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Overview

The main aim of this book is to make the presentation less mathematically formal

and hence more palatable for the less mathematically inclined. Insight is given in a

non-theoretical way and there are a number of summary boxes to give a quick picture

of the key results without the need to read through the detailed explanation.

The book can serve a twofold purpose: first as a textbook for graduate students and

industrialists covering a detailed introduction to predictive control with a strong fo-

cus on the philosophy answering the questions, ‘why?’ and ‘does it help me?’ The

basic concepts are introduced and then these are developed to fit different purposes:

for instance, how to model, to give robustness, to handle constraints, to ensure fea-

sibility, to guarantee stability and to consider what options there are with regard to

models, algorithms, complexity versus performance, etc. The second role of the

book is to target researchers in predictive control. In places the book goes into more

depth, particularly in those areas where Dr. Rossiter has expertise.

In his research Dr. Rossiter has adopted a different style of presentation to that

adopted by many authors and this style gives different insights to model-based pre-

dictive control. Dr. Rossiter uses this personal style and his own insight, hence form-

ing a contrast to and complementing the other books available. Novel areas either not

much discussed in other books or having recent developments are: (i) connections

to optimal control and stability; (ii) the closed-loop paradigm; (iii) robust design in

MPC; (iv) implementations of MPC using only small on-line computational burdens

and (v) implicit modelling for predictive control.

Dr. Rossiter would like to apologise for any obvious references or topics that have

been missed. He found writing a book a far more demanding task than anticipated

and it was necessary to draw a line, at some point, on the continual improvement.

Nevertheless, he does believe that this book complements the existing literature. By

all means let him know of the large gaps you find and he will bear them in mind for

a second edition.

Some MATLAB files have been written for readers of Model-Based Predictive Con-
trol: A Practical Approach. The files enable the user to design and simulate simple

MPC controllers and moreover are easy to modify. They are available on the pub-

lisher’s Web site at www.crcpress.com.co
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1

Introduction

This chapter gives a quick overview of the key concepts used in predictive control

and introduces the notation that will be used in later chapters. The reader will find

this useful to understand how predictive control works and why it can be so effective.

Section 1.3 gives an overview of the structure of the book.

1.1 Overview of model-based predictive control

This book takes the view that we should concentrate our efforts on understanding the

principles which unite most model-based predictive control (MPC) algorithms and

not get distracted by the fine details which fill academic journals. Usually the details

are self-evident given a clear understanding of the philosophy; these can always be

obtained from the references. We will use the acronym MPC to denote all types of

predictive control laws, for which many other abbreviations exist, e.g. IDCOM [97],

DMC[23], GPC[21], QDMC[31], IMC[30], MUSMAR[39], RHC, to name just a

few. The name is less important than the key characteristics.

Philosophically MPC reflects human behaviour whereby we select control actions

which we think will lead to the best predicted outcome (or output) over some limited

horizon. To make this selection we use an internal model of the process in question.

We constantly update our decisions as new observations become available. Hence a

predictive control law has the following components:

1. The control law depends on predicted behaviour.

2. The output predictions are computed using a process model.

3. The current input is determined by optimising some measure of predicted per-

formance.

4. The receding horizon: the control input is updated at every sampling instant.

1
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2 Model-based predictive control: a practical approach

Summary: You will find MPC easier if at all times you try to understand the

philosophy rather than the details. The details are obvious once the philosophy is

understood. As your understanding of the details improves, read the introduction

chapter again and ask yourself whether your insight is also improving.

1.2 The main components of MPC

This section discusses in more detail the main components of MPC and explains why

these make sense. A good understanding of why we use these components can be

used to gain insight into the action of different algorithms and hence how to modify

a given algorithm to achieve specific aims.

1.2.1 Dependence of actions on predictions

Most control laws, say PID (proportional, integral and derivative), do not explicitly

consider the future implication of current control actions. To some extent this is

only accounted for by the expected closed-loop dynamics. MPC on the other hand

explicitly computes the predicted behaviour over some horizon. One can therefore

restrict the choice of the current proposed input trajectories to those that do not lead

to difficulties in the future.

Think about crossing the road. It is not sufficient that the road has no cars on it

between you and the other side; you also check whether there are cars still some

distance away that will cross in front of you soon. That is, you predict whether at

anytime during your crossing, you are likely to be hit by a car. If the answer is yes,

you wait at the kerb. Moreover, all the time you are crossing, you keep looking, that

is updating your predictions, so that if necessary your trajectory across the road can

be altered.

Summary: Prediction is invaluable for avoiding otherwise unforeseen disaster.

1.2.2 Predictions are based on a model

In order to predict the future behaviour of a process, we must have a model of how the

process behaves. In particular, this model must show the dependence of the output

on the current measured variable and the current/future inputs. This model does not

have to be linear (e.g. transfer function, state-space) and in fact can be just about

anything.

As a human we often use fuzzy models and yet achieve very accurate control; for

instance, if I am in third gear, doing 40 mph and not going up a steep incline, then

depressing the accelerator should give good acceleration. The key point to note
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Introduction 3

here is that a precise model is not always required to get tight control; because the

decisions are updated regularly, this will deal with some model uncertainty in a fairly

fast time scale. In the driving example above, failure to achieve good acceleration

would be noted very quickly by comparison of actual behaviour with predicted model

behaviour; for instance, am I in the correct gear, am I doing 40 and not 20, etc.? The

decision on the best control is thus continually updated using information from this

comparison.

In practice most MPC algorithms use linear models because the dependence of the

predictions on future control choices is then linear and this faciliates optimisation

as well as off-line analysis of expected closed-loop behaviour. However, nonlinear

models can be used where the implied computational burden is not a problem and

linear approximations are not accurate enough.

It is also important to note here the comment fit for purpose. In predictive control,

the model is used solely to compute system output predictions, so the model is fit
for purpose if it gives accurate enough predictions. The effort and detail put into

modelling stage should reflect this. There may be no need to model all the physics,

chemistry and internal behaviour of the process in order to get a model that gives

reliable prediction, and in fact one should not model all this detail if it is not required.

A basic rule base states that one should use the simplest model one can get away with.

Summary: A model is used to generate system predictions. One should use the

simplest model possible which is fit for purpose, that is, gives accurate enough

predictions.

1.2.3 Selecting the current input

Before one can choose the current control action, one needs criteria to judge which

action is best. Because MPC is usually implemented by computer, this requires a nu-
merical definition so that a precise calculation can be made, that is, which predicted

input trajectory gives the lowest numerical value to the cost. Selection of the cost
function is an area of both engineering and theoretical judgement, but also gives rise

to much debate in academia so we will not discuss that in the introduction.

Practical experience is that as long as some basic guidelines are followed, the actual

choice of cost often has little effect on closed-loop performance. The main require-

ment is that the cost depends on the future controls and that low values of cost imply

good closed-loop performance - good being defined for the process in question. Of

course the choice of the cost affects the complexity of the implied optimisation and

this is also a consideration∗. For this reason 2-norm measures are popular, as the

optimisation is straightforward.

∗The extreme of this is predictive functional control (PFC); see Chapter 13.
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4 Model-based predictive control: a practical approach

Summary: The predicted inputs are selected as those minimising a given cost
function. The cost function should be as simple as one can get away with for the

desired performance.

1.2.4 Receding horizon

Consider again the process of driving. It is usually to consider the road several

hundred yards ahead and to anticipate any potential dangers. As we move along the

road, the part of the road within our vision moves with us so that we can always see

the next few hundred yards. This in essence is the receding horizon, that is the limit

of our vision (say 200 yds away) is always moving away at the same speed we are —

it is receding. This means that we are continually picking up new information from

the far horizon and this information is used to update our control actions (decisions).

Predictive control works just like this: it considers the predicted behaviour over some

horizon into the future and therefore at each successive sampling instant, it predicts

one further sample into the future. As new information comes available the input

trajectory is automatically modified to take account of it. The important question

is however, how big should this horizon be? Using human intuition it is obvious

that this horizon should be greater than the system settling time — otherwise one

is ignoring behaviour with significant dynamics. Think about what would happen

if when driving you only looked 20 yds ahead at 70 mph (i.e. well below braking

distance) — you will surely crash or come off the road on the first sharp corner.

Summary: The horizon selected for predictions should include all significant dy-

namics (for instance, use the settling time); otherwise performance may be poor

and important events may be unobserved.

1.2.5 Optimal or safe performance

In order to control a process very accurately, we need a very accurate model. Some

insight into this can be given by racquet sports. When you are learning the sport, your

mind has only an imprecise model of how arm movements, etc. affect the trajectory

of the ball. As a result, control, direction, etc. are poor. As you practice, your

internal model becomes more accurate and hence the quality of your play improves.

This has significant repercussions on the complexity of future control strategies that

can be considered. A novice uses simple strategies, as they have a simple model.

Their goal is to keep the ball in play — they think only about the current move.

An expert on the other hand may think several moves ahead and aim the ball very

precisely in order to construct an opening with which to win the point. The same

applies to MPC. There is no point selecting the next 10 control moves to optimise

dynamic performance during transients if you have a poor model; you are better to

go for a safe, perhaps slower option of ensuring that at least you move in the right
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Introduction 5

direction and select only one move. Conversely if you do have an accurate model,

then you could reliably select control moves over a larger future horizon and expect

to get better dynamic performance; you would be foolish, sacrificing potential, to

select only one move at a time.

Summary: You can only control as precisely as you can model! If you want a

highly tuned controller, you need a very accurate model.

1.2.6 Tuning

There has been historical interest in the topic of tuning predictive control laws to en-

sure stability, much as there is much knowledge on how to tune PID. However, with

MPC it is now understood that tuning is better allied to a specification of desired

performance. If you get the cost function right, stability and tuning will look after

themselves, as by definition you are optimising a cost which can only be small for

good performance. When sensible guidelines are used, MPC will always give stable

control (at least for the nominal) so the important judgements are how to get a bal-

ance between the performance in different loops, good sensitivity and also a balance

between input activity and speed of response.

Classically these balances are achieved by weighting matrices, that is, putting differ-

ent emphasis on performance in different loops according to their importance. It is

doubtful however, that one could construct such weights systematically from a finan-

cial/operational viewpoint and in general on-line tuning is required until the balance

looks right. A typical guideline to give a sensible initial value for the weights would

be to normalise all the signals (input and output) so that the range 0 to 1 is equally

important for each signal; then use unity weights on all the loops. It is difficult to

generalise beyond this because each process has different priorities which may be

too subtle to include in general guidelines.

Some authors [97] take the view that there should be no weighting of the inputs

at all, as the goal is to drive the outputs to the desired point with whatever inputs

are required. In this case it is paramount to set up the cost function carefully to

avoid overtuned control laws and inversion of non-minimum phase characteristics.

For instance, don’t request unrealistically fast changes in the output and restrict the

space of allowable input trajectories to those which move smoothly.

Summary: Tuning is often straightforward if one can define the relative impor-

tance of performance in different loops.

1.2.7 Constraint handling

One of the major selling points of MPC is its ability to do on-line constraint handling

in a systematic way, hopefully retaining to some extent the stability margins and per-

formance of the unconstrained law. The algorithm does this by optimising predicted
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6 Model-based predictive control: a practical approach

performance subject to constraint satisfaction. For example, a racing driver optimises

speed, subject to the constraint that the car remains on the track. If they optimised

speed without taking explicit account of the constraint, their lap times would actually

be far slower.

The details of how constraints are incorporated are very much dependent on the

algorithm deployed and are discussed later. The algorithm selected will depend upon

money available (i.e. related to potential increase in profit) and sampling time. The

more you can spend, the closer to the true constrained optimum your algorithm is

likely to get.

Summary: MPC takes systematic account of constraints and hence allows better

performance.

1.2.8 Systematic use of future demands

When driving, if you see a corner ahead, you adjust the state (speed, gear, etc.) of

the car so that you can take the corner safely. Typically a PID type of control law

deals with the corner only once you reach it with the possible danger of going off the

road (overshoot) due to excess entry speed. Feedforward can be added but the design

could be somewhat ad hoc.

Conversely MPC automatically incorporates feedforward and moreover does this in

a systematic way. The optimisation of the cost takes account of future changes in

desired trajectory and measurable disturbances and so includes them as an intrinsic

part of the overall control design†.

Summary: MPC gives systematic feedforward design which is integrated with the

constraint handling.

1.2.9 Systematic control design for multivariable systems

Another major selling point of MPC algorithms is that they can deal with multivari-

able (MIMO or multi-input-multi-output) systems in a systematic way. It is well

known that PID (traditional control) design for highly interactive MIMO systems is

very difficult. Although solutions have been developed through a combination of

experience and time, these are often suboptimal and can be very detuned. Even tools

like multivariable Nyquist [77, 79] often do not lead to a straightforward design.

The difficulty with tuning PID for MIMO systems actually relates back to the model;

PID type designs make use of relatively little information about the plant and hence

are unable to deal with the interaction effectively. MPC algorithms on the other hand

demand and utilise a model (see Section 1.2.2) and thus make use of more informa-

†Be careful however; the default feedforward from MPC is not always a good one [109].
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Introduction 7

tion. This makes systematic design and analysis far easier. In MPC we specify a

performance index so that in some sense one has a systematic design; that is, it gives

the best performance by way of the cost specified for the model given. Experience

has shown that this is an effective way to deal with interaction (MIMO problems)

and moreover gives good bandwidth and gain/phase margins for the nominal case.

Summary: MPC allows systematic design for MIMO systems.

1.3 Overview of the book

The principal topics that are covered in this book are:

1. An overview of predictive control

2. Issues in prediction and identification for MPC

3. Stability analysis

4. Enhancing robustness

5. Constraint handling and feasibility issues

The idea is to build up an understanding of the different components discussed in

Section 1.1 and to do this in a logical order. A brief summary of the chapters is given

in the following list:

2 Introduces the model types used in this book. Models are a main building

block of predictive control.

3 This considers how predictions are formed for a number of different models.

Predictions are the second main building block of MPC.

4 This chapter introduces the performance index/optimisation which is the third

main component of MPC and also shows how these are combined with a pre-

diction model to form a control law.

5 Here the reader is shown a number of simple MPC designs and these are used

to gain insight into systematic tuning rules and also scenarios to avoid.

6 The insights on tuning are developed further to show how one can set up an

MPC law which is expected to give good performance. Moreover means of

assuring stability, even when constraints are active, are given.
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8 Model-based predictive control: a practical approach

7 This chapter builds on the insights of the previous chapter and shows how to

set up the MPC algorithm to be well conditioned. It introduces in detail the

terminal set and overviews the options this brings.

8 Constraint handling is a major component of MPC. This chapter looks at po-

tential problems with this and suggests some simple strategies.

9 This looks at the sensitivity of the unconstrained MPC law and introduces

simple mechanisms for improving sensitivity.

10 This looks at the relationship between model structure and prediction errors

and hence on loop sensitivity. It is noted that one can only control as accurately

as one can predict.

