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Solutions for Chapter 1

Solutions for exercises in section 1. 2

1.2.1. (1, 0, 0)
1.2.2. (1, 2, 3)
1.2.3. (1, 0,−1)
1.2.4. (−1/2, 1/2, 0, 1)

1.2.5.

 2 −4 3
4 −7 4
5 −8 4


1.2.6. Every row operation is reversible. In particular the “inverse” of any row operation

is again a row operation of the same type.
1.2.7. π

2 , π, 0
1.2.8. The third equation in the triangularized form is 0x3 = 1, which is impossible

to solve.
1.2.9. The third equation in the triangularized form is 0x3 = 0, and all numbers are

solutions. This means that you can start the back substitution with any value
whatsoever and consequently produce infinitely many solutions for the system.

1.2.10. α = −3, β = 11
2 , and γ = − 3

2
1.2.11. (a) If xi = the number initially in chamber #i, then

.4x1 + 0x2 + 0x3 + .2x4 = 12
0x1 + .4x2 + .3x3 + .2x4 = 25
0x1 + .3x2 + .4x3 + .2x4 = 26
.6x1 + .3x2 + .3x3 + .4x4 = 37

and the solution is x1 = 10, x2 = 20, x3 = 30, and x4 = 40.
(b) 16, 22, 22, 40

1.2.12. To interchange rows i and j, perform the following sequence of Type II and
Type III operations.

Rj ← Rj + Ri (replace row j by the sum of row j and i)
Ri ← Ri − Rj (replace row i by the difference of row i and j)
Rj ← Rj + Ri (replace row j by the sum of row j and i)
Ri ← −Ri (replace row i by its negative)

1.2.13. (a) This has the effect of interchanging the order of the unknowns— xj and
xk are permuted. (b) The solution to the new system is the same as the
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2 Solutions

solution to the old system except that the solution for the jth unknown of the
new system is x̂j = 1

αxj . This has the effect of “changing the units” of the jth

unknown. (c) The solution to the new system is the same as the solution for
the old system except that the solution for the kth unknown in the new system
is x̂k = xk − αxj .

1.2.14. hij = 1
i+j−1

1.2.16. If x =


x1

x2
...

xm

 and y =


y1

y2
...

ym

 are two different solutions, then

z =
x + y

2
=


x1+y1

2
x2+y2

2
...

xm+ym

2


is a third solution different from both x and y.

Solutions for exercises in section 1. 3

1.3.1. (1, 0,−1)
1.3.2. (2,−1, 0, 0)

1.3.3.

 1 1 1
1 2 2
1 2 3


Solutions for exercises in section 1. 4

1.4.2. Use y′(tk) = y′
k ≈ yk+1 − yk−1

2h
and y′′(tk) = y′′

k ≈ yk−1 − 2yk + yk+1

h2
to write

f(tk) = fk = y′′
k −y′

k ≈ 2yk−1 − 4yk + 2yk+1

2h2
− hyk+1 − hyk−1

2h2
, k = 1, 2, . . . , n,

with y0 = yn+1 = 0. These discrete approximations form the tridiagonal system


−4 2 − h

2 + h −4 2 − h
. . . . . . . . .

2 + h −4 2 − h
2 + h −4




y1

y2
...

yn−1

yn

 = 2h2


f1

f2
...

fn−1

fn
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Solutions 3

Solutions for exercises in section 1. 5

1.5.1. (a) (0,−1) (c) (1,−1) (e)
(

1
1.001 , −1

1.001

)
1.5.2. (a) (0, 1) (b) (2, 1) (c) (2, 1) (d)

(
2

1.0001 , 1.0003
1.0001

)
1.5.3. Without PP: (1.01, 1.03) With PP: (1, 1) Exact: (1, 1)

1.5.4. (a)

 1 .500 .333 .333
.500 .333 .250 .333
.333 .250 .200 .200

 −→

 1 .500 .333 .333
0 .083 .083 .166
0 .083 .089 .089


−→

 1 .500 .333 .333
0 .083 .083 .166
0 0 .006 −.077

 z = −.077/.006 = −12.8,

y = (.166 − .083z)/.083 = 14.8, x = .333 − (.5y + .333z) = −2.81

(b)

 1 .500 .333 .333
.500 .333 .250 .333
.333 .250 .200 .200

 −→

 1 .500 .333 .333
1 .666 .500 .666
1 .751 .601 .601


−→

 1 .500 .333 .333
0 .166 .167 .333
0 .251 .268 .268

 −→

 1 .500 .333 .333
0 .251 .268 .268
0 .166 .167 .333


−→

 1 .500 .333 .333
0 .251 .268 .268
0 0 −.01 .156

 z = −.156/.01 = −15.6,

y = (.268 − .268z)/.251 = 17.7, x = .333 − (.5y + .333z) = −3.33

(c)

 1 .500 .333 .333
.500 .333 .250 .333
.333 .250 .200 .200

 −→

 1 .500 .333 .333
1 .666 .500 .666
1 .751 .601 .601


−→

 1 .500 .333 .333
0 .166 .167 .333
0 .251 .268 .268

 −→

 1 .500 .333 .333
0 .994 1 1.99
0 .937 1 1


−→

 1 .500 .333 .333
0 .994 1 1.99
0 0 .057 −.880

 z = −.88/.057 = −15.4,

y = (1.99 − z)/.994 = 17.5, x = .333 − (.5y + .333z) = −3.29
(d) x = −3, y = 16, z = −14

1.5.5. (a)
.0055x + .095y + 960z = 5000
.0011x + . 01y + 112z = 600
.0093x + .025y + 560z = 3000
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4 Solutions

(b) 3-digit solution = (55, 900 lbs. silica, 8, 600 lbs. iron, 4.04 lbs. gold).
Exact solution (to 10 digits) = (56, 753.68899, 8, 626.560726, 4.029511918). The
relative error (rounded to 3 digits) is er = 1.49 × 10−2.

(c) Let u = x/2000, v = y/1000, and w = 12z to obtain the system

11u + 95v + 80w = 5000
2.2u + 10v + 9.33w = 600

18.6u + 25v + 46.7w = 3000.

(d) 3-digit solution = (28.5 tons silica, 8.85 half-tons iron, 48.1 troy oz. gold).
Exact solution (to 10 digits) = (28.82648317, 8.859282804, 48.01596023). The
relative error (rounded to 3 digits) is er = 5.95 × 10−3. So, partial pivoting
applied to the column-scaled system yields higher relative accuracy than partial
pivoting applied to the unscaled system.

1.5.6. (a) (−8.1,−6.09) = 3-digit solution with partial pivoting but no scaling.
(b) No! Scaled partial pivoting produces the exact solution—the same as with
complete pivoting.

1.5.7. (a) 2n−1 (b) 2
(c) This is a famous example that shows that there are indeed cases where par-
tial pivoting will fail due to the large growth of some elements during elimination,
but complete pivoting will be successful because all elements remain relatively
small and of the same order of magnitude.

1.5.8. Use the fact that with partial pivoting no multiplier can exceed 1 together with
the triangle inequality |α + β| ≤ |α| + |β| and proceed inductively.

Solutions for exercises in section 1. 6

1.6.1. (a) There are no 5-digit solutions. (b) This doesn’t help—there are now infinitely
many 5-digit solutions. (c) 6-digit solution = (1.23964,−1.3) and exact solution
= (1,−1) (d) r1 = r2 = 0 (e) r1 = −10−6 and r2 = 10−7 (f) Even if computed
residuals are 0, you can’t be sure you have the exact solution.

1.6.2. (a) (1,−1.0015) (b) Ill-conditioning guarantees that the solution will be very
sensitive to some small perturbation but not necessarily to every small perturba-
tion. It is usually difficult to determine beforehand those perturbations for which
an ill-conditioned system will not be sensitive, so one is forced to be pessimistic
whenever ill-conditioning is suspected.

1.6.3. (a) m1(5) = m2(5) = −1.2519, m1(6) = −1.25187, and m2(6) = −1.25188
(c) An optimally well-conditioned system represents orthogonal (i.e., perpen-
dicular) lines, planes, etc.

1.6.4. They rank as (b) = Almost optimally well-conditioned. (a) = Moderately well-
conditioned. (c) = Badly ill-conditioned.

1.6.5. Original solution = (1, 1, 1). Perturbed solution = (−238, 490,−266). System
is ill-conditioned.
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Solutions for Chapter 2

Solutions for exercises in section 2. 1

2.1.1. (a)

 1 2 3 3
0 2 1 0
0 0 0 3

 is one possible answer. Rank = 3 and the basic columns

are {A∗1,A∗2,A∗4}. (b)


1 2 3
0 2 2
0 0 −8
0 0 0
0 0 0

 is one possible answer. Rank = 3 and

every column in A is basic.

(c)


2 1 1 3 0 4 1
0 0 2 −2 1 −3 3
0 0 0 0 −1 3 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 is one possible answer. The rank is 3, and

the basic columns are {A∗1,A∗3,A∗5}.
2.1.2. (c) and (d) are in row echelon form.
2.1.3. (a) Since any row or column can contain at most one pivot, the number of pivots

cannot exceed the number of rows nor the number of columns. (b) A zero row
cannot contain a pivot. (c) If one row is a multiple of another, then one of
them can be annihilated by the other to produce a zero row. Now the result
of the previous part applies. (d) One row can be annihilated by the associated
combination of row operations. (e) If a column is zero, then there are fewer than
n basic columns because each basic column must contain a pivot.

2.1.4. (a) rank (A) = 3 (b) 3-digit rank (A) = 2 (c) With PP, 3-digit rank (A) = 3
2.1.5. 15

2.1.6. (a) No, consider the form

 ∗ ∗ ∗ ∗
0 0 0 0
0 0 0 ∗

 (b) Yes—in fact, E is a row

echelon form obtainable from A .

Solutions for exercises in section 2. 2

2.2.1. (a)

 1 0 2 0
0 1 1

2 0
0 0 0 1

 and A∗3 = 2A∗1 + 1
2A∗2
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6 Solutions

(b)


1 1

2 0 2 0 2 0
0 0 1 −1 0 0 1
0 0 0 0 1 −3 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 and

A∗2 = 1
2A∗1, A∗4 = 2A∗1−A∗3, A∗6 = 2A∗1−3A∗5, A∗7 = A∗3+A∗5

2.2.2. No.
2.2.3. The same would have to hold in EA, and there you can see that this means not

all columns can be basic. Remember, rank (A) = number of basic columns.

2.2.4. (a)

 1 0 0
0 1 0
0 0 1

 (b)

 1 0 −1
0 1 2
0 0 0

 A∗3 is almost a combination of A∗1

and A∗2. In particular, A∗3 ≈ −A∗1 + 2A∗2.
2.2.5. E∗1 = 2E∗2 − E∗3 and E∗2 = 1

2E∗1 + 1
2E∗3

Solutions for exercises in section 2. 3

2.3.1. (a), (b)—There is no need to do any arithmetic for this one because the right-
hand side is entirely zero so that you know (0,0,0) is automatically one solution.
(d), (f)

2.3.3. It is always true that rank (A) ≤ rank[A|b] ≤ m. Since rank (A) = m, it
follows that rank[A|b] = rank (A).

2.3.4. Yes—Consistency implies that b and c are each combinations of the basic
columns in A . If b =

∑
βiA∗bi

and c =
∑

γiA∗bi
where the A∗bi

’s are the
basic columns, then b + c =

∑
(βi + γi)A∗bi

=
∑

ξiA∗bi
, where ξi = βi + γi

so that b + c is also a combination of the basic columns in A .
2.3.5. Yes—because the 4 × 3 system α + βxi + γx2

i = yi obtained by using the four
given points (xi, yi) is consistent.

2.3.6. The system is inconsistent using 5-digits but consistent when 6-digits are used.
2.3.7. If x, y, and z denote the number of pounds of the respective brands applied,

then the following constraints must be met.

total # units of phosphorous = 2x + y + z = 10
total # units of potassium = 3x + 3y = 9

total # units of nitrogen = 5x + 4y + z = 19

Since this is a consistent system, the recommendation can be satisfied exactly.
Of course, the solution tells how much of each brand to apply.

2.3.8. No—if one or more such rows were ever present, how could you possibly eliminate
all of them with row operations? You could eliminate all but one, but then there
is no way to eliminate the last remaining one, and hence it would have to appear
in the final form.
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Solutions 7

Solutions for exercises in section 2. 4

2.4.1. (a) x2


−2

1
0
0

 + x4


−1

0
−1

1

 (b) y

− 1
2
1
0

 (c) x3


−1
−1

1
0

 + x4


−1

1
0
1


(d) The trivial solution is the only solution.

2.4.2.

 0
0
0

 and

 1
− 1

2
0



2.4.3. x2


−2

1
0
0
0

 + x4


−2

0
−1

1
0


2.4.4. rank (A) = 3
2.4.5. (a) 2—because the maximum rank is 4. (b) 5—because the minimum rank is

1.
2.4.6. Because r = rank (A) ≤ m < n =⇒ n − r > 0.

2.4.7. There are many different correct answers. One approach is to answer the question
“What must EA look like?” The form of the general solution tells you that
rank (A) = 2 and that the first and third columns are basic. Consequently,

EA =

 1 α 0 β
0 0 1 γ
0 0 0 0

 so that x1 = −αx2 − βx4 and x3 = −γx4 gives rise

to the general solution x2


−α

1
0
0

 + x4


−β

0
−γ

1

 . Therefore, α = 2, β = 3,

and γ = −2. Any matrix A obtained by performing row operations to EA

will be the coefficient matrix for a homogeneous system with the desired general
solution.

2.4.8. If
∑

i xfihi is the general solution, then there must exist scalars αi and βi such
that c1 =

∑
i αihi and c2 =

∑
i βihi. Therefore, c1 + c2 =

∑
i(αi + βi)hi,

and this shows that c1 + c2 is the solution obtained when the free variables xfi

assume the values xfi
= αi + βi.

Solutions for exercises in section 2. 5

2.5.1. (a)


1
0
2
0

 + x2


−2

1
0
0

 + x4


−1

0
−1

1

 (b)

 1
0
2

 + y

− 1
2
1
0
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8 Solutions

(c)


2

−1
0
0

 + x3


−1
−1

1
0

 + x4


−1

1
0
1

 (d)

 3
−3
−1


2.5.2. From Example 2.5.1, the solutions of the linear equations are:

x1 = 1 − x3 − 2x4

x2 = 1 − x3

x3 is free
x4 is free
x5 = −1

Substitute these into the two constraints to get x3 = ±1 and x4 = ±1. Thus
there are exactly four solutions:


−2

0
1
1

−1

 ,


2
0
1

−1
−1

 ,


0
2

−1
1

−1

 ,


4
2

−1
−1
−1




2.5.3. (a) {(3, 0, 4), (2, 1, 5), (1, 2, 6), (0, 3, 7)} See the solution to Exercise 2.3.7 for
the underlying system. (b) (3, 0, 4) costs $15 and is least expensive.

2.5.4. (a) Consistent for all α. (b) α �= 3, in which case the solution is (1,−1, 0).

(c) α = 3, in which case the general solution is

 1
−1

0

 + z

 0
−3

2
1

 .

2.5.5. No
2.5.6.

EA =



1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0


m×n

2.5.7. See the solution to Exercise 2.4.7.

2.5.8. (a)

−.3976
0
1

 + y

−.7988
1
0

 (b) There are no solutions in this case.

(c)

 1.43964
−2.3

1
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Solutions 9

Solutions for exercises in section 2. 6

2.6.1. (a) (1/575)(383, 533, 261, 644,−150,−111)
2.6.2. (1/211)(179, 452, 36)
2.6.3. (18, 10)
2.6.4. (a) 4 (b) 6 (c) 7 loops but only 3 simple loops. (d) Show that

rank ([A|b]) = 3 (g) 5/6
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10 Solutions

I fear explanations explanatory of things explained.
— Abraham Lincoln (1809–1865)
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Solutions for Chapter 3

Solutions for exercises in section 3. 2

3.2.1. (a) X =
(

0 1
2 3

)
(b) x = − 1

2 , y = −6, and z = 0

3.2.2. (a) Neither (b) Skew symmetric (c) Symmetric (d) Neither
3.2.3. The 3 × 3 zero matrix trivially satisfies all conditions, and it is the only pos-

sible answer for part (a). The only possible answers for (b) are real symmetric
matrices. There are many nontrivial possibilities for (c).

3.2.4. A = AT and B = BT =⇒ (A + B)T = AT + BT = A + B. Yes—the
skew-symmetric matrices are also closed under matrix addition.

3.2.5. (a) A = −AT =⇒ aij = −aji. If i = j, then ajj = −ajj =⇒ ajj = 0.

(b) A = −A∗ =⇒ aij = −aji. If i = j, then ajj = −ajj . Write ajj = x+iy
to see that ajj = −ajj =⇒ x + iy = −x + iy =⇒ x = 0 =⇒ ajj is pure
imaginary.

(c) B∗ = (iA)∗ = −iA∗ = −iA
T

= −iAT = −iA = −B.

3.2.6. (a) Let S = A+AT and K = A−AT . Then ST = AT +AT T = AT +A = S.

Likewise, KT = AT − AT T = AT − A = −K.
(b) A = S

2 + K
2 is one such decomposition. To see it is unique, suppose A = X+

Y, where X = XT and Y = −YT . Thus, AT = XT +YT = X − Y =⇒ A+
AT = 2X, so that X = A+AT

2 = S
2 . A similar argument shows that Y =

A−AT

2 = K
2 .

3.2.7. (a) [(A + B)∗]ij = [A + B]ji = [A + B]ji = [A]ji + [B]ji = [A∗]ij + [B∗]ij =
[A∗ + B∗]ij
(b) [(αA)∗]ij = [αA]ji = [ᾱA]ji = ᾱ[A]ji = ᾱ[A∗]ij

3.2.8. k



1 −1 0 · · · 0 0
−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 1


Solutions for exercises in section 3. 3

3.3.1. Functions (b) and (f) are linear. For example, to check if (b) is linear, let

A =
(

a1

a2

)
and B =

(
b1

b2

)
, and check if f(A + B) = f(A) + f(B) and
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12 Solutions

f(αA) = αf(A). Do so by writing

f(A + B) = f

(
a1 + b1

a2 + b2

)
=

(
a2 + b2

a1 + b1

)
=

(
a2

a1

)
+

(
b2

b1

)
= f(A) + f(B),

f(αA) = f

(
αa1

αa2

)
=

(
αa2

αa1

)
= α

(
a2

a1

)
= αf(A).

3.3.2. Write f(x) =
∑n

i=1 ξixi. For all points x =


x1

x2
...

xn

 and y =


y1

y2
...

yn

 , and for

all scalars α, it is true that

f(αx + y) =
n∑

i=1

ξi(αxi + yi) =
n∑

i=1

ξiαxi +
n∑

i=1

ξiyi

= α

n∑
i=1

ξixi +
n∑

i=1

ξiyi = αf(x) + f(y).

3.3.3. There are many possibilities. Two of the simplest and most common are Hooke’s
law for springs that says that F = kx (see Example 3.2.1) and Newton’s second
law that says that F = ma (i.e., force = mass× acceleration).

3.3.4. They are all linear. To see that rotation is linear, use trigonometry to deduce

that if p =
(

x1

x2

)
, then f(p) = u =

(
u1

u2

)
, where

u1 = (cos θ)x1 − (sin θ)x2

u2 = (sin θ)x1 + (cos θ)x2.

f is linear because this is a special case of Example 3.3.2. To see that reflection

is linear, write p =
(

x1

x2

)
and f(p) =

(
x1

−x2

)
. Verification of linearity is

straightforward. For the projection function, use the Pythagorean theorem to

conclude that if p =
(

x1

x2

)
, then f(p) = x1+x2

2

(
1
1

)
. Linearity is now easily

verified.
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Solutions for exercises in section 3. 4

3.4.1. Refer to the solution for Exercise 3.3.4. If Q, R, and P denote the matrices
associated with the rotation, reflection, and projection, respectively, then

Q =
(

cos θ − sin θ
sin θ cos θ

)
, R =

(
1 0
0 −1

)
, and P =

( 1
2

1
2

1
2

1
2

)
.

3.4.2. Refer to the solution for Exercise 3.4.1 and write

RQ =
(

1 0
0 −1

) (
cos θ − sin θ
sin θ cos θ

)
=

(
cos θ − sin θ

− sin θ − cos θ

)
.

If Q(x) is the rotation function and R(x) is the reflection function, then the
composition is

R
(
Q(x)

)
=

(
(cos θ)x1 − (sin θ)x2

−(sin θ)x1 − (cos θ)x2

)
.

3.4.3. Refer to the solution for Exercise 3.4.1 and write

PQR =
(

a11x1 + a12x2

a21x1 + a22x2

) (
cos θ − sin θ
sin θ cos θ

) (
1 0
0 −1

)
=

1
2

(
cos θ + sin θ sin θ − cos θ
cos θ + sin θ sin θ − cos θ

)
.

Therefore, the composition of the three functions in the order asked for is

P

(
Q

(
R(x)

))
=

1
2

(
(cos θ + sin θ)x1 + (sin θ − cos θ)x2

(cos θ + sin θ)x1 + (sin θ − cos θ)x2

)
.

Solutions for exercises in section 3. 5

3.5.1. (a) AB =

 10 15
12 8
28 52

 (b) BA does not exist (c) CB does not exist

(d) CT B = ( 10 31 ) (e) A2 =

 13 −1 19
16 13 12
36 −17 64

 (f) B2 does not exist

(g) CT C = 14 (h) CCT =

 1 2 3
2 4 6
3 6 9

 (i) BBT =

 5 8 17
8 16 28

17 28 58


(j) BT B =

(
10 23
23 69

)
(k) CT AC = 76
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3.5.2. (a) A =

 2 1 1
4 0 2
2 2 0

 ,x =

 x1

x2

x3

 ,b =

 3
10
−2

 (b) s =

 1
−2

3


(c) b = A∗1 − 2A∗2 + 3A∗3

3.5.3. (a) EA =

 A1∗
A2∗

3A1∗ + A3∗

 (b) AE = (A∗1 + 3A∗3 A∗2 A∗3 )

3.5.4. (a) A∗j (b) Ai∗ (c) aij

3.5.5. Ax = Bx ∀ x =⇒ Aej = Bej ∀ ej =⇒ A∗j = B∗j ∀ j =⇒ A = B.
(The symbol ∀ is mathematical shorthand for the phrase “for all.”)

3.5.6. The limit is the zero matrix.
3.5.7. If A is m × p and B is p × n, write the product as

AB = (A∗1 A∗2 · · · A∗p )


B1∗
B2∗

...
Bp∗

 = A∗1B1∗ + A∗2B2∗ + · · · + A∗pBp∗

=
p∑

k=1

A∗kBk∗.

3.5.8. (a) [AB]ij = Ai∗B∗j = ( 0 · · · 0 aii · · · ain )



b1j

...
bjj

0
...
0


is 0 when i > j.

(b) When i = j, the only nonzero term in the product Ai∗B∗i is aiibii.
(c) Yes.

3.5.9. Use [AB]ij =
∑

k aikbkj along with the rules of differentiation to write

d[AB]ij
dt

=
d (

∑
k aikbkj)
dt

=
∑

k

d(aikbkj)
dt

=
∑

k

(
daik

dt
bkj + aik

dbkj

dt

)
=

∑
k

daik

dt
bkj +

∑
k

aik
dbkj

dt

=
[
dA
dt

B
]

ij

+
[
A

dB
dt

]
ij

=
[
dA
dt

B + A
dB
dt

]
ij

.

3.5.10. (a) [Ce]i = the total number of paths leaving node i.
(b) [eT C]i = the total number of paths entering node i.
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3.5.11. At time t, the concentration of salt in tank i is xi(t)
V lbs/gal. For tank 1,

dx1

dt
=

lbs
sec

coming in − lbs
sec

going out = 0
lbs
sec

−
(

r
gal
sec

× x1(t)
V

lbs
gal

)
= − r

V
x1(t)

lbs
sec

.

For tank 2,

dx2

dt
=

lbs
sec

coming in − lbs
sec

going out =
r

V
x1(t)

lbs
sec

−
(

r
gal
sec

× x2(t)
V

lbs
gal

)
=

r

V
x1(t)

lbs
sec

− r

V
x2(t)

lbs
sec

=
r

V

(
x1(t) − x2(t)

)
,

and for tank 3,

dx3

dt
=

lbs
sec

coming in − lbs
sec

going out =
r

V
x2(t)

lbs
sec

−
(

r
gal
sec

× x3(t)
V

lbs
gal

)
=

r

V
x2(t)

lbs
sec

− r

V
x3(t)

lbs
sec

=
r

V

(
x2(t) − x3(t)

)
.

This is a system of three linear first-order differential equations

dx1

dt
= r

V

(
−x1(t)

)
dx2

dt
= r

V

(
x1(t) − x2(t)

)
dx3

dt
= r

V

(
x2(t) − x3(t)

)
that can be written as a single matrix differential equation

 dx1/dt

dx2/dt

dx3/dt

 =
r

V

−1 0 0

1 −1 0

0 1 −1


 x1(t)

x2(t)

x3(t)
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Solutions for exercises in section 3. 6

3.6.1.

AB =
(

A11 A12 A13

A21 A22 A23

) B1

B2

B3

 =
(

A11B1 + A12B2 + A13B3

A21B1 + A22B2 + A23B3

)

=

−10 −19
−10 −19

−1 −1


3.6.2. Use block multiplication to verify L2 = I —be careful not to commute any of

the terms when forming the various products.

3.6.3. Partition the matrix as A =
(

I C
0 C

)
, where C = 1

3

 1 1 1
1 1 1
1 1 1

 and observe

that C2 = C. Use this together with block multiplication to conclude that

Ak =
(

I C + C2 + C3 + · · · + Ck

0 Ck

)
=

(
I kC
0 C

)
.

Therefore, A300 =


1 0 0 100 100 100
0 1 0 100 100 100
0 0 1 100 100 100
0 0 0 1/3 1/3 1/3
0 0 0 1/3 1/3 1/3
0 0 0 1/3 1/3 1/3

 .

3.6.4. (A∗A)∗ = A∗A∗∗ = A∗A and (AA∗)∗ = A∗∗A∗ = AA∗.

3.6.5. (AB)T = BT AT = BA = AB. It is easy to construct a 2 × 2 example to show
that this need not be true when AB �= BA.

3.6.6.

[(D + E)F]ij = (D + E)i∗F∗j =
∑

k

[D + E]ik[F]kj =
∑

k

([D]ik + [E]ik) [F]kj

=
∑

k

([D]ik[F]kj + [E]ik[F]kj) =
∑

k

[D]ik[F]kj +
∑

k

[E]ik[F]kj

= Di∗F∗j + Ei∗F∗j = [DF]ij + [EF]ij

= [DF + EF]ij .

3.6.7. If a matrix X did indeed exist, then

I = AX − XA =⇒ trace (I) = trace (AX − XA)
=⇒ n = trace (AX) − trace (XA) = 0,
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which is impossible.
3.6.8. (a) yT A = bT =⇒ (yT A)T = bT T =⇒ AT y = b. This is an n × m

system of equations whose coefficient matrix is AT . (b) They are the same.
3.6.9. Draw a transition diagram similar to that in Example 3.6.3 with North and South

replaced by ON and OFF, respectively. Let xk be the proportion of switches in
the ON state, and let yk be the proportion of switches in the OFF state after
k clock cycles have elapsed. According to the given information,

xk = xk−1(.1) + yk−1(.3)
yk = xk−1(.9) + yk−1(.7)

so that pk = pk−1P, where

pk = (xk yk ) and P =
(

.1 .9

.3 .7

)
.

Just as in Example 3.6.3, pk = p0Pk. Compute a few powers of P to find

P2 =
(

.280 .720

.240 .760

)
, P3 =

(
.244 .756
.252 .748

)
P4 =

(
.251 .749
.250 .750

)
, P5 =

(
.250 .750
.250 .750

)
and deduce that P∞ = limk→∞ Pk =

(
1/4 3/4
1/4 3/4

)
. Thus

pk → p0P∞ = ( 1
4 (x0 + y0) 3

4 (x0 + y0) ) = ( 1
4

3
4 ) .

For practical purposes, the device can be considered to be in equilibrium after
about 5 clock cycles—regardless of the initial proportions.

3.6.10. (−4 1 −6 5 )
3.6.11. (a) trace (ABC) = trace (A{BC}) = trace ({BC}A) = trace (BCA). The

other equality is similar. (b) Use almost any set of 2 × 2 matrices to con-
struct an example that shows equality need not hold. (c) Use the fact that
trace

(
CT

)
= trace (C) for all square matrices to conclude that

trace
(
AT B

)
=trace

(
(AT B)

T
)

= trace
(
BT AT T

)
=trace

(
BT A

)
= trace

(
ABT

)
.

3.6.12. (a) xT x = 0 ⇐⇒
∑n

k=1 x2
i = 0 ⇐⇒ xi = 0 for each i ⇐⇒ x = 0.

(b) trace
(
AT A

)
= 0 ⇐⇒

∑
i

[AT A]ii = 0 ⇐⇒
∑

i

(AT )i∗A∗i = 0

⇐⇒
∑

i

∑
k

[AT ]ik[A]ki = 0 ⇐⇒
∑

i

∑
k

[A]ki[A]ki = 0

⇐⇒
∑

i

∑
k

[A]2ki = 0

⇐⇒ [A]ki = 0 for each k and i ⇐⇒ A = 0
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Solutions for exercises in section 3. 7

3.7.1. (a)
(

3 −2
−1 1

)
(b) Singular (c)

 2 −4 3
4 −7 4
5 −8 4

 (d) Singular

(e)


2 −1 0 0

−1 2 −1 0
0 −1 2 −1
0 0 −1 1


3.7.2. Write the equation as (I − A)X = B and compute

X = (I − A)−1B =

 1 −1 1
0 1 −1
0 0 1

  1 2
2 1
3 3

 =

 2 4
−1 −2

3 3

 .

3.7.3. In each case, the given information implies that rank (A) < n —see the solution
for Exercise 2.1.3.

3.7.4. (a) If D is diagonal, then D−1 exists if and only if each dii �= 0, in which case


d11 0 · · · 0
0 d22 · · · 0
...

...
. . .

...
0 0 · · · dnn


−1

=


1/d11 0 · · · 0

0 1/d22 · · · 0
...

...
. . .

...
0 0 · · · 1/dnn

 .

(b) If T is triangular, then T−1 exists if and only if each tii �= 0. If T
is upper (lower) triangular, then T−1 is also upper (lower) triangular with
[T−1]ii = 1/tii.

3.7.5.
(
A−1

)T =
(
AT

)−1 = A−1.
3.7.6. Start with A(I − A) = (I − A)A and apply (I − A)−1 to both sides, first on

one side and then on the other.
3.7.7. Use the result of Example 3.6.5 that says that trace (AB) = trace (BA) to

write

m = trace (Im) = trace (AB) = trace (BA) = trace (In) = n.

3.7.8. Use the reverse order law for inversion to write[
A(A + B)−1B

]−1
= B−1(A + B)A−1 = B−1 + A−1

and [
B(A + B)−1A

]−1
= A−1(A + B)B−1 = B−1 + A−1.

3.7.9. (a) (I − S)x = 0 =⇒ xT (I − S)x = 0 =⇒ xT x = xT Sx. Taking trans-
poses on both sides yields xT x = −xT Sx, so that xT x = 0, and thus x = 0
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(recall Exercise 3.6.12). The conclusion follows from property (3.7.8).
(b) First notice that Exercise 3.7.6 implies that A = (I + S)(I − S)−1 =
(I − S)−1(I + S). By using the reverse order laws, transposing both sides yields
exactly the same thing as inverting both sides.

3.7.10. Use block multiplication to verify that the product of the matrix with its inverse
is the identity matrix.

3.7.11. Use block multiplication to verify that the product of the matrix with its inverse
is the identity matrix.

3.7.12. Let M =
(

A B
C D

)
and X =

(
DT −BT

−CT AT

)
. The hypothesis implies that

MX = I, and hence (from the discussion in Example 3.7.2) it must also be
true that XM = I, from which the conclusion follows. Note: This problem
appeared on a past Putnam Exam—a national mathematics competition for
undergraduate students that is considered to be quite challenging. This means
that you can be proud of yourself if you solved it before looking at this solution.

Solutions for exercises in section 3. 8

3.8.1. (a) B−1 =

 1 2 −1
0 −1 1
1 4 −2


(b) Let c =

 0
0
1

 and dT = ( 0 2 1 ) to obtain C−1 =

 0 −2 1
1 3 −1

−1 −4 2


3.8.2. A∗j needs to be removed, and b needs to be inserted in its place. This is

accomplished by writing B = A+(b−A∗j)eT
j . Applying the Sherman–Morrison

formula with c = b − A∗j and dT = eT
j yields

B−1 = A−1 −
A−1(b − A∗j)eT

j A−1

1 + eT
j A−1(b − A∗j)

= A−1 −
A−1beT

j A−1 − ejeT
j A−1

1 + eT
j A−1b − eT

j ej

= A−1 − A−1b[A−1]j∗ − ej [A−1]j∗
[A−1]j∗b

= A−1 −
(
A−1b − ej

)
[A−1]j∗

[A−1]j∗b
.

3.8.3. Use the Sherman–Morrison formula to write

z = (A + cdT )−1b =
(
A−1 − A−1cdT A−1

1 + dT A−1c

)
b = A−1b − A−1cdT A−1b

1 + dT A−1c

= x − ydT x
1 + dT y

.

3.8.4. (a) For a nonsingular matrix A, the Sherman–Morrison formula guarantees
that A+ αeieT

j is also nonsingular when 1 + α
[
A−1

]
ji
�= 0, and this certainly

will be true if α is sufficiently small.

co
nt

ro
len

gin
ee

rs
.ir



20 Solutions

(b) Write Em×m = [εij ] =
∑m

i,j=1 εijeieT
j and successively apply part (a) to

I + E =

(((
I + ε11e1eT

1

)
+ ε12e1eT

2

)
+ · · · + εmmemeT

m

)
to conclude that when the εij ’s are sufficiently small,

I + ε11e1eT
1 ,

((
I + ε11e1eT

1

)
+ ε12e1eT

2

)
, . . . , I + E

are each nonsingular.
3.8.5. Write A + εB = A(I + A−1εB). You can either use the Neumann series result

(3.8.5) or Exercise 3.8.4 to conclude that (I + A−1εB) is nonsingular whenever
the entries of A−1εB are sufficiently small in magnitude, and this can be insured
by restricting ε to a small enough interval about the origin. Since the product
of two nonsingular matrices is again nonsingular—see (3.7.14)—it follows that
A + εB = A(I + A−1εB) must be nonsingular.

3.8.6. Since (
I C
0 I

) (
A C
DT −I

) (
I 0

DT I

)
=

(
A + CDT 0

0 −I

)
,

we can use R = DT and B = −I in part (a) of Exercise 3.7.11 to obtain(
I 0

−DT I

) (
A−1 + A−1CS−1DT A−1 −A−1CS−1

−S−1DT A−1 S−1

) (
I −C
0 I

)
=( (

A + CDT
)−1

0
0 −I

)
,

where S = −
(
I + DT A−1C

)
. Comparing the upper-left-hand blocks produces(

A + CDT
)−1

= A−1 − A−1C
(
I + DT A−1C

)−1
DT A−1.

3.8.7. The ranking from best to worst condition is A, B, C, because

A−1 =
1

100

 2 1 1
1 2 1
1 1 1

 =⇒ κ(A) = 20 = 2 × 101

B−1 =

−1465 −161 17
173 19 −2
−82 −9 1

 =⇒ κ(B) = 149, 513 ≈ 1.5 × 105

C−1 =

−42659 39794 −948
2025 −1889 45

45 −42 1

 =⇒ κ(C) = 82, 900, 594 ≈ 8.2 × 107.

3.8.8. (a) Differentiate A(t)A(t)−1 = I with the product rule for differentiation (re-
call Exercise 3.5.9).
(b) Use the product rule for differentiation together with part (a) to differen-
tiate A(t)x(t) = b(t).
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Solutions for exercises in section 3. 9

3.9.1. (a) If G1,G2, . . . ,Gk is the sequence of elementary matrices that corresponds
to the elementary row operations used in the reduction [A|I] −→ [B|P], then

Gk · · ·G2G1[A|I] = [B|P] =⇒ [Gk · · ·G2G1A | Gk · · ·G2G1I] = [B|P]
=⇒ Gk · · ·G2G1A = B and Gk · · ·G2G1 = P.

(b) Use the same argument given above, but apply it on the right-hand side.

(c) [A|I]
Gauss–Jordan

−−−−−−−−→ [EA|P] yields 1 2 3 4 1 0 0
2 4 6 7 0 1 0
1 2 3 6 0 0 1

 −→

 1 2 3 0 −7 4 0
0 0 0 1 2 −1 0
0 0 0 0 −5 2 1

 .

Thus P =

−7 4 0
2 −1 0

−5 2 1

 is the product of the elementary matrices corre-

sponding to the operations used in the reduction, and PA = EA.
(d) You already have P such that PA = EA. Now find Q such that EAQ =
Nr by column reducing EA. Proceed using part (b) to accumulate Q.

[
EA

I4

]
−→



1 2 3 0
0 0 0 1
0 0 0 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


−→



1 0 2 3
0 1 0 0
0 0 0 0

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


−→



1 0 0 0
0 1 0 0
0 0 0 0

1 0 −2 −3
0 0 1 0
0 0 0 1
0 1 0 0


3.9.2. (a) Yes—because rank (A) = rank (B). (b) Yes—because EA = EB.

(c) No—because EAT �= EBT .
3.9.3. The positions of the basic columns in A correspond to those in EA. Because

A row∼ B ⇐⇒ EA = EB, it follows that the basic columns in A and B must
be in the same positions.

3.9.4. An elementary interchange matrix (a Type I matrix) has the form E = I − uuT ,
where u = ei − ej , and it follows from (3.9.1) that E = ET = E−1. If
P = E1E2 · · ·Ek is a product of elementary interchange matrices, then the re-
verse order laws yield

P−1 = (E1E2 · · ·Ek)−1 = E−1
k · · ·E−1

2 E−1
1

= ET
k · · ·ET

2 ET
1 = (E1E2 · · ·Ek)T = PT .
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3.9.5. They are all true! A ∼ I ∼ A−1 because rank (A) = n = rank
(
A−1

)
, A row∼

A−1 because PA = A−1 with P =
(
A−1

)2 = A−2, and A col∼ A−1 because

AQ = A−1 with Q = A−2. The fact that A row∼ I and A col∼ I follows since
A−1A = AA−1 = I.

3.9.6. (a), (c), (d), and (e) are true.
3.9.7. Rows i and j can be interchanged with the following sequence of Type II and

Type III operations—this is Exercise 1.2.12 on p. 14.

Rj ← Rj + Ri (replace row j by the sum of row j and i)
Ri ← Ri − Rj (replace row i by the difference of row i and j)
Rj ← Rj + Ri (replace row j by the sum of row j and i)
Ri ← −Ri (replace row i by its negative)

Translating these to elementary matrices (remembering to build from the right
to the left) produces

(I − 2eieT
i )(I + ejeT

i )(I − eieT
j )(I + ejeT

i ) = I − uuT , where u = ei − ej .

3.9.8. Let Bm×r = [A∗b1A∗b2 · · ·A∗br
] contain the basic columns of A, and let Cr×n

contain the nonzero rows of EA. If A∗k is basic—say A∗k = A∗bj
—then

C∗k = ej , and

(BC)∗k = BC∗k = Bej = B∗j = A∗bj = A∗k.

If A∗k is nonbasic, then C∗k is nonbasic and has the form

C∗k =



µ1

µ2
...

µj

...
0


= µ1



1
0
...
0
...
0


+ µ2



0
1
...
0
...
0


+ · · · + µj



0
0
...
1
...
0


= µ1e1 + µ2e2 + · · · + µjej ,

where the ei ’s are the basic columns to the left of C∗k. Because A row∼ EA,
the relationships that exist among the columns of A are exactly the same as
the relationships that exist among the columns of EA. In particular,

A∗k = µ1A∗b1 + µ2A∗b2 + · · · + µjA∗bj ,

where the A∗bi
’s are the basic columns to the left of A∗k. Therefore,

(BC)∗k = BC∗k = B (µ1e1 + µ2e2 + · · · + µjej)
= µ1B∗1 + µ2B∗2 + · · · + µjB∗j

= µ1A∗b1 + µ2A∗b2 + · · · + µjA∗bj

= A∗k.
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3.9.9. If A = uvT , where um×1 and vn×1 are nonzero columns, then

u row∼ e1 and vT col∼ eT
1 =⇒ A = uvT ∼ e1eT

1 = N1 =⇒ rank (A) = 1.

Conversely, if rank (A) = 1, then the existence of u and v follows from Exer-
cise 3.9.8. If you do not wish to rely on Exercise 3.9.8, write PAQ = N1 = e1eT

1 ,
where e1 is m × 1 and eT

1 is 1 × n so that

A = P−1e1eT
1 Q−1 =

(
P−1

)
∗1

(
Q−1

)
1∗ = uvT .

3.9.10. Use Exercise 3.9.9 and write

A = uvT =⇒ A2 =
(
uvT

) (
uvT

)
= u

(
vT u

)
vT = τuvT = τA,

where τ = vT u. Recall from Example 3.6.5 that trace (AB) = trace (BA),
and write

τ = trace(τ) = trace
(
vT u

)
= trace

(
uvT

)
= trace (A).

Solutions for exercises in section 3. 10

3.10.1. (a) L =

 1 0 0
4 1 0
3 2 1

 and U =

 1 4 5
0 2 6
0 0 3

 (b) x1 =

 110
−36

8

 and

x2 =

 112
−39

10



(c) A−1 = 1
6

 124 −40 14
−42 15 −6

10 −4 2


3.10.2. (a) The second pivot is zero. (b) P is the permutation matrix associated

with the permutation p = ( 2 4 1 3 ) . P is constructed by permuting the
rows of I in this manner.

L =


1 0 0 0
0 1 0 0

1/3 0 1 0
2/3 −1/2 1/2 1

 and U =


3 6 −12 3
0 2 −2 6
0 0 8 16
0 0 0 −5



(c) x =


2

−1
0
1
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3.10.3. ξ = 0, ±
√

2, ±
√

3
3.10.4. A possesses an LU factorization if and only if all leading principal submatrices

are nonsingular. The argument associated with equation (3.10.13) proves that(
Lk 0

cT U−1
k 1

) (
Uk L−1

k b

0 ak+1,k+1 − cT A−1
k b

)
= Lk+1Uk+1

is the LU factorization for Ak+1. The desired conclusion follows from the fact
that the k + 1th pivot is the (k + 1, k + 1) -entry in Uk+1. This pivot must be
nonzero because Uk+1 is nonsingular.

3.10.5. If L and U are both triangular with 1’s on the diagonal, then L−1 and U−1

contain only integer entries, and consequently A−1 = U−1L−1 is an integer
matrix.

3.10.6. (b) L =


1 0 0 0

−1/2 1 0 0
0 −2/3 1 0
0 0 −3/4 1

 and U =


2 −1 0 0
0 3/2 −1 0
0 0 4/3 −1
0 0 0 1/4


3.10.7. Observe how the LU factors evolve from Gaussian elimination. Following the

procedure described in Example 3.10.1 where multipliers 
ij are stored in the
positions they annihilate (i.e., in the (i, j) -position), and where � ’s are put
in positions that can be nonzero, the reduction of a 5 × 5 band matrix with
bandwidth w = 2 proceeds as shown below.

� � � 0 0
� � � � 0
� � � � �
0 � � � �
0 0 � � �

 −→


� � � 0 0

l21 � � � 0
l31 � � � �
0 � � � �
0 0 � � �

 −→


� � � 0 0

l21 � � � 0
l31 l32 � � �
0 l42 � � �
0 0 � � �



−→


� � � 0 0

l21 � � � 0
l31 l32 � � �
0 l42 l43 � �
0 0 l53 � �

 −→


� � � 0 0

l21 � � � 0
l31 l32 � � �
0 l42 l43 � �
0 0 l53 l54 �



Thus L =


1 0 0 0 0

l21 1 0 0 0
l31 l32 1 0 0
0 l42 l43 1 0
0 0 l53 l54 1

 and U =


� � � 0 0
0 � � � 0
0 0 � � �
0 0 0 � �
0 0 0 0 �

 .

3.10.8. (a) A =
(

0 1
1 0

)
(b) A =

(
1 0
0 −1

)
3.10.9. (a) L =

 1 0 0
4 1 0
3 2 1

 , D =

 1 0 0
0 2 0
0 0 3

 , and U =

 1 4 5
0 1 3
0 0 1
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(b) Use the same argument given for the uniqueness of the LU factorization
with minor modifications.
(c) A = AT =⇒ LDU = UT DT LT = UT DLT . These are each LDU
factorizations for A, and consequently the uniqueness of the LDU factorization
means that U = LT .

3.10.10. A is symmetric with pivots 1, 4, 9. The Cholesky factor is R =

 1 0 0
2 2 0
3 3 3

 .
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It is unworthy of excellent men to lose hours
like slaves in the labor of calculations.

— Baron Gottfried Wilhelm von Leibnitz (1646–1716)
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Solutions for Chapter 4

Solutions for exercises in section 4. 1

4.1.1. Only (b) and (d) are subspaces.
4.1.2. (a), (b), (f), (g), and (i) are subspaces.
4.1.3. All of 3.
4.1.4. If v ∈ V is a nonzero vector in a space V, then all scalar multiples αv must

also be in V.
4.1.5. (a) A line. (b) The (x,y)-plane. (c) 3

4.1.6. Only (c) and (e) span 3. To see that (d) does not span 3, ask whether
or not every vector (x, y, z) ∈ 3 can be written as a linear combination of
the vectors in (d). It’s convenient to think in terms columns, so rephrase the

question by asking if every b =

 x
y
z

 can be written as a linear combination

of

v1 =

 1
2
1

 , v2 =

 2
0

−1

 , v3 =

 4
4
1

 . That is, for each b ∈ 3, are

there scalars α1, α2, α3 such that α1v1 + α2v2 + α3v3 = b or, equivalently, is 1 2 4
2 0 4
1 −1 1

  α1

α2

α3

 =

 x
y
z

 consistent for all

 x
y
z

?

This is a system of the form Ax = b, and it is consistent for all b if and only
if rank ([A|b]) = rank (A) for all b. Since 1 2 4 x

2 0 4 y
1 −1 1 z

 →

 1 2 4 x
0 −4 −4 y − 2x
0 −3 −3 z − x


→

 1 2 4 x
0 −4 −4 y − 2x
0 0 0 (x/2) − (3y/4) + z

 ,

it’s clear that there exist b ’s (e.g., b = (1, 0, 0)T ) for which Ax = b is not
consistent, and hence not all b ’s are a combination of the vi ’s. Therefore, the
vi ’s don’t span 3.

