leading example forQ is the rotation matrix

�
cos� � sin�
sin� cos�

�
.co
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Solutions to Exercises 27

Problem Set 3.1, page 127

1 x C y ¤ y C x andx C .y C z/ ¤ .x C y/ C z and.c1 C c2/x ¤ c1x C c2x.
2 Whenc.x1; x2/ D .cx1; 0/, the only broken rule is 1 timesx equalsx. Rules (1)-(4)

for additionx C y still hold since addition is not changed.
3 (a) cx may not be in our set: not closed under multiplication. Also no0 and no�x

(b) c.x Cy/ is the usual.xy/c, while cx C cy is the usual.xc/.yc/. Those are equal.
With c D 3, x D 2, y D 1 this is3.2 C 1/ D 8. The zero vector is the number 1.

4 The zero vector in matrix spaceM is

�
0 0
0 0

�
I 1

2
A D

�
1 �1
1 �1

�
and�A D

�
�2 2
�2 2

�
.

The smallest subspace ofM containing the matrixA consists of all matricescA.
5 (a) One possibility: The matricescA form a subspace not containingB (b) Yes: the

subspace must containA � B D I (c) Matrices whose main diagonal is all zero.
6 Whenf .x/ D x2 andg.x/ D 5x, the combination3f � 4g in function space is

h.x/ D 3f .x/ � 4g.x/ D 3x2 � 20x.
7 Rule 8 is broken: Ifcf .x/ is defined to be the usualf .cx/ then .c1 C c2/f D

f ..c1 C c2/x/ is not generally the same asc1f C c2f D f .c1x/ C f .c2x/.
8 If .f C g/.x/ is the usualf .g.x// then.g C f /x is g.f .x// which is different. In

Rule 2 both sides aref .g.h.x///. Rule 4 is broken there might be no inverse function
f �1.x/ such thatf .f �1.x// D x. If the inverse function exists it will be the vector
�f .

9 (a) The vectors with integer components allow addition, but not multiplication by1
2

(b) Remove thex axis from thexy plane (but leave the origin). Multiplication by any
c is allowed but not all vector additions.

10 The only subspaces are (a) the plane withb1 D b2 (d) the linear combinations ofv
andw (e) the plane withb1 C b2 C b3 D 0.

11 (a) All matrices

�
a b
0 0

�
(b) All matrices

�
a a
0 0

�
(c) All diagonal matrices.

12 For the planex Cy �2z D 4, the sum of.4; 0; 0/ and.0; 4; 0/ is not on the plane. (The
key is that this plane does not go through.0; 0; 0/.)

13 The parallel planeP0 has the equationx C y � 2z D 0. Pick two points, for example
.2; 0; 1/ and.0; 2; 1/, and their sum.2; 2; 2/ is in P0.

14 (a) The subspaces ofR2 areR2 itself, lines through.0; 0/, and.0; 0/ by itself (b) The
subspaces ofR4 areR4 itself, three-dimensional planesn � v D 0, two-dimensional
subspaces.n1 � v D 0 andn2 � v D 0/, one-dimensional lines through.0; 0; 0; 0/, and
.0; 0; 0; 0/ by itself.

15 (a) Two planes through.0; 0; 0/ probably intersect in a line through.0; 0; 0/
(b) The plane and line probably intersect in the point.0; 0; 0/
(c) If x andy are in bothS andT , x C y andcx are in both subspaces.

16 The smallest subspace containing a planeP and a lineL is eitherP (when the lineL is
in the planeP) or R3 (whenL is not inP).

17 (a) The invertible matrices do not include the zero matrix, so they are not a subspace

(b) The sum of singular matrices
�

1 0
0 0

�
C

�
0 0
0 1

�
is not singular: not a subspace.co
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28 Solutions to Exercises

18 (a) True: The symmetric matrices do form a subspace (b)True: The matrices with
AT D �A do form a subspace (c)False: The sum of two unsymmetric matrices
could be symmetric.

19 The column space ofA is thex-axis D all vectors.x; 0; 0/. The column space ofB
is thexy planeD all vectors.x; y; 0/. The column space ofC is the line of vectors
.x; 2x; 0/.

20 (a) Elimination leads to0 D b2 � 2b1 and 0 D b1 C b3 in equations 2 and 3:
Solution only ifb2 D 2b1 andb3 D �b1 (b) Elimination leads to0 D b1 C 2b3

in equation 3: Solution only ifb3 D �b1.

21 A combination of the columns ofC is also a combination of the columns ofA. Then

C D
�

1 3
2 6

�
andA D

�
1 2
2 4

�
have the same column space.B D

�
1 2
3 6

�
has a

different column space.

22 (a) Solution for everyb (b) Solvable only ifb3 D 0 (c) Solvable only ifb3 D b2.

23 The extra columnb enlarges the column space unlessb is already inthe column space.

Œ A b � D
�

1 0 1
0 0 1

�
(larger column space)
(no solution toAx D b)

�
1 0 1
0 1 1

�
(b is in column space)
(Ax D b has a solution)

24 The column space ofAB is contained in(possibly equal to) the column space ofA.
The exampleB D 0 andA ¤ 0 is a case whenAB D 0 has a smaller column space
thanA.

25 The solution toAz D b C b� is z D x C y. If b andb� are inC .A/ so isb C b�.

26 The column space of any invertible 5 by 5 matrix isR5. The equationAx D b is
always solvable (byx D A�1b/ so everyb is in the column space of that invertible
matrix.

27 (a) False: Vectors that arenot in a column space don’t form a subspace.
(b) True: Only the zero matrix hasC .A/ D f0g. (c) True: C .A/ D C .2A/.

(d) False: C .A � I / ¤ C .A/ whenA D I or A D
�

1 0
0 0

�
(or other examples).

28 A D
"

1 1 0
1 0 0
0 1 0

#
and

"
1 1 2
1 0 1
0 1 1

#
do not have.1; 1; 1/ in C .A/. A D

"
1 2 0
2 4 0
3 6 0

#

hasC .A/ D line.

29 WhenAx D b is solvable for allb, everyb is in the column space ofA. So that space
is R9.

30 (a) If u andv are both inS C T , thenu D s1 C t1 andv D s2 C t2. Sou C v D
.s1 C s2/ C .t1 C t2/ is also inS C T . And so iscu D cs1 C ct1: a subspace.

(b) If S andT are different lines, thenS [ T is just the two lines (not a subspace) but
S C T is the whole plane that they span.

31 If S D C .A/ andT D C .B/ thenS C T is the column space ofM D Œ A B �.

32 The columns ofAB are combinations of the columns ofA. So all columns ofŒ A AB �

are already inC .A/. But A D
�

0 1
0 0

�
has a larger column space thanA2 D

�
0 0
0 0

�
.

For square matrices, the column space isRn whenA is invertible.co
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Solutions to Exercises 29

Problem Set 3.2, page 140

1 (a) UD
"

1 2 2 4 6
0 0 1 2 3
0 0 0 0 0

#
Free variablesx2; x4; x5

Pivot variablesx1; x3
(b) UD

"
2 4 2
0 4 4
0 0 0

#
Freex3

Pivotx1; x2

2 (a) Free variablesx2; x4; x5 and solutions.�2; 1; 0; 0; 0/, .0; 0; �2; 1; 0/, .0; 0; �3; 0; 1/
(b) Free variablex3: solution.1; �1; 1/. Special solution for each free variable.

3 The complete solution toAx D 0 is (�2x2; x2; �2x4 � 3x5; x4; x5) with x2; x4; x5

free. The complete solution toBx D 0 is (2x3; �x3; x3). The nullspace contains only
x D 0 when there are no free variables.

4 R D
"

1 2 0 0 0
0 0 1 2 3
0 0 0 0 0

#
, R D

"
1 0 �1
0 1 1
0 0 0

#
, R has the same nullspace asU andA.

5 A D
�

�1 3 5
�2 6 10

�
D

�
1 0
2 1

� �
�1 3 5

0 0 0

�
I B D

�
�1 3 5
�2 6 7

�
D

�
1 0
2 1

�

�
�1 3 5

0 0 �3

�
D LU .

6 (a) Special solutions.3; 1; 0/ and.5; 0; 1/ (b) .3; 1; 0/. Total of pivot and free isn.

7 (a) The nullspace ofA in Problem 5 is the plane�x C 3y C 5z D 0; it contains all the
vectors.3y C 5z; y; z/ D y.3; 1; 0/ C z.5; 0; 1/ D combination of special solutions.
(b) Theline through.3; 1; 0/ has equations�xC3y C5z D 0 and�2xC6y C7z D 0.
The special solution for the free variablex2 is .3; 1; 0/.

8 R D
�

1 �3 �5
0 0 0

�
with I D Œ 1 �; R D

�
1 �3 0
0 0 1

�
with I D

�
1 0
0 1

�
.

9 (a) False: Any singular square matrix would have free variables (b)True: An in-
vertible square matrix hasno free variables. (c)True(only n columns to hold pivots)
(d) True(only m rows to hold pivots)

10 (a) Impossible row 1 (b)A D invertible (c) A D all ones (d)A D 2I; R D I .

11

2
64

0 1 1 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 0 0

3
75

2
64

1 1 1 1 1 1 1
0 0 1 1 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1

3
75

2
64

0 0 0 1 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

3
75

12

2
64

1 1 0 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

3
75,

2
64

0 1 1 0 0 1 1 1
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0

3
75. Notice the identity

matrix in the pivot columns of thesereducedrow echelon formsR.

13 If column 4 of a 3 by 5 matrix is all zero thenx4 is a freevariable. Its special solution
is x D .0; 0; 0; 1; 0/, because 1 will multiply that zero column to giveAx D 0.

14 If column 1D column 5 thenx5 is a free variable. Its special solution is.�1; 0; 0; 0; 1/.

15 If a matrix hasn columns andr pivots, there aren � r special solutions. The nullspace
contains onlyx D 0 whenr D n. The column space is all ofRm whenr D m. All
important!co
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30 Solutions to Exercises

16 The nullspace contains onlyx D 0 whenA has 5 pivots. Also the column space isR5,
because we can solveAx D b and everyb is in the column space.

17 A D Œ 1 � 3 � 1 � gives the planex � 3y � z D 0; y andz are free variables. The
special solutions are.3; 1; 0/ and.1; 0; 1/.

18 Fill in 12 then4 then1 to get the complete solution tox � 3y � z D 12:

"
x
y
z

#
D

"12
0
0

#
C y

"4
1
0

#
C z

"1
0
1

#
D xparticularC xnullspace.

19 If LU x D 0, multiply by L�1 to find U x D 0. ThenU and LU have the same
nullspace.

20 Column 5 is sure to have no pivot since it is a combination of earlier columns. With
4 pivots in the other columns, the special solution iss D .1; 0; 1; 0; 1/. The nullspace
contains all multiples of this vectors (a line inR5).

21 For special solutions.2; 2; 1; 0/ and .3; 1; 0; 1/ with free variablesx3; x4: R D�
1 0 �2 �3
0 1 �2 �1

�
andA can be any invertible 2 by 2 matrix times thisR.

22 The nullspace ofA D
"

1 0 0 �4
0 1 0 �3
0 0 1 �2

#
is the line through.4; 3; 2; 1/.

23 A D
"

1 0 �1=2
1 3 �2
5 1 �3

#
has.1; 1; 5/ and.0; 3; 1/ in C .A/ and.1; 1; 2/ in N .A/. Which

otherA’s?

24 This construction is impossible: 2 pivot columns and 2 free variables, only 3 columns.

25 A D
"

1 �1 0 0
1 0 �1 0
1 0 0 �1

#
has.1; 1; 1/ in C .A/ and only the line.c; c; c; c/ in N .A/.

26 AD
�

0 1
0 0

�
hasN .A/DC .A/ and also (a)(b)(c) are all false. Noticerref.AT/D

�
1 0
0 0

�
.

30

27 If nullspaceD column space (withr pivots) thenn � r D r . If n D 3 then3 D 2r is
impossible.

28 If A times every column ofB is zero, the column space ofB is contained in thenullspace

of A. An example isA D
�

1 1
1 1

�
andB D

�
1 1

�1 �1

�
. HereC .B/ equalsN .A/.

(For B D 0; C .B/ is smaller.)

29 For A D random 3 by 3 matrix,R is almost sure to beI . For 4 by 3,R is most likely
to beI with fourth row of zeros. What about a random 3 by 4 matrix?

31 If N .A/ D line throughx D .2; 1; 0; 1/; A hasthree pivots(4 columns and 1 special

solution). Its reduced echelon form can beR D
"

1 0 0 �2
0 1 0 �1
0 0 1 0

#
(add any zero rows).co
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Solutions to Exercises 31

32 Any zero rows come after these rows:R D Œ 1 �2 �3 �, R D
�

1 0 0
0 1 0

�
, R D I .

33 (a)
�

1 0
0 1

�
;

�
1 0
0 0

�
,

�
1 1
0 0

�
,

�
0 1
0 0

�
,

�
0 0
0 0

�
(b) All 8 matrices areR’s !

34 One reason thatR is the same forA and�A: They have the same nullspace. They also
have the same column space, but that is not required for two matrices to share the same
R. (R tells us the nullspace and row space.)

35 The nullspace ofB D Œ A A � contains all vectorsx D
�

y
�y

�
for y in R4.

36 If Cx D 0 thenAx D 0 andBx D 0. SoN .C / D N .A/ \ N .B/ D intersection.

37 Currents: y1 � y3 C y4 D �y1 C y2 C Cy5 D �y2 C y4 C y6 D �y4 � y5 � y6 D 0.
These equations add to0 D 0. Free variablesy3; y5; y6: watch for flows around loops.

Problem Set 3.3, page 151

1 (a) and (c) are correct; (b) is completely false; (d) is false becauseR might have1’s
in nonpivot columns.

2 A D
"

4 4 4 4
4 4 4 4
4 4 4 4

#
hasR D

"
1 1 1 1
0 0 0 0
0 0 0 0

#
. The rank isr D 1;

A D
"

1 2 3 4
2 3 4 5
3 4 5 6

#
hasR D

"
1 0 �1 �2
0 1 2 3
0 0 0 0

#
. The rank isr D 2;

A D
"�1 1 �1 1

�1 1 �1 1
�1 1 �1 1

#
hasR D

"
1 �1 1 �1
0 0 0 0
0 0 0 0

#
. The rank isr D 1

3 RA D
"

1 2 0
0 0 1
0 0 0

#
RB D

�
RA RA

�
RC �!

�
RA 0
0 RA

�
�! Zero rows go

to the bottom

4 If all pivot variables come last thenR D
�

0 I
0 0

�
. The nullspace matrix isN D

�
I
0

�
.

5 I think R1 D A1; R2 D A2 is true. ButR1 � R2 may have�1’s in some pivots.

6 A andAT have the same rankr D number of pivots. Butpivcol (the column number)

is 2 for this matrixA and 1 forAT: A D
"

0 1 0
0 0 0
0 0 0

#
.

7 Special solutions inN D Œ �2 �4 1 0I �3 �5 0 1 � and Œ 1 0 0I 0 �2 1 �.

8 The new entries keep rank 1:A D
"

1 2 4
2 4 8
4 8 16

#
; B D

"2 6 �3
1 3 �3=2
2 6 �3

#
;

M D
�

a b
c bc=a

�
.co
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32 Solutions to Exercises

9 If A has rank 1, the column space is aline in Rm. The nullspace is aplanein Rn (given
by one equation). The nullspace matrixN is n by n � 1 (with n � 1 special solutions
in its columns). The column space ofAT is a line in Rn.

10

2
4

3 6 6

1 2 2
4 8 8

3
5D

2
4

3

1
4

3
5

�
1 2 2

�

and

�
2 2 6 4

�1 �1 �3 �2

�
D

�
2

�1

� �
1 1 3 2

�

11 A rank one matrix has one pivot. (That pivot is in row 1 after possible row exchange; it
could come in any column.) The second row ofU is zero.

12
Invertibler by r submatrices
Use pivot rows and columnsS D

�
1 3
1 4

�
andS D Œ 1 � andS D

�
1 0
0 1

�
.

13 P has rankr (the same asA) because elimination produces the same pivot columns.

14 The rank ofRT is alsor . The example matrixA has rank2 with invertibleS :

P D
"

1 3
2 6
2 7

#
P T D

�
1 2 2
3 6 7

�
ST D

�
1 2
3 7

�
S D

�
1 3
2 7

�
:

15 The product of rank one matrices has rank one or zero. These particular matrices have
rank.AB/ D 1; rank.AM / D 1 exceptAM D 0 if c D �1=2.

16 .uvT/.wzT/ D u.vTw/zT has rank one unless the inner product isvTw D 0.

17 (a) By matrix multiplication, each column ofAB is A times the corresponding column
of B. So if columnj of B is a combination of earlier columns, then columnj of AB
is the same combination of earlier columns ofAB. Then rank.AB/ � rank .B/. No
new pivot columns! (b) The rank ofB is r D 1. Multiplying by A cannot increase
this rank. The rank ofAB stays the same forA1 D I andB D

�
1 1
1 1

�
. It drops to zero

for A2 D
�

1 1
�1 �1

�
.

18 If we know that rank.BTAT/ � rank.AT/, then since rank stays the same for transposes,
(apologies that this fact is not yet proved), we have rank.AB/ � rank.A/.

19 We are givenAB D I which has rankn. Then rank.AB/ � rank.A/ forces rank.A/ D
n. This means thatA is invertible. The right-inverseB is also a left-inverse:BA D I
andB D A�1.

20 CertainlyA andB have at most rank2. Then their productAB has at most rank2.
SinceBA is 3 by 3, it cannot beI even ifAB D I .

21 (a) A andB will both have the same nullspace and row space as theR they share.
(b) A equals aninvertiblematrix timesB, when they share the sameR. A key fact!

22 A D .pivot columns/.nonzero rows ofR/ D
"

1 0
1 4
1 8

# �
1 1 0
0 0 1

�
D

"
1 1 0
1 1 0
1 1 0

#
C

"
0 0 0
0 0 4
0 0 8

#
. B D

�
2 2
2 3

� �
1 0
0 1

�
D columns

times rows D
�

2 0
2 0

�
C

�
0 2
0 3

�
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Solutions to Exercises 33

23 If c D 1; R D
"

1 1 2 2
0 0 0 0
0 0 0 0

#
hasx2; x3; x4 free. If c ¤ 1; R D

"
1 0 2 2
0 1 0 0
0 0 0 0

#

hasx3; x4 free. Special solutions inN D

2
64

�1 �2 �2
1 0 0
0 1 0
0 0 1

3
75 (for c D 1) andN D

2
64

�2 �2
0 0
1 0
0 1

3
75 (for c ¤ 1). If c D 1; R D

�
0 1
0 0

�
andx1 free; if c D 2; R D

�
1 �2
0 0

�

andx2 free; R D I if c ¤ 1; 2. Special solutions inN D
�

1
0

�
.c D 1/ or N D

�
2
1

�
.c D 2/ or N D 2 by 0 empty matrix.

24 A D
�
I I

�
hasN D

�
I

�I

�
I B D

�
I I
0 0

�
has the sameN ; C D

�
I I I

�
has

N D
"�I �I

I 0
0 I

#
.

25 A D
"

1 1 2 4
1 2 2 5
1 3 2 6

#
D

"
1 1
1 2
1 3

# �
1 0 2 3
0 1 0 1

�
D (pivot columns) timesR.

26 Them by n matrixZ hasr ones to start its main diagonal. OtherwiseZ is all zeros.

27 RD
�

I F
0 0

�
D

�
r by r r by n�r

m�r by r m�r by n�r

�
; rref .RT/D

�
I 0
0 0

�
; rref .RTR/DsameR

28 Therow-column reduced echelon formis always
�

I 0
0 0

�
; I is r by r .

Problem Set 3.4, page 163

1

"
2 4 6 4 b1

2 5 7 6 b2

2 3 5 2 b3

#
!

"
2 4 6 4 b1

0 1 1 2 b2 � b1

0 �1 �1 �2 b3 � b1

#
!

"
2 4 6 4 b1

0 1 1 2 b2 � b1

0 0 0 0 b3 C b2 � 2b1

#

Ax D b has a solution whenb3 C b2 � 2b1 D 0; the column space contains all combi-
nations of.2; 2; 2/ and.4; 5; 3/. This is the planeb3 Cb2 �2b1 D 0 (!). The nullspace
contains all combinations ofs1 D .�1; �1; 1; 0/ ands2 D .2; �2; 0; 1/I xcomplete D
xp C c1s1 C c2s2I

�
R d

�
D

"
1 0 1 �2 4
0 1 1 2 �1
0 0 0 0 0

#
gives the particular solutionxp D .4; �1; 0; 0/:
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34 Solutions to Exercises

2

"
2 1 3 b1

6 3 9 b2

4 2 6 b3

#
!

"
2 1 3 b1

0 0 0 b2 � 3b1

0 0 0 b3 � 2b1

#
ThenŒ R d � D

"
1 1=2 3=2 5
0 0 0 0
0 0 0 0

#

Ax D b has a solution whenb2 � 3b1 D 0 andb3 � 2b1 D 0; C .A/ D line through
.2; 6; 4/ which is the intersection of the planesb2 � 3b1 D 0 and b3 � 2b1 D 0;
the nullspace contains all combinations ofs1 D .�1=2; 1; 0/ ands2 D .�3=2; 0; 1/;
particular solutionxp D d D .5; 0; 0/ and complete solutionxp C c1s1 C c2s2.

3 xcomplete D
"�2

0
1

#
C x2

"�3
1
0

#
. The matrix is singular but the equations are

still solvable;b is in the column space. Our particular solution has free variabley D 0.

4 xcompleteD xp C xn D .
1
2

; 0;
1
2

; 0/ C x2.�3; 1; 0; 0/ C x4.0; 0; �2; 1/.

5

"
1 2 �2 b1

2 5 �4 b2

4 9 �8 b3

#
!

"
1 2 �2 b1

0 1 0 b2 � 2b1

0 0 0 b3 � 2b1 � b2

#
solvable ifb3 � 2b1 � b2 D 0.

Back-substitution gives the particular solution toAx D b and the special solution to

Ax D 0: x D
"

5b1 � 2b2

b2 � 2b1

0

#
C x3

"
2
0
1

#
.

6 (a) Solvable ifb2 D 2b1 and3b1 � 3b3 C b4 D 0. Thenx D
�

5b1 � 2b3

b3 � 2b1

�
D xp

(b) Solvable ifb2 D 2b1 and3b1 � 3b3 C b4 D 0. x D
"

5b1 � 2b3

b3 � 2b1

0

#
C x3

"�1
�1

1

#
.

7

"
1 3 1 b1

3 8 2 b2

2 4 0 b3

#
!

"
1 3 1 b2

0 �1 �1 b2 � 3b1

0 �2 �2 b3 � 2b1

#
One more step givesŒ 0 0 0 0 � D
row 3 � 2 (row 2)C 4(row 1)
provided b3�2b2C4b1D0.

8 (a) Everyb is in C .A/: independent rows, only the zero combination gives0.
(b) We needb3 D 2b2, because.row3/ � 2.row2/ D 0.

9 L
�
U c

�
D

"
1 0 0
2 1 0
3 �1 1

# "
1 2 3 5 b1

0 0 2 2 b2 � 2b1

0 0 0 0 b3 C b2 � 5b1

#
D

"
1 2 3 5 b1

2 4 8 12 b2

3 6 7 13 b3

#

D
�
A b

�
; particularxp D .�9; 0; 3; 0/ means�9.1; 2; 3/ C 3.3; 8; 7/ D .0; 6; �6/.

This isAxp D b.

10

�
1 0 �1
0 1 �1

�
x D

�
2
4

�
hasxp D .2; 4; 0/ andxnull D .c; c; c/.

11 A 1 by 3 system has at leasttwo free variables. Butxnull in Problem 10 only hasone.

12 (a) x1 � x2 and0 solveAx D 0 (b) A.2x1 � 2x2/ D 0; A.2x1 � x2/ D b

13 (a) The particular solutionxp is always multiplied by 1 (b) Any solution can bexp

(c)
�

3 3
3 3

� �
x
y

�
D

�
6
6

�
. Then

�
1
1

�
is shorter (length

p
2) than

�
2
0

�
(length 2)

(d) The only “homogeneous” solution in the nullspace isxn D 0 whenA is invertible.co
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Solutions to Exercises 35

14 If column 5 has no pivot,x5 is a freevariable. The zero vectoris not the only solution
to Ax D 0. If this systemAx D b has a solution, it hasinfinitely manysolutions.

15 If row 3 of U has no pivot, that is azero row. U x D c is only solvable provided
c3 D 0. Ax D b might not be solvable, becauseU may have other zero rows needing
moreci D 0.

16 The largest rank is 3. Then there is a pivot in everyrow. The solutionalways exists.
The column space isR3. An example isA D Œ I F � for any3 by 2 matrixF .

17 The largest rank of a 6 by 4 matrix is 4. Then there is a pivot in everycolumn. The
solution isunique. The nullspace contains only the zerovector. An example isA D
R D Œ I F � for any 4 by 2 matrixF .

18 RankD 2; rankD 3 unlessq D 2 (then rankD 2). Transpose has the same rank!

19 Both matricesA have rank 2. AlwaysATA andAAT havethe same rankasA.

20 A D LU D
�

1 0
2 1

� �
3 4 1 0
0 �3 0 1

�
I A D LU

"
1 0 0
2 1 0
0 3 1

# "
1 0 1 0
0 2 �2 3
0 0 11 �5

#
.

21 (a)

"
x
y
z

#
D

"
4
0
0

#
C y

"�1
1
0

#
C z

"�1
0
1

#
(b)

"
x
y
z

#
D

"
4
0
0

#
C z

"�1
0
1

#
. The second

equation in part (b) removed one special solution.

22 If Ax1 D b and alsoAx2 D b then we can addx1 � x2 to any solution ofAx D B:
the solutionx is not unique. But there will beno solution to Ax D B if B is not in
the column space.

23 ForA; q D 3 gives rank 1, every otherq gives rank 2. ForB; q D 6 gives rank 1, every
otherq gives rank 2. These matrices cannot have rank 3.

24 (a)

�
1
1

�
Œ x � D

�
b1

b2

�
has 0 or 1 solutions, depending onb (b)

�
1 1

� �
x1

x2

�
D

Œ b � has infinitely many solutions for everyb (c) There are 0 or1 solutions whenA
has rankr < m andr < n: the simplest example is a zero matrix. (d)onesolution
for all b whenA is square and invertible (likeA D I ).

25 (a) r < m, alwaysr � n (b) r D m, r < n (c) r < m; r D n (d) r D m D n.

26

"
2 4 4
0 3 6
0 0 0

#
! R D

"1 0 �2
0 1 2
0 0 0

#
and

"
2 4 4
0 3 6
0 0 5

#
! R D I .

27 If U hasn pivots, thenR hasn pivotsequal to 1. Zeros above and below those pivots
makeR D I .

28

�
1 2 3 0
0 0 4 0

�
!

�
1 2 0 0
0 0 1 0

�
; xn D

"�2
1
0

#
;

�
1 2 3 5
0 0 4 8

�
!

�
1 2 0 �1
0 0 1 2

�
.

Freex2 D 0 givesxp D .�1; 0; 2/ because the pivot columns containI .

29 Œ R d � D
"

1 0 0 0
0 0 1 0
0 0 0 0

#
leads to xn D

"
0
1
0

#
; Œ R d � D

"
1 0 0 �1
0 0 1 2
0 0 0 5

#
:

no solution because of the 3rd equationco
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36 Solutions to Exercises

30

"
1 0 2 3 2
1 3 2 0 5
2 0 4 9 10

#
!

"
1 0 2 3 2
0 3 0 �3 3
0 0 0 3 6

#
!

"
1 0 2 0 �4
0 1 0 0 3
0 0 0 1 2

#
;

2
64

�4
3
0
2

3
75; xn D x3

2
64

�2
0
1
0

3
75.

31 For A D
"

1 1
0 2
0 3

#
, the only solution toAx D

"
1
2
3

#
is x D

�
0
1

�
. B cannot exist since

2 equations in 3 unknowns cannot have a unique solution.

32 A D

2
64

1 3 1
1 2 3
2 4 6
1 1 5

3
75 factors intoLU D

2
64

1
1 1
2 2 1
1 2 0 1

3
75

2
64

1 3 1
0 �1 2
0 0 0
0 0 0

3
75 and the rank

is r D 2. The special solution toAx D 0 andU x D 0 is s D .�7; 2; 1/. Since
b D .1; 3; 6; 5/ is also the last column ofA, a particular solution toAx D b is
.0; 0; 1/ and the complete solution isx D .0; 0; 1/ C cs. (Or use the particular solution
xp D .7; �2; 0/ with free variablex3 D 0.)

For b D .1; 0; 0; 0/ elimination leads toU x D .1; �1; 0; 1/ and the fourth equa-
tion is0 D 1. No solution for thisb.

33 If the complete solution toAx D
�

1
3

�
is x D

�
1
0

�
C

�
0
c

�
thenA D

�
1 0
3 0

�
.

34 (a) If s D .2; 3; 1; 0/ is the only special solution toAx D 0, the complete solution is
x D cs (line of solution!). The rank ofA must be4 � 1 D 3.

(b) The fourth variablex4 is not freein s, andR must be

"
1 0 �2 0
0 1 �3 0
0 0 0 1

#
.

(c) Ax D b can be solve for allb, becauseA andR havefull row rank r D 3.

35 For the�1; 2; �1 matrix K(9 by 9) and constant right sideb D .10; � � � ; 10/, the
solutionx D K�1b D .45; 80; 105; 120; 125; 120; 105; 80; 45/ rises and falls along
the parabolaxi D 50i � 5i2. (A formula forK�1 is later in the text.)

36 If Ax D b andCx D b have the same solutions,A andC have the same shape and
the same nullspace (takeb D 0). If b D column1 of A, x D .1; 0; : : : ; 0/ solves
Ax Db so it solvesCx Db. ThenA andC share column1. Other columns too:ADC !