11 This chapter looks at constraint handling in the uncertain case and introduces

the tool of invariant sets.

12 At times one wants an MPC law with a small computational burden. Some

insights into how to achieve this are given.

13 PFC is one example of a computationally simple MPC law that has achieved

large acceptance in industry and hence is discussed here.

14 One advantage of MPC is its flexible structure. This chapter illustrates how

this allows a systematic methodology for dealing with multirate systems.

15 A key component of MPC is the model. This chapter shows how the identifi-

cation can be configured to support the MPC design.

A Gives some numerical examples that readers can use to test their own code and

understanding. Also provides guidance on and examples of, typical questions

that tutors may need.

For the basic user most of what they need will be in Chapters 1–6. A more advanced

reader would be interested in Chapters 8–10 and perhaps 13. The remaining chapters

introduce interesting areas and are more aimed at reseachers.

It is not the purpose of this book to write history but rather to state what is now

understood and how to use this. Other books and many journal articles (e.g. [4, 13,

32, 84, 78, 144]) already give good historical accounts and so the reader is refered

there for more details of how ideas developed. Also, it was necessary to draw a

line somewhere so several important topics are not included, for instance: (i) MPC

of continuous time models (sampled data systems); (ii) continuous time MPC; (iii)

MPC of nonlinear systems. I suspect another book would be needed to do these three

topics justice.
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Introduction 9

1.4 Notation

The following section is for reference so you are advised to come back to it as and

when you need it. It is not intended for you to read this section first, as much of the

notation will make more sense when you use it in the later chapters.

1.4.1 Table of notation

The most commonly used notation adopted in this book is given in Table 1.1. where

as is normal bold lower case is used to denote vectors and non-bold lower case im-

plies a scalar quantity. Capitals are used for matrices. Arguments such as (.)(z) and

(.)(k) are often omitted to improve readability where their presence is implicit.

1.4.2 Vectors of past and future values

Given we need a notation for predictions, it is convenient to have a notation for a

vector of future/past values of given variables. The notation of arrows pointing right

is used for strictly future (not including current value) and arrows pointing left for

past (including current value). The subscript denotes the sample taken as the base

point, e.g.

x→k
=




xk+1

xk+2

...


 ; x←k

=




xk

xk−1

...


 (1.1)

The length of these vectors (that is, the time into the future or past) is not defined

here and is usually implicit in the context.

1.4.3 Toeplitz and Hankel matrices

Toeplitz and Hankel matrices simplify much of the algebra commonplace in papers

on MPC. They are simple to define. Consider a generic polynomial n(z), where

n(z) = n0 + n1z−1 + · · ·+ nmz−m (1.2)
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10 Model-based predictive control: a practical approach

TABLE 1.1

Notation and variable names

Description Typical notation

Unit delay operator z−1

Process outputs y y
Process inputs u u
Process incremental input (uk −uk−1) ∆u ∆u
Process disturbance d d
Process states x
Process set point r r
Measurement noise v v
State-space matrices A,B,C,D
Delay operator (z-transforms) z−1

Open-loop pole polynominal a(z) (or d(z)) a
Closed-loop pole polynomial pc(z) pc

Open-loop zero polynomial b(z) (or n(z)) b
Vector of coefficients of polynomial n(z) n
Controller numerator Nk(z) Nk

Controller denominator Dk(z) Dk

Difference operator ∆(z) = 1− z−1 ∆
State feedback gain K
Process model G(z) G

Toeplitz matrix of n(z) Cn Γn

Hankel matrix of n(z) Hn

Value of x at sampling instant k xk x(k)
Vector of future values of x x→k
Vector of past values of x x←k
Prediction matrices H, P, Q
Constraint matrices/vectors C, E, d, f
Upper and lower limts (.), (.)

Then define the Toeplitz matrices Γn,Cn for n(z) from the following stripped matrix

Γn =

[
Cn

Mn

]
=




n0 0 0 · · · 0

n1 n0 0 · · · 0

n2 n1 n0 · · · 0
...

...
...

...
...

nm nm−1 nm−2

...

0 nm nm−1

...
...

...
...

...
...

0 0 0 · · · n0




(1.3)
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Introduction 11

Define the Hankel matrix Hn as

Hn =




n1 n2 n3 · · · nm−1 nm

n2 n3 n4 · · · nm 0

n3 n4 n5 · · · 0 0
...

...
...

...
...

...

nm−1 nm 0
... 0 0

nm 0 0
... 0 0

0 0 0
... 0 0

...
...

...
...

...
...




(1.4)

In summary they have elements defined as

Γn(i, j) = Cn(i, j) = ni− j; Hn(i, j) = ni+ j−1 (1.5)

where it is assumed that ni = 0,

{
i < 0

i > m
.

NOTE: The dimensions of matrices Γn,Cn,Hn are not defined here as they are im-

plicit in the context in which they are used. However, note the following:

1. Γn should have m more rows than columns but can have any number of columns.

2. Cn is always square but can be any dimension.

3. Hn has at least m non-zero rows and columns. You can add more zero rows

and/or columns without changing its operation.

1.4.3.1 Polynomial multiplication

Γn is a tall and thin variant of the Toeplitz matrix Cn used for changing polynomial

convolution into a matrix-vector multiplication. Define

d(z) = d0 + d1z−1 + · · ·+ drz−r

f (z) = n(z)d(z) = f0 + f1z−1 + · · ·+ fn+rz−n−r (1.6)
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12 Model-based predictive control: a practical approach

It is easy to show that the coefficients of f (z) are given by




f0

f1

f2

...

fm

fm+1

...

fn+r




︸ ︷︷ ︸
f

=




n0 0 0 . . . 0

n1 n0 0 . . . 0

n2 n1 n0 . . . 0
...

...
...

...
...

nm nm−1 nm−2

... n0

0 nm nm−1

...
...

...
...

...
...

0 0 0 . . . nm




︸ ︷︷ ︸
Γn




d0

d1

d2

...

dr




︸ ︷︷ ︸
d

(1.7)

where in this case Γn has r + 1 columns and n+ r + 1 rows. Alternatively one could

write the answer as a polynomial, i.e.

f (z) = [1 z−1 . . . z−n−m]f = [1 z−1 . . . z−n−m]Γnd (1.8)

1.4.3.2 Inverting a Toeplitz matrix

One property of Toeplitz matrices is that inversion has a physical meaning. In sum-

mary

[Cn]−1 = C 1
n

(1.9)

So for instance, if ∆ = 1− z−1 and 1/∆ = 1+ z−1 + z−2 + · · · , then

C∆ =




1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1 · · · 0
...

...
...

...
...

0 0 0
... 1




; [C∆]−1 = C 1
∆

=




1 0 0 · · · 0

1 1 0 · · · 0

1 1 1 · · · 0
...

...
...

...
...

1 1 1
... 1




(1.10)

Hence one can form a relationship between quite complex matrix/vector multiplica-

tions and equivalent operations in transfer functions. For instance

f = [Cn]−1d ⇒ f (z) =
d(z)
n(z)

(1.11)

where one assumes that the matrix dimensions are always taken to fit this context.

Summary: The relationship between matrix/vector multiplications and implied

polynomial operations is very useful for analysis of predictions. Remember equa-

tions (1.8, 1.11).
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Introduction 13

1.4.3.3 Commutativity of Toeplitz matrices

If a multiplication is commutative, i.e. f (z) = n(z)g(z)h(z) = h(z)g(z)n(z), then the

corresponding Toeplitz operation is also commutative (with corresponding change

of the dimensions of the Toeplitz matrices if required).

CnCgh = CgCnh = ChCgn, etc. (1.12)

Remark 1.1 Although they have been defined with different dimensions, Γ n,Cn are
the same operator so we will tend to use Cn throughout in place of Γn to simplify the
algebra.

1.4.3.4 Toeplitz/Hankel matrices for multivariable systems

A further big advantage of using Hankel and Toeplitz matrices for prediction is

that the multivariable case can be handled with no increase in algebraic complex-

ity. Hence one can keep neat and compact algebra which aids insight and simplifies

coding. A simple illustration is given here. Define two matrix polynomials (ones

whose coefficients are matrices) as

N(z) = N0 + N1z−1 + N2z−2;

D(z) = D0 + D1z−1 + D2z−2 + D3z−3 (1.13)

Then the corresponding Toeplitz and Hankel matrices for N(z) are

CN =




N0 0 0 0 · · ·
N1 N0 0 0 · · ·
N2 N1 N0 0 · · ·
0 N2 N1 N0 · · ·
...

...
...

...
...


 ; HN =




N1 N2

N2 0

0 0
...

...


 (1.14)

It is easy to show that the coefficients of the polynomial F(z) = N(z)D(z) can be

computed from

F(z) = [I, Iz−1, . . . , Iz−5]F; F = CND; D =




D0

D1

D2

D3


 (1.15)

Also one can show that (for square matrix polynomials)

[CN ]−1 = CN−1 (1.16)

Remark 1.2 Matrix multiplication is not commutative in general; that is, in general
N(z)D(z) �= D(z)N(z).
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14 Model-based predictive control: a practical approach

1.4.3.5 Rules for algebra of Hankel and Toeplitz matrices

We have been careful not to define explicitly the row and column dimensions of the

Toeplitz and Hankel matrices. This is deliberate and essential. These matrices work

like operators and hence the dimensions must be chosen appropriate to the context.

For example, if one writes

f = Cng (1.17)

and this is intended to represent the operation f (z) = n(z)g(z), then matrix Cn must

have at least as many rows as the order of n(z)g(z) plus one. Also its column dimen-

sion must match that of g.

• One can give Cn too many rows without affecting the result. Too many rows

will simply make f a longer vector, but the additional terms will all be zero,

hence implying the same polynomial f (z).

• One can give Cn too many columns as long as g is appended with zeros to give

consistency of (1.17). Again additional zeros in g do not change the implied

g(z) and hence do not affect the implied operation.

• In practice when writing the algebra, one does not need to concern oneself

with the precise implied dimensions.

Remark 1.3 The same general observations will apply to Hankel matrices. If faced
with a summation of the form

Hf = Hn + Hg (1.18)

then simply pack Hn or Hg with zeros to get dimensional compatibility. Zeros are
always added at the bottom and/or on the right.

Summary:

• Treat Cn, Hn as operators and do not write their dimensions explicitly. As-

sume the implied minimal dimensions but allow them to be flexible to fit the

context. The algebra of forming predictions is then far easier.

• There is a direct link between the matrix operations and z-transforms, e.g.

f (z) = g(z)h(z) = [1,z−1, ...,z−r]Cgh; g = C−1
h f ⇒ g(z) =

f (z)
h(z)

(1.19)

1.4.4 Common acronyms/abbreviations

This section lists most of the acronyms used in the book.
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Introduction 15

Abbreviation Definition

ASM Active set method

CARIMA Controlled auto-regressive integrated moving average

CLP Closed-loop paradigm

d.o.f. degrees of freedom

DMC Dynamic matrix control

DR Dual rate

EMPC Efficient model-based predictive control

EUM Elimination of unstable modes

FIR Finite impulse response

FR Fast rate

GPC Generalised predictive control

GPCI Generalised predictive control with an independent model

GPCT Generalised predictive control with a T-filter

I/O Input/output

IC Inferential control

IFT Iterative feedback tuning

IHPC Infinite horizon predictive control

IIR Infinite impulse response

IMC Internal model control

IM Independent model

LMI Linear matrix inequality

LP Linear program

LQMPC Linear quadratic optimal model predictive control

LTV Linear time varying

MAS Maximal admissible set

MFD Matrix fraction description

MIMO Multi-input-multi-output

MPC Model predictive control

mph miles per hour

MPQP Multi parametric quadratic programming

MR Multi-rate

NTC No terminal control

OLP Open-loop paradigm

ONEDOF Algorithm using one d.o.f.

PFC Predictive functional controlco
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16 Model-based predictive control: a practical approach

Abbreviation Definition

PRBS Pseudo random binary sequence

QP Quadratic programming

RHC Receding horizon control

SGPC Stable generalised predictive control

SISO Single-input-single-output

SR Slow rate

s.t. subject to

w.r.t. with respect to

yds yards
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2

Common linear models used in model
predictive control

In the first instance this book will make no apologies for giving just a summary

statement about models. The art of modelling and the subtle differences between

ARX, ARMA, and ARMAX models to name just a few is not a topic that is central

to the theme of this book and is a subject covered extensively elsewhere (e.g. [76,

91]). However, the reader should be aware that the selection of the model is the

most important part of an MPC design. Unexpectedly poor performance of an MPC

controller will often be due to poor modelling assumptions. For this book (apart

from Chapter 15) we will assume that the model is given and hence the purpose

of this chapter is solely to show that different model types can be used in an MPC

framework. How one can modify models to achieve benefits in an MPC design will

be considered in later chapters.

You can use pretty much any model you like in an MPC strategy; however, if the

model is nonlinear, then the implied optimisation may be nontrivial and moreover

may not even converge. We will concentrate only on linear models and allow that

any nonlinearity is mild and hence can be dealt with well enough by assuming model

uncertainty and some gain scheduling of control laws. One book is not enough to

cover the linear and the nonlinear case properly.

Summary:

1. For a detailed study of modelling the reader is referred elsewhere.

2. In MPC the aim is to choose the simplest model that gives accurate enough

predictions.

17
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18 Model-based predictive control: a practical approach

2.1 Modelling uncertainty

2.1.1 Integral action and disturbance models

In this book the assumption will be made that there is a requirement for offset free

tracking, as this forms the most common case and it would be difficult to generalise

with the alternative assumption that offset is allowed. Hence it is also implicit that the

control law must include integral action. Workers in MPC have developed convenient

mechanisms for incorporating integral action and this chapter will illustrate this.

In the absence of uncertainty/disturbances one could easily obtain offset free control

without integral action but in practice parameter uncertainty and disturbances neces-

sitate the use of an integrator. In MPC the start point is different and one takes the

viewpoint that:

Disturbance rejection is best achieved by having an internal model of the distur-
bance.

That is, if one models the disturbance appropriately, then the MPC control law can be

set up to automatically reject the disturbance with zero offset. In fact the disturbance

model most commonly used implicitly introduces an integrator into the control law

and hence one also gets offset free tracking in the presence of parameter uncertainty.

So the question to be answered in the modelling stage is, how are disturbance effects

best included within the model?

The precise details of how to model disturbances is process dependent and if not

straightforward is in the realm of a modelling specialist. However, that does not

need to bother us here as long as we remember the following two simple guidelines.

1. In general we can control a process as accurately as we can model it. You need

only improve your model if more accuracy is required.

2. There have been thousands of succesful applications of MPC using relatively

simplistic assumptions for the disturbance model.

Summary: Assume that a simple disturbance model will be good enough. If the

resulting control is unsatisfactory, revisit the modelling stage.