4.1.7. This follows from (4.1.2).
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4.1.8. (a) u,v ∈ X ∩ Y =⇒ u,v ∈ X and u,v ∈ Y. Because X and Y are
closed with respect to addition, it follows that u + v ∈ X and u + v ∈ Y,
and therefore u + v ∈ X ∩ Y. Because X and Y are both closed with respect
to scalar multiplication, we have that αu ∈ X and αu ∈ Y for all α, and
consequently αu ∈ X ∩ Y for all α.
(b) The union of two different lines through the origin in 2 is not a subspace.

4.1.9. (a) (A1) holds because x1, x2 ∈ A(S) =⇒ x1 = As1 and x2 = As2 for
some s1, s2 ∈ S =⇒ x1 + x2 = A(s1 + s2). Since S is a subspace, it is
closed under vector addition, so s1 + s2 ∈ S. Therefore, x1 +x2 is the image of
something in S —namely, s1+s2 —and this means that x1+x2 ∈ A(S). To see
that (M1) holds, consider αx, where α is an arbitrary scalar and x ∈ A(S).
Now, x ∈ A(S) =⇒ x = As for some s ∈ S =⇒ αx = αAs = A(αs).
Since S is a subspace, we are guaranteed that αs ∈ S, and therefore αx is the
image of something in S. This is what it means to say αx ∈ A(S).
(b) Prove equality by demonstrating that span {As1,As2, . . . ,Ask} ⊆ A(S)
and A(S) ⊆ span {As1,As2, . . . ,Ask} . To show span {As1,As2, . . . ,Ask} ⊆
A(S), write

x ∈ span {As1,As2, . . . ,Ask} =⇒ x =
k∑

i=1

αi(Asi) = A

(
k∑

i=1

αisi

)
∈ A(S).

Inclusion in the reverse direction is established by saying

x ∈ A(S) =⇒ x = As for some s ∈ S =⇒ s =
k∑

i=1

βisi

=⇒ x = A

(
k∑

i=1

βisi

)
=

k∑
i=1

βi(Asi) ∈ span {As1,As2, . . . ,Ask} .

4.1.10. (a) Yes, all of the defining properties are satisfied.
(b) Yes, this is essentially 2.

(c) No, it is not closed with respect to scalar multiplication.
4.1.11. If span (M) = span (N ) , then every vector in N must be a linear combination

of vectors from M. In particular, v must be a linear combination of the mi ’s,
and hence v ∈ span (M) . To prove the converse, first notice that span (M) ⊆
span (N ) . The desired conclusion will follow if it can be demonstrated that
span (M) ⊇ span (N ) . The hypothesis that v ∈ span (M) guarantees that
v =

∑r
i=1 βimi. If z ∈ span (N ) , then

z =
r∑

i=1

αimi + αr+1v =
r∑

i=1

αimi + αr+1

r∑
i=1

βimi

=
r∑

i=1

(
αi + αr+1βi

)
mi,
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which shows z ∈ span (M) , and therefore span (M) ⊇ span (N ) .
4.1.12. To show span (S) ⊆ M, observe that x ∈ span (S) =⇒ x =

∑
i αivi.

If V is any subspace containing S, then
∑

i αivi ∈ V because V is closed
under addition and scalar multiplication, and therefore x ∈ M. The fact that
M ⊆ span (S) follows because if x ∈ M, then x ∈ span (S) because span (S)
is one particular subspace that contains S.

Solutions for exercises in section 4. 2

4.2.1. R (A) = span


 1

−2
1

 ,

 1
0
2

 , N
(
AT

)
= span


 4

1
−2

 ,

N (A) = span




−2
1
0
0
0

 ,


2
0

−3
1
0

 ,


−1

0
−4

0
1


 ,

R
(
AT

)
= span




1
2
0

−2
1

 ,


0
0
1
3
4


 .

4.2.2. (a) This is simply a restatement of equation (4.2.3).
(b) Ax = b has a unique solution if and only if rank (A) = n (i.e., there are
no free variables—see §2.5), and (4.2.10) says rank (A) = n ⇐⇒ N (A) = {0}.

4.2.3. (a) It is consistent because b ∈ R (A).
(b) It is nonunique because N (A) �= {0}—see Exercise 4.2.2.

4.2.4. Yes, because rank[A|b] = rank (A) = 3 =⇒ ∃ x such that Ax = b —i.e.,
Ax = b is consistent.

4.2.5. (a) If R (A) = n, then

R (A) = R (In) =⇒ A col∼ In =⇒ rank (A) = rank (In) = n.

(b) R (A) = R
(
AT

)
= n and N (A) = N

(
AT

)
= {0}.

4.2.6. EA �= EB means that R
(
AT

)
�= R

(
BT

)
and N (A) �= N (B). However,

EAT = EBT implies that R (A) = R (B) and N
(
AT

)
= N

(
BT

)
.

4.2.7. Demonstrate that rank (An×n) = n by using (4.2.10). If x ∈ N (A), then

Ax = 0 =⇒ A1x = 0 and A2x = 0

=⇒ x ∈ N (A1) = R
(
AT

2

)
=⇒ ∃ yT such that xT = yT A2

=⇒ xT x = yT A2x = 0 =⇒
∑

i

x2
i = 0 =⇒ x = 0.

co
nt

ro
len

gin
ee

rs
.ir



30 Solutions

4.2.8. yT b = 0 ∀ y ∈ N
(
AT

)
= R

(
PT

2

)
=⇒ P2b = 0 =⇒ b ∈ N (P2) = R (A)

4.2.9. x ∈ R
(
A | B

)
⇐⇒ ∃ y such that x =

(
A | B

)
y =

(
A | B

) (
y1

y2

)
= Ay1 +

By2 ⇐⇒ x ∈ R (A) + R (B)
4.2.10. (a) p+N (A) is the set of all possible solutions to Ax = b. Recall from (2.5.7)

that the general solution of a nonhomogeneous equation is a particular solution
plus the general solution of the homogeneous equation Ax = 0. The general
solution of the homogeneous equation is simply a way of describing all possible
solutions of Ax = 0, which is N (A).
(b) rank (A3×3) = 1 means that N (A) is spanned by two vectors, and hence
N (A) is a plane through the origin. From the parallelogram law, p + N (A) is
a plane parallel to N (A) passing through the point defined by p.
(c) This time N (A) is spanned by a single vector, and p + N (A) is a line
parallel to N (A) passing through the point defined by p.

4.2.11. a ∈ R
(
AT

)
⇐⇒ ∃ y such that aT = yT A. If Ax = b, then

aT x = yT Ax = yT b,

which is independent of x.

4.2.12. (a) b ∈ R (AB) =⇒ ∃ x such that b = ABx = A(Bx) =⇒ b ∈ R (A)
because b is the image of Bx.
(b) x ∈ N (B) =⇒ Bx = 0 =⇒ ABx = 0 =⇒ x ∈ N (AB).

4.2.13. Given any z ∈ R (AB), the object is to show that z can be written as some
linear combination of the Abi ’s. Argue as follows. z ∈ R (AB) =⇒ z = ABy
for some y. But it is always true that By ∈ R (B), so

By = α1b1 + α2b2 + · · · + αnbn,

and therefore z = ABy = α1Ab1 + α2Ab2 + · · · + αnAbn.

Solutions for exercises in section 4. 3

4.3.1. (a) and (b) are linearly dependent—all others are linearly independent. To write
one vector as a combination of others in a dependent set, place the vectors as
columns in A and find EA. This reveals the dependence relationships among
columns of A.

4.3.2. (a) According to (4.3.12), the basic columns in A always constitute one maximal
linearly independent subset.
(b) Ten—5 sets using two vectors, 4 sets using one vector, and the empty set.

4.3.3. rank (H) ≤ 3, and according to (4.3.11), rank (H) is the maximal number of
independent rows in H.
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4.3.4. The question is really whether or not the columns in

Â =


S L F

#1 1 1 1 10
#2 1 2 1 12
#3 1 2 2 15
#4 1 3 2 17


are linearly independent. Reducing Â to EÂ shows that 5+2S +3L−F = 0.

4.3.5. (a) This follows directly from the definition of linear dependence because there
are nonzero values of α such that α0 = 0.
(b) This is a consequence of (4.3.13).

4.3.6. If each tii �= 0, then T is nonsingular, and the result follows from (4.3.6) and
(4.3.7).

4.3.7. It is linearly independent because

α1

(
1 0
0 0

)
+ α2

(
1 1
0 0

)
+ α3

(
1 1
1 0

)
+ α4

(
1 1
1 1

)
=

(
0 0
0 0

)

⇐⇒ α1


1
0
0
0

 + α2


1
1
0
0

 + α3


1
1
1
0

 + α4


1
1
1
1

 =


0
0
0
0



⇐⇒


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1




α1

α2

α3

α4

 =


0
0
0
0

 ⇐⇒


α1

α2

α3

α4

 =


0
0
0
0

 .

4.3.8. A is nonsingular because it is diagonally dominant.
4.3.9. S is linearly independent using exact arithmetic, but using 3-digit arithmetic

yields the conclusion that S is dependent.
4.3.10. If e is the column vector of all 1’s, then Ae = 0, so that N (A) �= {0}.
4.3.11. (Solution 1.)

∑
i αiPui = 0 =⇒ P

∑
i αiui = 0 =⇒

∑
i αiui =

0 =⇒ each αi = 0 because the ui ’s are linearly independent.
(Solution 2.) If Am×n is the matrix containing the ui ’s as columns, then
PA = B is the matrix containing the vectors in P(S) as its columns. Now,

A row∼ B =⇒ rank (B) = rank (A) = n,

and hence (4.3.3) insures that the columns of B are linearly independent. The
result need not be true if P is singular—take P = 0 for example.

4.3.12. If Am×n is the matrix containing the ui ’s as columns, and if

Qn×n =


1 1 · · · 1
0 1 · · · 1
...

...
. . .

...
0 0 · · · 1

 ,
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then the columns of B = AQ are the vectors in S ′. Clearly, Q is nonsingular
so that A col∼ B, and thus rank (A) = rank (B). The desired result now follows
from (4.3.3).

4.3.13. (a) and (b) are linearly independent because the Wronski matrix W(0) is non-
singular in each case. (c) is dependent because sin2 x − cos2 x + cos 2x = 0.

4.3.14. If S were dependent, then there would exist a constant α such that x3 = α|x|3
for all values of x. But this would mean that

α =
x3

|x|3 =
{

1 if x > 0,
−1 if x < 0,

which is clearly impossible since α must be constant. The associated Wronski
matrix is

W(x) =


(

x3 x3

3x2 3x2

)
when x ≥ 0,(

x3 −x3

3x2 −3x2

)
when x < 0,

which is singular for all values of x.

4.3.15. Start with the fact that

AT diag. dom. =⇒ |bii| > |di| +
∑
j �=i

|bji| and |α| >
∑

j

|cj |

=⇒
∑
j �=i

|bji| < |bii| − |di| and
1
|α|

∑
j �=i

|cj | < 1 − |ci|
|α| ,

and then use the forward and backward triangle inequality to write

∑
j �=i

|xij | =
∑
j �=i

∣∣∣∣bji −
dicj

α

∣∣∣∣ ≤ ∑
j �=i

|bji| +
|di|
|α|

∑
j �=i

|cj |

<
(
|bii| − |di|

)
+ |di|

(
1 − |ci|

|α|

)
= |bii| −

|di| |ci|
|α|

≤
∣∣∣∣bii −

dici

α

∣∣∣∣ = |xii|.

Now, diagonal dominance of AT insures that α is the entry of largest magni-
tude in the first column of A, so no row interchange is needed at the first step
of Gaussian elimination. After one step, the diagonal dominance of X guar-
antees that the magnitude of the second pivot is maximal with respect to row
interchanges. Proceeding by induction establishes that no step requires partial
pivoting.
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Solutions for exercises in section 4. 4

4.4.1. dimR (A) = dimR
(
AT

)
= rank (A) = 2, dimN (A) = n − r = 4 − 2 = 2,

and dimN
(
AT

)
= m − r = 3 − 2 = 1.

4.4.2. BR(A) =


 1

3
2

 ,

 0
1
1

 , BN(AT ) =


 1

−1
1


BR(AT ) =




1
2
0
2
1

 ,


0
0
1
3
3


 , BN(A) =




−2
1
0
0
0

 ,


−2

0
−3

1
0

 ,


−1

0
−3

0
1




4.4.3. dim
(
span (S)

)
= 3

4.4.4. (a) n + 1 (See Example 4.4.1) (b) mn (c) n2+n
2

4.4.5. Use the technique of Example 4.4.5. Find EA to determineh1 =


−2

1
0
0
0

 , h2 =


−2

0
1
1
0

 , h3 =


−1

0
−2

0
1




is a basis for N (A). Reducing the matrix
(
v, h1, h2, h3

)
to row echelon

form reveals that its first, second, and fourth columns are basic, and hence
{v, h1, h3} is a basis for N (A) that contains v.

4.4.6. Placing the vectors from A and B as rows in matrices and reducing

A =

 1 2 3
5 8 7
3 4 1

 −→ EA =

 1 0 −5
0 1 4
0 0 0


and

B =
(

2 3 2
1 1 −1

)
−→ EB =

(
1 0 −5
0 1 4

)
shows A and B have the same row space (recall Example 4.2.2), and hence A
and B span the same space. Because B is linearly independent, it follows that
B is a basis for span (A) .

4.4.7. 3 = dimN (A) = n − r = 4 − rank (A) =⇒ rank (A) = 1. Therefore, any
rank-one matrix with no zero entries will do the job.

4.4.8. If v = α1b1 + α2b2 + · · · + αnbn and v = β1b1 + β2b2 + · · · + βnbn, then
subtraction produces

0 = (α1 − β1)b1 + (α2 − β2)b2 + · · · + (αn − βn)bn.
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But B is a linearly independent set, so this equality can hold only if (αi−βi) = 0
for each i = 1, 2, . . . , n, and hence the αi ’s are unique.

4.4.9. Prove that if {s1, s2, . . . , sk} is a basis for S, then {As1,As2, . . . ,Ask} is a
basis for A(S). The result of Exercise 4.1.9 insures that

span {As1,As2, . . . ,Ask} = A(S),

so we need only establish the independence of {As1,As2, . . . ,Ask}. To do this,
write

k∑
i=1

αi (Asi) = 0 =⇒ A

(
k∑

i=1

αisi

)
= 0 =⇒

k∑
i=1

αisi ∈ N (A)

=⇒
k∑

i=1

αisi = 0 because S ∩ N (A) = 0

=⇒ α1 = α2 = · · · = αk = 0

because {s1, s2, . . . , sk} is linearly independent. Since {As1,As2, . . . ,Ask} is
a basis for A(S), it follows that dimA(S) = k = dim(S).

4.4.10. rank (A) = rank (A − B + B) ≤ rank (A − B) + rank (B) implies that

rank (A) − rank (B) ≤ rank (A − B).

Furthermore, rank (B) = rank (B − A + A) ≤ rank (B − A) + rank (A) =
rank (A − B) + rank (A) implies that

−
(
rank (A) − rank (B)

)
≤ rank (A − B).

4.4.11. Example 4.4.8 guarantees that rank (A + E) ≤ rank (A) + rank (E) = r + k.
Use Exercise 4.4.10 to write

rank (A + E) = rank (A − (−E)) ≥ rank (A) − rank (−E) = r − k.

4.4.12. Let v1 ∈ V such that v1 �= 0. If span {v1} = V, then S1 = {v1} is an
independent spanning set for V, and we are finished. If span {v1} �= V, then
there is a vector v2 ∈ V such that v2 /∈ span {v1} , and hence the extension set
S2 = {v1,v2} is independent. If span (S2) = V, then we are finished. Otherwise,
we can proceed as described in Example 4.4.5 and continue to build independent
extension sets S3,S4, . . . . Statement (4.3.16) guarantees that the process must
eventually yield a linearly independent spanning set Sk with k ≤ n.

4.4.13. Since 0 = eT E = E1∗+E2∗+· · ·+Em∗, any row can be written as a combination
of the other m − 1 rows, so any set of m − 1 rows from E spans N

(
ET

)
.

Furthermore, rank (E) = m − 1 insures that no fewer than m − 1 vectors
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can span N
(
ET

)
, and therefore any set of m − 1 rows from E is a minimal

spanning set, and hence a basis.
4.4.14.

[
EET

]
ij

= Ei∗
(
ET

)
∗j

= Ei∗ (Ej∗)
T =

∑
k eikejk. Observe that edge Ek

touches node Ni if and only if eik = ±1 or, equivalently, e2
ik = 1. Thus[

EET
]
ii

=
∑

k e2
ik = the number of edges touching Ni. If i �= j, then

eikejk =
{
−1 if Ek is between Ni and Nj

0 if Ek is not between Ni and Nj

so that
[
EET

]
ij

=
∑

k eikejk = − (the number of edges between Ni and Nj ).
4.4.15. Apply (4.4.19) to span (M∪N ) = span (M) + span (N ) (see Exercise 4.1.7).
4.4.16. (a) Exercise 4.2.9 says R (A | B) = R (A) + R (B). Since rank is the same as

dimension of the range, (4.4.19) yields

rank (A | B) = dimR (A | B) = dim
(
R (A) + R (B)

)
= dimR (A) + dimR (B) − dim

(
R (A) ∩ R (B)

)
= rank (A) + rank (B) − dim

(
R (A) ∩ R (B)

)
.

(b) Use the results of part (a) to write

dimN (A | B) = n + k − rank (A | B)

=
(
n − rank (A)

)
+

(
k − rank (B)

)
+ dim

(
R (A) ∩ R (B)

)
= dimN (A) + dimN (B) + dim

(
R (A) ∩ R (B)

)
.

(c) Let A =


−1 1 −2
−1 0 −4
−1 0 −5
−1 0 −6
−1 0 −6

 and B =


3 −2
2 −1
1 0
0 1
0 1

 contain bases for R (C)

and N (C), respectively, so that R (A) = R (C) and R (B) = N (C). Use
either part (a) or part (b) to obtain

dim
(
R (C) ∩ N (C)

)
= dim

(
R (A) ∩ R (B)

)
= 2.

Using R (A | B) = R (A) + R (B) produces

dim
(
R (C) + N (C)

)
= dim

(
R (A) + R (B)

)
= rank (A | B) = 3.

4.4.17. Suppose A is m × n. Existence of a solution for every b implies R (A) = m.
Recall from §2.5 that uniqueness of the solution implies rank (A) = n. Thus
m = dimR (A) = rank (A) = n so that A is m × m of rank m.
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4.4.18. (a) x ∈ S =⇒ x ∈ span (Smax) —otherwise, the extension set E = Smax∪{x}
would be linearly independent—which is impossible because E would contain
more independent solutions than Smax. Now show span (Smax) ⊆ span {p} +
N (A). Since S = p + N (A) (see Exercise 4.2.10), si ∈ S means there must
exist a corresponding vector ni ∈ N (A) such that si = p + ni, and hence

x ∈ span (Smax) =⇒ x =
t∑

i=1

αisi =
t∑

i=1

αi (p + ni) =
t∑

i=1

αip +
t∑

i=1

αini

=⇒ x ∈ span {p} + N (A)
=⇒ span (Smax) ⊆ span {p} + N (A).

To prove the reverse inclusion, observe that if x ∈ span {p}+N (A), then there
exists a scalar α and a vector n ∈ N (A) such that

x = αp + n = (α − 1)p + (p + n).

Because p and (p + n) are both solutions, S ⊆ span(Smax) guarantees that
p and (p + n) each belong to span (Smax) , and the closure properties of a
subspace insure that x ∈ span (Smax) . Thus span {p}+N (A) ⊆ span (Smax) .
(b) The problem is really to determine the value of t in Smax. The fact that
Smax is a basis for span (Smax) together with (4.4.19) produces

t = dim
(
span (Smax)

)
= dim

(
span {p} + N (A)

)
= dim

(
span {p}

)
+ dimN (A) − dim

(
span {p} ∩ N (A)

)
= 1 + (n − r) − 0.

4.4.19. To show Smax is linearly independent, suppose

0 = α0p +
n−r∑
i=1

αi (p + hi) =

(
n−r∑
i=0

αi

)
p +

n−r∑
i=1

αihi.

Multiplication by A yields 0 =
(∑n−r

i=0 αi

)
b, which implies

∑n−r
i=0 αi = 0,

and hence
∑n−r

i=1 αihi = 0. Because H is independent, we may conclude that
α1 = α2 = · · · = αn−r = 0. Consequently, α0p = 0, and therefore α0 = 0
(because p �= 0 ), so that Smax is an independent set. By Exercise 4.4.18, it
must also be maximal because it contains n − r + 1 vectors.

4.4.20. The proof depends on the observation that if B = PT AP, where P is a per-
mutation matrix, then the graph G(B) is the same as G(A) except that the
nodes in G(B) have been renumbered according to the permutation defining
P. This follows because PT = P−1 implies A = PBPT , so if the rows (and
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columns) in P are the unit vectors that appear according to the permutation

π =
(

1 2 · · · n
π1 π2 · · · πn

)
, then

aij =
[
PBPT

]
ij

=


 eT

π1

...
eT

πn

B ( eπ1 · · · eπn
)


ij

= eT
πi

Beπj
= bπiπj

.

Consequently, aij �= 0 if and only if bπiπj �= 0, and thus G(A) and G(B)
are the same except for the fact that node Nk in G(A) is node Nπk

in G(B)
for each k = 1, 2, . . . , n. Now we can prove G(A) is not strongly connected
⇐⇒ A is reducible. If A is reducible, then there is a permutation matrix such

that PT AP = B =
(

X Y
0 Z

)
, where X is r × r and Z is n − r × n − r.

The zero pattern in B indicates that the nodes {N1, N2, . . . , Nr} in G(B) are
inaccessible from nodes {Nr+1, Nr+2, . . . , Nn} , and hence G(B) is not strongly
connected—e.g., there is no sequence of edges leading from Nr+1 to N1. Since
G(B) is the same as G(A) except that the nodes have different numbers, we
may conclude that G(A) is also not strongly connected. Conversely, if G(A)
is not strongly connected, then there are two nodes in G(A) such that one
is inaccessible from the other by any sequence of directed edges. Relabel the
nodes in G(A) so that this pair is N1 and Nn, where N1 is inaccessible
from Nn. If there are additional nodes—excluding Nn itself—which are also
inaccessible from Nn, label them N2, N3, . . . , Nr so that the set of all nodes that
are inaccessible from Nn —with the possible exception of Nn itself—is Nn =
{N1, N2, . . . , Nr} (inaccessible nodes). Label the remaining nodes—which are
all accessible from Nn —as Nn = {Nr+1, Nr+2, . . . , Nn−1} (accessible nodes).
It follows that no node in Nn can be accessible from any node in Nn, for
otherwise nodes in Nn would be accessible from Nn through nodes in Nn.

In other words, if Nr+k ∈ Nn and Nr+k → Ni ∈ Nn, then Nn → Nr+k →

Ni, which is impossible. This means that if π =
(

1 2 · · · n
π1 π2 · · · πn

)
is the

permutation generated by the relabeling process, then aπiπj
= 0 for each i =

r+1, r+2, . . . , n−1 and j = 1, 2, . . . , r. Therefore, if B = PT AP, where P is
the permutation matrix corresponding to the permutation π, then bij = aπiπj

,

so PT AP = B =
(

X Y
0 Z

)
, where X is r × r and Z is n − r × n − r, and

thus A is reducible.

Solutions for exercises in section 4. 5

4.5.1. rank
(
AT A

)
= rank (A) = rank

(
AAT

)
= 2

4.5.2. dimN (A) ∩ R (B) = rank (B) − rank (AB) = 2 − 1 = 1.
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4.5.3. Gaussian elimination yields X =

(
1 1

−1 1
2 2

)
, V =

(
1
1

)
, and XV =

(
2
0
4

)
.

4.5.4. Statement (4.5.2) says that the rank of a product cannot exceed the rank of any
factor.

4.5.5. rank (A) = rank
(
AT A

)
= 0 =⇒ A = 0.

4.5.6. rank (A) = 2, and there are six 2 × 2 nonsingular submatrices in A.

4.5.7. Yes. A =
(

1 1
1 1

)
and B =

(
1 1

−1 −1

)
is one of many examples.

4.5.8. No—it is not difficult to construct a counterexample using two singular matrices.
If either matrix is nonsingular, then the statement is true.

4.5.9. Transposition does not alter rank, so (4.5.1) says

rank (AB) = rank(AB)T = rank
(
BT AT

)
= rank

(
AT

)
− dimN

(
BT

)
∩ R

(
AT

)
= rank (A) − dimN

(
BT

)
∩ R

(
AT

)
.

4.5.10. This follows immediately from (4.5.1) because dimN (AB) = p − rank (AB)
and dimN (B) = p − rank (B).

4.5.11. (a) First notice that N (B) ⊆ N (AB) (Exercise 4.2.12) for all conformable A
and B, so, by (4.4.5), dimN (B) ≤ dimN (AB), or ν(B) ≤ ν(AB), is always
true—this also answers the second half of part (b). If A and B are both n × n,
then the rank-plus-nullity theorem together with (4.5.2) produces

ν(A) = dimN (A) = n − rank (A) ≤ n − rank (AB) = dimN (AB) = ν(AB),

so, together with the first observation, we have max {ν(A), ν(B)} ≤ ν(AB).
The rank-plus-nullity theorem applied to (4.5.3) yields ν(AB) ≤ ν(A) + ν(B).
(b) To see that ν(A) > ν(AB) is possible for rectangular matrices, consider

A = ( 1 1 ) and B =
(

1
1

)
.

4.5.12. (a) rank (Bn×p) = n =⇒ R (B) = n =⇒ N (A)∩R (B) = N (A) =⇒

rank (AB) = rank (B) − dimN (A) ∩ R (B) = n − dimN (A)
= n − (n − rank (A)) = rank (A)

It’s always true that R (AB) ⊆ R (A). When dimR (AB) = dimR (A) (i.e.,
when rank (AB) = rank (A) ), (4.4.6) implies R (AB) = R (A).
(b) rank (Am×n) = n =⇒ N (A) = {0} =⇒ N (A) ∩ R (B) = {0} =⇒

rank (AB) = rank (B) − dimN (A) ∩ R (B) = rank (B)

Assuming the product exists, it is always the case that N (B) ⊆ N (AB). Use
rank (B) = rank (AB) =⇒ p−rank (B) = p−rank (AB) =⇒ dimN (B) =
dimN (AB) together with (4.4.6) to conclude that N (B) = N (AB).
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4.5.13. (a) rank (A) = 2, and the unique exact solution is (−1, 1).
(b) Same as part (a).
(c) The 3-digit rank is 2, and the unique 3-digit solution is (−1, 1).

(d) The 3-digit normal equations
(

6 12
12 24

) (
x1

x2

)
=

(
6.01
12

)
have infinitely

many 3-digit solutions.
4.5.14. Use an indirect argument. Suppose x ∈ N (I + F) in which xi �= 0 is a compo-

nent of maximal magnitude. Use the triangle inequality together with x = −Fx
to conclude

|xi| =
∣∣∣ r∑

j=1

fijxj

∣∣∣ ≤ r∑
j=1

|fijxj | =
r∑

j=1

|fij | |xj | ≤
( r∑

j=1

|fij |
)
|xi| < |xi|,

which is impossible. Therefore, N (I + F) = 0, and hence I+F is nonsingular.
4.5.15. Follow the approach used in (4.5.8) to write

A ∼
(

W 0
0 S

)
, where S = Z − YW−1X.

rank (A) = rank (W) =⇒ rank (S) = 0 =⇒ S = 0, so Z = YW−1X.
The desired conclusion now follows by taking B = YW−1 and C = W−1X.

4.5.16. (a) Suppose that A is nonsingular, and let Ek = Ak−A so that lim
k→∞

Ek = 0.

This together with (4.5.9) implies there exists a sufficiently large value of k such
that

rank (Ak) = rank (A + Ek) ≥ rank (A) = n,

which is impossible because each Ak is singular. Therefore, the supposition that
A is nonsingular must be false.
(b) No!—consider

[
1
k

]
1×1

→ [0].
4.5.17. M ⊆ N because R (BC) ⊆ R (B), and therefore dimM ≤ dimN . For-

mula (4.5.1) guarantees dimM = rank (BC) − rank (ABC) and dimN =
rank (B) − rank (AB), so the desired conclusion now follows.

4.5.18. N (A) ⊆ N
(
A2

)
and R

(
A2

)
⊆ R (A) always hold, so (4.4.6) insures

N (A) = N
(
A2

)
⇐⇒ dimN (A) = dimN

(
A2

)
⇐⇒ n − rank (A) = n − rank

(
A2

)
⇐⇒ rank (A) = rank

(
A2

)
⇐⇒ R (A) = R

(
A2

)
.

Formula (4.5.1) says rank
(
A2

)
= rank (A) − dimR (A) ∩ N (A), so

R
(
A2

)
= R (A) ⇐⇒ rank

(
A2

)
= rank (A) ⇐⇒ dimR (A) ∩ N (A) = 0.
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4.5.19. (a) Since (
A
B

)
(A + B)(A | B) =

(
A
B

)
(A | B) =

(
A 0
0 B

)
,

the result of Example 3.9.3 together with (4.5.2) insures

rank (A) + rank (B) ≤ rank (A + B).

Couple this with the fact that rank (A + B) ≤ rank (A) + rank (B) (see Ex-
ample 4.4.8) to conclude rank (A + B) = rank (A) + rank (B).
(b) Verify that if B = I − A, then B2 = B and AB = BA = 0, and apply
the result of part (a).

4.5.20. (a) BT ACT = BT BCCT . The products BT B and CCT are each nonsin-
gular because they are r × r with

rank
(
BT B

)
= rank (B) = r and rank

(
CCT

)
= rank (C) = r.

(b) Notice that A† = CT
(
BT BCCT

)−1
BT = CT

(
CCT

)−1(
BT B

)−1
BT , so

AT AA†b = CT BT BCCT
(
CCT

)−1(
BT B

)−1
BT b = CT BT b = AT b.

If Ax = b is consistent, then its solution set agrees with the solution set for the
normal equations.
(c) AA†A = BCCT

(
CCT

)−1(
BT B

)−1
BT BC = BC = A. Now,

x ∈ R
(
I − A†A

)
=⇒ x =

(
I − A†A

)
y for some y

=⇒ Ax =
(
A − AA†A

)
y = 0 =⇒ x ∈ N (A).

Conversely,

x ∈ N (A) =⇒ Ax = 0 =⇒ x =
(
I − A†A

)
x =⇒ x ∈ R

(
I − A†A

)
,

so R
(
I − A†A

)
= N (A). As h ranges over all of n×1, the expression(

I − A†A
)
h generates R

(
I − A†A

)
= N (A). Since A†b is a particular solu-

tion of AT Ax = AT b, the general solution is

x = A†b + N (A) = A†b +
(
I − A†A

)
h.

(d) If r = n, then B = A and C = In.
(e) If A is nonsingular, then so is AT , and

A† =
(
AT A

)−1
AT = A−1

(
AT

)−1
AT = A−1.

(f) Follow along the same line as indicated in the solution to part (c) for the
case AA†A = A.
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Solutions for exercises in section 4. 6

4.6.1. A =


5
7
8

10
12

 and b =


11.1
15.4
17.5
22.0
26.3

 , so AT A = 382 and AT b = 838.9. Thus the

least squares estimate for k is 838.9/382 = 2.196.
4.6.2. This is essentially the same problem as Exercise 4.6.1. Because it must pass

through the origin, the equation of the least squares line is y = mx, and hence

A =


x1

x2
...

xn

 and b =


y1

y2
...

yn

 , so AT A =
∑

i x2
i and AT b =

∑
i xiyi.

4.6.3. Look for the line p = α + βt that comes closest to the data in the least squares
sense. That is, find the least squares solution for the system Ax = b, where

A =

 1 1
1 2
1 3

 , x =
(

α
β

)
, and b =

 7
4
3

 .

Set up normal equations AT Ax = AT b to get(
3 6
6 14

) (
α
β

)
=

(
14
24

)
=⇒

(
α
β

)
=

(
26/3
−2

)
=⇒ p = (26/3) − 2t.

Setting p = 0 gives t = 13/3. In other words, we expect the company to begin
losing money on May 1 of year five.

4.6.4. The associated linear system Ax = b is

Year 1: α + β = 1
Year 2: 2α = 1
Year 3: −β = 1

or

 1 1
2 0
0 −1

 (
α
β

)
=

 1
1
1

 .

The least squares solution to this inconsistent system is obtained from the system

of normal equations AT Ax = AT b that is
(

5 1
1 2

) (
α
β

)
=

(
3
0

)
. The unique

solution is
(

α
β

)
=

(
2/3

−1/3

)
, so the least squares estimate for the increase in

bread prices is

B =
2
3
W − 1

3
M.

When W = −1 and M = −1, we estimate that B = −1/3.
4.6.5. (a) α0 = .02 and α1 = .0983. (b) 1.986 grams.
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4.6.6. Use ln y = lnα0 + α1t to obtain the least squares estimates α0 = 9.73 and
α1 = .507.

4.6.7. The least squares line is y = 9.64 + .182x and for εi = 9.64 + .182xi − yi, the
sum of the squares of these errors is

∑
i ε2

i = 162.9. The least squares quadratic
is y = 13.97 + .1818x − .4336x2, and the corresponding sum of squares of the
errors is

∑
ε2

i = 1.622. Therefore, we conclude that the quadratic provides a
much better fit.

4.6.8. 230.7 min. (α0 = 492.04, α1 = −23.435, α2 = −.076134, α3 = 1.8624)
4.6.9. x2 is a least squares solution =⇒ AT Ax2 = AT b =⇒ 0 = AT (b−Ax2).

If we set x1 = b − Ax2, then(
Im×m A

AT 0n×n

) (
x1

x2

)
=

(
Im×m A

AT 0n×n

) (
b − Ax2

x2

)
=

(
b

0

)
.

The converse is true because(
Im×m A

AT 0n×n

) (
x1

x2

)
=

(
b

0

)
=⇒ Ax2 = b − x1 and AT x1 = 0

=⇒ AT Ax2 = AT b − AT x1 = AT b.

4.6.10. t ∈ R
(
AT

)
= R

(
AT A

)
=⇒ tT = zT AT A for some z. For each x satisfying

AT Ax = AT b, write

ŷ = tT x = zT AT Ax = zT AT b,

and notice that zT AT b is independent of x.

Solutions for exercises in section 4. 7

4.7.1. (b) and (f)
4.7.2. (a), (c), and (d)
4.7.3. Use any x to write T(0) = T(x − x) = T(x) − T(x) = 0.
4.7.4. (a)
4.7.5. (a) No (b) Yes
4.7.6. T(u1) = (2, 2) = 2u1 + 0u2 and T(u2) = (3, 6) = 0u1 + 3u2 so that [T]B =(

2 0
0 3

)
.

4.7.7. (a) [T]SS′ =

 1 3
0 0
2 −4

 (b) [T]SS′′ =

 2 −4
0 0
1 3


4.7.8. [T]B =

 1 −3/2 1/2
−1 1/2 1/2

0 1/2 −1/2

 and [v]B =

 1
1
0

 .
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4.7.9. According to (4.7.4), the jth column of [T]S is

[T(ej)]S = [Aej ]S = [A∗j ]S = A∗j .

4.7.10. [Tk]B = [TT · · ·T]B = [T]B[T]B · · · [T]B = [T]kB

4.7.11. (a) Sketch a picture to observe that P(e1) =
(

x
x

)
= P(e2) and that the

vectors e1, P(e1), and 0 are vertices of a 45◦ right triangle (as are e2,
P(v2), and 0 ). So, if ‖ � ‖ denotes length, the Pythagorean theorem may be
applied to yield 1 = 2 ‖P(e1)‖2 = 4x2 and 1 = 2 ‖P(e2)‖2 = 4x2. Thus


P(e1) =

(
1/2
1/2

)
= (1/2)e1 + (1/2)e2

P(e2) =
(

1/2
1/2

)
= (1/2)e1 + (1/2)e2

 =⇒ [P]S =
(

1/2 1/2
1/2 1/2

)
.

(b) P(v) =
( α+β

2
α+β

2

)
4.7.12. (a) If U1 =

(
1 0
0 0

)
, U2 =

(
0 1
0 0

)
, U3 =

(
0 0
1 0

)
, U4 =

(
0 0
0 1

)
,

then

T(U1) = U1 + 0U2 + 0U3 + 0U4,

T(U2) =
1
2

(
0 1
1 0

)
= 0U1 + 1/2U2 + 1/2U3 + 0U4,

T(U3) =
1
2

(
0 1
1 0

)
= 0U1 + 1/2U2 + 1/2U3 + 0U4,

T(U4) = 0U1 + 0U2 + 0U3 + U4,

so [T]S =


1 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 1

. To verify [T(U)]S = [T]S [U]S , observe that

T(U) =
(

a (b + c)/2
(b + c)/2 d

)
, [T(U)]S =


a

(b + c)/2
(b + c)/2

d

, [U]S =


a
b
c
d

.

(b) For U1, U2, U3, and U4 as defined above,
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T(U1) =
(

0 −1
−1 0

)
= 0U1 − U2 − U3 + 0U4,

T(U2) =
(

1 2
0 −1

)
= U1 + 2U2 + 0U3 − U4,

T(U3) =
(

1 0
−2 −1

)
= U1 + 0U2 − 2U3 − 1U4,

T(U4) =
(

0 1
1 0

)
= 0U1 + U2 + U3 + 0U4,

so [T]S =


0 1 1 0

−1 2 0 1
−1 0 −2 1

0 −1 −1 0

 . To verify [T(U)]S = [T]S [U]S , observe that

T(U) =
(

c + b −a + 2b + d
−a − 2c + d −b − c

)
and [T(U)]S =


c + b

−a + 2b + d
−a − 2c + d

−b − c

 .

4.7.13. [S]BB′ =


0 0 0
1 0 0
0 1/2 0
0 0 1/3


4.7.14. (a) [RQ]S = [R]S [Q]S =

(
1 0
0 −1

) (
cos θ − sin θ
sin θ cos θ

)
=

(
cos θ − sin θ

− sin θ − cos θ

)
(b)

[QQ]S = [Q]S [Q]S =
(

cos2 θ − sin2 θ −2 cos θ sin θ
2 cos θ sin θ cos2 θ − sin2 θ

)
=

(
cos 2θ − sin 2θ
sin 2θ cos 2θ

)
4.7.15. (a) Let B = {ui}n

i=1, B′ = {vi}m
i=1. If [P]BB′ = [αij ] and [Q]BB′ = [βij ],

then P(uj) =
∑

i αijvi and Q(uj) =
∑

i βijvi. Thus (P+Q)(uj) =
∑

i(αij +
βij)vi and hence [P + Q]BB′ = [αij +βij ] = [αij ]+ [βij ] = [P]BB′ +[Q]BB′ . The
proof of part (b) is similar.

4.7.16. (a) If B = {xi}n
i=1 is a basis, then I(xj) = 0x1 + 0x2 + · · · + 1xj + · · · + 0xn

so that the jth column in [I]B is just the jth unit column.

(b) Suppose xj =
∑

i βijyi so that [xj ]B′ =

 β1j

...
βnj

 . Then

I(xj) = xj =
∑

i

βijyi =⇒ [I]BB′ = [βij ] =
(

[x1]B′

∣∣∣ [x2]B′

∣∣∣ · · ·
∣∣∣ [xn]B′

)
.

Furthermore, T(yj) = xj =
∑

i βijyi =⇒ [T]B′ = [βij ], and

T(xj) = T
( ∑

i

βijyi

)
=

∑
i

βijT(yi) =
∑

i

βijxi =⇒ [T]B = [βij ].
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(c)

 1 −1 0
0 1 −1
0 0 1


4.7.17. (a) T−1(x, y, z) = (x + y + z, x + 2y + 2z, x + 2y + 3z)

(b) [T−1]S =

 1 1 1
1 2 2
1 2 3

 = [T]−1
S

4.7.18. (1) =⇒ (2) : T(x) = T(y) =⇒ T(x−y) = 0 =⇒ (y−x) = T−1(0) = 0.

(2) =⇒ (3) : T(x) = 0 and T(0) = 0 =⇒ x = 0.

(3) =⇒ (4) : If {ui}n
i=1 is a basis for V, show that N (T) = {0} implies

{T(ui)}n
i=1 is also a basis. Consequently, for each v ∈ V there are coordinates

ξi such that
v =

∑
i

ξiT(ui) = T
( ∑

i

ξiui

)
.

(4) =⇒ (2) : For each basis vector ui, there is a vi such that T(vi) = ui.
Show that {vi}n

i=1 is also a basis. If T(x) = T(y), then T(x − y) = 0.

Let x − y =
∑

i ξivi so that 0 = T(x − y) = T
( ∑

i ξivi

)
=

∑
i ξiT(vi) =∑

i ξiui =⇒ each ξi = 0 =⇒ x − y = 0 =⇒ x = y.

(4) and (2) =⇒ (1) : For each y ∈ V, show there is a unique x such
that T(x) = y. Let T̂ be the function defined by the rule T̂(y) = x. Clearly,
TT̂ = T̂T = I. To show that T̂ is a linear function, consider αy1 +y2, and let
x1 and x2 be such that T(x1) = y1, T(x2) = y2. Now, T(αx1+x2) = αy1+y2

so that T̂(αy1 + y2) = αx1 + x2. However, x1 = T̂(y1), x2 = T̂(y2) so that
αT̂(y1) + T̂(y2) = αx1 + x2 = T̂(αy1 + y2). Therefore T̂ = T−1.

4.7.19. (a) 0 =
∑

i αixi ⇐⇒

 0
...
0

 = [0]B =
[ ∑

i αixi

]
B

=
∑

i[αixi]B =
∑

i αi[xi]B

(b) G =
{
T(u1),T(u2), . . . ,T(un)

}
spans R (T). From part (a), the set

{
T(ub1),T(ub2), . . . ,T(ubr )

}
is a maximal independent subset of G if and only if the set{

[T(ub1)]B, [T(ub2)]B, . . . , [T(ubr
)]B

}
is a maximal linearly independent subset of{

[T(u1)]B, [T(u2)]B, . . . , [T(un)]B
}
,

which are the columns of [T]B.
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Solutions for exercises in section 4. 8

4.8.1. Multiplication by nonsingular matrices does not change rank.
4.8.2. A = Q−1BQ and B = P−1CP =⇒ A = (PQ)−1C(PQ).

4.8.3. (a) [A]S =

 1 2 −1
0 −1 0
1 0 7


(b) [A]S′ =

 1 4 3
−1 −2 −9

1 1 8

 and Q =

 1 1 1
0 1 1
0 0 1


4.8.4. Put the vectors from B into a matrix Q and compute

[A]B = Q−1AQ =

−2 −3 −7
7 9 12

−2 −1 0

 .

4.8.5. [B]S = B and [B]S′ = C. Therefore, C = Q−1BQ, where Q =
(

2 −3
−1 2

)
is the change of basis matrix from S ′ to S.

4.8.6. If B = {u,v} is such a basis, then T(u) = 2u and T(v) = 3v. For u =
(u1, u2), T(u) = 2u implies

−7u1 − 15u2 = 2u1

6u1 + 12u2 = 2u2,

or
−9u1 − 15u2 = 0

6u1 + 10u2 = 0,

so u1 = (−5/3)u2 with u2 being free. Letting u2 = −3 produces u = (5,−3).

Similarly, a solution to T(v) = 3v is v = (−3, 2). [T]S =
(
−7 −15

6 12

)
and

[T]B =
(

2 0
0 3

)
. For Q =

(
5 −3

−3 2

)
, [T]B = Q−1[T]SQ.

4.8.7. If sin θ = 0, the result is trivial. Assume sin θ �= 0. Notice that with respect
to the standard basis S, [P]S = R. This means that if R and D are to be
similar, then there must exist a basis B = {u,v} such that [P]B = D, which
implies that P(u) = eiθu and P(v) = e−iθv. For u = (u1, u2), P(u) = eiθu
implies

u1 cos θ − u2 sin θ = eiθu1 = u1 cos θ + iu1 sin θ

u1 sin θ + u2 cos θ = eiθu2 = u2 cos θ + iu2 sin θ,

or
iu1 + u2 = 0
u1 − iu2 = 0,
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so u1 = iu2 with u2 being free. Letting u2 = 1 produces u = (i, 1). Similarly,
a solution to P(v) = e−iθv is v = (1, i). Now, [P]S = R and [P]B = D so
that R and D must be similar. The coordinate change matrix from B to S
is Q =

(
i 1
1 i

)
, and therefore D = Q−1RQ.

4.8.8. (a) B = Q−1CQ =⇒ (B − λI) = Q−1CQ−λQ−1Q = Q−1 (C − λI)Q. The
result follows because multiplication by nonsingular matrices does not change
rank.
(b) B = P−1DP =⇒ B − λiI = P−1(D − λiI)P and (D − λiI) is singular
for each λi. Now use part (a).

4.8.9. B = P−1AP =⇒ Bk = P−1APP−1AP · · ·P−1AP = P−1AA · · ·AP =
P−1AkP

4.8.10. (a) YT Y is nonsingular because rank
(
YT Y

)
n×n

= rank (Y) = n. If

[v]B =

 α1
...

αn

 and [v]B′ =

 β1
...

βn

 ,

then
v =

∑
i

αixi = X[v]B and v =
∑

i

βiyi = Y[v]B′

=⇒ X[v]B = Y[v]B′ =⇒ YT X[v]B = YT Y[v]B′

=⇒ (YT Y)−1YT X[v]B = [v]B′ .

(b) When m = n, Y is square and (YT Y)−1YT = Y−1 so that P = Y−1X.
4.8.11. (a) Because B contains n vectors, you need only show that B is linearly in-

dependent. To do this, suppose
∑n−1

i=0 αiNi(y) = 0 and apply Nn−1 to both
sides to get α0Nn−1(y) = 0 =⇒ α0 = 0. Now

∑n−1
i=1 αiNi(y) = 0. Apply

Nn−2 to both sides of this to conclude that α1 = 0. Continue this process until
you have α0 = α1 = · · · = αn−1 = 0.

(b) Any n × n nilpotent matrix of index n can be viewed as a nilpotent operator
of index n on n. Furthermore, A = [A]S and B = [B]S , where S is the
standard basis. According to part (a), there are bases B and B′ such that
[A]B = J and [B]B′ = J. Since [A]S � [A]B, it follows that A � J. Similarly
B � J, and hence A � B by Exercise 4.8.2.

(c) Trace and rank are similarity invariants, and part (a) implies that every
n × n nilpotent matrix of index n is similar to J, and trace (J) = 0 and
rank (J) = n − 1.