Problem Set 3.5, page 178

1

"
1 1 1
0 1 1
0 0 1

# "
c1

c2

c3

#
D 0 givesc3 D c2 D c1 D 0. So those 3 column vectors are

independent. But

"
1 1 1 2
0 1 1 3
0 0 1 4

#
Œ c � D

"
0
0
0

#
is solved byc D .1; 1; �4; 1/. Then

v1 C v2 � 4v3 C v4 D 0 (dependent).

2 v1; v2; v3 are independent (the�1’s are in different positions). All six vectors are on
the plane.1; 1; 1; 1/ � v D 0 so no four of these six vectors can be independent.co
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Solutions to Exercises 37

3 If a D 0 then column1 D 0; if d D 0 thenb.column1/ � a.column2/ D 0; if f D 0
then all columns end in zero (they are all in thexy plane, they must be dependent).

4 U x D
"

a b c
0 d e
0 0 f

# "
x
y
z

#
D

"
0
0
0

#
givesz D 0 theny D 0 thenx D 0. A square

triangular matrix has independent columns (invertible matrix)when its diagonal has no
zeros.

5 (a)

"
1 2 3
3 1 2
2 3 1

#
!

"
1 2 3
0 �5 �7
0 �1 �5

#
!

"
1 2 3
0 �5 �7
0 0 �18=5

#
: invertible) independent

columns.

(b)

"
1 2 �3

�3 1 2
2 �3 1

#
!

"
1 2 �3
0 7 �7
0 �7 7

#
!

"
1 2 �3
0 7 �7
0 0 0

#
I A

"
1
1
1

#
D

"
0
0
0

#
, columns

add to0.

6 Columns 1, 2, 4 are independent. Also 1, 3, 4 and 2, 3, 4 and others (but not 1, 2, 3).
Same column numbers (not same columns!) forA.

7 The sumv1 � v2 C v3 D 0 because.w2 � w3/ � .w1 � w3/ C .w1 � w2/ D 0. So the

difference aredependentand the difference matrix is singular:A D
"

0 1 �1
1 0 �1
1 �1 0

#
.

8 If c1.w2 Cw3/Cc2.w1 Cw3/Cc3.w1 Cw2/ D 0 then.c2 Cc3/w1 C .c1 Cc3/w2 C
.c1 C c2/w3 D 0. Since thew’s are independent,c2 C c3 D c1 C c3 D c1 C c2 D 0.
The only solution isc1 D c2 D c3 D 0. Only this combination ofv1; v2; v3 gives0.

9 (a) The four vectors inR3 are the columns of a 3 by 4 matrixA. There is a nonzero
solution toAx D 0 because there is at least one free variable (b) Two vectors are
dependent ifŒ v1 v2 � has rank 0 or 1. (OK to say “they are on the same line” or “one is
a multiple of the other” butnot “v2 is a multiple ofv1” —sincev1 might be0.) (c) A
nontrivial combination ofv1 and0 gives0: 0v1 C 3.0; 0; 0/ D 0.

10 The plane is the nullspace ofA D Œ 1 2 � 3 � 1 �. Three free variables give three
solutions.x; y; z; t / D .2; �1 � 0 � 0/ and.3; 0; 1; 0/ and.1; 0; 0; 1/. Combinations
of those special solutions give more solutions (all solutions).

11 (a) Line inR3 (b) Plane inR3 (c) All of R3 (d) All of R3.

12 b is in the column space whenAx D b has a solution;c is in the row space when
ATy D c has a solution.False. The zero vector is always in the row space.

13 The column space and row space ofA andU all have the same dimension =2. The row
spaces ofA andU are the same, because the rows ofU are combinations of the rows
of A (and vice versa!).

14 v D 1
2
.v C w/ C 1

2
.v � w/ andw D 1

2
.v C w/ � 1

2
.v � w/. The two pairsspanthe

same space. They are a basis whenv andw areindependent.

15 Then independent vectors span a space of dimensionn. They are abasisfor that space.
If they are the columns ofA thenm is not lessthann .m � n/.co
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38 Solutions to Exercises

16 These bases are not unique! (a).1; 1; 1; 1/ for the space of all constant vectors
.c; c; c; c/ (b) .1; �1; 0; 0/; .1; 0; �1; 0/; .1; 0; 0; �1/ for the space of vectors with
sum of components =0 (c) .1; �1; �1; 0/; .1; �1; 0; �1/ for the space perpendic-
ular to.1; 1; 0; 0/ and.1; 0; 1; 1/ (d) The columns ofI are a basis for its column
space, the empty set is a basis (by convention) forN .I / D {zero vector}.

17 The column space ofU D
�

1 0 1 0 1
0 1 0 1 0

�
is R2 so take any bases forR2; (row 1

and row2) or (row1 and row1 C row 2) and (row1 and� row 2) are bases for the row
spaces ofU .

18 (a) The 6 vectorsmight notspanR4 (b) The 6 vectorsare notindependent
(c) Any fourmight bea basis.

19 n-independent columns) rankn. Columns spanRm ) rankm. Columns are basis
for Rm ) rank D m D n. The rank counts the number ofindependentcolumns.

20 One basis is.2; 1; 0/, .�3; 0; 1/. A basis for the intersection with thexy plane is
.2; 1; 0/. The normal vector.1; �2; 3/ is a basis for the line perpendicular to the plane.

21 (a) The only solution toAx D 0 is x D 0 becausethe columns are independent
(b) Ax D b is solvable becausethe columns spanR5. Key point: A basis gives
exactly one solution for everyb.

22 (a) True (b) False because the basis vectors forR6 might not be inS.

23 Columns1 and2 are bases for the (different ) column spaces ofA andU ; rows1 and
2 are bases for the (equal) row spaces ofA andU ; .1; �1; 1/ is a basis for the (equal)
nullspaces.

24 (a) FalseA D Œ 1 1 � has dependent columns, independent row (b)Falsecolumn

space¤ row space forA D
�

0 1
0 0

�
(c) True: Both dimensionsD 2 if A is in-

vertible, dimensionsD 0 if A D 0, otherwise dimensionsD 1 (d) False, columns
may be dependent, in that case not a basis forC .A/.

25 A has rank2 if c D 0 andd D 2; B D
�

c d
d c

�
has rank2 except whenc D d or

c D �d .

26 (a)

"
1 0 0
0 0 0
0 0 0

#
;

"
0 0 0
0 1 0
0 0 0

#
;

"
0 0 0
0 0 0
0 0 1

#

(b) Add

"
0 1 0
1 0 0
0 0 0

#
;

"
0 0 1
0 0 0
1 0 0

#
,

"
0 0 0
0 0 1
0 1 0

#

(c)

"
0 1 0

�1 0 0
0 0 0

#
;

"
0 0 1
0 0 0

�1 0 0

#
;

"
0 0 0
0 0 1
0 �1 0

#
.

These are simple bases (among many others) for (a) diagonal matrices (b) symmetric
matrices (c) skew-symmetric matrices. The dimensions are3; 6; 3.co
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Solutions to Exercises 39

27 I ,

"
1 0 0
0 1 0
0 0 2

#
,

"
1 0 0
0 2 0
0 0 1

#
,

"
1 1 0
0 1 0
0 0 1

#
,

"
1 0 1
0 1 0
0 0 1

#
,

"
1 0 0
0 1 1
0 0 1

#
; echelon matri-

ces donot form a subspace; theyspan the upper triangular matrices (not everyU is
echelon).

28

�
1 0 0

�1 0 0

�
,

�
0 1 0
0 �1 0

�
,

�
0 0 1
0 0 �1

�
;

�
1 �1 0

�1 1 0

�
and

�
1 0 �1

�1 0 1

�
.

29 (a) The invertible matrices span the space of all3 by 3 matrices (b) The rank one
matrices also span the space of all3 by 3 matrices (c)I by itself spans the space of
all multiplescI .

30

�
�1 2 0

0 0 0

�
,

�
�1 0 2

0 0 0

�
,

�
0 0 0

�1 2 0

�
,

�
0 0 0

�1 0 2

�
.

31 (a) y.x/ D constantC (b) y.x/ D 3x this is one basis for the2 by 3 matrices with
.2; 1; 1/ in their nullspace (4-dim subspace). (c)y.x/ D 3x C C D yp C yn solves
dy=dx D 3.

32 y.0/ D 0 requiresA C B C C D 0. One basis is cosx � cos2x and cosx � cos3x.

33 (a) y.x/ D e2x is a basis for, all solutions toy 0 D 2y (b) y D x is a basis for all
solutions tody=dx D y=x (First-order linear equation) 1 basis function in solution
space).

34 y1.x/; y2.x/; y3.x/ can bex; 2x; 3x .dim1/ or x; 2x; x2 .dim2/ or x; x2; x3 .dim3/.

35 Basis1, x, x2, x3, for cubic polynomials; basisx � 1, x2 � 1, x3 � 1 for the subspace
with p.1/ D 0.

36 Basis forS: .1; 0; �1; 0/, .0; 1; 0; 0/, .1; 0; 0; �1/; basis forT: .1; �1; 0; 0/ and.0; 0; 2; 1/;
S\ T D multiples of.3; �3; 2; 1/ D nullspace for3 equation inR4 has dimension 1.

37 The subspace of matrices that haveAS D SA has dimensionthree.

38 (a) No,2 vectors don’t spanR3 (b) No, 4 vectors inR3 are dependent (c) Yes, a
basis (d) No, these three vectors are dependent

39 If the 5 by 5 matrix Œ A b � is invertible,b is not a combination of the columns ofA.
If Œ A b � is singular, and the4 columns ofA are independent,b is a combination of
those columns. In this caseAx D b has a solution.

40 (a) The functionsy D sinx, y D cosx, y D ex, y D e�x are a basis for solutions
to d4y=dx4 D y.x/.

(b) A particular solution tod4y=dx4 D y.x/ C 1 is y.x/ D �1. The complete
solution isy.x/ D �1 C c; sinx C c2 cosx C c3ex C c4e�x (or use another basis
for the nullspace of the4th derivative).

41 I D
"

1
1

1

#
�

"
1

1
1

#
C

"
1

1
1

#
C

"
1

1
1

#
�

"
1

1
1

#
.

The sixP ’s
are dependent.

Those five are independent: The4th hasP11 D 1 and cannot be a combination of the
others. Then the2nd cannot be (fromP32 D 1) and also5th (P32 D 1). Continuing,
a nonzero combination of all five could not be zero. Further challenge: How many
independent4 by 4 permutation matrices?co
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40 Solutions to Exercises

42 The dimension ofS spanned by all rearrangements ofx is (a) zero whenx D 0
(b) one whenx D .1; 1; 1; 1/ (c) three whenx D .1; 1; �1; �1/ because all rear-
rangements of thisx are perpendicular to.1; 1; 1; 1/ (d) four when thex’s are not
equal and don’t add to zero.No x givesdim S D 2. I owe this nice problem to Mike
Artin—the answers are the same in higher dimensions:0; 1; n � 1; n.

43 The problem is to show that theu’s, v’s, w’s together are independent. We know the
u’s andv’s together are a basis forV , and theu’s andw’s together are a basis forW .
Suppose a combination ofu’s, v’s, w’s gives0. To be proved: All coefficientsD zero.

Key idea: In that combination giving0, the partx from theu’s andv’s is in V . So the
part from thew’s is �x. This part is now inV and also inW . But if �x is in V \ W it
is a combination ofu’s only. Now the combination uses onlyu’s andv’s (independent
in V !) so all coefficients ofu’s andv’s must be zero. Thenx D 0 and the coefficients
of thew’s are also zero.

44 The inputs to anm by n matrix fill Rn. The outputs (column space!) have dimension
r . The nullspace hasn � r special solutions. The formula becomesr C .n � r/ D n.

45 If the left side of dim.V/ C dim.W/ D dim.V \ W/ C dim.V C W/ is greater thann,
then dim.V \ W/ must be greater than zero. SoV \ W contains nonzero vectors.

46 If A2 D zero matrix, this says that each column ofA is in the nullspace ofA. If the
column space has dimensionr , the nullspace has dimension10 � r , and we must have
r � 10 � r andr � 5.

Problem Set 3.6, page 190

1 (a) Row and column space dimensionsD 5, nullspace dimensionD 4, dim.N .AT//
D 2 sumD 16 D m C n (b) Column space isR3; left nullspace contains only0.

2 A: Row space basisD row 1 D .1; 2; 4/; nullspace.�2; 1; 0/ and.�4; 0; 1/; column
space basisD column1 D .1; 2/; left nullspace.�2; 1/. B: Row space basisD
both rowsD .1; 2; 4/ and.2; 5; 8/; column space basisD two columnsD .1; 2/ and
.2; 5/; nullspace.�4; 0; 1/; left nullspace basis is empty because the space contains
only y D 0.

3 Row space basisD rows ofU D .0; 1; 2; 3; 4/ and.0; 0; 0; 1; 2/; column space basisD
pivot columns (ofA notU ) D .1; 1; 0/ and .3; 4; 1/; nullspace basis.1; 0; 0; 0; 0/,
.0; 2; �1; 0; 0/, .0; 2; 0; �2; 1/; left nullspace.1; �1; 1/ D last row ofE�1!

4 (a)

"
1 0
1 0
0 1

#
(b) Impossible:rC.n�r/ must be 3 (c)Œ 1 1 � (d)

�
�9 �3

3 1

�

(e) ImpossibleRow spaceD column space requiresm D n. Thenm � r D n � r ;
nullspaces have the same dimension. Section 4.1 will proveN .A/ and N .AT/
orthogonal to the row and column spaces respectively—here those are the same space.

5 A D
�

1 1 1
2 1 0

�
has those rows spanning its row spaceB D

�
1 �2 1

�
has the

same rows spanning its nullspace andBAT D 0.
6 A: dim 2; 2; 2; 1: Rows .0; 3; 3; 3/ and .0; 1; 0; 1/; columns.3; 0; 1/ and .3; 0; 0/;

nullspace.1; 0; 0; 0/ and .0; �1; 0; 1/; N .AT/ .0; 1; 0/. B: dim 1; 1; 0; 2 Row space
(1), column space.1; 4; 5/, nullspace: empty basis,N .AT/ .�4; 1; 0/ and.�5; 0; 1/.co
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Solutions to Exercises 41

7 Invertible3 by 3 matrixA: row space basisD column space basisD .1; 0; 0/, .0; 1; 0/,
.0; 0; 1/; nullspace basis and left nullspace basis areempty. Matrix B D

�
A A

�
: row

space basis.1; 0; 0; 1; 0; 0/, .0; 1; 0; 0; 1; 0/ and .0; 0; 1; 0; 0; 1/; column space basis
.1; 0; 0/, .0; 1; 0/, .0; 0; 1/; nullspace basis.�1; 0; 0; 1; 0; 0/ and.0; �1; 0; 0; 1; 0/ and
.0; 0; �1; 0; 0; 1/; left nullspace basis is empty.

8
�
I 0

�
and

�
I I I 0 0

�
and

�
0

�
D 3 by 2 haverow space dimensionsD 3; 3; 0 D

column space dimensions;nullspace dimensions2; 3; 2; left nullspace dimensions0; 2; 3.

9 (a) Same row space and nullspace. So rank (dimension of row space) is the same
(b) Same column space and left nullspace. Same rank (dimension of column space).

10 Forrand .3/, almost surely rankD 3, nullspace and left nullspace contain only.0; 0; 0/.
For rand .3; 5/ the rank is almost surely3 and the dimension of the nullspace is2.

11 (a) No solution means thatr < m. Always r � n. Can’t comparem andn here.
(b) Sincem � r > 0, the left nullspace must contain a nonzero vector.

12 A neat choice is

"
1 1
0 2
1 0

# �
1 0 1
1 2 0

�
D

"
2 2 1
2 4 0
1 0 1

#
; r C .n � r/ D n D 3 does

not match2 C 2 D 4. Only v D 0 is in bothN .A/ andC .AT/.

13 (a) False: Usually row space¤ column space (same dimension!) (b)True: A and�A
have the same four subspaces (c)False(chooseA andB same size and invertible: then
they have the same four subspaces)

14 Row space basis can be the nonzero rows ofU : .1; 2; 3; 4/, .0; 1; 2; 3/, .0; 0; 1; 2/;
nullspace basis.0; 1; �2; 1/ as forU ; column space basis.1; 0; 0/, .0; 1; 0/, .0; 0; 1/
(happen to haveC.A/ D C.U / D R3); left nullspace has empty basis.

15 After a row exchange, the row space and nullspace stay the same;.2; 1; 3; 4/ is in the
new left nullspace after the row exchange.

16 If Av D 0 andv is a row ofA thenv � v D 0.

17 Row spaceD yz plane; column spaceD xy plane; nullspaceD x axis; left nullspace
D z axis. ForI C A: Row spaceD column spaceD R3, both nullspaces contain only
the zero vector.

18 Row3�2 row 2C row 1 D zero row so the vectorsc.1; �2; 1/ are in the left nullspace.
The same vectors happen to be in the nullspace (an accident for this matrix).

19 (a) Elimination onAx D 0 leads to0 D b3 � b2 � b1 so .�1; �1; 1/ is in the left
nullspace. (b)4 by 3: Elimination leads tob3 � 2b1 D 0 andb4 C b2 � 4b1 D 0, so
.�2; 0; 1; 0/ and.�4; 1; 0; 1/ are in the left nullspace.Why? Those vectors multiply the
matrix to givezero rows. Section 4.1 will show another approach:Ax D b is solvable
(b is in C .A/) whenb is orthogonal to the left nullspace.

20 (a) Special solutions.�1; 2; 0; 0/ and.�1
4
; 0; �3; 1/ are perpendicular to the rows of

R (and thenER). (b) ATy D 0 has1 independent solutionD last row of E�1.
(E�1A D R has a zero row, which is just the transpose ofATy D 0).

21 (a) u andw (b) v andz (c) rank< 2 if u andw are dependent or ifv andz
are dependent (d) The rank ofuvT C wzT is 2.

22 A D
�
u w

� �
vT zT

�
D

"
1 2
2 2
4 1

# �
1 0
1 1

�
D

"
3 2
4 2
5 1

#
has column space spanned
by u andw, row space
spanned byv andz:co
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42 Solutions to Exercises

23 As in Problem 22: Row space basis.3; 0; 3/; .1; 1; 2/; column space basis.1; 4; 2/,
.2; 5; 7/; the rank of (3 by 2) times (2 by 3) cannot be larger than the rank of either
factor, so rank� 2 and the 3 by 3 product is not invertible.

24 ATy D d putsd in therow spaceof A; unique solution if theleft nullspace(nullspace
of AT) contains onlyy D 0.

25 (a) True(A andAT have the same rank) (b)FalseA D Œ 1 0 � andAT have very
different left nullspaces (c)False (A can be invertible and unsymmetric even if
C .A/ D C .AT/) (d) True (The subspaces forA and�A are always the same. If
AT D A or AT D �A they are also the same forAT)

26 The rows ofC D AB are combinations of the rows ofB. So rankC � rankB. Also
rankC � rankA, because the columns ofC are combinations of the columns ofA.

27 Choosed D bc=a to make
�

a b
c d

�
a rank-1 matrix. Then the row space has basis.a; b/

and the nullspace has basis.�b; a/. Those two vectors are perpendicular !

28 B andC (checkers and chess) both have rank 2 ifp ¤ 0. Row 1 and 2 are a basis for the
row space ofC , BTy D 0 has 6 special solutions with�1 and 1 separated by a zero;
N.C T/ has.�1; 0; 0; 0; 0; 0; 0; 1/ and .0; �1; 0; 0; 0; 0; 1; 0/ and columns3; 4; 5; 6 of
I ; N.C/ is a challenge.

29 a11 D 1; a12 D 0; a13 D 1; a22 D 0; a32 D 1; a31 D 0; a23 D 1; a33 D 0; a21 D 1.

30 The subspaces forA D uvT are pairs of orthogonal lines (v and v?, u and u?).
If B has those same four subspaces thenB D cA with c ¤ 0.

31 (a) AX D 0 if each column ofX is a multiple of.1; 1; 1/; dim.nullspace/ D 3.
(b) If AX D B then all columns ofB add to zero; dimension of theB ’s D 6.
(c) 3 C 6 D dim.M 3�3/ D 9 entries in a3 by 3 matrix.

32 The key is equal row spaces. First row ofA D combination of the rows ofB: only
possible combination (noticeI ) is 1 (row 1 ofB). Same for each row soF D G.

Problem Set 4.1, page 202

1 Both nullspace vectors are orthogonal to the row space vector inR3. The column space
is perpendicular to the nullspace ofAT (two lines inR2 because rankD 1).

2 The nullspace of a 3 by 2 matrix with rank 2 isZ (only zero vector) soxn D 0, and
row spaceD R2. Column spaceD plane perpendicular to left nullspaceD line in R3.

3 (a)

"
1 2 �3
2 �3 1

�3 5 �2

#
(b) Impossible,

"
2

�3
5

#
not orthogonal to

"
1
1
1

#
(c)

"
1
1
1

#
and

"
1
0
0

#
in

C .A/ andN .AT/ is impossible: not perpendicular (d) NeedA2 D 0; takeA D
�

1 �1
1 �1

�

(e) .1; 1; 1/ in the nullspace (columns add to0) and also row space; no such matrix.

4 If AB D 0, the columns ofB are in thenullspaceof A. The rows ofA are in theleft
nullspaceof B. If rank D 2, those four subspaces would have dimension2 which is
impossible for3 by 3.

5 (a) If Ax D b has a solution andATy D 0, theny is perpendicular tob. bTy D
.Ax/Ty D xT.ATy/ D 0. (b) If ATy D .1; 1; 1/ has a solution,.1; 1; 1/ is in the
row spaceand is orthogonal to everyx in the nullspace.co
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Solutions to Exercises 43

6 Multiply the equations byy1; y2; y3 D 1; 1; �1. Equations add to0 D 1 so no solution:
y D .1; 1; �1/ is in the left nullspace.Ax D b would need0 D .yTA/x D yTb D 1.

7 Multiply the 3 equations byy D .1; 1; �1/. Thenx1 � x2 D 1 plusx2 � x3 D 1 minus
x1 � x3 D 1 is 0 D 1. Key point: Thisy in N .AT/ is not orthogonal tob D .1; 1; 1/
sob is not in the column space andAx D b hasno solution.

8 x D xr C xn, wherexr is in the row space andxn is in the nullspace. ThenAxn D 0
andAx D Axr C Axn D Axr . All Ax are inC .A/.

9 Ax is always in thecolumn spaceof A. If ATAx D 0 thenAx is also in the nullspace
of AT. SoAx is perpendicular to itself. Conclusion:Ax D 0 if ATAx D 0.

10 (a) WithAT D A, the column and row spaces are the same (b)x is in the nullspace
andz is in the column space = row space: so these “eigenvectors” havexTz D 0.

11 For A: The nullspace is spanned by.�2; 1/, the row space is spanned by.1; 2/. The
column space is the line through.1; 3/ andN .AT/ is the perpendicular line through
.3; �1/. For B: The nullspace ofB is spanned by.0; 1/, the row space is spanned by
.1; 0/. The column space and left nullspace are the same as forA.

12 x splits intoxr C xn D .1; �1/ C .1; 1/ D .2; 0/. NoticeN .AT/ is a plane.1; 0/ D
.1; 1/=2 C .1; �1/=2 D xr C xn.

13 V TW D zero makes each basis vector forV orthogonal to each basis vector forW .
Then everyv in V is orthogonal to everyw in W (combinations of the basis vectors).

14 Ax D Bbx means thatŒ A B �

�
x

�bx

�
D 0. Three homogeneous equations in four

unknowns always have a nonzero solution. Herex D .3; 1/ andbx D .1; 0/ and
Ax D Bbx D .5; 6; 5/ is in both column spaces. Two planes inR3 must share a line.

15 A p-dimensional and aq-dimensional subspace ofRn share at least a line ifp C q > n.
(Thep C q basis vectors ofV andW cannot be independent.)

16 ATy D 0 leads to.Ax/Ty D xTATy D 0. Theny ? Ax andN .AT/ ? C .A/.

17 If S is the subspace ofR3 containing only the zero vector, thenS ? is R3. If S is
spanned by.1; 1; 1/, thenS ? is the plane spanned by.1; �1; 0/ and.1; 0; �1/. If S is
spanned by.2; 0; 0/ and.0; 0; 3/, thenS ? is the line spanned by.0; 1; 0/.

18 S ? is the nullspace ofA D
�

1 5 1
2 2 2

�
. ThereforeS ? is asubspaceeven ifS is not.

19 L? is the2-dimensional subspace(a plane) in R3 perpendicular toL. Then.L?/? is
a 1-dimensional subspace(a line) perpendicular toL?. In fact .L?/? is L.

20 If V is the whole spaceR4, thenV ? contains only thezero vector. Then.V ?/? D
R4 D V .

21 For example.�5; 0; 1; 1/ and.0; 1; �1; 0/ spanS ? Dnullspace ofAD
�

1 2 2 3
1 3 3 2

�
.

22 .1; 1; 1; 1/ is a basis forP?. A D
�
1 1 1 1

�
hasP as its nullspace andP? as

row space.

23 x in V ? is perpendicular to any vector inV . SinceV contains all the vectors inS ,
x is also perpendicular to any vector inS . So everyx in V ? is also inS ?.co
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44 Solutions to Exercises

24 AA�1 D I : Column1 of A�1 is orthogonal to the space spanned by the 2nd, 3rd,: : :,
nth rows ofA.

25 If the columns of A are unit vectors, all mutually perpendicular, thenATA D I .

26 A D
"

2 2 �1
�1 2 2

2 �1 2

#
,

This example shows a matrix with perpendicular columns.
ATA D 9I is diagonal: .ATA/ij D .columni of A/ � .columnj of A/.
When the columns areunit vectors, thenATA D I .

27 The lines3x C y D b1 and6x C 2y D b2 areparallel. They are the same line if
b2 D 2b1. In that case.b1; b2/ is perpendicular to.�2; 1/. The nullspace of the 2 by 2
matrix is the line3x C y D 0. One particular vector in the nullspace is.�1; 3/.

28 (a) .1; �1; 0/ is in both planes. Normal vectors are perpendicular, but planes still in-
tersect! (b) Needthreeorthogonal vectors to span the whole orthogonal complement.
(c) Lines can meet at the zero vector without being orthogonal.

29 A D
"

1 2 3
2 1 0
3 0 1

#
; B D

"
1 1 �1
2 �1 0
3 0 �1

#
;

A hasv D .1; 2; 3/ in row space and column space
B hasv in its column space and nullspace.
v can notbe in the nullspace and row space, or in

the left nullspace and column space. These spaces are orthogonal andvTv ¤ 0.

30 WhenAB D 0, the column space ofB is contained in the nullspace ofA. Therefore
the dimension ofC .B/ � dimension ofN .A/. This means rank.B/ � 4 � rank.A/.

31 null.N 0/ produces a basis for therow spaceof A (perpendicular toN.A/).

32 We needrTn D 0 andcT` D 0. All possible examples have the formacrT with a ¤ 0.

33 Bothr ’s orthogonal to bothn’s, bothc’s orthogonal to both̀ ’s, each pair independent.
All A’s with these subspaces have the formŒc1 c2�M Œr1 r2�T for a2 by 2 invertibleM .

Problem Set 4.2, page 214

1 (a) aTb=aTaD5=3; p D5a=3; e D.�2; 1; 1/=3 (b) aTb=aTaD�1; p Da; e D0.

2 (a) The projection ofb D .cos�; sin�/ onto a D .1; 0/ is p D .cos�; 0/
(b) The projection ofb D .1; 1/ ontoa D .1; �1/ is p D .0; 0/ sinceaTb D 0.

3 P1 D 1

3

"
1 1 1
1 1 1
1 1 1

#
andP1b D 1

3

"
5
5
5

#
. P2 D 1

11

"
1 3 1
3 9 3
1 3 1

#
andP2b D

"
1
3
1

#
.

4 P1 D
�

1 0
0 0

�
, P2 D 1

2

�
1 �1

�1 1

�
.
P1 projects onto.1; 0/, P2 projects onto.1; �1/
P1P2 ¤ 0 andP1 C P2 is not a projection matrix.

5 P1 D 1

9

"
1 �2 �2

�2 4 4
�2 4 4

#
, P2 D 1

9

"
4 4 �2
4 4 �2

�2 �2 1

#
. P1 andP2 are the projection

matrices onto the lines througha1 D .�1; 2; 2/ anda2 D .2; 2; �1/ P1P2 D zero
matrix becausea1 ? a2.

XXX Above solution does not fit in 3 lines.

6 p1 D.1
9
; �2

9
; �2

9
/ andp2 D.4

9
; 4

9
; �2

9
/ andp3 D .4

9
; �2

9
; 4

9
/. Sop1 C p2 C p3 D b.co
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Solutions to Exercises 45

7 P1 C P2 C P3 D 1

9

"
1 �2 �2

�2 4 4
�2 4 4

#
C 1

9

"
4 4 �2
4 4 �2

�2 �2 1

#
C 1

9

"
4 �2 4

�2 1 �2
4 �2 4

#
D I .

Wecanadd projections ontoorthogonal vectors. This is important.

8 The projections of.1; 1/ onto .1; 0/ and.1; 2/ arep1 D .1; 0/ andp2 D .0:6; 1:2/.
Thenp1 C p2 ¤ b.

9 SinceA is invertible,P D A.ATA/�1AT DAA�1.AT/�1AT DI : project on all ofR2.

10 P2 D
�

0:2 0:4
0:4 0:8

�
,P2a1 D

�
0:2
0:4

�
,P1 D

�
1 0
0 0

�
,P1P2a1 D

�
0:2
0

�
.

This is nota1 D .1; 0/
No, P1P2 ¤ .P1P2/2.