2.1.2 Modelling measurement noise

Similar statements can be made about modelling the noise (and other uncertainty in

the process). It is usual to make simplistic assumptions rather than to define suppos-

edly precise analytic answers. For instance, a Kalman filter will only give optimal
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Common linear models used in model predictive control 19

observations if the model is exact and assumptions on the covariance of the uncer-

tainty are also correct. In practice of course neither of these is true and one resorts to

commonsense assumptions (process knowledge) and some on-line tuning.

In practice measurement noise is often assumed to be white and hence simply ig-

nored. Coloured noise can be included in the models systematically but usually the

corresponding filters (implicit in this) have other effects [158] and so are tuned with

mixed objectives. Practical experience has shown that some form of low-pass filter-

ing is nearly always required and/or beneficial but a systematic design of such filters

for MPC is still an open question in general.

Summary: Filters (usually low-pass) are commonly needed to reduce sensitivity

to measurement noise but it would be incorrect to say that typical designs reduce to

an obvious optimal estimation problem.

2.2 Typical models

This section will give a brief summary of common linear models. The favoured

model type depends very much on the reader and the process to be controlled and

hence this book does not attempt to make a value judgement as to which is best. The

focus is on the discrete time case, as MPC is usually implemented in discrete time.

Academia and the USA in particular, has put far more emphasis on state-space mod-

els. The advantage of these are that they extend easily to the multivariable case

and there is a huge quantity of theoretical results which can be applied to produce

controllers/observers and to analyse the models and resulting control laws.

Academics in Europe have also made extensive use of transfer function models and

polynomial methods. Historically one advantage of this was the close relationship

to popular black box identification techniques. However, this is much less an issue

now with the development of subspace techniques for identifying black box state-

space models [25]. The disadvantage of transfer function models is that their use

in the multivariable case can be somewhat cumbersome and they are nonminimal

representations. The advantage is that no state observer is required although one

may argue the need to filter measurements implies the use of an observer in practice

anyway.

Traditionally (this is changing now) industrialists have not favoured either of the

above models in general and instead have used Finite impulse response (FIR) mod-

els e.g. [23, 97]. These are easy to understand and interpret, being for instance, the

process step response. Although in practice these models could be determined by

a single step test, the practical requirements for indentifying FIR models is that far

more data is needed than to identify state-space and transfer function models and
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20 Model-based predictive control: a practical approach

moreover there are issues of when to truncate the FIR and the need for unnecessarily

large data storage requirements. FIR models however, do generally give lower sensi-

tivity to measurement noise without the need for an observer (and associated design)

and this can be a significant benefit for some industries.

MPC can also make use of the so-called independent model (IM) or internal model

[30]. This can take the form of any model; the differences come in how it is used.

This will be discussed later.

Summary: This book focuses on state-space models, transfer function models and

FIR models.

2.3 State-space models

This section gives the terminology adopted in this book for representing state-space

models and typical modelling assumptions used in MPC. The assumption will be

made that the reader is familiar with state-space models.

2.3.1 Nominal state-space model

Using the notation of (.)k and (.)(k) to imply a value at the kth sampling instant, the

state-space model is given as:


x1(k + 1)
x2(k + 1)

...

xn(k + 1)




︸ ︷︷ ︸
xk+1

=




a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
...

...

an,1 an,2 . . . an,n




︸ ︷︷ ︸
A




x1(k)
x2(k)

...

xn(k)




︸ ︷︷ ︸
xk

+




b1,1 b1,2 . . . b1,m

b2,1 b2,2 . . . b2,m
...

...
...

...

bn,1 bn,2 . . . bn,m




︸ ︷︷ ︸
B




u1(k)
u2(k)

...

um(k)




︸ ︷︷ ︸
uk

(2.1)


y1(k)
y2(k)

...

yl(k)




︸ ︷︷ ︸
yk

=




c1,1 c1,2 . . . c1,n

c2,1 c2,2 . . . c2,n
...

...
...

...

cl,1 cl,2 . . . cl,n




︸ ︷︷ ︸
C




x1(k)
x2(k)

...

xn(k)




︸ ︷︷ ︸
xk

+




d1,1 d1,2 . . . d1,m

d2,1 d2,2 . . . d2,m
...

...
...

...

dl,1 dl,2 . . . dl,m




︸ ︷︷ ︸
D




u1(k)
u2(k)

...

um(k)




︸ ︷︷ ︸
uk

In abbreviated form the model is

xk+1 = Axk + Buk; yk = Cxk + Duk (2.2)

x denotes the state vector (dimension n), y (dimension l) denotes the process outputs

(or measurements) to be controlled and u (dimension m) denotes the process inputs
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Common linear models used in model predictive control 21

(or controller output) and A,B,C,D are the matrices defining the state-space model.

Ordinarily for real processes D = 0.

2.3.2 Nonsquare systems

Although MPC can cope with nonsquare systems (l �= m), it is more usual to do some

squaring down and hence control a square system. When MPC is applied directly to a

nonsquare system the precise objectives and associated tuning are process dependent

and nongeneric; hence we omit this topic. In simple terms if m > l, several inputs

can be used to achieve the same output and so the optimisation must be set up to

make optimal use of the spare degrees of freedom (d.o.f.), the definition of optimum

being process dependent. If l > m, there are too few d.o.f. and so we must accept

offset in some output loops; in this case additional criteria are required to set up the

control strategy and again these are process dependent.

2.3.3 Including a disturbance model

A good discussion of this can be found in [90]. First decide whether the disturbance

is a simple perturbation to the output or affects the states directly. We will treat each

in turn.

2.3.3.1 Output disturbance

A common model of the disturbance is given as integrated white noise. That is,

disturbance dk is modelled as

dk+1 = dk + vk (2.3)

where vk is unknown and zero mean. It is assumed throughout that d k is also un-

known though of course it can be partly inferred via an observer.

Such a disturbance can be incorporated into the state-space model by replacing (2.2b)

as follows:

yk = Cxk + Duk + dk (2.4)

Of course the disturbance is unknown, as is the state xk, so it must be estimated.

By including the disturbance into the system dynamics, the assumed process model

becomes

zk+1 = Ãzk + B̃uk; yk = C̃zk + Duk + vk (2.5)

where

zk+1 =
[

xk+1

dk+1

]
; Ã =

[
A 0

0 I

]
; B̃ =

[
B
0

]
; C̃ =

[
C I

]
(2.6)

An observer can be constructed for this model, under the usual assumption of ob-

servability, to give estimates of both the state x and disturbance d.
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2.3.3.2 State disturbance

In this case one still uses assumption (2.3) but it is included in the state update equa-

tion; that is, replace (2.2) by

xk+1 = Axk + Buk + Fdk; dk+1 = dk + vk; yk = Cxk + Duk (2.7)

Again, the overall process model should be augmented to include the disturbance

dynamic as follows:

zk+1 = Ãzk + B̃uk; yk = C̃zk + Duk + vk (2.8)

where

zk+1 =
[

xk+1

dk+1

]
; Ã =

[
A F
0 I

]
; B̃ =

[
B
0

]
; C̃ =

[
C 0

]
(2.9)

Summary: The state-space model of a process incorporating a disturbance model

can be given by either (2.5) or (2.8) as appropriate.

2.3.4 Systematic inclusion of integral action with state-space models

Typical state feedback does not incorporate integral action. This section shows one

method by which this limitation can be overcome.

2.3.4.1 Offset with typical state feedback

Let us assume hereafter that for all real processes there is no instantaneous feed

through from the input to the output, that is D = 0. Then, even with a zero setpoint,

the typical stabilising state feedback of the form

uk = −Kxk (2.10)

will not give offset free control in the presence of nonzero disturbances. This is self

evident from substitution of (2.10) into, for example (2.2, 2.4), which implies

lim
k→∞

xk = 0 ⇒ lim
k→∞

yk = dk (2.11)

2.3.4.2 A form of state feedback giving no offset

Consider now [90] an alternative form of state feedback

u = −K(x−xss)+ uss (2.12)

where xss, uss are estimates of the steady-state values of state and input giving offset

free tracking. Under the assumption that x ss, uss are consistent, then for fixed dk,

such a control law will necessarily drive

lim
k→∞

{
xk = xss

uk = uss
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Again, this is self-evident by substitution of (2.12) into (2.2, 2.4) or (2.7). Clearly

offset free tracking follows automatically if

xk = xss

uk = uss

}
⇒ yk = r (2.13)

where r is the set point.

Summary: Incorporating integral action into a state feedback is equivalent to find-

ing consistent estimates of the steady-state values of the state and input; that is,

xss, uss.

2.3.4.3 Estimating steady-state values of the state and input

In order to implement control law (2.12), we need a means of estimating mutually

consistent values for the observer states xss, uss. First assume observability so that

state estimates converge and are mutually consistent by way of the model (even if

due to model uncertainty they do not match the true process exactly). Define the

desired output as set point r.

1. Assume (see 2.4) that the current estimate of d is the best estimate of its value

in the future (i.e. E[vk] = 0).

2. Given that d, r are known, one can estimate the required steady-state values

(xss,uss) of x,u to get the correct output from the relevant consistency con-

ditions (equations (2.2, 2.4) or (2.7) respectively, for output and state distur-

bances).{
r = Cxss + d
xss = Axss + Buss

}
or

{
r = Cxss

xss = Axss + Buss + Fd

}
(2.14)

3. These are simple simultaneous equations and give a solution of the form[
xss

uss

]
= M

[
r
d

]
(2.15)

where matrix M depends solely on matrices A,B,C,F representing the model.

Remark 2.1 One can also set up the disturbance model on the states or inputs (F �=
0) if that is more appropriate; details are in [90]. Moreover it is easy to show that
the above integral action is robust to model uncertainty, as it is based solely on
consistency of the observer equations (i.e. the model), which are known exactly.

Summary: Substitution of (2.15) into (2.12) ensures integral action within a state

feedback control law.
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2.4 Transfer function models (single-input/single-ouput)

A popular model [21] is the so-called Controlled auto-regressive integrated mov-

ing average (CARIMA) model. This can capture most of the variability in transfer

function models by a suitable selection of parameters. It is given as

a(z)yk = b(z)uk +
T (z)
∆(z)

vk (2.16)

where vk is an unknown zero mean random variable which can represent disturbance

effects and measurement noise simultaneously. Although there exist modelling tech-

niques to compute best fit values for the parameters of a(z),b(z) and T (z), in MPC

it is commonplace to treat T (z) as a design parameter (e.g. [21, 158]); this because

it has direct effects on loop sensitivity and so one may get better closed-loop perfor-

mance with a T (z) which is notionally not the best fit. It is common to write transfer

function models in the equivalent difference equation form. For instance with T = 1,

(2.16) is given as

yk+1 + a1yk + · · ·+ anyk−n+1 = b1uk + b2uk−1 + · · ·+ bnuk−n+1 + dk+1 (2.17)

where a(z) = 1 + a1z−1 + · · ·+ anz−n, b(z) = b1z−1 + · · ·+ bnz−n and dk is the un-

known disturbance term derived from d k =
T (z)
∆(z)

vk.

2.4.1 Disturbance modelling

Recall the earlier statement disturbance rejection is best achieved by having an in-
ternal model of the disturbance. Then notice that the choice of T (z) = 1 gives an

equivalence to (2.3):

dk =
1

∆(z)
vk ≡ dk+1 = dk + vk (2.18)

Hence it is clear that the term (T (z)/∆(z))vk deployed in (2.16) is a disturbance

model and is similar to that implied in (2.4, 2.7). The term d = v/∆ represents an

integrated white noise term or a random walk; this is a well accepted model for

disturbances, as it allows nonzero mean with random changes. The choice of T
determines equivalence to either (2.4) or (2.7) or other possibilities.

Summary: The CARIMA model allows systematic inclusion of a disturbance

models which therefore facilitates affective disturbance rejection.
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2.4.2 Consistent steady-state estimates with CARIMA models

As seen in Section 2.3, the key to achieving integral action in an MPC control law is a

consistent and correct assessment of the expected steady-state value of the input (the

state is not used for transfer function models) such that one gets offset free tracking.

Clearly the desired output is the set point, but the corresponding value of the input

depends upon the unknown disturbance. Obviously, assuming that d k = dk−1,vk = 0,

then dk can be inferred by writing (2.17) at the current and previous sampling instants

and solving from the two implied simultaneous equations.

However in MPC it is usual to use a different method. Write an incremental version

of (2.16); that is, relate the outputs to control increments ∆u k = uk − uk−1. This is

equivalent to either: (i) multiplying (2.16) by ∆ or (ii) subtracting (2.17) at k−1 from

(2.17) at k. Hence

[a(z)∆(z)]y(z) = b(z)∆u(z)+ T(z)v (2.19)

Clearly this operation has eliminated the nonzero mean unknown variable d k and the

only remaining unknown, vk, is zero mean, can be assumed zero in the future, and

hence does not affect predictions.

A second and equally useful benefit of using (2.19) instead of (2.17) is that the input

is now written in terms of increments and clearly in steady-state the increments will

be zero. That is

lim
k→∞

∆uk = ∆uss = 0 (2.20)

Hence the consistent estimates of the states required to give offset free tracking in

the steady-state are y = r, ∆u = 0.

Summary: One can get consistent steady-state predictions with the incremental

model (2.19). It is convenient to define A(z) = a(z)∆(z).

2.4.3 Achieving integral action with CARIMA models

The details of this will be more transparent after later sections. One needs to assume

the form of the control law (much as we assumed (2.12)) before we can establish

how to ensure integral action. It is known that MPC control laws based on transfer

function models depend upon the predictions and hence must take the form:

Dk(z)∆u = Pr(z)r−Nk(z)y (2.21)

It is clear from the presence of the Dk∆ term that there is an integrator in the forward

path and hence disturbances will be rejected. Furthermore in order to get no tracking

offset in the steady state one must check consistency of the following steady-state

conditions:

{∆uk = 0; yk = r} ∀k (2.22)
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26 Model-based predictive control: a practical approach

Clearly this implies

Pr(1) = Nk(1) (2.23)

Summary: The control law (2.21) has integral action and gives no offset to non-

zero set points if Pr(1) = Nk(1).

2.4.4 Selection of T (z) for MPC

Although T is a design polynominal used to model the disturbance signal and hence

improve disturbance rejection, it can also be used to enhance robustness of the

closed-loop. However, the design of T is not systematic in general and a few ba-

sic guidelines only are given (e.g. see [158]):

1. Let T = âT̂ , where â contains the dominant system pole/poles and T̂ contains

further poles near one. For a system sampled at typical rates T = [1−0.8z−1]n

works fairly well.

2. Design 1/T to be a low-pass filter which removes high frequency noise but not

the dominant frequencies in the model.

3. Use some trial and error. If T = 1 works well, then you may get little benefit

from more complicated T .

4. The choice of T = a has equivalence to the use of an FIR model.

5. Systematic designs for T are nonlinear and therefore not simple.

Summary: More discussion on T (z) is found in Chapter 9 on loop robustness.