4.8.12. (a) xi ∈ R (E) =⇒ xi = E(vi) for some vi =⇒ E(xi) = E2(vi) =
E(vi) = xi. Since B contains n vectors, you need only show that B is linearly
independent. 0 =

∑
i αixi + βiyi =⇒ 0 = E(0) =

∑
i αiE(xi) + βiE(yi) =∑

i αixi =⇒ αi ’s = 0 =⇒
∑

i βiyi = 0 =⇒ βi ’s = 0.
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(b) Let B = X ∪ Y = {b1,b2, . . . ,bn}. For j = 1, 2, . . . , r, the jth column
of [E]B is [E(bj)]B = [E(xj)]B = ej . For j = r + 1, r + 2, . . . , n, [E(bj)]B =
[E(yj−r)]B = [0]B = 0.

(c) Suppose that B and C are two idempotent matrices of rank r. If you
regard them as linear operators on n, then, with respect to the standard basis,
[B]S = B and [C]S = C. You know from part (b) that there are bases U and

V such that [B]U = [C]V =
(

Ir 0
0 0

)
= P. This implies that B � P, and

P � C. From Exercise 4.8.2, it follows that B � C.

(d) It follows from part (c) that F � P =
(

Ir 0
0 0

)
. Since trace and rank are

similarity invariants, trace (F) = trace (P) = r = rank (P) = rank (F).

Solutions for exercises in section 4. 9

4.9.1. (a) Yes, because T(0) = 0. (b) Yes, because x ∈ V =⇒ T(x) ∈ V.
4.9.2. Every subspace of V is invariant under I.
4.9.3. (a) X is invariant because x ∈ X ⇐⇒ x = (α, β, 0, 0) for α, β ∈ , so

T(x) = T(α, β, 0, 0) = (α + β, β, 0, 0) ∈ X .

(b)
[
T/X

]
{e1,e2}

=
(

1 1
0 1

)

(c) [T]B =


1 1 ∗ ∗
0 1 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗


4.9.4. (a) Q is nonsingular. (b) X is invariant because

T(α1Q∗1 + α2Q∗2) = α1


1
1

−2
3

 + α2


1
2

−2
2

 = α1Q∗1 + α2(Q∗1 + Q∗2)

= (α1 + α2)Q∗1 + α2Q∗2 ∈ span {Q∗1, Q∗2} .

Y is invariant because

T(α3Q∗3 + α4Q∗4) = α3


0
0
0
0

 + α4


0
3
1

−4

 = α4Q∗3 ∈ span {Q∗3, Q∗4} .

(c) According to (4.9.10), Q−1TQ should be block diagonal.
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(d) Q−1TQ =


1 1 0 0
0 1 0 0

0 0 0 1
0 0 0 0

 =


[
T/X

]
{Q∗1,Q∗2}

0

0
[
T/Y

]
{Q∗3,Q∗4}


4.9.5. If A = [αij ] and C = [γij ], then

T(uj) =
r∑

i=1

αijui ∈ U and T(wj) =
q∑

i=1

γijwi ∈ W.

4.9.6. If S is the standard basis for n×1, and if B is the basis consisting of the
columns of P, then

[T]B = P−1[T]SP = P−1TP =
(

A 0
0 C

)
.

(Recall Example 4.8.3.) The desired conclusion now follows from the result of
Exercise 4.9.5.

4.9.7. x ∈ N (A − λI) =⇒ (A − λI)x = 0 =⇒ Ax = λx ∈ N (A − λI)
4.9.8. (a) (A − λI) is singular when λ = −1 and λ = 3.

(b) There are four invariant subspaces—the trivial space {0}, the entire space
2, and the two one-dimensional spaces

N (A + I) = span

{(
1
2

)}
and N (A − 3I) = span

{(
1
3

)}
.

(c) Q =
(

1 1
2 3

)
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Clearly spoken, Mr. Fogg; you explain English by Greek.
— Benjamin Franklin (1706–1790)
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Solutions for Chapter 5

Solutions for exercises in section 5. 1

5.1.1. (a) ‖x‖1 = 9, ‖x‖2 = 5, ‖x‖∞ = 4

(b) ‖x‖1 = 5 + 2
√

2, ‖x‖2 =
√

21, ‖x‖∞ = 4
5.1.2. (a) ‖u − v‖ =

√
31 (b) ‖u + v‖ =

√
27 ≤ 7 = ‖u‖ + ‖v‖

(c) |uT v| = 1 ≤ 10 = ‖u‖ ‖v‖

5.1.3. Use the CBS inequality with x =


α1

α2
...

αn

 and y =


1
1
...
1

 .

5.1.4. (a)
{
x ∈ n

∣∣ ‖x‖2 ≤ 1
}

(b)
{
x ∈ n

∣∣ ‖x − c‖2 ≤ ρ
}

5.1.5. ‖x − y‖2 = ‖x + y‖2 =⇒ −2xT y = 2xT y =⇒ xT y = 0.
5.1.6. ‖x − y‖ = ‖(−1)(y − x)‖ = |(−1)| ‖y − x‖ = ‖y − x‖
5.1.7. x−y =

∑n
i=1(xi−yi)ei =⇒ ‖x − y‖ ≤

∑n
i=1 |xi−yi| ‖ei‖ ≤ ν

∑n
i=1 |xi−yi|,

where ν = maxi ‖ei‖ . For each ε > 0, set δ = ε/nν. If |xi − yi| < δ for each
i, then, using (5.1.6),

∣∣ ‖x‖ − ‖y‖
∣∣ ≤ ‖x − y‖ < νnδ = ε.

5.1.8. To show that ‖x‖1 ≤ √
n ‖x‖2 , apply the CBS inequality to the standard inner

product of a vector of all 1’s with a vector whose components are the |xi| ’s.
5.1.9. If y = αx, then |x∗y| = |α| ‖x‖2 = ‖x‖ ‖y‖ . Conversely, if |x∗y| = ‖x‖ ‖y‖ ,

then (5.1.4) implies that ‖αx − y‖ = 0, and hence αx− y = 0 —recall (5.1.1).
5.1.10. If y = αx for α > 0, then ‖x + y‖ = ‖(1 + α)x‖ = (1 + α) ‖x‖ = ‖x‖ + ‖y‖ .

Conversely, ‖x + y‖ = ‖x‖ + ‖y‖ =⇒ (‖x‖ + ‖y‖)2 = ‖x + y‖2 =⇒

‖x‖2 + 2 ‖x‖ ‖y‖ + ‖y‖2 = (x∗ + y∗) (x + y)
= x∗x + x∗y + y∗x + y∗y

= ‖x‖2 + 2Re(x∗y) + ‖y‖2
,

and hence ‖x‖ ‖y‖ = Re (x∗y) . But it’s always true that Re (x∗y) ≤
∣∣x∗y

∣∣,
so the CBS inequality yields

‖x‖ ‖y‖ = Re (x∗y) ≤
∣∣x∗y

∣∣ ≤ ‖x‖ ‖y‖ .

In other words,
∣∣x∗y

∣∣ = ‖x‖ ‖y‖ . We know from Exercise 5.1.9 that equality
in the CBS inequality implies y = αx, where α = x∗y/x∗x. We now need to
show that this α is real and positive. Using y = αx in the equality ‖x + y‖ =
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‖x‖+ ‖y‖ produces |1 + α| = 1 + |α|, or |1 + α|2 = (1 + |α|)2 . Expanding this
yields

(1 + ᾱ)(1 + α) = 1 + 2|α| + |α|2

=⇒ 1 + 2 Re(α) + ᾱα = 1 + 2|α| + ᾱα

=⇒ Re(α) = |α|,
which implies that α must be real. Furthermore, α = Re (α) = |α| ≥ 0. Since
y = αx and y �= 0, it follows that α �= 0, and therefore α > 0.

5.1.11. This is a consequence of Hölder’s inequality because

|xT y| = |xT (y − αe)| ≤ ‖x‖1 ‖y − αe‖∞
for all α, and minα ‖y − αe‖∞ = (ymax − ymin)/2 (with the minimum being
attained at α = (ymax + ymin)/2 ).

5.1.12. (a) It’s not difficult to see that f ′(t) < 0 for t < 1, and f ′(t) > 0 for t > 1,
so we can conclude that f(t) > f(1) = 0 for t �= 1. The desired inequality
follows by setting t = α/β.

(b) This inequality follows from the inequality of part (a) by setting

α = |x̂i|p, β = |ŷi|q, λ = 1/p, and (1 − λ) = 1/q.

(c) Hölder’s inequality results from part (b) by setting x̂i = xi/ ‖x‖p and
ŷi = yi/ ‖y‖q . To obtain the “vector form” of the inequality, use the triangle
inequality for complex numbers to write

|x∗y| =

∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣ ≤
n∑

i=1

|xi| |yi| =
n∑

i=1

|xiyi| ≤
(

n∑
i=1

|xi|p
)1/p (

n∑
i=1

|yi|q
)1/q

= ‖x‖p ‖y‖q .

5.1.13. For p = 1, Minkowski’s inequality is a consequence of the triangle inequality
for scalars. The inequality in the hint follows from the fact that p = 1 + p/q
together with the scalar triangle inequality, and it implies that

n∑
i=1

|xi +yi|p =
n∑

i=1

|xi +yi| |xi +yi|p/q ≤
n∑

i=1

|xi| |xi +yi|p/q +
n∑

i=1

|yi| |xi +yi|p/q.

Application of Hölder’s inequality produces

n∑
i=1

|xi| |xi + yi|p/q ≤
(

n∑
i=1

|xi|p
)1/p (

n∑
i=1

|xi + yi|p
)1/q

=

(
n∑

i=1

|xi|p
)1/p (

n∑
i=1

|xi + yi|p
)(p−1)/p

= ‖x‖p ‖x + y‖p−1
p .
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Similarly,
n∑

i=1

|yi| |xi + yi|p/q ≤ ‖y‖p ‖x + y‖p−1
p , and therefore

‖x + y‖p
p ≤

(
‖x‖p + ‖y‖p

)
‖x + y‖p−1

p =⇒ ‖x + y‖p ≤ ‖x‖p + ‖y‖p .

Solutions for exercises in section 5. 2

5.2.1. ‖A‖F =
[∑

i,j |aij |2
]1/2

= [trace (A∗A)]1/2 =
√

10,

‖B‖F =
√

3, and ‖C‖F = 9.
5.2.2. (a) ‖A‖1 = max absolute column sum = 4, and ‖A‖∞ = max absolute

row sum = 3. ‖A‖2 =
√

λmax, where λmax is the largest value of λ for which
AT A − λI is singular. Determine these λ ’s by row reduction.

AT A − λI =
(

2 −−λ −4
−4 8 − λ

)
−→

(
−4 8 − λ

2 − λ −4

)
−→

(
−4 8 − λ
0 −4 + 2−λ

4 (8 − λ)

)
This matrix is singular if and only if the second pivot is zero, so we must have
(2−λ)(8−λ)− 16 = 0 =⇒ λ2 − 10λ = 0 =⇒ λ = 0, λ = 10, and therefore
‖A‖2 =

√
10.

(b) Use the same technique to get ‖B‖1 = ‖B‖2 = ‖B‖∞ = 1, and
(c) ‖C‖1 = ‖C‖∞ = 10 and ‖C‖2 = 9.

5.2.3. (a) ‖I‖ = max‖x‖=1 ‖Ix‖ = max‖x‖=1 ‖x‖ = 1.

(b) ‖In×n‖F =
[
trace

(
IT I

)]1/2 =
√

n.
5.2.4. Use the fact that trace (AB) = trace (BA) (recall Example 3.6.5) to write

‖A‖2
F = trace (A∗A) = trace (AA∗) = ‖A∗‖2

F .

5.2.5. (a) For x = 0, the statement is trivial. For x �= 0, we have ‖(x/ ‖x‖)‖ = 1,
so for any particular x0 �= 0,

‖A‖ = max
‖x‖=1

‖Ax‖ = max
x�=0

∥∥∥∥A x
‖x‖

∥∥∥∥ ≥ ‖Ax0‖
‖x0‖

=⇒ ‖Ax0‖ ≤ ‖A‖ ‖x0‖ .

(b) Let x0 be a vector such that ‖x0‖ = 1 and

‖ABx0‖ = max
‖x‖=1

‖ABx‖ = ‖AB‖ .

Make use of the result of part (a) to write

‖AB‖ = ‖ABx0‖ ≤ ‖A‖ ‖Bx0‖ ≤ ‖A‖ ‖B‖ ‖x0‖ = ‖A‖ ‖B‖ .
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(c) ‖A‖ = max
‖x‖=1

‖Ax‖ ≤ max
‖x‖≤1

‖Ax‖ because {x | ‖x‖ = 1} ⊂ {x | ‖x‖ ≤ 1} .

If there would exist a vector x0 such that ‖x0‖ < 1 and ‖A‖ < ‖Ax0‖ ,
then part (a) would insure that ‖A‖ < ‖Ax0‖ ≤ ‖A‖ ‖x0‖ < ‖A‖ , which is
impossible.

5.2.6. (a) Applying the CBS inequality yields

|y∗Ax| ≤ ‖y‖2 ‖Ax‖2 =⇒ max
‖x‖2=1
‖y‖2=1

|y∗Ax| ≤ max
‖x‖2=1

‖Ax‖2 = ‖A‖2 .

Now show that equality is actually attained for some pair x and y on the unit
2-sphere. To do so, notice that if x0 is a vector of unit length such that

‖Ax0‖2 = max
‖x‖2=1

‖Ax‖2 = ‖A‖2 , and if y0 =
Ax0

‖Ax0‖2

=
Ax0

‖A‖2

,

then

y∗
0Ax0 =

x∗
0A

∗Ax0

‖A‖2

=
‖Ax0‖2

2

‖A‖2

=
‖A‖2

2

‖A‖2

= ‖A‖2 .

(b) This follows directly from the result of part (a) because

‖A‖2 = max
‖x‖2=1
‖y‖2=1

|y∗Ax| = max
‖x‖2=1
‖y‖2=1

|(y∗Ax)∗| = max
‖x‖2=1
‖y‖2=1

|x∗A∗y| = ‖A∗‖2 .

(c) Use part (a) with the CBS inequality to write

‖A∗A‖2 = max
‖x‖2=1
‖y‖2=1

|y∗A∗Ax| ≤ max
‖x‖2=1
‖y‖2=1

‖Ay‖2 ‖Ax‖2 = ‖A‖2
2 .

To see that equality is attained, let x = y = x0, where x0 is a vector of unit
length such that ‖Ax0‖2 = max‖x‖2=1 ‖Ax‖2 = ‖A‖2 , and observe

|x∗
0A

∗Ax0| = x∗
0A

∗Ax0 = ‖Ax0‖2
2 = ‖A‖2

2 .

(d) Let D =
(

A 0
0 B

)
. We know from (5.2.7) that ‖D‖2

2 is the largest value

λ such that DT D − λI is singular. But DT D − λI is singular if and only if
AT A− λI or BT B− λI is singular, so λmax(D) = max {λmax(A), λmax(B)} .

(e) If UU∗ = I, then ‖U∗Ax‖2
2 = x∗A∗UU∗Ax = x∗A∗Ax = ‖Ax‖2

2, so
‖U∗A‖2 = max‖x‖2=1 ‖U∗Ax‖2 = max‖x‖2=1 ‖Ax‖2 = ‖A‖2. Now, if V∗V =
I, use what was just established with part (b) to write

‖AV‖2 = ‖(AV)∗‖2 = ‖V∗A∗‖2 = ‖A∗‖2 = ‖A‖2 =⇒ ‖U∗AV‖2 = ‖A‖2.
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5.2.7. Proceed as follows.

1
min
‖x‖=1

∥∥A−1x
∥∥ = max

‖x‖=1

{
1

‖A−1x‖

}
= max

y �=0

 1∥∥∥A−1 (Ay)
‖Ay‖

∥∥∥


= max
y �=0

‖Ay‖
‖A−1(Ay)‖ = max

y �=0

‖Ay‖
‖y‖ = max

y �=0

∥∥∥∥A(
y

‖y‖

)∥∥∥∥
= max

‖x‖=1
‖Ax‖ = ‖A‖

5.2.8. Use (5.2.6) on p. 280 to write ‖(zI−A)−1‖ = (1/ min‖x‖=1 ‖(zI − A)x‖), and let
w be a vector for which ‖w‖ = 1 and ‖(zI − A)w‖ = min‖x‖=1 ‖(zI − A)x‖ .
Use ‖Aw‖ ≤ ‖A‖ < |z| together with the “backward triangle inequality” from
Example 5.1.1 (p. 273) to write

‖(zI − A)w‖ = ‖zw − Aw‖ ≥
∣∣‖zw‖ − ‖Aw‖

∣∣ =
∣∣|z| − ‖Aw‖

∣∣
= |z| − ‖Aw‖ ≥ |z| − ‖A‖.

Consequently, min‖x‖=1 ‖(zI − A)x‖ = ‖(zI − A)w‖ ≥ |z| − ‖A‖ implies that

‖(zI − A)−1‖ =
1

min
‖x‖=1

‖(zI − A)x‖ ≤ 1
|z| − ‖A‖ .

Solutions for exercises in section 5. 3

5.3.1. Only (c) is an inner product. The expressions in (a) and (b) each fail the first
condition of the definition (5.3.1), and (d) fails the second.

5.3.2. (a) 〈x y〉 = 0 ∀ x ∈ V =⇒ 〈y y〉 = 0 =⇒ y = 0.

(b) 〈αx y〉 = 〈y αx〉 = α 〈y x〉 = α〈y x〉 = α 〈x y〉
(c) 〈x + y z〉 = 〈z x + y〉 = 〈z x〉 + 〈z y〉 = 〈z x〉 + 〈z y〉 = 〈x z〉 + 〈y z〉

5.3.3. The first property in (5.2.3) holds because 〈x x〉 ≥ 0 for all x ∈ V implies
‖x‖ =

√
〈x x〉 ≥ 0, and ‖x‖ = 0 ⇐⇒ 〈x x〉 = 0 ⇐⇒ x = 0. The second

property in (5.2.3) holds because

‖αx‖2 = 〈αx αx〉 = α 〈αx x〉 = α〈x αx〉 = αα〈x x〉 = |α|2 〈x x〉 = |α|2 ‖x‖2
.

5.3.4. 0 ≤ ‖x − y‖2 = 〈x − y x − y〉 = 〈x x〉−2 〈x y〉+〈y y〉 = ‖x‖2−2 〈x y〉+‖y‖2

5.3.5. (a) Use the CBS inequality with the Frobenius matrix norm and the standard
inner product as illustrated in Example 5.3.3, and set A = I.
(b) Proceed as in part (a), but this time set A = BT (recall from Example
3.6.5 that trace

(
BT B

)
= trace

(
BBT

)
).
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(c) Use the result of Exercise 5.3.4 with the Frobenius matrix norm and the inner
product for matrices.

5.3.6. Suppose that parallelogram identity holds, and verify that (5.3.10) satisfies the
four conditions in (5.3.1). The first condition follows because 〈x x〉r = ‖x‖2 and
〈ix x〉r = 0 combine to yield 〈x x〉 = ‖x‖2

. The second condition (for real α )
and third condition hold by virtue of the argument for (5.3.7). We will prove the
fourth condition and then return to show that the second holds for complex α.
By observing that 〈x y〉r = 〈y x〉r and 〈ix iy〉r = 〈x y〉r , we have

〈iy x〉r =
〈
iy −i2x

〉
r

= 〈y −ix〉r = −〈y ix〉r = −〈ix y〉r ,

and hence

〈y x〉 = 〈y x〉r + i 〈iy x〉r = 〈y x〉r − i 〈ix y〉r = 〈x y〉r − i 〈ix y〉r = 〈x y〉.

Now prove that 〈x αy〉 = α 〈x y〉 for all complex α. Begin by showing it is
true for α = i.

〈x iy〉 = 〈x iy〉r + i 〈ix iy〉r = 〈x iy〉r + i 〈x y〉r = 〈iy x〉r + i 〈x y〉r
= −〈ix y〉r + i 〈x y〉r = i (〈x y〉r + i 〈ix y〉r)
= i 〈x y〉

For α = ξ + iη,

〈x αy〉 = 〈x ξy + iηy〉 = 〈x ξy〉 + 〈x iηy〉 = ξ 〈x y〉 + iη 〈x y〉 = α 〈x y〉 .

Conversely, if 〈� �〉 is any inner product on V, then with ‖�‖2 = 〈� �〉 we have

‖x + y‖2 + ‖x − y‖2 = 〈x + y x + y〉 + 〈x − y x − y〉
= ‖x‖2 + 2Re 〈x y〉 + ‖y‖2 + ‖x‖2 − 2Re 〈x y〉 + ‖y‖2

= 2
(
‖x‖2 + ‖y‖2

)
.

5.3.7. The parallelogram identity (5.3.7) fails to hold for all x,y ∈ Cn. For example,
if x = e1 and y = e2, then

‖e1 + e2‖2
∞ + ‖e1 − e2‖2

∞ = 2, but 2
(
‖e1‖2

∞ + ‖e2‖2
∞

)
= 4.

5.3.8. (a) As shown in Example 5.3.2, the Frobenius matrix norm Cn×n is generated
by the standard matrix inner product (5.3.2), so the result on p. 290 guarantees
that ‖�‖F satisfies the parallelogram identity.

5.3.9. No, because the parallelogram inequality (5.3.7) doesn’t hold. To see that
‖X + Y‖2 + ‖X − Y‖2 = 2

(
‖X‖2 + ‖Y‖2 )

is not valid for all X,Y ∈ Cn×n,
let X = diag (1, 0, . . . , 0) and Y = diag (0, 1, . . . , 0) . For � = 1, 2, or ∞,

‖X + Y‖2
� + ‖X − Y‖2

� = 1 + 1 = 2, but 2
(
‖X‖2

� + ‖Y‖2
�

)
= 4.

co
nt

ro
len

gin
ee

rs
.ir



Solutions 57

Solutions for exercises in section 5. 4

5.4.1. (a), (b), and (e) are orthogonal pairs.

5.4.2. First find v =
(

α1

α2

)
such that 3α1 − 2α2 = 0, and then normalize v. The

second must be the negative of v.
5.4.3. (a) Simply verify that xT

i xj = 0 for i �= j.

(b) Let xT
4 = (α1 α2 α3 α4 ) , and notice that xT

i x4 = 0 for i = 1, 2, 3
is three homogeneous equations in four unknowns 1 −1 0 2

1 1 1 0
−1 −1 2 0




α1

α2

α3

α4

 =

 0
0
0

 =⇒


α1

α2

α3

α4

 = β


−1

1
0
1

 .

(c) Simply normalize the set by dividing each vector by its norm.
5.4.4. The Fourier coefficients are

ξ1 = 〈u1 x〉 =
1√
2
, ξ2 = 〈u2 x〉 =

−1√
3
, ξ3 = 〈u3 x〉 =

−5√
6
,

so

x = ξ1u1 + ξ2u2 + ξ3u3 =
1
2

 1
−1

0

 − 1
3

 1
1
1

 − 5
6

−1
−1

2

 .

5.4.5. If U1, U2, U3, and U4 denote the elements of B, verify they constitute an
orthonormal set by showing that

〈Ui Uj〉 = trace(UT
i Uj) = 0 for i �= j and ‖Ui‖ =

√
trace(UT

i Ui) = 1.

Consequently, B is linearly independent—recall (5.4.2)—and therefore B is a
basis because it is a maximal independent set—part (b) of Exercise 4.4.4 insures
dim2×2 = 4. The Fourier coefficients 〈Ui A〉 = trace(UT

i A) are

〈U1 A〉 =
2√
2
, 〈U2 A〉 = 0, 〈U3 A〉 = 1, 〈U4 A〉 = 1,

so the Fourier expansion of A is A = (2/
√

2)U1 + U3 + U4.
5.4.6. cos θ = xT y/ ‖x‖ ‖y‖ = 1/2, so θ = π/3.
5.4.7. This follows because each vector has a unique representation in terms of a basis—

see Exercise 4.4.8 or the discussion of coordinates in §4.7.
5.4.8. If the columns of U = [u1 |u2 | · · · |un] are an orthonormal basis for Cn, then

[U∗U]ij = u∗
i uj =

{
1 when i = j,
0 when i �= j,

(‡)
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and, therefore, U∗U = I. Conversely, if U∗U = I, then ( ‡ ) holds, so the
columns of U are orthonormal—they are a basis for Cn because orthonormal
sets are always linearly independent.

5.4.9. Equations (4.5.5) and (4.5.6) guarantee that

R (A) = R (AA∗) and N (A) = N (A∗A),

and consequently r ∈ R (A) = R (AA∗) =⇒ r = AA∗x for some x, and
n ∈ N (A) = N (A∗A) =⇒ A∗An = 0. Therefore,

〈r n〉 = r∗n = x∗AA∗n = x∗A∗An = 0.

5.4.10. (a) π/4 (b) π/2
5.4.11. The number xT y or x∗y will in general be complex. In order to guarantee that

we end up with a real number, we should take

cos θ =
|Re (x∗y) |
‖x‖ ‖y‖ .

5.4.12. Use the Fourier expansion y =
∑

i 〈ui y〉ui together with the various properties
of an inner product to write

〈x y〉 =

〈
x

∑
i

〈ui y〉ui

〉
=

∑
i

〈x 〈ui y〉ui〉 =
∑

i

〈ui y〉 〈x ui〉 .

5.4.13. In a real space, 〈x y〉 = 〈y x〉 , so the third condition in the definition (5.3.1)
of an inner product and Exercise 5.3.2(c) produce

〈x + y x − y〉 = 〈x + y x〉 − 〈x + y y〉
= 〈x x〉 + 〈y x〉 − 〈x y〉 − 〈y y〉
= ‖x‖2 − ‖y‖2 = 0.

5.4.14. (a) In a real space, 〈x y〉 = 〈y x〉 , so the third condition in the definition
(5.3.1) of an inner product and Exercise 5.3.2(c) produce

‖x + y‖2 = 〈x + y x + y〉 = 〈x + y x〉 + 〈x + y y〉
= 〈x x〉 + 〈y x〉 + 〈x y〉 + 〈y y〉
= ‖x‖2 + 2 〈x y〉 + ‖y‖2

,

and hence 〈x y〉 = 0 if and only if ‖x + y‖2 = ‖x‖2 + ‖y‖2
.

(b) In a complex space, x ⊥ y =⇒ ‖x + y‖2 = ‖x‖2 + ‖y‖2
, but the

converse is not valid—e.g., consider C2 with the standard inner product, and

let x =
(
−i
1

)
and y =

(
1
i

)
.
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(c) Again, using the properties of a general inner product, derive the expansion

‖αx + βy‖2 = 〈αx + βy αx + βy〉
= 〈αx αx〉 + 〈αx βy〉 + 〈βy αx〉 + 〈βy βy〉
= ‖αx‖2 + αβ 〈x y〉 + βα 〈y x〉 + ‖βy‖2

.

Clearly, x ⊥ y =⇒ ‖αx + βy‖2 = ‖αx‖2 + ‖βy‖2 ∀ α, β. Conversely, if
‖αx + βy‖2 = ‖αx‖2 + ‖βy‖2 ∀ α, β, then αβ 〈x y〉 + βα 〈y x〉 = 0 ∀ α, β.
Letting α = 〈x y〉 and β = 1 produces the conclusion that 2| 〈x y〉 |2 = 0,
and thus 〈x y〉 = 0.

5.4.15. (a) cos θi = 〈ui x〉 / ‖ui‖ ‖x‖ = 〈ui x〉 / ‖x‖ = ξi/ ‖x‖
(b) Use the Pythagorean theorem (Exercise 5.4.14) to write

‖x‖2 = ‖ξ1u1 + ξ2u2 + · · · + ξnun‖2

= ‖ξ1u1‖2 + ‖ξ2u2‖2 + · · · + ‖ξnun‖2

= |ξ1|2 + |ξ2|2 + · · · + |ξn|2.

5.4.16. Use the properties of an inner product to write∥∥∥∥∥x −
k∑

i=1

ξiui

∥∥∥∥∥
2

=

〈
x −

k∑
i=1

ξiui x −
k∑

i=1

ξiui

〉

= 〈x x〉 − 2
∑

i

|ξi|2 +

〈
k∑

i=1

ξiui

k∑
i=1

ξiui

〉

= ‖x‖2 − 2
∑

i

|ξi|2 +

∥∥∥∥∥
k∑

i=1

ξiui

∥∥∥∥∥
2

,

and then invoke the Pythagorean theorem (Exercise 5.4.14) to conclude∥∥∥∥∥
k∑

i=1

ξiui

∥∥∥∥∥
2

=
∑

i

‖ξiui‖2 =
∑

i

|ξi|2.

Consequently,

0 ≤
∥∥∥∥∥x −

k∑
i=1

ξiui

∥∥∥∥∥
2

= ‖x‖2 −
∑

i

|ξi|2 =⇒
k∑

i=1

|ξi|2 ≤ ‖x‖2
. (‡)

If x ∈ span {u1,u2, . . . ,uk} , then the Fourier expansion of x with respect
to the ui ’s is x =

∑k
i=1 ξiui, and hence equality holds in (‡). Conversely, if

equality holds in (‡), then x −
∑k

i=1 ξiui = 0.
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5.4.17. Choose any unit vector ei for y. The angle between e and ei approaches π/2
as n → ∞, but eT ei = 1 for all n.

5.4.18. If y is negatively correlated to x, then zx = −zy, but ‖zx − zy‖2 = 2
√

n
gives no indication of the fact that zx and zy are on the same line. Continuity
therefore dictates that when y ≈ β0e + β1x with β1 < 0, then zx ≈ −zy, but
‖zx − zy‖2 ≈ 2

√
n gives no hint that zx and zy are almost on the same line.

If we want to use norms to gauge linear correlation, we should use

min
{
‖zx − zy‖2 , ‖zx + zy‖2

}
.

5.4.19. (a) cos θ = 1 =⇒ 〈x y〉 = ‖x‖ ‖y‖ > 0, and the straightforward extension of
Exercise 5.1.9 guarantees that

y =
〈x y〉
‖x‖2 x, and clearly

〈x y〉
‖x‖2 > 0.

Conversely, if y = αx for α > 0, then 〈x y〉 = α ‖x‖2 =⇒ cos θ = 1.

(b) cos θ = −1 =⇒ 〈x y〉 = −‖x‖ ‖y‖ < 0, so the generalized version of
Exercise 5.1.9 guarantees that

y =
〈x y〉
‖x‖2 x, and in this case

〈x y〉
‖x‖2 < 0.

Conversely, if y = αx for α < 0, then 〈x y〉 = α ‖x‖2
, so

cos θ =
α ‖x‖2

|α| ‖x‖2 = −1.

5.4.20. F (t) =
∑∞

n (−1)n 2
n sin nt.

Solutions for exercises in section 5. 5

5.5.1. (a)

u1 =
1
2


1
1
1

−1

 , u2 =
1

2
√

3


3

−1
−1

1

 , u3 =
1√
6


0
1
1
2


(b) First verify this is an orthonormal set by showing uT

i uj =
{

1 when i = j,
0 when i �= j.

To show that the xi ’s and the ui ’s span the same space, place the xi ’s as rows
in a matrix A, and place the ui ’s as rows in a matrix B, and then verify that
EA = EB—recall Example 4.2.2.
(c) The result should be the same as in part (a).
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5.5.2. First reduce A to EA to determine a “regular” basis for each space.

R (A) = span


 1

2
3

 N
(
AT

)
= span


−2

1
0

 ,

−3
0
1



R
(
AT

)
= span




1
−2

3
−1


 N (A) = span




2
1
0
0

 ,


−3

0
1
0

 ,


1
0
0
1




Now apply Gram–Schmidt to each of these.

R (A) = span

 1√
14

 1
2
3

 N
(
AT

)
= span

 1√
5

−2
1
0

 ,
1√
70

−3
−6

5



R
(
AT

)
= span

 1√
15


1

−2
3

−1




N (A) = span

 1√
5


2
1
0
0

 ,
1√
70


−3

6
5
0

 ,
1√
210


1

−2
3

14




5.5.3.

u1 =
1√
3

 i
i
i

 , u2 =
1√
6

−2i
i
i

 , u3 =
1√
2

 0
−i

i


5.5.4. Nothing! The resulting orthonormal set is the same as the original.
5.5.5. It breaks down at the first vector such that xk ∈ span {x1,x2, . . . ,xk−1} because

if
xk ∈ span {x1,x2, . . . ,xk−1} = span {u1,u2, . . . ,uk−1} ,

then the Fourier expansion of xk with respect to span {u1,u2, . . . ,uk−1} is

xk =
k−1∑
i=1

〈ui xk〉ui,

and therefore

uk =

(
xk −

∑k−1
i=1 〈ui xk〉ui

)
∥∥∥(

xk −
∑k−1

i=1 〈ui xk〉ui

)∥∥∥ =
0

‖0‖
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is not defined.
5.5.6. (a) The rectangular QR factors are

Q =


1/
√

3 −1/
√

3 1/
√

6
1/
√

3 1/
√

3 1/
√

6
1/
√

3 0 −2/
√

6
0 1/

√
3 0

 and R =

√
3

√
3 −

√
3

0
√

3
√

3
0 0

√
6

 .

(b) Following Example 5.5.3, solve Rx = QT b to get x =

 2/3
1/3
0

 .

5.5.7. For k = 1, there is nothing to prove. For k > 1, assume that Ok is an
orthonormal basis for Sk. First establish that Ok+1 must be an orthonormal
set. Orthogonality follows because for each j < k + 1,

〈uj uk+1〉 =

〈
uj

1
νk+1

(
xk+1 −

k∑
i=1

〈ui xk+1〉ui

)〉

=
1

νk+1

(
〈uj xk+1〉 −

〈
uj

k∑
i=1

〈ui xk+1〉ui

〉)

=
1

νk+1

(
〈uj xk+1〉 −

k∑
i=1

〈ui xk+1〉 〈uj ui〉
)

=
1

νk+1
(〈uj xk+1〉 − 〈uj xk+1〉) = 0.

This together with the fact that each ui has unit norm means that Ok+1 is an
orthonormal set. Now assume Ok is a basis for Sk, and prove that Ok+1 is a
basis for Sk+1. If x ∈ Sk+1, then x can be written as a combination

x =
k+1∑
i=1

αixi =

(
k∑

i=1

αixi

)
+ αk+1xk+1,

where
∑k

i=1 αixi ∈ Sk = span (Ok) ⊂ span (Ok+1) . Couple this together with
the fact that

xk+1 = νk+1uk+1 +
k∑

i=1

〈ui xk+1〉ui ∈ span (Ok+1)

to conclude that x ∈ span (Ok+1) . Consequently, Ok+1 spans Sk+1, and there-
fore Ok+1 is a basis for Sk+1 because orthonormal sets are always linearly
independent.
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5.5.8. If A = Q1R1 = Q2R2 are two rectangular QR factorizations, then (5.5.6)
implies AT A = RT

1 R1 = RT
2 R2. It follows from Example 3.10.7 that AT A is

positive definite, and R1 = R2 because the Cholesky factorization of a positive
definite matrix is unique. Therefore, Q1 = AR−1

1 = AR−1
2 = Q2.

5.5.9. (a) Step 1: fl ‖x1‖ = 1, so u1 ← x1.

Step 2: uT
1 x2 = 1, so

u2 ← x2 −
(
uT

1 x2

)
u1 =

 0
0

−10−3

 and u2 ← u2

‖u2‖
=

 0
0

−1

 .

Step 3: uT
1 x3 = 1 and uT

2 x3 = 0, so

u3 ← x3−
(
uT

1 x3

)
u1−

(
uT

2 x3

)
u2 =

 0
10−3

−10−3

 and u3 ← u3

‖u3‖
=

 0
.709

−.709

 .

Therefore, the result of the classical Gram–Schmidt algorithm using 3-digit arith-
metic is

u1 =

 1
0

10−3

 , u2 =

 0
0

−1

 , u3 =

 0
.709

−.709

 ,

which is not very good because u2 and u3 are not even close to being orthog-
onal.
(b) Step 1: fl ‖x1‖ = 1, so

{u1,u2,u3} ← {x1,x2,x3} .

Step 2: uT
1 u2 = 1 and uT

1 u3 = 1, so

u2 ← u2 −
(
uT

1 u2

)
u1 =

 0
0

−10−3

, u3 ← u3 −
(
uT

1 u3

)
u1 =

 0
10−3

−10−3

,

and then

u2 ← u2

‖u2‖
=

 0
0

−1

 .

Step 3: uT
2 u3 = 10−3, so

u3 ← u3 −
(
uT

2 u3

)
u2 =

 0
10−3

0

 and u3 ← u3

‖u3‖
=

 0
1
0

 .
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Thus the modified Gram–Schmidt algorithm produces

u1 =

 1
0

10−3

 , u2 =

 0
0

−1

 , u3 =

 0
1
0

 ,

which is as close to being an orthonormal set as one could reasonably hope to
obtain by using 3-digit arithmetic.

5.5.10. Yes. In both cases rij is the (i, j)-entry in the upper-triangular matrix R in the
QR factorization.

5.5.11. p0(x) = 1/
√

2, p1(x) =
√

3/2 x, p2(x) =
√

5/8 (3x2 − 1)

Solutions for exercises in section 5. 6

5.6.1. (a), (c), and (d).

5.6.2. Yes, because U∗U =
(

1 0
0 1

)
.

5.6.3. (a) Eight: D =

±1 0 0
0 ±1 0
0 0 ±1

 (b) 2n : D =


±1 0 · · · 0
0 ±1 · · · 0
...

...
. . .

...
0 0 · · · ±1


(c) There are infinitely many because each diagonal entry can be any point on the
unit circle in the complex plane—these matrices have the form given in part (d)
of Exercise 5.6.1.

5.6.4. (a) When α2 + β2 = 1/2. (b) When α2 + β2 = 1.
5.6.5. (a) (UV)∗(UV) = V∗U∗UV = V∗V = I.

(b) Consider I + (−I) = 0.

(c) (
U 0
0 V

)∗ (
U 0
0 V

)
=

(
U∗ 0
0 V∗

) (
U 0
0 V

)
=

(
U∗U 0

0 V∗V

)
=

(
I 0
0 I

)
.

5.6.6. Recall from (3.7.8) or (4.2.10) that (I+A)−1 exists if and only if N (I + A) = 0,
and write x ∈ N (I + A) =⇒ x = −Ax =⇒ x∗x = −x∗Ax. But
taking the conjugate transpose of both sides yields x∗x = −x∗A∗x = x∗Ax,
so x∗x = 0, and thus x = 0. Replacing A by −A in Exercise 3.7.6 gives
A(I + A)−1 = (I + A)−1A, so

(I − A)(I + A)−1 = (I + A)−1 − A(I + A)−1

= (I + A)−1 − (I + A)−1A = (I + A)−1(I − A).

co
nt

ro
len

gin
ee

rs
.ir



Solutions 65

These results together with the fact that A is skew hermitian produce

U∗U = (I + A)−1∗(I − A)∗(I − A)(I + A)−1

= (I + A)∗−1(I − A)∗(I − A)(I + A)−1

= (I − A)−1(I + A)(I − A)(I + A)−1 = I.

5.6.7. (a) Yes—because if R = I − 2uu∗, where ‖u‖ = 1, then(
I 0
0 R

)
= I − 2

(
0
u

)
(0 u∗ ) and

∥∥∥∥(
0
u

)∥∥∥∥ = 1.

(b) No—Suppose R = I − 2uu∗ and S = I − 2vv∗, where ‖u‖ = 1 and
‖v‖ = 1 so that (

R 0
0 S

)
= I − 2

(
uu∗ 0
0 vv∗

)
.

If we could find a vector w such that ‖w‖ = 1 and(
R 0
0 S

)
= I − 2ww∗, then ww∗ =

(
uu∗ 0
0 vv∗

)
.

But this is impossible because (recall Example 3.9.3)

rank (ww∗) = 1 and rank

(
uu∗ 0
0 vv∗

)
= 2.

5.6.8. (a) u∗v = (Ux)∗Uy = x∗U∗Uy = x∗y
(b) The fact that P is an isometry means ‖u‖ = ‖x‖ and ‖v‖ = ‖y‖ . Use
this together with part (a) and the definition of cosine given in (5.4.1) to obtain

cos θu,v =
uT v

‖u‖ ‖v‖ =
xT y

‖x‖ ‖y‖ = cos θx,y.

5.6.9. (a) Since Um×r has orthonormal columns, we have U∗U = Ir so that

‖U‖2
2 = max

‖x‖2=1
x∗U∗Ux = max

‖x‖2=1
x∗x = 1.

This together with ‖A‖2 = ‖A∗‖2—recall (5.2.10)—implies ‖V‖2 = 1. For the
Frobenius norm we have

‖U‖F = [trace (U∗U)]1/2 = [trace (I)]1/2 =
√

r.

trace (AB) = trace (BA) (Example 3.6.5) and VV∗ = Ik =⇒ ‖V‖F =
√

k.
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(b) First show that ‖UA‖2 = ‖A‖2 by writing

‖UA‖2
2 = max

‖x‖2=1
‖UAx‖2

2 = max
‖x‖2=1

x∗A∗U∗UAx = max
‖x‖2=1

x∗A∗Ax

= max
‖x‖2=1

‖Ax‖2
2 = ‖A‖2

2 .

Now use this together with ‖A‖2 = ‖A∗‖2 to observe that

‖AV‖2 = ‖V∗A∗‖2 = ‖A∗‖2 = ‖A‖2 .

Therefore, ‖UAV‖2 = ‖U(AV)‖2 = ‖AV‖2 = ‖A‖2 .

(c) Use trace (AB) = trace (BA) with U∗U = Ir and VV∗ = Ik to write

‖UAV‖2
F = trace

(
(UAV)∗UAV

)
= trace (V∗A∗U∗UAV)

= trace (V∗A∗AV) = trace (A∗AVV∗)

= trace (A∗A) = ‖A‖2
F .

5.6.10. Use (5.6.6) to compute the following quantities.

(a)
vvT

vT v
u =

(
vT u
vT v

)
v =

1
6
v =

1
6


1
4
0

−1



(b)
uuT

uT u
v =

(
uT v
uT u

)
u =

1
5
u =

1
5


−2

1
3

−1



(c)
(
I − vvT

vT v

)
u = u −

(
vT u
vT v

)
v = u − 1

6
v =

1
6


−13

2
18
−5



(d)
(
I − uuT

uT u

)
v = v −

(
uT v
uT u

)
u = v − 1

5
u =

1
5


7

19
−3
−4


5.6.11. (a) N (Q) �= {0} because Qu = 0 and ‖u‖ = 1 =⇒ u �= 0, so Q must

be singular by (4.2.10).
(b) The result of Exercise 4.4.10 insures that n−1 ≤ rank (Q), and the result
of part (a) says rank (Q) ≤ n − 1, and therefore rank (Q) = n − 1.

5.6.12. Use (5.6.5) in conjunction with the CBS inequality given in (5.1.3) to write

‖p‖ = |u∗x| ≤ ‖u‖ ‖x‖ = ‖x‖ .
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The fact that equality holds if and only if x is a scalar multiple of u follows
from the result of Exercise 5.1.9.

5.6.13. (a) Set u = x − ‖x‖ e1 = −2/3

 1
1
1

 , and compute

R = I − 2uuT

uT u
=

1
3

 1 −2 −2
−2 1 −2
−2 −2 1

 .

(You could also use u = x + ‖x‖ e1. )
(b) Verify that R = RT , RT R = I, and R2 = I.
(c) The columns of the reflector R computed in part (a) do the job.

5.6.14. Rx = x =⇒ 2uu∗x = 0 =⇒ u∗x = 0 because u �= 0.
5.6.15. If Rx = y in Figure 5.6.2, then the line segment between x − y is parallel to

the line determined by u, so x − y itself must be a scalar multiple of u. If
x − y = αu, then

u =
x − y

α
=

x − y
‖x − y‖ .

It is straightforward to verify that this choice of u produces the desired reflector.
5.6.16. You can verify by direct multiplication that PT P = I and U∗U = I, but you

can also recognize that P and U are elementary reflectors that come from
Example 5.6.3 in the sense that

P = I − 2
uuT

uT u
, where u = x − e1 =

(
x1 − 1

x̃

)
and

U = µ

(
I − 2

uu∗

u∗u

)
, where u = x − µe1 =

(
x1 − µ

x̃

)
.

5.6.17. The final result is

v3 =

−
√

2/2√
6/2
1


and

Q = Pz(π/6)Py(−π/2)Px(π/4) =
1
4

 0 −
√

6 −
√

2 −
√

6 +
√

2
0

√
6 −

√
2 −

√
6 −

√
2

4 0 0

 .

5.6.18. It matters because the rotation matrices given on p. 328 generally do not com-
mute with each other (this is easily verified by direct multiplication). For exam-
ple, this means that it is generally the case that

Py(φ)Px(θ)v �= Px(θ)Py(φ)v.
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5.6.19. As pointed out in Example 5.6.2, u⊥ = (u/ ‖u‖)⊥ , so we can assume without
any loss of generality that u has unit norm. We also know that any vector of
unit norm can be extended to an orthonormal basis for Cn—Examples 5.6.3 and
5.6.6 provide two possible ways to accomplish this. Let {u, v1, v2, . . . ,vn−1}
be such an orthonormal basis for Cn.

Claim: span {v1,v2, . . . ,vn−1} = u⊥.

Proof. x ∈ span {v1,v2, . . . ,vn−1} =⇒ x =
∑

i αivi =⇒ u∗x =∑
i αiu∗vi = 0 =⇒ x ∈ u⊥, and thus span {v1,v2, . . . ,vn−1} ⊆ u⊥.

To establish the reverse inclusion, write x = α0u+
∑

i αivi, and then note
that x ⊥ u =⇒ 0 = u∗x = α0 =⇒ x ∈ span {v1,v2, . . . ,vn−1} , and
hence =⇒ u⊥ ⊆ span {v1,v2, . . . ,vn−1} .

Consequently, {v1,v2, . . . ,vn−1} is a basis for u⊥ because it is a spanning set
that is linearly independent—recall (4.3.14)—and thus dim u⊥ = n − 1.

5.6.20. The relationship between the matrices in (5.6.6) and (5.6.7) on p. 324 suggests
that if P is a projector, then A = I − 2P is an involution—and indeed this
is true because A2 = (I − 2P)2 = I − 4P + 4P2 = I. Similarly, if A is an
involution, then P = (I − A)/2 is easily verified to be a projector. Thus each
projector uniquely defines an involution, and vice versa.

5.6.21. The outside of the face is visible from the perspective indicated in Figure 5.6.6
if and only if the angle θ between n and the positive x-axis is between −90◦

and +90◦. This is equivalent to saying that the cosine between n and e1 is
positive, so the desired conclusion follows from the fact that

cos θ > 0 ⇐⇒ nT e1

‖n‖ ‖e1‖
> 0 ⇐⇒ nT e1 > 0 ⇐⇒ n1 > 0.