11 (a) p DA.ATA/�1ATbD.2; 3; 0/, e D.0; 0; 4/, ATe D0 (b) p D.4; 4; 6/, e D0.

12 P1 D
"

1 0 0
0 1 0
0 0 0

#
D projection matrix onto the column space ofA (the xy plane)

P2 D
"

0:5 0:5 0
0:5 0:5 0
0 0 1

#
=

Projection matrix onto the second column space.
Certainly.P2/2 D P2.

13 A D

2
64

1 0 0
0 1 0
0 0 1
0 0 0

3
75, P D square matrixD

2
64

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

3
75, p D P

2
64

1
2
3
4

3
75 D

2
64

1
2
3
0

3
75.

14 The projection of thisb onto the column space ofA is b itself whenb is in that space.

But P is not necessarilyI . P D 1

21

"
5 8 �4
8 17 2

�4 2 20

#
andb D P b D p D

"
0
2
4

#
.

15 2A has the same column space asA. bx for 2A is half of bx for A.

16 1
2
.1; 2; �1/ C 3

2
.1; 0; 1/ D .2; 1; 1/. Sob is in the plane. Projection showsP b D b.

17 If P 2 D P then.I � P/2 D .I � P /.I � P / D I � PI � IP C P 2 D I � P . When
P projects onto the column space,I � P projects onto theleft nullspace.

18 (a) I � P is the projection matrix onto.1; �1/ in the perpendicular direction to.1; 1/
(b) I � P projects onto the planex C y C z D 0 perpendicular to.1; 1; 1/.

19
For any basis vectors in the planex � y � 2z D 0,
say.1; 1; 0/ and.2; 0; 1/, the matrixP is

"
5=6 1=6 1=3
1=6 5=6 �1=3
1=3 �1=3 1=3

#
.

20 e D
"

1
�1
�2

#
, Q D eeT

eTe D
"

1=6 �1=6 �1=3
�1=6 1=6 1=3
�1=3 1=3 2=3

#
, I � Q D

"
5=6 1=6 1=3
1=6 5=6 �1=3
1=3 �1=3 1=3

#
.

21
�
A.ATA/�1AT

�2 D A.ATA/�1.ATA/.ATA/�1AT D A.ATA/�1AT. So P 2 D P .
P b is in the column space (whereP projects). Then its projectionP.P b/ is P b.

22 P T D.A.ATA/�1AT/T DA..ATA/�1/TAT DA.ATA/�1AT DP . (ATA is symmetric!)

23 If A is invertible then its column space is all ofRn. SoP D I ande D 0.

24 The nullspace ofAT is orthogonalto the column spaceC .A/. So if ATb D 0, the pro-
jection ofb ontoC .A/ should bep D 0. CheckP b D A.ATA/�1ATb D A.ATA/�10.co
nt
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46 Solutions to Exercises

25 The column space ofP will be S . Thenr D dimension ofS D n.

26 A�1 exists since the rank isr D m. Multiply A2 D A by A�1 to getA D I .

27 If ATAx D 0 thenAx is in the nullspace ofAT. But Ax is always in the column space
of A. To be in both of those perpendicular spaces,Ax must be zero. SoA andATA
have thesame nullspace.

28 P 2 D P D P T give P TP D P . Then the.2; 2/ entry ofP equals the.2; 2/ entry of
P TP which is the length squared of column 2.

29 A D BT has independent columns, soATA (which isBBT) must be invertible.

30 (a) The column space is the line througha D
�

3
4

�
soPC D aaT

aTa
D 1

25

�
9 12
12 25

�
.

(b) The row space is the line throughv D .1; 2; 2/ and PR D vvT=vTv. Always
PC A D A (columns ofA project to themselves) andAPR D A. ThenPC APR D A !

31 The errore D b � p must be perpendicular to all thea’s.

32 SinceP1b is in C .A/; P2.P1b/ equalsP1b. So P2P1 D P1 D aaT=aTa where
a D .1; 2; 0/.

33 If P1P2 D P2P1 thenS is contained inT or T is contained inS .

34 BBT is invertible as in Problem29. Then.ATA/.BBT/ D product ofr by r invertible
matrices, so rankr . AB can’t have rank< r , sinceAT andBT cannot increase the rank.
Conclusion: A (m by r of rankr) timesB (r by n of rankr) producesAB of rankr .

Problem Set 4.3, page 226

1 A D

2
64

1 0
1 1
1 3
1 4

3
75 andb D

2
64

0
8
8
20

3
75 giveATA D

�
4 8
8 26

�
andATb D

�
36
112

�
.

ATAbx D ATb givesbx D
�

1
4

�
andp D Abx D

2
64

1
5
13
17

3
75 ande D b � p D

E D kek2 D 44

2
64

�1
3

�5
3

3
75

2

2
64

1 0
1 1
1 3
1 4

3
75

�
C
D

�
D

2
64

0
8
8

20

3
75.

ThisAx D b is unsolvable
Changeb to p D P b D

2
64

1
5

13
17

3
75; bx D

�
1
4

�
exactly solves

Abx D p.

3 In Problem 2,p D A.ATA/�1ATb D .1; 5; 13; 17/ ande D b � p D .�1; 3; �5; 3/.
e is perpendicular to both columns ofA. This shortest distancekek is

p
44.

4 E D .C C 0D/2 C .C C 1D � 8/2 C .C C 3D � 8/2 C .C C 4D � 20/2. Then
@E=@C D 2C C 2.C C D � 8/ C 2.C C 3D � 8/ C 2.C C 4D � 20/ D 0 and
@E=@D D 1 � 2.C C D � 8/ C 3 � 2.C C 3D � 8/ C 4 � 2.C C 4D � 20/ D 0. These

normal equations are again
�

4 8
8 26

� �
C
D

�
D

�
36

112

�
.co
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Solutions to Exercises 47

5 E D .C �0/2 C.C �8/2 C.C �8/2 C.C �20/2. AT D Œ 1 1 1 1 � andATA D Œ 4 �.
ATb D Œ 36 � and.ATA/�1ATb D 9 D best heightC . Errorse D .�9; �1; �1; 11/.

6 a D .1; 1; 1; 1/ andb D .0; 8; 8; 20/ give bx D aTb=aTa D 9 and the projection is
bxa D p D .9; 9; 9; 9/. TheneTa D .�9; �1; �1; 11/T.1; 1; 1; 1/ D 0 andkek Dp

204.

7 A D Œ 0 1 3 4 �T, ATA D Œ 26 � andATb D Œ 112 �. BestD D 112=26 D 56=13.

8 bx D 56=13, p D .56=13/.0; 1; 3; 4/. .C; D/ D .9; 56=13/ don’t match.C; D/ D .1; 4/.
Columns ofA were not perpendicular so we can’t project separately to findC andD.

9
Parabola
Projectb
4D to 3D

2
64

1 0 0
1 1 1
1 3 9
1 4 16

3
75

"
C
D
E

#
D

2
64

0
8
8

20

3
75. ATAbx D

"
4 8 26
8 26 92

26 92 338

# "
C
D
E

#
D

"
36

112
400

#
.

10

2
64

1 0 0 0
1 1 1 1
1 3 9 27
1 4 16 64

3
75

2
64

C
D
E
F

3
75D

2
64

0
8
8

20

3
75. Then

2
64

C
D
E
F

3
75D1

3

2
64

0
47

�28
5

3
75.

Exact cubic sop D b, e D 0.
This Vandermonde matrix
gives exact interpolation
by a cubic at0; 1; 3; 4

11 (a) The best linex D 1 C 4t gives the center pointbb D 9 whenbt D 2.
(b) The first equationCm C D

P
ti D

P
bi divided bym givesC C Dbt D bb.

12 (a) a D .1; : : : ; 1/ hasaTa D m, aTb D b1 C � � � C bm. Thereforebx D aTb=m is the
meanof theb’s (b) e D b �bxa b D .1; 2; b/ kek2 D

Pm
iD1.bi �bx/2 D variance

(c)
p D .3; 3; 3/
e D .�2; �1; 3/

pTe D 0. P D 1

3

"
1 1 1
1 1 1
1 1 1

#
.

13 .ATA/�1AT.b � Ax/ D bx � x. Whene D b � Ax averages to0, so doesbx � x.

14 The matrix.bx � x/.bx � x/T is .ATA/�1AT.b � Ax/.b � Ax/TA.ATA/�1. When the
average of.b � Ax/.b � Ax/T is �2I , the average of.bx � x/.bx � x/T will be the
output covariance matrix.ATA/�1AT�2A.ATA/�1 which simplifies to�2.ATA/�1.

15 When A has 1 column of ones, Problem14 gives the expected error.bx � x/2 as
�2.ATA/�1 D �2=m. By taking m measurements, the variance drops from�2 to
�2=m.

16
1

10
b10 C 9

10
bx9 D 1

10
.b1 C � � � C b10/. Knowingbx9 avoids adding allb’s.

17

"
1 �1
1 1
1 2

# �
C
D

�
D

"
7
7

21

#
. The solutionbx D

�
9
4

�
comes from

�
3 2
2 6

� �
C
D

�
D

�
35
42

�
.

18 p D Abx D .5; 13; 17/ gives the heights of the closest line. The error isb � p D
.2; �6; 4/. This errore hasP e D P b � P p D p � p D 0.

19 If b D errore thenb is perpendicular to the column space ofA. Projectionp D 0.

20 If b D Abx D .5; 13; 17/ thenbx D .9; 4/ ande D 0 sinceb is in the column space
of A.

21 e is in N.AT/; p is in C.A/; bx is in C.AT/; N.A/ D f0g D zero vector only.co
nt
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48 Solutions to Exercises

22 The least squares equation is

�
5 0
0 10

� �
C
D

�
D

�
5

�10

�
. Solution: C D 1, D D �1.

Line 1 � t . Symmetrict ’s ) diagonalATA

23 e is orthogonal top; thenkek2 D eT.b � p/ D eTb D bTb � bTp.

24 The derivatives ofkAx � bk2 D xTATAx � 2bTAx C bTb (this term is constant) are
zero when2ATAx D 2ATb, or x D .ATA/�1ATb.

25 3 points on a line:Equal slopes.b2�b1/=.t2�t1/ D .b3�b2/=.t3�t2/. Linear algebra:
Orthogonal to.1; 1; 1/ and.t1; t2; t3/ is y D .t2�t3; t3�t1; t1�t2/ in the left nullspace.
b is in the column space. ThenyTb D 0 is the same equal slopes condition written as
.b2 � b1/.t3 � t2/ D .b3 � b2/.t2 � t1/.

26

2
64

1 1 0
1 0 1
1 �1 0
1 0 �1

3
75

"
C
D
E

#
D

2
64

0
1
3
4

3
75 hasATA D

"
4 0 0
0 2 0
0 0 2

#
; ATb D

"
8

�2
�3

#
;

"
C
D
E

#
D

"
2

�1
�3=2

#
. At x; y D 0; 0 the best plane2 � x � 3

2
y has heightC D 2 D average of

0; 1; 3; 4.

27 The shortest link connecting two lines in space isperpendicular to those lines.

28 Only 1 plane contains0; a1; a2 unlessa1; a2 aredependent. Same test fora1; : : : ; an.

29 There is exactly one hyperplane containing then points0; a1; : : : ; an�1 When then�1
vectorsa1; : : : ; an�1 are linearly independent. (Forn D 3, the vectorsa1 anda2 must
be independent. Then the three points0; a1; a2 determine a plane.) The equation of the
plane inRn will be aT

nx D 0. Herean is any nonzero vector on the line (it is only a
line!) perpendicular toa1; : : : ; an�1.

Problem Set 4.4, page 239

1 (a) Independent(b) Independentand orthogonal(c) Independentand orthonormal.
For orthonormal vectors, (a) becomes.1; 0/, .0; 1/ and (b) is.:6; :8/, .:8; �:6/.

2
Divide by length 3 to get
q1 D .2

3
; 2

3
; �1

3
/. q2 D .�1

3
; 2

3
; 2

3
/:

QTQ D
�

1 0
0 1

�
butQQT D

"
5=9 2=9 �4=9
2=9 8=9 2=9

�4=9 2=9 5=9

#
.

3 (a) ATA will be 16I (b) ATA will be diagonal with entries 1, 4, 9.

4 (a) Q D
"

1 0
0 1
0 0

#
, QQT D

"
1 0 0
0 1 0
0 0 0

#
¤ I . Any Q with n < m hasQQT ¤

I . (b) .1; 0/ and.0; 0/ areorthogonal, not independent. Nonzero orthogonal vec-
tors are independent. (c) Starting fromq1 D .1; 1; 1/=

p
3 my favorite isq2 D

.1; �1; 0/=
p

2 andq3 D .1; 1; �2/=
p

b.

5 Orthogonal vectors are.1; �1; 0/ and .1; 1; �1/. Orthonormal are . 1p
2
; � 1p

2
; 0/,

. 1p
3
; 1p

3
; � 1p

3
/.co
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Solutions to Exercises 49

6 Q1Q2 is orthogonal because.Q1Q2/TQ1Q2 D QT
2QT

1Q1Q2 D QT
2Q2 D I .

7 When Gram-Schmidt givesQ with orthonormal columns,QTQbx D QTb becomes
bx D QTb.

8 If q1 andq2 areorthonormalvectors inR5 then.qT
1b/q1 C .qT

2b/q2 is closest tob.

9 (a) Q D
"

:8 �:6
:6 :8
0 0

#
hasP D QQT D

"
1 0 0
0 1 0
0 0 0

#
(b) .QQT/.QQT/ D

Q.QTQ/QT D QQT.

10 (a) If q1, q2, q3 areorthonormalthen the dot product ofq1 with c1q1Cc2q2Cc3q3 D
0 gives c1 D 0. Similarly c2 D c3 D 0. Independentq’s (b) Qx D 0 )
QTQx D 0 ) x D 0.

11 (a) Twoorthonormalvectors areq1 D 1
10

.1; 3; 4; 5; 7/ andq2 D 1
10

.�7; 3; 4; �5; 1/

(b) Closest in the plane:projectQQT.1; 0; 0; 0; 0/ D .0:5; �0:18; �0:24; 0:4; 0/.

12 (a) Orthonormala’s: aT
1b D aT

1.x1a1 C x2a2 C x3a3/ D x1.aT
1a1/ D x1

(b) Orthogonala’s: aT
1b D aT

1.x1a1 C x2a2 C x3a3/ D x1.aT
1a1/. Thereforex1 D

aT
1b=aT

1a1

(c) x1 is the first component ofA�1 timesb.

13 The multiple to subtract isa
Tb

aTa . ThenB D b � aTb
aTaa D .4; 0/ � 2 � .1; 1/ D .2; �2/.

14

�
1 4
1 0

�
D

�
q1 q2

� �
kak qT

1b
0 kBk

�
D

�
1=

p
2 1=

p
2

1=
p

2 �1=
p

2

� �p
2 2

p
2

0 2
p

2

�
D QR.

15 (a) q1 D 1
3
.1; 2; �2/, q2 D 1

3
.2; 1; 2/, q3 D 1

3
.2; �2; �1/ (b) The nullspace

of AT containsq3 (c) bx D .ATA/�1AT.1; 2; 7/ D .1; 2/.

16 The projectionp D .aTb=aTa/a D 14a=49 D 2a=7 is closest tob; q1 D a=kak D
a=7 is .4; 5; 2; 2/=7. B D b � p D .�1; 4; �4; �4/=7 haskBk D 1 soq2 D B.

17 p D .aTb=aTa/a D .3; 3; 3/ and e D .�2; 0; 2/. q1 D .1; 1; 1/=
p

3 and q2 D
.�1; 0; 1/=

p
2.

18 A D a D .1; �1; 0; 0/I B D b�p D .1
2
; 1

2
; �1; 0/I C D c�pA�pB D .1

3
; 1

3
; 1

3
; �1/.

Notice the pattern in those orthogonalA; B; C . In R5, D would be.1
4
; 1

4
; 1

4
; 1

4
; �1/.

19 If A D QR thenATA D RTQTQR D RTR D lower triangular timesuppertriangular
(this Cholesky factorization ofATA uses the sameR as Gram-Schmidt!). The example

hasA D
"�1 1

2 1
2 4

#
D 1

3

"�1 2
2 �1
2 2

# �
3 3
0 3

�
D QR and the sameR appears in

ATA D
�

9 9
9 18

�
D

�
3 0
3 3

� �
3 3
0 3

�
D RTR.

20 (a) True (b) True. Qx D x1q1 C x2q2. kQxk2 D x2
1 C x2

2 becauseq1 � q2 D 0.

21 The orthonormal vectors areq1 D .1; 1; 1; 1/=2 andq2 D .�5; �1; 1; 5/=
p

52. Then
b D .�4; �3; 3; 0/ projects top D .�7; �3; �1; 3/=2. Andb�p D .�1; �3; 7; �3/=2
is orthogonal to bothq1 andq2.

22 A D .1; 1; 2/, B D .1; �1; 0/, C D .�1; �1; 1/. These are not yet unit vectors.co
nt
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50 Solutions to Exercises

23 You can see whyq1 D
"

1
0
0

#
, q2 D

"
0
0
1

#
, q3 D

"
0
1
0

#
. A D

"
1 0 0
0 0 1
0 1 0

# "
1 2 4
0 3 6
0 0 5

#
D

QR.

24 (a) One basis for the subspaceS of solutions tox1 C x2 C x3 � x4 D 0 is v1 D
.1; �1; 0; 0/, v2 D .1; 0; �1; 0/, v3 D .1; 0; 0; 1/ (b) SinceS contains solutions to
.1; 1; 1; �1/Tx D 0, a basis forS ? is .1; 1; 1; �1/ (c) Split .1; 1; 1; 1/ D b1 C b2

by projection onS ? andS : b2 D .1
2
; 1

2
; 1

2
; �1

2
/ andb1 D .1

2
; 1

2
; 1

2
; 3

2
/.

25 This question shows2 by 2 formulas forQR; breakdownR22 D 0 whenA is sin-

gular.

�
2 1
1 1

�
D 1p

5

�
2 �1
1 2

�
� 1p

5

�
5 3
0 1

�
. Singular

�
1 1
1 1

�
D 1p

2

�
1 �1
1 1

�
�

1p
2

�
2 2
0 0

�
. The Gram-Schmidt process breaks down whenad � bc D 0.

26 .qT
2C �/q2 D B

T
c

B
T
B

B becauseq2 D B
kBk and the extraq1 in C � is orthogonal toq2.

27 Whena andb are not orthogonal, the projections onto these linesdo not addto the pro-
jection onto the plane ofa andb. We must use the orthogonalA andB (or orthonormal
q1 andq2) to be allowed to add1D projections.

28 There aremn multiplications in (11) and1
2
m2n multiplications in each part of (12).

29 q1 D 1
3
.2; 2; �1/, q2 D 1

3
.2; �1; 2/, q3 D 1

3
.1; �2; �2/.

30 The columns of the wavelet matrixW are orthonormal. Then W �1 D W T. See
Section 7.2 for more about wavelets : a useful orthonormal basis with many zeros.

31 (a) c D 1
2

normalizes all the orthogonal columns to have unit length (b) The pro-
jection .aTb=aTa/a of b D .1; 1; 1; 1/ onto the first column isp1 D 1

2
.�1; 1; 1; 1/.

(Checke D 0.) To project onto the plane, addp2 D 1
2
.1; �1; 1; 1/ to get.0; 0; 1; 1/.

32 Q1 D
�

1 0
0 �1

�
reflects acrossx axis,Q2 D

"
1 0 0
0 0 �1
0 �1 0

#
across planey C z D 0.

33 Orthogonal and lower triangular) ˙1 on the main diagonal and zeros elsewhere.

34 (a) Qu D .I � 2uuT/u D u � 2uuTu. This is �u, provided thatuTu equals1
(b) Qv D .I � 2uuT/v D u � 2uuTv D u, provided thatuTv D 0.

35 Starting fromA D .1; �1; 0; 0/, the orthogonal (not orthonormal) vectorsB D
.1; 1; �2; 0/ andC D.1; 1; 1; �3/ andD D.1; 1; 1; 1/ are in the directions ofq2; q3; q4.
The4 by 4 and5 by 5 matrices withinteger orthogonal columns(not orthogonal rows,

since not orthonormalQ!) are

2
4A B C D

3
5 D

2
64

1 1 1 1
�1 1 1 1

0 �2 1 1
0 0 �3 1

3
75 and

2
6664

1 1 1 1 1
�1 1 1 1 1

0 �2 1 1 1
0 0 �3 1 1
0 0 0 �4 1

3
7775co
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36 ŒQ; R� D qr.A/ produces fromA (m byn of rankn) a “full-size” squareQD Œ Q1 Q2 �

and
�

R
0

�
. The columns ofQ1 are the orthonormal basis from Gram-Schmidt of the

column spaceof A. Them � n columns ofQ2 are an orthonormal basis for theleft
nullspaceof A. Together the columns ofQ D Œ Q1 Q2 � are an orthonormal basis
for Rm.

37 This question describes the nextqnC1 in Gram-Schmidt using the matrixQ with the
columnsq1; : : : ; qn (instead of using thoseq’s separately). Start froma, subtract its
projectionp D QTa onto the earlierq’s, divide by the lengthof e D a � QTa to get
qnC1 D e=kek.

Problem Set 5.1, page 251

1 det.2A/ D 8I det.�A/ D .�1/4 detA D 1
2
I det.A2/ D 1

4
I det.A�1/ D 2 D det.AT/�1.

2 det.1
2
A/ D .1

2
/3 detA D �1

8
and det.�A/ D .�1/3 detA D 1; det.A2/ D 1;

det.A�1/ D �1.

3 (a) False: det.I C I / is not1 C 1 (b) True: The product rule extends toABC (use

it twice) (c) False: det.4A/ is 4n detA (d) False: A D
�

0 0
0 1

�
, B D

�
0 1
1 0

�
,

AB � BA D
�

0 �1
1 0

�
is invertible.

4 Exchange rows 1 and 3 to showjJ3j D �1. Exchange rows 1 and 4, then 2 and 3 to
showjJ4j D 1.

5 jJ5jD1, jJ6jD�1, jJ7jD�1. Determinants1; 1; �1; �1 repeat sojJ101jD1.

6 To prove Rule 6, multiply the zero row byt D 2. The determinant is multiplied by2
(Rule 3) but the matrix is the same. So2 det.A/ D det.A/ and det.A/ D 0.

7 det.Q/ D 1 for rotation and det.Q/ D �1 for reflection.1�2 sin2 � �2 cos2 � D �1/.

8 QTQ D I ) jQj2 D 1 ) jQj D ˙1; Qn stays orthogonal so det can’t blow up.

9 detA D 1 from two row exchanges . detB D 2 (subtract rows 1 and 2 from row 3, then
columns 1 and 2 from column 3). detC D 0 (equal rows) even thoughC D A C B!

10 If the entries in every row add to zero, then.1; 1; : : : ; 1/ is in the nullspace: singular
A has detD 0. (The columns add to the zero column so they are linearly dependent.)
If every row adds to one, then rows ofA � I add to zero (not necessarily detA D 1).

11 CD D �DC ) detCD D .�1/n detDC andnot� detDC . If n is even we can have
an invertibleCD.

12 det.A�1/ divides twice byad � bc (once for each row). This givesad�bc
.ad�bc/2 D

1
ad�bc

.

13 Pivots1; 1; 1 give determinantD 1; pivots1; �2; �3=2 give determinantD 3.

14 det.A/ D 36 and the4 by 4 second difference matrix has detD 5.

15 The first determinant is0, the second is1 � 2t2 C t4 D .1 � t2/2.co
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16 A singular rank one matrix has determinantD 0. The skew-symmetricK also detK D
0 (see #17).

17 Any 3 by 3 skew-symmetricK has det.KT/ D det.�K/ D .�1/3det.K/. This is
�det.K/. But always det.KT/ D det.K/. So we must have det.K/ D 0 for 3 by 3.

18

ˇ̌
ˇ̌
ˇ̌

1 a a2

1 b b2

1 c c2

ˇ̌
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ̌

1 a a2

0 b � a b2 � a2

0 c � a c2 � a2

ˇ̌
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ b � a b2 � a2

c � a c2 � a2

ˇ̌
ˇ̌ (to reach2 by 2,

eliminatea anda2 in row 1 by column operations). Factor outb � a andc � a from

the2 by 2: .b � a/.c � a/

ˇ̌
ˇ̌ 1 b C a

1 c C a

ˇ̌
ˇ̌ D .b � a/.c � a/.c � b/.

19 For triangular matrices, just multiply the diagonal entries: det.U / D 6; det.U �1/ D 1
6
,

and det.U 2/ D 36. 2 by 2 matrix: det.U / D ad; det.U 2/ D a2d2. If ad ¤ 0 then
det.U �1/ D 1=ad .

20 det

�
a � Lc b � Ld
c � `a d � `b

�
reduces to.ad �bc/.1�L`/. The determinant changes if you

do two row operations at once.
21 Rules 5 and 3 give Rule 2. (Since Rules 4 and 3 give 5, they also give Rule 2.)
22 det.A/ D 3; det.A�1/ D 1

3
; det.A � �I / D �2 � 4� C 3. The numbers� D 1 and

� D 3 give det.A � �I / D 0. Note to instructor: If you discuss this exercise, you can
explain that this is the reason determinants come before eigenvalues. Identify� D 1
and� D 3 as the eigenvalues ofA.

23 det.A/ D 10, A2 D
�

18 7
14 11

�
, det.A2/ D 100, A�1 D 1

10

�
3 �1

�2 4

�
has det 1

10
.

det.A � �I / D �2 � 7� C 10 D 0 when� D 2 or � D 5; those are eigenvalues.
24 HereA D LU with det.L/ D 1 and det.U / D �6 product of pivots, so also det.A/ D

�6. det.U �1L�1/ D �1
6

D 1= det.A/ and det.U �1L�1A/ is detI D 1.
25 When thei , j entry isij , row 2 D 2 times row 1 so detA D 0.
26 When theij entry isi C j , row 3 � row 2 D row2 � row 1 soA is singular: detA D 0.
27 detA D abc, detB D �abcd , detC D a.b � a/.c � b/ by doing elimination.
28 (a) True: det.AB/ D det.A/ det.B/ D 0 (b) False: A row exchange gives� det D

product of pivots. (c)False: A D 2I andB D I haveA � B D I but the determi-
nants have2n � 1 ¤ 1 (d) True: det.AB/ D det.A/ det.B/ D det.BA/.

29 A is rectangular so det.ATA/ ¤ .detAT/.detA/: these determinants are not defined.

30 Derivatives off D ln.ad � bc/:
�

@f =@a @f =@c

@f =@b @f =@d

�
D

2
64

d

ad � bc

�b

ad � bc
�c

ad � bc

a

ad � bc

3
75 D

1
ad�bc

�
d �b

�c a

�
D A�1.

31 The Hilbert determinants are1, 8�10�2, 4:6�10�4, 1:6�10�7, 3:7�10�12, 5:4�10�18,
4:8 � 10�25, 2:7 � 10�33, 9:7 � 10�43, 2:2 � 10�53. Pivots are ratios of determi-
nants so the10th pivot is near10�10. The Hilbert matrix is numerically difficult (ill-
conditioned).co
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Solutions to Exercises 53

32 Typical determinants ofrand.n/ are106; 1025; 1079; 10218 for n D 50; 100; 200; 400.
randn.n/ with normal distribution gives1031; 1078; 10186, Inf which means� 21024.
MATLAB allows1:999999999999999 � 21023 � 1:8 � 10308 but one more 9 gives Inf!

33 I now know that maximizing the determinant for1, �1 matrices isHadamard’s prob-
lem (1893): see Brenner in American Math. Monthly volume 79 (1972) 626-630. Neil
Sloane’s wonderful On-Line Encyclopedia of Integer Sequences (research.att.com/�
njas) includes the solution for smalln (and more references) when the problem is
changed to0; 1 matrices. That sequence A003432 starts fromn D 0 with 1, 1, 1, 2, 3,
5, 9. Then the1; �1 maximum for sizen is 2n�1 times the0; 1 maximum for sizen � 1
(so.32/.5/ D 160 for n D 6 in sequenceA003433).

To reduce the1; �1 problem from6 by 6 to the0; 1 problem for5 by 5, multiply the
six rows by˙1 to putC1 in column1. Then subtract row1 from rows2 to 6 to get a5
by 5 submatrixS of �2; 0 and divideS by �2.

Here is an advanced MATLAB code and a1; �1 matrix with largest detA D 48 for
n D 5:

n D 5I p D .n � 1/^2I A0 Dones.n/; maxdetD 0;
for k D 0 W 2^p � 1
Asub D rem(floor(k: � 2:^.�p C 1 W 0//; 2/I A D A0I A.2 W n; 2 W n/ D 1 � 2�
reshape(Asub, n � 1; n � 1/;
if abs(det(A// > maxdet, maxdet D abs(det(A)); maxA D A;
end
end

Output:maxA = 1 1 1 1 1
1 1 1 �1 �1
1 1 �1 1 �1
1 �1 1 1 �1
1 �1 �1 �1 1

maxdet = 48.

34 ReduceB by row operations toŒ row 3I row 2I row 1�. Then detB D �6 (odd per-
mutation).

Problem Set 5.2, page 263

1 detA D 1C18C12�9�4�6 D 12, rows are independent; detB D 0, row 1Crow 2 D
row 3; detC D �1, independent rows (detC has one term, odd permutation)

2 detA D �2, independent; detB D 0, dependent; detC D �1, independent.

3 All cofactors of row1 are zero.A has rank� 2. Each of the 6 terms in detA is zero.
Column 2 has no pivot.

4 a11a23a32a44 gives�1, because2 $ 3, a14a23a32a41 givesC1, detA D 1 � 1 D 0;
detB D 2 � 4 � 4 � 2 � 1 � 4 � 4 � 1 D 64 � 16 D 48.