2.5 FIR models

Historically these were the most common model form encountered in industrial MPC

packages although that is beginning to change.

2.5.1 Impulse response models

Take the model with inputs, outputs and disturbance u,y,d, respectively,

yk = G(z)uk + dk (2.24)
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Then the process G(z) (for the stable case which predominates in practice) can be

represented by a Tayler series in the delay operator, that is

G(z) =
∞

∑
i=0

Giz−1 (2.25)

Equivalently this sequence can be viewed as the impulse response, the expected val-

ues of the output y in the event u comprises a single impulse. As with transfer

function models, the parameters Gi can be identified using standard methods.

Disadvantages: Impulses are not used in practice so the sequence does not lend

itself to intuition. Also there may be a need for a very large number of terms for

adequate convergence.

Advantages: One can avoid issues like selection of the model order and identifica-

tion of the deadtime.

2.5.2 Step response models

A step response model is a sequence of values representing the step response of the

process and can be written as

H(z) =
∞

∑
i=0

Hiz−i (2.26)

where clearly H(z) = G(z)/∆(z). The corresponding input/output equation can be

derived from (2.24) and takes the form

yk = H(z)∆uk + dk (2.27)

The logic for getting offset free prediction follows the same lines as that given in

the previous section; that is, subtract (2.27) at the previous sample from the current

to eliminate the unknown dk. This will be discussed in more detail in the following

chapter.

Disadvantages: Include needing a very large number of terms for adequate con-

vergence. Moreover lim i→∞ Hi �= 0 in general.

Advantages: Avoiding issues like selection of model order and identification of

deadtime and being intuitive/easy to understand.

2.6 Independent models

Independent models (IM) are not a different form of model; however, it is important

to include a short discussion in this chapter because there is a key difference in
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       y 

 u 

       ŷ

Process

IM 

FIGURE 2.1
Independent model.

the philosophy of how the model is used. The difference in usage is particularly

relevant in the context of MPC, as it can give substantial changes in the closed-

loop sensitivity, although not in nominal performance. Hence it is an alternative that

should be considered. It has connections with Smith predictor ideas and internal

model control (IMC) [30].

• The IM approach is not restricted to any given model type. Use whichever

is easiest.

• Its use is equivalent to an FIR model without truncation errors.

• Even if IM is a state-space model, an observer is not required!

This topic will be considered more carefully in the next chapter on prediction, as

MPC uses the model solely to form predictions. For now it is sufficient to note that

the IM is a process model which is simulated in parallel with the process using the

same inputs; see Figure 2.1. If the process has output y, then the IM has process ŷ
which in general will be different, but similar.

2.7 Matrix-fraction descriptions

Although state-space models are usually favoured for the multi-input/multi-output

(MIMO) case, an observer is still required which is not the case with transfer function

models (although some may argue any filtering is equivalent). A MIMO transfer
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function model can be represented as a matrix fraction description (MFD) e.g.

D(z)y(z) = N(z)u(z)+
T (z)v

∆
(2.28)

where N(z), D(z) are matrix polynomials in the delay operator. In difference equa-

tion form (with T = 1) this gives

yk+1 = N1∆uk + N2∆uk−1 + · · ·+ Nl∆uk−l

−D1yk −D2yk−1 −·· ·−Dmyk−m
(2.29)

Hereafter in the context of MPC, these models can be used in the same way as SISO

CARIMA models, so long as one remembers that matrix multiplication is not com-

mutative in general. FIR models are particular forms of MFD with D(z) = I.

Disadvantages: Selection of model order/dead time to give a numerically ro-

bust identification may not be straightforward. It is likely to contain implied near

pole/zero cancellations. Minimum order model is not unique.

Advantages: It is easy to identify with standard packages and relatively small

number of parameters. No observer is required.

Remark 2.2 Recent work on subspace identification (e.g. [27]) and multi-models
[126] has strong links with MFD models.

2.8 Modelling the dead times in a process

In work that concentrates solely on modelling as an end in itself, a knowledge of

or ability to infer, the system dead time is important. It is well known from sim-

ple Nyquist stability analysis that dead times make systems harder to control and

moreover a mismatch between the assumed and actual dead time can make large dif-

ferences to control quality. A classical solution for controlling systems with large

dead times is to deploy a Smith predictor to simulate the expected value of the pro-

cess in the future and control an offset corrected version of this rather than the plant.

This gives equivalent stability margins to the process without a dead time but the

approach is of course sensitive to errors in the dead time.

MPC uses a similar strategy in that by predicting the behaviour at future points it can

deal with process dead time systematically. However, there is a key difference from

the Smith predictor which improves robustness of MPC and implies that an exact

estimate of the dead time is not as critical. The control law calculation is based on a

whole trajectory, not just a single point, hence the emphasis is placed more on where

the responses settle rather than transients. The implication for modelling is that in

co
nt

ro
len

gin
ee

rs
.ir



30 Model-based predictive control: a practical approach

the identification stage one can afford to underestimate the dead time and let the

identification algorithm insert small values against coefficients that perhaps should

be zero (as long as one avoids near cancellation of unstable pole/zero pairs). This

simplifies modelling and has a negligible effect on control design.

For instance, if the true plant were

G =
z−3(1−2z−1)

1−0.8z−1
(2.30)

then using

G =
ε z−2 + z−3(1−2z−1)

1−0.8z−1
(2.31)

even where ε is not small would often be fine in practice.

Summary: In general it is quite safe to underestimate dead time when modelling

for an MPC control law, assuming of course reasonable estimates of model order.
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3

Prediction in model predictive control

MPC algorithms make use of predictions of the system behaviour. In this chapter it

will be shown how to compute those predictions for various types of linear models.

For the reader who is not interested in the detail, simply read the results which will

be highlighted at the end of each section.

Main observation: For linear models, the predictions of future outputs are affine

in the current state and the future control increments.

3.1 General format of prediction modelling

Many papers concentrate on the details to such an extent that the simplicity of the

main result is lost. This section is intended to draw attention to it.

Define the systems state as x (this could consist of past input/output data); then a

general form of future predictions is

y→k
= H∆u→k−1

+ Px←k
(3.1)

• H is the Toeplitz matrix CG/∆ (see Section 1.4.3) of the system step response.

• P is a matrix whose coefficients depend on the model parameters in a straight-

forward but nonlinear manner.

• Look at Section 1.4 to remind yourself of the arrow notation for vectors of

future/past values.

For many users the details of how to compute H, P are not important and it is suffi-

cient to accept that this is trivial with linear models.

Summary: Once you are happy that equation (3.1) is true, you can proceed to the

next chapter. Continue with this chapter to find out more details.

31
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3.2 Prediction with state-space models

Prediction with a state-space model is straightforward. The details are given next.

Consider the state-space model which gives the one-step ahead predictions:

xk+1 = Axk + Buk; yk+1 = Cxk+1 (3.2)

One can use this relationship recursively to find predictions, for instance:

1. Write (3.2) at k + 2

xk+2 = Axk+1 + Buk+1; yk+2 = Cxk+2 (3.3)

2. Subsitute (3.2) into (3.3) to eliminate x k+1

xk+2 = A2xk + ABuk + Buk+1; yk+2 = Cxk+2 (3.4)

3. Next write the prediction at k + 3 using the two-step ahead prediction (3.4),

i.e.

xk+3 = A2xk+1 + ABuk+1 + Buk+2; yk+3 = Cxk+3 (3.5)

and again substitute from (3.2) to eliminate x k+1:

xk+3 = A2[Axk + Buk]+ ABuk+1 + Buk+2; yk+3 = Cxk+3 (3.6)

4. More generally one can continue this recursion to give the n-step ahead pre-

dictions as:

xk+n = Anxk + An−1Buk + An−2Buk+1 + · · ·+ Buk+n−1

yk+n = C[Anxk + An−1Buk + An−2Buk+1 + · · ·+ Buk+n−1]
(3.7)

Hence one can form the whole vector of future predictions up to a horizon n y as

follows:


xk+1

xk+2

xk+3

...

xk+ny




︸ ︷︷ ︸
x→k

=




A
A2

A3

...

Any




︸ ︷︷ ︸
Pxx

xk +




B 0 0 . . .

AB B 0 . . .

A2B AB B . . .
...

...
...

...

Any−1B Any−2B Any−3B . . .




︸ ︷︷ ︸
Hx




uk

uk+1

uk+2

...

uk+ny−1




︸ ︷︷ ︸
u→k−1

(3.8)
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and 


yk+1

yk+2

yk+3

...

yk+ny




︸ ︷︷ ︸
y→k

=




CA
CA2

CA3

...

CAny




︸ ︷︷ ︸
P

xk +




CB 0 0 . . .

CAB CB 0 . . .

CA2B CAB CB . . .
...

...
...

...

CAny−1B CAny−2B CAny−3B . . .




︸ ︷︷ ︸
H

u→k−1
(3.9)

Remark 3.1 These prediction equations do not consider the disturbance model ex-
plicitly. However, it can be included in a manner discussed in Section 2.3.4. That is,
use predictions (3.10) to find the nominal state feedback and then adapt the feedback
as in (2.12) to ensure offset free control.

Summary: The predictions for model (3.2) are

x→k
= Pxxxk + Hx u→k−1

y→k
= Pxk + H u→k−1

(3.10)

A worked example is given in Section A.1.1.

3.3 Prediction with transfer function models – matrix methods

The first point to note here is that there are several different ways of deriving the

prediction equations for transfer function models (e.g. [102]); some are more trans-

parent than others. This book will not contrast the different methods in detail because

they give the same prediction equations so which to use reduces to personal prefer-

ence.

Typically papers in the academic journals make use of diophantine identities to form

the prediction equations. However, this procedure tends to obscure what is actually

going on, that is prediction, and hence can be confusing for the newcomer. Moreover

the historical reason for such a preference is unclear. Instead here, use will be made

of matrix methods which are much easier to relate to prediction and hence easier to

understand and code. The cases of T (z) = 1 and T (z) �= 1 will be tackled in turn.

3.3.1 Prediction for a CARIMA model with T (z) = 1 – SISO case

As discussed in Section 2.4.2, the CARIMA model is first replaced by its incremental

form, as this allows offset free prediction in the steady state and also one can ignore
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the unknown term. Hence let the original nominal model be given as

a(z)yk = b(z)uk (3.11)

Then, with A(z) = a(z)∆(z), the incremental form of this equation is

A(z)yk = b(z)∆uk (3.12)

Define A(z),b(z) as follows where it is assumed that for a strictly proper system

b0 = 0.

A(z) = 1+ A1z−1 + A2z−2 + · · ·+ An+1z−n−1

b(z) = b1z−1 + b2z−2 + · · ·+ bnz−n (3.13)

3.3.1.1 One-step ahead prediction with T (z) = 1 – SISO case

The corresponding difference equation (or one step ahead prediction) for model

(3.12) is:

yk+1 = −A1yk −·· ·−An+1yk−n + b1∆uk + · · ·+ bn−1∆uk−n+1 (3.14)

For convenience this can be separated into components which are known (depend on

past inputs and outputs) and the d.o.f. (future input increments):

yk+1 = −[A1, · · · ,An+1] y←k
+[b2, · · · ,bn]∆u←k−1︸ ︷︷ ︸

known

+b1∆uk︸ ︷︷ ︸
d.o.f.

(3.15)

This equation gives a one-step ahead prediction for y k+1 given past data and the

current input increment ∆uk. Hence this is analogous to equation (3.2).

3.3.1.2 Many step ahead prediction with T (z) = 1 – SISO case

An obvious way to compute predictions is by recursive use of (3.15), that is to use

the same procedure as in Section 3.2 but based on one-step ahead prediction (3.15),

i.e. compute yk+1 and substitute back into (3.15) at k+2 to get yk+2, use the two-step

ahead prediction to compute yk+3, etc. Intuitively this appears straightforward, and

is computationally very efficient. However, the algebra can be notationally awkward

(see Section 3.4 for details) and hence is not the easiest procedure. There is a far

more compact, more insightful and neater way of computing the predictions which

is given next.

1. Write out the difference equation (3.14) for the next n y sampling instants.

yk+1 + A1yk + · · ·+ An+1yk−n = b1∆uk + b2∆uk−1 + · · ·+ bn∆uk−n+1

yk+2 + A1yk+1 + · · ·+ An+1yk−n+1 = b1∆uk+1 + b2∆uk + · · ·+ bn∆uk−n+2

...

yk+ny + · · ·+ An+1yk+ny+1−n = b1∆uk+ny−1 + · · ·+ bn∆uk+ny−n
(3.16)
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2. These can be placed in the following compact matrix/vector form


1 0 · · · 0

A1 1 · · · 0

A2 A1 · · · 0
...

...
...

...




︸ ︷︷ ︸
CA




yk+1

yk+2

...

yk+ny




︸ ︷︷ ︸
y→k

+




A1 A2 · · · An+1

A2 A3 · · · 0

A3 A4 · · · 0
...

...
...

...




︸ ︷︷ ︸
HA




yk

yk−1

...

yk−n




︸ ︷︷ ︸
y←k

=




b1 0 · · · 0

b2 b1 · · · 0

b3 b2 · · · 0
...

...
...

...




︸ ︷︷ ︸
Czb




∆uk

∆uk+1

...

∆uk+ny−1




︸ ︷︷ ︸
∆ u→k−1

+




b2 b3 · · · bn

b3 b4 · · · 0

b4 b5 · · · 0
...

...
...

...




︸ ︷︷ ︸
Hzb




∆uk−1

∆uk−2

...

∆uk−n+1




︸ ︷︷ ︸
∆ u←k−1

(3.17)

3. Use the Toeplitz/Hankel notation (Section 1.4) to simplify (3.17) to

CA y→k
+ HA y←k

= Czb∆u→k−1
+ Hzb∆u←k−1

(3.18)

4. From (3.18) the output predictions are

y→k
= C−1

A [Czb∆u→k−1
+ Hzb∆u←k−1

−HA y←k
] (3.19)

For convenience one may wish to represent (3.19) as

y→k
= H∆u→k−1

+ P∆ u←k−1
+ Q y←k

(3.20)

where H = C−1
A Czb,P = C−1

A Hzb, Q = −C−1
A HA. C−1

A can be computed very effi-

ciently if required as C−1
A = C1/A. So one can simply use the coefficients of the

expansion 1/A(z). An efficient realisation of the matrix computations in (3.19) is

exactly equivalent to diophantine methods [102]. A worked example is given in Sec-

tion A.1.2.

Summary: Output predictions, with T = 1, are given by

y→k
= H∆u→k−1

+ P∆ u←k−1
+ Q y←k

H = C−1
A Czb, P = C−1

A Hzb, Q = −C−1
A HA

(3.21)

The predictions can be written down explicitly in terms of the model coefficients.