Solutions for exercises in section 5. 7

5.7.1. (a) Householder reduction produces

R2R1A =

 1 0 0
0 −3/5 4/5
0 4/5 3/5

  1/3 −2/3 2/3
−2/3 1/3 2/3

2/3 2/3 1/3

  1 19 −34
−2 −5 20

2 8 37


=

 3 15 0
0 15 −30
0 0 45

 = R,

so

Q = (R2R1)
T =

 1/3 14/15 −2/15
−2/3 1/3 2/3
2/3 −2/15 11/15

 .
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(b) Givens reduction produces P23P13P12A = R, where

P12 =

 1/
√

5 −2/
√

5 0
2/
√

5 1/
√

5 0
0 0 1

 P13 =

√
5/3 0 2/3
0 1 0

−2/3 0
√

5/3


P23 =

 1 0 0
0 11/5

√
5 −2/5

√
5

0 2/5
√

5 11/5
√

5


5.7.2. Since P is an orthogonal matrix, so is PT , and hence the columns of X are

an orthonormal set. By writing

A = PT T = [X |Y]
(

R
0

)
= XR,

and by using the fact that rank (A) = n =⇒ rank (R) = n, it follows that
R (A) = R (XR) = R (X)—recall Exercise 4.5.12. Since every orthonormal set
is linearly independent, the columns of X are a linearly independent spanning
set for R (A), and thus the columns of X are an orthonormal basis for R (A).
Notice that when the diagonal entries of R are positive, A = XR is the
“rectangular” QR factorization for A introduced on p. 311, and the columns of
X are the same columns as those produced by the Gram–Schmidt procedure.

5.7.3. According to (5.7.1), set u = A∗1 − ‖A∗1‖ e1 =


−1

2
−2

1

 , so

R1 = I−2
uu∗

u∗u
=

1
5


4 2 −2 1
2 1 4 −2

−2 4 1 2
1 −2 2 4

 and R1A =


5 −15 5
0 10 −5
0 −10 2
0 5 14

 .

Next use u =

 10
−10

5

 −

 15
0
0

 =

 −5
−10

5

 to build

R̂2 = I − 2
uu∗

u∗u
=

1
3

 2 −2 1
−2 −1 2

1 2 2

 and R2 =
1
3


3 0 0 0
0 2 −2 1
0 −2 −1 2
0 1 2 2

 ,

so

R2R1A =


5 −15 5
0 15 0
0 0 12
0 0 9

 .
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Finally, with u =
(

12
9

)
−

(
15
0

)
=

(
−3

9

)
, build

R̂3 =
1
5

(
4 3
3 −4

)
and R3 =

1
5


5 0 0 0
0 5 0 0
0 0 4 3
0 0 3 −4

 ,

so that

R3R2R1A =


5 −15 5
0 15 0
0 0 15
0 0 0

 .

Therefore, PA = T =
(

R
0

)
, where

P = R3R2R1 =
1
15


12 6 −6 3
9 −8 8 −4
0 −5 2 14
0 −10 −11 −2

 and R =

 5 −15 5
0 15 0
0 0 15

 .

The result of Exercise 5.7.2 insures that the first three columns in

PT = R1R2R3 =
1
15


12 9 0 0
6 −8 −5 −10

−6 8 2 −11
3 −4 14 −2


are an orthonormal basis for R (A). Since the diagonal entries of R are positive,

1
15


12 9 0
6 −8 −5

−6 8 2
3 −4 14


 5 −15 5

0 15 0
0 0 15

 = A

is the “rectangular” QR factorization for A discussed on p. 311.
5.7.4. If A has full column rank, and if P is an orthogonal matrix such that

PA = T =
(

R
0

)
and Pb =

(
c
d

)
,

where R is an upper-triangular matrix, then the results of Example 5.7.3 insure
that the least squares solution of Ax = b can be obtained by solving the
triangular system Rx = c. The matrices P and R were computed in Exercise
5.7.3, so the least squares solution of Ax = b is the solution to 5 −15 5

0 15 0
0 0 15

  x1

x2

x3

 =

 4
3

33

 =⇒ x =
1
5

−4
1

11

 .
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5.7.5. ‖A‖F = ‖QR‖F = ‖R‖F because orthogonal matrices are norm preserving
transformations—recall Exercise 5.6.9.

5.7.6. Follow the procedure outlined in Example 5.7.4 to compute the reflector

R̂ =
(
−3/5 4/5

4/5 3/5

)
, and then set R =

 1 0 0
0 −3/5 4/5
0 4/5 3/5

 .

Since A is 3 × 3, there is only one step, so P = R and

PT AP = H =

−2 −5 0
−5 −41 38

0 38 41

 .

5.7.7. First argue that the product of an upper-Hessenberg matrix with an upper-
triangular matrix must be upper Hessenberg—regardless of which side the tri-
angular factor appears. This implies that Q is upper Hessenberg because Q =
HR−1 and R−1 is upper triangular—recall Exercise 3.7.4. This in turn means
that RQ must be upper Hessenberg.

5.7.8. From the structure of the matrices in Example 5.7.5, it can be seen that P12

requires 4n multiplications, P23 requires 4(n−1) multiplications, etc. Use the
formula 1 + 2 + · · · + n = n(n + 1)/2 to obtain the total as

4[n + (n − 1) + (n − 2) + · · · + 2] = 4
(

n2 + n

2
− 1

)
≈ 2n2.

Solutions for exercises in section 5. 8

5.8.1. (a)


4

13
28
27
18
0

 (b)


−1

0
2
0

−1
0

 (c)


α0

α0 + α1

α0 + α1 + α2

α1 + α2

α2

0



5.8.2. The answer to both parts is


0
0
0
4

 .

5.8.3. F2 =
(

1 1
1 −1

)
, D2 =

(
1 0
0 −i

)
, and
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F4PT
4 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

PT
4 =


1 1 1 1
1 −1 −i i
1 1 −1 −1
1 −1 i −i



=


1 1
1 −1

(
1 0
0 −i

) (
1 1
1 −1

)
1 1
1 −1 −

(
1 0
0 −i

) (
1 1
1 −1

)
 =

(
F2 D2F2

F2 −D2F2

)
.

5.8.4. (a) a � b =


α0β0

α0β1 + α1β0

α1β1

0



F4(a � b) =


α0β0 + α0β1 + α1β0 + α1β1

α0β0 − iα0β1 − iα1β0 − α1β1

α0β0 − α0β1 − α1β0 + α1β1

α0β0 + iα0β1 + iα1β0 − α1β1

 = (F4â) × (F4b̂)

(b) F−1
4

[
(F4â) × (F4b̂)

]
= a � b

5.8.5. p(x)q(x) = γ0 + γ1x + γ2x
2 + γ3x

3, where
γ0

γ1

γ2

γ3

 = F−1
4

[
(F4â) × (F4b̂)

]

= F−1
4




1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




−3
2
0
0

 ×


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




−4
3
0
0




= F−1
4




−1
−3 − 2i
−5

−3 + 2i

 ×


−1

−4 − 3i
−7

−4 + 3i




=
1
4


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




1
6 + 17i

35
6 − 17i

 =


12

−17
6
0

 .

5.8.6. (a)
(

3
4

)
�

(
1
2

)
=


3
10
8
0

 , so

4310 × 2110 = (8 × 102) + (10 × 101) + (3 × 100)

= (9 × 102) + (0 × 101) + (3 × 100) = 903.
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(b)

 1
2
3

 �

 6
0
1

 =


3
2
19
12
6
0

 , so

1238 × 6018 = (6 × 84) + (12 × 83) + (19 × 82) + (2 × 81) + (3 × 80).

Since
12 = 8 + 4 =⇒ 12 × 83 = (8 + 4) × 83 = 84 + (4 × 83)

19 = (2 × 8) + 3 =⇒ 19 × 82 = (2 × 83) + (3 × 82),

we have that

1238 × 6018 = (7 × 84) + (6 × 83) + (3 × 82) + (2 × 81) + (3 × 80) = 763238.

(c)


1
0
1
0

 �


1
1
0
1

 =



0
1
0
2
1
1
1
0


, so

10102×11012 = (1×26)+(1×25)+(1×24)+(2×23)+(0×22)+(1×21)+(0×20).

Substituting 2 × 23 = 1 × 24 in this expression and simplifying yields

10102 × 11012 = (1 × 27) + (0 × 26) + (0 × 25) + (0 × 24)

+ (0 × 23) + (0 × 22) + (1 × 21) + (0 × 20)
= 100000102.

5.8.7. (a) The number of multiplications required by the definition is

1 + 2 + · · · + (n − 1) + n + (n − 1) + · · · + 2 + 1

= 2
(
1 + 2 + · · · + (n − 1)

)
+ n

= (n − 1)n + n = n2.

(b) In the formula an×1 � bn×1 = F−1
2n

[
(F2nâ) × (F2nb̂)

]
, using the FFT to

compute F2nâ and F2nb̂ requires (2n/2) log2 2n = n(1 + log2 n) multiplica-
tions for each term, and an additional 2n multiplications are needed to form
the product (F2nâ)×(F2nb̂). Using the FFT in conjunction with the procedure
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described in Example 5.8.2 to apply F−1 to (F2nâ)× (F2nb̂) requires another
(2n/2) log2 2n = n(1 + log2 n) multiplications to compute F2nx followed by
2n more multiplications to produce (1/2n)F2nx = F−1

2n x . Therefore, the total
count is 3n(1 + log2 n) + 4n = 3n log2 n + 7n.

5.8.8. Recognize that y is of the form

y = 1(e2 + e6) + 4(e3 + e5) + 5i(−e1 + e7) + 3i(−e2 + e6).

The real part says that there are two cosines—one with amplitude 1 and fre-
quency 2, and the other with amplitude 4 and frequency 3. The imaginary
part says there are two sines—one with amplitude 5 and frequency 1, and the
other with amplitude 3 and frequency 2. Therefore,

x(τ) = cos 4πτ + 4 cos 6πτ + 5 sin 2πτ + 3 sin 4πτ.

5.8.9. Use (5.8.12) to write a� b = F−1
[
(Fâ)× (Fb̂)

]
= F−1

[
(Fb̂)× (Fâ)

]
= a� b.

5.8.10. This is a special case of the result given in Example 4.3.5. The Fourier matrix
Fn is a special case of the Vandermonde matrix—simply let xk ’s that define
the Vandermonde matrix be the nth roots of unity.

5.8.11. The result of Exercise 5.8.10 implies that if

â =



α0
...

αn−1

0
...
0


2n×1

and b̂ =



β0
...

βn−1

0
...
0


2n×1

,

then F2nâ = p and F2nb̂ = q, and we know from (5.8.11) that the γk ’s are
given by γk = [a � b]k. Therefore, the convolution theorem guarantees

γ0

γ1

γ2
...

 = a � b = F−1
2n

[
(F2nâ) × (F2nb̂)

]
= F−1

2n

[
p × q

]
= F−1

2n


p(1)q(1)
p(ξ)q(ξ)

p(ξ2)q(ξ2)
...

 .

5.8.12. (a) This follows from the observation that Qk has 1’s on the kth subdiagonal
and 1’s on the (n − k)th superdiagonal. For example, if n = 8, then

Q3 =



0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
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(b) If the rows of F are indexed from 0 to n − 1, then they satisfy the
relationships Fk∗Q = ξkFk∗ for each k (verifying this for n = 4 will indicate
why it is true in general). This means that FQ = DF, which in turn implies
FQF−1 = D.

(c) Couple parts (a) and (b) with FQkF−1 = (FQF−1)k = Dk to write

FCF−1 = Fp(Q)F−1

= F(c0I + c1Q + · · · + cn−1Qn−1)F−1

= c0I + c1FQF−1 + · · · + cn−1FQn−1F−1

= c0I + c1D + · · · + cn−1Dn−1

=


p(1) 0 · · · 0
0 p(ξ) · · · 0
...

...
. . .

...
0 0 · · · p(ξn−1)

.

(d) FC1F−1 = D1 and FC2F−1 = D2, where D1 and D2 are diagonal
matrices, and therefore

C1C2 = F−1D1FF−1D2F = F−1D1D2F = F−1D2D1F = F−1D2FF−1D1F

= C2C1.

5.8.13. (a) According to Exercise 5.8.12,

C=


σ0 σn−1 · · · σ1

σ1 σ0 · · · σ2
...

...
. . .

...
σn−1 σn−2 · · · σ0

=F−1


p(1) 0 · · · 0
0 p(ξ) · · · 0
...

...
. . .

...
0 0 · · · p(ξn−1)

F=F−1DF

in which p(x) = σ0+σ1x+· · ·+σn−1x
n−1. Therefore, x = C−1b = F−1D−1Fb,

so we can execute the following computations.

(i)


p(0)
p(ξ)

...
p(ξn−1)

 ←− F


σ0

σ1
...

σn−1

 using the FFT

(ii) x ←− Fb using the FFT

(iii) xk ←− xk/p(ξk) for k = 0, 1, . . . , n − 1

(iv) x ←− F−1x using the FFT as described in Example 5.8.2
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(b) Use the same techniques described in part (a) to compute the kth column
of C−1 from the formula

[C−1]∗k = C−1ek = F−1D−1Fek

= F−1
(
D−1[F]∗k

)

= F−1


1/p(1)
ξk/p(ξ)

ξ2k/p(ξ2)
...

ξn−k/p(ξn−1)

 .

(c) The kth column of P = C1C2 is given by

P∗k = Pek = F−1D1FF−1D2Fek = F−1
(
D1D2[F]∗k

)
.

If (σ0 σ1 · · · σn−1 ) and ( η0 η1 · · · ηn−1 ) are the first rows in C1 and
C2, respectively, and if p(x) =

∑n−1
k=0 σkxk and q(x) =

∑n−1
k=0 ηkxk , then first

compute

p =


p(0)
p(ξ)

...
p(ξn−1)

 ←− F


σ0

σ1
...

σn−1

 and q =


q(0)
q(ξ)

...
q(ξn−1)

 ←− F


η0

η1
...

ηn−1

 .

The kth column of the product can now be obtained from

P∗k ←− F−1
(
p × q × F∗k

)
for k = 0, 1, . . . , n − 1.

5.8.14. (a) For n = 3 we have

Cb̂ =


α0 0 0 0 α2 α1

α1 α0 0 0 0 α2

α2 α1 α0 0 0 0
0 α2 α1 α0 0 0
0 0 α2 α1 α0 0
0 0 0 α2 α1 α0




β0

β1

β2

0
0
0

 =


α0β0

α1β0 + α0β1

α2β0 + α1β1 + α0β2

α2β1 + α1β2

α2β2

0

 .

Use this as a model to write the expression for Cb̂, where n is arbitrary.
(b) We know from part (c) of Exercise 5.8.12 that if F is the Fourier matrix
of order 2n, then FCF−1 = D, where

D =


p(1) 0 · · · 0
0 p(ξ) · · · 0
...

...
. . .

...
0 0 · · · p(ξ2n−1)

 (the ξk ’s are the 2nth roots of unity)
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in which p(x) = α0 + α1x + · · · + αn−1x
n−1. Therefore, from part (a),

F(a � b) = FCb̂ = FCF−1Fb̂ = DFb̂.

According to Exercise 5.8.10, we also know that

Fâ =


p(1)
p(ξ)

...
p(ξ2n−1)

 ,

and hence

F(a � b) = DFb̂ = (Fâ) × (Fb̂).

5.8.15. (a) Pnx performs an even–odd permutation to all components of x. The matrix

(I2 ⊗ Pn/2) =
(

Pn/2 0
0 Pn/2

)
x

performs an even–odd permutation to the top half of x and then does the same
to the bottom half of x. The matrix

(I4 ⊗ Pn/4) =


Pn/4 0 0 0
0 Pn/4 0 0
0 0 Pn/4 0
0 0 0 Pn/4

x

performs an even–odd permutation to each individual quarter of x. As this
pattern is continued, the product

Rn = (I2r−1 ⊗ P21)(I2r−2 ⊗ P22) · · · (I21 ⊗ P2r−1)(I20 ⊗ P2r )x

produces the bit-reversing permutation. For example, when n = 8,
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R8x = (I4 ⊗ P2)(I2 ⊗ P4)(I1 ⊗ P8)x

=


P2 0 0 0
0 P2 0 0
0 0 P2 0
0 0 0 P2

 (
P4 0
0 P4

)
P8



x0

x1

x2

x3

x4

x5

x6

x7



=


P2 0 0 0
0 P2 0 0
0 0 P2 0
0 0 0 P2

 (
P4 0
0 P4

)


x0

x2

x4

x6

x1

x3

x5

x7



=


P2 0 0 0
0 P2 0 0
0 0 P2 0
0 0 0 P2





x0

x4

x2

x6

x1

x5

x3

x7


=



x0

x4

x2

x6

x1

x5

x3

x7


because P2 =

(
1 0
0 1

)
.

(b) To prove that I2r−k ⊗ F2k = L2kR2k using induction, note first that for
k = 1 we have

L2 = (I2r−1 ⊗ B2)1 = I2r−1 ⊗ F2 and R2 = In(I2r−1 ⊗ P2) = InIn = In,

so L2R2 = I2r−1 ⊗F2. Now assume that the result holds for k = j—i.e., assume

I2r−j ⊗ F2j = L2jR2j .

Prove that the result is true for k = j + 1—i.e., prove

I2r−(j+1) ⊗ F2j+1 = L2j+1R2j+1 .

Use the fact that F2j+1 = B2j+1(I2 ⊗ Fj)P2j+1 along with the two basic prop-
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erties of the tensor product given in the introduction of this exercise to write

I2r−(j+1) ⊗ F2j+1 = I2r−(j+1) ⊗ B2j+1(I2 ⊗ F2j )P2j+1

=
(
I2r−(j+1) ⊗ B2j+1(I2 ⊗ F2j )

)(
I2r−(j+1) ⊗ P2j+1

)
= (I2r−(j+1) ⊗ B2j+1)(I2r−(j+1) ⊗ I2 ⊗ F2j )(I2r−(j+1) ⊗ P2j+1)
= (I2r−(j+1) ⊗ B2j+1)(I2r−j ⊗ F2j )(I2r−(j+1) ⊗ P2j+1)
= (I2r−(j+1) ⊗ B2j+1)L2jR2j (I2r−(j+1) ⊗ P2j+1)
= L2j+1R2j+1 .

Therefore, I2r−k ⊗F2k = L2kR2k for k = 1, 2, . . . , r, and when k = r we have
that Fn = LnRn.

5.8.16. According to Exercise 5.8.10,

Fna = b, where a =


α0

α1

α2
...

αn−1

 and b =


p(1)
p(ξ)
p(ξ2)
...
p(ξn−1)

 .

By making use of the fact that (1/
√

n)Fn is unitary we can write

n−1∑
k=0

∣∣p(ξk)
∣∣2 = b∗b = (Fna)∗(Fna) = a∗F∗

nFna = a∗(nI)a = n

n−1∑
k=0

|αk|2 .

5.8.17. Let y = (2/n)Fx, and use the result in (5.8.7) to write

‖y‖2 =

∥∥∥∥∥∑
k

(
(αk − iβk)efk

+ (αk + iβk)en−fk

)∥∥∥∥∥
=

∑
k

(
|αk − iβk|2 + |αk + iβk|2

)
= 2

∑
k

(
α2

k + β2
k

)
.

But because F∗F = nI, it follows that

‖y‖2 =
∥∥∥∥ 2

n
Fx

∥∥∥∥2

=
4
n2

x∗F∗Fx =
4
n
‖x‖2

,

so combining these two statements produces the desired conclusion.
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5.8.18. We know from (5.8.11) that if p(x) =
∑n−1

k=0 αkxk, then

p2(x) =
2n−2∑
k=0

[a � a]kxk.

The last component of a � a is zero, so we can write

cT (a � a) =
2n−2∑
k=0

[a � a]kηk = p2(η) =

(
n−1∑
k=0

αkηk

)2

=
(
cT â

)2
.

5.8.19. Start with X ←− rev(x) = (x0 x4 x2 x6 x1 x5 x3 x7).
For j = 0 :

D ←− (1)

X(0) ←− (x0 x2 x1 x3 )

X(1) ←− (x4 x6 x5 x7 )

X ←−
(

X(0) + D × X(1)

X(0) − D × X(1)

)

=
(

x0 + x4 x2 + x6 x1 + x5 x3 + x7

x0 − x4 x2 − x6 x1 − x5 x3 − x7

)
2×8

For j = 1 :

D ←−
(

1
e−πi/2

)
=

(
1
ξ2

)
X(0) ←−

(
x0 + x4 x1 + x5

x0 − x4 x1 − x5

)
X(1) ←−

(
x2 + x6 x3 + x7

x2 − x6 x3 − x7

)
X ←−

(
X(0) + D × X(1)

X(0) − D × X(1)

)

=


x0 + x4 + x2 + x6 x1 + x5 + x3 + x7

x0 − x4 + ξ2x2 − ξ2x6 x1 − x5 + ξ2x3 − ξ2x7

x0 + x4 − x2 − x6 x1 + x5 − x3 − x7

x0 − x4 − ξ2x2 + ξ2x6 x1 − x5 − ξ2x3 + ξ2x7


4×2

For j = 2 :

D ←−


1

e−πi/4

e−2πi/4

e−3πi/4

 =


1
ξ
ξ2

ξ3
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X(0) ←−


x0 + x4 + x2 + x6

x0 − x4 + ξ2x2 − ξ2x6

x0 + x4 − x2 − x6

x0 − x4 − ξ2x2 + ξ2x6



X(1) ←−


x1 + x5 + x3 + x7

x1 − x5 + ξ2x3 − ξ2x7

x1 + x5 − x3 − x7

x1 − x5 − ξ2x3 + ξ2x7


X ←−

(
X(0) + D × X(1)

X(0) − D × X(1)

)

=



x0 + x4 + x2 + x6 + x1 + x5 + x3 + x7

x0 − x4 + ξ2x2 − ξ2x6 + ξ x1 − ξx5 + ξ3x3 − ξ3x7

x0 + x4 − x2 − x6 + ξ2x1 + ξ2x5 − ξ2x3 − ξ2x7

x0 − x4 − ξ2x2 + ξ2x6 + ξ3x1 − ξ3x5 − ξ5x3 + ξ5x7

x0 + x4 + x2 + x6 − x1 − x5 − x3 − x7

x0 − x4 + ξ2x2 − ξ2x6 − ξ x1 + ξ x5 − ξ3x3 + ξ3x7

x0 + x4 − x2 − x6 − ξ2x1 − ξ2x5 + ξ2x3 + ξ2x7

x0 − x4 − ξ2x2 + ξ2x6 − ξ3x1 + ξ3x5 + ξ5x3 − ξ5x7


8×1

To verify that this is the same as F8x8, use the fact that ξ = −ξ5, ξ2 = −ξ6,
ξ3 = −ξ7, and ξ4 = −1.

Solutions for exercises in section 5. 9

5.9.1. (a) The fact that

rank (B) = rank
[
X |Y

]
= rank

 1 1 1
1 2 2
1 2 3

 = 3

implies BX ∪ BY is a basis for 3, so (5.9.4) guarantees that X and Y are
complementary.
(b) According to (5.9.12), the projector onto X along Y is

P =
[
X |0

][
X |Y

]−1 =

 1 1 0
1 2 0
1 2 0

  1 1 1
1 2 2
1 2 3

−1

=

 1 1 0
1 2 0
1 2 0

  2 −1 0
−1 2 −1

0 −1 1

 =

 1 1 −1
0 3 −2
0 3 −2

 ,

and (5.9.9) insures that the complementary projector onto Y along X is

Q = I − P =

 0 −1 1
0 −2 2
0 −3 3

 .
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(c) Qv =

 2
4
6


(d) Direct multiplication shows P2 = P and Q2 = Q.

(e) To verify that R (P) = X = N (Q), you can use the technique of Example
4.2.2 to show that the basic columns of P (or the columns in a basis for N (Q) )
span the same space generated by BX . To verify that N (P) = Y, note that

P

 1
2
3

 =

 0
0
0

 together with the fact that dimN (P) = 3 − rank (P) = 1.

5.9.2. There are many ways to do this. One way is to write down any basis for 5—say
B = {x1,x2,x3,x4,x5}—and set

X = span {x1,x2} and Y = span {x3,x4,x5} .

Property (5.9.4) guarantees that X and Y are complementary.
5.9.3. Let X = {(α, α) |α ∈ } and Y = 2 so that 2 = X + Y, but X ∩ Y �= 0.

For each vector in 2 we can write

(x, y) = (x, x) + (0, y − x) and (x, y) = (y, y) + (x − y, 0).

5.9.4. Exercise 3.2.6 says that each A ∈ n×n can be uniquely written as the sum of
a symmetric matrix and a skew-symmetric matrix according to the formula

A =
A + AT

2
+

A − AT

2
,

so (5.9.3) guarantees that n×n = S ⊕ K. By definition, the projection of A
onto S along K is the S -component of A —namely (A + AT )/2. For the
given matrix, this is

A + AT

2
=

 1 3 5
3 5 7
5 7 9

 .

5.9.5. (a) Assume that X ∩Y = 0. To prove BX ∪BY is linearly independent, write

m∑
i=1

αixi +
n∑

j=1

βjyj = 0 =⇒
m∑

i=1

αixi = −
n∑

j=1

βjyj

=⇒
m∑

i=1

αixi ∈ X ∩ Y = 0

=⇒
m∑

i=1

αixi = 0 and
n∑

j=1

βjyj = 0

=⇒ α1 = · · · = αm = β1 = · · · = βn = 0
(because BX and BY are both independent).
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Conversely, if BX ∪ BY is linearly independent, then

v ∈ X ∩ Y =⇒ v =
m∑

i=1

αixi and v =
n∑

j=1

βjyj

=⇒
m∑

i=1

αixi −
n∑

j=1

βjyj = 0

=⇒ α1 = · · · = αm = β1 = · · · = βn = 0
(because BX ∪ BY is independent)

=⇒ v = 0.

(b) No. Take X to be the xy-plane and Y to be the yz-plane in 3 with
BX = {e1, e2} and BY = {e2, e3}. We have BX ∪ BY = {e1, e2, e3}, but
X ∩ Y �= 0.

(c) No, the fact that BX ∪ BY is linearly independent is no guarantee that
X + Y is the entire space—e.g., consider two distinct lines in 3.

5.9.6. If x is a fixed point for P, then Px = x implies x ∈ R (P). Conversely, if
x ∈ R (P), then x = Py for some y ∈ V =⇒ Px = P2y = Py = x.

5.9.7. Use (5.9.10) (which you just validated in Exercise 5.9.6) in conjunction with the
definition of a projector onto X to realize that

x ∈ X ⇐⇒ Px = x ⇐⇒ x ∈ R (P),

and
x ∈ R (P) ⇐⇒ Px = x ⇐⇒ (I − P)x = 0 ⇐⇒ x ∈ N (I − P).

The statements concerning the complementary projector I−P are proven in a
similar manner.

5.9.8. If θ is the angle between R (P) and N (P), it follows from (5.9.18) that ‖P‖2 =
(1/ sin θ) ≥ 1. Furthermore, ‖P‖2 = 1 if and only if sin θ = 1 (i.e., θ = π/2 ),
which is equivalent to saying R (P) ⊥ N (P).

5.9.9. Let θ be the angle between R (P) and N (P). We know from (5.9.11) that
R (I − P) = N (P) and N (I − P) = R (P), so θ is also the angle between
R (I − P) and N (I − P). Consequently, (5.9.18) says that

‖I − P‖2 =
1

sin θ
= ‖P‖2 .

5.9.10. The trick is to observe that P = uvT is a projector because vT u = 1 implies
P2 = uvT uvT = uvT = P, so the result of Exercise 5.9.9 insures that∥∥I − uvT

∥∥
2

=
∥∥uvT

∥∥
2
.
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To prove that
∥∥uvT

∥∥
2

= ‖u‖2 ‖v‖2 , start with the definition of an induced
matrix given in (5.2.4) on p. 280, and write

∥∥uvT
∥∥

2
= max‖x‖2=1

∥∥uvT x
∥∥

2
. If

the maximum occurs at x = x0 with ‖x0‖2 = 1, then∥∥uvT
∥∥

2
=

∥∥uvT x0

∥∥
2

= ‖u‖2 |vT x0|
≤ ‖u‖2 ‖v‖2 ‖x0‖2 by CBS inequality
= ‖u‖2 ‖v‖2 .

But we can also write

‖u‖2 ‖v‖2 = ‖u‖2

‖v‖2
2

‖v‖2

= ‖u‖2

(vT v)
‖v‖2

=

∥∥uvT v
∥∥

2

‖v‖2

=
∥∥∥∥uvT

(
v

‖v‖2

)∥∥∥∥
2

≤ max
‖x‖2=1

∥∥uvT x
∥∥

2

=
∥∥uvT

∥∥
2
,

so
∥∥uvT

∥∥
2

= ‖u‖2 ‖v‖2 . Finally, if P = uvT , use Example 3.6.5 to write

‖P‖2
F = trace

(
PT P

)
= trace(vuT uvT ) = trace(uT uvT v) = ‖u‖2

2 ‖v‖
2
2 .

5.9.11. p = Pv = [X |0][X |Y]−1v = [X |0]z = Xz1

5.9.12. (a) Use (5.9.10) to conclude that

R (P) = R (Q) =⇒ PQ∗j = Q∗j and QP∗j = P∗j ∀ j

=⇒ PQ = Q and QP = P.

Conversely, use Exercise 4.2.12 to write{
PQ = Q =⇒ R (Q) ⊆ R (P)

QP = P =⇒ R (P) ⊆ R (Q)

}
=⇒ R (P) = R (Q).

(b) Use N (P) = N (Q) ⇐⇒ R (I − P) = R (I − Q) together with part (a).
(c) From part (a), EiEj = Ej so that( ∑

j

αjEj

)2

=
∑

i

∑
j

αiαjEiEj =
∑

i

∑
j

αiαjEj

=
( ∑

i

αi

)( ∑
j

αjEj

)
=

∑
j

αjEj .

5.9.13. According to (5.9.12), the projector onto X along Y is P = B
(

Ir 0
0 0

)
B−1,

where B = [X |Y] in which the columns of X and Y form bases for X
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and Y, respectively. Since multiplication by nonsingular matrices does not alter

the rank, it follows that rank (P) = rank

(
Ir 0
0 0

)
= r. Using the result of

Example 3.6.5 produces

trace (P) = trace

[
B

(
Ir 0
0 0

)
B−1

]
= trace

[(
Ir 0
0 0

)
B−1B

]
= trace

(
Ir 0
0 0

)
= r = rank (P).

5.9.14. (i) =⇒ (ii) : If v = x1 + · · ·+ xk and v = y1 + · · ·+ yk, where xi,yi ∈ Xi,
then

k∑
i=1

(xi − yi) = 0 =⇒ (xk − yk) = −
k−1∑
i=1

(xi − yi)

=⇒ (xk − yk) ∈ Xk ∩ (X1 + · · · + Xk−1) = 0

=⇒ xk = yk and
k−1∑
i=1

(xi − yi) = 0.

Now repeat the argument—to be formal, use induction.

(ii) =⇒ (iii) : The proof is essentially the same argument as that used to
establish (5.9.3) =⇒ (5.9.4).

(iii) =⇒ (i) : B always spans X1 +X2 + · · ·+Xk, and since the hypothesis is
that B is a basis for V, it follows that B is a basis for both V and X1+· · ·+Xk.
Consequently V = X1 +X2 + · · ·+Xk. Furthermore, the set B1 ∪ · · · ∪ Bk−1 is
linearly independent (each subset of an independent set is independent), and it
spans Vk−1 = X1+· · ·+Xk−1, so B1∪· · ·∪Bk−1 must be a basis for Vk−1. Now,
since (B1∪· · ·∪Bk−1)∪Bk is a basis for V = (X1+· · ·+Xk−1)+Xk, it follows from
(5.9.2)–(5.9.4) that V = (X1 + · · ·+Xk−1)⊕Xk, so Xk ∩ (X1 + · · ·+Xk−1) = 0.
The same argument can now be repeated on Vk−1—to be formal, use induction.

5.9.15. We know from (5.9.12) that P = Q
(

I 0
0 0

)
Q−1 and I−P = Q

(
0 0
0 I

)
Q−1,

so

PAP = Q
(

I 0
0 0

)
Q−1Q

(
A11 A12

A21 A22

)
Q−1Q

(
I 0
0 0

)
Q−1

= Q
(

A11 0
0 0

)
Q−1.

The other three statements are derived in an analogous fashion.
5.9.16. According to (5.9.12), the projector onto X along Y is P =

[
X |0

][
X |Y

]−1
,

where the columns of X and Y are bases for X and Y, respectively. If
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[
Xn×r |Y

]−1 =
(

Ar×n

C

)
, then

P =
[
Xn×r |0

](
Ar×n

C

)
= Xn×rAr×n.

The nonsingularity of
[
X |Y

]
and

(
A
C

)
insures that X has full column rank

and A has full row rank. The fact that AX = Ir is a consequence of(
Ir 0
0 I

)
=

[
X |Y

]−1[
X |Y

]
=

(
Ar×n

C

) [
Xn×r |Y

]
=

(
AX AY
CX CY

)
.

5.9.17. (a) Use the fact that a linear operator P is a projector if and only if P is
idempotent. If EF = FE = 0, then (E+F)2 = E+F. Conversely, if E+F is
a projector, then

(E + F)2 = E + F =⇒ EF + FE = 0

=⇒ E(EF + FE) = 0 and (EF + FE)E = 0

=⇒ EF = FE

=⇒ EF = 0 = FE (because EF + FE = 0).

Thus P = E + F is a projector if and only if EF = FE = 0. Now prove that
under this condition R (P) = X1⊕X2. Start with the fact that z ∈ R (P) if and
only if Pz = z, and write each such vector z as z = x1 +y1 and z = x2 +y2,
where xi ∈ Xi and yi ∈ Yi so that Ex1 = x1, Ey1 = 0, Fx2 = x2, and
Fy2 = 0. To prove that R (P) = X1 + X2, write

z ∈ R (P) =⇒ Pz = z =⇒ (E + F)z = z

=⇒ (E + F)(x2 + y2) = (x2 + y2)
=⇒ Ez = y2 =⇒ x1 = y2

=⇒ z = x1 + x2 ∈ X1 + X2 =⇒ R (P) ⊆ X1 + X2.

Conversely, X1 + X2 ⊆ R (P) because

z ∈ X1 + X2 =⇒ z = x1 + x2, where x1 ∈ X1 and x2 ∈ X2

=⇒ x1 = Ex1 and x2 = Fx2

=⇒ Fx1 = FEx1 = 0 and Ex2 = EFx2 = 0

=⇒ Pz = (E + F)(x1 + x2) = x1 + x2 = z

=⇒ z ∈ R (P).

The fact that X1 and X2 are disjoint follows by writing

z ∈ X1 ∩ X2 =⇒ Ez = z = Fz =⇒ z = EFz = 0,
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and thus R (P) = X1⊕X2 is established. To prove that N (P) = Y1∩Y2, write

Pz = 0 =⇒ (E + F)z = 0 =⇒ Ez = −Fz

=⇒ Ez = −EFz and FEz = −Fz

=⇒ Ez = 0 and 0 = Fz =⇒ z ∈ Y1 ∩ Y2.

5.9.18. Use the hint together with the result of Exercise 5.9.17 to write

E − F is a projector ⇐⇒ I − (E − F) is a projector
⇐⇒ (I − E) + F is a projector
⇐⇒ (I − E)F = 0 = F(I − E)
⇐⇒ EF = F = FE.

Under this condition, Exercise 5.9.17 says that

R (I − E + F) = R (I − E) ⊕ R (F) and N (I − E + F) = N (I − E) ∩ N (F),

so (5.9.11) guarantees

R (E − F) = N (I − E + F) = N (I − E) ∩ N (F) = R (E) ∩ N (F) = X1 ∩ Y2

N (E − F) = R (I − E + F) = R (I − E) ⊕ R (F) = N (E) ⊕ R (F) = Y1 ⊕X2.

5.9.19. If EF = P = FE, then P is idempotent, and hence P is a projector. To prove
that R (P) = X1 ∩ X2, write

z ∈ R (P) =⇒ Pz = z

=⇒ E(Fz) = z and F(Ez) = z

=⇒ z ∈ R (E) ∩ R (F) = X1 ∩ X2

=⇒ R (P) ⊆ X1 ∩ X2.

Conversely,

z ∈ X1 ∩ X2 =⇒ Ez = z = Fz =⇒ Pz = z =⇒ X1 ∩ X2 ⊆ R (P),

and hence R (P) = X1 ∩ X2. To prove that N (P) = Y1 + Y2, first notice that

z ∈ N (P) =⇒ FEz = 0 =⇒ Ez ∈ N (F).

This together with the fact that (I − E)z ∈ N (E) allows us to conclude that

z = (I − E)z + Ez ∈ N (E) + N (F) = Y1 + Y2 =⇒ N (P) ⊆ Y1 + Y2.
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Conversely,

z ∈ Y1 + Y2 =⇒ z = y1 + y2, where yi ∈ Yi for i = 1, 2
=⇒ Ey1 = 0 and Fy2 = 0

=⇒ Pz = 0 =⇒ Y1 + Y2 ⊆ N (P).

Thus N (P) = Y1 + Y2.
5.9.20. (a) For every inner pseudoinverse, AA− is a projector onto R (A), and I −

A−A is a projector onto N (A). The system being consistent means that

b ∈ R (A) = R
(
AA−)

=⇒ AA−b = b,

so A−b is a particular solution. Therefore, the general solution of the system is

A−b + N (A) = A−b + R
(
I − A−A

)
.

(b) A−A is a projector along N (A), so Exercise 5.9.12 insures Q(A−A) = Q
and (A−A)Q = (A−A). This together with the fact that PA = A allows us
to write

AXA = AQA−PA = AQA−A = AQ = AA−AQ = AA−A = A.

Similarly,

XAX = (QA−P)A(QA−P) = QA−(PA)QA−P = QA−AQA−P

= Q(A−AQ)A−P = Q(A−A)A−P = QA−P = X,

so X is a reflexive pseudoinverse for A. To show X has the prescribed range
and nullspace, use the fact that XA is a projector onto R (X) and AX is a
projector along N (X) to write

R (X) = R (XA) = R
(
QA−PA

)
= R

(
QA−A

)
= R (Q) = L

and
N (X) = N (AX) = N

(
AQA−P

)
= N

(
AA−AQA−P

)
= N

(
AA−AA−P

)
= N

(
AA−P

)
= N (P) = M.

To prove uniqueness, suppose that X1 and X2 both satisfy the specified con-
ditions. Then

N (X2) = M = R (I − AX1) =⇒ X2(I − AX1) = 0 =⇒ X2 = X2AX1

and
R (X2A) = R (X2) = L = R (X1) =⇒ X2AX1 = X1,

so X2 = X1.
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Solutions for exercises in section 5. 10

5.10.1. Since index(A) = k, we must have that

rank
(
Ak−1

)
> rank

(
Ak

)
= rank

(
Ak+1

)
= · · · = rank

(
A2k

)
= · · · ,

so rank
(
Ak

)
= rank(Ak)2, and hence index(Ak) ≤ 1. But Ak is singular

(because A is singular) so that index(Ak) > 0. Consequently, index(Ak) = 1.
5.10.2. In this case, R

(
Ak

)
= 0 and N

(
Ak

)
= n. The nonsingular component C

in (5.10.5) is missing, and you can take Q = I, thereby making A its own
core-nilpotent decomposition.

5.10.3. If A is nonsingular, then index(A) = 0, regardless of whether or not A is
symmetric. If A is singular and symmetric, we want to prove index(A) = 1.
The strategy is to show that R (A) ∩ N (A) = 0 because this implies that
R (A) ⊕ N (A) = n. To do so, start with

x ∈ R (A) ∩ N (A) =⇒ Ax = 0 and x = Ay for some y.

Now combine this with the symmetry of A to obtain

xT = yT AT = yT A =⇒ xT x = yT Ax = 0 =⇒ ‖x‖2
2 = 0 =⇒ x = 0.

5.10.4. index(A) = 0 when A is nonsingular. If A is singular and normal we want
to prove index(A) = 1. The strategy is to show that R (A) ∩ N (A) = 0
because this implies that R (A)⊕N (A) = Cn. Recall from (4.5.6) that N (A) =
N (A∗A) and N (A∗) = N (AA∗), so N (A) = N (A∗). Start with

x ∈ R (A) ∩ N (A) =⇒ Ax = 0 and x = Ay for some y,

and combine this with N (A) = N (A∗) to obtain

A∗x = 0 and x = Ay =⇒ x∗x = y∗A∗x = 0 =⇒ ‖x‖2
2 = 0 =⇒ x = 0.

5.10.5. Compute rank
(
A0

)
= 3, rank (A) = 2, rank

(
A2

)
= 1, and rank

(
A3

)
= 1,

to see that k = 2 is the smallest integer such that rank
(
Ak

)
= rank

(
Ak+1

)
,

so index(A) = 2. The matrix Q = [X |Y] is a matrix in which the columns of
X are a basis for R

(
A2

)
, and the columns of Y are a basis for N

(
A2

)
. Since

EA2 =

 1 1 0
0 0 0
0 0 0

 ,

we have

X =

−8
12
8

 and Y =

−1 0
1 0
0 1

 , so Q =

−8 −1 0
12 1 0
8 0 1

 .
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It can now be verified that

Q−1AQ=

 1/4 1/4 0
−3 −2 0
−2 −2 1

 −2 0 −4
4 2 4
3 2 2

 −8 −1 0
12 1 0
8 0 1

 =

 2 0 0
0 −2 4
0 −1 2

,

where

C = [2] and N =
(
−2 4
−1 2

)
,

and N2 = 0. Finally, AD = Q
(

C−1 0
0 0

)
Q−1 =

 −1 −1 0
3/2 3/2 0
1 1 0

 .

5.10.6. (a) Because

J − λI =


1 − λ 0 0 0 0

0 1 − λ 0 0 0
0 0 1 − λ 0 0
0 0 0 2 − λ 0
0 0 0 0 2 − λ

 ,

and because a diagonal matrix is singular if and only if it has a zero-diagonal
entry, it follows that J−λI is singular if and only if λ = 1 or λ = 2, so λ1 = 1
and λ2 = 2 are the two eigenvalues of J. To find the index of λ1, use block
multiplication to observe that

J − I =
(

0 0
0 I2×2

)
=⇒ rank (J − I) = 2 = rank (J − I)2.

Therefore, index(λ1) = 1. Similarly,

J − 2I =
(
−I3×3 0

0 0

)
and rank (J − 2I) = 3 = rank (J − 2I)2,

so index(λ2) = 1.

(b) Since

J − λI =


1 − λ 1 0 0 0

0 1 − λ 1 0 0
0 0 1 − λ 0 0
0 0 0 2 − λ 1
0 0 0 0 2 − λ

 ,

and since a triangular matrix is singular if and only if there exists a zero-diagonal
entry (i.e., a zero pivot), it follows that J − λI is singular if and only if λ = 1
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or λ = 2, so λ1 = 1 and λ2 = 2 are the two eigenvalues of J. To find the
index of λ1, use block multiplication to compute

J − I =


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 0 1

 , (J − I)2 =


0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 2
0 0 0 0 1

 ,

(J − I)3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 3
0 0 0 0 1

 , (J − I)4 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 4
0 0 0 0 1

 .

Since

rank (J − I) > rank (J − I)2 > rank (J − I)3 = rank (J − I)4,

it follows that index(λ1) = 3. A similar computation using λ2 shows that

rank (J − 2I) > rank (J − 2I)2 = rank (J − 2I)3,

so index(λ2) = 2. The fact that eigenvalues associated with diagonal matrices
have index 1 while eigenvalues associated with triangular matrices can have
higher indices is no accident. This will be discussed in detail in §7.8 (p. 587).

5.10.7. (a) If P is a projector, then, by (5.9.13), P = P2, so rank (P) = rank
(
P2

)
,

and hence index(P) ≤ 1. If P �= I, then P is singular, and thus index(P) = 1.
If P = I, then index(P) = 0. An alternate argument could be given on the
basis of the observation that n = R (P) ⊕ N (P).
(b) Recall from (5.9.12) that if the columns of X and Y constitute bases for
R (P) and N (P), respectively, then for Q =

[
X |Y

]
,

Q−1PQ =
(

I 0
0 0

)
,

and it follows that
(

I 0
0 0

)
is the core-nilpotent decomposition for P.

5.10.8. Suppose that
∑k−1

i=0 αiNix = 0, and multiply both sides by Nk−1 to ob-
tain α0Nk−1x = 0. By assumption, Nk−1x �= 0, so α0 = 0, and hence∑k−1

i=1 αiNix = 0. Now multiply both sides of this equation by Nk−2 to pro-
duce α1Nk−1x = 0, and conclude that α1 = 0. Continuing in this manner (or
by making a formal induction argument) gives α0 = α1 = α2 = · · · = αk−1 = 0.

5.10.9. (a) b ∈ R
(
Ak

)
⊆ R (A) =⇒ b ∈ R (A) =⇒ Ax = b is consistent.
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(b) We saw in Example 5.10.5 that when considered as linear operators re-
stricted to R

(
Ak

)
, both A and AD are invertible, and in fact they are

true inverses of each other. Consequently, A and AD are one-to-one map-
pings on R

(
Ak

)
(recall Exercise 4.7.18), so for each b ∈ R

(
Ak

)
there is

a unique x ∈ R
(
Ak

)
such that Ax = b, and this unique x is given by

x =
(
A/R(Ak)

)−1

b = ADb.

(c) Part (b) shows that ADb is a particular solution. The desired result follows
because the general solution is any particular solution plus the general solution
of the associated homogeneous equation.

5.10.10. Notice that AAD = Q
(

I 0
0 0

)
Q−1, and use the results from Example 5.10.3

(p. 398). I−AAD is the complementary projector, so it projects onto N
(
Ak

)
along R

(
Ak

)
.

5.10.11. In each case verify that the axioms (A1), (A2), (A4), and (A5) in the definition
of a vector space given on p. 160 hold for matrix multiplication (rather than
+). In parts (a) and (b) the identity element is the ordinary identity matrix,
and the inverse of each member is the ordinary inverse. In part (c), the identity

element is E =
(

1/2 1/2
1/2 1/2

)
because AE = A = EA for each A ∈ G, and(

α α
α α

)#

=
1
4α

(
1 1
1 1

)
because AA# = E = A#A.

5.10.12. (a) =⇒ (b) : If A belongs to a matrix group G in which the identity element
is E, and if A# is the inverse of A in G, then A#A2 = EA = A, so

x ∈ R (A) ∩ N (A) =⇒ x = Ay for some y and Ax = 0

=⇒ Ay = A#A2y = A#Ax = 0

=⇒ x = 0.