5 Four zeros in the same row guarantee detD 0. A D I has12 zeros (maximum with
det¤ 0).

6 (a) If a11 D a22 D a33 D 0 then 4 terms are sure zeros (b) 15 terms must be zero.co
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54 Solutions to Exercises

7 5Š=2 D 60 permutation matrices have detD C1. Move row5 of I to the top; starting
from .5; 1; 2; 3; 4/ elimination will do four row exchanges.

8 Some terma1˛a2ˇ � � � an! in the big formula is not zero! Move rows1, 2, . . ., n into
rows˛, ˇ, . . .,!. Then these nonzeroa’s will be on the main diagonal.

9 To getC1 for the even permutations, the matrix needs anevennumber of�1’s. To get
C1 for the oddP ’s, the matrix needs anoddnumber of�1’s. So all six termsD C1 in
the big formula and detD 6 are impossible: max.det/ D 4.

10 The 4Š=2 D 12 even permutations are.1; 2; 3; 4/; .2; 1; 4; 3/; .3; 1; 4; 2/; .4; 3; 2; 1/,
and8 P’s with one number in place and even permutation of the other three numbers.
det.I C Peven) D 16 or 4 or 0 (16 comes fromI C I ).

11 C D
�

d �b
�c a

�
. D D

"
0 42 �35
0 �21 14

�3 6 �3

#
.

detB D 1.0/ C 2.42/ C 3.�35/ D �21.
Puzzle: detD D 441 D .�21/2. Why?

12 C D
"

3 2 1
2 4 2
1 2 3

#
andAC T D

"
4 0 0
0 4 0
0 0 4

#
. ThereforeA�1 D 1

4
C T D C T= detA.

13 (a) C1 D 0, C2 D �1, C3 D 0, C4 D 1 (b) Cn D �Cn�2 by cofactors of row
1 then cofactors of column 1. ThereforeC10 D �C8 D C6 D �C4 D C2 D �1.

14 We must choose 1’s from column 2 then column 1, column 4 then column 3,and so on.
Thereforen must be even to have detAn ¤ 0. The number of row exchanges isn=2 so
Cn D .�1/n=2.

15 The1; 1 cofactor of then by n matrix isEn�1. The1; 2 cofactor has a single 1 in its
first column, with cofactorEn�2: sign gives�En�2. SoEn D En�1 � En�2. ThenE1

to E6 is 1, 0, �1, �1, 0, 1 and this cycle of six will repeat:E100 D E4 D �1.
16 The 1; 1 cofactor of then by n matrix is Fn�1. The 1; 2 cofactor has a 1 in column

1, with cofactorFn�2. Multiply by .�1/1C2 and also.�1/ from the1; 2 entry to find
Fn D Fn�1 C Fn�2 (so these determinants are Fibonacci numbers).

17 jB4j D 2 det

"
1 �1

�1 2 �1
�1 2

#
C det

"
1 �1

�1 2
�1 �1

#
D 2jB3j � det

�
1 �1

�1 2

�
D

2jB3j � jB2j. jB3j and�jB2j are cofactors of row4 of B4.
18 Rule 3 (linearity in row 1) givesjBnj D jAnj � jAn�1j D .n C 1/ � n D 1.
19 Sincex, x2, x3 are all in the same row, they are never multiplied in detV4. The deter-

minant is zero atx D a or b or c, so detV has factors.x � a/.x � b/.x � c/. Multiply
by the cofactorV3. The Vandermonde matrixVij D .xi /

j �1 is for fitting a polynomial
p.x/ D b at the pointsxi . It has detV D product of allxk � xm for k > m.

20 G2 D �1, G3 D 2, G4 D �3, andGn D .�1/n�1.n � 1/ D (product of the�’s ).
21 S1 D 3; S2 D 8; S3 D 21. The rule looks like every second number in Fibonacci’s

sequence: : : 3; 5; 8; 13; 21; 34; 55; : : : so the guess isS4 D 55. Following the solution
to Problem 30 with 3’s instead of 2’s confirmsS4 D 81C1�9�9�9 D 55. Problem 33
directly provesSn D F2nC2.

22 Changing 3 to 2 in the corner reduces the determinantF2nC2 by 1 times the cofactor
of that corner entry. This cofactor is the determinant ofSn�1 (one size smaller) which
is F2n. Therefore changing 3 to 2 changes the determinant toF2nC2 � F2n which is
F2nC1.co
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23 (a) If we choose an entry fromB we must choose an entry from the zero block; re-
sult zero. This leaves entries fromA times entries fromD leading to.detA/.detD/

(b) and (c) TakeA D
�

1 0
0 0

�
, B D

�
0 0
1 0

�
, C D

�
0 1
0 0

�
, D D

�
0 0
0 1

�
. See #25.

24 (a) All L’s have detD1I detUk DdetAk D2; 6; �6 for k D1; 2; 3 (b) Pivots2; 3
2
; �1

3
.

25 Problem 23 gives det
�

I 0
�CA�1 I

�
D 1 and det

�
A B
C D

�
D jAj timesjD�CA�1Bj

which isjAD � ACA�1Bj. If AC D CA this isjAD � CAA�1Bj D det.AD � CB/.

26 If A is a row andB is a column then detM D detAB D dot product ofA andB. If
A is a column andB is a row thenAB has rank 1 and detM D detAB D 0 (unless
m D n D 1). This block matrix is invertible whenAB is invertible which certainly
requiresm � n.

27 (a) detA D a11C11 C � � � C a1nC1n. Derivative with respect toa11 D cofactorC11.

28 Row1 � 2 row 2 C row 3 D 0 so this matrix is singular.

29 There are five nonzero products, all 1’s with a plus or minus sign. Here are the (row,
column) numbers and the signs:C .1; 1/.2; 2/.3; 3/.4; 4/ C .1; 2/.2; 1/.3; 4/.4; 3/ �
.1; 2/.2; 1/.3; 3/.4; 4/ � .1; 1/.2; 2/.3; 4/.4; 3/ � .1; 1/.2; 3/.3; 2/.4; 4/. Total�1.

30 The 5 products in solution 29 change to16 C 1 � 4 � 4 � 4 sinceA has 2’s and -1’s:

.2/.2/.2/.2/ C .�1/.�1/.�1/.�1/ � .�1/.�1/.2/.2/ � .2/.2/.�1/.�1/�
.2/.�1/.�1/.2/:

31 detP D �1 because the cofactor ofP14 D 1 in row one has sign.�1/1C4. The big
formula for detP has only one term.1�1�1�1/ with minus sign because three exchanges

take4; 1; 2; 3 into 1; 2; 3; 4; det.P 2/ D .detP /.detP / D C1 so det

�
0 I
I 0

�
D

det

�
0 1
1 0

�
is not right.

32 The problem is to show thatF2nC2 D 3F2n � F2n�2. Keep using Fibonacci’s rule:
F2nC2 DF2nC1 CF2n DF2n CF2n�1 CF2n D2F2n C.F2n �F2n�2/D3F2n �F2n�2:

33 The difference from20 to 19 multiplies its3 by 3 cofactorD 1: then det drops by1.

34 (a) The last three rows must be dependent (b) In each of the 120 terms: Choices
from the last 3 rows must use 3 columns; at least one of those choices will be zero.

35 Subtracting 1 from then; n entry subtracts its cofactorCnn from the determinant. That
cofactor isCnn D 1 (smaller Pascal matrix). Subtracting 1 from 1 leaves 0.

Problem Set 5.3, page 279

1 (a)

ˇ̌
ˇ̌ 2 5

1 4

ˇ̌
ˇ̌ D 3;

ˇ̌
ˇ̌ 1 5

2 4

ˇ̌
ˇ̌ D 6;

ˇ̌
ˇ̌ 2 1

1 2

ˇ̌
ˇ̌ D 3 so x1 D �6=3 D �2 andx2 D

3=3 D 1 (b) jAj D 4; jB1j D 3; jB2j D 2; jB3j D 1: Thereforex1 D 3=4 and
x2 D �1=2 andx3 D 1=4.co
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2 (a) y D
ˇ̌
ˇ a 1

c 0

ˇ̌
ˇ =

ˇ̌
ˇ a b

c d

ˇ̌
ˇ D c=.ad � bc/ (b) y D detB2= detA D .fg � id/=D.

3 (a) x1 D 3=0 andx2 D �2=0: no solution (b) x1 D x2 D 0=0: undetermined.

4 (a) x1 D det
�
Œ b a2 a3 �

�
= detA, if detA ¤ 0 (b) The determinant is linear in

its first column sox1ja1 a2 a3jCx2ja2 a2 a3jCx3ja3 a2 a3j. The last two determinants
are zero because of repeated columns, leavingx1ja1 a2 a3j which isx1 detA.

5 If the first column inA is also the right sideb then detA D detB1. BothB2 andB3 are
singular since a column is repeated. Thereforex1 D jB1j=jAj D 1 andx2 D x3 D 0.

6 (a)

2
64

1 �2
3

0

0 1
3

0

0 �7
3

1

3
75 (b)

1

4

2
4

3 2 1

2 4 2

1 2 3

3
5.

An invertible symmetric matrix
has a symmetric inverse.

7 If all cofactorsD 0 thenA�1 would be the zero matrix if it existed; cannot exist. (And

the cofactor formula gives detA D 0.) A D
�

1 1
1 1

�
has no zero cofactors but it is not

invertible.

8 C D
"

6 �3 0
3 1 �1

�6 2 1

#
andAC T D

"
3 0 0
0 3 0
0 0 3

#
.

This is.detA/I and detA D 3.
The1; 3 cofactor ofA is 0.
Multiplying by 4 or 100: no change.

9 If we know the cofactors and detA D 1, thenC T D A�1 and also detA�1 D 1.
Now A is the inverse ofC T, soA can be found from the cofactor matrix forC .

10 Take the determinant ofAC T D .detA/I . The left side gives detAC T D .detA/.detC/
while the right side gives.detA/n. Divide by detA to reach detC D .detA/n�1.

11 The cofactors ofA are integers. Division by detA D ˙1 gives integer entries inA�1.

12 Both detA and detA�1 are integers since the matrices contain only integers. But detA�1 D
1= detA so detA must be 1 or�1.

13 A D
"

0 1 3
1 0 1
2 1 0

#
has cofactor matrixC D

"�1 2 1
3 �6 2
1 3 �1

#
andA�1 D 1

5
C T.

14 (a) Lower triangularL has cofactorsC21 D C31 D C32 D 0 (b) C12 D C21;
C31 D C13; C32 D C23 makeS�1 symmetric. (c) OrthogonalQ has cofactor
matrixC D .detQ/.Q�1/T D ˙Q also orthogonal. Note detQ D 1 or �1.

15 For n D 5, C contains25 cofactors and each 4 by 4 cofactor has24 terms. Each term
needs3 multiplications: total1800 multiplications vs.125 for Gauss-Jordan.

16 (a) Area
ˇ̌

3 2
1 4

ˇ̌
D 10 (b) and (c) Area10=2 D 5, these triangles are half of the

parallelogram in (a).

17 VolumeD
ˇ̌
ˇ̌ 3 1 1

1 3 1
1 1 3

ˇ̌
ˇ̌D20.

Area of facesD
length of cross productD

ˇ̌
ˇ̌ i j k

3 1 1
1 3 1

ˇ̌
ˇ̌D �2i � 2j C 8k

lengthD6
p

2

18 (a) Area1
2

ˇ̌
ˇ̌ 2 1 1

3 4 1
0 5 1

ˇ̌
ˇ̌ D 5 (b) 5 C new triangle area1

2

ˇ̌
ˇ̌ 2 1 1

0 5 1
�1 0 1

ˇ̌
ˇ̌ D 5 C 7 D 12.

19
ˇ̌

2 1
2 3

ˇ̌
D 4 D

ˇ̌
2 2
1 3

ˇ̌
because the transpose has the same determinant. See #22.co
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20 The edges of the hypercube have length
p

1 C 1 C 1 C 1 D 2. The volume detH
is 24 D 16. (H=2 has orthonormal columns. Then det.H=2/ D 1 leads again to
detH D 16:)

21 The maximum volumeL1L2L3L4 is reached when the edges are orthogonal inR4.
With entries1 and�1 all lengths are

p
4 D 2. The maximum determinant is24 D 16,

achieved in Problem 20. For a3 by 3 matrix, detA D .
p

3/3 can’t be achieved bẏ 1.

22 This question is still waiting for a solution! An18:06 student showed me how to trans-
form the parallelogram forA to the parallelogram forAT, without changing its area.
(Edges slide along themselves, so no change in baselength or height or area.)

23 ATA D

2
4

aT

bT

cT

3
5 �

a b c
�

D

2
4

aTa 0 0

0 bTb 0
0 0 cTc

3
5 has detATA D .kakkbkkck/2

detA D ˙kakkbkkck

24 The box has height 4 and volumeD det

"
1 0 0
0 1 0
2 3 4

#
D 4. i � j D k and.k � w/ D 4.

25 Then-dimensional cube has2n corners,n2n�1 edges and2n .n�1/-dimensional faces.
Coefficients from.2 C x/n in Worked Example2.4A. Cube from2I has volume2n.

26 The pyramid has volume1
6
. The 4-dimensional pyramid has volume1

24
(and 1

nŠ
in Rn)

27 x D r cos�; y D r sin� giveJ D r . The columns are orthogonal and their lengths are
1 andr .

28 J D
ˇ̌
ˇ̌
ˇ

sin' cos� � cos' sin� �� sin' sin�
sin' sin� � cos' sin� � sin' cos�

cos' �� sin' �

ˇ̌
ˇ̌
ˇ D �2 sin'. This Jacobian is needed

for triple integrals inside spheres.

29 Fromx; y to r; � :

ˇ̌
ˇ̌ @r=@x @r=@y
@�=@x @�=@y

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ x=r y=r
�y=r2 x=r2

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ cos� sin�
.� sin�/=r .cos�/=r

ˇ̌
ˇ̌

D 1

r
D 1

Jacobian in27
.

30 The triangle with corners.0; 0/; .6; 0/; .1; 4/ has area24. Rotated by� D 60ı the area

is unchanged. The determinant of the rotation matrix isJ D
ˇ̌
ˇ̌ cos� � sin�

sin� cos�

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ 1=2 �

p
3=2p

3=2 1=2

ˇ̌
ˇ̌ D 1.

31 Base area 10, height 2, volume 20.

32 The volume of the box is det

"
2 4 0

�1 3 0
1 2 2

#
D 20.

33

ˇ̌
ˇ̌
ˇ
u1 u2 u3

v1 v2 v3

w1 w2 w3

ˇ̌
ˇ̌
ˇ D u1

ˇ̌
ˇ̌ v2 v3

w2 w3

ˇ̌
ˇ̌�u2

ˇ̌
ˇ̌ v1 v3

w1 w3

ˇ̌
ˇ̌Cu3

ˇ̌
ˇ̌ v1 v2

w1 w2

ˇ̌
ˇ̌. This isu � .v�w/.

34 .w � u/ � v D .v � w/ � u D .u � v/ � w W Even permutationof .u; v; w/ keeps the same
determinant. Odd permutations reverse the sign.co
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35 S D .2; 1; �1/, areakPQ � PSk D k.�2; �2; �1/k D 3. The other four corners
can be.0; 0; 0/, .0; 0; 2/, .1; 2; 2/, .1; 1; 0/. The volume of the tilted box isj detj D 1.

36 If .1; 1; 0/, .1; 2; 1/, .x; y; z/ are in a plane the volume is det
The “box” with those edges is flattened to zero height.

2
4

x y z

1 1 0

1 2 1

3
5Dx�yCz D0.

37 det

"
x y z
2 3 1
1 2 3

#
D 7x �5y Cz will be zerowhen.x; y; z/ is a combination of.2; 3; 1/

and.1; 2; 3/. The plane containing those two vectors has equation7x � 5y C z D 0.

38 Doubling each row multiplies the volume by2n. Then2 detADdet.2A/ only if nD1.

39 AC T D .detA/I gives .detA/.detC/ D .detA/n. Then detA D .detC/1=3 with
n D 4. With detA�1 D 1= detA, constructA�1 using the cofactors.Invert to findA.

40 The cofactor formula adds1 by 1 determinants (which are just entries)timestheir co-
factors of sizen�1. Jacobi discovered that this formula can be generalized. Forn D 5,
Jacobi multiplied each2 by 2 determinant from rows1-2 (with columnsa < b) times
a 3 by 3 determinant from rows3-5 (using the remaining columnsc < d < e).

The key question isC or � sign (as for cofactors). The product is given aC
sign whena, b, c, d , e is an even permutation of1, 2, 3, 4, 5. This gives the correct
determinantC1 for that permutation matrix. More than that, all otherP that permutea,
b and separatelyc, d , e will come out with the correct sign when the2 by 2 determinant
for columns a; b multiplies the3 by 3 determinant for columnsc; d; e.

41 The Cauchy-Binet formula gives the determinant of a square matrixAB (andAAT in
particular) when the factorsA, B are rectangular. For (2 by 3) times (3 by 2) there are
3 products of2 by 2 determinants fromA andB (printed in boldface):

�
a b c
d e f

� "
g j
h k
i `

# �
a b c
d e f

� "
g j
h k
i `

# �
a b c
d e f

� "
g j
h k
i `

#

Check A D
�

1 2 3
1 4 7

�
B D

"
1 1
2 4
3 7

#
AB D

�
14 30
30 66

�

Cauchy-Binet: .4 � 2/.4 � 2/ C .7 � 3/.7 � 3/ C .14 � 12/.14 � 12/ D 24
.14/.66/ � .30/.30/ D 24

Problem Set 6.1, page 293

1 The eigenvalues are1 and0:5 for A, 1 and0:25 for A2, 1 and0 for A1. Exchanging
the rows ofA changes the eigenvalues to1 and �0:5 (the trace is now0:2 C 0:3/.
Singular matrices stay singular during elimination, so� D 0 does not change.

2 A has�1 D �1 and�2 D 5 with eigenvectorsx1 D .�2; 1/ andx2 D .1; 1/. The
matrix A C I has the same eigenvectors, with eigenvalues increased by1 to 0 and6.
That zero eigenvalue correctly indicates thatA C I is singular.

3 A has�1 D 2 and �2 D �1 (check trace and determinant) withx1 D .1; 1/ and
x2 D .2; �1/. A�1 has the same eigenvectors, with eigenvalues1=� D 1

2
and�1.co
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Solutions to Exercises 59

4 A has�1 D �3 and�2 D 2 (check traceD �1 and determinantD �6) with x1 D
.3; �2/ andx2 D .1; 1/. A2 has thesame eigenvectorsasA, with eigenvalues�2

1 D 9

and�2
2 D 4.

5 A andB have eigenvalues1 and3. A C B has�1 D 3, �2 D 5. Eigenvalues ofA C B
are not equalto eigenvalues ofA plus eigenvalues ofB.

6 A andB have�1 D 1 and�2 D 1. AB andBA have� D 2 ˙
p

3. Eigenvalues ofAB
are not equalto eigenvalues ofA times eigenvalues ofB. Eigenvalues ofAB andBA
are equal (this is proved in section 6.6, Problems 18-19).

7 The eigenvalues ofU (on its diagonal) are thepivotsof A. The eigenvalues ofL (on
its diagonal) are all1’s. The eigenvalues ofA are notthe same as the pivots.

8 (a) Multiply Ax to see�x which reveals� (b) Solve.A � �I /x D 0 to findx.

9 (a) Multiply by A: A.Ax/ D A.�x/ D �Ax givesA2x D �2x (b) Multiply by
A�1: x D A�1Ax D A�1�x D �A�1x givesA�1x D 1

�
x (c) Add Ix D x:

.A C I /x D .� C 1/x.

10 A has�1 D 1 and�2 D :4 with x1 D .1; 2/ andx2 D .1; �1/. A1 has�1 D 1 and
�2 D 0 (same eigenvectors).A100 has�1 D 1 and�2 D .:4/100 which is near zero.
SoA100 is very nearA1: same eigenvectors and close eigenvalues.

11 Columns ofA��1I are in the nullspace ofA��2I becauseM D .A��2I /.A��1I /
D zero matrix[this is theCayley-Hamilton Theoremin Problem 6.2.32]. Notice that
M haszero eigenvalues.�1 � �2/.�1 � �1/ D 0 and.�2 � �2/.�2 � �1/ D 0.

12 The projection matrixP has� D 1; 0; 1 with eigenvectors.1; 2; 0/, .2; �1; 0/, .0; 0; 1/.
Add the first and last vectors:.1; 2; 1/ also has� D 1. NoteP 2 D P leads to�2 D �
so� D 0 or 1.

13 (a) P u D .uuT/u D u.uTu/ D u so� D 1 (b) P v D .uuT/v D u.uTv/ D 0
(c) x1 D .�1; 1; 0; 0/, x2 D .�3; 0; 1; 0/, x3 D .�5; 0; 0; 1/ all haveP x D 0x D 0.

14 Two eigenvectors of this rotation matrix arex1 D .1; i/ and x2 D .1; �i/ (more
generallycx1, anddx2 with cd ¤ 0).

15 The other two eigenvalues are� D 1
2
.�1 ˙ i

p
3/; the three eigenvalues are1; 1; �1.

16 Set� D 0 in det.A � �I / D .�1 � �/ : : : .�n � �/ to find detA D .�1/.�2/ � � � .�n/.

17 �1 D 1
2
.a C d C

p
.a � d/2 C 4bc/ and�2 D 1

2
.a C d �

p
/ add toa C d .

If A has�1 D 3 and�2 D 4 then det.A � �I / D .� � 3/.� � 4/ D �2 � 7� C 12.

18 These3 matrices have� D 4 and5, trace9, det20:

�
4 0
0 5

�
;

�
3 2

�1 6

�
;

�
2 2

�3 7

�
.

19 (a) rankD 2 (b) det.BTB/ D 0 (d) eigenvalues of.B2 C I /�1 are1; 1
2
; 1

5
.

20 A D
�

0 1
�28 11

�
has trace11 and determinant28, so� D 4 and7. Moving to a3 by 3

companion matrix,C D
"

0 1 0
0 0 1
6 �11 6

#
has det.C � �I / D ��3 C 6�2 � 11� C 6 D

.1 � �/.2 � �/.3 � �/. Notice the trace6 D 1 C 2 C 3, determinant6 D .1/.2/.3/, and
also11 D .1/.2/ C .1/.3/ C .2/.3/.co
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60 Solutions to Exercises

21 .A � �I / has the same determinant as.A � �I /T

because every square matrix has detM D detM T.

�
1 0
1 0

�
and

�
1 1
0 0

�
havedifferent
eigenvectors.

22 � D 1 (for Markov), 0 (for singular),�1
2

(so sum of eigenvaluesD traceD 1
2
/.

23

�
0 0
1 0

�
,

�
0 1
0 0

�
,

�
�1 1
�1 1

�
. AlwaysA2 is the zero matrix if� D 0 and0,

by the Cayley-Hamilton Theorem in Problem 6.2.32.

24 � D 0; 0; 6 (notice rank1 and trace6) with x1 D .0; �2; 1/, x2 D .1; �2; 0/, x3 D
.1; 2; 1/.

25 With the samen �’s andx’s, Ax D c1�1x1 C � � � C cn�nxn equalsBx D c1�1x1 C
� � � C cn�nxn for all vectorsx. SoA D B.

26 The block matrix has� D 1, 2 from B and5, 7 from D. All entries ofC are multiplied
by zeros in det.A � �I /, soC has no effect on the eigenvalues.

27 A has rank 1 with eigenvalues0; 0; 0; 4 (the 4 comes from the trace ofA). C has rank
2 (ensuring two zero eigenvalues) and.1; 1; 1; 1/ is an eigenvector with� D 2. With
trace 4, the other eigenvalue is also� D 2, and its eigenvector is.1; �1; 1; �1/.

28 B has� D �1, �1, �1, 3 andC has� D 1; 1; 1; �3. Both have detD �3.

29 Triangular matrix:�.A/ D 1; 4; 6; �.B/ D 2,
p

3, �
p

3; Rank-1 matrix:�.C/ D
0; 0; 6.

30

�
a b
c d

� �
1
1

�
D

�
a C b
c C d

�
D .a C b/

�
1
1

�
; �2 D d � b to produce the correct trace

.a C b/ C .d � b/ D a C d .

31 Eigenvector.1; 3; 4/ for A with � D 11 and eigenvector.3; 1; 4/ for PAP T. Eigenvec-
tors with� ¤ 0 must be in the column space sinceAx is always in the column space,
andx D Ax=�.

32 (a) u is a basis for the nullspace,v andw give a basis for the column space
(b) x D .0; 1

3
; 1

5
/ is a particular solution. Add anycu from the nullspace

(c) If Ax D u had a solution,u would be in the column space: wrong dimension 3.

33 If vTu D 0 then A2 D u.vTu/vT is the zero matrix and�2 D 0; 0 and � D 0; 0
and trace.A/ D 0. This zero trace also comes from adding the diagonal entries of
A D uvT:

A D
�

u1

u2

� �
v1 v2

�
D

�
u1v1 u1v2

u2v1 u2v2

�
has traceu1v1 C u2v2 D vTu D 0

34 det.P � �I / D 0 gives the equation�4 D 1. This reflects the fact thatP 4 D I .
The solutions of�4 D 1 are� D 1; i; �1; �i: The real eigenvectorx1 D .1; 1; 1; 1/
is not changed by the permutationP . Three more eigenvectors are.i; i2; i3; i4/ and
.1; �1; 1; �1/ and.�i; .�i/2; .�i/3; .�i/4/:

35 3 by 3 permutation matrices: SinceP TP D I gives.detP /2 D 1, the determinant is 1
or �1. The pivots are always 1 (but there may be row exchanges). The trace ofP can
be 3 (forP D I ) or 1 (for row exchange) or 0 (for double exchange). The possible
eigenvalues are 1 and�1 ande2�i=3 ande�2�i=3.co
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36 �1 D e2�i=3 and �2 D e�2�i=3 give det�1�2 D 1 and trace�1 C �2 D �1.

A D
�

cos� � sin�
sin� cos�

�
with � D 2�

3
has this trace and det. So does everyM �1AM !

37 (a) Since the columns ofA add to 1, one eigenvalue is� D 1 and the other isc � :6
(to give the correct tracec C :4).

(b) If c D 1:6 then both eigenvalues are 1, and all solutions to.A � I / x D 0 are
multiples ofx D .1; �1/.

(c) If c D :8, the eigenvectors for� D 1 are multiples of (1, 3). Since all powersAn

also have column sumsD 1, An will approach
1

4

�
1 1
3 3

�
D rank-1 matrix A1 with

eigenvalues1; 0 and correct eigenvectors..1; 3/ and.1; �1/.

Problem Set 6.2, page 307

1

�
1 2
0 3

�
D

�
1 1
0 1

� �
1 0
0 3

� �
1 �1
0 1

�
;

�
1 1
3 3

�
D

�
1 1

�1 3

� �
0 0
0 4

� "
3
4

�1
4

1
4

1
4

#
.

2
Put the eigenvectors inS
and eigenvalues inƒ. A D SƒS�1 D

�
1 1
0 1

� �
2 0
0 5

� �
1 �1
0 1

�
D

�
2 3
0 5

�
.

3 If A D SƒS�1 then the eigenvalue matrix forA C 2I is ƒ C 2I and the eigenvector
matrix is stillS . A C 2I D S.ƒ C 2I /S�1 D SƒS�1 C S.2I /S�1 D A C 2I .

4 (a) False: don’t know�’s (b) True (c) True (d) False: need eigenvectors ofS

5 With S D I; A D SƒS�1 D ƒ is a diagonal matrix. IfS is triangular, thenS�1 is
triangular, soSƒS�1 is also triangular.

6 The columns ofS are nonzero multiples of.2;1/ and.0;1/: either order. Same forA�1.

7 A D SƒS�1 D
�

1 1
1 �1

� �
�1

�2

� �
1 1
1 �1

�
=2 D

�
�1 C �2 �1 � �2

�1 � �2 �1 C �2

�
=2 D

�
a b
b a

�
for anya andb.

8 A D SƒS�1 D
�

1 1
1 0

�
D 1

�1 � �2

�
�1 �2

1 1

� �
�1 0
0 �2

� �
1 ��2

�1 �1

�
. SƒkS�1 D

1

�1 � �2

�
�1 �2

1 1

� �
�k

1 0

0 �k
2

� �
1 ��2

�1 �1

� �
1
0

�
D

�
2nd componentis Fk

.�k
1 � �k

2/=.�1 � �2/

�
.

9 (a) A D
�

:5 :5
1 0

�
has�1 D 1, �2 D �1

2
with x1 D .1; 1/, x2 D .1; �2/

(b) An D
�

1 1
1 �2

� �
1n 0
0 .�:5/n

� "
2
3

1
3

1
3

�1
3

#
! A1 D

"
2
3

1
3

2
3

1
3

#

10 The ruleFkC2 D FkC1 C Fk produces the pattern: even, odd, odd, even, odd, odd,: : :

11 (a) True (no zero eigenvalues) (b)False(repeated� D 2 may have only one line of
eigenvectors) (c)False(repeated� may have a full set of eigenvectors)co
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12 (a) False: don’t know� (b) True: an eigenvector is missing (c) True.

13 A D
�

8 3
�3 2

�
(or other), A D

�
9 4

�4 1

�
, A D

�
10 5
�5 0

�
;

only eigenvectors
arex D .c; �c/:

14 The rank ofA � 3I is r D 1. Changing any entry excepta12 D 1 makesA
diagonalizable (A will have two different eigenvalues)

15 Ak D SƒkS�1 approaches zeroif and only if every j�j < 1; Ak
1 ! A1

1 ; Ak
2 ! 0.

16 ƒ D
�

1 0
0 :2

�
andS D

�
1 1
1 �1

�
I ƒk !

�
1 0
0 0

�
andSƒkS�1 !

�
1
2

1
2

1
2

1
2

�
: steady

state.