3.3.2 Prediction with CARIMA model and T = 1 – MIMO case

Assume here that a matrix fraction description model is going to be deployed. One

can reuse the development of the previous subsection without the need for any further
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complication apart from the extra dimensionality. That is, the algebra has the same

complexity as given in (3.16). In place of (3.14) use the difference equation

yk+1 + D1yk + · · ·+ Dn+1yk−n = N1∆uk + N2∆uk−1 + · · ·+ Nn∆uk−n+1 (3.22)

Then replicating all the steps of Section 3.3.1.2 one can jump straight to an equivalent

matrix/vector form:

CD y→k
+ HD y←k

= CzN∆u→k−1
+CzN∆u←k−1

(3.23)

Hence, by inspection

y→k
= H∆u→k−1

+ P∆u←k−1
+ Qy←k

(3.24)

where H = C−1
D CzN , P = C−1

D HzN , Q = −C−1
D HD.

Summary: The algebraic complexity for the MIMO case is identical to the SISO

case. Predictions are given as

y→k
= H∆u→k−1

+ P∆u←k−1
+ Qy←k

(3.25)

3.3.3 Prediction equations with T (z) �= 1

It has been noted by many authors that the T-filter [21] is often essential for practical

applications of MPC based on transfer function models∗. So the following develop-

ment is important.

To skip straight to the solution go to eqn.(3.34) where the analogy with eqn.(3.21)
can be seen.

Before proceeding with the details remind yourself of the rules for algebra of Toeplitz

and Hankel matrices (Sections 1.4.3.3, 1.4.3.5). Also here we treat only the SISO

case as the algebra for the MIMO and SISO case is identical when one uses the

Toeplitz/Hankel notation for computing predictions.

3.3.3.1 Summary of the key steps in computing prediction equations

Including a T-filter the CARIMA model is given as

Ayk = b(z)∆uk + Tvk (3.26)

In the earlier sections, the effect of the term T (z)v(z) was ignored or assumed to have

an expected value of zero. Of course this is a conservative assumption as some of the

∗This is not so with FIR models and independent models e.g. [127].
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past values of vk can be inferred. One can replace (3.26) by an alternative in which

the unknown term is zero mean and unknown simply by filtering left- and right-hand

sides by T (z), i.e.
A
T

yk =
b
T

∆uk + vk (3.27)

If one uses (3.27) for prediction, then the bias due to past values of v k is removed

hence improving prediction accuracy.

Summary: The T-filter improves prediction accuracy by using model (3.27) for

prediction in place of (3.12).

Rearrange (3.27) as follows:

A[
yk

T
] = b[

∆uk

T
]+ vk ⇒ Aỹk = b∆ũk + vk (3.28)

where filtered variables are defined as

ỹk =
yk

T
; ∆ũk =

∆uk

T
(3.29)

In this way the intuitive interpretation of the T-filter is that it is used to filter in-

put/output (I/O) data before prediction. Typically 1/T (z) is a low-pass filter so the

filtering reduces the effects of high frequency noise.

The benefits of the filtering are obtained by using (3.28) for prediction in place of

(3.12), the only difference being the substitution of filtered signals for unfiltered

signals. Hence, by inspection (from eqn.(3.21)) one can write the prediction equation

for filtered variables as

ỹ→k
= H∆ ũ→k−1

+ P∆ ũ←k−1
+ Q ỹ←k

(3.30)

Unfortunately this is no use because we want predictions for y→k
in terms of ∆ u→k−1

;

that is, future signals must be unfiltered.

Summary:

1. The T-filter is usually a low-pass filter and hence improves prediction accu-

racy in the high frequency range by reducing the transference of high fre-

quency noise.

2. Use of (3.28, 3.30) gives predictions in terms of future filtered variables.

3.3.3.2 Forming the prediction equations with a T-filter using predictions (3.21)

One can easily reconstitute values for future unfiltered variables by writing the filter

equations (3.29) in Toeplitz/Hankel form:

CT ỹ→+ HT ỹ← = y→; CT ∆ ũ→+ HT ∆ ũ← = ∆u→ (3.31)
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38 Model-based predictive control: a practical approach

Substituting (3.31) into (3.30) gives:

C−1
T [ y→−HT ỹ←]︸ ︷︷ ︸

ỹ→k

= H C−1
T [∆u→−HT ∆ ũ←]︸ ︷︷ ︸

∆ ũ→

+P∆ ũ←+ Q ỹ← (3.32)

Multiplying left and right by CT and then grouping common terms gives

y→k
= H∆u→k−1

+ P̃∆ ũ←k−1
+ Q̃ ỹ←k

;

{
P̃ = [CT P−HHT ]
Q̃ = [HT +CT Q]

(3.33)

Derivation of prediction equations is very similar with and without T (z). The differ-

ences when T �= 1 are

1. Filtering on past data is used.

2. Matrices are changed as: P ⇒ P̃, Q ⇒ Q̃.

3. If P, Q are known, then P̃, Q̃ (see eqn. 3.34) can be computed very efficiently

from (3.33).

4. If P, Q are not known, use eqn. (3.40) derived below.

5. If T = 1, then HT = 0, CT = I so P = P̃, Q = Q̃.

Summary: The prediction equations with a T-filter are based on filtered values of

past data through

y→k
= H∆u→k−1

+ P̃∆ ũ←k−1
+ Q̃ ỹ←k

where ỹ = y/T, ∆ũ = ∆u/T (3.34)

Matrices P̃, Q̃ are related to P, Q of (3.21) through

P̃ = [CT P−HHT ]; Q̃ = [HT +CT Q] (3.35)

3.3.3.3 Prediction equation derivation based directly on model parameters

If one were to assume that H, P, Q were unknown and hence prediction (3.21) is

unknown, then one can derive prediction equation (3.34) directly from (3.27) and

(3.31). The development is given below. For simplicity the sample time subscript is

dropped.

From (3.18) the prediction equation for (3.27) is

CA ỹ→+ HA ỹ← = Czb∆ ũ→+ Hzb∆ ũ← (3.36)

Substituting in from (3.31) gives

CAC−1
T [ y→−HT ỹ←]+ HA ỹ← = CbC−1

T [∆u→−HT ∆ ũ←]+ Hb∆ ũ← (3.37)
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Toeplitz matrices of SISO functions commute ( e.g. CAC−1
T =C−1

T CA), therefore eqn.

(3.37) can be rearranged as follows:

C−1
T CA y→−C−1

T CAHT ỹ←+ HA ỹ← = C−1
T Czb∆u→−C−1

T CzbHT ∆ ũ←+ Hzb∆ ũ← (3.38)

Now, (i) move known terms to RHS, (ii) multiply by CT , (iii) remove cancelling

factors, (iv) multiply by C−1
A :

C−1
T CA y→ = C−1

T Czb∆u→+[Hzb −C−1
T CzbHT ]∆ ũ←+[C−1

T CAHT −HA] ỹ←
CA y→ = CTC−1

T Czb∆u→+CT [Hzb −C−1
T CzbHT ]∆ ũ←+CT [C−1

T CAHT −HA] ỹ←
CA y→ = Czb∆u→+[CT Hzb −CzbHT ]∆ ũ←+[CAHT −CT HA] ỹ←

y→ = C−1
A {Czb∆u→+[CT Hzb −CzbHT ]∆ ũ←+[CAHT −CT HA] ỹ←}

(3.39)

The predictions are now in the form of (3.34)

y→ = H∆u→+ P̃∆ ũ←+ Q̃ ỹ←;




H = C−1
A Czb

P̃ = C−1
A [CT Hzb −CzbHT ]

Q̃ = C−1
A [CAHT −CT HA]

(3.40)

Summary: The predictions with the T-filter, eqn.(3.40), can be written explicity in

terms of the model parameters.

3.4 Using recursion to find matrices H, P, Q

This section is here solely because it gives an efficient means of computing the pre-

dictions for coding purposes. You are advised to skip it unless computational effi-

ciency is more important than having compact equations. The solutions given are

identical to those that arise from diophantine methods (e.g. [21]). Although it com-

plicates notation a little, for generality the MIMO case will be given here with an

MFD model.

1. Assume an underlying difference equation for the one-step ahead prediction

yk+1 +D1yk + · · ·+Dn+1yk−n = N1∆uk +N2∆uk−1 + · · ·+Nn∆uk−n+1 (3.41)

2. Introduce notation for prediction horizon (.) [i] to denote i-step ahead prediction

such that in general

yk+i = H [i]∆u→k−1
+ P[i]∆u←k−1

+ Q[i] y←k
(3.42)
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40 Model-based predictive control: a practical approach

3. Initialise (3.42) for i = 1 from (3.41)

H [1] = [N1,0,0,0, . . .]; P[1] = [N2,N3, . . . ,Nn]; Q[1] = [−D1,−D2, . . . ,−Dn+1]
(3.43)

4. Use recursive substitution to find yk+i+1 in terms of yk+i and yk+1.

(a) Given the coefficients of the prediction equation for y k+i, compute yk+i+1

as follows:

yk+i = H [i]∆u→k−1
+ P[i]∆u←k−1

+ Q[i] y←k
⇓

yk+i+1 = H [i]∆u→k
+ P[i]∆u←k

+ Q[i] y←k+1

(3.44)

(b) Note that

Q[i] y←k+1
= [Q[i],0]

[
yk+1

y←k

]
= Q[i]

1 yk+1 +[Q[i]
2 , ...,Q[i]

n ,0]y←k

P[i]∆u←k
= [P[i],0]

[
∆uk

∆u←k−1

]
= P[i]

1 ∆uk +[P[i]
2 , ...,P[i]

n−1,0]∆u←k−1

(3.45)

(c) Substitute observations (3.45) into prediction (3.44b)

yk+i+1 = [P[i]
1 ,H [i]]∆u→k−1

+[P[i]
2 , ...,P[i]

n−1,0]∆u←k−1

+[Q[i]
2 , . . . ,Q[i]

n ,0]y←k
+ Q[i]

1 yk+1

(3.46)

(d) Substitute yk+1 from (3.42) into (3.46), to give

yk+i+1 = [P[i]
1 ,H [i]]∆u→k−1

+[P[i]
2 , ...,P[i]

n−1,0]∆u←k−1
+[Q[i]

2 , . . . ,Q[i]
n ,0]y←k

+Q[i]
1 [H [1]∆u→k−1

+ P[1]∆u←k−1
+ Q[1] y←k

]
(3.47)

(e) Finally, group common terms to give the form of (3.42) again

yk+i+1 = [P[i]
1 + Q[i]

1 H [1]
1 ,H [i]]︸ ︷︷ ︸

H[i+1]

∆u→k−1

+{[P[i]
2 , ...,P[i]

n−1,0]+ Q[i]
1 P[1]}︸ ︷︷ ︸

P[i+1]

∆u←k−1

+{[Q[i]
2 , . . . ,Q[i]

n ,0]+ Q[i]
1 Q[1]}︸ ︷︷ ︸

Q[i+1]

y←k

(3.48)

Remark 3.2 Recursion (3.48) has the same computational complexity of the matrix
approach given earlier. However it may be preferable in packages that do not support
matrix algebra.
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Remark 3.3 The overall prediction equation analogous to (3.21) is determined us-
ing

H =




H [1] 0 0 0 . . .

H [2] 0 0 . . .

H [3] 0 . . .
...

...
...

...


 ; P =




P[1]

P[2]

P[3]

...


 ; Q =




Q[1]

Q[2]

Q[3]

...


 (3.49)

Note that H [i+1] has one more nonzero column than H [i]. This was clear from the
earlier observation that H is a Toeplitz matrix CG/∆ of the step response.

Summary: Given a generic prediction equation

yk+i = H [i]∆u→k−1
+ P[i]∆u←k−1

+ Q[1] y←k
(3.50)

One can initialise with i = 1 and find the remaining prediction coefficients from the

recursion

H [i+1] = [P[i]
1 + Q[i]

1 H [1]
1 ,H [i]]

P[i+1] = [P[i]
2 , ...,P[i]

n−1,0]+ Q[i]
1 P[1]

Q[i+1] = [Q[i]
2 , . . . ,Q[i]

n ,0]+ Q[i]
1 Q[1]

(3.51)

3.5 Prediction with FIR models

FIR models are the most common models utilised in commerical MPC packages.

There is a good reason for this which will be discussed later. They are restricted to

stable processes. For now let us concentrate solely on how these models are used for

prediction. As with the other models, some care must be taken to ensure offset free

prediction in the steady-state case. Let the underlying model be

y(z) = G(z)u(z)+
v

∆(z)
; G(z) =

∞

∑
i=0

Giz
−1 (3.52)

where v is unknown. (This is equivalent to the CARIMA model with A = T .)

3.5.1 Impulse response models

These are not commonly used so are mentioned here solely for completeness. Ignor-

ing the disturbance, the model prediction for the current sample is

ŷk =
∞

∑
i=0

Giuk−i (3.53)
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Define the offset between model output ŷ k and current measurement yk:

d̂k = yk − ŷk (3.54)

Assume this offset represents the best estimate of the unknown term d k = vk
∆ . Hence

the process output predictions can be derived from

ŷk+ j =
∞

∑
i=0

Giuk+ j−i + d̂k (3.55)

The algebra is far easier than with state-space models and transfer function models

because there is no auto-regressive part in the model; predictions depend solely on

the input information. The downside of this is that the model order has to be very

high to avoid large bias errors. That is, in practice one will use

ŷk+ j = yk +
n

∑
i=0

Giuk+ j−i −
n

∑
i=0

Giuk−i︸ ︷︷ ︸
ŷk

(3.56)

and n must be large enough such that i > n ⇒ |Gi| negligible.

Remark 3.4 Offset free prediction is incorporated via the disturbance estimate d̂k.
That is, assume uk+i = uk = uk−1 + ∆uk. One can then compute ∆uk to ensure that
E[yk+i] = r, ∀i > 0 and in steady state this will be consistent iff ∆uk = 0.

3.5.2 Step response models

Prediction follows a similar technique to that for impulse response FIR. First write

the model as

yk =
G(z)
∆(z)

∆uk +
vk

∆(z)
(3.57)

where one notes that the equation contains input increments (changes in control). Let

G/∆ = ∑ ∞
i=0 Hiz−i. The predictions are given as

ŷk+i = dk +
∞

∑
j=0

Hj∆uk+i− j|k (3.58)

With yk the most recent measurement, the best estimate of dk is

yk −
∞

∑
j=0

Hj∆uk− j|k = d̂k (3.59)

Hence eliminating the unknown dk from (3.58) and using an arbitrary truncation n
give the prediction

yk+i = yk +
i−1

∑
j=0

Hi− j∆uk+ j +
n

∑
j=1

[Hj+i −Hj]∆uk− j (3.60)
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This is similar in structure to that of (3.56) except that here the neglected terms are

[Hn+i−Hn] and one must choose n large enough (theoretically n = ∞ but it is known

that Hj+i −Hj → 0 for large j) so that these are small enough.