(b) =⇒ (c) : Suppose A is n × n, and let BR and BN be bases for R (A)
and N (A), respectively. Verify that B = R (A) ∩N (A) = 0 implies BR ∩ BN

is a linearly independent set, and use the fact that there are n vectors in B to
conclude that B is a basis for n. Statement (c) now follows from (5.9.4).
(c) =⇒ (d) : Use the fact that R

(
Ak

)
∩ N

(
Ak

)
= 0.

(d) =⇒ (e) : Use the result of Example 5.10.5 together with the fact that
the only nilpotent matrix of index 1 is the zero matrix.
(e) =⇒ (a) : It is straightforward to verify that the set

G =
{
Q

(
Xr×r 0

0 0

)
Q−1

∣∣∣X is nonsingular
}

is a matrix group, and it’s clear that A ∈ G.
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5.10.13. (a) Use part (e) of Exercise 5.10.12 to write A = Q
(

Cr×r 0
0 0

)
Q−1. For the

given E, verify that EA = AE = A for all A ∈ G. The fact that E is the
desired projector follows from (5.9.12).

(b) Simply verify that AA# = A#A = E. Notice that the group inverse
agrees with the Drazin inverse of A described in Example 5.10.5. However, the
Drazin inverse exists for all square matrices, but the concept of a group inverse
makes sense only for group matrices—i.e., when index(A) = 1.

Solutions for exercises in section 5. 11

5.11.1. Proceed as described on p. 199 to determine the following bases for each of the
four fundamental subspaces.

R (A) = span


 2

−1
−2

 ,

 1
−1
−1

 N
(
AT

)
= span


 1

0
1


N (A) = span


−1

1
1

 R
(
AT

)
= span


 1

0
1

 ,

 0
1

−1


Since each vector in a basis for R (A) is orthogonal to each vector in a basis
for N

(
AT

)
, it follows that R (A) ⊥ N

(
AT

)
. The same logic also explains

why N (A) ⊥ R
(
AT

)
. Notice that R (A) is a plane through the origin in 3,

and N
(
AT

)
is the line through the origin perpendicular to this plane, so it

is evident from the parallelogram law that R (A) ⊕ N
(
AT

)
= 3. Similarly,

N (A) is the line through the origin normal to the plane defined by R
(
AT

)
, so

N (A) ⊕ R
(
AT

)
= 3.

5.11.2. V⊥ = 0, and 0⊥ = V.

5.11.3. If A =


1 2
2 4
0 1
3 6

 , then R (A) = M, so (5.11.5) insures M⊥ = N
(
AT

)
. Using

row operations, a basis for N
(
AT

)
is computed to be




−2
1
0
0

 ,


−3

0
0
1


 .

5.11.4. Verify that M⊥ is closed with respect to vector addition and scalar multipli-
cation. If x,y ∈ M⊥, then 〈m x〉 = 0 = 〈m y〉 for each m ∈ M so that
〈m x + y〉 = 0 for each m ∈ M, and thus x + y ∈ M⊥. Similarly, for every
scalar α we have 〈m αx〉 = α 〈m x〉 = 0 for each m ∈ M, so αx ∈ M⊥.

5.11.5. (a) x ∈ N⊥ =⇒ x ⊥ N ⊇ M =⇒ x ⊥ M =⇒ x ∈ M⊥.
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(b) Simply observe that

x ∈ (M + N )⊥ ⇐⇒ x ⊥ (M + N )

⇐⇒ x ⊥ M and x ⊥ N

⇐⇒ x ∈
(
M⊥ ∩N⊥)

.

(c) Use part (b) together with (5.11.4) to write

(
M⊥ + N⊥)⊥

= M⊥⊥ ∩N⊥⊥
= M∩N ,

and then perp both sides.
5.11.6. Use the fact that dimR

(
AT

)
= rank

(
AT

)
= rank (A) = dimR (A) together

with (5.11.7) to conclude that

n = dimN (A) + dimR
(
AT

)
= dimN (A) + dimR (A).

5.11.7. U is a unitary matrix in which the columns of U1 are an orthonormal basis for
R (A) and the columns of U2 are an orthonormal basis for N

(
AT

)
, so setting

X = U1, Y = U2, and
[
X |Y

]−1 = UT in (5.9.12) produces P = U1UT
1 .

According to (5.9.9), the projector onto N
(
AT

)
along R (A) is I − P = I −

U1UT
1 = U2UT

2 .

5.11.8. Start with the first column of A, and set u = A∗1 + 6e1 = ( 2 2 −4 )T to
obtain

R1 = I− 2uuT

uT u
=

1
3

 2 −1 2
−1 2 2

2 2 −1

 and R1A =

−6 0 −6 −3
0 0 0 0
0 −3 0 0

 .

Now set u =
(

0
−3

)
+ 3e1 =

(
3

−3

)
to get

R̂2 = I − 2uuT

uT u
=

(
0 1
1 0

)
and R2 =

(
1 0
0 R̂2

)
=

 1 0 0
0 0 1
0 1 0

 ,

so

P = R2R1 =
1
3

 2 −1 2
2 2 −1

−1 2 2

 and PA =

−6 0 −6 −3
0 −3 0 0
0 0 0 0

 =
(

B
0

)
.
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Therefore, rank (A) = 2, and orthonormal bases for R (A) and N
(
AT

)
are

extracted from the columns of U = PT as shown below.

R (A) = span


 2/3

−1/3
2/3

 ,

 2/3
2/3

−1/3

 and N
(
AT

)
= span


−1/3

2/3
2/3


Now work with BT , and set u = (B1∗)T + 9e1 = ( 3 0 −6 −3 )T to get

Q = I− 2uuT

uT u
=

1
3


2 0 2 1
0 3 0 0
2 0 −1 −2
1 0 −2 2

 and QBT =


−9 0

0 −3
0 0
0 0

 =
(

T
0

)
.

Orthonormal bases for R
(
AT

)
and N (A) are extracted from the columns of

V = QT = Q as shown below.

R
(
AT

)
=span




2/3
0

2/3
1/3

 ,


0
1
0
0


 and N (A)=span




2/3
0

−1/3
−2/3

 ,


1/3
0

−2/3
2/3




A URV factorization is obtained by setting U = PT , V = QT , and

R =
(

TT 0
0 0

)
=

−9 0 0 0
0 −3 0 0
0 0 0 0

 .

5.11.9. Using EA =

 1 0 1 1/2
0 1 0 0
0 0 0 0

 along with the standard methods of Chapter 4,

we have

R (A) = span


−4

2
−4

 ,

−2
−2

1

 and N
(
AT

)
= span


−1

2
2

 ,

R
(
AT

)
= span




1
0
1

1/2

 ,


0
1
0
0


 and N (A) = span




−1
0
1
0

 ,


−1/2

0
0
1


 .

Applying the Gram–Schmidt procedure to each of these sets produces the fol-
lowing orthonormal bases for the four fundamental subspaces.

BR(A) =

1
3

−2
1

−2

 ,
1
3

−2
−2

1

 B
N(AT ) =

1
3

−1
2
2
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B
R(AT ) =

1
3


2
0
2
1

 ,


0
1
0
0


 BN(A) =

 1√
2


−1

0
1
0

 ,
1

3
√

2


−1

0
−1

4




The matrices U and V were defined in (5.11.8) to be

U =
(
BR(A) ∪ B

N(AT )
)

=
1
3

−2 −2 −1
1 −2 2

−2 1 2


and

V =
(
B

R(AT ) ∪ BN(A)

)
=

1
3


2 0 −3/

√
2 −1/

√
2

0 3 0 0
2 0 3/

√
2 −1/

√
2

1 0 0 4/
√

2

 .

Direct multiplication now produces

R = UT AV =

 9 0 0 0
0 3 0 0
0 0 0 0

 .

5.11.10. According to the discussion of projectors on p. 386, the unique vectors satisfying
v = x+y, x ∈ R (A), and y ∈ N

(
AT

)
are given by x = Pv and y = (I−P)v,

where P is the projector onto R (A) along N
(
AT

)
. Use the results of Exercise

5.11.7 and Exercise 5.11.8 to compute

P = U1UT
1 =

1
9

 8 2 2
2 5 −4
2 −4 5

 , x = Pv =

 4
1
1

 , y = (I − P)v =

−1
2
2

 .

5.11.11. Observe that
R (A) ∩ N (A) = 0 =⇒ index(A) ≤ 1,

R (A) �⊥ N (A) =⇒ A is singular,

R (A) �⊥ N (A) =⇒ R
(
AT

)
�= R (A).

It is now trial and error to build a matrix that satisfies the three conditions on

the right-hand side. One such matrix is A =
(

1 2
1 2

)
.

5.11.12. R (A) ⊥ N (A) =⇒ R (A)∩N (A) = 0 =⇒ index(A) = 1 by using (5.10.4).
The example in the solution to Exercise 5.11.11 shows that the converse is false.

5.11.13. The facts that real symmetric =⇒ hermitian =⇒ normal are direct conse-
quences of the definitions. To show that normal =⇒ RPN, use (4.5.5) to write

R (A) = R (AA∗) = R (A∗A) = R (A∗). The matrix
(

1 i
−i 2

)
is hermitian

but not symmetric. To construct a matrix that is normal but not hermitian or
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real symmetric, try to find an example with real numbers. If A =
(

a b
c d

)
,

then

AAT =
(

a2 + b2 ac + bd
ac + bd c2 + d2

)
and AT A =

(
a2 + c2 ab + cd
ab + cd b2 + d2

)
,

so we need to have b2 = c2. One such matrix is A =
(

1 −1
1 1

)
. To construct

a singular matrix that is RPN but not normal, try again to find an example with
real numbers. For any orthogonal matrix P and nonsingular matrix C, the

matrix A = P
(

C 0
0 0

)
PT is RPN. To prevent A from being normal, simply

choose C to be nonnormal. For example, let C =
(

1 2
3 4

)
and P = I.

5.11.14. (a) A∗A = AA∗ =⇒ (A − λI)∗ (A − λI) = (A − λI) (A − λI)∗ =⇒
(A − λI) is normal =⇒ (A − λI) is RPN =⇒ R (A − λI) ⊥ N (A − λI) .

(b) Suppose x ∈ N (A − λI) and y ∈ N (A − µI), and use the fact that
N (A − λI) = N (A − λI)∗ to write

(A − λI)x = 0 =⇒ 0 = x∗ (A − λI) =⇒ 0 = x∗ (A − λI)y
= x∗(µy − λy) = x∗y(µ − λ) =⇒ x∗y = 0.

Solutions for exercises in section 5. 12

5.12.1. Since CT C =
(

25 0
0 100

)
, σ2

1 = 100, and it’s clear that x = e2 is a vector

such that (CT C − 100I)x = 0 and ‖x‖2 = 1. Let y = Cx/σ1 =
(
−3/5
−4/5

)
.

Following the procedure in Example 5.6.3, set ux = x − e1 and uy = y − e1,
and construct

Rx = I − 2
uxuT

x

uT
x ux

=
(

0 1
1 0

)
and Ry = I − 2

uyuT
y

uT
y uy

=
(
−3/5 −4/5
−4/5 3/5

)
.

Since RyCRx =
(

10 0
0 5

)
= D, it follows that C = RyDRx is a singular

value decomposition of C.
5.12.2. ν2

1(A) = σ2
1 = ‖A‖2

2 needs no proof—it’s just a restatement of (5.12.4). The
fact that ν2

r (A) = ‖A‖2
F amounts to observing that

‖A‖2
F = trace

(
AT A

)
= traceV

(
D2 0
0 0

)
VT = trace

(
D2

)
= σ2

1 + · · · + σ2
r .
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5.12.3. If σ1 ≥ · · · ≥ σr are the nonzero singular values for A, then it follows from
Exercise 5.12.2 that ‖A‖2

2 = σ2
1 ≤ σ2

1 + σ2
2 + · · · + σ2

r = ‖A‖2
F ≤ nσ2

1 = n‖A‖2
2.

5.12.4. If rank (A + E) = k < r, then (5.12.10) implies that

‖E‖2 = ‖A − (A + E)‖2 ≥ min
rank(B)=k

‖A − B‖2 = σk+1 ≥ σr,

which is impossible. Hence rank (A + E) ≥ r = rank (A).
5.12.5. The argument is almost identical to that given for the nonsingular case except

that A† replaces A−1. Start with SVDs

A = U
(

D 0
0 0

)
VT and A† = V

(
D−1 0
0 0

)
UT ,

where D = diag (σ1, σ2, . . . , σr) , and note that
∥∥A†Ax

∥∥
2
≤

∥∥A†A
∥∥

2
‖x‖2 = 1

with equality holding when A†A = I (i.e., when r = n ). For each y ∈ A(S2)
there is an x ∈ S2 such that y = Ax, so, with w = UT y,

1 ≥
∥∥A†Ax

∥∥2

2
=

∥∥A†y
∥∥2

2
=

∥∥VD−1UT y
∥∥2

2
=

∥∥D−1UT y
∥∥2

2

=
∥∥D−1w

∥∥2

2
=

w2
1

σ2
1

+
w2

2

σ2
2

+ · · · + w2
r

σ2
r

with equality holding when r = n. In other words, the set UT A(S2) is an
ellipsoid (degenerate if r < n ) whose kth semiaxis has length σk. To resolve
the inequality with what it means for points to be on an ellipsoid, realize that the
surface of a degenerate ellipsoid (one having some semiaxes with zero length) is
actually the set of all points in and on a smaller dimension ellipsoid. For example,
visualize an ellipsoid in 3, and consider what happens as one of its semiaxes
shrinks to zero. The skin of the three-dimensional ellipsoid degenerates to a solid
planar ellipse. In other words, all points on a degenerate ellipsoid with semiaxes
of length σ1 �= 0, σ2 �= 0, σ3 = 0 are actually points on and inside a planar
ellipse with semiaxes of length σ1 and σ2. Arguing that the kth semiaxis of
A(S2) is σkU∗k = AV∗k is the same as the nonsingular case given in the text.

5.12.6. If A = U
(

D 0
0 0

)
VT and A†

n×m = V
(

D−1 0
0 0

)
UT are SVDs in which

V =
(
V1 |V2

)
, then the columns of V1 are an orthonormal basis for R

(
AT

)
,

so x ∈ R
(
AT

)
and ‖x‖2 = 1 if and only if x = V1y with ‖y‖2 = 1. Since

the 2-norm is unitarily invariant (Exercise 5.6.9),

min
‖x‖2=1

x∈R(AT )

‖Ax‖2 = min
‖y‖2=1

‖AV1y‖2 = min
‖y‖2=1

‖Dy‖2 =
1

‖D−1‖2

= σr =
1

‖A†‖2

.
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5.12.7. x = A†b and x̃ = A†(b− e) are the respective solutions of minimal 2-norm of
Ax = b and Ax̃ = b̃ = b − e. The development of the more general bound is
the same as for (5.12.8).

‖x − x̃‖ = ‖A†(b − b̃)‖ ≤ ‖A†‖ ‖b − b̃‖,
b = Ax =⇒ ‖b‖ ≤ ‖A‖ ‖x‖ =⇒ 1/‖x‖ ≤ ‖A‖/‖b‖,

so
‖x − x̃‖
‖x‖ ≤

(
‖A†‖ ‖b − b̃‖

) ‖A‖
‖b‖ = κ

‖e‖
‖b‖ .

Similarly,

‖b − b̃‖ = ‖A(x − x̃)‖ ≤ ‖A‖ ‖x − x̃‖,
x = A†b =⇒ ‖x‖ ≤ ‖A†‖ ‖b‖ =⇒ 1/‖b‖ ≤ ‖A†‖/‖x‖,

so
‖b − b̃‖
‖b‖ ≤ (‖A‖ ‖x − x̃‖) ‖A

†‖
‖x‖ = κ

‖x − x̃‖
‖x‖ .

Equality was attained in Example 5.12.1 by choosing b and e to point in
special directions. But for these choices, Ax = b and Ax̃ = b̃ = b − e cannot
be guaranteed to be consistent for all singular or rectangular matrices A, so
the answer to the second part is “no.” However, the argument of Example 5.12.1
proves equality for all A such that AA† = I (i.e., when rank (Am×n) = m ).

5.12.8. If A = U
(

D 0
0 0

)
VT is an SVD, then AT A+ εI = U

(
D2 + εI 0

0 εI

)
VT is

an SVD with no zero singular values, so it’s nonsingular. Furthermore,

(AT A + εI)−1AT = U
(

(D2 + εI)−1D 0
0 0

)
VT → U

(
D−1 0
0 0

)
VT = A†.

5.12.9. Since A−1 =
(
−266000 667000

333000 −835000

)
, κ∞ = ‖A‖∞

∥∥A−1
∥∥
∞ = 1, 754, 336.

Similar to the 2-norm situation discussed in Example 5.12.1, the worst case is
realized when b is in the direction of a maximal vector in A(S∞) while e is
in the direction of a minimal vector in A(S∞). Sketch A(S∞) as shown below
to see that v = ( 1.502 .599 )T is a maximal vector in A(S∞).
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(.168, .067)

(-.168, -.067)

(-1.502, -.599)

(1.502, .599)

(1, -1)(-1, -1)

(-1, 1) (1, 1)

A

It’s not clear which vector is minimal—don’t assume ( .168 .067 )T is. A min-
imal vector y in A(S∞) satisfies ‖y‖∞ = min‖x‖∞=1 ‖Ax‖∞ = 1/

∥∥A−1
∥∥
∞

(see (5.2.6) on p. 280), so, for y = Ax0 with ‖x0‖∞ = 1,∥∥∥∥A−1

(
y

‖y‖∞

)∥∥∥∥
∞

=
‖x0‖∞
‖y‖∞

=
1

‖y‖∞
=

∥∥A−1
∥∥
∞ = max

‖z‖∞=1

∥∥A−1z
∥∥
∞ .

In other words, ŷ = y/ ‖y‖∞ must be a vector in S∞ that receives maximal
stretch under A−1. You don’t have to look very hard to find such a vector
because its components are ±1—recall the proof of (5.2.15) on p. 283. Notice
that ŷ = ( 1 −1 )T ∈ S∞, and ŷ receives maximal stretch under A−1 because∥∥A−1y

∥∥
∞ = 1, 168, 000 =

∥∥A−1
∥∥
∞ , so setting

b = αv = α

(
1.502
.599

)
and e = βŷ = β

(
1

−1

)
produces equality in (5.12.8), regardless of α and β. You may wish to compu-
tationally verify that this is indeed the case.

5.12.10. (a) Consider A =
(

ε −1
1 0

)
or A =

(
ε εn

0 ε

)
for small ε �= 0.

(b) For α > 1, consider

A =


1 −α 0 · · · 0
0 1 −α · · · 0
...

...
. . . . . .

...
0 0 · · · 1 −α
0 0 · · · 0 1


n×n

and A−1 =


1 α · · · αn−2 αn−1

0 1 · · · αn−3 αn−2

...
...

. . .
...

...
0 0 · · · 1 α
0 0 · · · 0 1

 .

Regardless of which norm is used, ‖A‖ > α and
∥∥A−1

∥∥ > αn−1, so κ > αn

exhibits exponential growth. Even for moderate values of n and α > 1, κ can
be quite large.

co
nt

ro
len

gin
ee

rs
.ir



Solutions 101

5.12.11. For B = A−1E, write (A − E) = A(I − B), and use the Neumann series
expansion to obtain

x̃ = (A−E)−1b = (I−B)−1A−1b = (I+B+B2+· · ·)x = x+B(I+B+B2+· · ·)x.

Therefore, ‖x − x̃‖ ≤ ‖B‖
∑∞

n=0 ‖B‖n ‖x‖ ≤
∥∥A−1

∥∥ ‖E‖ ‖x‖
∑∞

n=0 αn, so

‖x − x̃‖
‖x‖ ≤

∥∥A−1
∥∥ ‖E‖ 1

1 − α
= ‖A‖

∥∥A−1
∥∥ ‖E‖
‖A‖

1
1 − α

=
κ

1 − α

‖E‖
‖A‖ .

5.12.12. Begin with

x − x̃ = x − (I − B)−1A−1(b − e) =
(
I − (I − B)−1

)
x + (I − B)−1A−1e.

Use the triangle inequality with b = Ax ⇒ 1/ ‖x‖ ≤ ‖A‖ / ‖b‖ to obtain

‖x − x̃‖
‖x‖ ≤

∥∥I − (I − B)−1
∥∥ +

∥∥(I − B)−1
∥∥κ

‖e‖
‖b‖ .

Write (I−B)−1 =
∑∞

i=0 Bi, and use the identity I−(I − B)−1 = −B(I − B)−1

to produce

∥∥(I − B)−1
∥∥ ≤

∞∑
i=0

‖B‖i =
1

1 − ‖B‖ and
∥∥I − (I − B)−1

∥∥ ≤ ‖B‖
1 − ‖B‖ .

Now combine everything above with ‖B‖ ≤
∥∥A−1

∥∥ ‖E‖ = κ ‖E‖ / ‖A‖ .
5.12.13. Even though the URV factors are not unique, A† is, so in each case you should

arrive at the same matrix

A† = VR†UT =
1
81


−4 2 −4
−18 −18 9
−4 2 −4
−2 1 −2

 .

5.12.14. By (5.12.17), the minimum norm solution is A†b = (1/9) ( 10 9 10 5 )T
.

5.12.15. U is a unitary matrix in which the columns of U1 are an orthonormal basis for
R (A) and the columns of U2 are an orthonormal basis for N

(
AT

)
, so setting

X = U1, Y = U2, and
[
X |Y

]−1 = UT in (5.9.12) produces P = U1UT
1 .

Furthermore,

AA† = U
(

C 0
0 0

)
VT V

(
C−1 0
0 0

)
UT = U

(
I 0
0 0

)
UT = U1UT

1 .

According to (5.9.9), the projector onto N
(
AT

)
along R (A) is I − P = I −

U1UT
1 = U2UT

2 = I − AA†.
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5.12.16. (a) When A is nonsingular, U = V = I and R = A, so A† = A−1.

(b) If A = URVT is as given in (5.12.16), where R =
(

C 0
0 0

)
, it is clear

that (R†) † = R, and hence (A†) † = (VR†UT )† = U(R†) † VT = URVT =
A.

(c) For R as above, it is easy to see that (R†) T = (RT ) †
, so an argument

similar to that used in part (b) leads to (A†) T = (AT ) †
.

(d) When rank (Am×n) = n, an SVD must have the form

A = Um×m

(
Dn×n

0m−n×n

)
In×n, so A† = I (D−1 0 )UT .

Furthermore, AT A = D2, and (AT A)−1AT = I (D−1 0 )UT = A†. The
other part is similar.

(e) AT AA† = V
(

CT 0
0 0

)
UT U

(
Cr×r 0

0 0

)
VT V

(
C−1 0
0 0

)
UT = AT .

The other part is similar.
(f) Use an SVD to write

AT (AAT )† = V
(

DT 0
0 0

)
UT U

(
D−2 0
0 0

)
UT = V

(
D−1 0
0 0

)
UT = A†.

The other part is similar.
(g) The URV factorization insures that rank

(
A†) = rank (A) = rank

(
AT

)
,

and part (f) implies R
(
A†) ⊆ R

(
AT

)
, so R

(
A†) = R

(
AT

)
. Argue that

R
(
AT

)
= R

(
A†A

)
by using Exercise 5.12.15. The other parts are similar.

(h) If A = URVT is a URV factorization for A, then (PU)R(QT V)T is a
URV factorization for B = PAQ. So, by (5.12.16), we have

B† = QT V
(

C−1 0
0 0

)
UT PT = QT A†PT .

Almost any two singular or rectangular matrices can be used to build a coun-
terexample to show that (AB)† is not always the same as B†A†.

(i) If A = URVT , then (AT A)† = (VRT UT URV)† = VT (RT R)†VT . Sim-
ilarly, A†(AT )† = VR†UT URT †VT = VR†RT †VT = VT (RT R)†VT . The
other part is argued in the same way.

5.12.17. If A is RPN, then index(A) = 1, and the URV decomposition (5.11.15) is a
similarity transformation of the kind (5.10.5). That is, N = 0 and Q = U, so
AD as defined in (5.10.6) is the same as A† as defined by (5.12.16). Conversely,
if A† = AD, then

AAD = ADA =⇒ A†A = AA† =⇒ R (A) = R
(
AT

)
.
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5.12.18. (a) Recall that ‖B‖2
F = trace

(
BT B

)
, and use the fact that R (X) ⊥ R (Y)

implies XT Y = 0 = YT X to write

‖X + Y‖2
F = trace

(
(X + Y)T (X + Y)

)
= trace

(
XT X + XT Y + YT X + YT Y

)
= trace

(
XT X

)
+ trace

(
YT Y

)
= ‖X‖2

F + ‖Y‖2
F .

(b) Consider X =
(

2 0
0 0

)
and Y =

(
0 0
0 3

)
.

(c) Use the result of part (a) to write

‖I − AX‖2
F =

∥∥I − AA† + AA† − AX
∥∥2

F

=
∥∥I − AA†∥∥2

F
+

∥∥AA† − AX
∥∥2

F

≥
∥∥I − AA†∥∥2

F
,

with equality holding if and only if AX = AA†—i.e., if and only if X = A†+Z,
where R (Z) ⊆ N (A) ⊥ R

(
AT

)
= R

(
A†). Moreover, for any such X,

‖X‖2
F =

∥∥A† + Z
∥∥2

F
=

∥∥A†∥∥2

F
+ ‖Z‖2

F ≥
∥∥A†∥∥2

F

with equality holding if and only if Z = 0.

Solutions for exercises in section 5. 13

5.13.1. PM = uuT /(uT u) = (1/10)

(
9 3
3 1

)
, and PM⊥ = I − PM = (1/10)

(
1 −3

−3 9

)
,

so PMb =
(

6
2

)
, and PM⊥b =

(
−2

6

)
.

5.13.2. (a) Use any of the techniques described in Example 5.13.3 to obtain the fol-
lowing.

PR(A) =

 .5 0 .5
0 1 0
.5 0 .5

 PN(A) =

 .8 −.4 0
−.4 .2 0

0 0 0


PR(AT ) =

 .2 .4 0
.4 .8 0
0 0 1

 PN(AT ) =

 .5 0 −.5
0 0 0

−.5 0 .5


(b) The point in N (A)⊥ that is closest to b is

PN(A)⊥b = PR(AT )b =

 .6
1.2
1

 .
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5.13.3. If x ∈ R (P), then Px = x—recall (5.9.10)—so ‖Px‖2 = ‖x‖2 . Conversely,
suppose ‖Px‖2 = ‖x‖2 , and let x = m+n, where m ∈ R (P) and n ∈ N (P)
so that m ⊥ n. The Pythagorean theorem (Exercise 5.4.14) guarantees that
‖x‖2

2 = ‖m + n‖2
2 = ‖m‖2

2 + ‖n‖2
2 . But we also have

‖x‖2
2 = ‖Px‖2

2 = ‖P(m + n)‖2
2 = ‖Pm‖2

2 = ‖m‖2
2 .

Therefore, n = 0, and thus x = m ∈ R (P).

5.13.4. (AT PR(A))T = PT
R(A)A = PR(A)A = A.

5.13.5. Equation (5.13.4) says that PM = UUT =
∑r

i=1 uiui
T , where U contains the

ui ’s as columns.

5.13.6. The Householder (or Givens) reduction technique can be employed as described
in Example 5.11.2 on p. 407 to compute orthogonal matrices U =

(
U1 |U2

)
and V =

(
V1 |V2

)
, which are factors in a URV factorization of A. Equation

(5.13.12) insures that

PR(A) = U1UT
1 , PN(AT ) = PR(A)⊥ = I − U1UT

1 = U2UT
2 ,

PR(AT ) = V1VT
1 , PN(A) = PR(AT )⊥ = I − V1VT

1 = V2VT
2 .

5.13.7. (a) The only nonsingular orthogonal projector (i.e., the only nonsingular sym-
metric idempotent matrix) is the identity matrix. Consequently, for all other or-
thogonal projectors P, we must have rank (P) = 0 or rank (P) = 1, so P = 0
or, by Example 5.13.1, P = (uuT )/uT u. In other words, the 2 × 2 orthogonal
projectors are P = I, P = 0, and, for a nonzero vector uT = (α β ) ,

P =
uuT

uT u
=

1
α2 + β2

(
α2 αβ
αβ β2

)
.

(b) P = I, P = 0, and, for nonzero vectors u,v ∈ 2×1, P = (uvT )/uT v.

5.13.8. If either u or v is the zero vector, then L is a one-dimensional subspace, and
the solution is given in Example 5.13.1. Suppose that neither u nor v is the
zero vector, and let p be the orthogonal projection of b onto L. Since L is the
translate of the subspace span {u − v} , subtracting u from everything moves
the situation back to the origin—the following picture illustrates this in 2.
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b

p

u

v

L

L − u

b − u

u − v

p − u

In other words, L is translated back down to span {u − v} , b → b − u, and
p → p − u, so that p − u must be the orthogonal projection of b − u onto
span {u − v} . Example 5.13.1 says that

p − u = Pspan{u−v}(b − u) =
(u − v)(u − v)T

(u − v)T (u − v)
(b − u),

and thus

p = u +
[
(u − v)T (b − u)
(u − v)T (u − v)

]
(u − v).

5.13.9. ‖Ax̂ − b‖2 =
∥∥PR(A)b − b

∥∥
2

=
∥∥(I − PR(A))b

∥∥
2

=
∥∥PN(AT )b

∥∥
2

5.13.10. Use (5.13.17) with PR(A) = PT
R(A) = P2

R(A), to write

‖ε‖2
2 = (b − PR(A)b)T (b − PR(A)b)

= bT b − bT PT
R(A)b − bT PR(A)b + bT PT

R(A)PR(A)b

= bT b − bT PR(A)b = ‖b‖2
2 −

∥∥PR(A)b
∥∥2

2
.

5.13.11. According to (5.13.13) we must show that
∑r

i=1(ui
T x)ui = PMx. It follows

from (5.13.4) that if Un×r is the matrix containing the vectors in B as columns,
then

PM = UUT =
r∑

i=1

uiui
T =⇒ PMx =

r∑
i=1

uiui
T x =

r∑
i=1

(ui
T x)ui.

5.13.12. Yes, the given spanning set {u1, u2, u3} is an orthonormal basis for M, so, by
Exercise 5.13.11,

PMb =
3∑

i=1

(ui
T b)ui = u1 + 3u2 + 7u3 =


5
0
5
3

 .
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5.13.13. (a) Combine the fact that PMPN = 0 if and only if R (PN ) ⊆ N (PM) with
the facts R (PN ) = N and N (PM) = M⊥ to write

PMPN = 0 ⇐⇒ N ⊆ M⊥ ⇐⇒ N ⊥ M.

(b) Yes—this is a direct consequence of part (a). Alternately, you could say

0 = PMPN ⇐⇒ 0 = (PMPN )T = PT
NPT

M = PNPM.

5.13.14. (a) Use Exercise 4.2.9 along with (4.5.5) to write

R (PM) + R (PN ) = R (PM | PN ) = R

(PM | PN )

(
PM

PN

)T


= R
(
PMPM

T + PNPN
T
)

= R
(
P2

M + P2
N

)
= R (PM + PN ).

(b) PMPN = 0 ⇐⇒ R (PN ) ⊆ N (PM) ⇐⇒ N ⊆ M⊥ ⇐⇒ M ⊥ N .

(c) Exercise 5.9.17 says PM +PN is idempotent if and only if PMPN = 0 =
PNPM. Because PM and PN are symmetric, PMPN = 0 if and only if
PMPN = PNPM = 0 (via the reverse order law for transposition). The fact
that R (PM + PN ) = R (PM)⊕R (PN ) = M⊕N was established in Exercise
5.9.17, and M ⊥ N follows from part (b).

5.13.15. First notice that PM+PN is symmetric, so (5.13.12) and the result of Exercise
5.13.14, part (a), can be combined to conclude that

(PM +PN )(PM +PN )† = (PM +PN )†(PM +PN ) = PR(PM+PN ) = PM+N .

Now, M ⊆ M + N implies PM+NPM = PM, and the reverse order law for
transposition yields PMPM+N = PM so that PM+NPM = PMPM+N . In
other words, (PM + PN )(PM + PN )†PM = PM(PM + PN )†(PM + PN ), or

PM(PM + PN )†PM + PN (PM + PN )†PM

= PM(PM + PN )†PM + PM(PM + PN )†PN .

Subtracting PM(PM + PN )†PM from both sides of this equation produces

PM(PM + PN )†PN = PN (PM + PN )†PM.

Let Z = 2PM(PM+PN )†PN = 2PN (PM+PN )†PM, and notice that R (Z) ⊆
R (PM) = M and R (Z) ⊆ R (PN ) = N implies R (Z) ⊆ M∩N . Furthermore,
PMPM∩N = PM∩N = PNPM∩N , and PM+NPM∩N = PM∩N , so, by the
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reverse order law for transposition, PM∩NPM = PM∩N = PM∩NPN and
PM∩NPM+N = PM∩N . Consequently,

Z = PM∩NZ = PM∩N
[
PM(PM + PN )†PN + PN (PM + PN )†PM

]
= PM∩N (PM + PN )†(PM + PN ) = PM∩NPM+N = PM∩N .

5.13.16. (a) Use the fact that AT = AT PR(A) = AT AA† (see Exercise 5.13.4) to write∫ ∞

0

e−AT AtAT dt =
∫ ∞

0

e−AT AtAT AA†dt =
(∫ ∞

0

e−AT AtAT Adt

)
A†

=
[
− e−AT At

]∞
0

A† = [0 − (−I)]A† = A†.

(b) Recall from Example 5.10.5 that Ak = Ak+1AD = AkAAD, and write∫ ∞

0

e−Ak+1tAkdt =
∫ ∞

0

e−Ak+1tAkAADdt =
(∫ ∞

0

e−Ak+1tAk+1Adt

)
AD

=
[
− e−Ak+1t

]∞
0

AD = [0 − (−I)]AD = AD.

(c) This is just a special case of the formula in part (b) with k = 0. However,
it is easy to derive the formula directly by writing∫ ∞

0

e−Atdt =
∫ ∞

0

e−AtAA−1dt =
(∫ ∞

0

e−AtAdt

)
A−1

=
[
e−At

]∞
0

A−1 = [0 − (−I)]A−1 = A−1.

5.13.17. (a) The points in H are just solutions to a linear system uT x = β. Using the
fact that the general solution of any linear system is a particular solution plus
the general solution of the associated homogeneous equation produces

H =
βu
uT u

+ N(uT ) =
βu
uT u

+ [R(u)]⊥ =
βu
uT u

+ u⊥,

where u⊥ denotes the orthogonal complement of the one-dimensional space
spanned by the vector u. Thus H = v+M, where v = βu/uT u and M = u⊥.
The fact that dim (u⊥) = n − 1 follows directly from (5.11.3).

(b) Use (5.13.14) with part (a) and the fact that Pu⊥ = I − uuT /uT u to write

p =
βu
uT u

+
(
I − uuT

uT u

) (
b − βu

uT u

)
=

βu
uT u

+b− uuT b
uT u

= b−
(

uT b − β

uT u

)
u.

co
nt

ro
len

gin
ee

rs
.ir



108 Solutions

5.13.18. (a) uT w �= 0 implies M∩W = 0 so that

dim (M + W) = dim M + dimW = (n − 1) + 1 = n.

Therefore, M+W = n. This together with M∩W = 0 means n = M⊕W.

(b) Write

b = b − uT b
uT w

w +
uT b
uT w

w = p +
uT b
uT w

w,

and observe that p ∈ M (because uT p = 0 ) and (uT b/uT w)w ∈ W. By
definition, p is the projection of b onto M along W.

(c) We know from Exercise 5.13.17, part (a), that H = v + M, where v =
βu/uT u and M = u⊥, so subtracting v = βu/uT u from everything in H
as well as from b translates the situation back to the origin. Sketch a picture
similar to that of Figure 5.13.5 to see that this moves H back to M, it translates
b to b−v, and it translates p to p−v. Now, p−v should be the projection
of b − v onto M along W, so by the result of part (b),

p−v = b−v− uT (b − v)
uT w

w =⇒ p = b− uT (b − v)
uT w

w = b−
(

uT b − β

uT w

)
w.

5.13.19. For convenience, set β = Ai∗pkn+i−1 − bi so that pkn+i = pkn+i−1 − β(Ai∗)
T
.

Use the fact that

Ai∗ (pkn+i−1 − x) = Ai∗pkn+i−1 − bi = β

together with ‖Ai∗‖2 = 1 to write

‖pkn+i − x‖2
2 =

∥∥∥pkn+i−1 − β(Ai∗)
T − x

∥∥∥2

2

=
∥∥∥(pkn+i−1 − x) − β(Ai∗)

T
∥∥∥2

2

= (pkn+i−1 − x)T (pkn+i−1 − x)

− 2βAi∗ (pkn+i−1 − x) + β2Ai∗(Ai∗)
T

= ‖pkn+i−1 − x‖2
2 − β2.

Consequently, ‖pkn+i − x‖2 ≤ ‖pkn+i−1 − x‖2 , with equality holding if and
only if β = 0 or, equivalently, if and only if pkn+i−1 ∈ Hi−1 ∩ Hi. Therefore,
the sequence of norms ‖pkn+i − x‖2 is monotonically decreasing, and hence it
must have a limiting value. This implies that the sequence of the β ’s defined
above must approach 0, and thus the sequence of the pkn+i ’s converges to x.

5.13.20. Refer to Figure 5.13.8, and notice that the line passing from p(1)
1 to p(1)

2 is
parallel to V = span

(
p(1)

1 − p(1)
2

)
, so projecting p(1)

1 through p(1)
2 onto H2
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is exactly the same as projecting p(1)
1 onto H2 along (i.e., parallel to) V.

According to part (c) of Exercise 5.13.18, this projection is given by

p(2)
2 = p(1)

1 −
A2∗

(
p(1)

1 − b1AT
2∗

)
A2∗

(
p(1)

1 − p(1)
2

) (
p(1)

1 − p(1)
2

)

= p(1)
1 −

(
A2∗p

(1)
1 − b1

)
A2∗

(
p(1)

1 − p(1)
2

) (
p(1)

1 − p(1)
2

)
.

All other projections are similarly derived. It is now straightforward to verify
that the points created by the algorithm are exactly the same points described
in Steps 1, 2, . . . , n − 1.

Note: The condition that
{(

p(1)
1 − p(1)

2

)
,
(
p(1)

1 − p(1)
3

)
, . . . ,

(
p(1)

1 − p(1)
n

)}
is independent insures that

{(
p(2)

2 − p(2)
3

)
,
(
p(2)

2 − p(2)
4

)
, . . . ,

(
p(2)

2 − p(2)
n

)}
is also independent. The same holds at each subsequent step. Furthermore,
A2∗

(
p(1)

1 − p(1)
k

)
�= 0 for k > 1 implies that Vk = span

(
p(1)

1 − p(1)
k

)
is

not parallel to H2, so all projections onto H2 along Vk are well defined. It can
be argued that the analogous situation holds at each step of the process—i.e.,
the initial conditions insure Ai+1∗

(
p(i)

i − p(i)
k

)
�= 0 for k > i.

5.13.21. Equation (5.13.13) says that the orthogonal distance between x and M⊥ is

dist (x,M⊥) = ‖x − PM⊥x‖2 = ‖(I − PM⊥)x‖2 = ‖PMx‖2 .

Similarly,

dist (Rx,M⊥) = ‖PMRx‖2 = ‖−PMx‖2 = ‖PMx‖2 .

5.13.22. (a) We know from Exercise 5.13.17 that H = v + u⊥, where v = βu, so
subtracting v from everything in H as well as from b translates the situation
back to the origin. As depicted in the diagram below, this moves H down to
u⊥, and it translates b to b − v and r to r − v.
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v

u
u⊥

0

b

p

b - v

p - v

H

Now, we know from (5.6.8) that the reflection of b − v about u⊥ is

r − v = R(b − v) = (I − 2uuT )(b − v) = b + (β − 2uT b)u,

and therefore the reflection of b about H is

r = R(b − v) + v = b − 2(uT b − β)u.

(b) From part (a), the reflection of r0 about Hi is

ri = r0 − 2(Ai∗r0 − bi) (Ai∗)
T

,

and therefore the mean value of all of the reflections {r1, r2, . . . , rn} is

m =
1
n

n∑
i=1

ri =
1
n

n∑
i=1

(
r0 − 2(Ai∗r0 − bi) (Ai∗)

T
)

= r0 −
2
n

n∑
i=1

(Ai∗r0 − bi)(Ai∗)T

= r0 −
2
n
AT (Ar0 − b) = r0 −

2
n
AT ε.

Note: If weights wi > 0 such that
∑

wi = 1 are used, then the weighted mean
is

m =
n∑

i=1

wiri =
n∑

i=1

wi

(
r0 − 2(Ai∗r0 − bi) (Ai∗)

T
)

= r0 − 2
n∑

i=1

wi(Ai∗r0 − bi)(Ai∗)T

= r0 −
2
n
AT W (Ar0 − b) = r0 −

2
n
AT Wε,
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where W = diag {w1, w2, . . . , wn} .

(c) First observe that

x − mk = x − mk−1 +
2
n
AT εk−1

= x − mk−1 +
2
n
AT (Amk−1 − b)

= x − mk−1 +
2
n
AT (Amk−1 − Ax)

= x − mk−1 +
2
n
AT A(mk−1 − x)

=
(
I − 2

n
AT A

)
(x − mk−1),

and then use successive substitution to conclude that

x − mk =
(
I − 2

n
AT A

)k

(x − m0).

Solutions for exercises in section 5. 14

5.14.1. Use (5.14.5) to observe that

E[yiyj ] = Cov[yi, yj ] + µyi
µyj

=
{

σ2 + (Xi∗β)2 if i = j,
(Xi∗β)(Xj∗β) if i �= j,

so that
E[yyT ] = σ2I + (Xβ)(Xβ)T = σ2I + XββT XT .

Write ê = y−Xβ̂ = (I−XX†)y, and use the fact that I−XX† is idempotent
to obtain

êT ê = yT (I − XX†)y = trace
(
(I − XX†)yyT

)
.

Now use the linearity of trace and expectation together with the result of Exercise
5.9.13 and the fact that (I − XX†)X = 0 to write

E[êT ê] = E
[
trace

(
(I − XX†)yyT

)]
= trace

(
E[(I − XX†)yyT ]

)
= trace

(
(I − XX†)E[yyT ]

)
= trace

(
(I − XX†)(σ2I + XββT XT )

)
= σ2trace

(
I − XX†) = σ2

(
m − trace

(
XX†))

= σ2
(
m − rank

(
XX†)) = σ2(m − n).
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Solutions for exercises in section 5. 15

5.15.1. (a) θmin = 0, and θmax = θ = φ = π/4.

(b) θmin = θ = φ = π/4, and θmax = 1.
5.15.2. (a) The first principal angle is θ1 = θmin = 0, and we can take u1 = v1 = e1.

This means that

M2 = u⊥
1 ∩M = span {e2} and N2 = v⊥

1 ∩N = span {(0, 1, 1)} .

The second principal angle is the minimal angle between M2 and N2, and this
is just the angle between e2 and (0, 1, 1), so θ2 = π/4.

(b) This time the first principal angle is θ1 = θmin = π/4, and we can take
u1 = e1 and v1 = (0, 1/

√
2, 1/

√
2). There are no more principal angles because

N2 = v⊥
1 ∩N = 0.

5.15.3. (a) This follows from (5.15.16) because PM = PN if and only if M = N .

(b) If 0 �= x ∈ M∩N , then (5.15.1) evaluates to 1 with the maximum being
attained at u = v = x/ ‖x‖2 . Conversely, cos θmin = 1 =⇒ vT u = 1 for some
u ∈ M and v ∈ N such that ‖u‖2 = 1 = ‖v‖2 . But vT u = 1 = ‖u‖2 ‖v‖2

represents equality in the CBS inequality (5.1.3), and we know this occurs if and
only if v = αu for α = vT u/u∗u = 1/1 = 1. Thus u = v ∈ M∩N .

(c) max u∈M, v∈N
‖u‖2=‖v‖2=1

vT u = 0 ⇐⇒ vT u = 0 ∀ u ∈ M, v ∈ V ⇐⇒ M ⊥ N .

5.15.4. You can use either (5.15.3) or (5.15.4) to arrive at the result. The latter is used
by observing∥∥(PM⊥ − PN⊥)−1

∥∥
2

=
∥∥∥(

(I − PM) − (I − PN )
)−1

∥∥∥
2

=
∥∥(PN − PM)−1

∥∥
2

=
∥∥(PM − PN )−1

∥∥
2
.

5.15.5. M⊕N⊥ = n =⇒ dimM = dimN =⇒ sin θmax = δ(M,N ) = δ(N ,M),
so cos θ̃min = ‖PMPN⊥‖2 = ‖PM(I − PN )‖2 = δ(M,N ) = sin θmax.

5.15.6. It was argued in the proof of (5.15.4) that PM − PN is nonsingular whenever
M and N are complementary, so we need only prove the converse. Suppose
dimM = r > 0 and dimN = k > 0 (the problem is trivial if r = 0 or
k = 0 ) so that UT

1 V1 is r × n − k and UT
2 V2 is n − r × k. If PM − PN is

nonsingular, then (5.15.7) insures that the rows as well as the columns in each of
these products must be linearly independent. That is, UT

1 V1 and UT
2 V2 must

both be square and nonsingular, so r + k = n. Combine this with the formula
for the rank of a product (4.5.1) to conclude

k = rank
(
UT

2 V2

)
= rank

(
UT

2

)
− dimN

(
UT

2

)
∩ R (V2)

= n − r − dimM∩N = k − dimM∩N .

It follows that M∩N = 0, and hence M⊕N = n.
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5.15.7. (a) This can be derived from (5.15.7), or it can be verified by direct multipli-
cation by using PN (I − P) = I − P =⇒ P − PNP = I − PN to write

(PM − PN )(P − Q) = PMP − PMQ − PNP + PNQ

= P − 0 − PNP + PNQ = I − PN + PNQ

= I − PN (I − Q) = I.

(b) and (c) follow from (a) in conjunction with (5.15.3) and (5.15.4).
5.15.8. Since we are maximizing over a larger set, max‖x‖=1 f(x) ≤ max‖x‖≤1 f(x). A

strict inequality here implies the existence of a nonzero vector x0 such that
‖x0‖ < 1 and f(x) < f(x0) for all vectors such that ‖x‖ = 1. But then

f(x0) > f(x0/ ‖x0‖) = f(x0)/ ‖x0‖ =⇒ ‖x0‖ f(x0) > f(x0),

which is impossible because ‖x0‖ < 1.