17 ƒ D
�

:9 0
0 :3

�
, S D

�
3 �3
1 1

�
; A10

2

�
3
1

�
D .:9/10

�
3
1

�
, A10

2

�
3

�1

�
D .:3/10

�
3

�1

�
,

A10
2

�
6
0

�
D .:9/10

�
3
1

�
C .:3/10

�
3

�1

�
because

�
6
0

�
is the sum of

�
3
1

�
C

�
3

�1

�
.

18

�
2 �1

�1 2

�
D 1

2

�
1 �1
1 1

� �
1 0
0 3

� �
1 1

�1 1

�
and Ak D 1

2

�
1 �1
1 1

� �
1 0

0 3k

�

�
1 1

�1 1

�
. Multiply those last three matrices to getAk D 1

2

�
1 C 3k 1 � 3k

1 � 3k 1 C 3k

�
.

19 Bk D
�

1 1
0 �1

� �
5 0
0 4

�k �
1 1
0 �1

�
D

�
5k 5k � 4k

0 4k

�
.

20 detA D .detS/.detƒ/.detS�1/ D detƒ D �1 � � � �n. This proof works whenA is
diagonalizable.

21 traceST D .aq C bs/ C .cr C dt/ is equal to.qa C rc/ C .sb C td/ D traceTS .
Diagonalizable case: the trace ofSƒS�1 D trace of.ƒS�1/S D ƒ: sum of the�’s.

22 AB�BA D I is impossible since traceAB � traceBA D zero ¤ traceI . AB�BA D
C is possible when trace.C / D 0, andE D

�
1 0
1 1

�
hasEET � ETE D

�
�1 0

0 1

�
.

23 If A D SƒS�1 thenB D
�

A 0
0 2A

�
D

�
S 0
0 S

� �
ƒ 0
0 2ƒ

� �
S�1 0

0 S�1

�
. SoB has

the additional eigenvalues2�1; : : : ; 2�n.

24 The A’s form a subspace sincecA andA1 C A2 all have the sameS . WhenS D I
theA’s with those eigenvectors give the subspace of diagonal matrices. Dimension 4.

25 If A has columnsx1; : : : ; xn then column by column,A2 D A means everyAxi D xi .
All vectors in the column space (combinations of those columnsxi ) are eigenvectors
with � D 1. Always the nullspace has� D 0 (A might have dependent columns, so
there could be less thann eigenvectors with� D 1). Dimensions of those spaces add
to n by the Fundamental Theorem, soA is diagonalizable(n independent eigenvectors
altogether).

26 Two problems: The nullspace and column space can overlap, sox could be in both.
There may not ber independent eigenvectors in the column space.co
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27 R DS
p

ƒS�1 D
�

2 1
1 2

�
hasR2 DA.

p
B needs� D

p
9 and

p
�1, trace is not real.

Note that
�
�1 0

0 �1

�
can have

p
�1 D i and�i , trace0, real square root

�
0 1

�1 0

�
.

28 AT D A gives xTABx D .Ax/T.Bx/ � kAxkkBxk by the Schwarz inequality.
BT D �B gives�xTBAx D .Bx/T.Ax/ � kAxkkBxk. Add to get Heisenberg’s
Uncertainty Principle whenAB � BA D I . Position-momentum, also time-energy.

29 The factorizations ofA and B into SƒS�1 are the same. SoA D B. (This is
the same as Problem 6.1.25, expressed in matrix form.)

30 A D Sƒ1S�1 andB D Sƒ2S�1. Diagonal matrices always giveƒ1ƒ2 D ƒ2ƒ1.
ThenAB D BA from Sƒ1S�1Sƒ2S�1 D Sƒ1ƒ2S�1 D Sƒ2ƒ1S�1 D Sƒ2S�1

Sƒ1S�1 D BA.

31 (a) A D
�

a b
0 d

�
has� D a and� D d : .A�aI /.A�dI / D

�
0 b
0 d � a

� �
a � d b

0 0

�

D
�

0 0
0 0

�
. (b) A D

�
1 1
1 0

�
hasA2 D

�
2 1
1 1

�
andA2 �A�I D 0 is true, match-

ing �2 � � � 1 D 0 as the Cayley-Hamilton Theorem predicts.

32 WhenA D SƒS�1 is diagonalizable, the matrixA��j I D S.ƒ��j I /S�1 will have
0 in thej; j diagonal entry ofƒ��j I . In the productp.A/ D .A��1I / � � � .A��nI /,
each insideS�1 cancelsS . This leavesS times (product of diagonal matricesƒ��j I )
timesS�1. That product is the zero matrix because the factors produce a zero in each
diagonal position. Thenp.A/ D zero matrix, which is the Cayley-Hamilton Theorem.
(If A is not diagonalizable, one proof is to take a sequence of diagonalizable matrices
approachingA.)

Comment I have also seen this reasoning but I am not convinced:

Apply the formulaAC T D .detA/I from Section 5.3 toA � �I with variable�. Its
cofactor matrixC will be a polynomial in�, since cofactors are determinants:

.A � �I / cof .A � �I /T D det.A � �I /I D p.�/I:

“For fixed A, this is an identity between two matrix polynomials.” Set� D A to find
the zero matrix on the left, sop.A/ D zero matrix on the right—which is the Cayley-
Hamilton Theorem.

I am not certain about the key step of substituting a matrix for�. If other matrices
B are substituted, does the identity remain true? IfAB ¤ BA, even the order of
multiplication seems unclear: : :

33 � D 2; �1; 0 are inƒ and the eigenvectors are inS (below).Ak D SƒkS�1 is

"
2 1 0
1 �1 1
1 �1 �1

#
ƒk

1

6

"
2 1 1
2 �2 �2
0 3 �3

#
D 2k

6

"
4 2 2
2 1 1
2 1 1

#
C .�1/k

3

"
1 �1 �1

�1 1 1
�1 1 1

#

Checkk D 4. The.2; 2/ entry ofA4 is 24=6 C .�1/4=3 D 18=6 D 3. The4-step paths
that begin and end at node2 are 2 to 1 to 1 to 1 to 2, 2 to 1 to 2 to 1 to 2, and 2 to 1 to
3 to 1 to 2. Much harder to find the eleven4-step paths that start and end at node 1.co
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34 If AB D BA, thenB has the same eigenvectors.1; 0/ and.0; 1/ asA. SoB is also
diagonalb D c D 0. The nullspace for the following equation is 2-dimensional:

AB � BA D
�

1 0
0 2

� �
a b
c d

�
�

�
a b
c d

� �
1 0
0 2

�
D

�
0 �b
c 0

�
D

�
0 0
0 0

�
. The

coefficient matrix has rank4 � 2 D 2.

35 B has� D i and�i , soB4 has�4 D 1 and 1 andB4 D I . C has� D .1 ˙
p

3i/=2.
This is exp.˙�i=3/ so�3 D �1 and�1. ThenC 3 D �I andC 1024 D �C .

36 The eigenvalues ofA D
�

cos� � sin�
sin� cos�

�
are� D ei� ande�i� (trace2 cos� and

detD 1). Their eigenvectors are.1; �i/ and.1; i/:

An D SƒnS�1 D
�

1 1
�i i

� �
ein�

e�in�

� �
i �1
i 1

�
=2i

D
�

.ein� C e�in� /=2 � � �

.ein� � e�in� /=2i � � �

�
D

�
cosn� � sinn�
sinn� cosn�

�
:

Geometrically,n rotations by� give one rotation byn� .

37 Columns ofS times rows ofƒS�1 will give r rank-1 matrices.r D rank ofA/.

38 Note thatones.n/ � ones.n/ D n � ones.n/. This leads toC D 1=.n C 1/.

AA�1 D .eye.n/ C ones.n// � .eye.n/ C C � ones.n//

D eye.n/ C .1 C C C Cn/ � ones.n/ D eye.n/:

Problem Set 6.3, page 325

1 u1 D e4t

�
1
0

�
, u2 D et

�
1

�1

�
. If u.0/ D .5; �2/, thenu.t / D 3e4t

�
1
0

�
C 2et

�
1

�1

�
.

2 z.t/ D 2et ; thendy=dt D 4y � 6et with y.0/ D 5 givesy.t/ D 3e4t C 2et as in
Problem 1.

3 (a) If every column ofA adds to zero, this means that the rows add to the zero row. So
the rows are dependent, andA is singular, and� D 0 is an eigenvalue.

(b) The eigenvalues ofA D
�
�2 3

2 �3

�
are�1 D 0 with eigenvectorx1 D .3; 2/ and

�2 D �5 (to give traceD �5) with x2 D .1; �1/. Then the usual 3 steps:

1. Writeu.0/ D
�

4
1

�
as

�
3
2

�
C

�
1

�1

�
D x1 C x2

2. Follow those eigenvectors bye0t x1 ande�5tx2

3. The solutionu.t / D x1 C e�5tx2 has steady statex1 D .3; 2/.

4 d.v Cw/=dt D .w �v/C.v �w/ D 0, so the totalv Cw is constant.A D
�
�1 1

1 �1

�

has
�1 D 0
�2 D �2

with x1 D
�

1
1

�
, x2 D

�
1

�1

�
;

v.1/ D 20 C 10e�2

w.1/ D 20 � 10e�2
v.1/ D 20
w.1/ D 20co
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5
d

dt

�
v
w

�
D

�
1 �1

�1 1

�
has� D 0 andC2: v.t/ D 20 C 10e2t � 1 ast ! 1.

6 A D
�

a 1
1 a

�
has real eigenvaluesa C 1 anda � 1. These are both negative ifa < �1,

and the solutions ofu0 D Au approach zero.B D
�

b �1
1 b

�
has complex eigenvalues

b C i andb � i . These have negative real parts ifb < 0, and all solutions ofv0 D Bv
approach zero.

7 A projection matrix has eigenvalues� D 1 and� D 0. EigenvectorsP x D x fill
the subspace thatP projects onto: herex D .1; 1/. EigenvectorsP x D 0 fill the
perpendicular subspace: herex D .1; �1/. For the solution tou0 D �P u,

u.0/ D
�

3
1

�
D

�
2
2

�
C

�
1

�1

�
u.t / D e�t

�
2
2

�
C e0t

�
1

�1

�
approaches

�
1

�1

�
:

8

�
6 �2
2 1

�
has�1 D 5, x1 D

�
2
1

�
, �2 D 2, x2 D

�
1
2

�
; rabbitsr.t/ D 20e5t C10e2t ,

w.t/ D 10e5t C20e2t . The ratio of rabbits to wolves approaches20=10; e5t dominates.

9 (a)
�

4
0

�
D 2

�
1
i

�
C2

�
1

�i

�
. (b) Thenu.t/ D 2eit

�
1
i

�
C2e�it

�
1

�i

�
D

�
4 cost
4 sint

�
.

10
d

dt

�
y
y 0

�
D

�
y 0

y 00

�
D

�
0 1
4 5

� �
y
y 0

�
. A D

�
0 1
4 5

�
has det.A��I / D �2�5��4 D 0.

Directly substitutingy D e�t into y 00 D 5y 0 C4y also gives�2 D 5�C4 and the same
two values of�. Those values are1

2
.5 ˙

p
41/ by the quadratic formula.

11 eAt D I C t

�
0 1
0 0

�
C zeros D

�
1 t
0 1

�
. Then

�
y.t/
y 0.t /

�
D

�
1 t
0 1

� �
y.0/
y 0.0/

�

�
y.0/ C y 0.0/t

y 0.0/

�
. Thisy.t/ D y.0/ C y 0.0/t solves the equation.

12 A D
�

0 1
�9 6

�
has trace 6, det 9,� D 3 and 3 withoneindependent eigenvector.1; 3/.

13 (a) y.t/ D cos3t and sin3t solvey 00 D �9y. It is 3cos3t that starts withy.0/ D 3

andy 0.0/ D 0. (b) A D
�

0 1
�9 0

�
has detD 9: � D 3i and�3i with x D .1; 3i/

and.1; �3i/. Thenu.t / D 3
2

e3it

�
1

3i

�
C 3

2
e�3it

�
1

�3i

�
D

�
3 cos3t

�9 sin3t

�
.

14 WhenA is skew-symmetric,ku.t /k D keAtu.0/k is ku.0/k. SoeAt is orthogonal.

15 up D 4 andu.t / D cet C 4; up D
�

4
2

�
andu.t / D c1et

�
1
t

�
C c2et

�
0
1

�
C

�
4
2

�
.

16 Substitutingu D ect v gives cectv D Aectv � ect b or .A � cI /v D b or v D
.A � cI /�1b D particular solution. Ifc is an eigenvalue thenA � cI is not invertible.co
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17 (a)

�
1 0
0 �1

�
(b)

�
1 0
0 1

�
(c)

�
1 1

�1 1

�
. These show the unstable cases

(a) �1 < 0 and�2 > 0 (b) �1 > 0 and�2 > 0 (c) � D a ˙ ib with a > 0

18 d=dt.eAt / D ACA2t C 1
2

A3t2 C 1
6

A4t3 C� � � D A.I CAt C 1
2

A2t2 C 1
6

A3t3 C� � � /.
This is exactlyAeAt , the derivative we expect.

19 eBt D I CBt (short series withB2 D 0) D
�

1 �4t
0 1

�
. DerivativeD

�
0 �4
0 0

�
D B.

20 The solution at timet C T is alsoeA.tCT /u.0/. ThuseAt timeseAT equalseA.tCT /.

21

�
1 4
0 0

�
D

�
1 4
0 �1

� �
1 0
0 0

� �
1 4
0 �1

�
;

�
1 4
0 �1

� �
et 0
0 1

� �
1 4
0 �1

�
D

�
et 4et � 4
0 1

�
.

22 A2 D A giveseAt D I CAt C 1
2
At2 C 1

6
At3 C� � � D I C .et �1/A D

�
et et � 1
0 1

�
.

23 eA D
�

e 4.e � 1/
0 1

�
from 21 andeB D

�
1 �4
0 1

�
from 19. By direct multiplication

eAeB ¤ eBeA ¤ eACB D
�

e 0
0 1

�
.

24 A D
�

1 1
0 3

�
D

�
1 1
0 2

� �
1 0
0 3

� �
1 �1

2

0 1
2

�
. Then eAt D

�
et 1

2
.e3t � et /

0 e3t

�
.

25 The matrix hasA2 D
�

1 3
0 0

�2

D
�

1 3
0 0

�
D A. Then allAn D A. So eAt D

I C .t C t2=2Š C � � � /A D I C .et � 1/A D
�

et 3.et � 1/
0 0

�
as in Problem 22.

26 (a) The inverse ofeAt is e�At (b) If Ax D �x theneAt x D e�t x ande�t ¤ 0.
To seeeAt x, write .I C At C 1

2
A2t2 C � � � /x D .1 C �t C 1

2
�2t2 C � � � /x D e�t x.

27 .x; y/ D .e4t ; e�4t / is a growing solution. The correct matrix for the exchangedu D
.y; x/ is

�
2 �2

�4 0

�
. It doeshave the same eigenvalues as the original matrix.

28 Centering producesU nC1 D
�

1 �t

��t 1 � .�t/2

�
U n. At �t D 1,

�
1 1

�1 0

�
has� D

ei�=3 ande�i�=3. Both eigenvalues have�6 D 1 soA6 D I . ThereforeU 6 D A6U 0

comes exactly back toU 0.

29
First A has� D ˙i andA4 D I .
SecondA has� D �1; �1 and An D .�1/n

�
1 � 2n �2n

2n 2n C 1

�
Linear growth.

30 With a D �t=2 the trapezoidal step isU nC1 D 1

1 C a2

�
1 � a2 2a

�2a 1 � a2

�
U n.

That matrix has orthonormal columns) orthogonal matrix) kU nC1k D kU nk
31 (a) .cosA/x D .cos�/x (b) �.A/ D 2� and0 so cos� D 1; 1 and cosA D I

(c) u.t / D 3.cos2�t/.1; 1/C1.cos0t/.1; �1/ Œ u 0 D Au hasexp; u 00 D Au hascos�co
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Problem Set 6.4, page 337

Note A way to complete the proof at the end of page334, (perturbing the matrix to pro-
duce distinct eigenvalues) is now on the course website: “Proofs of the Spectral Theorem.”
math.mit.edu/linearalgebra.

1 A D
"

1 3 6
3 3 3
6 3 5

#
C

"
0 �1 �2
1 0 �3
2 3 0

#
D 1

2
.A C AT/ C 1

2
.A � AT/

D symmetric C skew-symmetric:

2 .ATCA/T D ATC T.AT/T D ATCA. WhenA is 6 by 3, C will be 6 by 6 and the triple
productATCA is 3 by 3.

3 � D 0; 4; �2; unit vectorṡ .0; 1; �1/=
p

2 and˙.2; 1; 1/=
p

6 and˙.1; �1; �1/=
p

3.

4 � D 10 and�5 in ƒ D
�

10 0
0 �5

�
, x D

�
1
2

�
and

�
2

�1

�
have to be normalized to unit

vectors inQ D 1p
5

�
1 2
2 �1

�
.

5 Q D 1

3

"
2 1 2
2 �2 �1

�1 �2 2

#
.

The columns ofQ are unit eigenvectors ofA
Each unit eigenvector could be multiplied by�1

6 A D
�

9 12
12 16

�
has� D 0 and25 so the columns ofQ are the two eigenvectors:

Q D
�

:8 :6
�:6 :8

�
or we can exchange columns or reverse the signs of any column.

7 (a)

�
1 2
2 1

�
has� D �1 and3 (b) The pivots have the same signs as the�’s (c) trace

D �1 C �2 D 2, soA can’t have two negative eigenvalues.

8 If A3 D 0 then all�3 D 0 so all� D 0 as inA D
�

0 1
0 0

�
. If A is symmetricthen

A3 D Qƒ3QT D 0 requiresƒ D 0. The only symmetricA is Q 0 QT D zero matrix.

9 If � is complex then� is also an eigenvalue.Ax D �x/. Always� C � is real. The
trace is real so the third eigenvalue of a3 by 3 real matrix must be real.

10 If x is not real then� D xTAx=xTx is notalways real. Can’t assume real eigenvectors!

11

�
3 1
1 3

�
D 2

"
1
2

�1
2

�1
2

1
2

#
C4

"
1
2

1
2

1
2

1
2

#
;
�

9 12
12 16

�
D 0

�
:64 �:48

�:48 :36

�
C25

�
:36 :48
:48 :64

�

12 Œ x1 x2 � is an orthogonal matrix soP1 CP2 D x1xT
1 Cx2xT

2 D Œ x1 x2 �

"
xT

1

xT
2

#
D I ;

P1P2 D x1.xT
1x2/xT

2 D 0. Second proof:P1P2 D P1.I � P1/ D P1 � P1 D 0 since
P 2

1 D P1.

13 A D
�

0 b
�b 0

�
has� D ib and�ib. The block matrices

�
A 0
0 A

�
and

�
0 A
A 0

�
are

also skew-symmetric with� D ib (twice) and� D �ib (twice).co
nt
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68 Solutions to Exercises

14 M is skew-symmetric and orthogonal;�’s must bei , i , �i , �i to have trace zero.

15 A D
�

i 1
1 �i

�
has� D 0; 0 and only one independent eigenvectorx D .i; 1/. The

good property for complex matrices is notAT D A (symmetric) butA
T D A (Hermitian

with real eigenvalues and orthogonal eigenvectors: see Problem20 and Section10:2).

16 (a) If Az D �y andATy D �z thenBŒ y I �z � D Œ �AzI ATy � D ��Œ y I �z �. So
�� is also an eigenvalue ofB. (b) ATAz D AT.�y/ D �2z. (c) � D �1, �1, 1, 1;
x1 D .1; 0; �1; 0/, x2 D .0; 1; 0; �1/, x3 D .1; 0; 1; 0/, x4 D .0; 1; 0; 1/.

17 The eigenvalues ofB D
"

0 0 1
0 0 1
1 1 0

#
are0;

p
2; �

p
2 by Problem16 with x1 D

"
1

�1
0

#
,

x2 D

2
4

1
1p
2

3
5, x3 D

2
4

1
1

�
p

2

3
5.

18 1. y is in the nullspace ofA andx is in the column spaceD row space becauseA D
AT. Those spaces are perpendicular soyTx D 0.
2. If Ax D �x andAy D ˇy then shift by̌ : .A�ˇI /x D .��ˇ/x and.A�ˇI /y D
0 and againx?y.

19 A hasS D
"

1 1 0
1 �1 0
0 0 1

#
; B hasS D

"
1 0 1
0 1 0
0 0 2d

#
.

Perpendicular forA
Not perpendicular forB

sinceBT ¤ B

20 A D
�

1 3 C 4i
3 � 4i 1

�
is aHermitian matrix.A

T D A/. Its eigenvalues6 and�4 are

real. Adjust equations.1/–.2/ in the text to prove that� is always real whenA
T D A:

Ax D �x leads toAx D �x: Transpose toxTA D xT� usingA
T D A:

ThenxTAx D xT�x and alsoxTAx D xT�x: So� D � is real:

21 (a) False.A D
�

1 2
0 1

�
(b) True fromAT D QƒQT

(c) True fromA�1 D Qƒ�1QT (d) False!

22 A andAT have the same�’s but theorder of thex’s can change.A D
�

0 1
�1 0

�
has

�1 D i and�2 D �i with x1 D .1; i/ first for A butx1 D .1; �i/ first for AT.

23 A is invertible, orthogonal, permutation, diagonalizable, Markov;B is projection, di-
agonalizable, Markov.A allowsQR; SƒS�1; QƒQT; B allowsSƒS�1 andQƒQT.

24 Symmetry givesQƒQT if b D 1; repeated� and noS if b D �1; singular ifb D 0.

25 Orthogonal and symmetric requiresj�j D 1 and� real, so� D ˙1. ThenA D ˙I or

A D QƒQT D
�

cos� � sin�
sin� cos�

� �
1 0
0 �1

� �
cos� sin�

� sin� cos�

�
D

�
cos2� sin2�
sin2� � cos2�

�
.

26 Eigenvectors.1; 0/ and.1; 1/ give a45ı angle even withAT very close toA.co
nt

ro
len

gin
ee

rs
.ir



Solutions to Exercises 69

27 The roots of�2 C b� C c D 0 are 1
2

.�b ˙
p

b2 � 4ac/. Then�1 � �2 is
p

b2 � 4c.
For det.A C tB � �I / we haveb D �3 � 8t andc D 2 C 16t � t2. The minimum of
b2 � 4c is 1=17 at t D 2=17. Then�2 � �1 D 1=

p
17.

28 A D
�

4 2 C i
2 � i 0

�
D A

T
has real eigenvalues� D 5 and�1 with traceD 4 and

det D �5. The solution to20 proves that� is real whenA
T D A is Hermitian; I did

not intend to repeat this part.

29 (a) A D QƒQ T timesA T D Qƒ TQ T equalsA T timesA becauseƒƒ T D ƒ Tƒ

(diagonal!) (b) step2: The1; 1 entries ofT T T andT T T arejaj2 andjaj2 C jbj2.
This makesb D 0 andT D ƒ.

30 a11 is
�
q11 : : : q1n

� �
�1q11 : : : �nq1n

�T � �max
�
jq11j2 C � � � C jq1nj2

�
D �max.

31 (a) xT.Ax/ D .Ax/Tx D xTATx D �xTAx: (b) zTAz is pure imaginary, its real
part isxTAx C yTAy D 0 C 0 (c) detA D �1 : : : �n � 0 W pairs of�’s D ib; �ib.

32 SinceA is diagonalizable with eigenvalue matrixƒ D 2I , the matrixA itself has to be
SƒS�1 D S.2I /S�1 D 2I . (The unsymmetric matrixŒ2 1 I 0 2� also has� D 2; 2.)

Problem Set 6.5, page 350

1 Supposea > 0 andac > b2 so that alsoc > b2=a > 0. (i) The eigenvalues have
thesame signbecause�1�2 D detD ac � b2 > 0. (ii) That sign ispositivebecause
�1 C �2 > 0 (it equals the tracea C c > 0).

2 Only A4 D
�

1 10
10 101

�
has two positive eigenvalues.xTA1x D 5x2

1 C12x1x2 C7x2
2

is negative for example whenx1 D 4 andx2 D �3: A1 is not positive definite as its
determinant confirms.

3
Positive definite
for �3 < b < 3

�
1 0
b 1

� �
1 b

0 9 � b2

�
D

�
1 0
b 1

� �
1 0

0 9 � b2

� �
1 b
0 1

�
D LDLT

Positive definite
for c > 8

�
1 0
2 1

� �
2 4
0 c � 8

�
D

�
1 0
2 1

� �
2 0
0 c � 8

� �
1 2
0 1

�
D LDLT.

4 f .x; y/ D x2 C 4xy C 9y2 D .x C 2y/2 C 5y2; x2 C 6xy C 9y2 D .x C 3y/2.

5 x2 C 4xy C 3y2 D .x C 2y/2 � y2 D difference of squaresis negative atx D 2,
y D �1, where the first square is zero.

6 A D
�

0 1
1 0

�
producesf .x; y/ D

�
x y

� �
0 1
1 0

� �
x
y

�
D 2xy. A has� D 1 and

�1. ThenA is anindefinite matrixandf .x; y/ D 2xy has asaddle point.

7 RTR D
�

1 2
2 13

�
andRTR D

�
6 5
5 6

�
are positive definite;RTR D

"
2 3 3
3 5 4
3 4 5

#
is

singular (and positive semidefinite). The first twoR’s have independent columns. The
2 by 3 R cannot have full column rank3, with only 2 rows.

8 A D
�

3 6
6 16

�
D

�
1 0
2 1

� �
3 0
0 4

� �
1 2
0 1

�
.

Pivots3; 4 outside squares,̀ij inside.
xTAx D 3.x C 2y/2 C 4y2co
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9 A D
"

4 �4 8
�4 4 �8

8 �8 16

#
has only one pivotD 4, rankA D 1,
eigenvalues are24; 0; 0; detA D 0.

10 A D
"

2 �1 0
�1 2 �1

0 �1 2

#
has pivots
2;

3
2

;
4
3

;
B D

"
2 �1 �1

�1 2 �1
�1 �1 2

#
is singular;B

"
1
1
1

#
D

"
0
0
0

#
.

11 Corner determinantsjA1j D 2, jA2j D 6, jA3j D 30. The pivots are2=1; 6=2; 30=6.

12 A is positive definite forc > 1; determinantsc; c2 � 1, and.c � 1/2.c C 2/ > 0.
B is neverpositive definite (determinantsd � 4 and�4d C12 are never both positive).

13 A D
�

1 5
5 10

�
is an example witha C c > 2b butac < b2, so not positive definite.

14 The eigenvalues ofA�1 are positive because they are1=�.A/. And the entries ofA�1

pass the determinant tests. AndxTA�1x D .A�1x/TA.A�1x/ > 0 for all x ¤ 0.

15 SincexTAx > 0 andxTBx > 0 we havexT.A C B/x D xTAx C xTBx > 0 for
all x ¤ 0. ThenA C B is a positive definite matrix. The second proof uses the test
A D RTR (independent columns inR): If A D RTR andB D STS pass this test, then

A C B D
�
R S

�T
�

R
S

�
also passes, and must be positive definite.

16 xTAx is zero when.x1; x2; x3/ D .0; 1; 0/ because of the zero on the diagonal. Actu-
ally xTAx goesnegativefor x D .1; �10; 0/ because the second pivot isnegative.

17 If ajj were smaller than all�’s, A � ajj I would have all eigenvalues> 0 (positive
definite). ButA � ajj I has azeroin the.j; j / position; impossible by Problem 16.

18 If Ax D �x thenxTAx D �xTx. If A is positive definite this leads to� D xTAx=xTx >
0 (ratio of positive numbers). So positive energy) positive eigenvalues.

19 All cross terms arexT
i xj D 0 because symmetric matrices have orthogonal eigenvec-

tors. So positive eigenvalues) positive energy.

20 (a) The determinant is positive; all� > 0 (b) All projection matrices exceptI
are singular (c) The diagonal entries ofD are its eigenvalues (d)A D �I has
detD C1 whenn is even.

21 A is positive definite whens > 8; B is positive definite whent > 5 by determinants.

22 R D

2
41 �1

1 1

3
5

p
2

2
4

p
9 p

1

3
5

2
4 1 1

�1 1

3
5

p
2

D
�

2 1
1 2

�
; R D Q

�
4 0
0 2

�
QT D

�
3 1
1 3

�
.

23 x2=a2 C y2=b2 is xTAx whenA D diag.1=a2; 1=b2/. Then�1 D 1=a2 and�2 D
1=b2 so a D 1=

p
�1 andb D 1=

p
�2. The ellipse9x2 C 16y2 D 1 has axes with

half-lengthsa D 1
3

andb D 1
4
. The points.1

3
; 0/ and.0; 1

4
/ are at the ends of the axes.

24 The ellipsex2 C xy C y2 D 1 has axes with half-lengths1=
p

� D
p

2 and
p

2=3.

25 A D C TC D
�

9 3
3 5

�
;
�

4 8
8 25

�
D

�
1 0
2 1

� �
4 0
0 9

� �
1 2
0 1

�
andC D

�
2 4
0 3

�co
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26 The Cholesky factorsC D
�
L

p
D

�T
D

"
3 0 0
0 1 2
0 0 2

#
andC D

2
4

1 1 1
0 1 1

0 0
p

5

3
5 have

square rootsof the pivots fromD. Note againC TC D LDLT D A.

27 Writing outxTAx D xTLDLTx givesax2 C 2bxy C cy2 D a.x C b
a
y/2 C ac�b2

a
y2.

So theLDLT from elimination is exactly the same ascompleting the square. The
example2x2 C 8xy C 10y2 D 2.x C 2y/2 C 2y2 with pivots2; 2 outside the squares
and multiplier2 inside.

28 detA D .1/.10/.1/ D 10; � D 2 and5; x1 D .cos�; sin�/, x2 D .� sin�; cos�/; the
�’s are positive. SoA is positive definite.