Summary: For a step response model, the prediction takes the form

y→k
= H∆u→k−1

+ Lŷk + M∆u←k−1
(3.61)

where CH is the Toeplitz matrix of H(z) and

H = CG/∆; M =




H2 −H1 H3 −H2 H4 −H3 . . . Hn+1 −Hn

H3 −H1 H4 −H2 H5 −H2 . . . Hn+2 −Hn
...

...
...

...
...


 ; L =




I
I
...




(3.62)

3.6 Prediction with independent models

As mentioned in Section 2.6, independent models (IM or internal models) are simu-

lated in parallel with the process. The hope is that the IM will give a similar output

to the real process. Clearly in practice the two will differ due to the disturbances and

model uncertainty.

3.6.1 Structure and prediction set up with internal models

When using IM for prediction, it is equivalent to the use of an FIR model with no

truncation errors; this is because the prediction is based solely on input informa-

tion. The internal state of the IM is determined solely by past inputs (and an initial

condition whose effect in general will have decayed to zero). The advantage of IM

over FIR models is that the prediction can be made using equations (3.10) or (3.21)

instead of (3.56) or (3.62) and these involve far fewer parameters in general.

To illustrate, consider the scenario given in Figure 3.1.

1. IM a state-space model: At a given sampling instant this model has a known

state x̌k, which need not match the unknown process state x k (recall there is no

observer because the IM state is derived from a a computer simulation). From

(3.10) and the offset correction (3.54) the system predictions are given by

y→k
= Pxx̌k + H∆u→k−1

+[yk − y̌k] (3.63)

2. IM an MFD model: Use predictions (3.21) for the model and offset correction
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(3.54) to give

y→k
= H∆u→k−1

+ P∆u←k−1
+ Q y̌←k

+ L[yk − y̌k] (3.64)

It is noted with an IM there is no need for a T-filter, as one is using a model

equivalent to (3.52).

Input      Process 

      State 

      IM state 

     Process 

        IM  

FIGURE 3.1
Independent model state and process state.

3.6.2 Prediction with unstable open-loop plant

It was noted in passing that one cannot use FIR models for open-loop unstable plant,

because the sequence models would diverge. One might think that such a weak-

ness also carries over to IM in that they have an equivalence to IM models and are

simulated open-loop. The state of the IM would diverge because an input sequence

stabilising the plant is unlikely to stabilise the IM which practically, due to uncer-

tainty, will be different.

3.6.2.1 Decomposition for IM

Practitioners who use IM for commerical packages (e.g. ADERSA) have produced a

simple mechanism for getting around this. Here an illustration is given for the SISO
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case only. First decompose the system as follows:

G =
M1

1−M2

(3.65)

where M1, M2 are both stable transfer functions. Such a decomposed system can be

represented by the block diagram of Figure 3.2 where y m is the output of the model.

Simulating Figure 3.2 would be identical to simulating G and gives no benefit. How-

ever, postulate that the output y of the process should match that of the IM (that is

y = ym); in this case one can replace the positive feedback loop by a simple transfer-

ence from the plant output, as in Figure 3.3. Assuming that the process is stabilised,

then the IM output ym must also be stable because by definition both M1, M2 are

stable.

1M

2M

w

z

myu

+

+

FIGURE 3.2
Block diagram of IM decomposition for unstable open-loop plant.

FIGURE 3.3
Block diagram of IM simulation for unstable open-loop plant.
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3.6.2.2 Selection of decomposition

The best way to decompose is still an open question. A convenient means which is

assumed hereafter is given next.

G =
n
d

=
n+n−
d+d−

; M1 =
n+

d−
; M2 =

b2

n−
; b2 = n−−d+ (3.66)

where n+, d+ are the numerator/denominator factors, respectively, containing roots

outside the unit circle (unstable). It is clear that both M1 and M2 have stable poles.

3.6.2.3 Prediction using decomposed IM

For those who do not like algebra, go straight to the result (3.75) which is relatively
easy to code.

Actually prediction with the IM represented in Figures 3.2, 3.3 is not simple. One

would only go this route if one thought that there are significant benefits from using

an IM as opposed to say a more typical state-space model with an observer or a trans-

fer function model with a T-filter. The benefits of IM are clear for stable processes

[127], but although expected have not been clearly demonstrated in this case. Further

discussion of this will be given in a later section on sensitivity.

First establish how an IM is used on a real application.

• The open-loop simulation deploys Figure 3.3 and hence defines the variables

w and z.

• Prediction is based on Figure 3.2 (as future y are unknown hence Figure 3.3

cannot be used). The values of w,z in Figure 3.2 are re-intialised at each sam-

pling instant from those in Figure 3.3.

Set up prediction equations around M1 and M2 separately:

Cd−w→ = Cn+ u→+ Hn+ u←−Hd−w←
Cn− z→ = Cb2

[ym→ + d̂]+ Hb2
y←−Hn− z←

ym→ = z→+ w→
y→ = y→m

+ d̂

(3.67)

where d̂ represents a correction for offset which is used in IM based MPC (and DMC

etc.) to ensure integral action. Define

d̂ = L( y←− z←−w←) (3.68)

where L is a vector of ones. For convenience (to ensure that J = 0 is consistent with

zero offset) it is usual to express the d.o.f. in terms of future input increments (rather

than absolute inputs), hence

u→ = E∆ u→+ Lu← (3.69)
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where E = C1/∆ is a lower triangular matrix of ones. One can then rewrite (3.67) as

Cd−w→ = Cn+(E∆ u→+ Lu←)+ Hn+ u←−Hd−w←
Cn− z→ = Cb2

[ z→+ w→+ L( y←− z←−w←)]+ Hb2
y←−Hn− z←

ym→ = z→+ w→
y→ = ym→ + L( y←− z←−w←)

(3.70)

Summary: With an IM of an unstable process, open-loop prediction reduces to the

solution of the simultaneous equations in (3.68, 3.70).

3.6.2.4 Algebraic solution for prediction equations (3.70)

In the first instance, solve the simultaneous equations (3.70) for ym→ :

[I−C−1
n− Cb2

]ym→ = { C−1
d− [Cn+(E∆ u→+ Lu←)+ Hn+ u←−Hd−w←]

+C−1
n− [Cb2

L( y←− z←−w←)+ Hb2
y←−Hn− z←]} (3.71)

However, note that [I −C−1
n−Cb2

] = Cd+C−1
n− and hence:

ym→ = C−1
d+

Cn−{ C−1
d− [Cn+(E∆ u→+ Lu←)+ Hn+ u←−Hd−w←]

+C−1
n− [Cb2

L( y←− z←−w←)+ Hb2
y←−Hn− z←]}

= C−1
d+

C−1
d− { Cn− [Cn+(E∆ u→+ Lu←)+ Hn+ u←−Hd−w←]

+Cd− [Cb2
L( y←− z←−w←)+ Hb2

y←−Hn− z←]}
(3.72)

Putting common terms together gives

y→m
= C−1

d { Cn− [Cn+E∆ u→+(Cn+L+ Hn+)u←]
−(Cn−Hd− +Cd−Cb2

L)w←+Cd−(Cb2
L+ Hb2

) y←−Cd−(Cb2
L+ Hn−) z←}

(3.73)

Finally adding in the equation y→ = y→m
+ L( y←− z←−w←) and tidying up gives

y→ = H∆u→+ Pu u←+ Pww←+ Py y←+ Pz z←
H = C−1

d CnE
Pu = C−1

d (CnL+Cn−Hn+)
Pw = −C−1

d (Cn−Hd− +Cd−Cb2
L)−L

Py = C−1
d Cd−(Cb2

L+ Hb2
)+ L

Pz = −C−1
d Cd−(Cb2

L+ Hn−)−L

(3.74)
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Summary: The prediction equations for Figures 3.2, 3.3 can be sum-

marised in a neat form corresponding to (3.1), that is

y→ = H∆u→+ Mv;

M = [Pu,Pw,Py,Pz];
v =




u←
w←
y←
z←


 (3.75)

Clearly there is a nice separation between the part H∆ u→ depending on

the d.o.f. (often called ‘forced response’) and the notional ‘free re-

sponse‘ part Mv, i.e. the response should the input remain unchanged.

3.7 Numerically robust prediction with open-loop unstable plant

This section takes its content from two main publications [104, 113]. Some illustra-

tion of this is given in Section 7.5.2. The key warnings follow.

Warnings:

• Open-loop prediction of unstable processes often leads to poor numerical

conditioning of MPC problems.

• Poor conditioning can result in arbitrary values and at best severely subopti-

mal values for the control law coefficients.

• If you have an unstable open-loop process, analyse your controller and inter-

mediate computations carefully.

The proposal given here is a simple way of reducing numerical ill-conditioning. If

the system is open-loop unstable, then you must use pseudo closed-loop predictions;

that is, prestabilise the plant before predicting. The choice of prestabilisation is not

critical though different choices have different advantages. The mechanics/algebra

for this is also fairly straightforward and will be explained next.

Key message: Use prestabilised predictions to ensure correct calculation of the

control law.

3.7.1 Why is open-loop prediction unsatisfactory?

With an unstable process, the open-loop step response is divergent. Hence consider

the matrix H which comprises the Toeplitz matrix of the step response. This will
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contain some very small numbers in the upper rows and some very large numbers

in the lower rows. The end result is a matrix with worsening conditioning as the

horizons increase and notably it is usual in MPC to deploy large horizons.

Due to computer rounding, manipulations of H would always create further round

off errors. For a well-conditioned matrix this is unimportant. However, if a matrix is

poorly conditioned, these round-off errors can make a large difference to the result.

If matrices H,P,Q,Px are poorly conditioned, they may not be reliable for use in an

MPC control law. This is particularly true of H for which a typical manipulation is

M = (HT H + I)−1HT (3.76)

So if H has very large coefficients and poor conditioning, the matrix (H T H + I)
may become near rank deficient to within computer accuracy and cannot be inverted

reliably.

Summary: If you have an open-loop unstable plant and insist on using open-loop

predictions, either: (i) use small horizons or (ii) check very carefully the condition-

ing of your calculations.

3.7.2 Prestabilisation and pseudo closed-loop prediction

Although there are many alternative ways of prestabilising, here we will illustrate

briefly just two. Further discussion is given in Chapter 7.

1. Select the future control trajectory ∆ u→ to cancel any unstable poles. ([42, 94,

107]).

2. Choose a stabilising feedback and pseudo closed-loop prediction.

For those concerned about the terminology pole cancellation, this is done in a reced-

ing horizon sense (via feedback) and so is not vunerable to small errors due to model

uncertainty. In this section, illustrations are given of how this can be done.

3.7.2.1 Prestabilisation by pole cancellation

Take for example purposes the prediction equations (3.19).

1. Decompose the open-loop poles as

A(z) = A+(z)A−(z) (3.77)

where A+ contains all the unstable poles.

2. Rewrite the prediction terms of the equivalent z-transforms using:

y→(z) = [1 z−1 z−2 . . .] y→; ∆u→(z) = [1 z−1 z−2 . . .]∆u→ (3.78)

Note that this implicitly gives the predictions for an infinite horizon.
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3. Take the equation

CA y→ = Cb∆u→+ Hb∆u←−HA∆u← (3.79)

In transfer function form this is equivalent to

y→(z) =
[1 z−1 z−2 . . .](Cb∆u→+ Hb∆u←−HA∆u←)

A(z)
=

b(z)∆ u→(z)+ p(z)

A(z)
(3.80)

where p = [1 z−1 z−2 . . .](Hb∆u←−HA∆u←).

4. Rewrite the output predictions as

y→(z) =
b(z)∆ u→(z)+ p(z)

A+(z)A−(z)
(3.81)

from which it is clear that the output predictions are stable if and only if

b(z)∆ u→(z)+ p(z) = A+ φ (z) (3.82)

where φ (z) is stable.

5. Eqn.(3.82) sets limitations on the possible choices of future control increments

which are dependent on initial conditions given in p(z).

(a) First find the minimal order solution to eqn.(3.82) assuming that both

∆u→(z), φ (z) are polynominals from

[Γb,ΓA+]

[
∆u→
φ

]
= p ⇒

[
∆u→
φ

]
=

[
P1

P2

]
p;

[
P1

P2

]
= [Γb,ΓA+]−1

(3.83)

(b) The dimensions nu, n φ of the vectors ∆ u→, φ are determined from:

nu + n φ = nb + nu = nA+ + n φ (3.84)

(c) As hinted before, matrices Γb,ΓA+ have dimensions to give consistency

and if necessary p is packed with zeros.

(d) The d.o.f. in the choices for ∆ u→(z), φ (z) are as follows:

∆u→ = ΓA+ c→; φ = Γb c→ (3.85)

This is because these choices give b(z)∆ u→(z) = A+ φ (z); c→ can be any

stable sequence (FIR or IIR).

(e) Equations (3.83, 3.85) imply that the overall solutions are given as

∆u→ = P1 p+ ΓA+ c→; φ = P2 p+ Γb c→ (3.86)
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Summary: The choice of future control trajectory

∆u→ = P1 p+ ΓA+ c→ (3.87)

guarantees the stability of the output prediction which is given from

y→(z) =
[1,z−1, . . .](P2 p+ Γb c→)

A−(z)
(3.88)

Remark 3.5 Care has been taken in this chapter to show that all the transfer func-
tion based prediction equations can be expressed in the form of (3.1) where H =
C−1

A Cb. Hence the observations above are applicable to them (including (3.75)) by
appropriate change of p. For the interested reader, a specific application of the pre-
dictions of (3.75) using the structure in the problem appears in [133].

3.7.2.2 Pole cancellation for the state-space case

In the state-space case, one needs to do an eigenvalue/vector decomposition to iden-

tify the unstable manifold. Hence define

A = [W+,W−]
[

Λ + 0

0 Λ −

][
V T

+
V T−

]
(3.89)

Now one can decouple the stable and unstable predictions (in the free mode, that is

with ∆ u→ = 0) as

xk+n = W+ Λ n
+V T

+ x0︸ ︷︷ ︸
divergent

+W−V T
− [An−1B, ...,B]∆ u→︸ ︷︷ ︸

convergent

(3.90)

From this is is clear that there is a need to parameterise the future control trajectory

so that the part of x→ in the unstable manifold goes to zero, at some point beyond the

control horizon (number of control moves in the prediction). Then there can be no

divergent component in the predictions. Hence ∆ u→ should be chosen subject to the

condition that:

V T
+ xk+nu = 0 ⇒ V T

+ (Anux+[Anu−1B, ...,B]∆ u→) = 0 (3.91)

Remark 3.6 The weakness of condition (3.91) is that it contains terms A n which are
divergent and hence should not be used for large n. However, neat ways around this
do not give much additional insight for this book given the developments in Section
3.7.2.1, Chapter 7 (and [113]) and hence are omitted.