5.15.9. (a) We know from equation (5.15.6) that PMN = U
(

C 0
0 0

)
VT in which

C is nonsingular and C−1 = VT
1 U1. Consequently,

P†
MN = V

(
C−1 0
0 0

)
UT = V1C−1UT

1 = V1VT
1 U1UT

1 = PN⊥PM.

(b) Use the fact∥∥(UT
1 V1)−1

∥∥
2

=
∥∥(VT

1 U1)−1
∥∥

2
=

∥∥U1(VT
1 U1)−1VT

1

∥∥
2

=
∥∥(V1VT

1 U1UT
1 )†

∥∥
2

=
∥∥∥[

(I − PN )PM
]†∥∥∥

2

(and similarly for the other term) to show that∥∥∥[
(I − PN )PM

]†∥∥∥
2

=
∥∥(UT

1 V1)−1
∥∥

2
=

∥∥∥[
PM(I − PN )

]†∥∥∥
2
,

and ∥∥∥[
(I − PM)PN

]†∥∥∥
2

=
∥∥(UT

2 V2)−1
∥∥

2
=

∥∥∥[
PN (I − PM)

]†∥∥∥
2
.

It was established in the proof of (5.15.4) that
∥∥(UT

1 V1)−1
∥∥

2
=

∥∥(UT
2 V2)−1

∥∥
2
,

so combining this with the result of part (a) and (5.15.3) produces the desired
conclusion.

5.15.10. (a) We know from (5.15.2) that cos θ̄min = ‖PN⊥PM‖2 = ‖(I − PN )PM‖2 ,

and we know from Exercise 5.15.9 that PMN =
[
(I−PN )PM

]†
, so taking the

pseudoinverse of both sides of this yields the desired result.
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(b) Use (5.15.3) together with part (a), (5.13.10), and (5.13.12) to write

1 =
∥∥∥PMNP†

MN

∥∥∥
2
≤

∥∥∥PMN
∥∥∥

2

∥∥∥P†
MN

∥∥∥
2

=
cos θ̄min

sin θmin

.

5.15.11. (a) Use the facts that ‖A‖2 = ‖AT ‖2 and (AT )−1 = (A−1)T to write

1∥∥(UT
2 V2)−1

∥∥2

2

=
1∥∥(VT

2 U2)−1
∥∥2

2

= min
‖x‖2=1

∥∥VT
2 U2x

∥∥2

2

= min
‖x‖2=1

xT UT
2 V2VT

2 U2x

= min
‖x‖2=1

xT UT
2 (I − V1VT

1 )U2x = min
‖x‖2=1

(
1 −

∥∥VT
1 U2x

∥∥2

2

)
= 1 − max

‖x‖2=1

∥∥VT
1 U2x

∥∥2

2
= 1 −

∥∥VT
1 U2

∥∥2

2
= 1 −

∥∥UT
2 V1

∥∥2

2
.

(b) Use a similar technique to write∥∥UT
2 V2

∥∥2

2
=

∥∥UT
2 V2VT

2

∥∥2

2
=

∥∥UT
2 (I − V1VT

1 )
∥∥2

2

=
∥∥(I − V1VT

1 )U2

∥∥2

2
= max

‖x‖2=1
xT UT

2 (I − V1VT
1 )U2x

= 1 − min
‖x‖2=1

∥∥VT
1 U2x

∥∥2

2
= 1 − 1∥∥(VT

1 U2)−1
∥∥2

2

= 1 − 1∥∥(UT
2 V1)−1

∥∥2

2

.
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Solutions for exercises in section 6. 1

6.1.1. (a) −1 (b) 8 (c) −αβγ

(d) a11a22a33 + a12a23a31 + a13a21a32 − (a11a23a32 + a12a21a33 + a13a22a31)
(This is where the “diagonal rule” you learned in high school comes from.)

6.1.2. If A = [x1 |x2 |x3], then V3 =
[
det

(
AT A

)]1/2 = 20 (recall Example 6.1.4).
But you could also realize that the xi ’s are mutually orthogonal to conclude
that V3 = ‖x1‖2 ‖x2‖2 ‖x3‖2 = 20.

6.1.3. (a) 10 (b) 0 (c) 120 (d) 39 (e) 1 (f) (n − 1)!
6.1.4. rank (A) = 2
6.1.5. A square system has a unique solution if and only if its coefficient matrix is

nonsingular—recall the discussion in §2.5. Consequently, (6.1.13) guarantees that
a square system has a unique solution if and only if the determinant of the
coefficient matrix is nonzero. Since∣∣∣∣∣∣

1 α 0
0 1 −1
α 0 1

∣∣∣∣∣∣ = 1 − α2,

it follows that there is a unique solution if and only if α �= ±1.
6.1.6. I = A−1A =⇒ det (I) = det

(
A−1A

)
= det

(
A−1

)
det (A)

=⇒ 1 = det
(
A−1

)
det (A) =⇒ det

(
A−1

)
= 1/det (A).

6.1.7. Use the product rule (6.1.15) to write

det
(
P−1AP

)
= det

(
P−1

)
det (A)det (P) = det

(
P−1

)
det (P)det (A)

= det
(
P−1P

)
det (A) = det (I)det (A) = det (A).

6.1.8. Use (6.1.4) together with the fact that z1z2 = z̄1z̄2 and z1 + z2 = z̄1 + z̄2 for
all complex numbers to write

det (A∗) = det
(
ĀT

)
= det

(
Ā

)
=

∑
p

σ(p)a1p1 · · · anpn

=
∑

p

σ(p)a1p1 · · · anpn
=

∑
p

σ(p)a1p1 · · · anpn
= det (A).

6.1.9. (a) I = Q∗Q =⇒ 1 = det (Q∗Q) = det (Q∗)det (Q) = [det (Q)]2 by
Exercise 6.1.8.
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(b) If A = UDV∗ is an SVD, then, by part (a),

|det (A)| = |det (UDV∗)| = |det (U)| |det (D)| |det (V∗)|
= det (D) = σ1σ2 · · ·σn.

6.1.10. Let r = rank (A), and let σ1 ≥ · · · ≥ σr be the nonzero singular values of A.

If A = Um×m

(
Dr×r 0

0 0

)
m×n

(V∗)n×n is an SVD, then, by Exercises 6.1.9 and

6.1.8, det (V)det (V∗) = |det (V)|2 = 1, so

det (A∗A) = det (VD∗DV∗) = det (V)
∣∣∣∣ (D∗D)r×r 0

0 0

∣∣∣∣
n×n

det (V∗)

= σ2
1σ2

2 · · ·σ2
r 0 · · · 0︸ ︷︷ ︸,

n−r

and this is
{= 0 when r < n,

> 0 when r = n.

Note: You can’t say det (A∗A) = det (A)det (A) = |det (A)|2 ≥ 0 because A
need not be square.

6.1.11. αA = (αI)A =⇒ det (αA) = det (αI)det (A) = αndet (A).
6.1.12. A = −AT =⇒ det (A) = det

(
−AT

)
= det (−A) = (−1)ndet (A) (by

Exercise 6.1.11) =⇒ det (A) = −det (A) when n is odd =⇒ det (A) = 0.

6.1.13. If A = LU, where L is lower triangular and U is upper triangular where each
has 1’s on its diagonal and random integers in the remaining nonzero positions,
then det (A) = det (L)det (U) = 1 × 1 = 1, and the entries of A are rather
random integers.

6.1.14. According to the definition,

det (A) =
∑

p

σ(p)a1p1 · · · akpk
· · · anpn

=
∑

p

σ(p)a1p1 · · · (xpk
+ ypk

+ · · · + zpk
) · · · anpn

=
∑

p

σ(p)a1p1 · · ·xpk
· · · anpn

+
∑

p

σ(p)a1p1 · · · ypk
· · · anpn

+ · · · +
∑

p

σ(p)a1p1 · · · zpk
· · · anpn

= det


A1∗

...
xT

...
An∗

 + det


A1∗

...
yT

...
An∗

 + · · · + det


A1∗

...
zT

...
An∗

 .
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6.1.15. If An×2 = [x |y] , then the result of Exercise 6.1.10 implies

0 ≤ det (A∗A) =
∣∣∣∣x∗x x∗y
y∗x y∗y

∣∣∣∣ = (x∗x) (y∗y) − (x∗y) (y∗x)

= ‖x‖2
2 ‖y‖

2
2 − (x∗y) (x∗y)

= ‖x‖2
2 ‖y‖

2
2 − |x∗y|2,

with equality holding if and only if rank (A) < 2 —i.e., if and only if y is a
scalar multiple of x.

6.1.16. Partition A as

A = LU =
(

Lk 0
L21 L22

) (
Uk U12

0 U22

)
=

(
LkUk ∗

∗ ∗

)
to deduce that Ak can be written in the form

Ak = LkUk =
(

Lk−1 0
dT 1

) (
Uk−1 c

0 ukk

)
and Ak−1 = Lk−1Uk−1.

The product rule (6.1.15) shows that

det (Ak) = det (Uk−1) × ukk = det (Ak−1) × ukk,

and the desired conclusion follows.
6.1.17. According to (3.10.12), a matrix has an LU factorization if and only if each

leading principal submatrix is nonsingular. The leading k × k principal subma-
trix of AT A is given by Pk = AT

k Ak, where Ak = [A∗1 |A∗2 | · · · |A∗k] . If
A has full column rank, then any nonempty subset of columns is linearly in-
dependent, so rank (Ak) = k. Therefore, the results of Exercise 6.1.10 insure
that det (Pk) = det

(
AT

k Ak

)
> 0 for each k, and hence AT A has an LU

factorization. The fact that each pivot is positive follows from Exercise 6.1.16.
6.1.18. (a) To evaluate det (A), use Gaussian elimination as shown below. 2 − x 3 4

0 4 − x −5
1 −1 3 − x

 −→

 1 −1 3 − x
0 4 − x −5

2 − x 3 4



−→

 1 −1 3 − x
0 4 − x −5
0 5 − x −x2 + 5x − 2

 −→

 1 −1 3 − x
0 4 − x −5
0 0 x3−9x2+17x+17

4−x

 = U.

Since one interchange was used, det (A) is (−1) times the product of the diag-
onal entries of U, so

det (A) = −x3 + 9x2 − 17x − 17 and
d
(
det (A)

)
dx

= −3x2 + 18x − 17.
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(b) Using formula (6.1.19) produces

d
(
det (A)

)
dx

=

∣∣∣∣∣∣
−1 0 0

0 4 − x −5
1 −1 3 − x

∣∣∣∣∣∣+
∣∣∣∣∣∣
2 − x 3 4

0 −1 0
1 −1 3 − x

∣∣∣∣∣∣+
∣∣∣∣∣∣
2 − x 3 4

0 4 − x −5
0 0 −1

∣∣∣∣∣∣
= (−x2 + 7x − 7) + (−x2 + 5x − 2) + (−x2 + 6x − 8)

= −3x2 + 18x − 17.

6.1.19. No—almost any 2 × 2 example will show that this cannot hold in general.
6.1.20. It was argued in Example 4.3.6 that if there is at least one value of x for which

the Wronski matrix

W(x) =


f1(x) f2(x) · · · fn(x)
f ′
1(x) f ′

2(x) · · · f ′
n(x)

...
...

. . .
...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)


is nonsingular, then S is a linearly independent set. This is equivalent to saying
that if S is a linearly dependent set, then the Wronski matrix W(x) is singular
for all values of x. But (6.1.14) insures that a matrix is singular if and only
if its determinant is zero, so, if S is linearly dependent, then the Wronskian
w(x) must vanish for every value of x. The converse of this statement is false
(Exercise 4.3.14).

6.1.21. (a) (n!)(n−1) (b) 11 × 11 (c) About 9.24×10153 sec ≈ 3×10146

years (d) About 3 × 10150 mult/sec. (Now this would truly be a “super
computer.”)

Solutions for exercises in section 6. 2

6.2.1. (a) 8 (b) 39 (c) −3

6.2.2. (a) A−1 =
adj (A)
det (A)

=
1
8

 0 1 −1
−8 4 4
16 −6 −2



(b) A−1 =
adj (A)
det (A)

=
1
39


−12 25 −14 7
−9 9 9 15
−6 6 6 −3

9 4 4 −2


6.2.3. (a) x1 = 1 − β, x2 = α + β − 1, x3 = 1 − α
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(b) Cramer’s rule yields

x2(t) =

∣∣∣∣∣∣
1 t4 t2

t2 t3 t
t 0 1

∣∣∣∣∣∣
∣∣∣∣∣∣
1 t t2

t2 1 t
t t2 1

∣∣∣∣∣∣
=

t

∣∣∣∣ t4 t2

t3 t

∣∣∣∣ +
∣∣∣∣ 1 t4

t2 t3

∣∣∣∣
∣∣∣∣ 1 t
t2 1

∣∣∣∣ − t

∣∣∣∣ t2 t
t 1

∣∣∣∣ + t2
∣∣∣∣ t2 1

t t2

∣∣∣∣
=

t3 − t6

(t3 − 1)(t3 − 1)
=

−t3

(t3 − 1)
,

and hence
lim

t→∞
x2(t) = lim

t→∞
−1

1 − 1/t3
= −1.

6.2.4. Yes.
6.2.5. (a) Almost any two matrices will do the job. One example is A = I and

B = −I.
(b) Again, almost anything you write down will serve the purpose. One example
is A = D = 02×2,B = C = I2×2.

6.2.6. Recall from Example 5.13.3 that Q = I − BBT B−1BT . According to (6.2.1),

det
(
AT A

)
= det

(
BT B BT c
cT B cT c

)
= det

(
BT B

) (
cT Qc

)
.

Since det
(
BT B

)
> 0 (by Exercise 6.1.10), cT Qc = det

(
AT A

)
/det

(
BT B

)
.

6.2.7. Expand
∣∣∣∣A −C
DT Ik

∣∣∣∣ both of the ways indicated in (6.2.1).

6.2.8. The result follows from Example 6.2.8, which says A[adj (A)] = det (A) I, to-
gether with the fact that A is singular if and only if det (A) = 0.

6.2.9. The solution is x = A−1b, and Example 6.2.7 says that the entries in A−1 are
continuous functions of the entries in A. Since xi =

∑
k[A−1]ikbk, and since

the sum of continuous functions is again continuous, it follows that each xi is a
continuous function of the aij ’s.

6.2.10. If B = αA, then Exercise 6.1.11 implies B̊ ij = αn−1Åij , so B̊ = αn−1Å, and
hence adj (B) = αn−1adj (A) .

6.2.11. (a) We saw in §6.1 that rank (A) is the order of the largest nonzero minor of
A. If rank (A) < n − 1, then every minor of order n − 1 (as well as det (A)
itself) must be zero. Consequently, Å = 0, and thus adj (A) = Å

T
= 0.

(b) rank (A) = n − 1 =⇒ at least one minor of order n − 1 is nonzero

=⇒ some Åij �= 0 =⇒ adj (A) �= 0

=⇒ rank (adj (A)) ≥ 1.
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Also, rank (A) = n − 1 =⇒ det (A) = 0
=⇒ A[adj (A)] = 0 (by Exercise 6.2.8)
=⇒ R (adj (A)) ⊆ N (A)
=⇒ dimR (adj (A)) ≤ dimN (A)
=⇒ rank (adj (A)) ≤ n − rank (A) = 1.

(c) rank (A) = n =⇒ det (A) �= 0 =⇒ adj (A) = det (A)A−1

=⇒ rank (adj (A)) = n
6.2.12. If det (A) = 0, then Exercise 6.2.11 insures that rank (adj (A)) ≤ 1. Conse-

quently, det (adj (A)) = 0, and the result is trivially true because both sides
are zero. If det (A) �= 0, apply the product rule (6.1.15) to A[adj (A)] =
det (A) I (from Example 6.2.8) to obtain det (A)det (adj (A)) = [det (A)]n ,

so that det (adj (A)) = [det (A)]n−1
.

6.2.13. Expanding in terms of cofactors of the first row produces Dn = 2Å11−Å12. But
Å11 = Dn−1 and expansion using the first column yields

Å12 = (−1)

∣∣∣∣∣∣∣∣∣∣

−1 −1 0 · · · 0
0 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2

∣∣∣∣∣∣∣∣∣∣
= (−1)(−1)Dn−2,

so Dn = 2Dn−1 − Dn−2. By recursion (or by direct substitution), it is easy to
see that the solution of this equation is Dn = n + 1.

6.2.14. (a) Use the results of Example 6.2.1 with λi = 1/αi.

(b) Recognize that the matrix A is a rank-one updated matrix in the sense
that

A = (α − β)I + βeeT , where e =

 1
...
1

 .

If α = β, then A is singular, so det (A) = 0. If α �= β, then (6.2.3) may be
applied to obtain

det (A) = det
(
(α − β)I

) (
1 +

βeT e
α − β

)
= (α − β)n

(
1 +

nβ

α − β

)
.

(c) Recognize that the matrix is I + edT , where

e =


1
1
...
1

 and d =


α1

α2
...

αn

 .
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Apply (6.2.2) to produce the desired formula.
6.2.15. (a) Use the second formula in (6.2.1).

(b) Apply the first formula in (6.2.1) along with (6.2.7).
6.2.16. If λ = 0, then the result is trivially true because both sides are zero. If λ �= 0,

then expand
∣∣∣∣ λIm λB

C λIn

∣∣∣∣ both of the ways indicated in (6.2.1).

6.2.17. (a) Use the product rule (6.1.15) together with (6.2.2) to write

A + cdT = A + AxdT = A
(
I + xdT

)
.

(b) Apply the same technique used in part (a) to obtain

A + cdT = A + cyT A =
(
I + cyT

)
A.

6.2.18. For an elementary reflector R = I − 2uuT /uT u, (6.2.2) insures det (R) = −1.
If An×n is reduced to upper-triangular form (say PA = T ) by Householder
reduction as explained on p. 341, then det (P)det (A) = det (T) = t11 · · · tnn.
Since P is the product of elementary reflectors, det (A) = (−1)kt11 · · · tnn,
where k is the number of reflections used in the reduction process. In general,
one reflection is required to annihilate entries below a diagonal position, so, if
no reduction steps can be skipped, then det (A) = (−1)n−1t11 · · · tnn. If Pij is
a plane rotation, then there is a permutation matrix (a product of interchange

matrices) B such that Pij = BT

(
Q 0
0 I

)
B, where Q =

(
c s

−s c

)
with

c2 + s2 = 1. Consequently, det (Pij) = det
(
BT

) ∣∣∣∣Q 0
0 I

∣∣∣∣ det (B) = det (Q) = 1

because det (B)det
(
BT

)
= det (B)2 = 1 by (6.1.9). Since Givens reduction

produces PA = T, where P is a product of plane rotations and T is upper
triangular, the product rule (6.1.15) insures det (P) = 1, so det (A) = det (T) =
t11 · · · tnn.

6.2.19. If det (A) = ±1, then (6.2.7) implies A−1 = ±adj (A) , and thus A−1 is
an integer matrix because the cofactors are integers. Conversely, if A−1 is an
integer matrix, then det

(
A−1

)
and det (A) are both integers. Since

AA−1 = I =⇒ det (A)det
(
A−1

)
= 1,

it follows that det (A) = ±1.
6.2.20. (a) Exercise 6.2.19 guarantees that A−1 has integer entries if and only if

det (A) = ±1, and (6.2.2) says that det (A) = 1 − 2vT u, so A−1 has inte-
ger entries if and only if vT u is either 0 or 1.
(b) According to (3.9.1),

A−1 =
(
I − 2uvT

)−1
= I − 2uvT

2vT u − 1
,
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and thus A−1 = A when vT u = 1.
6.2.21. For n = 2, two multiplications are required, and c(2) = 2. Assume c(k) mul-

tiplications are required to evaluate any k × k determinant by cofactors. For a
k + 1 × k + 1 matrix, the cofactor expansion in terms of the ith row is

det (A) = ai1Åi1 + · · · + aikÅik + aik+1Åik+1.

Each Åij requires c(k) multiplications, so the above expansion contains

(k + 1) + (k + 1)c(k) = (k + 1) + (k + 1)k!
(

1 +
1
2!

+
1
3!

+ · · · + 1
(k − 1)!

)
= (k + 1)!

(
1
k!

+
(

1 +
1
2!

+
1
3!

+ · · · + 1
(k − 1)!

))
= c(k + 1)

multiplications. Remember that ex = 1+x+x2/2!+x3/3!+· · · , so for n = 100,

1 +
1
2!

+
1
3!

+ · · · + 1
99!

≈ e − 1,

and c(100) ≈ 100!(e−1). Consequently, approximately 1.6×10152 seconds (i.e.,
5.1 × 10144 years) are required.

6.2.22. A − λI is singular if and only if det (A − λI) = 0. The cofactor expansion in
terms of the first row yields

det (A − λI) = −λ

∣∣∣∣ 5 − λ 2
−3 −λ

∣∣∣∣ + 3
∣∣∣∣ 2 2
−2 −λ

∣∣∣∣ − 2
∣∣∣∣ 2 5 − λ
−2 −3

∣∣∣∣
= −λ3 + 5λ2 − 8λ + 4,

so A − λI is singular if and only if λ3 − 5λ2 + 8λ − 4 = 0. According to the
hint, the integer roots of p(λ) = λ3−5λ2 +8λ−4 are a subset of {±4,±2,±1}.
Evaluating p(λ) at these points reveals that λ = 2 is a root, and either ordinary
or synthetic division produces

p(λ)
λ − 2

= λ2 − 3λ + 2 = (λ − 2)(λ − 1).

Therefore, p(λ) = (λ − 2)2(λ − 1), so λ = 2 and λ = 1 are the roots of p(λ),
and these are the values for which A − λI is singular.

6.2.23. The indicated substitutions produce the system
x′

1

x′
2
...

x′
n−1

x′
n

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−pn −pn−1 −pn−2 · · · −p1




x1

x2
...

xn−1

xn

 .
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Each of the n vectors wi =
(
fi(t) f ′

i(t) · · · f
(n−1)
i

)T for i = 1, 2, . . . , n
satisfies this system, so (6.2.8) may be applied to produce the desired conclusion.

6.2.24. The result is clearly true for n = 2. Assume the formula holds for n = k − 1,
and prove that it must also hold for n = k. According to the cofactor expansion
in terms of the first row, deg p(λ) = k − 1, and it’s clear that

p(x2) = p(x3) = · · · = p(xk) = 0,

so x2, x3, . . . , xk are the k − 1 roots of p(λ). Consequently,

p(λ) = α(λ − x2)(λ − x3) · · · (λ − xk),

where α is the coefficient of λk−1. But the coefficient of λk−1 is the cofactor
associated with the (1, k) -entry, so the induction hypothesis yields

α = (−1)k−1

∣∣∣∣∣∣∣∣
1 x2 x2

2 · · · xk−2
2

1 x3 x2
3 · · · xk−2

3
...

...
... · · ·

...
1 xk x2

k · · · xk−2
k

∣∣∣∣∣∣∣∣
k−1×k−1

= (−1)k−1
∏

j>i≥2

(xj − xi).

Therefore,

det (Vk) = p(x1) = (x1 − x2)(x1 − x3) · · · (x1 − xk)α

= (x1 − x2)(x1 − x3) · · · (x1 − xk)
(
(−1)k−1

∏
j>i≥2

(xj − xi)
)

= (x2 − x1)(x3 − x1) · · · (xk − x1)
∏

j>i≥2

(xj − xi)

=
∏
j>i

(xj − xi),

and the formula is proven. The determinant is nonzero if and only if the xi ’s
are distinct numbers, and this agrees with the conclusion in Example 4.3.4.

6.2.25. According to (6.1.19),

d
(
det (A)

)
dx

= det (D1) + det (D2) + · · · + det (Dn),

where Di is the matrix

Di =


a11 a12 · · · a1n
...

... · · ·
...

a′
i1 a′

i2 · · · a′
in

...
... · · ·

...
an1 an2 · · · ann

 .
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Expanding det (Di) in terms of cofactors of the ith row yields

det (Ai) = a′
i1Åi1 + a′

i2Åi2 + · · · + a′
inÅin,

so the desired conclusion is obtained.
6.2.26. According to (6.1.19),

∂ det (A)
∂aij

= det (Di) =

∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a1j · · · a1n

... · · ·
... · · ·

...
0 · · · 1 · · · 0
... · · ·

... · · ·
...

an1 · · · anj · · · ann

∣∣∣∣∣∣∣∣∣∣∣
← row i = Åij .

6.2.27. The
(
4
2

)
= 6 ways to choose pairs of column indices are

(1, 2) (1, 3) (1, 4)
(2, 3) (2, 4)

(3, 4)

so that the Laplace expansion using i1 = 1 and i2 = 3 is

det (A) = detA(1, 3 | 1, 2) Å(1, 3 | 1, 2) + detA(1, 3 | 1, 3) Å(1, 3 | 1, 3)

+ detA(1, 3 | 1, 4) Å(1, 3 | 1, 4) + detA(1, 3 | 2, 3) Å(1, 3 | 2, 3)

+ detA(1, 3 | 2, 4) Å(1, 3 | 2, 4) + detA(1, 3 | 3, 4) Å(1, 3 | 3, 4)
= 0 + (−2)(−4) + (−1)(3)(−2) + 0 + (−3)(−3) + (−1)(−8)(2)
= 39.
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Solutions for Chapter 7

Solutions for exercises in section 7. 1

7.1.1. σ (A) = {−3, 4}

N (A + 3I) = span

{(
−1

1

)}
and N (A − 4I) = span

{(
−1/2

1

)}

σ (B) = {−2, 2} in which the algebraic multiplicity of λ = −2 is two.

N (B + 2I) = span


−4

1
0

,

−2
0
1

 and N (B − 2I) = span


−1/2

−1/2
1


σ (C) = {3} in which the algebraic multiplicity of λ = 3 is three.

N (C − 3I) = span


 1

0
0


σ (D) = {3} in which the algebraic multiplicity of λ = 3 is three.

N (D − 3I) = span


 2

1
0

 ,

 1
0
1


σ (E) = {3} in which the algebraic multiplicity of λ = 3 is three.

N (E − 3I) = span


 1

0
0

 ,

 0
1
0

 ,

 0
0
1


Matrices C and D are deficient in eigenvectors.

7.1.2. Form the product Ax, and answer the question, “Is Ax some multiple of x ?”
When the answer is yes, then x is an eigenvector for A, and the multiplier
is the associated eigenvalue. For this matrix, (a), (c), and (d) are eigenvectors
associated with eigenvalues 1, 3, and 3, respectively.
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7.1.3. The characteristic polynomial for T is

det (T − λI) = (t11 − λ) (t22 − λ) · · · (tnn − λ) ,

so the roots are the tii ’s.
7.1.4. This follows directly from (6.1.16) because

det (T − λI) =
∣∣∣∣A − λI B

0 C − λI

∣∣∣∣ = det (A − λI)det (C − λI).

7.1.5. If λi is not repeated, then N (A − λiI) = span {ei} . If the algebraic multiplic-
ity of λi is k, and if λi occupies positions i1, i2, . . . , ik in D, then

N (A − λiI) = span {ei1 , ei2 , . . . , eik
} .

7.1.6. A singular ⇐⇒ det (A) = 0 ⇐⇒ 0 solves det (A − λI) = 0 ⇐⇒ 0 ∈ σ (A) .
7.1.7. Zero is not in or on any Gerschgorin circle. You could also say that A is non-

singular because it is diagonally dominant—see Example 7.1.6 on p. 499.
7.1.8. If (λ,x) is an eigenpair for A∗A, then ‖Ax‖2

2 / ‖x‖2
2 = x∗A∗Ax/x∗x = λ is

real and nonnegative. Furthermore, λ > 0 if and only if A∗A is nonsingular or,
equivalently, n = rank (A∗A) = rank (A). Similar arguments apply to AA∗.

7.1.9. (a) Ax = λx =⇒ x = λA−1x =⇒ (1/λ)x = A−1x.

(b) Ax = λx ⇐⇒ (A − αI)x = (λ − α)x ⇐⇒ (λ − α)−1x = (A − αI)−1x.
7.1.10. (a) Successively use A as a left-hand multiplier to produce

Ax = λx =⇒ A2x = λAx = λ2x

=⇒ A3x = λ2Ax = λ3x

=⇒ A4x = λ3Ax = λ4x

etc.

(b) Use part (a) to write

p(A)x =

(∑
i

αiAi

)
x =

∑
i

αiAix =
∑

i

αiλ
ix =

(∑
i

αiλ
i

)
x = p(λ)x.

7.1.11. Since one Geschgorin circle (derived from row sums and shown below) is isolated

2 4 6 8 10 12 14 16-2-4-6
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from the union of the other three circles, statement (7.1.14) on p. 498 insures
that there is one eigenvalue in the isolated circle and three eigenvalues in the
union of the other three. But, as discussed on p. 492, the eigenvalues of real
matrices occur in conjugate pairs. So, the root in the isolated circle must be real
and there must be at least one real root in the union of the other three circles.
Computation reveals that σ (A) = {±i, 2, 10}.

7.1.12. Use Exercise 7.1.10 to deduce that

λ ∈ σ (A) =⇒ λk ∈ σ
(
Ak

)
=⇒ λk = 0 =⇒ λ = 0.

Therefore, (7.1.7) insures that trace (A) =
∑

i λi = 0.
7.1.13. This is true because N (A − λI) is a subspace—recall that subspaces are closed

under vector addition and scalar multiplication.
7.1.14. If there exists a nonzero vector x that satisfies Ax = λ1x and Ax = λ2x,

where λ1 �= λ2, then

0 = Ax − Ax = λ1x − λ2x = (λ1 − λ2)x.

But this implies x = 0, which is impossible. Consequently, no such x can exist.

7.1.15. No—consider A =

 1 0 0
0 1 0
0 0 2

 and B =

 1 0 0
0 2 0
0 0 2

 .

7.1.16. Almost any example with rather random entries will do the job, but avoid diag-
onal or triangular matrices—they are too special.

7.1.17. (a) c = (A − λI)−1(A−λI)c = (A − λI)−1(Ac−λc) = (A − λI)−1(λk −λ)c.

(b) Use (6.2.3) to compute the characteristic polynomial for A + cdT to be

det
(
A + cdT − λI

)
= det

(
A − λI + cdT

)
= det (A − λI)

(
1 + dT (A − λI)−1c

)
=

(
±

n∏
i=1

(λj − λ)

)(
1 +

dT c
λk − λ

)

=

±
∏
j �=k

(λj − λ)

 (
λk + dT c − λ

)
.

The roots of this polynomial are λ1, . . . , λk−1, λk + dT c, λk+1, . . . , λn.

(c) d =
(µ − λk)c

cT c
will do the job.

7.1.18. (a) The transpose does not alter the determinant—recall (6.1.4)—so that

det (A − λI) = det
(
AT − λI

)
.
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(b) We know from Exercise 6.1.8 that det (A) = det (A∗), so

λ ∈ σ (A) ⇐⇒ 0 = det (A − λI)

⇐⇒ 0 = det (A − λI) = det ((A − λI)∗) = det
(
A∗ − λI

)
⇐⇒ λ ∈ σ (A∗) .

(c) Yes.
(d) Apply the reverse order law for conjugate transposes to obtain

y∗A = µy∗ =⇒ A∗y = µy =⇒ AT y = µy =⇒ µ ∈ σ
(
AT

)
= σ (A) ,

and use the conclusion of part (c) insuring that the eigenvalues of real matrices
must occur in conjugate pairs.

7.1.19. (a) When m = n, Exercise 6.2.16 insures that

λndet (AB − λI) = λndet (BA − λI) for all λ,

so det (AB − λI) = det (BA − λI).
(b) If m �= n, then the characteristic polynomials of AB and BA are of
degrees m and n, respectively, so they must be different. When m and n are
different—say m > n —Exercise 6.2.16 implies that

det (AB − λI) = (−λ)m−ndet (BA − λI).

Consequently, AB has m − n more zero eigenvalues than BA.
7.1.20. Suppose that A and B are n × n, and suppose X is n × g. The equation

(A − λI)BX = 0 says that the columns of BX are in N (A − λI), and hence
they are linear combinations of the basis vectors in X. Thus

[BX]∗j =
∑

i

pijX∗j =⇒ BX = XP, where Pg×g = [pij ] .

If (µ, z) is any eigenpair for P, then

B(Xz) = XPz = µ(Xz) and AX = λX =⇒ A(Xz) = λ(Xz),

so Xz is a common eigenvector.
7.1.21. (a) If Px = λx and y∗Q = µy∗, then T(xy∗) = Pxy∗Q = λµxy∗.

(b) Since dim Cm×n = mn, the operator T (as well as any coordinate ma-
trix representation of T ) must have exactly mn eigenvalues (counting mul-
tiplicities), and since there are exactly mn products λµ, where λ ∈ σ (P) ,
µ ∈ σ (Q) , it follows that σ (T) = {λµ |λ ∈ σ (P) , µ ∈ σ (Q)}. Use the fact
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that the trace is the sum of the eigenvalues (recall (7.1.7)) to conclude that
trace (T) =

∑
i,j λiµj =

∑
i λi

∑
j µj = trace (P) trace (Q).

7.1.22. (a) Use (6.2.3) to compute the characteristic polynomial for D + αvvT to be

p(λ) = det
(
D + αvvT − λI

)
= det

(
D − λI + αvvT

)
= det (D − λI)

(
1 + αvT (D − λI)−1v

)
(‡)

=

 n∏
j=1

(λ − λj)

 (
1 + α

n∑
i=1

v2
i

λi − λ

)

=
n∏

j=1

(λ − λj) + α

n∑
i=1

vi

∏
j �=i

(λ − λj)

 .

For each λk, it is true that

p(λk) = αvk

∏
j �=k

(λk − λj) �= 0,

and hence no λk can be an eigenvalue for D + αvvT . Consequently, if ξ is an
eigenvalue for D + αvvT , then det (D − ξI) �= 0, so p(ξ) = 0 and (‡) imply
that

0 = 1 + αvT (D − ξI)−1v = 1 + α

n∑
i=1

v2
i

λi − ξ
= f(ξ).

(b) Use the fact that f(ξi) = 1 + αvT (D − ξiI)
−1v = 0 to write(

D + αvvT
)
(D − ξiI)

−1v = D(D − ξiI)
−1v + v

(
αvT (D − ξiI)

−1v
)

= D(D − ξiI)
−1v − v

=
(
D − (D − ξiI)

)
(D − ξiI)

−1v

= ξi(D − ξiI)
−1v.

7.1.23. (a) If p(λ) = (λ − λ1) (λ − λ2) · · · (λ − λn) , then

ln p(λ) =
n∑

i=1

ln (λ − λi) =⇒ p′(λ)
p(λ)

=
n∑

i=1

1
(λ − λi)

.

(b) If |λi/λ| < 1, then we can write

(λ − λi)
−1 =

(
λ

(
1 − λi

λ

))−1

=
1
λ

(
1 − λi

λ

)−1

=
1
λ

(
1 +

λi

λ
+

λ2
i

λ2
+ · · ·

)
.

co
nt

ro
len

gin
ee

rs
.ir



130 Solutions

Consequently,

n∑
i=1

1
(λ − λi)

=
n∑

i=1

(
1
λ

+
λi

λ2
+

λ2
i

λ3
+ · · ·

)
=

n

λ
+

τ1

λ2
+

τ2

λ3
+ · · · .

(c) Combining these two results yields

nλn−1 + (n − 1)c1λ
n−2 + (n − 2)c2λ

n−3 + · · · + cn−1

=
(
λn + c1λ

n−1 + c2λ
n−2 + · · · + cn

) (n

λ
+

τ1

λ2
+

τ2

λ3
+ · · ·

)
= nλn−1 + (nc1 + τ1)λn−2 + (nc2 + τ1c1 + τ2) λn−3

+ · · · + (ncn−1 + τ1cn−2 + τ2cn−3 + · · · + τn−1)

+ (ncn + τ1cn−1 + τ2cn−2 · · · + τn)
1
λ

+ · · · ,

and equating like powers of λ produces the desired conclusion.
7.1.24. We know from Exercise 7.1.10 that λ ∈ σ (A) =⇒ λk ∈ σ

(
Ak

)
, so (7.1.7)

guarantees that trace
(
Ak

)
=

∑
i λk

i = τk. Proceed by induction. The result is
true for k = 1 because (7.1.7) says that c1 = −trace (A). Assume that

ci = − trace (ABi−1)
i

for i = 1, 2, . . . , k − 1,

and prove the result holds for i = k. Recursive application of the induction
hypothesis produces

B1 = c1I + A

B2 = c2I + c1A + A2

...

Bk−1 = ck−1I + ck−2A + · · · + c1Ak−2 + Ak−1,

and therefore we can use Newton’s identities given in Exercise 7.1.23 to obtain

trace (ABk−1) = trace
(
ck−1A + ck−2A2 + · · · + c1Ak−1 + Ak

)
= ck−1τ1 + ck−2τ2 + · · · + c1τk−1 + τk

= −kck.

co
nt

ro
len

gin
ee

rs
.ir



Solutions 131

Solutions for exercises in section 7. 2

7.2.1. The characteristic equation is λ2−2λ−8 = (λ+2)(λ−4) = 0, so the eigenvalues
are λ1 = −2 and λ2 = 4. Since no eigenvalue is repeated, (7.2.6) insures A
must be diagonalizable. A similarity transformation P that diagonalizes A is
constructed from a complete set of independent eigenvectors. Compute a pair of
eigenvectors associated with λ1 and λ2 to be

x1 =
(
−1

1

)
, x2 =

(
−1

2

)
, and set P =

(
−1 −1

1 2

)
.

Now verify that

P−1AP =
(
−2 −1

1 1

) (
−8 −6
12 10

) (
−1 −1

1 2

)
=

(
−2 0

0 4

)
= D.

7.2.2. (a) The characteristic equation is λ3 − 3λ − 2 = (λ − 2)(λ + 1)2 = 0, so the
eigenvalues are λ = 2 and λ = −1. By reducing A− 2I and A + I to echelon
form, compute bases for N (A − 2I) and N (A + I). One set of bases is

N (A − 2I) = span


−1

0
2

 and N (A + I) = span


−1

1
0

 ,

−1
0
1

 .

Therefore,

geo multA (2) = dimN (A − 2I) = 1 = alg multA (2) ,

geo multA (−1) = dimN (A + I) = 2 = alg multA (−1) .

In other words, λ = 2 is a simple eigenvalue, and λ = −1 is a semisimple
eigenvalue.
(b) A similarity transformation P that diagonalizes A is constructed from a
complete set of independent eigenvectors, and these are obtained from the above

bases. Set P =

−1 −1 −1
0 1 0
2 0 1

 , and compute P−1 =

 1 1 1
0 1 0

−2 −2 −1

 and

verify that P−1AP =

 2 0 0
0 −1 0
0 0 −1

 .

7.2.3. Consider the matrix A of Exercise 7.2.1. We know from its solution that A

is similar to D =
(
−2 0

0 4

)
, but the two eigenspaces for A are spanned by(

−1
1

)
and

(
−1

2

)
, whereas the eigenspaces for D are spanned by the unit

vectors e1 and e2.
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7.2.4. The characteristic equation of A is p(λ) = (λ−1)(λ−2)2, so alg multA (2) = 2.
To find geo multA (2) , reduce A − 2I to echelon form to find that

N (A − 2I) = span


−1

0
1

 ,

so geo multA (2) = dimN (A − 2I) = 1. Since there exists at least one eigen-
value such that geo multA (λ) < alg multA (λ) , it follows (7.2.5) on p. 512 that
A cannot be diagonalized by a similarity transformation.

7.2.5. A formal induction argument can be given, but it suffices to “do it with dots”
by writing

Bk = (P−1AP)(P−1AP) · · · (P−1AP)

= P−1A(PP−1)A(PP−1) · · · (PP−1)AP = P−1AA · · ·AP = P−1AkP.

7.2.6. limn→∞ An =
(

5 2
−10 −4

)
. Of course, you could compute A, A2, A3, . . . in

hopes of seeing a pattern, but this clumsy approach is not definitive. A better
technique is to diagonalize A with a similarity transformation, and then use the
result of Exercise 7.2.5. The characteristic equation is 0 = λ2−(19/10)λ+(1/2) =
(λ−1)(λ−(9/10)), so the eigenvalues are λ = 1 and λ = .9. By reducing A−I
and A − .9I to echelon form, we see that

N (A − I) = span

{(
−1

2

)}
and N (A − .9I) = span

{(
−2

5

)}
,

so A is indeed diagonalizable, and P =
(
−1 −2

2 5

)
is a matrix such that

P−1AP =
(

1 0
0 .9

)
= D or, equivalently, A = PDP−1. The result of Exer-

cise 7.2.5 says that An = PDnP−1 = P
(

1 0
0 .9n

)
P−1, so

lim
n→∞

An =P
(

1 0
0 0

)
P−1 =

(
−1 −2

2 5

) (
1 0
0 0

) (
−5 −2

2 1

)
=

(
5 2

−10 −4

)
.

7.2.7. It follows from P−1P = I that y∗
i xj =

{
1 if i = j,
0 if i �= j,

as well as y∗
i X = 0 and

Y∗xi = 0 for each i = 1, . . . , t, so

P−1AP =


y∗

1
...

y∗
t

Y∗

A
(
x1 | · · · |xt |X

)
=


λ1 · · · 0 0
...

. . .
...

...
0 · · · λt 0
0 · · · 0 Y∗AX

 = B.
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Therefore, examining the first t rows on both sides of P−1A = BP−1 yields
y∗

i A = λiy∗
i for i = 1, . . . , t.

7.2.8. If P−1AP = diag (λ1, λ2, . . . , λn) , then P−1AkP = diag
(
λk

1 , λk
2 , . . . , λk

n

)
for

k = 0, 1, 2, . . . or, equivalently, Ak = Pdiag
(
λk

1 , λk
2 , . . . , λk

n

)
P−1. Therefore,

Ak → 0 if and only if each λk
i → 0, which is equivalent to saying that |λi| < 1

for each i. Since ρ(A) = maxλi∈σ(A) |λi| (recall Example 7.1.4 on p. 497), it
follows that Ak → 0 if and only if ρ(A) < 1.

7.2.9. The characteristic equation for A is λ2 − 2λ + 1, so λ = 1 is the only distinct

eigenvalue. By reducing A− I to echelon form, we see that
(

3
4

)
is a basis for

N (A − I), so x = (1/5)
(

3
4

)
is an eigenvector of unit length. Following the

procedure on p. 325, we find that R =
(

3/5 4/5
4/5 −3/5

)
is an elementary reflector

having x as its first column, and RT AR = RAR =
(

1 25
0 1

)
.

7.2.10. From Example 7.2.1 on p. 507 we see that the characteristic equation for A is
p(λ) = λ3 + 5λ2 + 3λ − 9 = (λ − 1)(λ + 3)2 = 0. Straightforward computation
shows that

p(A) = (A − I)(A + 3I)2 =

 0 −4 −4
8 −12 −8

−8 8 4

  16 −16 −16
32 −32 −32

−32 32 32

 = 0.

7.2.11. Rescale the observed eigenvector as x = (1/2)(1, 1, 1, 1)T = y so that xT x = 1.
Follow the procedure described in Example 5.6.3 (p. 325), and set u = x − e1

to construct

R = I − 2uuT

uT u
=

1
2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 = P =
[
x |X

]
(since x = y ).

Consequently, B = XT AX =

−1 0 −1
0 2 0

−1 0 1

 , and σ (B) = {2,
√

2, −
√

2}.

7.2.12. Use the spectral theorem with properties GiGj = 0 for i �= j and G2
i = Gi

to write AGi = (λ1G1 + λ2G2 + · · · + λkGk)Gi = λiG2
i = λiGi. A similar

argument shows GiA = λiGi.
7.2.13. Use (6.2.3) to show that λn−1(λ−dT c) = 0 is the characteristic equation for A.

Thus λ = 0 and λ = dT c are the eigenvalues of A. We know from (7.2.5) that
A is diagonalizable if and only if the algebraic and geometric multiplicities agree
for each eigenvalue. Since geo multA (0) = dimN (A) = n − rank (A) = n − 1,
and since

alg multA (0) =
{

n − 1 if dT c �= 0,
n if dT c = 0,
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it follows that A is diagonalizable if and only if dT c �= 0.
7.2.14. If W and Z are diagonalizable—say P−1WP and Q−1ZQ are diagonal—

then
(

P 0
0 Q

)
diagonalizes A. Use an indirect argument for the converse.

Suppose A is diagonalizable but W (or Z ) is not. Then there is an eigenvalue
λ ∈ σ (W) with geo multW (λ) < alg multW (λ) . Since σ (A) = σ (W) ∪ σ (Z)
(Exercise 7.1.4), this would mean that

geo multA (λ) = dimN (A − λI) = (s + t) − rank (A − λI)
= (s − rank (W − λI)) + (t − rank (Z − λI))
= dimN (W − λI) + dimN (Z − λI)
= geo multW (λ) + geo multZ (λ)
< alg multW (λ) + alg multZ (λ)
< alg multA (λ) ,

which contradicts the fact that A is diagonalizable.
7.2.15. If AB = BA, then, by Exercise 7.1.20 (p. 503), A and B have a common

eigenvector—say Ax = λx and Bx = µx, where x has been scaled so that
‖x‖2 = 1. If R =

[
x |X

]
is a unitary matrix having x as its first column

(Example 5.6.3, p. 325), then

R∗AR =
(

λ x∗AX
0 X∗AX

)
and R∗BR =

(
µ x∗BX
0 X∗BX

)
.

Since A and B commute, so do R∗AR and R∗BR, which in turn implies
A2 = X∗AX and B2 = X∗BX commute. Thus the problem is deflated, so the
same argument can be applied inductively in a manner similar to the development
of Schur’s triangularization theorem (p. 508).

7.2.16. If P−1AP = D1 and P−1BP = D2 are both diagonal, then D1D2 = D2D1

implies that AB = BA. Conversely, suppose AB = BA. Let λ ∈ σ (A) with

alg multA (λ) = a, and let P be such that P−1AP =
(

λIa 0
0 D

)
, where D

is a diagonal matrix with λ �∈ σ (D) . Since A and B commute, so do P−1AP

and P−1BP. Consequently, if P−1BP =
(

W X
Y Z

)
, then

(
λIa 0
0 D

) (
W X
Y Z

)
=

(
W X
Y Z

) (
λIa 0
0 D

)
=⇒

{
λX = XD,
DY = λY,

so (D−λI)X = 0 and (D−λI)Y = 0. But (D−λI) is nonsingular, so X = 0

and Y = 0, and thus P−1BP =
(

W 0
0 Z

)
. Since B is diagonalizable, so is
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P−1BP, and hence so are W and Z (Exercise 7.2.14). If Q =
(

Qw 0
0 Qz

)
,

where Qw and Qz are such that Q−1
w WQw = Dw and Q−1

z ZQz = Dz are
each diagonal, then

(PQ)−1A(PQ) =
(

λIa 0
0 Q−1

z DQz

)
and (PQ)−1B(PQ) =

(
Dw 0
0 Dz

)
.