29 H1 D
�

6x2 2x
2x 2

�
is semidefinite;f1 D .1

2
x2 C y/2 D 0 on the curve1

2
x2 C y D 0;

H2 D
�

6x 1
1 0

�
D

�
0 1
1 0

�
is indefinite at.0; 1/ where1st derivativesD 0. This is a

saddle point of the functionf2.x; y/.

30 ax2 C 2bxy C cy2 has a saddle point ifac < b2. The matrix isindefinite(� < 0 and
� > 0) because the determinantac � b2 is negative.

31 If c > 9 the graph ofz is a bowl, if c < 9 the graph has a saddle point. Whenc D 9
the graph ofz D .2x C 3y/2 is a “trough” staying at zero along the line2x C 3y D 0.

32 Orthogonal matrices, exponentialseAt , matrices with detD 1 are groups. Examples
of subgroups are orthogonal matrices with detD 1, exponentialseAn for integern.
Another subgroup: lower triangular elimination matricesE with diagonal1’s.

33 A productAB of symmetric positive definite matrices comes into many applications.
The “generalized” eigenvalue problemKx D �M x hasAB D M �1K. (often we use
eig.K; M / without actually invertingM .) All eigenvalues� are positive:

ABx D �x gives.Bx/TABx D .Bx/T�x: Then� D xTBTABx=xTBx > 0:

34 The five eigenvalues ofK are2 � 2 cosk�
6

D 2 �
p

3; 2 � 1; 2; 2 C 1; 2 C
p

3. The
product of those eigenvalues is6 D detK.

35 Put parentheses inxTATCAx D .Ax/TC.Ax/. SinceC is assumed positive definite,
this energy can drop to zero only whenAx D 0. SineA is assumed to have independent
columns,Ax D 0 only happens whenx D 0. ThusATCA has positive energy and is
positive definite.

My textbooksComputational Science and Engineeringand Introduction to Ap-
plied Mathematicsstart with many examples ofATCA in a wide range of applications.
I believe this is a unifying concept from linear algebra.

Problem Set 6.6, page 360

1 B DGCG�1 DGF �1AF G�1 soM DF G�1. C similar toA andB )A similar toB.

2 A D
�

1 0
0 3

�
is similar toB D

�
3 0
0 1

�
D M �1AM with M D

�
0 1
1 0

�
.co
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72 Solutions to Exercises

3 B D
�

1 0
0 0

�
D

�
1 0
1 1

��1 �
1 0
1 0

� �
1 0
1 1

�
D M �1AM ;

B D
�

1 �1
�1 1

�
D

�
1 0
0 �1

��1 �
1 1
1 1

� �
1 0
0 �1

�
;

B D
�

4 3
2 1

�
D

�
0 1
1 0

��1 �
1 2
3 4

� �
0 1
1 0

�
.

4 A has no repeated� so it can be diagonalized:S�1AS D ƒ makesA similar toƒ.

5

�
1 1
0 0

�
,

�
0 0
1 1

�
,

�
1 0
1 0

�
,

�
0 1
0 1

�
are similar (they all have eigenvalues1 and0).

�
1 0
0 1

�
is by itself and also

�
0 1
1 0

�
is by itself with eigenvalues1 and�1.

6 Eight familiesof similar matrices: six matrices have� D 0, 1 (one family); three
matrices have� D 1, 1 and three have� D 0, 0 (two families each!); one has� D
1, �1; one has� D 2, 0; two matrices have� D 1

2
.1 ˙

p
5/ (they are in one family).

7 (a) .M �1AM /.M �1x/ D M �1.Ax/ D M �10 D 0 (b) The nullspaces ofA and
of M �1AM have the samedimension. Different vectors and different bases.

8
Sameƒ
SameS ButA D

�
0 1
0 0

�
andB D

�
0 2
0 0

�
have the same line of eigenvectors
and the same eigenvalues� D 0; 0.

9 A2 D
�

1 2
0 1

�
, A3 D

�
1 3
0 1

�
, everyAk D

�
1 k
0 1

�
. A0 D

�
1 0
0 1

�
andA�1 D

�
1 �1
0 1

�
.

10 J 2 D
�

c2 2c
0 c2

�
andJ k D

�
ck kck�1

0 ck

�
; J 0 D I andJ �1 D

�
c�1 �c�2

0 c�1

�
.

11 u.0/ D
�

5
2

�
D

�
v.0/
w.0/

�
. The equation

du

dt
D

�
� 1
0 �

�
u has

dv

dt
D �v C w and

dw

dt
D �w. Thenw.t/ D 2e�t andv.t/ must include2te�t (this comes from the

repeated�). To matchv.0/ D 5, the solution isv.t/ D 2te�t C 5e�t .

12 If M �1JM DK thenJMD

2
664

m21 m22 m23 m24

0 0 0 0

m41 m42 m43 m44

0 0 0 0

3
775 D MKD

2
664

0 m12 m13 0
0 m22 m23 0

0 m32 m33 0

0 m42 m43 0

3
775.

That meansm21 D m22 D m23 D m24 D 0. M is not invertible,J not similar toK.

13 The five4 by 4 Jordan forms with� D 0; 0; 0; 0 areJ1 D zero matrix and

J2 D

2
64

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3
75 J3 D

2
64

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

3
75

J4 D

2
64

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

3
75 J5 D

2
64

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

3
75co
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Solutions to Exercises 73

Problem12 showed thatJ3 andJ4 arenot similar, even with the same rank. Every
matrix with all � D 0 is “nilpotent” (its nth power isAn D zero matrix). You see
J 4 D 0 for these matrices. How many possible Jordan forms forn D 5 and all� D 0?

14 (1) ChooseMi D reverse diagonal matrix to getM �1
i JiMi D M T

i in each block
(2) M0 has those diagonal blocksMi to getM �1

0 JM0 D J T. (3) AT D .M �1/TJ TM T

equals.M �1/TM �1
0 JM0M T D .MM0M T/�1A.MM0M T/, andAT is similar toA.

15 det.M �1AM � �I / D det.M �1AM � M �1�IM /. This is det.M �1.A � �I /M /.
By the product rule, the determinants ofM andM �1 cancel to leave det.A � �I /.

16

�
a b
c d

�
is similar to

�
d c
b a

�
;

�
b a
d c

�
is similar to

�
c d
a b

�
. So two pairs of similar

matrices but
�

1 0
0 1

�
is not similar to

�
0 1
1 0

�
: different eigenvalues!

17 (a) False: Diagonalize a nonsymmetricA D SƒS�1. Thenƒ is symmetric and similar

(b) True: A singular matrix has� D 0. (c) False:

�
0 1

�1 0

�
and

�
0 �1
1 0

�
are similar

(they have� D ˙1) (d) True: AddingI increases all eigenvalues by 1

18 AB D B�1.BA/B soAB is similar toBA. If ABx D �x thenBA.Bx/ D �.Bx/.

19 Diagonal blocks 6 by 6, 4 by 4;AB has the same eigenvalues asBA plus6 � 4 zeros.

20 (a) A D M �1BM ) A2 D .M �1BM /.M �1BM / D M �1B2M . SoA2 is similar
to B2. (b) A2 equals.�A/2 but A may not be similar toB D �A (it could be!).

(c)
�

3 1
0 4

�
is diagonalizableto

�
3 0
0 4

�
because�1 ¤ �2, sothesematrices are similar.

(d)

�
3 1
0 3

�
has only one eigenvector, sonot diagonalizable (e)PAP T is similar toA.

21 J 2 has three1’s down thesecondsuperdiagonal, andtwo independent eigenvectors for

� D 0. Its5 by 5 Jordan form is
�

J3

J2

�
with J3 D

"
0 1 0
0 0 1
0 0 0

#
andJ2 D

�
0 1
0 0

�
.

Note to professors: An interesting question:Which matricesA have (complex) square
rootsR2 D A? If A is invertible, no problem. But any Jordan blocks for� D 0 must
have sizesn1 � n2 � : : : � nk � nkC1 D 0 that come in pairs like 3 and 2 in this
example:n1 D (n2 or n2C1) andn3 D (n4 or n4C1) and so on.

A list of all 3 by 3 and 4 by 4 Jordan forms could be

"
a 0 0
0 b 0
0 0 c

#
,

"
a 1 0
0 a 0
0 0 b

#
,

"
a 1 0
0 a 1
0 0 a

#
(for any numbersa; b; c)
with 3; 2; 1 eigenvectors; diag.a; b; c; d/ and

2
64

a 1
a

b
c

3
75,

2
64

a 1
a

b 1
b

3
75,

2
64

a 1
a 1

a
b

3
75,

2
64

a 1
a 1

a 1
a

3
75 with 4; 3; 2; 1 eigenvectors.co
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74 Solutions to Exercises

22 If all roots are� D 0, this means that det.A � �I / must be just�n. The Cayley-
Hamilton Theorem in Problem 6.2.32 immediately says thatAn D zero matrix. The
key example is a singlen by n Jordan block (withn � 1 ones above the diagonal):
Check directly thatJ n D zero matrix.

23 CertainlyQ1R1 is similar toR1Q1 D Q�1
1 .Q1R1/Q1. ThenA1 D Q1R1 � cs2I is

similar toA2 D R1Q1 � cs2I:

24 A could have eigenvalues� D 2 and� D 1
2

(A could be diagonal). ThenA�1 has the
same two eigenvalues (and is similar toA).

Problem Set 6.7, page 371

1 ADU †V T D
�

u1 u2

� �
�1

0

� �
v1 v2

�T

D

2
41 3

3 �1

3
5

p
10

2
4

p
50 0
0 0

3
5

2
41 2

2 �1

3
5

p
5

2 ThisA D
�

1 2
3 6

�
is a2 by 2 matrix of rank1. Its row space has basisv1, its nullspace

has basisv2, its column space has basisu1, its left nullspace has basisu2:

Row space
1p
5

�
1
2

�
Nullspace

1p
5

�
2

�1

�

Column space
1p
10

�
1
3

�
; N .AT/

1p
10

�
3

�1

�
:

3 If A has rank1 then so doesATA. The only nonzero eigenvalue ofATA is its trace,
which is the sum of alla2

ij . (Each diagonal entry ofATA is the sum ofa2
ij down one

column, so the trace is the sum down all columns.) Then�1 D square root of this sum,
and�2

1 D this sum of alla2
ij .

4 ATA D AAT D
�

2 1
1 1

�
has eigenvalues�2

1 D 3 C
p

5

2
, �2

2 D 3 �
p

5

2
.

But A is
indefinite

�1 D .1 C
p

5/=2 D �1.A/; �2 D .
p

5 � 1/=2 D ��2.A/; u1 D v1 but u2 D �v2.
5 A proof thateigshow finds the SVD. WhenV 1 D .1; 0/; V 2 D .0; 1/ the demo finds

AV 1 andAV 2 at some angle� . A 90ı turn by the mouse toV 2; �V 1 findsAV 2 and
�AV 1 at the angle� � � . Somewhere between, the constantly orthogonalv1 andv2

must produceAv1 andAv2 at angle�=2. Those orthogonal directions giveu1 andu2.

6 AAT D
�

2 1
1 2

�
has�2

1 D 3 with u1 D
�

1=
p

2

1=
p

2

�
and�2

2 D 1 with u2 D
�

1=
p

2

�1=
p

2

�
.

ATA D
"

1 1 0
1 2 1
0 1 1

#
has �2

1 D 3 with v1 D

2
4

1=
p

6

2=
p

6

1=
p

6

3
5, �2

2 D 1 with v2 D

2
4

1=
p

2
0

�1=
p

2

3
5;

andv3 D

2
4

1=
p

3

�1=
p

3

1=
p

3

3
5. Then

�
1 1 0
0 1 1

�
D Œ u1 u2 �

�p
3 0 0

0 1 0

�
Œ v1 v2 v3 �T.co
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Solutions to Exercises 75

7 The matrixA in Problem6 had�1 D
p

3 and�2 D 1 in †. The smallest change to
rank1 is to make� 2 D 0. In the factorization

A D U †V T D u1�1vT
1 C u2�2vT

2

this change�2 ! 0 will leave the closest rank–1 matrix asu1�1vT
1. See Problem14

for the general case of this problem.

8 The number�max.A
�1/�max.A/ is the same as�max.A/=�min.A/. This is certainly� 1.

It equals1 if all � ’s are equal, andA D U †V T is a multiple of an orthogonal matrix.
The ratio�max=�min is the importantcondition number of A studied in Section9:2.

9 A D U V T since all�j D 1, which means that† D I .

10 A rank–1 matrix with Av D 12u would haveu in its column space, soA D uwT

for some vectorw. I intended (but didn’t say) thatw is a multiple of the unit vector
v D 1

2
.1; 1; 1; 1/ in the problem. ThenA D 12uvT to getAv D 12u whenvTv D 1.

11 If A has orthogonal columnsw1; : : : ; wn of lengths�1; : : : ; �n, thenATA will be di-
agonal with entries�2

1 ; : : : ; �2
n . So the� ’s are definitely the singular values ofA (as

expected). The eigenvalues of that diagonal matrixATA are the columns ofI , so
V D I in the SVD. Then theui areAvi=�i which is the unit vectorwi=�i .

The SVD of thisA with orthogonal columns isA D U †V T D .A†�1/.†/.I /:

12 SinceAT D A we have�2
1 D �2

1 and�2
2 D �2

2. But �2 is negative, so�1 D 3 and
�2 D 2. The unit eigenvectors ofA are the sameu1 D v1 as forATA D AAT and
u2 D �v2 (notice the sign change because�2 D ��2, as in Problem4).

13 Suppose the SVD ofR is R D U †V T. Then multiply byQ to getA D QR. So the
SVD of thisA is .QU /†V T. (OrthogonalQ times orthogonalU D orthogonalQU .)

14 The smallest change inA is to set its smallest singular value�2 to zero. See #7.

15 The singular values ofA C I are not�j C 1. They come from eigenvalues of
.A C I /T.A C I /.

16 This simulates the random walk used byGoogleon billions of sites to solveAp D p.
It is like the power method of Section9:3 except that it follows the links in one “walk”
where the vectorpk D Akp0 averages over all walks.

17 A D U †V T D Œcosines includingu4� diag.sqrt.2 �
p

2; 2; 2 C
p

2// Œsine matrix�T.
AV D U † says that differences of sines inV are cosines inU times� ’s.

The SVD of thederivativeonŒ0; �� with f .0/ D 0 hasu D sinnx, � D n, v D cosnx!

Problem Set 7.1, page 380

1 With w D 0 linearity givesT .v C 0/ D T .v/ C T .0/. ThusT .0/ D 0. With c D �1
linearity givesT .�0/ D �T .0/. This is a second proof thatT .0/ D 0.

2 CombiningT .cv/ D cT .v/ andT .dw/ D dT .w/ with addition givesT .cv C dw/ D
cT .v/ C dT .w/. Then one more addition givescT .v/ C dT .w/ C eT .u/.

3 (d) is not linear.co
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76 Solutions to Exercises

4 (a) S.T .v// D v (b) S.T .v1/ C T .v2// D S.T .v1// C S.T .v2//.

5 Choosev D .1; 1/ andw D .�1; 0/. ThenT .v/ C T .w/ D .v C w/ butT .v C w/ D
.0; 0/.

6 (a) T .v/ D v=kvk does not satisfyT .v C w/ D T .v/ C T .w/ or T .cv/ D cT .v/
(b) and (c) are linear (d) satisfiesT .cv/ D cT .v/.

7 (a)T .T .v//Dv (b) T .T .v//DvC.2; 2/ (c) T .T .v//D�v (d) T .T .v//DT .v/.

8 (a) The range ofT .v1; v2/ D .v1 � v2; 0/ is the line of vectors.c; 0/. The nullspace
is the line of vectors.c; c/. (b) T .v1; v2; v3/ D .v1; v2/ has RangeR2, kernel
{( 0; 0; v3)} (c) T .v/ D 0 has Rangef0g, kernelR2 (d) T .v1; v2/ D .v1; v1/
has Range = multiples of.1; 1/, kernel = multiples of.1; �1/.

9 If T .v1; v2; v3/ D .v2; v3; v1/ thenT .T .v// D .v3; v1; v2/; T 3.v/ D v; T 100.v/ D
T .v/.

10 (a) T .1; 0/D0 (b) .0; 0; 1/ is not in the range (c)T .0; 1/D0.

11 For multiplicationT .v/ D Av: V D Rn, W D Rm; the outputs fill the column space;
v is in the kernel ifAv D 0.

12 T .v/ D .4; 4/I .2; 2/I .2; 2/; if v D .a; b/ D b.1; 1/C a�b
2

.2; 0/ thenT .v/ D b.2; 2/C
.0; 0/.

13 Thedistributive law(page 69) givesA.M1 C M2/ D AM1 C AM2. Thedistributive
law overc’s givesA.cM / D c.AM /.

14 This A is invertible. Multiply AM D 0 andAM D B by A�1 to getM D 0 and
M D A�1B. The kernel contains only the zero matrixM D 0.

15 This A is not invertible.AM D I is impossible.A

�
2 2

�1 �1

�
D

�
0 0
0 0

�
. The range

contains only matricesAM whose columns are multiples of.1; 3/.

16 No matrix A givesA

�
0 0
1 0

�
D

�
0 1
0 0

�
. To professors: Linear transformations on

matrix space come from4 by 4 matrices. Those in Problems 13–15 were special.

17 ForT .M / D M T (a) T 2 D I is True (b) True (c) True (d) False.

18 T .I / D 0 butM D
�

0 b
0 0

�
D T .M /; theseM ’s fill the range. EveryM D

�
a 0
c d

�

is in the kernel. Notice that dim (range)C dim (kernel)D 3 C 1 D dim (input space of
2 by 2 M ’s).

19 T .T �1.M // D M soT �1.M / D A�1MB�1.

20 (a) Horizontal lines stay horizontal, vertical lines stay vertical (b) House squashes
onto a line (c) Vertical lines stay vertical becauseT .1; 0/ D .a11; 0/.

21 D D
�

2 0
0 1

�
doubles the width of the house.A D

�
:7 :7
:3 :3

�
projectsthe house (since

A2 D A from traceD 1 and� D 0; 1). The projection is onto the column space of

A D line through.:7; :3/. U D
�

1 1
0 1

�
will shearthe house horizontally: The point

at .x; y/ moves over to.x C y; y/.co
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22 (a) A D
�

a 0
0 d

�
with d > 0 leaves the houseAH sitting straight up (b)A D 3I

expands the house by3 (c) A D
�

cos� � sin�
sin� cos�

�
rotates the house.

23 T .v/ D �v rotates the house by180ı around the origin. Then the affine transformation
T .v/ D �v C .1; 0/ shifts the rotated house one unit to the right.

24 A code to add a chimney will be gratefully received!

25 This code needs a correction: add spaces between�10 10 �10 10

26

�
1 0
0 :1

�
compresses vertical distances by10 to 1.

�
:5 :5
:5 :5

�
projects onto the45ı line.

�
:5 :5

�:5 :5

�
rotates by45ı clockwise and contracts by a factor of

p
2 (the columns have

length1=
p

2).
�

1 1
1 0

�
has determinant�1 so the house is “flipped and sheared.” One

way to see this is to factor the matrix asLDLT:

�
1 1
1 0

�
D

�
1 0
1 1

� �
1

�1

� �
1 1
0 1

�
D (shear) (flip left-right) (shear):

27 Also 30 emphasizes that circles are transformed to ellipses (see figure in Section 6.7).

28 A code that adds two eyes and a smile will be included here with public credit given!

29 (a) ad � bc D 0 (b) ad � bc > 0 (c) jad � bcj D 1. If vectors to two
corners transform to themselves then by linearityT D I . (Fails if one corner is.0; 0/.)

30 The circle
v1

v2
transforms to the ellipse by rotating30ı and stretching the first

axis by2.

31 Linear transformations keep straight lines straight! And two parallel edges of a square
(edges differing by a fixedv) go to two parallel edges (edges differing byT .v/). So the
output is a parallelogram.

Problem Set 7.2, page 395

1
ForSv D d2v=dx2

v1, v2, v3, v4 D 1, x, x2, x3

Sv1 D Sv2 D 0, Sv3 D 2v1, Sv4 D 6v2;
The matrix forS is B D

2
64

0 0 2 0
0 0 0 6
0 0 0 0
0 0 0 0

3
75.

2 Sv D d2v=dx2 D 0 for linear functionsv.x/ D a C bx. All .a; b; 0; 0/ are in the
nullspace of the second derivative matrixB.

3 (Matrix A)2 D B when (transformationT )2 D S and output basis = input basis.co
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4 The third derivative matrix has6 in the.1; 4/ position; since the third derivative ofx3

is 6. This matrix also comes fromAB. The fourth derivative of a cubic is zero, andB2

is the zero matrix.

5 T .v1 C v2 C v3/ D 2w1 C w2 C 2w3; A times.1; 1; 1/ gives.2; 1; 2/.

6 v D c.v2 �v3/ givesT .v/ D 0; nullspace is.0; c; �c/; solutions.1; 0; 0/C .0; c; �c/.

7 .1; 0; 0/ is not in the column space of the matrixA, andw1 is not in the range of
the linear transformationT . Key point: Column spaceof matrix matchesrangeof
transformation.

8 We don’t knowT .w/ unless thew’s are the same as thev’s. In that case the matrix is
A2.

9 Rank ofA D 2 D dimension of therangeof T . The outputsAv (column space) match
the outputsT .v/ (the range ofT ). The “output space”W is like Rm: it contains all
outputs but may not be filled up.

10 The matrix forT is A D
"

1 0 0
1 1 0
1 1 1

#
. For the output

"
1
0
0

#
choose inputv D

"
1

�1
0

#
D

A�1

"
1
0
0

#
. This means: For the outputw1 choose the inputv1 � v2.

11 A�1 D
"

1 0 0
�1 1 0

0 �1 1

#
soT �1.w1/ D v1 � v2; T �1.w2/ D v2 � v3; T �1.w3/ D v3.

The columns ofA�1 describeT �1 from W back toV . The only solution toT .v/ D 0
is v D 0.

12 (c) T �1.T .w1// D w1 is wrong becausew1 is not generally in the input space.

13 (a) T .v1/ D v2; T .v2/ D v1 is its own inverse (b)T .v1/ D v1; T .v2/ D 0 has
T 2 D T (c) If T 2 D I for part (a) andT 2 D T for part (b), thenT must beI .

14 (a)

�
2 1
5 3

�
(b)

�
3 �1

�5 2

�
D inverse of (a) (c)A

�
2
6

�
must be2A

�
1
3

�
.

15 (a) M D
�

r s
t u

�
transforms

�
1
0

�
and

�
0
1

�
to

�
r
t

�
and

�
s
u

�
; this is the “easy” direc-

tion. (b) N D
�

a b
c d

��1

transforms in the inverse direction, back to the standard

basis vectors. (c)ad D bc will make the forward matrix singular and the inverse
impossible.

16 M W D
�

1 0
1 2

� �
2 1
5 3

��1

D
�

3 �1
�7 3

�
.

17 Recording basis vectors is done by aPermutation matrix. Changing lengths is done by
a positive diagonal matrix.

18 .a; b/ D .cos�; � sin�/. Minus sign fromQ�1 D QT.co
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19 M D
�

1 1
4 5

�
;

�
a
b

�
D

�
5

�4

�
D first column ofM �1 D coordinates of

�
1
0

�
in basis

�
1
4

� �
1
5

�
.

20 w2.x/ D 1 � x2; w3.x/ D 1
2
.x2 � x/; y D 4w1 C 5w2 C 6w3.

21 w’s to v’s:

"
0 1 0
:5 0 �:5
:5 �1 :5

#
: v’s to w’s: inverse matrixD

"
1 1 1
1 0 0
1 �1 1

#
. The key

idea: The matrix multiplies the coordinates in thev basis to give the coordinates in the
w basis.

22 The3 equations to match4; 5; 6 atx D a; b; c are

2
4

1 a a2

1 b b2

1 c c2

3
5

2
4

A

B

C

3
5 D

2
4

4

5

6

3
5. This

Vandermonde determinant equals.b � a/.c � a/.c � b/. Soa; b; c must be distinct to
have det¤ 0 and one solutionA; B; C .

23 The matrixM with these nine entries must be invertible.

24 Start fromA D QR. Column2 is a2 D r12q1 C r22q2. This givesa2 as a combination
of theq’s. So the change of basis matrix isR.

25 Start fromA D LU . Row 2 ofA is `21(row 1 of U / C `22 (row 2 of U ). The change
of basis matrix is alwaysinvertible, because basis goes to basis.

26 The matrix forT .vi / D �i vi is ƒ D diag.�1; �2; �3/.

27 If T is not invertible,T .v1/; : : : ; T .vn/ is not a basis. We couldn’t choosewi D T .vi /.

28 (a)
�

0 3
0 0

�
givesT .v1/ D 0 andT .v2/ D 3v1. (b)

�
1 0
0 0

�
givesT .v1/ D v1 and

T .v1 C v2/ D v1 (which combine intoT .v2/ D 0 by linearity).

29 T .x; y/ D .x; �y/ is reflection across thex-axis. Then reflect across they-axis to get
S.x; �y/ D .�x; �y/. ThusST D �I .

30 S takes.x; y/ to .�x; y/. S.T .v//D.�1; 2/. S.v/D.�2; 1/ andT .S.v//D.1; �2/.

31 Multiply the two reflections to get
�

cos2.� � ˛/ � sin2.� � ˛/
sin2.� � ˛/ cos2.� � ˛/

�
which is rotation

by2.� � ˛/. In words:.1; 0/ is reflected to have angle2˛, and that is reflected again to
angle2� � 2˛.

32 False: We will not knowT .v/ for energyv unless then v’s are linearly independent.

33 To find coordinates in the wavelet basis, multiply byW �1 D

2
66664

1
4

1
4

1
4

1
4

1
4

1
4

�1
4

�1
4

1
2

�1
2

0 0

0 0 1
2

�1
2

3
77775

.

Thene D 1
4
w1 C 1

4
w2 C 1

2
w3 andv D w3 C w4. Notice again:W tells us how the

bases change, W �1 tells us how the coordinates change.
34 The last step writes6, 6, 2, 2 as the overall average4, 4, 4, 4 plus the difference2, 2,

�2, �2. Thereforec1 D 4 andc2 D 2 andc3 D 1 andc4 D 1.co
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80 Solutions to Exercises

35 The wavelet basis is.1; 1; 1; 1; 1; 1; 1; 1/ and the long wavelet and two medium wavelets
.1; 1; �1; �1; 0; 0; 0; 0/; .0; 0; 0; 0; 1; 1; �1; �1/ and 4 wavelets with a single pair1; �1.

36 If V b D W c thenb D V �1W c. The change of basis matrix isV �1W .

37 Multiplying by

�
a b
c d

�
givesT .v1/ D A

�
1 0
0 0

�
D

�
a 0
c 0

�
D av1Ccv3. Similarly

T .v2/ D av2 C cv4 andT .v3/ D bv1 C dv3 andT .v4/ D bv2 C dv4. The matrix

for T in this basis is

2
64

a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d

3
75.

38 The matrix forT in this basis isA D
"

1 0 0 0
0 1 0 0
0 0 0 0

#
.

Problem Set 7.3, page 406

1 ATA D
�

10 20
20 40

�
has� D 50 and0, v1 D 1p

5

�
1
2

�
, v2 D 1p

5

�
2

�1

�
; �1 D

p
50.

2 Orthonormal bases:v1 for row space,v2 for nullspace,u1 for column space,u2 for
N.AT/. All matrices with those four subspaces are multiplescA, since the subspaces
are just lines. Normally many more matrices share the same4 subspaces. (For example,
all n by n invertible matrices shareRn.)

3 A D QH D 1p
50

�
7 �1
1 7

�
1p
50

�
10 20
20 40

�
. H is semidefinite becauseA is singular.

4 AC D V

�
1=

p
50 0

0 0

�
U T D 1

50

�
1 3
2 6

�
; ACA D

�
:2 :4
:4 :8

�
, AAC D

�
:1 :3
:3 :9

�
.

5 ATA D
�

10 8
8 10

�
has� D 18 and2, v1 D 1p

2

�
1
1

�
, v2 D 1p

2

�
1

�1

�
, �1 D

p
18

and�2 D
p

2.

6 AAT D
�

18 0
0 2

�
hasu1 D

�
1
0

�
, u2 D

�
0
1

�
. The same

p
18 and

p
2 go into†.

7
�

�1u1 �2u2

� �
vT

1

vT
2

�
D �1u1vT

1 C �2u2vT
2. In general this is�1u1vT

1 C � � � C �rurvT
r .

8 A D U †V T splits intoQK (polar): Q D U V T D 1p
2

�
1 1
1 �1

�
andK D V †V T D

�p
18 0

0
p

2

�
.

9 AC is A�1 becauseA is invertible. Pseudoinverse equals inverse whenA�1 exists!

10 ATA D
"

9 12 0
12 16 0
0 0 0

#
has� D 25; 0; 0 andv1 D

"
:6
:8
0

#
, v2 D

"
:8

�:6
0

#
, v3 D

"
0
0
1

#
.

HereA D Œ 3 4 0 � has rank1 andAAT D Œ 25 � and�1 D 5 is the only singular value
in † D Œ 5 0 0 �.co
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Solutions to Exercises 81

11 AD Œ 1 � Œ 5 0 0 �V T andACDV

"
:2
0
0

#
D

"
:12
:16

0

#
; ACAD

"
:36 :48 0
:48 :64 0

0 0 0

#
I AACDŒ 1 �

12 The zero matrix has no pivots or singular values. Then† D same2 by 3 zero matrix
and the pseudoinverse is the3 by 2 zero matrix.