Remark 3.7 Numerical comparisons that illustrate the potential benefits of using
pseudo pole cancellation in the prediction stage are given in Chapter 7.
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52 Model-based predictive control: a practical approach

Summary: If you have an unstable closed-loop process, it maybe unwise to use

open-loop predictions. Instead use some of the d.o.f. in the future control trajectory

to prestabilise the predictions. This ensures a better conditionned problem.

3.8 Pseudo closed-loop prediction

This is an alternative to prestabilisation by pole cancellation which gives equivalent

benefits in numerical conditioning, but has additional advantages with respect to

optimality and stability analysis. For now, this book will not give any further details

and the reader is referred to Chapter 7. The reader is left with the summary that one

first prestabilises the process and then uses the inputs to the prestabilised loop as the

d.o.f. in the predictions.
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4

Predictive control – the basic algorithm

The purpose of this chapter is to give a brief summary of a standard predictive control

algorithm. Most emphasis will be placed on generalised predictive control (GPC

[21]), as the majority of standard algorithms are very similar in principle, the minor

differences are mainly due to modelling/prediction assumptions. Brief sections will

illustrate the changes required for other variants such as the popular industrial choice

dynamic matrix control (DMC).

4.1 Summary of main results

For those readers who are interested in the results and do not want to read through the

detail, they are given now. The details of how to compute the controller parameters

follow in this chapter.

1. In the absence of constraints, a GPC control law reduces to a fixed linear feed-

back.

(a) For transfer function based predictions, the control law takes the form:

Dk(z)∆u = Pr(z)r−Nk(z)y (4.1)

(b) For state-space based predictions, the control law takes the form:

u−uss = −K(x−xss) (4.2)

2. In the presence of constraints the optimum predicted control trajectory is de-

fined through the on-line solution of a quadratic programming problem which

takes the form:

min
∆u→

∆u→
T S∆u→+ ∆u→

T p s.t. C∆u→−d ≤ 0 (4.3)

where S is positive definite and p, d are time varying (dependent on the current

state).

53
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FIGURE 4.1
Tracking errors.

4.2 GPC algorithm – the main components

This section gives an overview of the main components in a predictive control law.

Use of these components to form the parameters of the control law then follows in

the later sections.

4.2.1 Performance index and optimisation

The control law is determined from the minimisation of a 2-norm measure of pre-

dicted performance. A typical performance index (or cost function) is

J = ∑ ny
i=nw

‖rk+i −yk+i‖2
2 + λ ∑ nu−1

i=0 ‖∆uk+i‖2
2

= ∑ ny
i=nw

‖ek+i‖2
2 + λ ∑ nu−1

i=0 ‖∆uk+i‖2
2

(4.4)

That is:
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FIGURE 4.2
Input and input increments.

• Sum the squares of the predicted tracking errors from an initial horizon ∗ nw to

an output horizon ny.

• Sum the squares of the control changes over the horizon n u.

It is assumed that control increments are zero beyond the control horizon, that is

∆uk+i|k = 0, i ≥ nu (4.5)

4.2.1.1 Visualisation of terms in the performance index

The terms in the performance index are easy to visualise in graphical form. Assume

a sampling instant of 1 sec; then:

• Figure 4.1 illustrates the first four tracking errors e i.

• Figure 4.2 illustrates the control moves for nu = 3 (denoted by the double-sided

arrows).

∗It is common to assume nw = 1 and this is the default assumed hereafter.
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The aim of the performance index is to minimise a weighted sum of squares of these

terms. Clearly the minimum performance index, that is J = 0, is consistent with

offset free tracking, as it implies that both e→ = 0 and the control is unchanging.

4.2.1.2 Compact representation of the performance index

The cost function is often better represented in more compact notation (e.g. see

equations 1.1) using vectors and matrices. Hence J from (4.4) can be written as

J = ‖ r→− y→‖2
2 + λ ‖∆u→‖2

2 = ‖ e→‖2
2 + λ ‖∆u→‖2

2 (4.6)

4.2.1.3 The optimisation

The degrees of freedom (d.o.f.) which can be used to minimise J are the future

control moves, typically the first nu control moves. Hence the on-line control law is

determined from the minimisation of the cost J w.r.t the n u future control moves, that

is ∆u→. This minimisation is denoted as

min
∆u→

J = ‖ e→‖2
2 + λ ‖∆u→‖

2
2 (4.7)

Of the optimising ∆ u→, only the first element, that is ∆uk, is implemented as the

optimisation is repeated (updated) at each sampling instant.

Summary: The cost to be minimised at each sampling instant usually takes the

form of (4.6).

min
∆u→

J = ‖ e→‖2
2 + λ ‖∆u→‖2

2 (4.8)

4.2.2 Restrictions on the predicted future control trajectory

It is important to note the restriction (4.5) placed on the class of future input trajec-

tories. This has significant repercussions on the structure of the prediction equations

summarised in (3.1). It is noted that the matrix H multiplies upon ∆ u→. Also for

convenience the previous chapter allowed that H was square and that it multiplied on

the entire future sequence of control moves.

Hence, the prediction equations assume that

H∆u→ =




h0 0 0 . . . 0 . . . 0

h1 h0 0 . . . 0 . . . 0
...

...
...

...
...

...
...

hny−1 hny−2 hny−3 . . . hny−nu . . . h0







∆uk|k
∆uk+1|k

...

∆uk+nu−1|k
...

∆uk+ny−1|k




(4.9)
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However, the restriction (4.5), that is ∆uk+nu+i|k = 0, i ≥ 0, implies that

H∆u→ =




h0 0 0 . . . 0

h1 h0 0 . . . 0
...

...
...

...
...

hny−1 hny−2 hny−3 . . . hny−nu




︸ ︷︷ ︸
Hth




∆uk|k
∆uk+1|k

...

∆uk+nu−1|k


 (4.10)

where Hth constitutes only the first nu columns of H. Hereafter, for convenience,

wherever the reader sees the prediction equation H∆ u→, it can be assumed that H is

tall and thin, that is H = Hth.

Summary: In the term H∆ u→ of the prediction equations (e.g. (3.1)) it is assumed

that H is block dimension ny ×nu and the vector ∆ u→ comprises block nu terms.

4.2.3 The receding horizon concept

The terminology receding horizon is often applied to predictive control because one

can imagine an MPC law as using a receding horizon, that is a horizon that is con-

stantly moving away, although at the same speed at which you are moving. For

instance

1. At sample k, the control law optimises predicted performance over the time

span

k + 1 ≤ t ≤ k + ny

2. At sample k + 1, the control law optimises performance over the time span

k + 2 ≤ t ≤ k + ny + 1

Clearly the time span over which the optimisation takes place is always moving

(receding). At the current sample one takes into account points that previously were

beyond the time span. This is illustrated in Table 4.1 where clearly the start point

and end point of the costing horizon recede.

4.2.4 Constraints

One of the major selling points of MPC is its ability to take systematic account of

constraints, as these can easily be incorporated into the optimisation of (4.8). In

many systems it is common to have constraints such as upper and lower limits on the

input, e.g.

ui ≤ ui ≤ ui (4.11)
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TABLE 4.1

Illustration of receding horizon

Sampling instant Horizon window

0 1 2 3 4 5 6 7 8

0 ✲
1 ✲
2 ✲
3 ✲
...

...

On the input rates

∆ui ≤ ∆ui ≤ ∆ui (4.12)

One can also have constraints on outputs and states, e.g.

xi ≤ xi ≤ xi; y
i
≤ yi ≤ yi (4.13)

Some constraints may even be a mixture of several outputs, for instance

y1 + y2 ≤ y1,2 (4.14)

In this book we will take it for granted that optimisation (4.8) is in practice imple-

mented as

min
∆u→

J s.t. constraints (4.15)

where the constraints will depend on the process, but in general are assumed to be

linear in the d.o.f. ∆ u→. Hence (4.15) is a quadratic program, as the performance

index is quadratic in the d.o.f. and the constraints are linear in the d.o.f. More details

will be given later in this chapter.

Summary: The standard MPC optimisation (4.15) is a quadratic programming

problem. It is accepted that this is a tractable problem in general, exceptions being

processes with fast sampling rates or using large numbers of d.o.f.

4.2.5 Multivariable systems

The performance index J is written in such a way that it automatically allows for

multivariable systems. The advantage of this is that MPC is a systematic design tool

for handling interaction and stabilising multivariable systems. Very few alternatives

are as systematic. In simple terms, MPC gives the best predicted performance by

way of the objective set J for the given model. Implicitly interaction is dealt with

in that high interaction would give high values of J and not be optimal. Likewise,
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predictions giving poor performance would not be optimal for sensibly chosen hori-

zons.

In general there is always interaction in multivariable systems and moreover one

may find that one loop is faster or more tightly controlled than another. These effects

could be accentuated when the cost J is poorly selected. MPC algorithms have a

facility to counter these undesirable effects, that is augmenting J with more specific

weighting matrices (the original weighting λ in (4.6) is only scalar). For instance,

rewrite J as

J =
ny

∑
i=nw

‖Wy(rk+i −yk+i)‖2
2 + λ

nu−1

∑
i=0

‖Wu(∆uk+i)‖2
2 (4.16)

where matrix weights Wy, Wu are positive definite and diagonal. These weights can

even vary (usually increase) with the horizon i though such a complication would

rarely be justified, as the increase in the number of design parameters to select often

gives negligible benefits. Often the sensitivity of the resulting controller parameters

to the weights can be quite small so one may need to change the weights by an order

of magnitude to see a significant effect.

The design/tuning of the diagonal elements of Wy, Wu to get a balance in the tracking

performance of each loop and input activity of each loop, although straightforward

in principle, can be tedious. In order to give a good start point it may be wise to first

normalise all the signals in J so that the movement nought to one is equivalent in

each loop and then initialise with Wy = I, Wu = I.

Note that the definition of best trade-off between response times in each loop and the

size of the interactions is somewhat arbitrary unless one can produce a mathematical

measure. If such a measure exists then MPC may well be able to use it directly but

that topic is outside the scope of this book.

Summary: MPC incorporates weights that allow a systematic design procedure

for handling interaction in multivariable systems.

4.2.6 The use of input increments and obtaining integral action

The way that MPC incorporates integral action may seem a little obscure, so this

section attempts to give a simple explanation. To get offset free tracking:

1. In steady state, the minimum of J must be consistent with zero tracking errors.

2. If the plant is in steady state with zero tracking errors, the predicted control

move to maintain zero tracking errors must be zero. That is, the predictions

must be unbiased.

The reader will note that there are two issues implicit in the above: (i) using a well-

posed performance index and (ii) having unbiased predictions in steady state. It is
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easy to demonstrate why either of the above assumptions will cause offset in the

closed-loop.

If the performance index is not set up so that the minimum (in steady state) cor-

responds to zero tracking error, then the converse must occur; that is, the optimum
control will necessarily cause offset. One will note that J of (4.4) is well posed and

this comes about by the use of ∆ u→ rather than u→. Hence, in steady-state, the min-

imum, J = 0, is given by r→ = y→ and ∆u→ = 0, that is, no predicted offset and no

predicted change in the input.

The second issue is the need for unbiased predictions and this was discussed in the

previous chapter. Assume that one is in steady state and r = y and ∆ u← = 0. One then

wants that with ∆u→ = 0 the prediction model should give r→ = y→, regardless of any

differences between the model and the process due to uncertainty and disturbances.

This bias free prediction can be achieved by using the incremental model (see earlier

chapter), as this is defined only to predict changes about the current values and does

not use any information about the current absolute value of the input. Hence it is not

susceptible to mismatch between model and process gains.

Summary:

1. If one uses tracking errors and control increments in the performance index,

it will be well posed for ensuring offset free tracking in the control law.

2. Incremental models, those containing an internal disturbance model, give un-

biased predictions in the steady state. This is essential for ensuring effective

integral action in an MPC control law.

4.2.7 Eliminating tracking offset while weighting the inputs

One might ask: would using a performance index which weighted the inputs rather

than the input increments conflict with the desire for integral action? The simple

answer is that it would. Hence a performance index

J =
ny

∑
i=nw

‖rk+i −yk+i‖2
2 + λ

nu−1

∑
i=0

‖uk+i‖2
2 (4.17)

would not be well posed in general as rk+i = yk+i and ut+i = 0 will be inconsistent

most of the time and hence minimising (4.17) cannot give offset free tracking †. The

best minimum in the steady state would form a comprismise between the norms of

r−y and u and hence r−y �= 0.

†An exception is if the process already has integral dynamics so that ut+i = 0 in steady state for any

setpoint and disturbance.
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If one wants to avoid the use of input increments, then one alternative is to include

weights on the distance of the inputs from their steady-state values u ss, e.g.

J =
ny

∑
i=nw

‖rk+i −yk+i‖2
2 + λ

nu−1

∑
i=0

‖uk+i −uss‖2
2 (4.18)

as then rk+i = yk+i and uk+i = uss are consistent and the minimum J = 0 occurs with

no offset. Of course one then needs a model that gives unbiased predictions for the

pair yt+i, uss. Models for giving such unbiased estimates of u ss were discussed in

Section 2.3.4.3 on state-space models.

Summary: The use of both performance indices (4.4) and (4.18) allow offset free

control given unbiased predictions.

4.2.8 Links to optimal control

It is recognised that predictive control falls into the class of optimal control laws.

However, whereas a true optimal control uses ny = nu = ∞ in the performance index,

MPC algorithms tend not to make such assumptions (see Chapter 6 for exceptions).

Hence, in practice MPC is suboptimal. However, if ny −nu is greater than the open-

loop settling time and nu ≥ 5‡, the differences are usually slight and unimportant in

practice. The link to optimal control can be used to give a priori stability guarantees

and this is discussed later.

Summary: For large ny − nu and large nu, GPC gives near identical control to an

optimal control law with the same weights. For small ny − nu and small nu the

resulting control law maybe severely suboptimal.

4.3 GPC algorithm formulation for transfer function models

This section is written assuming an MFD model and hence the SISO case is automat-

ically included. The constraint free case only is considered next. First an outline is

given of how to compute the GPC control law. For simplicity of notation the sample

time subscript (.)k is omitted except where it is not implicit.

4.3.1 Steps to form a GPC control law

Step 1. Define the vector formulation of the cost eqn.(4.6)

J = ‖ r→− y→‖2
2 + λ ‖∆u→‖

2
2 (4.19)

‡This is a rather arbitrary value and should be treated as such.
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Step 2. Substitute y→ from eqn.(3.25) into (4.19)

J = ‖ r→−H∆u→−P∆u←−Qy←‖2
2 + λ ‖∆u→‖

2
2 (4.20)

Note (see Section 4.2.2) that H is tall and thin to take account of the fact that

∆uk+i = 0, i ≥ nu.

Step 3. State the required minimisation after expanding (4.20):

min
∆u→

J = ∆u→
T (HT H + λ I)∆u→+ 2∆u→

T HT [P∆u←+ Qy←− r→]+ k (4.21)

k = ‖ r→−P∆u←−Qy←‖2
2 contains terms that do not depend upon ∆ u→ and hence

can be ignored.