Thus the problem is deflated because A2 = Q−1
z DQz and B2 = Dz commute

and are diagonalizable, so the same argument can be applied to them. If A has k
distinct eigenvalues, then the desired conclusion is attained after k repetitions.

7.2.17. It’s not legitimate to equate p(A) with det (A − AI) because the former is a
matrix while the latter is a scalar.

7.2.18. This follows from the eigenvalue formula developed in Example 7.2.5 (p. 514) by
using the identity 1 − cos θ = 2 sin2(θ/2).

7.2.19. (a) The result in Example 7.2.5 (p. 514) shows that the eigenvalues of N+NT

and N−NT are λj = 2 cos (jπ/n + 1) and λj = 2i cos (jπ/n + 1) , respectively.
(b) Since N − NT is skew symmetric, it follows from Exercise 6.1.12 (p. 473)
that N−NT is nonsingular if and only if n is even, which is equivalent to saying
N − NT has no zero eigenvalues (recall Exercise 7.1.6, p. 501), and hence, by
part (a), the same is true for N + NT .

(b: Alternate) Since the eigenvalues of N+NT are λj = 2 cos (jπ/n + 1) you
can argue that N+NT has a zero eigenvalue (and hence is singular) if and only
if n is odd by showing that there exists an integer α such that jπ/n+1 = απ/2
for some 1 ≤ j ≤ n if and only if n is odd.
(c) Since a determinant is the product of eigenvalues (recall (7.1.8), p. 494),
det

(
N − NT

)
/det

(
N + NT

)
= (iλ1 · · · iλn)/(λ1 · · ·λn) = in = (−1)n/2.

7.2.20. The eigenvalues are {2, 0, 2, 0}. The columns of F4 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 are

corresponding eigenvectors.
7.2.21. Ax = λx =⇒ y∗Ax = λy∗x and y∗A = µy∗ =⇒ y∗Ax = µy∗x.

Therefore, λy∗x = µy∗x =⇒ (λ − µ)y∗x = 0 =⇒ y∗x = 0 when λ �= µ.
7.2.22. (a) Suppose P is a nonsingular matrix such that P−1AP = D is diagonal,

and suppose that λ is the kth diagonal entry in D. If x and y∗ are the kth

column and kth row in P and P−1, respectively, then x and y∗ must be
right-hand and left-hand eigenvectors associated with λ such that y∗x = 1.

(b) Consider A = I with x = ei and y = ej for i �= j.

(c) Consider A =
(

0 1
0 0

)
.

7.2.23. (a) Suppose not—i.e., suppose y∗x = 0. Then

x ⊥ span (y) = N (A − λI)∗ =⇒ x ∈ N (A − λI)∗⊥ = R (A − λI).
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Also, x ∈ N (A − λI), so x ∈ R (A − λI)∩N (A − λI). However, because λ is
a simple eigenvalue, the the core-nilpotent decomposition on p. 397 insures that

A − λI is similar to a matrix of the form
(

C 0
0 01×1

)
, and this implies that

R (A − λI)∩N (A − λI) = 0 (Exercise 5.10.12, p. 402), which is a contradiction.
Thus y∗x �= 0.

(b) Consider A = I with x = ei and y = ej for i �= j.
7.2.24. Let Bi be a basis for N (A − λiI), and suppose A is diagonalizable. Since

geo multA (λi) = alg multA (λi) for each i, (7.2.4) implies B = B1∪B2∪· · ·∪Bk

is a set of n independent vectors—i.e., B is a basis for n. Exercise 5.9.14
now guarantees that n = N (A − λ1I) ⊕ N (A − λ2I) ⊕ · · · ⊕ N (A − λkI).
Conversely, if this equation holds, then Exercise 5.9.14 says B = B1∪B2∪· · ·∪Bk

is a basis for n, and hence A is diagonalizable because B is a complete
independent set of eigenvectors.

7.2.25. Proceed inductively just as in the development of Schur’s triangularization the-
orem. If the first eigenvalue λ is real, the reduction is exactly the same as
described on p. 508 (with everything being real). If λ is complex, then (λ,x)
and (λ,x) are both eigenpairs for A, and, by (7.2.3), {x,x} is linearly indepen-
dent. Consequently, if x = u + iv, with u,v ∈ n×1, then {u,v} is linearly
independent—otherwise, u = ξv implies x = (1 + iξ)u and x = (1 − iξ)u,
which is impossible. Let λ = α + iβ, α, β ∈ , and observe that Ax = λx

implies Au = αu − βv and Av = βu + αv, so AW = W
(

α β
−β α

)
, where

W =
[
u |v

]
. Let W = Qn×2R2×2 be a rectangular QR factorization (p. 311),

and let B = R
(

α β
−β α

)
R−1 so that σ (B) = σ

(
α β

−β α

)
= {λ, λ}, and

AW = AQR = QR
(

α β
−β α

)
=⇒ QT AQ = R

(
α β

−β α

)
R−1 = B.

If Xn×n−2 is chosen so that P =
[
Q |X

]
is an orthogonal matrix (i.e., the

columns of X complete the two columns of Q to an orthonormal basis for
n ), then XT AQ = XT QB = 0, and

PT AP =
(

QT AQ QT AX
XT AQ XT AX

)
=

(
B QT AX
0 XT AX

)
.

Now repeat the argument on the n − 2 × n − 2 matrix XT AX. Continuing in
this manner produces the desired conclusion.

7.2.26. Let the columns Rn×r be linearly independent eigenvectors corresponding to
the real eigenvalues ρj , and let {x1,x1,x2,x2, . . . ,xt,xt} be a set of linearly
independent eigenvectors associated with {λ1, λ1, λ2, λ2, . . . , λt, λt} so that the
matrix Q =

[
R |x1 |x1 | · · · |xt |xt

]
is nonsingular. Write xj = uj + ivj for
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uj ,vj ∈ n×1 and λj = αj + iβj for α, β ∈ , and let P be the real matrix
P =

[
R |u1 |v1 |u2 |v2 | · · · |ut |vt

]
. This matrix is nonsingular because Exer-

cise 6.1.14 can be used to show that det (P) = 2t(−i)t det (Q). For example, if
t = 1, then P =

[
R |u1 |v1

]
and

det (Q) = det
[
R |x1 |x1] = det

[
R |u1 + iv1 |u1 − iv1

]
= det

[
R |u1 |u1

]
+ det

[
R |u1 | − iv1

]
+ det

[
R | iv1 |u1

]
+ det

[
R | iv1 | iv1

]
= −i det

[
R |u1 |v1

]
+ i det

[
R |v1 |u1

]
= −i det

[
R |u1 |v1

]
− i det

[
R |u1 |v1

]
= 2(−i) det (P).

Induction can now be used. The equations A(uj + ivj) = (αj + iβj)(uj + ivj)
yield Auj = αjuj − βjvj and Avj = βjuj + αjvj . Couple these with the fact
that AR = RD to conclude that

AP =
[
RD | · · · |αjuj − βjvj |βjuj + αjvj | · · ·

]
= P


D 0 · · · 0
0 B1 · · · 0
...

...
. . .

...
0 0 · · · Bt

,

where

D =


ρ1 0 · · · 0
0 ρ2 · · · 0
...

...
. . .

...
0 0 · · · ρr

 and Bj =
(

αj βj

−βj αj

)
.

7.2.27. Schur’s triangularization theorem says U∗AU = T where U is unitary and T
is upper triangular. Setting x = Uei in x∗Ax = 0 yields that tii = 0 for each
i, so tij = 0 for all i ≥ j. Now set x = U(ei +ej) with i < j in x∗Ax = 0 to
conclude that tij = 0 whenever i < j. Consequently, T = 0, and thus A = 0.

To see that xT Ax = 0 ∀ x ∈ n×1 �⇒ A = 0, consider A =
(

0 −1
1 0

)
.

Solutions for exercises in section 7. 3

7.3.1. cos A =
(

0 1
1 0

)
. The characteristic equation for A is λ2 + πλ = 0, so the

eigenvalues of A are λ1 = 0 and λ2 = −π. Note that A is diagonalizable
because no eigenvalue is repeated. Associated eigenvectors are computed in the
usual way to be

x1 =
(

1
1

)
and x2 =

(
−1

1

)
,

so

P =
(

1 −1
1 1

)
and P−1 =

1
2

(
1 1

−1 1

)
.

co
nt

ro
len

gin
ee

rs
.ir



138 Solutions

Thus

cosA = P
(

cos (0) 0
0 cos (−π)

)
P−1 =

1
2

(
1 −1
1 1

) (
1 0
0 −1

) (
1 1

−1 1

)
=

(
0 1
1 0

)
.

7.3.2. From Example 7.3.3, the eigenvalues are λ1 = 0 and λ2 = −(α + β), and
associated eigenvectors are computed in the usual way to be

x1 =
(

β/α
1

)
and x2 =

(
−1

1

)
,

so

P =
(

β/α −1
1 1

)
and P−1 =

1
1 + β/α

(
1 1

−1 β/α

)
.

Thus

P
(

eλ1t 0
0 eλ2t

)
P−1 =

α

α + β

(
β/α −1
1 1

) (
1 0
0 e−(α+β)t

) (
1 1

−1 β/α

)
=

1
α + β

[(
β β
α α

)
+ e−(α+β)t

(
α −β

−α β

)]
= eλ1tG1 + eλ2tG2.

7.3.3. Solution 1: If A = PDP−1, where D = diag (λ1, λ2, . . . , λn) , then

sin2 A = P
(
sin2 D

)
P−1 = P


sin2 λ1 0 · · · 0

0 sin2 λ2 · · · 0
...

...
. . .

...
0 0 · · · sin2 λn

P−1.

Similarly for cos2A, so sin2A + cos2A = P
(
sin2D + cos2D

)
P−1=PIP−1 = I.

Solution 2: If σ (A) = {λ1, λ2, . . . , λk} , use the spectral representation (7.3.6)
to write sin2 A =

∑k
i=1(sin

2 λi)Gi and cos2 A =
∑k

i=1(cos2 λi)Gi, so that
sin2 A + cos2 A =

∑k
i=1(sin

2 λi + cos2 λi)Gi =
∑k

i=1 Gi = I.
7.3.4. The infinite series representation of eA readily yields this.
7.3.5. (a) Eigenvalues are invariant under a similarity transformation, so the eigen-

values of f(A) = Pf(D)P−1 are the eigenvalues of f(D), which are given by
{f(λ1), f(λ2), . . . , f(λn)}.
(b) If (λ,x) is an eigenpair for A, then (A − z0I)nx = (λ − z0)nx implies
that (f(λ),x) is an eigenpair for f(A).
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7.3.6. If {λ1, λ2, . . . , λn} are the eigenvalues of An×n, then {eλ1 , eλ2 , . . . , eλn} are the
eigenvalues of eA by the spectral mapping property from Exercise 7.3.5. The
trace is the sum of the eigenvalues, and the determinant is the product of the
eigenvalues (p. 494), so det

(
eA

)
= eλ1eλ2 · · · eλn = eλ1+λ2+···+λn = etrace(A).

7.3.7. The Cayley–Hamilton theorem says that each Am×m satisfies its own charac-
teristic equation, 0 = det (A − λI) = λm +c1λ

m−1 +c2λ
m−2 + · · ·+cm−1λ+cm,

so Am = −c1Am−1 − · · · − cm−1A− cmI. Consequently, Am and every higher
power of A is a polynomial in A of degree at most m−1, and thus any expres-
sion involving powers of A can always be reduced to an expression involving at
most I,A, . . . ,Am−1.

7.3.8. When A is diagonalizable, (7.3.11) insures f(A) = p(A) is a polynomial in
A, and Ap(A) = p(A)A. If f(A) is defined by the series (7.3.7) in the non-
diagonalizable case, then, by Exercise 7.3.7, it’s still true that f(A) = p(A) is
a polynomial in A, and thus Af(A) = f(A)A holds in the nondiagonalizable
case also.

7.3.9. If A and B are diagonalizable with AB = BA, Exercise 7.2.16 insures A and
B can be simultaneously diagonalized. If P−1AP = DA = diag (λ1, λ2, . . . , λn)
and P−1BP=DB =diag (µ1, µ2, . . . , µn) , then A + B = P(DA + DB)P−1, so

eA+B = P
(
eDA+DB

)
P−1 = P


eλ1+µ1 0 · · · 0

0 eλ2+µ2 · · · 0
...

...
. . .

...
0 0 · · · eλn+µn

P−1

= P


eλ1 0 · · · 0
0 eλ2 · · · 0
...

...
. . .

...
0 0 · · · eλn

P−1P


eµ1 0 · · · 0
0 eµ2 · · · 0
...

...
. . .

...
0 0 · · · eµn

P−1

= eAeB.

In general, the same brute force multiplication of scalar series that yields

ex+y =
∞∑

n=0

(x + y)n

n!
=

( ∞∑
n=0

xn

n!

) ( ∞∑
n=0

yn

n!

)
= exey

holds for matrix series when AB = BA, but this is quite messy. A more elegant
approach is to set F(t) = eAt+Bt − eAteBt and note that F′(t) = 0 for all t
when AB = BA, so F(t) must be a constant matrix for all t. Since F(0) = 0,
it follows that e(A+B)t = eAteBt for all t. To see that eA+B, eAeB, and eBeA

can be different when AB �= BA, consider A =
(

1 0
0 0

)
and B =

(
0 1
1 0

)
.

7.3.10. The infinite series representation of eA shows that if A is skew symmetric,
then

(
eA

)T = eA
T

= e−A, and hence eA
(
eA

)T = eA−A = e0 = I.
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7.3.11. (a) Draw a transition diagram similar to that in Figure 7.3.1 with North and
South replaced by ON and OFF, respectively. Let xk be the fraction of switches
in the ON state and let yk be the fraction of switches in the OFF state after k
clock cycles have elapsed. According to the given information,

xk = xk−1(.1) + yk−1(.3)
yk = xk−1(.9) + yk−1(.7)

so that pT
k+1 = pT

k T, where pT
k = (xk yk ) and T =

(
.1 .9
.3 .7

)
. Compute

σ(T) = {1,−1/5}, and use the methods of Example 7.3.4 to determine the
steady-state (or limiting) distribution as

pT
∞ = lim

k→∞
pT

k = lim
k→∞

pT
0 Tk = pT

0 lim
k→∞

Tk = (x0 y0 )
(

1/4 3/4
1/4 3/4

)
=

(
x0 + y0

4
3(x0 + y0)

4

)
= ( 1/4 3/4 ) .

Alternately, (7.3.15) can be used with x1 =
(

1
1

)
and y1 = ( 1 3 ) to obtain

pT
∞ = pT

0 lim
k→∞

Tk = pT
0 lim

k→∞
G1 =

(pT
0 x1)yT

1

yT
1 x1

=
yT

1

yT
1 x1

= ( 1/4 3/4 ) .

(b) Computing a few powers of T reveals that

T2 =
(

.280 .720

.240 .760

)
, T3 =

(
.244 .756
.252 .748

)
,

T4 =
(

.251 .749

.250 .750

)
, T5 =

(
.250 .750
.250 .750

)
,

so, for practical purposes, the device can be considered to be in equilibrium after
about 5 clock cycles, regardless of the initial configuration.

7.3.12. Let σ (A) = {λ1, λ2, . . . , λk} with |λ1| ≥ |λ2| ≥ · · · ≥ |λk|, and assume λ1 �= 0;
otherwise A = 0 and there is nothing to prove. Set

νn =
‖An‖
|λn

1 |
=

‖λn
1G1 + λn

2G2 + · · · + λn
kGk‖

|λn
1 |

=
∥∥∥∥λn

1G1 + λn
2G2 + · · · + λn

kGk

λn
1

∥∥∥∥
=

∥∥∥∥G1 +
(

λ2

λ1

)n

G2 + · · · +
(

λk

λ1

)n

Gk

∥∥∥∥ and let ν =
k∑

i=1

‖Gi‖ .
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Observe that 1 ≤ νn ≤ ν for every positive integer n —the first inequality
follows because λn

1 ∈ σ (An) implies |λn
1 | ≤ ‖An‖ by (7.1.12) on p. 497, and

the second is the result of the triangle inequality. Consequently,

11/n ≤ ν1/n
n ≤ ν1/n =⇒ 1 ≤ lim

n→∞
ν1/n

n ≤ 1 =⇒ 1 = lim
n→∞

ν1/n
n = lim

n→∞
‖An‖1/n

|λ1|
.

7.3.13. The dominant eigenvalue is λ1 = 4, and all corresponding eigenvectors are
multiples of (−1, 0, 1)T .

7.3.15. Consider

xn =
(

1 − 1/n
−1

)
→ x =

(
1

−1

)
,

but m(xn) = −1 for all n = 1, 2, . . . , and m(x) = 1, so m(xn) �→ m(x).
Nevertheless, if limn→∞ xn �= 0, then limn→∞ m(xn) �= 0 because the function
m̃(v) = |m(v)| = ‖v‖∞ is continuous.

7.3.16. (a) The “vanilla” QR iteration fails to converge.

(b) H − I = QR =
(

0 0 1
−1 0 0

0 1 0

) (
1 3 1
0 2 0
0 0 0

)
and RQ + I =

(−2 1 1
−2 1 0

0 0 1

)
.

Solutions for exercises in section 7. 4

7.4.1. The unique solution to u′ = Au, u(0) = c, is

u = eAtc = P


eλ1t 0 · · · 0
0 eλ2t · · · 0
...

...
. . .

...
0 0 · · · eλnt

P−1c

= [x1 |x2 | · · · |xn]


eλ1t 0 · · · 0
0 eλ2t · · · 0
...

...
. . .

...
0 0 · · · eλnt




ξ1

ξ2
...

ξn


= ξ1eλ1tx1 + ξ2eλ2tx2 + · · · + ξneλntxn.

7.4.2. (a) All eigenvalues in σ (A) = {−1,−3} are negative, so the system is stable.
(b) All eigenvalues in σ (A) = {1, 3} are positive, so the system is unstable.
(c) σ (A) = {±i}, so the system is semistable. If c �= 0, then the components
in u(t) will oscillate indefinitely.

7.4.3. (a) If uk(t) denotes the number in population k at time t, then

u′
1 = 2u1 − u2,

u′
2 = −u1 + 2u2,

u1(0) = 100,

u2(0) = 200,
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or u′ = Au, u(0) = c, where A =
(

2 −1
−1 2

)
and c =

(
100
200

)
. The

characteristic equation for A is p(λ) = λ2 − 4λ + 3 = (λ − 1)(λ − 3) = 0, so
the eigenvalues for A are λ1 = 1 and λ2 = 3. We know from (7.4.7) that

u(t) = eλ1tv1 + eλ2tv2 (where vi = Gic )

is the solution to u′ = Au, u(0) = c. The spectral theorem on p. 517 implies
A − λ2I = (λ1 − λ2)G1 and I = G1 + G2, so (A − λ2I)c = (λ1 − λ2)v1 and
c = v1 + v2, and consequently

v1 =
(A − λ2I)c
(λ1 − λ2)

=
(

150
150

)
and v2 = c − v1 =

(
−50

50

)
,

so
u1(t) = 150et − 50e3t and u2(t) = 150et + 50e3t.

(b) As t → ∞, u1(t) → −∞ and u2(t) → +∞. But a population can’t
become negative, so species I is destined to become extinct, and this occurs at
the value of t for which u1(t) = 0 —i.e., when

et
(
e2t − 3

)
= 0 =⇒ e2t = 3 =⇒ t =

ln 3
2

.

7.4.4. If uk(t) denotes the number in population k at time t, then the hypothesis
says

u′
1 = −u1 + u2,

u′
2 = u1 − 2u2,

u1(0) = 200,

u2(0) = 400,

or u′ = Au, u(0) = c, where A =
(
−1 1

1 −1

)
and c =

(
200
400

)
. The

characteristic equation for A is p(λ) = λ2+2λ = λ(λ+2) = 0, so the eigenvalues
for A are λ1 = 0 and λ2 = −2. We know from (7.4.7) that

u(t) = eλ1tv1 + eλ2tv2 (where vi = Gic )

is the solution to u′ = Au, u(0) = c. The spectral theorem on p. 517 implies
A − λ2I = (λ1 − λ2)G1 and I = G1 + G2, so (A − λ2I)c = (λ1 − λ2)v1 and
c = v1 + v2, and consequently

v1 =
(A − λ2I)c
(λ1 − λ2)

=
(

300
300

)
and v2 = c − v1 =

(
−100

100

)
,

so
u1(t) = 300 − 100e−2t and u2(t) = 300 + 100e−2t.

As t → ∞, u1(t) → 300 and u2(t) → 300, so both populations will stabilize
at 300.
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Solutions for exercises in section 7. 5

7.5.1. Yes, because A∗A = AA∗ =
(

30 6 − 6 i
6 + 6 i 24

)
.

7.5.2. Real skew-symmetric and orthogonal matrices are examples.
7.5.3. We already know from (7.5.3) that real-symmetric matrices are normal and have

real eigenvalues, so only the converse needs to be proven. If A is real and
normal with real eigenvalues, then there is a complete orthonormal set of real
eigenvectors, so using them as columns in P ∈ n×n results in an orthogonal
matrix such that PT AP = D is diagonal or, equivalently, A = PDPT , and
thus A = AT .

7.5.4. If (λ,x) is an eigenpair for A = −A∗ then x∗x �= 0, and λx = Ax implies
λx∗ = x∗A∗, so

x∗x(λ + λ) = x∗(λ + λ)x = x∗Ax + x∗A∗x = 0 =⇒ λ = −λ =⇒ e(λ) = 0.

7.5.5. If A is skew hermitian (real skew symmetric), then A is normal, and hence
A is unitarily (orthogonally) similar to a diagonal matrix—say A = UDU∗.
Moreover, the eigenvalues λj in D = diag (λ1, λ2, . . . , λn) are pure imaginary
numbers (Exercise 7.5.4). Since f(z) = (1 − z)(1 + z)−1 maps the imaginary
axis in the complex plane to points on the unit circle, each f(λj) is on the unit
circle, so there is some θj such that f(λj) = eiθj = cos θj+i sin θj . Consequently,

f(A) = U


f(λ1) 0 · · · 0

0 f(λ2) · · · 0
...

...
. . .

...
0 0 · · · f(λn)

U∗ = U


eiθ1 0 · · · 0
0 eiθ2 · · · 0
...

...
. . .

...
0 0 · · · eiθn

U∗

together with eiθj eiθj = eiθj e−iθj = 1 yields f(A)∗f(A) = I. Note: The fact
that (I−A)(I + A)−1 = (I + A)−1(I−A) follows from Exercise 7.3.8. See the
solution to Exercise 5.6.6 for an alternate approach.

7.5.6. Consider the identity matrix—every nonzero vector is an eigenvector, so not ev-
ery complete independent set of eigenvectors needs to be orthonormal. Given
a complete independent set of eigenvectors for a normal A with σ (A) =
{λ1, λ2, . . . , λk} , use the Gram–Schmidt procedure to form an orthonormal basis
for N (A − λiI) for each i. Since N (A − λiI) ⊥ N (A − λjI) for λi �= λj (by
(7.5.2)), the union of these orthonormal bases will be a complete orthonormal
set of eigenvectors for A.

7.5.7. Consider A =

 0 1 0
0 0 0
0 0 1

 .

7.5.8. Suppose Tn×n is an upper-triangular matrix such that T∗T = TT∗. The (1,1)-
entry of T∗T is |t11|2, and the (1,1)-entry of TT∗ is

∑n
k=1 |t1k|2. Equating
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these implies t12 = t13 = · · · = t1n = 0. Now use this and compare the (2,2)-
entries to get t23 = t24 = · · · = t2n = 0. Repeating this argument for each row
produces the conclusion that T must be diagonal. Conversely, if T is diagonal,
then T is normal because T∗T = diag (|t11|2 · · · |tnn|2) = TT∗.

7.5.9. Schur’s triangularization theorem on p. 508 says every square matrix is unitarily
similar to an upper-triangular matrix—say U∗AU = T. If A is normal, then
so is T. Exercise 7.5.8 therefore insures that T must be diagonal. Conversely,
if T is diagonal, then it is normal, and thus so is A.

7.5.10. If A is normal, so is A − λI. Consequently, A − λI is RPN, and hence
N (A − λI) = N (A − λI)∗ (p. 408), so (A − λI)x = 0 ⇐⇒ (A∗ − λI)x = 0.

7.5.11. Just as in the proof of the min-max part, it suffices to prove

λi = max
dimV=i

min
y∈V

‖y‖2=1

y∗Dy.

For each subspace V of dimension i, let SV = {y ∈ V, ‖y‖2 = 1}, and let

S ′
V = {y ∈ V ∩ F⊥, ‖y‖2 = 1}, where F = {e1, e2, . . . , ei−1} .

( V ∩ F⊥ �= 0 —otherwise dim(V + F⊥) = dimV + dimF⊥ = n + 1, which is
impossible.) So S ′

V contains vectors of SV of the form y = (0, . . . , 0, yi, . . . , yn)T

with
∑n

j=i |yj |2 = 1, and for each subspace V with dimV = i,

y∗Dy =
n∑

j=i

λj |yj |2 ≤ λi

n∑
j=i

|yj |2 = λi for all y ∈ S ′
V .

Since S ′
V ⊆ SV , it follows that min

SV
y∗Dy ≤ min

S′
V

y∗Dy ≤ λi, and hence

max
V

min
SV

y∗Dy ≤ λi.

To reverse this inequality, let Ṽ = span {e1, e2, . . . , ei} , and observe that

y∗Dy =
i∑

j=1

λj |yj |2 ≥ λi

i∑
j=1

|yj |2 = λi for all y ∈ SṼ ,

so max
V

min
SV

y∗Dy ≥ max
SṼ

y∗Dy ≥ λi.

7.5.12. Just as before, it suffices to prove λi = min
v1,...,vi−1∈Cn

max
y⊥v1,...,vi−1

‖y‖2=1

y∗Dy. For each set

V = {v1,v2, . . . ,vi−1} , let SV = {y ∈ V⊥, ‖y‖2 = 1}, and let

S ′
V = {y ∈ V⊥ ∩ T ⊥, ‖y‖2 = 1}, where T = {ei+1, . . . , en}
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( V⊥∩T ⊥ �= 0 —otherwise dim(V⊥+T ⊥) = dimV⊥+dim T ⊥ = n+1, which is
impossible.) So S ′

V contains vectors of SV of the form y= (y1, . . . , yi, 0, . . . , 0)T

with
∑i

j=1 |yj |2 = 1, and for each V = {v1, . . . ,vi−1},

y∗Dy =
i∑

j=1

λj |yj |2 ≥ λi

i∑
j=1

|yj |2 = λi for all y ∈ S ′
V .

Since S ′
V ⊆ SV , it follows that max

SV
y∗Dy ≥ max

S′
V

y∗Dy ≥ λi, and hence

min
V

max
SV

y∗Dy ≥ λi.

This inequality is reversible because if Ṽ = {e1, e2, . . . , ei−1} , then every y ∈ Ṽ
has the form y = (0, . . . , 0, yi, . . . , yn)T , so

y∗Dy =
n∑

j=i

λj |yj |2 ≤ λi

n∑
j=i

|yj |2 = λi for all y ∈ SṼ ,

and thus min
V

max
SV

y∗Dy ≤ max
SṼ

y∗Dy ≤ λi. The solution for Exercise 7.5.11

can be adapted in a similar fashion to prove the alternate max-min expression.
7.5.13. (a) Unitary matrices are unitarily diagonalizable because they are normal. Fur-

thermore, if (λ,x) is an eigenpair for a unitary U, then

‖x‖2
2 = ‖Ux‖2

2 = ‖λx‖2
2 = |λ|2 ‖x‖2

2 =⇒ |λ| = 1 =⇒ λ = cos θ+i sin θ = eiθ.

(b) This is a special case of Exercise 7.2.26 whose solution is easily adapted to
provide the solution for the case at hand.

Solutions for exercises in section 7. 6

7.6.1. Check the pivots in the LDLT factorization to see that A and C are positive
definite. B is positive semidefinite.

7.6.2. (a) Examining Figure 7.6.7 shows that the force on m1 to the left, by Hooke’s
law, is F

(l)
1 =kx1, and the force to the right is F

(r)
1 =k(x2 − x1), so the total

force on m1 is F1 = F
(l)
1 − F

(r)
1 = k(2x1 − x2). Similarly, the total force on

m2 is F2 = k(−x1 + 2x2). Using Newton’s laws F1 = m1a1 = m1x
′′
1 and

F2 = m2a2 = m2x
′′
2 yields the two second-order differential equations

m1x
′′
1(t) = k(2x1 − x2)

m2x
′′
2(t) = k(−x1 + 2x2)

=⇒ Mx′′ = Kx,

where M =
(

m1 0
0 m2

)
, and K = k

(
2 −1

−1 2

)
.
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(b) λ = (3±
√

3)/2, and the normal modes are determined by the corresponding
eigenvectors, which are found in the usual way by solving

(K − λM)v = 0.

They are

v1 =
(
−1 −

√
3

1

)
and v2 =

(
−1 +

√
3

1

)
(c) This part is identical to that in Example 7.6.1 (p. 559) except a 2 × 2
matrix is used in place of a 3 × 3 matrix.

7.6.3. Each mass “feels” only the spring above and below it, so

m1y
′′
1 = Force up − Force down = ky1 − k(y2 − y1) = k(2y1 − y2)

m2y
′′
2 = Force up − Force down = k(y2 − y1) − k(y3 − y2) = k(−y1 + 2y2 − y3)

m3y
′′
3 = Force up − Force down = k(y3 − y2)

(b) Gerschgorin’s theorem (p. 498) shows that the eigenvalues are nonnegative,
as since det (K) �= 0, it follows that K is positive definite.
(c) The same technique used in the vibrating beads problem in Example 7.6.1
(p. 559) shows that modes are determined by the eigenvectors. Some computation
is required to produce λ1 ≈ .198, λ2 ≈ 1.55, and λ3 ≈ 3.25. The modes are
defined by the associated eigenvectors

x1 =

 γ
α
β

 ≈

 .328
.591
.737

 , x2 =

−β
−γ

α

 , and x3 =

−α
β

−γ

 .

7.6.4. Write the quadratic form as 13x2+10xy+13y2 = ( x y )
(

13 5
5 13

) (
x
y

)
= zT Az.

We know from Example 7.6.3 on p. 567 that if Q is an orthogonal matrix such
that QT AQ = D =

(
λ1 0
0 λ2

)
, and if w = QT z =

(
u
v

)
, then

13x2 + 10xy + 13y2 = zT Az = wT Dw = λ1u
2 + λ2v

2.

Computation reveals that λ1 = 8, λ2 = 18, and Q = 1√
2

(
1 1

−1 1

)
, so the

graph of 13x2 + 10xy + 13y2 = 72 is the same as that for 18u2 + 8v2 = 72
or, equivalently, u2/9 + v2/4 = 1. It follows from (5.6.13) on p. 326 that the
uv-coordinate system results from rotating the standard xy-coordinate system
counterclockwise by 45◦.

7.6.5. Since A is symmetric, the LDU factorization is really A = LDLT (see Exercise
3.10.9 on p. 157). In other words, A ∼= D, so Sylvester’s law of inertia guarantees
that the inertia of A is the same as the inertia of D.
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7.6.6. (a) Notice that, in general, when xT Ax is expanded, the coefficient of xixj

is given by (aij + aji)/2. Therefore, for the problem at hand, we can take

A =
1
9

−2 2 8
2 7 10
8 10 4

 .

(b) Gaussian elimination provides A = LDLT , where

L =

 1 0 0
−1 1 0
−4 2 1

 and D =

−2/9 0 0
0 1 0
0 0 0

 ,

so the inertia of A is (1, 1, 1). Setting y = LT x (or, x = (LT )−1y) yields

xT Ax = yT Dy = −2
9
y2
1 + y2

2 .

(c) No, the form is indefinite.
(d) The eigenvalues of A are {2,−1, 0}, and hence the inertia is (1, 1, 1).

7.6.7. AA∗ is positive definite (because A is nonsingular), so its eigenvalues λi are
real and positive. Consequently, the spectral decomposition (p. 517) allows us to
write AA∗ =

∑k
i=1 λiGi. Use the results on (p. 526), and set

R = (AA∗)1/2 =
k∑

i=1

λ
1/2
i Gi, and R−1 = (AA∗)−1/2 =

k∑
i=1

λ
−1/2
i Gi.

It now follows that R is positive definite, and A = R(R−1A) = RU, where
U = R−1A. Finally, U is unitary because

UU∗ = (AA∗)−1/2AA∗(AA∗)−1/2 = I.

If R1U1 = A = R2U2, then R−1
2 R1 = U2U∗

1, which is unitary, so

R−1
2 R1R1R−1

2 = I =⇒ R2
1 = R2

2 =⇒ R1 = R2 (because the Ri ’s are pd).

7.6.8. The 2-norm condition number is the ratio of the largest to smallest singular
values. Since L is symmetric and positive definite, the singular values are the
eigenvalues, and, by (7.6.8), maxλij → 8 and minλij → 0 as n → ∞.

7.6.9. The procedure is essentially identical to that in Example 7.6.2. The only differ-
ence is that when (7.6.6) is applied, the result is

−4uij + (ui−1,j + ui+1,j + ui,j−1 + ui,j+1)
h2

+ O(h2) = fij
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or, equivalently,

4uij−(ui−1,j +ui+1,j +ui,j−1+ui,j+1)+O(h4) = −h2fij for i, j = 1, 2, . . . , n.

If the O(h4) terms are neglected, and if the boundary values gij are taken to
the right-hand side, then, with the same ordering as indicated in Example 7.6.2,
the system Lu = g − h2f is produced.

7.6.10. In⊗An =


An 0 · · · 0
0 An · · · 0
...

...
. . .

...
0 0 · · · An

, An⊗In =


2In −In

−In 2In −In

. . . . . . . . .
−In 2In −In

−In 2In

 ,

An + 2In = Tn =


4 −1

−1 4 −1
. . . . . . . . .

−1 4 −1
−1 4


n×n

, so

(In ⊗ An) + (An ⊗ In) =


Tn −In

−In Tn −In

. . . . . . . . .
−In Tn −In

−In Tn

 = Ln2×n2 .

Solutions for exercises in section 7. 7

7.7.1. No. This can be deduced directly from the definition of index given on p. 395,
or it can be seen by looking at the Jordan form (7.7.6) on p. 579.

7.7.2. Since the index k of a 4 × 4 nilpotent matrix cannot exceed 4, consider the
different possibilities for k = 1, 2, 3, 4. For k = 1, N = 04×4 is the only
possibility. If k = 2, the largest Jordan block in N is 2 × 2, so

N =


0 1 0 0
0 0 0 0

0 0 0 1
0 0 0 0

 and N =


0 1 0 0
0 0 0 0

0 0 0 0

0 0 0 0


are the only possibilities. If k = 3 or k = 4, then the largest Jordan block is
3 × 3 or 4 × 4, so

N =


0 1 0 0
0 0 1 0
0 0 0 0

0 0 0 0

 and N =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
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are the only respective possibilities.
7.7.3. Let k = index (L), and let ζi denote the number of blocks of size i × i or

larger. This number is determined by the number of chains of length i or larger,
and such chains emanate from the vectors in Sk−1 ∪ Sk−2 ∪ · · · ∪ Si−1 = Bi−1.
Since Bi−1 is a basis for Mi−1, it follows that ζi = dimMi−1 = ri−1 − ri,
where ri = rank

(
Li

)
—recall (7.7.3).

7.7.4. x ∈ Mi = R
(
Li

)
∩N (L) =⇒ x = Liy for some y and Lx = 0 =⇒ x =

Li−1(Ly)y and Lx = 0 =⇒ x ∈ R
(
Li−1

)
∩ N (L) = Mi−1.

7.7.5. It suffices to prove that R
(
Lk−1

)
⊆ N (L), and this is accomplished by writing

x ∈ R
(
Lk−1

)
=⇒ x = Lk−1y for some y =⇒ Lx = Lky = 0 =⇒ x ∈ N (L).

7.7.6. This follows from the result on p. 211.
7.7.7. L2 = 0 means that L is nilpotent of index k = 2. Consequently, the size of

the largest Jordan block in N is 2 × 2. Since r1 = 2 and ri = 0 for i ≥ 2,
the number of 2 × 2 blocks is r1 − 2r2 + r3 = 2, so the Jordan form is

N =


0 1 0 0
0 0 0 0

0 0 0 1
0 0 0 0

 .

In this case, M0 = N (L) = R (L) = M1 because L2 = 0 =⇒ R (L) ⊆ N (L)
and dimR (L) = 2 = dimR (L). Now, S1 = {L∗1, L∗2} (the basic columns in
L ) is a basis for M1 = R (L), and S0 = φ. Since x1 = e1 and x2 = e2 are
solutions for Lx1 = L∗1 and Lx2 = L∗1, respectively, there are two Jordan
chains, namely {Lx1,x1} = {L∗1, e1} and {Lx2,x2} = {L∗2, e2}, so

P = [L∗1 | e1 |L∗2 | e2 ] =


3 1 3 0

−2 0 −1 1
1 0 −1 0

−5 0 −4 0

 .

Use direct computation to verify that P−1LP = N.

7.7.8. Computing ri = rank
(
Li

)
reveals that r1 = 4, r2 = 1, and r3 = 0, so the

index of L is k = 3, and

the number of 3 × 3 blocks = r2 − 2r3 + r4 = 1,
the number of 2 × 2 blocks = r1 − 2r2 + r3 = 2,
the number of 1 × 1 blocks = r0 − 2r1 + r2 = 1.
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Consequently, the Jordan form of L is

N =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


.

Notice that four Jordan blocks were found, and this agrees with the fact that
dimN (L) = 8 − rank (L) = 4.

7.7.9. If Ni is an ni × ni, nilpotent block as described in (7.7.5), and if Di is the
diagonal matrix Di = diag

(
1, εi, . . . , ε

ni−1
)
, then D−1

i NiDi = εiNi. There-
fore, if P−1LP = N is in Jordan form, and if Q = PD, where D is the
block-diagonal matrix D = diag (D1, D2, . . . ,Dt) , then Q−1LQ = Ñ.

Solutions for exercises in section 7. 8

7.8.1. Since rank (A) = 7, rank
(
A2

)
= 6, and rank

(
A3

)
= 5 = rank

(
A3+i

)
, there

is one 3 × 3 Jordan block associates with λ = 0. Since rank (A + I) = 6 and
rank

(
(A + I)2

)
= 5 = rank

(
(A + I)2+i

)
, there is one 1 × 1 and one 2 × 2

Jordan block associated with λ = −1. Finally, rank (A− I) = rank
(
(A− I)1+i

)
implies there are two 1 × 1 blocks associated with λ = 1 —i.e., λ = 1 is a
semisimple eigenvalue. Therefore, the Jordan form for A is

J =



0 1 0
0 1

0

−1 1
0 −1

−1

1

1


.

7.8.2. As noted in Example 7.8.3, σ (A) = {1} and k = index (1) = 2. Use the pro-
cedure on p. 211 to determine a basis for Mk−1 = M1 = R(A − I) ∩ N(A − I)

to be S1 =
{(

1
−2
−2

)
= b1

}
. (You might also determine this just by inspection.)

A basis for N (A − I) is easily found to be
{(

0
1
0

)
,

(
1
0

−2

)}
, so examining
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the basic columns of
(

1 0 1
−2 1 0
−2 0 −2

)
yields the extension set S0 =

{(
0
1
0

)
= b2

}
.

Solving (A − I)x = b1 produces x = e3, so the associated Jordan chain is

{b1, e3}, and thus P =
(
b1 | e3 |b2

)
=

(
1 0 0

−2 0 1
−2 1 0

)
. It’s easy to check that

P−1AP =
(

1 1 0
0 1 0
0 0 1

)
is indeed the Jordan form for A.

7.8.3. If k = index (λ), then the size of the largest Jordan block associated with λ
is k × k. This insures that λ must be repeated at least k times, and thus
index (λ) ≤ alg mult (λ) .

7.8.4. index (λ) = 1 if and only if every Jordan block is 1 × 1, which happens if
and only if the number of eigenvectors associated with λ in P such that
P−1AP = J is the same as the number of Jordan blocks, and this is just an-
other way to say that alg multA (λ) = geo multA (λ) , which is the definition of
λ being a semisimple eigenvalue (p. 510).

7.8.5. Notice that R2 = I, so R−1 = R = RT , and if J� =

(
λ 1

. . .
. . .

λ

)
is a generic

Jordan block, then R−1J�R = RJ�R = JT
� . Thus every Jordan block is similar

to its transpose. Given any Jordan form, reversal matrices of appropriate sizes
can be incorporated into a block-diagonal matrix R̃ such that R̃−1JR̃ = JT

showing that J is similar to JT . Consequently, if A = PJP−1, then

AT = P−1T
JT PT = P−1T

R̃−1JR̃PT = P−1T
R̃−1P−1APR̃PT = Q−1AQ,

where Q = PR̃PT .
7.8.6. If σ (A) = {λ1, λ2, . . . , λs} , where alg mult (λi) = ai, then the characteristic

equation for A is 0 = (x − λ1)a1(x − λ2)a2 · · · (x − λs)as = c(x). If

J =

 . . .
J� . . .

 = P−1AP is in Jordan form with J� =

(
λi 1

. . .
. . .

λi

)

representing a generic Jordan block, then

c(A) = c(PJP−1) = Pc(J)P−1 = P

 . . .
c(J�). . .

P−1.

Notice that if J� is r × r , then (J�−λiI)r =

(
0 1

. . .
. . .

0

)r

= 0. Since the size of

the largest Jordan block associated with λi is ki × ki, where ki = index (λi) ≤
alg mult (λi) = ai, it follows that (J� −λiI)ai = 0. Consequently c(J�) = 0 for
every Jordan block, and thus c(A) = 0.
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7.8.7. By using the Jordan form for A, one can find a similarity transformation P

such that P−1 (A − λI)P =
(

Lm×m 0
0 C

)
with Lk = 0 and C nonsingular.

Therefore, P−1 (A − λI)k P =
(

0m×m 0
0 Ck

)
, and thus

dimN
(
(A − λI)k

)
= n − rank

(
(A − λI)k )

= n − rank
(
Ck

)
= m.

It is also true that dimN
(
(A − λI)m

)
= m because the nullspace remains the

same for all powers beyond the index (p. 395).
7.8.8. To prove Mkj

(λj) = 0, suppose x ∈ Mkj
(λj) so that (A − λjI)x = 0 and

x = (A − λjI)kjz for some z. Combine these with the properties of index (λj)
(p. 587) to obtain

(A − λjI)kj+1z = 0 =⇒ (A − λjI)kjz = 0 =⇒ x = 0.

The fact that the subspaces are nested follows from the observation that if x ∈
Mi+1(λj), then x = (A − λjI)i+1z and (A − λjI)x = 0 implies x = (A −
λjI)i

(
(A − λjI)z

)
and (A − λjI)x = 0, so Mi+1(λj) ⊆ Mi(λj).

7.8.9. b(λj) ∈ Si(λj) ⊆ Mi(λj) = R
(
(A − λjI)i

)
∩ N (A − λjI) ⊆ R

(
(A − λjI)i

)
.

7.8.10. No—consider A =

 1 1 0
0 1 0
0 0 2

 and λ = 1.

7.8.11. (a) All of these facts are established by straightforward arguments using ele-
mentary properties of matrix algebra, so the details are omitted here.
(b) To show that the eigenvalues of A⊗B are {λiµj} m

i=1
n

j=1, let JA = P−1AP
and JB = Q−1BQ be the respective Jordan forms for A and B, and use
properties from (a) to establish that A ⊗ B is similar to JA ⊗ JB by writing

JA ⊗ JB = (P−1AP) ⊗ (Q−1BQ) = (P−1 ⊗ Q−1)(A ⊗ B)(P ⊗ Q)

= (P ⊗ Q)−1(A ⊗ B)(P ⊗ Q)

Thus the eigenvalues of A⊗B are the same as those of JA ⊗ JB , and because
JA and JB are upper triangular with the λi ’s and µi ’s on the diagonal, it’s
clear that JA ⊗ JB is also upper triangular with diagonal entries being λiµj .

To show that the eigenvalues of (A⊗ In)+(Im ⊗B) are {λi +µj} m
i=1

n
j=1, show

that (A ⊗ In) + (Im ⊗ B) is similar to (JA ⊗ In) + (Im ⊗ JB) by writing

(JA ⊗ In) + (Im ⊗ JB) = (P−1AP) ⊗ (Q−1IQ) + (P−1IP) ⊗ (Q−1BQ)

= (P−1 ⊗ Q−1)(A ⊗ I)(P ⊗ Q)

+ (P−1 ⊗ Q−1)(I ⊗ B)(P ⊗ Q)

= (P−1 ⊗ Q−1)
[
(A ⊗ I) + (I ⊗ B)

]
(P ⊗ Q)

= (P ⊗ Q)−1
[
(A ⊗ I) + (I ⊗ B)

]
(P ⊗ Q).
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Thus (A⊗In)+(Im⊗B) and (JA ⊗ In) + (Im ⊗ JB) have the same eigenvalues,
and the latter matrix is easily seen to be an upper-triangular matrix whose
diagonal entries are {λi + µj} m

i=1
n

j=1.
7.8.12. It was established in Exercise 7.6.10 (p. 573) that Ln2×n2 = (In⊗An)+(An⊗In),

where

An =


2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2


n×n

is the finite difference matrix of Example 1.4.1 (p. 19). The eigenvalues of An

were determined in Exercise 7.2.18 (p. 522) to be µj = 4 sin2[jπ/2(n + 1)] for
j = 1, 2, . . . , n, so it follows from the last property in Exercise 7.8.11 that the
n2 eigenvalues of Ln2×n2 = (In ⊗ An) + (An ⊗ In) are

λij = µi + µj = 4
[
sin2

(
iπ

2(n + 1)

)
+ sin2

(
jπ

2(n + 1)

)]
, i, j = 1, 2, . . . , n.

7.8.13. The same argument given in the solution of the last part of Exercise 7.8.11
applies to show that if J is the Jordan form for A, then L is similar to
(I⊗ I⊗ J) + (I⊗ J⊗ I) + (J⊗ I⊗ I), and since J is upper triangular with the
eigenvalues µj = 4 sin2[jπ/2(n + 1)] of A (recall Exercise 7.2.18 (p. 522)) on
the diagonal of J, it follows that the eigenvalues of Ln3×n3 are the n3 numbers

λijk = µi +µj +µk = 4
[
sin2

(
iπ

2(n + 1)

)
+ sin2

(
jπ

2(n + 1)

)
+ sin2

(
kπ

2(n + 1)

)]
for i, j, k = 1, 2, . . . , n.