13 If detA D 0 then rank.A/ < n; thus rank.AC/ < n and detAC D 0.
14 A must besymmetric and positive definite, if † D ƒ andU D V D eigenvector matrix

Q is orthogonal.
15 (a) ATA is singular (b) ThisxC in the row space does giveATAxC D ATb (c) If

.1; �1/ in the nullspace ofA is added toxC, we get another solution toATAbx D ATb.
But thisbx is longer thanxC because the added part is orthogonal toxC in the row
space.

16 xC in the row space ofA is perpendicular tobx � xC in the nullspace ofATA D
nullspace ofA. The right triangle hasc2 D a2 C b2.

17 AACp D p, AACe D 0, ACAxr D xr , ACAxn D 0.

18 AC D V †CU T is 1
5
Œ :6 :8 � D Œ :12 :16 � andACA D Œ 1 � andAAC D

�
:36 :48
:48 :64

�
D

projection.
19 L is determined bỳ 21. Each eigenvector inS is determined by one number. The

counts are1 C 3 for LU , 1 C 2 C 1 for LDU , 1 C 3 for QR, 1 C 2 C 1 for U †V T,
2 C 2 C 0 for SƒS�1.

20 LDLT andQƒQT are determined by1 C 2 C 0 numbers becauseA is symmetric.
21 Column times row multiplication givesA D U †V T D

P
�iui v

T
i and alsoAC D

V †CU T D
P

��1
i vi u

T
i . Multiplying ACA and using orthogonality of eachui to all

otheruj leaves the projection matrixACA: ACA D
P

1vi v
T
i . Similarly AAC DP

1ui u
T
i from V V T D I .

22 Keep only ther by r corner†r of † (the rest is all zero). ThenA D U †V T has the
required formA D bU M1†rM T

2
bV T with an invertibleM D M1†rM T

2 in the middle.

23

�
0 A

AT 0

� �
u
v

�
D

�
Av

ATu

�
D �

�
u
v

�
.

The singular values ofA are
eigenvaluesof this block matrix.

Problem Set 8.1, page 418

1 DetAT
0C0A0 D

"
c1 C c2 �c2 0

�c2 c2 C c3 �c3

0 �c3 c3 C c4

#
is by direct calculation. Setc4 D 0 to

find detAT
1C1A1 D c1c2c3.

2 .AT
1C1A1/�1 D

"
1 0 0
1 1 0
1 1 1

# 2
4

c�1
1

c�1
2

c�1
3

3
5

"
1 1 1
0 1 1
0 0 1

#
D

2
4

c�1
1 c�1

1 c�1
1

c�1
1 c�1

1 C c�1
2 c�1

1 C c�1
2

c�1
1 c�1

1 C c�1
2 c�1

1 C c�1
2 C c�1

3

3
5.co
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82 Solutions to Exercises

3 The rows of the free-free matrix in equation (9) add toŒ 0 0 0 � so the right side needs
f1 Cf2 Cf3 D 0. f D .�1; 0; 1/ givesc2u1 �c2u2 D �1; c3u2 �c3u3 D �1; 0 D 0.
ThenuparticularD .�c�1

2 � c�1
3 ; �c�1

3 ; 0/. Add any multiple ofunullspaceD .1; 1; 1/.

4
Z

� d

dx

�
c.x/

du

dx

�
dx D�

�
c.x/

du

dx

�1

0

D0 (bdry cond) so we need
Z

f .x/ dx D0.

5 � dy

dx
D f .x/ givesy.x/ D C �

Z x

0

f .t/dt . Theny.1/ D 0 givesC D
Z 1

0

f .t/dt

andy.x/ D
Z 1

x
f .t/dt . If the load isf .x/ D 1 then the displacement isy.x/ D 1 � x.

6 Multiply AT
1C1A1 as columns ofAT

1 times c’s times rows ofA1. The first3 by 3

“element matrix” c1E1 D Œ 1 0 0 �Tc1Œ 1 0 0 � hasc1 in the top left corner.

7 For 5 springs and4 masses, the5 by 4 A has two nonzero diagonals: allai i D 1
andaiC1;i D �1. With C D diag.c1; c2; c3; c4; c5/ we getK D ATCA, symmetric
tridiagonal with diagonal entriesKi i D ci C ciC1 and off-diagonalsKiC1;i D �ciC1.
With C D I thisK is the�1; 2; �1 matrix andK.2; 3; 3; 2/ D .1; 1; 1; 1/ solvesKu D
ones.4; 1/. (K�1 will solve Ku D ones.4/.)

8 The solution to�u00 D 1 with u.0/ D u.1/ D 0 is u.x/ D 1
2
.x � x2/. At x D 1

5
; 2

5
; 3

5
; 4

5

this givesuD2; 3; 3; 2 (discrete solution in Problem 7) times.�x/2 D1=25.

9 �u 00 D mg has complete solutionu.x/ D A C Bx � 1
2
mgx2. Fromu.0/ D 0 we

get A D 0. From u 0.1/ D 0 we getB D mg. Thenu.x/ D 1
2
mg.2x � x2/ at

x D 1
3
; 2

3
; 3

3
equalsmg=6; 4mg=9; mg=2. Thisu.x/ is not proportional to the discrete

u D .3mg; 5mg; 6mg/ at the meshpoints. This imperfection is because the discrete
problem uses a1-sided difference, less accurate at the free end. Perfect accuracy is
recovered by a centered difference (discussed on page21 of my CSE textbook).

10 (added in later printing, changing10-11 below into11-12). The solution in this fixed-
fixed case is.2:25; 2:50; 1:75/ so the second mass moves furthest.

11 The two graphs of100 points are “discrete parabolas” starting at.0; 0/: symmetric
around50 in the fixed-fixed case, ending with slope zero in the fixed-free case.

12 Forward/backward/centered fordu=dx has a big effect because that term has the large
coefficient. MATLAB: E D diag(ones.6; 1/; 1/; K D 64 � .2 � eye.7/ � E � E 0/;
D D 80 � .E� eye.7//; .K C D/nones.7; 1/; % forward; .K � D0/nones.7; 1/;
% backward;.K C D=2 � D 0=2/nones.7; 1/I % centered is usually the best: more
accurate

Problem Set 8.2, page 428

1 A D
"�1 1 0
�1 0 1

0 �1 1

#
; nullspace contains

"
c
c
c

#
;

"
1
0
0

#
is not orthogonal to that nullspace.

2 ATy D 0 for y D .1; �1; 1/; current along edge 1, edge 3, back on edge 2 (full loop).co
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Solutions to Exercises 83

3 Elimination on b1Œ A b � D
"�1 1 0 b1

�1 0 1 b2

0 �1 1 b3

#
leads to Œ U c � D

"�1 1 0 b1

0 �1 1 b2 � b1

0 0 0 b3 � b2 C b1

#
. The nonzero rows ofU come from edges 1 and 3

in a tree. The zero row comes from the loop (all 3 edges).

4 For the matrix in Problem 3,Ax D b is solvable forb D .1; 1; 0/ and not solvable
for b D .1; 0; 0/. For solvableb (in the column space),b must be orthogonal to
y D .1; �1; 1/; that combination of rows is the zero row, andb1 � b2 C b3 D 0 is the
third equation after elimination.

5 Kirchhoff’s Current LawATy D f is solvable forf D .1; �1; 0/ and not solvable
for f D .1; 0; 0/; f must be orthogonal to.1; 1; 1/ in the nullspace:f1Cf2Cf3 D 0.

6 ATAx D
"

2 �1 �1
�1 2 �1
�1 �1 2

#
x D

"
3

�3
0

#
D f producesx D

"
1

�1
0

#
C

"
c
c
c

#
; potentials

x D 1; �1; 0 and currents�Ax D 2, 1, �1; f sends 3 units from node 2 into node 1.

7 AT

"
1

2
2

#
A D

"
3 �1 �2

�1 3 �2
�2 �2 4

#
; f D

"
1
0

�1

#
yieldsx D

"
5=4
1

7=8

#
C any

"
c
c
c

#
;

potentialsx D 5
4
; 1; 7

8
and currents�CAx D 1

4
; 3

4
; 1

4
.

8 A D

2
6664

�1 1 0 0
�1 0 1 0

0 �1 1 0
0 �1 0 1
0 0 �1 1

3
7775 leads tox D

2
64

1
1
1
1

3
75 andy D

2
6664

�1
1

�1
0
0

3
7775 and

2
6664

0
0
1

�1
1

3
7775 solving

ATy D 0.

9 Elimination onAx D b always leads toyTb D 0 in the zero rows ofU and R:
�b1 C b2 � b3 D 0 andb3 � b4 C b5 D 0 (thosey ’s are from Problem 8 in the left
nullspace). This is Kirchhoff’sVoltageLaw around the twoloops.

10 The echelon form ofA isU D

2
6664

�1 1 0 0
0 �1 1 0
0 0 �1 1
0 0 0 0
0 0 0 0

3
7775

The nonzero rows ofU keep
edges 1, 2, 4. Other spanning trees
from edges, 1, 2, 5; 1, 3, 4; 1, 3, 5;
1, 4, 5; 2, 3, 4; 2, 3, 5; 2, 4, 5.

11 ATA D

2
64

2 �1 �1 0
�1 3 �1 �1
�1 �1 3 �1

0 �1 �1 2

3
75

diagonal entryD number of edges into the node
the trace is2 times the number of nodes
off-diagonal entryD �1 if nodes are connected
ATA is thegraph Laplacian, ATCA is weightedby C

12 (a) The nullspace and rank ofATA andA are always the same (b)ATA is always
positive semidefinite becausexTATAx D kAxk2 � 0. Not positive definite because
rank is only3 and.1; 1; 1; 1/ is in the nullspace (c) Real eigenvalues all� 0 because
positive semidefinite.co
nt
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84 Solutions to Exercises

13 ATCAx D

2
64

4 �2 �2 0
�2 8 �3 �3
�2 �3 8 �3

0 �3 �3 6

3
75 x D

2
64

1
0
0

�1

3
75

gives four potentialsx D . 5
12

; 1
6
; 1

6
; 0/

I groundedx4 D 0 and solved forx

currentsy D �CAx D .2
3
; 2

3
; 0; 1

2
; 1

2
/

14 ATCAx D 0 for x D c.1; 1; 1; 1/ D .c; c; c; c/. If ATCAx D f is solvable, thenf in
the column space (D row space by symmetry) must be orthogonal tox in the nullspace:
f1 C f2 C f3 C f4 D 0.

15 The number of loops in this connected graph isn � m C 1 D 7 � 7 C 1 D 1.
What answer if the graph has two separate components (no edges between)?

16 Start from (4 nodes)� (6 edges)C (3 loops)D 1. If a new node connects to1 old
node,5 � 7 C 3 D 1. If the new node connects to2 old nodes, a new loop is formed:
5 � 8 C 4 D 1.

17 (a) 8 independent columns (b)f must be orthogonal to the nullspace sof ’s add
to zero (c) Each edge goes into 2 nodes, 12 edges make diagonal entries sum to 24.

18 A complete graphhas5 C 4 C 3 C 2 C 1 D 15 edges. Withn nodes that count is
1 C � � � C .n � 1/ D n.n � 1/=2. Tree has5 edges.

Problem Set 8.3, page 437

1 Eigenvalues� D 1 and .75; (A � I /x D 0 gives the steady statex D .:6; :4/ with
Ax D x.

2 A D
�

:6 �1
:4 1

� �
1

:75

� �
1 1

�:4 :6

�
; A1 D

�
:6 �1
:4 �1

� �
1 0
0 0

� �
1 1

�:4 :6

�
D

�
:6 :6
:4 :4

�
.

3 � D 1 and:8, x D .1; 0/; 1 and�:8, x D .5
9
; 4

9
/; 1; 1

4
, and1

4
, x D .1

3
; 1

3
; 1

3
/.

4 AT always has the eigenvector.1; 1; : : : ; 1/ for � D 1, because each row ofAT adds
to 1. (Note again that many authors use row vectors multiplying Markov matrices.
So they transpose our form ofA.)

5 The steady state eigenvector for� D 1 is .0; 0; 1/ D everyone is dead.

6 Add the components ofAx D �x to find sums D �s. If � ¤ 1 the sum must bes D 0.

7 .:5/k ! 0 givesAk ! A1; anyA D
�

:6 C :4a :6 � :6a
:4 � :4a :4 C :6a

�
with

a � 1
:4 C :6a � 0

8 If P D cyclic permutation andu0 D .1; 0; 0; 0/ thenu1 D .0; 0; 1; 0/; u2 D .0; 1; 0; 0/;
u3 D .1; 0; 0; 0/; u4 D u0. The eigenvalues1; i; �1; �i are allon the unit circle. This
Markov matrix contains zeros; apositivematrix hasonelargest eigenvalue� D 1.

9 M 2 is still nonnegative;Œ 1 � � � 1 �M D Œ 1 � � � 1 � so multiply on the right byM to
find Œ 1 � � � 1 �M 2 D Œ 1 � � � 1 � ) columns ofM 2 add to 1.

10 � D 1 anda C d � 1 from the trace; steady state is a multiple ofx1 D .b; 1 � a/.

11 Last row:2; :3; :5 makesA D AT; rows also add to 1 so.1; : : : ; 1/ is also an eigenvector
of A.

12 B has� D 0 and�:5 with x1 D .:3; :2/ andx2 D .�1; 1/; A has� D 1 soA � I has
� D 0. e�:5t approaches zero and the solution approachesc1e0t x1 D c1x1.

13 x D .1; 1; 1/ is an eigenvector when the row sums are equal;Ax D .:9; :9; :9/co
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Solutions to Exercises 85

14 .I �A/.I CACA2C� � � / D .I CACA2C� � � /�.ACA2CA3C� � � / D I . This says that

I C A C A2 C � � � is .I � A/�1. WhenA D
�

0 :5
1 0

�
; A2 D 1

2
I; A3 D 1

2
A; A4 D 1

4
I

and the series adds to
�

1 C 1
2

C � � � 1
2

C 1
4

C � � �
1 C 1

2
C � � � 1 C 1

2
C � � �

�
D

�
2 1
2 2

�
D .I � A/�1.

15 The first twoA’s have�max < 1; p D
�

8
6

�
and

�
130
32

�
; I �

�
:5 1
:5 0

�
has no inverse.

16 � D 1 (Markov), 0 (singular),:2 (from trace). Steady state.:3; :3; :4/ and.30; 30; 40/.

17 No, A has an eigenvalue� D 1 and.I � A/�1 does not exist.

18 The Leslie matrix on page 435 has det.A��I / D det

"
F1 � � F2 F3

P1 �� 0
0 P2 ��

#
D ��3 C

F1�2 C F2P1� C F3P1P2. This is negative for large�. It is positive at� D 1
provided thatF1 C F2P1 C F3P1P2 > 1. Under this key condition, det.A � �I / must
be zero at some� between 1 and1. That eigenvalue means that the population grows
(under this condition connectingF ’s andP ’s reproduction and survival rates).

19 ƒ timesS�1�S has the same diagonal asS�1�S timesƒ becauseƒ is diagonal.

20 If B >A>0 andAx D�max.A/x >0 thenBx >�max.A/x and�max.B/>�max.A/.

Problem Set 8.4, page 446

1 Feasible setD line segment.6; 0/ to .0; 3/; minimum cost at.6; 0/, maximum at.0; 3/.

2 Feasible set has corners.0; 0/; .6; 0/; .2; 2/; .0; 6/. Minimum cost2x � y at .6; 0/.

3 Only two corners.4; 0; 0/ and.0; 2; 0/; let xi ! �1, x2 D 0, andx3 D x1 � 4.

4 From.0; 0; 2/ move tox D .0; 1; 1:5/ with the constraintx1 Cx2 C2x3 D 4. The new
cost is3.1/ C 8.1:5/ D $15 sor D �1 is the reduced cost. The simplex method also
checksx D .1; 0; 1:5/ with cost5.1/ C 8.1:5/ D $17; r D 1 means more expensive.

5 CostD 20 at start.4; 0; 0/; keepingx1Cx2C2x3 D 4 move to.3; 1; 0/ with cost 18 and
r D �2; or move to.2; 0; 1/ with cost 17 andr D �3. Choosex3 as entering variable
and move to.0; 0; 2/ with cost 14. Another step will reach.0; 4; 0/ with minimum cost
12.

6 If we reduce the Ph.D. cost to $1 or $2 (below the student cost of $3), the job will
go to the Ph.D. with cost vectorc D .2; 3; 8/ the Ph.D. takes 4 hours.x1 Cx2 C2x3 D
4/ and charges $8.

The teacher in the dual problem now hasy � 2; y � 3; 2y � 8 as constraints
ATy � c on the charge ofy per problem. So the dual has maximum aty D 2. The
dual cost is also $8 for 4 problems and maximumD minimum.

7 x D .2; 2; 0/ is a corner of the feasible set withx1 C x2 C 2x3 D 4 and the new
constraint2x1 Cx2 Cx3 D 6. The cost of this corner iscTx D .5; 3; 8/ � .2; 2; 0/ D
16. Is this the minimum cost?

Compute the reduced costr if x3 D 1 enters(x3 was previously zero). The two
constraint equations now requirex1 D 3 andx2 D �1. With x D .3; �1; 1/ the newco
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86 Solutions to Exercises

cost is3:5 � 1:3 C 1:8 D 20. This is higher than 16, so the originalx D .2; 2; 0/ was
optimal.

Note thatx3 D 1 led tox2 D �1 and a negativex2 is not allowed. Ifx3 reduced
the cost (it didn’t) we would not have used as much asx3 D 1.

8 yTb � yTAx D .ATy/Tx � cTx. The first inequality neededy � 0 andAx � b � 0.

Problem Set 8.5, page 451

1
R 2�

0 cos..j Ck/x/ dx D
h

sin..j Ck/x/
j Ck

i2�

0
D 0 and similarly

R 2�

0 cos..j �k/x/ dx D 0

Noticej � k ¤ 0 in the denominator. Ifj D k then
R 2�

0 cos2 jx dx D �.

2 Three integral tests show that1; x; x2 � 1
3

are orthogonal on the intervalŒ �1; 1 �:R 1

�1.1/.x/ dx D 0;
R 1

�1.1/.x2 � 1
3
/ dx D 0;

R 1

�1.x/.x2 � 1
3
/ dx D 0: Then

2x2 D 2.x2 � 1
3
/ C 0.x/ C 2

3
.1/. Those coefficients2; 0; 2

3
can come from integrating

f .x/ D 2x2 times the 3 basis functions and dividing by their lengths squared—in other
words usingaTb=aTa for functions (whereb is f .x/ anda is 1 orx or x2 � 1

3
) exactly

as for vectors.

3 One example orthogonal tov D .1; 1
2
; : : :/ is w D .2; �1; 0; 0; : : :/ with kwk D

p
5.

4
R 1

�1
.1/.x3 � cx/ dx D 0 and

R 1

�1
.x2 � 1

3
/.x3 � cx/ dx D 0 for all c (odd functions).

Choosec so that
R 1

�1 x.x3 � cx/ dx D Œ1
5
x5 � c

3
x3�1�1 D 2

5
� c 2

3
D 0. Thenc D 3

5
.

5 The integrals lead to the Fourier coefficientsa1 D 0, b1 D 4=�, b2 D 0.

6 From eqn. (3)ak D 0 andbk D 4=�k (odd k). The square wave haskf k2 D 2�.
Then eqn. (6) is2� D�.16=�2/. 1

12
C 1

32
C 1

52
C� � � /. That infinite series equals�2=8.

7 The �1; 1 odd square wave isf .x/ D x=jxj for 0 < jxj < �. Its Fourier series in
equation (8) is4=� timesŒsinxC.sin3x/=3C.sin5x=5/C� � � �. The sum of the firstN
terms has an interesting shape, close to the square wave except where the wave jumps
between�1 and1. At those jumps, the Fourier sum spikes the wrong way to˙1:09
(theGibbs phenomenon) before it takes the jump with the truef .x/:

This happens for the Fourier sums of all functions with jumps. It makes shock
waves hard to compute. You can see it clearly in a graph of the sum of10 terms.

8 kvk2 D 1C 1
2

C 1
4

C 1
8

C� � � D 2 sokvk D
p

2; kvk2 D 1Ca2 Ca4 C� � � D 1=.1�a2/

sokvk D 1=
p

1 � a2;
R 2�

0
.1 C 2 sinx C sin2 x/ dx D 2� C 0 C � sokf k D

p
3�.

9 (a) f .x/ D .1 C square wave/=2 so thea’s are 1
2
, 0, 0; : : : and theb’s are2=�, 0,

�2=3�, 0, 2=5�, . . . (b) a0 D
R 2�

0
x dx=2� D �, all otherak D 0, bk D �2=k.

10 The integral from�� to � or from 0 to2� (or from anya to a C 2�) is over one
complete period of the function. Iff .x/ is periodic this changes

R 2�

0
f .x/ dx toR �

0
f .x/ dxC

R 0

��
f .x/ dx. If f .x/ is odd, those integrals cancel to give

R
f .x/ dx D 0

over one period.

11 cos2 x D 1
2

C 1
2

cos2x; cos.x C �
3

/ D cosx cos�
3

� sinx sin �
3

D 1
2

cosx �
p

3
2

sinx.co
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12
d

dx

2
66664

1

cosx

sinx

cos2x

sin2x

3
77775

D

2
66664

0

� sinx

cosx

�2 sin2x

2 cos2x

3
77775

D

2
66664

0 0 0 0 0

0 0 �1 0 0

0 1 0 0 0

0 0 0 0 �2

0 0 0 2 0

3
77775

2
66664

1

cosx

sinx

cos2x

sin2x

3
77775

.
This shows the
differentiation matrix.

13 The square pulse withF.x/ D 1=h for �x � h=2 � x is an even function, so all sine
coefficientsbk are zero. The averagea0 and the cosine coefficientsak are

a0 D 1

2�

Z h=2

�h=2

.1=h/dx D 1

2�

ak D 1

�

Z h=2

�h=2

.1=h/ coskxdx D 2

�kh

�
sin

kh

2

�
which is

1

�
sinc

�
kh

2

�

(introducing the sinc function.sinx/=x). As h approaches zero, the numberx D kh=2
approaches zero, and.sinx/=x approaches 1. So all thoseak approach1=�.

The limiting “delta function” contains an equal amount of all cosines: a very ir-
regular function.

Problem Set 8.6, page 458

1 The diagonal matrixC D W TW is †�1 D
"

1
1

1=2

#
with no covariances (inde-

pendent trials). Then solveATCAbx D ATCb for this weighted least squares problem
(noticeCt C D instead ofC C Dt ):

Ax D bb is
0C C D D 1
1C C D D 2
2C C D D 4

or

"
0 1
1 1
2 1

# �
C
D

�
D

"
1
2
4

#
:

ATCA D
�

3 2
2 2:5

�
ATCb D

�
6
5

�
bx D

�
C
D

�
D

�
10=7
6=7

�
:

2 If the measurementb3 is totally unreliable and�2
3 D 1, then the best line will not

useb3. In this example, the systemAx D b becomes square (first two equations from
Problem1):

�
0 1
1 1

� �
C
D

�
D

�
1
2

�
gives

�
C
D

�
D

�
1
1

�
: The lineb D t C 1 fits exactly:

3 If �3 D 0 the third equation is exact. Then the best line hasCt C D D b3 which is
2C C D D 4. The errorsCt C D � b in the measurements att D 0 and1 areD � 1
andC C D � 2. SinceD D 4 � 2C from the exactb3 D 4, those two errors are
D � 1 D 3 � 2C andC C D � 2 D 2 � C . The sum of squares.3 � 2C/2 C .2 � C/2

is a minimum at8 D 5C (calculus or linear algebra in1D). Then C D 8=5 and
D D 4 � 2C D 4=5.co
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88 Solutions to Exercises

4 0; 1; 2 have probabilities1
4
; 1

2
; 1

4
and�2 D .0 � 1/2 1

4
C .1 � 1/2 1

2
C .2 � 1/2 1

4
D 1

2.

5 Mean.1
2
; 1

2
/. Independent flips lead to† D diag.1

4
; 1

4
/. TraceD �2

total D 1
2.

6 Meanm D p0 and variance�2 D .1 � p0/2p0 C .0 � p0/2.1 � p0/ D p0.1 � p0/.

7 Minimize P D a2�2
1 C.1�a/2�2

2 atP 0 D 2a�2
1 �2.1�a/�2

2 D 0I a D �2
2 =.�2

1 C�2
2 /

recovers equation (2) for the statistically correct choice with minimum variance.

8 Multiply L†LT D .AT†�1A/�1AT†�1††�1A.AT†�1A/�1 D P D .AT†�1A/�1.

9 The new grade matrixA has row3 D � row 1 and row4 D � row 2, so the rank is7.
The nullspace ofA now includes.1; �1; �1; 1/ as well as.1; 1; 1; 1/. Compare to the
grade matrix in Example 6 (not Example 5). The other two singular vectorsv1 andv2

for Example 6 are still correct for this newA.Av1 is still orthogonal toAv2):

A
�
2v1 2v2

�
D

2
64

3 �1 1 �3
�1 3 �3 1
�3 1 �1 �3

1 �3 3 �1

3
75

2
64

1 �1
�1 �1

1 1
�1 �1

3
75 D

2
64

8 �4
�8 �4
�8 4

8 4

3
75 :

Those last orthogonal columns are multiples of the orthonormalu1 andu2. This matrix
A has�1 D 8 and �2 D 4 (only two singular values since the rank is2). If you
computeATA to find those singular vectorsv1 andv2 from scratch, notice that its trace
is �2

1 C �2
2 D 64 C 16 D 80:

ATA D

2
64

20 �12 �20 12
�12 20 12 �20
�20 12 20 �12

12 �20 �12 20

3
75 :

Problem Set 8.7, page 463

1 .x; y; z/ has homogeneous coordinates.cx; cy; cz; c/ for c D 1 and allc ¤ 0.

2 For an affine transformation we also needT (origin), becauseT .0/ need not be0 for
affine T . Including this translation byT .0/, .x; y; z; 1/ is transformed toxT .i / C
yT .j / C zT .k/ C T .0/.

3 T T1 D

2
64

1
1

1
1 4 3 1

3
75

2
64

1
1

1
0 2 5 1

3
75D

2
64

1
1

1
1 6 8 1

3
75 is translation along.1; 6; 8/.

4 S D diag.c; c; c; 1/; row 4 ofST andTS is 1; 4; 3; 1 andc; 4c; 3c; 1; usevTS !

5 S D
"

1=8:5
1=11

1

#
for a 1 by 1 square, starting from an8:5 by 11 page.

6 Œ x y z 1 �

2
64

1
1

1
�1 �1 �2 1

3
75

2
64

2
2

2
1

3
75 D Œ x y z 1 �

2
64

2
2

2
�2 �2 �4 1

3
75.

The first matrix translates by.�1; �1; �2/. The second matrix rescales by 2.co
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Solutions to Exercises 89

7 The three parts ofQ in equation (1) are.cos�/I and.1 � cos�/aaT and� sin�.a�/.
ThenQa D a becauseaaTa D a(unit vector) anda� a D 0.

8 If aTb D 0 and those three parts ofQ (Problem 7) multiplyb, the results inQb are
.cos�/b andaaTb D 0 and.� sin�/a� b. The component alongb is .cos�/b.

9 n D
�

2

3
;

2

3
;

1

3

�
hasP D I � nnT D 1

9

"
5 �4 �2

�4 5 �2
�2 �2 8

#
. Noticeknk D 1.

10 We can choose.0; 0; 3/ on the plane and multiplyT�P TC D 1
9

2
64

5 �4 �2 0
�4 5 �2 0
�2 �2 8 0

6 6 3 9

3
75.

11 .3; 3; 3/ projects to1
3
.�1; �1; 4/ and.3; 3; 3; 1/ projects to.1

3
; 1

3
; 5

3
; 1/. Row vectors!

12 The projection of a square onto a plane is a parallelogram (or a line segment). The
sides of the square are perpendicular, but their projections may not be (xTy D 0 but
.P x/T.P y/ D xTP TP y D xTP y may be nonzero).

13 That projection of a cube onto a plane produces a hexagon.

14 .3; 3; 3/.I � 2nnT/ D
�

1

3
;

1

3
;

1

3

� "
1 �8 �4

�8 1 �4
�4 �4 7

#
D

�
�11

3
; �11

3
; �1

3

�
.

15 .3; 3; 3; 1/ ! .3; 3; 0; 1/ !
�
�7

3
; �7

3
; �8

3
; 1

�
!

�
�7

3
; �7

3
; 1

3
; 1

�
.

16 Just subtracting vectors would givev D .x; y; z; 0/ ending in0 (not 1). In homoge-
neous coordinates, add avector to a point.

17 Space is rescaled by1=c because.x; y; z; c/ is the same point as.x=c; y=c; z=c; 1/.

Problem Set 9.1, page 472

1 Without exchange, pivots:001 and 1000; with exchange, 1 and�1. When the pivot is

larger than the entries below it, allj`ij j D jentry/pivotj � 1. A D
"

1 1 1
0 1 �1

�1 1 1

#
.

2 The exact inverse ofhilb(3) is A�1 D
"

9 �36 30
�36 192 �180

30 �180 180

#
.

3 A

"
1
1
1

#
D

"
11=6

13=12
47=60

#
D

"
1:833
1:083
0:783

#
compares withA

"
0
6

�3:6

#
D

"
1:80
1:10
0:78

#
.k�bk < :04 but
k�xk > 6:

The difference.1; 1; 1/ � .0; 6; �3:6/ is in a direction�x that hasA�x near zero.

4 The largestkxk D kA�1bk iskA�1k D 1=�min sinceAT D A; largest error10�16=�min.

5 Each row ofU has at mostw entries. Thenw multiplications to substitute components
of x (already known from below) and divide by the pivot. Total forn rows< wn.

6 The triangularL�1, U �1, R�1 need1
2
n2 multiplications.Q needsn2 to multiply the

right side byQ�1 D QT. SoQRx D b takes 1.5 times longer thanLU x D b.co
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7 U U �1 D I : Back substitution needs1
2
j 2 multiplications on columnj , using thej

by j upper left block. Then1
2
.12 C 22 C � � � C n2/ � 1

2
.1

3
n3/ D total to findU �1.

8

�
1 0
2 2

�
!

�
2 2
1 0

�
!

�
2 2
0 �1

�
D U with P D

�
0 1
1 0

�
and L D

�
1 0
:5 1

�
;

A !
"

2 2 0
1 0 1
0 2 0

#
!

"
2 2 0
0 �1 1
0 2 0

#
!

"
2 2 0
0 2 0
0 �1 1

#
!

"
2 2 0
0 2 0
0 0 1

#
D U with

P D
"

0 1 0
0 0 1
1 0 0

#
andL D

"
1 0 0
0 1 0
:5 �:5 1

#
.

9 A D

2
64

1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

3
75 has cofactorsC13 D C31 D C24 D C42 D 1 andC14 D C41 D

�1. A�1 is a full matrix!

10 With 16-digit floating point arithmetic the errorskx � xcomputedk for " D 10�3, 10�6,
10�9, 10�12, 10�15 are of order10�16, 10�11, 10�7, 10�4, 10�3.

11 (a) cos� D 1=
p

10, sin� D �3=
p

10, R D 1p
10

�
1 3

�3 1

� �
1 �1
3 5

�
D 1p

10

�
10 14
0 8

�
.

(b) A has eigenvalues4 and2. Put one of the unit eigenvectors in row1 of Q: either

Q D 1p
2

�
1 �1
1 1

�
andQAQ�1 D

�
2 �4
0 4

�
or Q D 1p

10

�
1 �3
3 1

�
andQAQ�1 D

�
4 �4
0 2

�
.

12 WhenA is multiplied by a plane rotationQij , this changes the2n (not n2) entries in
rows i andj . Then multiplying on the right by.Qij /�1 D .Qij /T changes the2n
entries in columnsi andj .

13 Qij A uses4n multiplications (2 for each entry in rowsi andj /. By factoring out cos� ,
the entries 1 anḋ tan� need only2n multiplications, which leads to2

3
n3 for QR.

14 The .2; 1/ entry of Q21A is 1
3
.� sin� C 2 cos�/. This is zero if sin� D 2 cos� or

tan� D 2. Then the2; 1;
p

5 right triangle has sin� D 2=
p

5 and cos� D 1=
p

5.

Every3 by 3 rotation with detQ D C1 is the product of3 plane rotations.

15 This problem shows how elimination is more expensive (the nonzero multipliers are
counted bynnz(L) andnnz(LL)) when we spoil the tridiagonalK by a random per-
mutation.

If on the other hand we start with a poorly ordered matrixK, an improved ordering
is found by the codesymamddiscussed in this section.

16 The “red-black ordering” puts rows and columns1 to 10 in the odd-even order1; 3; 5; 7,
9; 2; 4; 6; 8; 10. WhenK is the�1; 2; �1 tridiagonal matrix, odd points are connectedco

nt
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only to even points (and2 stays on the diagonal, connecting every point to itself):

K D

2
64

2 �1
�1 2 �1

� � �
�1 2

3
75 andPKP T D

�
2I D
DT 2I

�
with

D D

2
6664

�1
�1 �1

0 �1 �1
�1 �1

�1 �1

3
7775

1 to 2
3 to 2; 4
5 to 4; 6
7 to 6; 8
9 to 8; 10

17 Jeff Stuart’sShake a Stickactivity has long sticks representing the graphs of two linear
equations in thex-y plane. The matrix is nearly singular and Section9:2 shows how to
compute its condition numberc D kAkkA�1k D �max=�min � 80; 000:

A D
"

1 1:0001

1 1:0000

#
kAk � 2 A�1 D 10000

"
�1 1:0001

1 �1

# kA�1k � 20000

c � 40000:

Problem Set 9.2, page 478

1 kAk D 2, kA�1k D 2, c D 4; kAk D 3, kA�1k D 1, c D 3; kAk D 2 C
p

2 D
�max for positive definiteA, kA�1k D 1=�min, c D .2 C

p
2/=.2 �

p
2/ D 5:83.

2 kAk D 2; c D 1I kAk D
p

2; c D infinite (singular matrix);ATA D 2I , kAk D
p

2,
c D 1.

3 For the first inequality replacex by Bx in kAxk � kAkkxk; the second inequality is
justkBxk � kBkkxk. ThenkABk D max.kABxk=kxk/ � kAkkBk.

4 1 D kIk D kAA�1k � kAkkA�1k D c.A/.

5 If ƒmax D ƒmin D 1 then allƒi D 1 andA D SIS�1 D I . The only matrices with
kAk D kA�1k D 1 areorthogonal matrices.

6 All orthogonal matrices have norm1, so kAk � kQkkRk D kRk and in reverse
kRk � kQ�1kkAk D kAk, thenkAk D kRk. Inequality is usual inkAk < kLkkU k
whenATA ¤ AAT. Usenorm on a randomA.

7 The triangle inequality giveskAx C Bxk � kAxk C kBxk. Divide bykxk and take
the maximum over all nonzero vectors to findkA C Bk � kAk C kBk.

8 If Ax D �x thenkAxk=kxk D j�j for that particular vectorx. When we maximize
the ratio over all vectors we getkAk � j�j.

9 A C B D
�

0 1
0 0

�
C

�
0 0
1 0

�
D

�
0 1
1 0

�
has�.A/ D 0 and�.B/ D 0 but�.A C B/ D 1.

The triangle inequalitykA CBk � kAk CkBk fails for �.A/. AB D
�

1 0
0 0

�
also has

�.AB/ D 1; thus�.A/ D maxj�.A/j = spectral radius is not a norm.co
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10 (a) The condition number ofA�1 is kA�1kk.A�1/�1k which is kA�1kkAk D c.A/.
(b) SinceATA andAAT have the same nonzero eigenvalues,A andAT have the same
norm.

11 Use the quadratic formula for�max=�min, which isc D �max=�min since thisA D AT is
positive definite:

c.A/ D
�
1:00005 C

p
.1:00005/2 � :0001

�
=

�
1:00005 �

p �
� 40; 000:

12 det.2A/ is not2 detAI det.A C B/ is not always less than detA C detB; takingj detAj
does not help. The only reasonable property is detAB D .detA/.detB/. The condition
number should not change whenA is multiplied by 10.

13 The residualb � Ay D .10�7; 0/ is much smaller thanb � Az D .:0013; :0016/. But
z is much closer to the solution thany.

14 detA D 10�6 soA�1 D 103

�
659 �563

�913 780

�
: kAk > 1, kA�1k > 106, thenc > 106.

15 x D .1; 1; 1; 1; 1/ haskxk D
p

5; kxk1 D 5; kxk1 D 1. x D .:1; :7; :3; :4; :5/ has
kxk D 1; kxk1 D 2 (sum)kxk1 D :7 (largest).

16 x2
1C� � �Cx2

n is not smaller than max.x2
i / and not larger than.jx1jC� � �Cjxnj/2 D kxk2

1.
x2

1 C � � � C x2
n � n max.x2

i / sokxk �
p

nkxk1. Chooseyi D signxi D ˙1 to get
kxk1 D x � y � kxkkyk D

p
nkxk. x D .1; : : : ; 1/ haskxk1 D

p
n kxk.

17 For the`1 norm, the largest component ofx plus the largest component ofy is not
less thankx C yk1 D largest component ofx C y.

For the`1 norm, each component hasjxi C yi j � jxi j C jyi j. Sum oni D 1 to n:
kx C yk1 � kxk1 C kyk1.

18 jx1j C 2jx2j is a norm but min.jx1j; jx2j/ is not a norm. kxk C kxk1 is a norm;
kAxk is a norm providedA is invertible (otherwise a nonzero vector has norm zero;
for rectangularA we require independent columns to avoidkAxk D 0).

19 xTy D x1y1 C x2y2 C � � � � .maxjyi j/.jx1j C jx2j C � � � / D jjxjj1 jjy jj1.

20 With �j D 2�2 cos.j�=nC1/, the largest eigenvalue is�n � 2C2 D 4. The smallest

is �1 D 2�2 cos.�=nC1/ �
�

�
nC1

�2
, using2 cos� � 2��2. So the condition number

is c D �max=�min � .4=�2/ n2, growing withn.

21 A D
�

1 1
0 1:1

�
hasAn D

�
1 q
0 .1:1/n

�
with q D 1 C 1:1 C � � � C .1:1/n�1 D

.1:1n � 1/=.1:1 � 1/ � 1:1n=:1. So the growing part ofAn is 1:1n

�
0 10
0 1

�
with

jjAnjj �
p

101 times1:1n for larger n.

Problem Set 9.3, page 489

1 The iterationxkC1 D .I � A/xk C b hasS D I andT D I � A andS�1T D I � A.co
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2 If Ax D �x then.I �A/x D .1��/x. Real eigenvalues ofB D I �A havej1��j < 1
provided� is between 0 and 2.

3 This matrixA hasI � A D
�

�1 1
1 �1

�
which hasj�j D 2. The iteration diverges.

4 Always kABk � kAkkBk. ChooseA D B to find kB2k � kBk2. Then chooseA D
B2 to find kB3k � kB2kkBk � kBk3. Continue (or use induction) to findkBkk �
kBkk. SincekBk � maxj�.B/j it is no surprise thatkBk < 1 gives convergence.

5 Ax D 0 gives.S � T /x D 0. ThenSx D T x andS�1T x D x. Then� D 1 means
that the errors do not approach zero. We can’t expect convergence whenA is singular
andAx D b is unsolvable!

6 Jacobi hasS�1T D 1
3

�
0 1
1 0

�
with j�jmax D 1

3
. Small problem, fast convergence.

7 Gauss-Seidel hasS�1T D
"

0 1
3

0 1
9

#
with j�jmax D 1

9
which is.j�jmax for Jacobi)2.

8 Jacobi hasS�1T D
�

a
d

��1 �
0 �b

�c 0

�
D

�
0 �b=a

�c=d 0

�
with j�j D jbc=ad j1=2.

Gauss-Seidel hasS�1T D
�

a 0
c d

��1 �
0 �b
0 0

�
D

�
0 �b=a
0 �bc=ad

�
with j�j D jbc=ad j.

So Gauss-Seidel is twice as fast to converge.or to explode ifjbcj > jad j/.
9 Set the trace2�2! C 1

4
!2 equal to.! �1/C.! �1/ to find!opt D 4.2�

p
3/ � 1:07.

The eigenvalues! � 1 are about .07, a big improvement.

10 Gauss-Seidel will converge for the�1; 2; �1 matrix. j�jmax D cos2.�=n C 1/ is given
on page 485, with the improvement from successive over relaxation.

11 If the iteration gives allxnew
i D xold

i then the quantity in parentheses is zero, which
meansAx D b. For Jacobi changexnew on the right side toxold.

12 A lot of energy went into SOR in the 1950’s! Now incompleteLU is simpler and
preferred.

13 uk=�k
1 D c1x1 Cc2x2.�2=�1/k C� � �Ccnxn.�n=�1/k ! c1x1 if all ratios j�i =�1j <

1. The largest ratio controls the rate of convergence (whenk is large). A D
�

0 1
1 0

�

hasj�2j D j�1j and no convergence.

14 The eigenvectors ofA and alsoA�1 arex1 D .:75; :25/ andx2 D .1; �1/. The inverse
power method converges to a multiple ofx2, sincej1=�2j > j1=�1j.

15 In the j th component ofAx1; �1 sin j�
nC1

= 2 sin j�
nC1

� sin .j �1/�
nC1

� sin .j C1/�
nC1

.

The last two terms combine into�2 sin j�
nC1

cos �
nC1

. Then�1 D 2 � 2 cos �
nC1

.

16 A D
�

2 �1
�1 2

�
producesu0 D

�
1
0

�
, u1 D

�
2

�1

�
, u2 D

�
5

�4

�
, u3 D

�
14

�13

�
. This

is converging to the eigenvector direction
�

1
�1

�
with largest eigenvalue� D 3. Divide

uk by kukk.co
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17 A�1 D 1

3

�
2 1
1 2

�
givesu1 D 1

3

�
2
1

�
, u2 D 1

9

�
5
4

�
, u3 D 1

27

�
14
13

�
! u1 D

�
1=2
1=2

�
.

18 R D QTA D
�

1 cos� sin�

0 � sin2 �

�
andA1 D RQ D

�
cos�.1 C sin2 �/ � sin3 �

� sin3 � � cos� sin2 �

�
.

19 If A is orthogonal thenQ D A andR D I . ThereforeA1 D RQ D A again, and the
“QR method” doesn’t move fromA. But shiftA slightly and the method goes quickly
to ƒ.

20 If A � cI D QR thenA1 D RQ C cI D Q�1.QR C cI /Q D Q�1AQ. No change
in eigenvalues becauseA1 is similar toA.

21 Multiply Aqj D bj �1qj �1 Caj qj Cbj qj C1 by qT
j to findqT

j Aqj D aj (because the
q’s are orthonormal). The matrix form (multiplying by columns) isAQ D QT where
T is tridiagonal. The entries down the diagonals ofT are thea’s andb’s.

22 Theoretically theq’s are orthonormal. In reality this important algorithm is not very
stable. We must stop every few steps to reorthogonalize—or find another more stable
way to orthogonalizeq; Aq; A2q; : : :

23 If A is symmetric thenA1 D Q�1AQ D QTAQ is also symmetric.A1 D RQ D
R.QR/R�1 D RAR�1 hasR andR�1 upper triangular, soA1 cannot have nonzeros
on a lower diagonal thanA. If A is tridiagonal and symmetric then (by using symmetry
for the upper part ofA1/ the matrixA1 D RAR�1 is also tridiagonal.

24 The proof ofj�j < 1 when every absolute row sum< 1 usesj
P

aij xj j �
P

jaij jjxi j <
jxi j. (Herexi is the largest component.) The application to the Gershgorin circle theo-
rem (very useful) is printed after its statement in this problem.

25 For A andK, the maximum row sums give allj�j � 1 and all j�j � 4. The circles
j� � :5j � :5 andj� � :4j � :6 around diagonal entries ofA give tighter bounds. The
circle j� � 2j � 2 for K contains the circlej� � 2j � 1 and all three eigenvalues
2 C

p
2; 2, and2 �

p
2.

26 With diagonal dominanceai i > ri , the circlesj� � ai i j � ri don’t include� D 0
(so A is invertible!). Notice that the�1; 2; �1 matrix is also invertible even though its
diagonals are only weakly dominant. Theyequal the off-diagonal row sums,2 D 2
except in the first and last rows, and more care is needed to prove invertibility.

27 From the last line of code,q2 is in the direction ofv D Aq1 � h11q1 D Aq1 �
.qT

1Aq1/q1. The dot product withq1 is zero. This is Gram-Schmidt withAq1 as the
second input vector.

28 Note The five lines in Solutions to Selected Exercises prove two key properties of
conjugate gradients—the residualsrk D b � Axk are orthogonal and the search direc-
tions areA-orthogonal.pT

i Api D 0/. Then each new guessxkC1 is theclosest vector
to x among all combinations ofb, Ab, Akb. Ordinary iterationSxkC1 D T xk C b
does not find this best possible combinationxkC1.

The solution to Problem 28 in this Fourth Edition is straightforward and important.
SinceH D Q�1AQ D QTAQ is symmetric ifA D AT, and sinceH has only one
lower diagonal by construction, thenH has only one upper diagonal:H is tridiagonal
and all the recursions in Arnoldi’s method have only 3 terms (Problem 29).co
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29 H D Q�1AQ is similar to A, so H has the same eigenvalues asA (at the end of
Arnoldi). When Arnoldi stops sooner because the matrix size is large, the eigenvalues
of Hk (calledRitz values) are close to eigenvalues ofA. This is an important way to
compute approximations to� for large matrices.

30 In principle the conjugate gradient method converges in 100 (or 99) steps to the exact
solutionx. But it is slower than elimination and its all-important property is to give
good approximations tox much sooner. (Stopping elimination part way leaves you
nothing.) The problem asks how closex10 andx20 are tox100, which equalsx except
for roundoff errors.

Problem Set 10.1, page 498

1 (a)(b)(c) have sums4, �2 C 2i , 2 cos� and products5, �2i , 1. Note.ei� /.e�i�/ D 1.

2 In polar form these are
p

5ei� , 5e2i� , 1p
5
e�i� ,

p
5.

3 The absolute values arer D 10, 100, 1
10

, and100. The angles are� , 2� , �� and�2� .

4 jz � wj D 6, jz C wj � 5, jz=wj D 2
3
, jz � wj � 5.

5 a C ib D
p

3
2

C 1
2
i , 1

2
C

p
3

2
i , i , �1

2
C

p
3

2
i ; w12 D 1.

6 1=z has absolute value1=r and angle�� ; .1=r/e�i� timesrei� equals1.

7

�
a �b
b a

� �
c
d

� �
ac � bd
bc C ad

�
real part
imaginary part

�
1 �3
3 1

� �
1

�3

�
D

�
10
0

�
is the matrix

form of .1 C 3i/.1 � 3i/ D 10.

8

�
A1 �A2

A2 A1

� �
x1

x2

�
D

�
b1

b2

�
gives complex matrixD vector multiplication.A1 C

iA2/.x1 C ix2/ D b1 C ib2.

9 2 C i ; .2 C i/.1 C i/ D 1 C 3i ; e�i�=2 D �i ; e�i� D �1; 1�i
1Ci

D �i ; .�i/103 D i .

10 z C z is real;z � z is pure imaginary;zz is positive;z=z has absolute value 1.

11

�
a b

�b a

�
includesaI (which just addsa to the eigenvalues andb

�
0 1

�1 0

�
. So the

eigenvectors arex1 D .1; i/ andx2 D .1; �i/. The eigenvalues are�1 D a C bi and
�2 D a�bi . We seex1 D x2 and�1 D �2 as expected for real matrices with complex
eigenvalues.

12 (a) Whena D b D d D 1 the square root becomes
p

4c; � is complex ifc < 0
(b) � D 0 and� D a C d whenad D bc (c) the�’s can be real and different.

13 Complex�’s when.aCd/2 < 4.ad�bc/; write .aCd/2�4.ad�bc/ as.a�d/2C4bc
which is positive whenbc > 0.

14 det.P � �I / D �4 � 1 D 0 has� D 1, �1, i , �i with eigenvectors.1; 1; 1; 1/ and
.1; �1; 1; �1/ and.1; i; �1; �i/ and.1; �i; �1; i/ D columns of Fourier matrix.

15 The6 by 6 cyclic shift P has det.P6 � �I / D �6 � 1 D 0. Then� D 1, w, w2, w3,
w4, w5 with w D e2�i=6. These are the six solutions to�b D 1 as in Figure 10.3 (The
sixth roots of1).co
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96 Solutions to Exercises

16 The symmetric block matrix has real eigenvalues; soi� is real and� is pure imaginary.

17 (a) 2ei�=3, 4e2i�=3 (b) e2i� , e4i� (c) 7e3�i=2, 49e3�i .D �49/ (d)
p

50e��i=4,
50e��i=2.

18 r D 1, angle�
2

� � ; multiply by ei� to getei�=2 D i .

19 a C ib D 1, i , �1, �i , ˙ 1p
2

˙ ip
2
. The rootw D w�1 D e�2�i=8 is 1=

p
2 � i=

p
2.

20 1, e2�i=3, e4�i=3 are cube roots of1. The cube roots of�1 are �1, e�i=3, e��i=3.
Altogether six roots ofz6 D 1.

21 cos3� DReŒ.cos�Ci sin�/3�Dcos3 ��3 cos� sin2 � ; sin3� D3 cos2 � sin��sin3 � .

22 If the conjugatez D 1=z thenjzj2 D 1 andz is any pointei� on the unit circle.

23 ei is at angle� D 1 on the unit circle;jiej D 1e; Infinitely manyie D ei.�=2C2�n/e .

24 (a) Unit circle (b) Spiral in toe�2� (c) Circle continuing around to angle� D2�2.

Problem Set 10.2, page 506

1 kuk D
p

9 D 3, kvk D
p

3, uHv D 3i C 2, vHu D �3i C 2 (this is the conjugate of
uHv).

2 AHA D
"

2 0 1 C i
0 2 1 C i

1 � i 1 � i 2

#
andAAH D

�
3 1
1 3

�
are Hermitian matrices. They

share the eigenvalues4 and2.

3 z D multiple of.1Ci; 1Ci; �2/; Az D 0 giveszHAH D 0H soz (notz!) is orthogonal
to all columns ofAH (using complex inner productzH times columns ofAH).

4 The four fundamental subspaces are nowC.A/, N.A/, C.AH/, N.AH/. AH and not AT.

5 (a) .AHA/H D AHAHH D AHA again (b) IfAHAz D 0 then.zHAH/.Az/ D 0.
This iskAzk2 D 0 soAz D 0. The nullspaces ofA andAHA are always thesame.

6
(a) False
(c) False A D U D

�
0 1

�1 0

�
(b) True:�i is not an eigenvalue whenA D AH.

7 cA is still Hermitianfor real c; .iA/H D �iAH D �iA is skew-Hermitian.

8 This P is invertible and unitary.P 2 D
"

0 0 �1
�1 0 0

0 �1 0

#
, P 3 D

"�i
�i

�i

#
D

�iI . ThenP 100 D .�i/33P D �iP . The eigenvalues ofP are the roots of�3 D �i ,
which arei andie2�i=3 andie4�i=3.

9 One unit eigenvector is certainlyx1 D .1; 1; 1/ with �1 D i . The other eigenvectors
arex2 D .1; w; w2/ andx3 D .1; w2; w4/ with w D e2�i=3. The eigenvector matrix
is the Fourier matrixF3. The eigenvectors of any unitary matrix likeP are orthogonal
(using the correct complex formxHy of the inner product).

10 .1; 1; 1/, .1; e2�i=3; e4�i=3/, .1; e4�i=3; e2�i=3/ are orthogonal (complex inner product!)
becauseP is an orthogonal matrix—and therefore its eigenvector matrix is unitary.co
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11 Not included in4th editionC D
"

2 5 4
4 2 5
5 4 2

#
D2C5P C4P 2 has

� D 2 C 5 C 4 D 11;

2 C 5e2�i=3 C 4e4�i=3;

2 C 5e4�i=3 C 4e8�i=3:

11 If U HU D I thenU �1.U H/�1 D U �1.U �1/H D I so U �1 is also unitary. Also
.U V /H.U V / D V HU HU V D V HV D I soU V is unitary.

12 DeterminantD product of the eigenvalues(all real). AndA D AH gives detA D detA.

13 .zHAH/.Az/ D kAzk2 is positive unlessAz D 0. WhenA has independent columns
this meansz D 0; soAHA is positive definite.

14 A D 1p
3

�
1 �1 C i

1 C i 1

� �
2 0
0 �1

�
1p
3

�
1 1 � i

�1 � i 1

�
.

15 K D(iAT in Problem 14)D 1p
3

�
1 �1 � i

1 � i 1

� �
2i 0
0 �i

�
1p
3

�
1 1 C i

�1 C i 1

�
;

�’s are imaginary.

16 Q D 1p
2

�
1 �i

�i 1

� �
cos� C i sin� 0

0 cos� � i sin�

�
1p
2

�
1 i
i 1

�
hasj�j D 1.

17 V D 1

L

�
1 C

p
3 �1 C i

1 C i 1 C
p

3

� �
1 0
0 �1

�
1

L

�
1 C

p
3 1 � i

�1 � i 1 C
p

3

�
with L2 D 6C2

p
3.

Unitary meansj�j D 1. V D V H gives real�. Then trace zero gives� D 1 and�1.

18 The v’s are columns of a unitary matrixU , so U H is U �1. Thenz D U U Hz D
(multiply by columns)D v1.vH

1 z/ C � � � C vn.vH
nz/: a typical orthonormal expansion.

19 Don’t multiply .e�ix/.eix/. Conjugate the first, then
R 2�

0
e2ix dx D Œe2ix=2i�2�

0 D 0.

20 z D .1; i; �2/ completes an orthogonal basis forC3. So does anyei� z.

21 R C iS D .R C iS/H D RT � iST; R is symmetric butS is skew-symmetric.

22 Cn has dimensionn; the columns of any unitary matrix are a basis. For example use
the columns ofiI : .i; 0; : : : ; 0/; : : : ; .0; : : : ; 0; i/

23 Œ 1 � andŒ �1 �; anyŒ ei� �;

�
a b C ic

b � ic d

�
;

�
w ei�z

�z ei�w

�
with jwj2 C jzj2 D 1
and any angle�

24 The eigenvalues ofAH arecomplex conjugatesof the eigenvalues ofA: det.A��I / D 0

gives det.AH � �I / D 0.

25 .I � 2uuH/H D I � 2uuH and also.I � 2uuH/2 D I � 4uuH C 4u.uHu/uH D I . The
rank-1 matrixuuH projects onto the line throughu.

26 UnitaryU HU D I means.AT�iBT/.ACiB/ D .ATACBTB/Ci.ATB�BTA/ D I .
ATA C BTB D I andATB � BTA D 0 which makes the block matrix orthogonal.

27 We are givenA C iB D .A C iB/H D AT � iBT. ThenA D AT andB D �BT. So

that

�
A �B
B A

�
is symmetric.

28 AA�1 D I gives.A�1/HAH D I . Therefore.A�1/H is .AH/�1 D A�1 andA�1 is
Hermitian.

29 A D
�

1 � i 1 � i
�1 2

� �
1 0
0 4

�
1

6

�
2 C 2i �2
1 C i 2

�
D SƒS�1. Note real� D 1 and4.co
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30 If U has (complex) orthonormal columns, thenU HU D I andU is unitary. If those
columns are eigenvectors ofA, thenA D UƒU �1 D UƒU H is normal. The direct test
for a normal matrix (which isAAH D AHA because diagonals could be real!) andƒH

surely commute:

AAHD.UƒU H/.UƒHU H/DU.ƒƒH/U H DU.ƒHƒ/U H D.UƒHU H/.UƒU H/DAHA:

An easy way to construct a normal matrix is1 C i times a symmetric matrix. Or take
A D S C iT where the real symmetricS andT commute (ThenAH D S � iT and
AAH D AHA).

Problem Set 10.3, page 514

1 Equation (3) (the FFT) is correct usingi2 D �1 in the last two rows and three columns.

2 F �1 D

2
64

1
1

1
1

3
75

1

2

2
64

1 1
1 i2

1 1

1 i2

3
75

1

2

2
64

1 1
1 1

1 �1
�i i

3
75 D 1

4
F H.

3 F D

2
64

1
1

1
1

3
75

2
64

1 1

1 i2

1 1
1 i2

3
75

2
64

1 1
1 1

1 �1
�i i

3
75 permutation last.

4 D D

2
4

1

e2�i=6

e4�i=6

3
5 (note6 not3) andF3

2
4

1 1 1

1 e2�i=3 e4�i=3

1 e4�i=3 e2�i=3

3
5.

5 F �1w D v andF �1v D w=4. Delta vector$ all-ones vector.

6 .F4/2 D

2
64

4 0 0 0
0 0 0 4
0 0 4 0
0 4 0 0

3
75 and.F4/4 D 16I . Four transforms recover the signal!

7 cD

2
64

1
0
1
0

3
75!

2
64

1
1
0
0

3
75!

2
64

2
0
0
0

3
75!

2
64

2
0
2
0

3
75DF c. Also CD

2
64

0
1
0
1

3
75!

2
64

0
0
1
1

3
75!

2
64

0
0
2
0

3
75!

2
64

2
0

�2
0

3
75DF C .

Addingc C C gives.1; 1; 1; 1/ to .4; 0; 0; 0/ D 4 (delta vector).

8 c ! .1; 1; 1; 1; 0; 0; 0; 0/ ! .4; 0; 0; 0; 0; 0; 0; 0/ ! .4; 0; 0; 0; 4; 0; 0; 0/ D F8c.
C ! .0; 0; 0; 0; 1; 1; 1; 1/ ! .0; 0; 0; 0; 4; 0; 0; 0/ ! .4; 0; 0; 0; �4; 0; 0; 0/ D F8C .

9 If w64 D 1 thenw2 is a 32nd root of 1 and
p

w is a 128th root of 1: Key to FFT.

10 For every integern, thenth roots of 1 add to zero. For evenn, they cancel in pairs. For
anyn, use the geometric series formula1 C w C � � � C wn�1 D .wn � 1/=.w � 1/ D 0.
In particular forn D 3, 1 C .�1 C i

p
3/=2 C .�1 � i

p
3/=2 D 0.

11 The eigenvalues ofP are1; i; i2 D �1, andi3 D �i . Problem 11 displays the eigen-
vectors. And also det.P � �I / D �4 � 1.co
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12 ƒ D diag.1; i; i2; i3/; P D
"

0 1 0
0 0 1
1 0 0

#
andP T lead to�3 � 1 D 0.

13 e1 D c0 C c1 C c2 C c3 ande2 D c0 C c1i C c2i2 C c3i3; E contains the four
eigenvalues ofC D FEF �1 becauseF contains the eigenvectors.

14 Eigenvaluese1 D 2 � 1 � 1 D 0, e2 D 2 � i � i3 D 2, e3 D 2 � .�1/ � .�1/ D 4,
e4 D 2 � i3 � i9 D 2. Just transform column0 of C . Check trace0 C 2 C 4 C 2 D 8.

15 DiagonalE needsn multiplications, Fourier matrixF andF �1 need1
2
n log2 n multi-

plications each by theFFT. The total is much less than the ordinaryn2 for C timesx.

16 The row1; wk ; w2k ; : : : in F is the same as the row1; wN �k; wN �2k ; : : : in F because
wN �k D e.2�i=N /.N �k/ is e2�i e�.2�i=N /k D 1 timeswk . SoF andF have thesame
rows in reversed order(except for row0 which is all ones).
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