Solutions for exercises in section 7. 9

7.9.1. If ui(t) denotes the number of pounds of pollutant in lake i at time t > 0,
then the concentration of pollutant in lake i at time t is ui(t)/V lbs/gal, so
the model u′

i(t) = (lbs/sec) coming in−(lbs/sec) going out produces the system

u′
1 =

4r

V
u2 −

4r

V
u1

u′
2 =

2r

V
u1 +

3r

V
u3 −

5r

V
u2

u′
3 =

2r

V
u1 +

r

V
u2 −

3r

V
u3

or

 u′
1

u′
2

u′
3

 =
r

V

−4 4 0

2 −5 3

2 1 −3


 u1(t)

u2(t)

u3(t)

 .

The solution of u′ = Au with u(0) = c is u = eAtc. The eigenvalues of A
are λ1 = 0 with alg mult (λ1) = 1 and λ2 = −6r/V with index (λ2) = 2, so

u = eAtc = eλ1tG1c + eλ2tG2c + teλ2t(A − λ2I)G2c.
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Since λ1 = 0 is a simple eigenvalue, it follows from (7.2.12) on p. 518 that
G1 = xyT /yT x, where x and yT are any pair of respective right-hand and
left-hand eigenvectors associated with λ1 = 0. By observing that Ae = 0 and
eT A = 0T for e = (1, 1, 1)T (this is a result of being a closed system), and by
using G1 + G2 = I, we have (by using x = y = e)

G1 =
eeT

3
, G2 = I − eeT

3
, and (A − λ2I)G2 = A − λ2I +

λ2

3
eeT .

If α = (c1 + c2 + c3)/3 = eT c/3 denotes the average of the initial values, then
G1c = αe and G2c = c − αe, so

u(t) = αe + eλ2t(c − αe) + teλ2t
[
Ac − λ2(c − αe)

]
for λ2 = −6r/V.

Since λ2 < 0, it follows that u(t) → αe as t → ∞. In other words, the long-run
amount of pollution in each lake is the same—namely α lbs—and this is what
common sense would dictate.

7.9.2. It follows from (7.9.9) that fi(A) = Gi.

7.9.3. We know from Exercise 7.9.2 that Gi = fi(A) for fi(z) =
{

1 when z = λi,
0 otherwise,

and from Example 7.9.4 (p. 606) we know that every function of A is a poly-
nomial in A.

7.9.4. Using f(z) = zk in (7.9.9) on p. 603 produces the desired result.
7.9.5. Using f(z) = zn in (7.9.2) on p. 600 produces the desired result.
7.9.6. A is the matrix in Example 7.9.2, so the results derived there imply that

eA = e2G1 + e4G2 + e4(A − 4I)G2 =

 3e4 2e4 e4 − e2

−2e4 −e4 −4e4 − 2e2

0 0 e2

 .

7.9.7. The eigenvalues of A are λ1 = 1 and λ2 = 4 with alg mult (1) = 1 and
index (4) = 2, so

f(A) = f(1)G1 + f(4)G2 + f ′(4)(A − 4I)G2

Since λ1 = 1 is a simple eigenvalue, it follows from formula (7.2.12) on p. 518
that G1 = xyT /yT x, where x and yT are any pair of respective right-hand
and left-hand eigenvectors associated with λ1 = 1. Using x = (−2, 1, 0)T and
y = (1, 1, 1)T produces

G1 =

 2 2 2
−1 −1 −1

0 0 0

 and G2 = I − G1 =

−1 −2 −2
1 2 1
0 0 1
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Therefore,

f(A) = 4
√

A − I = 3G1 + 7G2 + (A − 4I)G2 =

−2 −10 −11
6 15 10

−1 −2 4

 .

7.9.8. (a) The only point at which derivatives of f(z) = z1/2 fail to exist are at
λ = 0, so as long as A is nonsingular, f(A) =

√
A is defined.

(b) If A is singular so that 0 ∈ σ (A) it’s clear from (7.9.9) that A1/2 exists
if and only if derivatives of f(z) = z1/2 need not be evaluated at λ = 0, and
this is the case if and only if index (0) = 1.

7.9.9. If 0 �= xh ∈ N(A − λhI), then (7.9.11) guarantees that

Gixh =
{

0 if h �= i,
xh if h = i,

so (7.9.9) can be used to conclude that f(A)xh = f(λh)xh. It’s an immediate
consequence of (7.9.3) that alg multA (λ) = alg multf(A) (f(λ)) .

7.9.10. (a) If Ak×k (with k > 1) is a Jordan block associated with λ = 0, and if
f(z) = zk, then f(A) = 0 is not similar to A �= 0.

(b) Also, geo multA (0) = 1 but geo multf(A) (f(0)) = geo mult0 (0) = k.

(c) And indexA(0) = k while indexf(A)(f(λ)) = index0(0) = 1.
7.9.11. This follows because, as explained in Example 7.9.4 (p. 606), there is always a

polynomial p(z) such that f(A) = p(A), and A commutes with p(A).
7.9.12. Because every square matrix is similar to its transpose (recall Exercise 7.8.5 on

p. 596), and because similar matrices have the same Jordan structure, transpo-
sition doesn’t change the eigenvalues or their indicies. So f(A) exists if and
only if f(AT ) exists. As proven in Example 7.9.4 (p. 606), there is a polyno-
mial p(z) such that f(A) = p(A), so

[
f(A)

]T =
[
p(A)

]T = p(AT ) = f(AT ).
While transposition doesn’t change eigenvalues, conjugate transposition does—it
conjugates them—so it’s possible that f can exist at A but not at A∗. Fur-
thermore, you can’t replace (�)T by (�)∗ in the above argument because if p(z)
has some complex coefficients, then

[
p(A)

]∗ �= p(A∗).
7.9.13. (a) If f1(z) = ez, f2(z) = e−z, and p(x, y) = xy − 1, then

h(z) = p
(
f1(z), f2(z)

)
= eze−z − 1 = 0 for all z ∈ C,

so h(A) = p
(
f1(A), f2(A)

)
= 0 for all A ∈ Cn×n, and thus eAe−A − I = 0.

(b) Use f1(z) = eαz, f2(z) =
(
ez

)α
, and p(x, y) = x − y. Since

h(z) = p
(
f1(z), f2(z)

)
= eαz −

(
ez

)α = 0 for all z ∈ C,

h(A) = p
(
f1(A), f2(A)

)
= 0 for all A ∈ Cn×n, and thus eαA =

(
eA

)α
.
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(c) Using f1(z) = eiz, f2(z) = cos z + i sin z, and p(x, y) = x − y produces
h(z) = p

(
f1(z), f2(z)

)
, which is zero for all z, so h(A) = 0 for all A ∈ Cn×n.

7.9.14. (a) The representation ez =
∑∞

n=0 zn/n! together with AB = BA yields

eA+B =
∞∑

n=0

(A + B)n

n!
=

∞∑
n=0

1
n!

n∑
j=0

(
n

j

)
AjBn−j =

∞∑
n=0

n∑
j=0

AjBn−j

j!(n − j)!

=
∞∑

r=0

∞∑
s=0

1
r!

1
s!

ArBs =

( ∞∑
r=0

Ar

r!

) ( ∞∑
s=0

Bs

s!

)
= eAeB.

(b) If A =
(

0 1
0 0

)
and B =

(
0 0
1 0

)
, then

eAeB =
(

1 1
0 1

) (
1 0
1 1

)
=

(
2 1
1 1

)
, but eA+B =

1
2

(
e + e−1 e − e−1

e − e−1 e + e−1

)
.

7.9.15. The characteristic equation for A is λ3 = 0, and the number of 2 × 2 Jordan
blocks associated with λ = 0 is ν2 = rank (A) − 2 rank

(
A2

)
+ rank

(
A3

)
= 1

(from the formula on p. 590), so index (λ = 0) = 2. Therefore, for f(z) = ez we
are looking for a polynomial p(z) = α0 + α1z such that p(0) = f(0) = 1 and
p′(0) = f ′(0) = 1. This yields the Hermite interpolation polynomial as

p(z) = 1 + z, so eA = p(A) = I + A.

Note: Since A2 = 0, this agrees with the infinite series representation for eA.
7.9.16. (a) The advantage is that the only the algebraic multiplicity and not the index

of each eigenvalue is required—determining index generally requires more effort.
The disadvantage is that a higher-degree polynomial might be required, so a
larger system might have to be solved. Another disadvantage is the fact that f
may not have enough derivatives defined at some eigenvalue for this method to
work in spite of the fact that f(A) exists.
(b) The characteristic equation for A is λ3 = 0, so, for f(z) = ez, we are
looking for a polynomial p(z) = α0 + α1z + α2z

2 such that p(0) = f(0) = 1,
p′(0) = f ′(0) = 1, and p′′(0) = f ′′(0) = 1. This yields

p(z) = 1 + z +
z2

2
, so eA = p(A) = I + A +

A2

2
.

Note: Since A2 = 0, this agrees with the result in Exercise 7.9.15.
7.9.17. Since σ (A) = {α} with index (α) = 3, it follows from (7.9.9) that

f(A) = f(α)G1 + f ′(α)(A − αI)G1 +
f ′′(α)

2!
(A − αI)2G1.
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The desired result is produced by using G1 = I (because of (7.9.10)), and
A − αI = βN + γN2, and N3 = 0.

7.9.18. Since

g(J�) =

 g(λ) g′(λ) g′′(λ)/2!
0 g(λ) g′(λ)
0 0 g(λ)

 ,

using Exercise 7.9.17 with α = g(λ), β = g′(λ), and γ = g′′(λ)/2! yields

f
(
g(J�)

)
= f(g(λ))I+g′(λ)f ′(g(λ))N+

[
g′′(λ)f ′(g(λ))

2!
+

[
g′(λ)

]2
f ′′(g(λ))
2!

]
N2.

Observing that

h(J�) =

 h(λ) h′(λ) h′′(λ)/2!
0 h(λ) h′(λ)
0 0 h(λ)

 = h(λ)I + h′(λ)N +
h′′(λ)

2!
N2,

where h(λ) = f(g(λ)), h′(λ) = f ′(g(λ))g′(λ), and

h′′(λ) = g′′(λ)f ′(g(λ)) + f ′′(g(λ))
[
g′(λ)

]2
proves that h(J�) = f

(
g(J�)

)
.

7.9.19. For the function

fi(z) =
{

1 in a small circle about λi that is interior to Γi,
0 elsewhere,

it follows, just as in Exercise 7.9.2, that fi(A) = Gi. But using fi in (7.9.22)
produces fi(A) = 1

2πi

∫
Γi

(ξI − A)−1dξ, and thus the result is proven.

7.9.20. For a k × k Jordan block J� =

 λ 1

. . .
. . .

λ

 , it’s straightforward to verify that

J−1
� =



λ−1 −λ−2 λ
−3 · · · −1

(k−1)
λ
−k

λ−1 −λ−2
. . .

.

.

.

. . .
. . . λ

−3

λ−1 −λ−2

λ−1


=



f(λ) f ′(λ)
f ′′(λ)

2!
· · · f(k−1)(λ)

(k − 1)!

f(λ) f ′(λ)
. . .

.

.

.

. . .
. . .

f ′′(λ)

2!

f(λ) f ′(λ)

f(λ)


for f(z) = z−1, and thus if J =

(
. . . J�

. . .

)
is the Jordan form for A = PJP−1,

then the representation of A−1 as A−1 = PJ−1P−1 agrees with the expression
for f(A) = Pf(J)P−1 given in (7.9.3) when f(z) = z−1.
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7.9.21.
1

2πi

∫
Γ

ξ−1(ξI − A)−1dξ = A−1.

7.9.22. Partition the Jordan form for A as J =
(

C 0
0 N

)
in which C contains all

Jordan segments associated with nonzero eigenvalues and N contains all Jordan
segments associated with the zero eigenvalue (if one exists). Observe that N is
nilpotent, so g(N) = 0, and consequently

A=P
(

C 0
0 N

)
P−1 ⇒ g(A)=P

(
g(C) 0

0 g(N)

)
P−1 =P

(
C−1 0
0 0

)
P−1 =AD.

It follows from Exercise 5.12.17 (p. 428) that g(A) is the Moore–Penrose pseu-
doinverse A† if and only if A is an RPN matrix.

7.9.23. Use the Cauchy–Goursat theorem to observe that
∫
Γ

ξ−jdξ = 0 for j = 2, 3, . . . ,
and follow the argument given in Example 7.9.8 (p. 611) with λ1 = 0 along with
the result of Exercise 7.9.22 to write

1
2πi

∫
Γ

ξ−1(ξI − A)−1dξ =
1

2πi

∫
Γ

ξ−1R(ξ)dξ

=
1

2πi

∫
Γ

s∑
i=1

ki−1∑
j=0

ξ−1

(ξ − λi)j+1
(A − λiI)jGidξ

=
s∑

i=1

ki−1∑
j=0

[
1

2πi

∫
Γ

ξ−1

(ξ − λi)j+1
dξ

]
(A − λiI)jGi

=
s∑

i=1

ki−1∑
j=0

g(j)(λi)
j!

(A − λiI)jGi = g(A) = AD.

Solutions for exercises in section 7. 10

7.10.1. The characteristic equation for A is 0 = x3−(3/4)x−(1/4) = (x−1)(x−1/2)2,
so (7.10.33) guarantees that A is convergent (and hence also summable).
The characteristic equation for B is x3−1 = 0, so the eigenvalues are the three
cube roots of unity, and thus (7.10.33) insures B is not convergent, but B is
summable because ρ(B) = 1 and each eigenvalue on the unit circle is semisimple
(in fact, each eigenvalue is simple).
The characteristic equation for C is

0 = x3 − (5/2)x2 + 2x − (1/2) = (x − 1)2(x − 1/2),

but index (λ = 1) = 2 because rank (C − I) = 2 while 1 = rank (C − I)2 =
rank (C − I)3 = · · · , so C is neither convergent nor summable.
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7.10.2. Since A is convergent, (7.10.41) says that a full-rank factorization I − A = BC
can be used to compute limk→∞ Ak = G = I − B(CB)−1C. One full-rank
factorization is obtained by placing the basic columns of I − A in B and the
nonzero rows of E(I−A) in C. This yields

B =

−3/2 −3/2
1 −1/2
1 −1/2

 , C =
(

1 −1 0
0 0 1

)
, and G =

 0 1 −1
0 1 −1
0 0 0

 .

Alternately, since λ = 1 is a simple eigenvalue, the limit G can also be de-
termined by computing right- and left-hand eigenvectors, x = (1, 1, 0)T and
yT = (0,−1, 1), associated with λ = 1 and setting G = xyT /(yT x) as de-
scribed in (7.2.12) on p. 518. The matrix B is not convergent but it is summable,
and since the unit eigenvalue is simple, the Cesàro limit G can be determined
as described in (7.2.12) on p. 518 by computing right- and left-hand eigenvec-
tors, x = (1, 1, 1)T and yT = (1, 1, 1), associated with λ = 1 and setting

G = xyT /(yT x) =
1
3

 1 1 1
1 1 1
1 1 1

 .

7.10.3. To see that x(k) = Akx(0) solves x(k+1) = Ax(k), use successive substitution
to write x(1) = Ax(0), x(2) = Ax(1) = A2x(0), x(3) = Ax(2) = A3x(0),
etc. Of course you could build a formal induction argument, but it’s not necessary.
To see that x(k) = Akx(0) +

∑k−1
j=0 Ak−j−1b(j) solves the nonhomogeneous

equation x(k + 1) = Ax(k) + b(k), use successive substitution to write

x(1) = Ax(0) + b(0),

x(2) = Ax(1) + b(1) = A2x(0) + Ab(0) + b(0),

x(3) = Ax(2) + b(2) = A3x(0) + A2b(0) + Ab(0) + b(0),
etc.

7.10.4. Put the basic columns of I−A in B and the nonzero rows of the reduced row
echelon form E(I−A) in C to build a full-rank factorization of I − A = BC
(Exercise 3.9.8, p. 140), and use (7.10.41).

p=Gp(0)=(I − B(CB)−1C)p(0)=


1/6 1/6 1/6 1/6
1/3 1/3 1/3 1/3
1/3 1/3 1/3 1/3
1/6 1/6 1/6 1/6




p1(0)
p2(0)
p3(0)
p4(0)

=


1/6
1/3
1/3
1/6

.

7.10.5. To see that x(k) = Akx(0) solves x(k+1) = Ax(k), use successive substitution
to write x(1) = Ax(0), x(2) = Ax(1) = A2x(0), x(3) = Ax(2) = A3x(0),
etc. Of course you could build a formal induction argument, but it’s not necessary.
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To see that x(k) = Akx(0) +
∑k−1

j=0 Ak−j−1b(j) solves the nonhomogeneous
equation x(k + 1) = Ax(k) + b(k), use successive substitution to write

x(1) = Ax(0) + b(0),

x(2) = Ax(1) + b(1) = A2x(0) + Ab(0) + b(0),

x(3) = Ax(2) + b(2) = A3x(0) + A2b(0) + Ab(0) + b(0),
etc.

7.10.6. Use (7.1.12) on p. 497 along with (7.10.5) on p. 617.
7.10.7. For A1, the respective iteration matrices for Jacobi and Gauss–Seidel are

HJ =

 0 −2 2
−1 0 −1
−2 −2 0

 and HGS =

 0 −2 2
0 2 −3
0 0 2

 .

HJ is nilpotent of index three, so σ (HJ) = {0} , and hence ρ(HJ) = 0 < 1.
Clearly, HGS is triangular, so ρ(HGS) = 2. > 1 Therefore, for arbitrary right-
hand sides, Jacobi’s method converges after two steps, whereas the Gauss–Seidel
method diverges. On the other hand, for A2,

HJ =
1
2

 0 1 −1
−2 0 −2

1 1 0

 and HGS =
1
2

 0 1 −1
0 −1 −1
0 0 −1

 ,

and a little computation reveals that σ (HJ) =
{
±i

√
5/2

}
, so ρ(HJ) > 1, while

ρ(HGS) = 1/2 < 1. These examples show that there is no universal superiority
enjoyed by either method because there is no universal domination of ρ(HJ) by
ρ(HGS), or vise versa.

7.10.8. (a) det (αD − L − U) = det
(
αD − βL − β−1U

)
= 8α3 − 4α for all real α

and β �= 0. Furthermore, the Jacobi iteration matrix is

HJ =

 0 1/2 0
1/2 0 1/2
0 1/2 0

 ,

and Example 7.2.5, p. 514, shows σ (HJ) = {cos(π/4), cos(2π/4), cos(3π/4)}.
Clearly, these eigenvalues are real and ρ (HJ) = (1/

√
2) ≈ .707 < 1.

(b) According to (7.10.24),

ωopt =
2

1 +
√

1 − ρ2(HJ)
≈ 1.172, and ρ

(
Hωopt

)
= ωopt − 1 ≈ .172.

(c) RJ = − log10 ρ (HJ) = log10(
√

2) ≈ .1505, RGS = 2RJ ≈ .301, and
Ropt = − log10 ρ (Hopt) ≈ .766.
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(d) I used standard IEEE 64-bit floating-point arithmetic (i.e., about 16 deci-
mal digits of precision) for all computations, but I rounded the results to 3 places
to report the answers given below. Depending on your own implementation, your
answers may vary slightly.
Jacobi with 21 iterations:
1 1.5 2.5 3.25 3.75 4.12 4.37 4.56 4.69 4.78 4.84 4.89 4.92 4.95 4.96 4.97 4.98 4.99 4.99 4.99 5 5

1 3 4.5 5.5 6.25 6.75 7.12 7.37 7.56 7.69 7.78 7.84 7.89 7.92 7.95 7.96 7.97 7.98 7.99 7.99 7.99 8

1 3.5 4.5 5.25 5.75 6.12 6.37 6.56 6.69 6.78 6.84 6.89 6.92 6.95 6.96 6.97 6.98 6.99 6.99 6.99 7 7

Gauss–Seidel with 11 iterations:

1 1.5 2.62 3.81 4.41 4.7 4.85 4.93 4.96 4.98 4.99 5
1 3.25 5.62 6.81 7.41 7.7 7.85 7.93 7.96 7.98 7.99 8
1 4.62 5.81 6.41 6.7 6.85 6.93 6.96 6.98 6.99 7 7

SOR (optimum) with 6 iterations:

1 1.59 3.06 4.59 4.89 4.98 5
1 3.69 6.73 7.69 7.93 7.99 8
1 5.5 6.51 6.9 6.98 7 7

7.10.9. The product rule for determinants produces

det (Hω)=det
[
(D−ωL)−1

]
det

[
(1−ω)D+ωU

]
=

n∏
i=1

a−1
ii

n∏
i=1

(1−ω)aii =(1−ω)n.

But it’s also true that det (Hω) =
∏n

i=1 λi, where the λi ’s are the eigenvalues
of Hω. Consequently, |λk| ≥ |1 − ω| for some k because if |λi| < |1 − ω| for
all i, then |1 − ω|n = |det (Hω)| =

∏
i |λi| < |1 + ω|n, which is impossible.

Therefore, |1 − ω| ≤ |λk| ≤ ρ (Hω) < 1 implies 0 < ω < 2.
7.10.10. Observe that HJ is the block-triangular matrix

HJ =
1
4


K I
I K I

. . . . . . . . .
I K I

I K


n2×n2

with K =


0 1
1 0 1

. . . . . . . . .
1 0 1

1 0


n×n

.

Proceed along the same lines as in Example 7.6.2, to argue that HJ is similar
to the block-diagonal matrix


T1 0 · · · 0
0 T2 · · · 0
...

...
. . .

...
0 0 · · · Tn

, where Ti =


κi 1
1 κi 1

. . . . . . . . .
1 κi 1

1 κi


n×n
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in which κi ∈ σ (K) . Use the result of Example 7.2.5 (p. 514) to infer that the
eigenvalues of Ti are κi + 2 cos jπ/(n + 1) for j = 1, 2, . . . , n and, similarly,
the eigenvalues of K are κi = 2 cos iπ/(n+1) for i = 1, 2, . . . , n. Consequently
the n2 eigenvalues of HJ are λij = (1/4)

[
2 cos iπ/(n + 1) + 2 cos jπ/(n + 1)

]
,

so ρ (HJ) = maxi,j λij = cos π/(n + 1).
7.10.11. If limn→∞ αn = α, then for each ε > 0 there is a natural number N = N(ε)

such that |αn−α| < ε/2 for all n ≥ N. Furthermore, there exists a real number
β such that |αn − α| < β for all n. Consequently, for all n ≥ N,

|µn − α| =
∣∣∣∣α1 + α2 + · · · + αn

n
− α

∣∣∣∣ =
1
n

∣∣∣∣∣
N∑

k=1

(αk − α) +
n∑

k=N+1

(αk − α)

∣∣∣∣∣
≤ 1

n

N∑
k=1

|αk − α| + 1
n

n∑
k=N+1

|αk − α| <
Nβ

n
+

n − N

n

ε

2
≤ Nβ

n
+

ε

2
.

When n is sufficiently large, Nβ/n ≤ ε/2 so that |µn − α| < ε, and therefore,
limn→∞ µn = α. Note: The same proof works for vectors and matrices by
replacing | � | with a vector or matrix norm.

7.10.12. Prove that (a)⇒ (b)⇒ (c)⇒ (d)⇒ (e)⇒ (f)⇒ (a).
(a)⇒ (b): This is a consequence of (7.10.28).
(b)⇒ (c): Use induction on the size of An×n. For n = 1, the result is trivial.
Suppose the result holds for n = k —i.e., suppose positive leading minors insures
the existence of LU factors which are M-matrices when n = k. For n = k + 1,
use the induction hypothesis to write

A(k+1)×(k+1) =
(

Ã c
dT α

)
=

(
L̃Ũ c
dT α

)
=

(
L̃ 0

dT Ũ−1 1

)(
Ũ L̃−1c
0 σ

)
= LU,

where L̃ and Ũ are M-matrices. Notice that σ > 0 because det(Ũ) > 0
and 0 < det (A) = σ det(L̃) det(Ũ). Consequently, L and U are M-matrices
because

L−1 =
(

L̃−1 0
−dT Ũ−1L̃−1 1

)
≥ 0 and U−1 =

(
Ũ−1 −σ−1Ũ−1L̃−1c
0 σ−1

)
≥ 0.

(c)⇒ (d): A = LU with L and U M-matrices implies A−1 = U−1L−1 ≥ 0,
so if x = A−1e, where e = (1, 1, . . . , 1)T , then x > 0 (otherwise A−1 would
have a zero row, which would force A to be singular), and Ax = e > 0.

(d)⇒ (e): If x > 0 is such that Ax > 0, define D = diag (x1, x2, . . . , xn)
and set B = AD, which is clearly another Z-matrix. For e = (1, 1, . . . , 1)T ,
notice that Be = ADe = Ax > 0 says each row sum of B = AD is positive.
In other words, for each i = 1, 2, . . . , n,

0 <
∑

j

bij =
∑
j �=i

bij +bii ⇒ bii >
∑
j �=i

−bij =
∑
j �=i

|bij | for each i = 1, 2, . . . , n.
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(e)⇒ (f): Suppose that AD is diagonally dominant for a diagonal matrix D
with positive entries, and suppose each aii > 0. If E = diag (a11, a22, . . . , ann)
and −N is the matrix containing the off-diagonal entries of A, then A = E−N
is the Jacobi splitting for A as described in Example 7.10.4 on p. 622, and
AD = ED + ND is the Jacobi splitting for AD with the iteration matrix
H = D−1E−1ND. It was shown in Example 7.10.4 that diagonal dominance
insures convergence of Jacobi’s method (i.e., ρ (H) < 1 ), so, by (7.10.14), p. 620,

A = ED(I − H)D−1 =⇒ A−1 = D(I − H)−1D−1E−1 ≥ 0,

and this guarantees that if Ax ≥ 0, then x ≥ 0.

(f)⇒ (a): Let r ≥ max |aii| so that B = rI − A ≥ 0, and first show that the
condition (Ax ≥ 0 ⇒ x ≥ 0) insures the existence of A−1. For any x ∈ N (A),

(rI−B)x = 0 ⇒ rx = Bx ⇒ r|x| ≤ |B|x| ⇒ A(−|x|) ≥ 0 ⇒ −|x| ≥ 0 ⇒ x = 0,

so N (A) = 0. Now, A[A−1]∗i = ei ≥ 0 ⇒ [A−1]∗i ≥ 0, and thus A−1 ≥ 0.
7.10.13. (a) If Mi is ni × ni with rank (Mi) = ri, then Bi is ni × ri and Ci is

ri × ni with rank (Bi) = rank (Ci) = ri. This means that Mi+1 = CiBi is
ri × ri, so if ri < ni, then Mi+1 has smaller size than Mi. Since this can’t
happen indefinitely, there must be a point in the process at which rk = nk or
rk = 0 and thus some Mk is either nonsingular or zero.
(b) Let M = M1 = A − λI, and notice that

M2 = B1C1B1C1 = B1M2C1,

M3 = B1C1B1C1B1C1 = B1(B2C2)(B2C2)C1 = B1B2M3C2C1,

...

Mi = B1B2 · · ·Bi−1MiCi−1 · · ·C2C1.

In general, it’s true that rank (XYZ) = rank (Y) whenever X has full col-
umn rank and Z has full row rank (Exercise 4.5.12, p. 220), so applying this
yields rank

(
Mi

)
= rank (Mi) for each i = 1, 2, . . . . Suppose that some

Mi = Ci−1Bi−1 is ni × ni and nonsingular. For this to happen, we must have
Mi−1 = Bi−1Ci−1, where Bi−1 is ni−1 × ni, Ci−1 is ni × ni−1, and

rank (Mi−1) = rank (Bi−1) = rank (Ci−1) = ni = rank (Mi).

Therefore, if k is the smallest positive integer such that M−1
k exists, then k

is the smallest positive integer such that rank (Mk−1) = rank (Mk), and thus
k is the smallest positive integer such that rank

(
Mk−1

)
= rank

(
Mk

)
, which

means that index (M) = k− 1 or, equivalently, index (λ) = k− 1. On the other
hand, if some Mi = 0, then rank

(
Mi

)
= rank (Mi) insures that Mi = 0.
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Consequently, if k is the smallest positive integer such that Mk = 0, then k
is the smallest positive integer such that Mk = 0. Therefore, M is nilpotent of
index k, and this implies that index (λ) = k.

7.10.14. M = A − 4I =

−7 −8 −9
5 7 9

−1 −2 −3

 −→

 1 0 −1
0 1 2
0 0 0

 ⇒ B1 =

−7 −8
5 7

−1 −2


and C1 =

(
1 0 −1
0 1 2

)
, so M2 = C1B1 =

(
−6 −6

3 3

)
−→

(
1 1
0 0

)
⇒

B2 =
(
−6

3

)
and C2 =

(
1 1

)
, so M3 = C2B2 = −3. Since M3 is the first

Mi to be nonsingular, index (4) = 3 − 1 = 2. Now, index (1) if forced to be 1
because 1 = alg mult (1) ≥ index (1) ≥ 1.

7.10.15. (a) Since σ (A) = {1, 4} with index (1) = 1 and index (4) = 2, the Jordan

form for A is J =

 1 0 0
0 4 1
0 0 4

 .

(b) The Hermite interpolation polynomial p(z) = α0+α1z+α2z
2 is determined

by solving p(1) = f(1), p(4) = f(4), and p′(4) = f ′(4) for αi ’s. So 1 1 1
1 4 16
0 1 8

  α0

α1

α2

 =

 f(1)
f(4)
f ′(4)

 =⇒

 α0

α1

α2

 =

 1 1 1
1 4 16
0 1 8

−1  f(1)
f(4)
f ′(4)


= −1

9

−16 7 −12
8 −8 15

−1 1 −3

  f(1)
f(4)
f ′(4)


= −1

9

−16f(1) + 7f(4) − 12f ′(4)
8f(1) − 8f(4) + 15f ′(4)
−f(1) + f(4) − 3f ′(4)

 .

Writing f(A) = p(A) produces

f(A) =
[−16I + 8A − A2

−9

]
f(1) +

[
7I − 8A + A2

−9

]
f(4)

+
[−12I + 15A − 3A2

−9

]
f ′(4).

7.10.16. Suppose that limk→∞ Ak exists and is nonzero. It follows from (7.10.33) that
λ = 1 is a semisimple eigenvalue of A, so the Jordan form for B looks like

B = I − A = P
(

0 0
0 I − K

)
P−1, where I − K is nonsingular. Therefore, B

belongs to a matrix group and

B# = P
(

0 0
0 (I − K)−1

)
P−1 =⇒ I − BB# = P

(
I 0
0 0

)
P−1.
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Comparing I − BB# with (7.10.32) shows that limk→∞ Ak = I − BB#. If
limk→∞ Ak = 0, then ρ(A) < 1, and hence B is nonsingular, so B# = B−1

and I − BB# = 0. In other words, it’s still true that limk→∞ Ak = I − BB#.
7.10.17. We already know from the development of (7.10.41) that if rank (M) = r, then

CB and V∗
1U1 are r × r nonsingular matrices. It’s a matter of simple algebra

to verify that MM#M = M, M#MM# = M#, and MM# = M#M.

Solutions for exercises in section 7. 11

7.11.1. m(x) = x2 − 3x + 2
7.11.2. v(x) = x − 2
7.11.3. c(x) = (x − 1)(x − 2)2

7.11.4. J =


λ

λ
λ

µ
µ

µ 1
µ


7.11.5. Set ν0 = ‖I‖F = 2, U0 = I/2, and generate the sequence (7.11.2).

r01 = 〈U0 A〉 = 2,

ν1 = ‖A − r01U0‖F =
√

1209, U1 =
A − r01U0

ν1
=

A − I√
1209

,

r02 =
〈
U0 A2

〉
= 2, r12 =

〈
U1 A2

〉
= 2

√
1209,

ν2 = ‖A2 − r02U0 − r12U1‖F = 0,

so that

R =
(

2 2

0
√

1209

)
, c =

(
2

2
√

1209

)
, and R−1c =

(−1

2

)
=

(
α0

α1

)
.

Consequently, the minimum polynomial is m(x) = x2 − 2x + 1 = (x− 1)2. As a
by-product, we see that λ = 1 is the only eigenvalue of A, and index (λ) = 2,

so the Jordan form for A must be J =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

7.11.6. Similar matrices have the same minimum polynomial because similar matrices
have the same Jordan form, and hence they have the same eigenvalues with the
same indicies.

7.11.10. x = (3,−1,−1)T

7.11.12. x = (−3, 6, 5)Tco
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Argument, as usually managed, is the worst sort of conversation,
and in books it is generally the worst sort of reading.

— Jonathan Swift (1667–1745)
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Solutions for Chapter 8

Solutions for exercises in section 8. 2

8.2.1. The eigenvalues are σ (A) = {12, 6} with alg multA (6) = 2, and it’s clear that
12 = ρ(A) ∈ σ (A) . The eigenspace N(A−12I) is spanned by e = (1, 1, 1)T , so
the Perron vector is p = (1/3)(1, 1, 1)T . The left-hand eigenspace N(AT −12I)
is spanned by (1, 2, 3)T , so the left-hand Perron vector is qT = (1/6)(1, 2, 3).

8.2.3. If p1 and p2 are two vectors satisfying Ap = ρ (A)p, p > 0, and ‖p‖1 = 1,
then dimN (A − ρ (A) I) = 1 implies that p1 = αp2 for some α < 0. But
‖p1‖1 = ‖p2‖1 = 1 insures that α = 1.

8.2.4. σ (A) = {0, 1}, so ρ (A) = 1 is the Perron root, and the Perron vector is
p = (α + β)−1(β, α).

8.2.5. (a) ρ(A/r) = 1 is a simple eigenvalue of A/r, and it’s the only eigenvalue on
the spectral circle of A/r, so (7.10.33) on p. 630 guarantees that limk→∞(A/r)k

exists.
(b) This follows from (7.10.34) on p. 630.
(c) G is the spectral projector associated with the simple eigenvalue λ = r,
so formula (7.2.12) on p. 518 applies.

8.2.6. If e is the column of all 1 ’s, then Ae = ρe. Since e > 0, it must be a positive
multiple of the Perron vector p, and hence p = n−1e. Therefore, Ap = ρp
implies that ρ = ρ (A) . The result for column sums follows by considering AT .

8.2.7. Since ρ = maxi

∑
j aij is the largest row sum of A, there must exist a matrix

E ≥ 0 such that every row sum of B = A + E is ρ. Use Example 7.10.2
(p. 619) together with Exercise 8.2.7 to obtain ρ (A) ≤ ρ (B) = ρ. The lower
bound follows from the Collatz–Wielandt formula. If e is the column of ones,
then e ∈ N , so

ρ (A) = max
x∈N

f(x) ≥ f(e) = min
1≤i≤n

[Ae]i
ei

= min
i

n∑
j=1

aij .

8.2.8. (a), (b), (c), and (d) are illustrated by using the nilpotent matrix A =
(

0 1
0 0

)
.

(e) A =
(

0 1
1 0

)
has eigenvalues ±1.

8.2.9. If ξ = g(x) for x ∈ P, then ξx ≥ Ax > 0. Let p and qT be the respective
the right-hand and left-hand Perron vectors for A associated with the Perron
root r, and use (8.2.3) along with qT x > 0 to write

ξx ≥ Ax > 0 =⇒ ξqT x ≥ qT Ax = rqT x =⇒ ξ ≥ r,
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so g(x) ≥ r for all x ∈ P. Since g(p) = r and p ∈ P, it follows that
r = minx∈P g(x).

8.2.10. A =
(

1 2
2 4

)
=⇒ ρ(A) = 5, but g(e1) = 1 =⇒ minx∈N g(x) < ρ(A).

Solutions for exercises in section 8. 3

8.3.1. (a) The graph is strongly connected.
(b) ρ (A) = 3, and p = (1/6, 1/2, 1/3)T .

(c) h = 2 because A is imprimitive and singular.
8.3.2. If A is nonsingular then there are either one or two distinct nonzero eigenvalues

inside the spectral circle. But this is impossible because σ (A) has to be invariant
under rotations of 120◦ by the result on p. 677. Similarly, if A is singular with
alg multA (0) = 1, then there is a single nonzero eigenvalue inside the spectral
circle, which is impossible.

8.3.3. No! The matrix A =
(

1 1
0 2

)
has ρ (A) = 2 with a corresponding eigenvector

e = (1, 1)T , but A is reducible.
8.3.4. Pn is nonnegative and irreducible (its graph is strongly connected), and Pn

is imprimitive because Pn
n = I insures that every power has zero entries. Fur-

thermore, if λ ∈ σ (Pn) , then λn ∈ σ(Pn
n) = {1}, so all eigenvalues of Pn

are roots of unity. Since all eigenvalues on the spectral circle are simple (re-
call (8.3.13) on p. 676) and uniformly distributed, it must be the case that
σ (Pn) = {1, ω, ω2, . . . , ωn−1}.

8.3.5. A is irreducible because the graph G(A) is strongly connected—every node is
accessible by some sequence of paths from every other node.

8.3.6. A is imprimitive. This is easily seen by observing that each A2n for n > 1 has
the same zero pattern (and each A2n+1 for n > 0 has the same zero pattern),
so every power of A has zero entries.

8.3.7. (a) Having row sums less than or equal to 1 means that ‖P‖∞ ≤ 1. Because
ρ (�) ≤ ‖�‖ for every matrix norm (recall (7.1.12) on p. 497), it follows that
ρ (S) ≤ ‖S‖1 ≤ 1.

(b) If e denotes the column of all 1’s, then the hypothesis insures that Se ≤ e,
and Se �= e. Since S is irreducible, the result in Example 8.3.1 (p. 674) implies
that it’s impossible to have ρ (S) = 1 (otherwise Se = e), and therefore ρ (S) <
1 by part (a).

8.3.8. If p is the Perron vector for A, and if e is the column of 1 ’s, then

D−1ADe = D−1Ap = rD−1p = re

shows that every row sum of D−1AD is r, so we can take P = r−1D−1AD
because the Perron–Frobenius theorem guarantees that r > 0.

8.3.9. Construct the Boolean matrices as described in Example 8.3.5 (p. 680), and show
that B9 has a zero in the (1, 1) position, but B10 > 0.
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8.3.10. According to the discussion on p. 630, f(t) → 0 if r < 1. If r = 1, then
f(t) → Gf(0) = p

(
qT f(0)/qT p

)
> 0, and if r > 1, the results of the Leslie

analysis imply that fk(t) → ∞ for each k.
8.3.11. The only nonzero coefficient in the characteristic equation for L is c1, so

gcd{2, 3, . . . , n} = 1.
8.3.12. (a) Suppose that A is essentially positive. Since we can always find a β > 0

such that βI + diag (a11, a22, . . . , ann) ≥ 0, and since aij ≥ 0 for i �= j, it
follows that A + βI is a nonnegative irreducible matrix, so (8.3.5) on p. 672
can be applied to conclude that (A + (1 + β)I)n−1 > 0, and thus A + αI is
primitive with α = β +1. Conversely, if A+αI is primitive, then A+αI must
be nonnegative and irreducible, and hence aij ≥ 0 for every i �= j, and A must
be irreducible (diagonal entries don’t affect the reducibility or irreducibility).
(b) If A is essentially positive, then A + αI is primitive for some α (by the
first part), so (A + αI)k > 0 for some k. Consequently, for all t > 0,

0 <

∞∑
k=0

tk(A + αI)k

k!
= et(A+αI) = etAetαI = B =⇒ 0 < e−αtB = etA.

Conversely, if 0 < etA =
∑∞

k=0 tkAk/k! for all t > 0, then aij ≥ 0 for every
i �= j, for if aij < 0 for some i �= j, then there exists a sufficiently small t > 0
such that [I + tA + t2A2/2 + · · ·]ij < 0, which is impossible. Furthermore, A
must be irreducible; otherwise

A ∼
(

X Y
0 Z

)
=⇒ etA =

∞∑
k=0

tkAk/k! ∼
(

� �
0 �

)
, which is impossible.

8.3.13. (a) Being essentially positive implies that there exists some α ∈  such that
A+αI is nonnegative and irreducible (by Exercise 8.3.12). If (r,x) is the Perron
eigenpair for A + αI, then for ξ = r − α, (ξ,x) is an eigenpair for A.

(b) Every eigenvalue of A + αI has the form z = λ + α, where λ ∈ σ (A) ,
so if r is the Perron root of A + αI, then for z �= r,

|z| < r =⇒ Re (z) < r =⇒ Re (λ + α) < r =⇒ Re (λ) < r − α = ξ.

(c) If A ≤ B, then A + αI ≤ B + αI, so Wielandt’s theorem (p. 675) insures
that rA = ρ (A + αI) ≤ ρ (B + αI) = rB , and hence ξA = rA−α ≤ rB −α = ξB .

8.3.14. If A is primitive with r = ρ (A) , then, by (8.3.10) on p. 674,(A
r

)k

→ G > 0 =⇒ ∃ k0 such that
(A

r

)m

> 0 ∀m ≥ k0

=⇒
a
(m)
ij

rm
> 0 ∀m ≥ k0

=⇒ lim
m→∞

(
a
(m)
ij

rm

)1/m

→ 1 =⇒ lim
m→∞

[
a
(m)
ij

]1/m

= r.
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Conversely, we know from the Perron–Frobenius theorem that r > 0, so if

limk→∞
[
a
(k)
ij

]1/k

= r, then ∃ k0 such that ∀m ≥ k0,
[
a
(m)
ij

]1/m

> 0, which
implies that Am > 0, and thus A is primitive by Frobenius’s test (p. 678).

Solutions for exercises in section 8. 4

8.4.1. The left-hand Perron vector for P is πT = (10/59, 4/59, 18/59, 27/59). It’s
the limiting distribution in the regular sense because P is primitive (it has a
positive diagonal entry—recall Example 8.3.3 (p. 678)).

8.4.2. The left-hand Perron vector is πT = (1/n)(1, 1, . . . , 1). Thus the limiting dis-
tribution is the uniform distribution, and in the long run, each state is occupied
an equal proportion of the time. The limiting matrix is G = (1/n)eeT .

8.4.3. If P is irreducible, then ρ (P) = 1 is a simple eigenvalue for P, so

rank (I − P) = n−dimN (I − P) = n−geo multP (1) = n−alg multP (1) = n−1.

8.4.4. Let A = I−P, and recall that rank (A) = n−1 (Exercise 8.4.3). Consequently,

A singular =⇒ A[adj (A)] = 0 = [adj (A)]A (Exercise 6.2.8, p. 484),
and

rank (A) = n − 1 =⇒ rank (adj (A)) = 1 (Exercises 6.2.11).

It follows from A[adj (A)] = 0 and the Perron–Frobenius theorem that each col-
umn of [adj (A)] must be a multiple of e (the column of 1 ’s or, equivalently,
the right-hand Perron vector for P), so [adj (A)] = evT for some vector v.
But [adj (A)]ii = Pi forces vT = (P1, P2, . . . , Pn). Similarly, [adj (A)]A = 0
insures that each row in [adj (A)] is a multiple of πT (the left-hand Perron vec-
tor of P), and hence vT = απT for some α. This scalar α can’t be zero; other-
wise [adj (A)] = 0, which is impossible because rank (adj (A)) = 1. Therefore,
vT e = α �= 0, and vT /(vT e) = vT /α = πT .

8.4.5. If Qk×k (1 ≤ k < n) is a principal submatrix of P, then there is a permutation

matrix H such that HT PH =
(

Q X
Y Z

)
= P̃. If B =

(
Q 0
0 0

)
, then

B ≤ P̃, and we know from Wielandt’s theorem (p. 675) that ρ (B) ≤ ρ
(
P̃

)
= 1,

and if ρ (B) = ρ
(
P̃

)
= 1, then there is a number φ and a nonsingular diagonal

matrix D such that B = eiφDP̃D−1 or, equivalently, P̃ = e−iφDBD−1. But
this implies that X = 0, Y = 0, and Z = 0, which is impossible because P
is irreducible. Therefore, ρ (B) < 1, and thus ρ (Q) < 1.

8.4.6. In order for I − Q to be an M-matrix, it must be the case that [I − Q]ij ≤ 0
for i �= j, and I − Q must be nonsingular with (I − Q)−1 ≥ 0. It’s clear that
[I − Q]ij ≤ 0 because 0 ≤ qij ≤ 1. Exercise 8.4.5 says that ρ (Q) < 1, so
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the Neumann series expansion (p. 618) insures that I − Q is nonsingular and
(I − Q)−1 =

∑∞
j=1 Qj ≥ 0. Thus I − Q is an M-matrix.

8.4.7. We know from Exercise 8.4.6 that every principal submatrix of order 1 ≤ k <
n is an M-matrix, and M-matrices have positive determinants by (7.10.28) on
p. 626.

8.4.8. You can consider an absorbing chain with eight states

{(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)}

similar to what was described in Example 8.4.5, or you can use a four-state
chain in which the states are defined to be the number of controls that hold at
each activation of the system. Using the eight-state chain yields the following
mean-time-to-failure vector.



(1, 1, 1) 368.4
(1, 1, 0) 366.6
(1, 0, 1) 366.6
(0, 1, 1) 366.6
(1, 0, 0) 361.3
(0, 1, 0) 361.3
(0, 0, 1) 361.3


= (I − T11)−1e.

8.4.9. This is a Markov chain with nine states (c, m) in which c is the chamber
occupied by the cat, and m is the chamber occupied by the mouse. There are
three absorbing states—namely (1, 1), (2, 2), (3, 3). The transition matrix is

P =
1
72



(1, 2) (1, 3) (2, 1) (2, 3) (3, 1) (3, 2) (1, 1) (2, 2) (3, 3)

(1, 2) 18 12 3 6 3 9 6 9 6
(1, 3) 12 18 3 9 3 6 6 6 9
(2, 1) 3 3 18 9 12 6 6 9 6
(2, 3) 4 6 6 18 4 8 2 12 12
(3, 1) 3 3 12 6 18 9 6 6 9
(3, 2) 6 4 4 8 6 18 2 12 12
(1, 1) 0 0 0 0 0 0 72 0 0
(2, 2) 0 0 0 0 0 0 0 72 0
(3, 3) 0 0 0 0 0 0 0 0 72


The expected number of steps until absorption and absorption probabilities are

(I − T11)−1e=


(1, 2) 3.24
(1, 3) 3.24
(2, 1) 3.24
(2, 3) 2.97
(3, 1) 3.24
(3, 2) 2.97

 and (I − T11)−1T12=


(1, 1) (2, 2) (3, 3)

0.226 0.41 0.364
0.226 0.364 0.41
0.226 0.41 0.364
0.142 0.429 0.429
0.226 0.364 0.41
0.142 0.429 0.429
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