Step 4. Note that the performance index is quadratic (and always positive)

and hence has a unique minimum which therefore can be located by setting

the first derivative to zero:

dJ
d∆u→

= 2(HT H + λ I)∆u→+ 2HT [P∆u←+ Qy←− r→] (4.22)

dJ
d∆u→

= 0 ⇒ ∆u→ = (HT H + λ I)−1HT [ r→−Py←−Q∆u←] (4.23)

Step 5. The GPC control law is defined by the first element of ∆ u→, i.e. ∆uk =
eT

1 ∆u→, eT
1 = [I,0,0, ...,0].

∆uk = eT
1 (HT H + λ I)−1HT [ r→−Py←−Q∆u←] (4.24)

Summary: The computation (4.24) is recalculated at each sampling instant and

therefore the control law is

∆uk = Pr r→−Nk y←− Ďk∆u← (4.25)

where
Pr = eT

1 (HT H + λ I)−1HT

Nk = eT
1 (HT H + λ I)−1HT P

Ďk = eT
1 (HT H + λ I)−1HT Q

(4.26)

4.3.2 Transfer function representation of the control law

For implementation purposes, the formulation given in (4.25) is ideal and no fur-

ther manipulations are required. However, for the purposes of closed-loop stability
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analysis, it is easier first to represent (4.25) in transfer function form. Given

Nk = [Nko,Nk1,Nk2, . . . ,Nkn]
Ďk = [Dko,Dk1,Dk2, . . . ,Dkm]
Pr = [Pr1,Pr2,Pr3, . . . ,Prny ]

(4.27)

define
Nk(z) = Nko + Nk1z−1 + Nk2z−2 + · · ·+ Nknz−n

Ďk(z) = Ďko + Ďk1z−1 + Ďk2z−2 + · · ·+ Ďkmz−m

Pr(z) = Pr1z+ Pr2z2 + Pr3z3 + · · ·+ Prnyz
ny

Dk(z) = 1+ z−1Ďk(z)

(4.28)

Then, noting the definitions (1.1, 3.21) of u←, y←, r→, the control law can be imple-

mented in the following fixed closed loop form.

Dk(z)∆uk = Pr(z)rk −Nk(z)yk (4.29)

It should be noted that Pr(z) is an anticausal operator; that is, it uses future values of

r. If these are unknown, simply subsitute the best available estimate, for instance the

current value.

Remark 4.1 We note [109] that the default choice for Pr given in GPC is often poor
and better alternatives exist when advance knowledge is available. It is often as
convenient to adopt a performance index

J = ‖y→‖2
2 + λ ‖∆u→‖

2
2 (4.30)

and cater for tracking (i.e. nonzero r) by alternative means. For instance, if no
advance knowledge of the set point is given, then we must have Pr = Nk(1).

Summary: In the absence of constraints, GPC reduces to a known and fixed linear

feedback law with feedforward.

Dk(z)∆uk = Pr(z)rk −Nk(z)yk (4.31)

4.3.3 Closed-loop transfer functions

In order to do a sensitivity or closed-loop pole analysis, one may want to find the

closed-loop transferences. These are of course easy to derive given the control law

(4.31). However, for completeness, this section outlines the transference from r to y.

The argument (.)(z) is omitted to improve readability.

Let the MFD model Dy = Nu be written in two forms

N̂D̂−1 = D−1N ⇒
{

y = N̂D̂−1u
y = D−1Nu

(4.32)
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The equations in the loop are:

y = N̂D̂−1u︸ ︷︷ ︸
Model

; Dk∆u = Prr−Nky︸ ︷︷ ︸;

Controller

(4.33)

Therefore

[Dk∆]u = Prr−NkN̂D̂−1u ⇒ [Dk∆D̂+ NkN̂]D̂−1u = Prr (4.34)

Hence
u = D̂[Dk(z)∆D̂+ Nk(z)N̂]−1Pr(z)r
y = N̂[Dk(z)∆D̂+ Nk(z)N̂]−1Pr(z)r

(4.35)

Clearly the closed-loop poles depend on det(Dk(z)∆D̂+ Nk(z)N̂).

Remark 4.2 In general matrix multiplication is not commutative, i.e. AB �= BA.
Hence in the manipulations of this section, one must be careful to preserve the order
of the operations.

Summary: Given (4.31, 4.32), the closed-loop poles can be derived from

Pc(z) = Dk(z)∆D̂+ Nk(z)N̂ (4.36)

4.3.4 GPC based on MFD models with a T-filter (GPCT)

The reader will recall that the inclusion of a T-filter modified the prediction equa-

tions, so that one would use predictions (3.33) in place of (3.21). Therefore there is

a need to redo the algebra of Section 4.3.1 using the modified predictions. However,

it is also clear that the only change in the prediction equations is as follows:

(Py←+ Q∆u←) → (P̃ ỹ←+ Q̃∆ ũ←) (4.37)

Therefore one can simply substitute this change into (4.25) and derive the modified

control law accordingly.

By analogy with (4.25, 4.26), the corresponding control law takes the form:

∆uk = Pr r→− Ďk∆ ũ←− Ñk ỹ←{
Ďk = [I,0,0, ...][HT H + λ I]−1HT P̃
Ñk = [I,0,0, ...][HT H + λ I]−1HT Q̃

(4.38)

Substituting ũ = u/T, ỹ = y/T and rearranging into a more conventional form in

terms of z-transforms (as in Section 4.3.2) and omitting the argument .(z), gives:

[1+
Ďk

T
]∆u = Prr− Ñk

T
y (4.39)
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or more conveniently

D̃k∆
T

u = Prr− Ñk

T
y; D̃k = T + Ďk (4.40)

Note that the corresponding control parameters for GPC (D k and Nk) and GPCT (D̃k

and Ñk will be different, as T �= 1 implies P̃ �= P, Q̃ �= Q — see equation (3.33).

Nevertheless, in the absence of model uncertainty and disturbances, control laws

(4.31, 4.40) give identical tracking performance.

One can form the closed-loop poles arising from combining model (4.32) with con-

troller (4.40) by analogy to (4.35). Clearly by inspection:

u = D̂T [D̃k∆D̂+ ÑkN̂]−1Prr
y = N̂T [D̃k∆D̂+ ÑkN̂]−1Pr(z)r

(4.41)

where one notes that the only differences are the insertion of T and the use of D̃k and

Ñk in place of Dk and Nk. The closed-loop poles are given by

P̃c = D̃k(z)∆D̂+ Ñk(z)N̂ (4.42)

Remark 4.3 There is a relationship between P̃c and Pc of (4.36). In the nominal
case (4.35) and (4.41) must be identical because an identical performance index
was minimised with identical d.o.f. Hence the roots of P̃c include the roots of T .

Remark 4.4 Performance of (4.35) and (4.41) differs for the uncertain case, that
is when N̂, D̂ do not correspond to those used for forming the prediction equations
(3.21) and (3.33) or when there are disturbances. This is because in such a case
GPC and GPCT will be using different predictions and hence the optimisations give
differing answers.

Summary: The z-transform representation of the control laws for GPC, GPCT are

summarised in the table below.

Control laws Closed-loop pole polynomial
GPC Dk∆u = Prr−Nky Dk(z)∆D̂+ Nk(z)N̂

GPCT
D̃k

T
∆u = Prr− Ñk

T
y D̃k(z)∆D̂+ Ñk(z)N̂

4.4 Predictive control with a state-space model

This section gives two alternative means of setting up a state-space based predictive

control law based on either state augmentation and performance index (4.6) or no
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state augmentation and performance index (4.18). It is assumed that having gained

some expertise, readers will be able to modify what is included here to meet their

own aims.

4.4.1 Simple state augmentation

In the transfer function case use is made of an incremental model and this automat-

ically is written in terms of input increments which can be substituted into a cost

function of the type (4.4). In the state-space case it is more usual to use state aug-

mentation of the model, in essence making uk an additional internal state and ∆u
the input d.o.f. One can achieve this by rewriting the state-space equation. Several

means of doing this have been proposed, for example one can use the augmented

state-space model [
xk+1

uk

]
=

[
A B
0 I

]
︸ ︷︷ ︸

Â

[
xk

uk−1

]
︸ ︷︷ ︸

x̂

+
[

B
I

]
︸︷︷︸

B̂

∆uk

yk = [C D]︸ ︷︷ ︸
Ĉ

[
xk

uk−1

]
+ D∆uk + dk

(4.43)

To ensure no bias in steady-state predictions, this model should satisfy prediction

consistency conditions (Section 4.2.6); that is

y = r and ∆u = 0 (4.44)

As the disturbance dk varies, the implied steady-state values of u and x in the model

(4.43) can move to ensure (4.44) holds.

4.4.1.1 Computing the predictive control law

The GPC algorithm can now be implemented in a straightforward fashion using sim-

ilar steps to those for the MFD model (Section 4.3.1).

Step 1. Find prediction equations for the augmented model (4.43) using (3.10)

and substitute these into J of eqn.(4.6) to give

J = ‖ r→−H∆u→−Px̂k −Ld‖2
2 + λ ‖∆u→‖2

2 (4.45)

where L has the usual definition (see Chapter 3).

Step 2. Perform the optimisation of miminising J w.r.t. ∆ u→, hence

dJ
d∆u→

= 0 ⇒ (HT H + λ I)∆u→ = [HT r→−HT Px̂k −HT Ld] (4.46)
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Step 3. Solve for the first element of ∆ u→

∆uk = eT
1 (HT H + λ I)−1HT [ r→− [P,L]

[
x̂k

d

]
]

= Pr r→− K̂

[
x̂k

d

] (4.47)

where K̂ = eT
1 (HT H + λ I)−1HT [P,L], Pr = eT

1 (HT H + λ I)−1HT .

Hence predictive control reduces to a state feedback.

Remark 4.5 It is easy to see that Pr from step 3 above is identical to that of (4.26).

Summary: Predictive control based on a state-space model takes the form of a

state feedback (4.47) of the augmented state plus some feedforward.

4.4.1.2 Closed-loop equations and integral action

The nominal closed loop can be derived by combining (4.43) and (4.47). Hence

x̂k+1 = Âx̂k − B̂K̂

[
x̂k

d

]
+ B̂Pr r→; yk = Ĉx̂k + D∆uk + dk (4.48)

Hence the poles can be derived from the eigenvalues of [ Â− B̂K̂E], where E selects

the relevant columns of K̂. However, the reader may still be concerned at the apparent

lack of attention given to the disturbance d in the predictions.

Offset free tracking in the steady state is assured by the consistency of (4.43) in

the state estimator (model) and hence carries over to uncertain plant §. It is noted

therefore that the state estimator must make an unbiased estimate for d and hence

this introduces the integrator (pole at one) through the estimator. The estimator can

be based on the original model (3.2) with state x, as the part of the augmented state

uk is known exactly so does not need to be estimated.

§Although the real plant is subject to uncertainty, the consistency of the prediction model ensures integral

action.
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Summary:

1. For a state-space model the GPC control law takes the form

∆uk = Pr r→− K̂

[
x̂k

d

]
(4.49)

where x̂ is an augmented state and d is the disturbance estimate.

2. Integral action and offset free control are included by having an internal

model of the disturbance (which must be estimated) and ensuring consis-

tency of (4.44) so that the minimum achievable cost is J = 0.

4.4.2 State-space models without state augmentation

The state augmentation approach is analogous to the incremental model approach

used in the transfer function models, though clearly there is some flexibility in ex-

actly how the state is augmented. There are however alternatives, which may be

considered more favourable. Consider the underlying requirements: (i) include a

disturbance model; (ii) use a model giving offset free (unbiased) prediction and (iii)

ensure the minimum of the cost function is consistent with zero tracking errors and

a modified performance index, that is (4.18).

One can achieve these three requirements by making appropriate use of unbiased

(e.g. Section 2.3.4) estimates xss, uss [90] of the steady-state values for the state and

input to give zero tracking errors.

• Form an algorithm to give estimates of xss, uss which are consistent with zero

tracking errors. The estimates are for the estimator and hence robust to model

uncertainty.

• Use the cost function and optimisation

min
u→

J = [x→−xss]T Q[x→−xss]+ [u→−uss]T R[u→−uss] (4.50)

which penalises deviations from the desired steady state. This differs from

(4.6) in that the weighting of the inputs optimises the distance from steady state

rather than rate of change (increment magnitude). It is clear that minimisation

of this cost is consistent with zero tracking errors. It is commonly taken that

Q comprises terms of the form CTC where r−y = C(xss −x).
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4.4.2.1 Control law calculations

Lemma 4.1 Let J be given as

min
u→

J = x→
T Qx→+ u→Ru→ (4.51)

The minimisation of J is known to give a state feedback control law of the form
u = −Kx. Therefore the minimisation (4.50) must give a solution of the form

u = −K(x−xss)+ uss (4.52)

Proof: This is obvious, as we have used a simple translation of the target which gives

a simple and corresponding translation of the optimal control law. ��
Theorem 4.1 Minimisation (4.50) using predictions (3.10) gives the control law
(4.52) with

K = [HT
x QHx + R]−1HT QPxx (4.53)

Proof: Minimisation of (4.51) with prediction equations (3.8) reduces to:

min
u→

J = [Pxxx+ Hxu]T Q[Pxxx+ Hx u→]+ u→
T Ru→ (4.54)

which gives an optimal control law

u→ = −[HT
x QHx + R]−1HT

x QPxxx = −Kx (4.55)

Then using Lemma 4.1 gives the result. ��
Note: State feedback (4.55) differs from (4.47) because it uses prediction equations

(3.10) based on (3.2) instead of predictions (3.10) based on (4.43). That is, there is

no state augmentation. Moreover the disturbance estimate is incorporated via x ss,uss.

Summary: The predictive control law can be implemented as

uk −uss = −eT
1 [HT

x QHx + R]−1HT
x QPxx(x−xss) (4.56)

4.4.2.2 Estimating steady-state values for the state and input

This section gives a brief reminder of how to ensure unbiased estimates of the steady

state values by using an appropriate disturbance model in the observer. If one can

get an unbiased estimate of the disturbance, then the predictions will be unbiased, in

the steady state.

1. Add a disturbance to the state-space model as follows:

xk+1 = Axk + Buk; dk+1 = dk; yk = Cxk + Duk + dk (4.57)

where d is an unknown signal representing disturbances and model mismatch.
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2. Build an observer to estimate x,d. Let the observer take the form

zk+1 = Ãzk + B̃uk −L(C̃zk + Duk −yk) (4.58)

where

zk+1 ≈
[

xk+1

dk+1

]
; Ã =

[
A 0

0 I

]
; B̃ =

[
B
0

]
; C̃ =

[
C I

]
(4.59)

Clearly z contains the estimates of the true state x and disturbance d. L is the

observer gain to be designed either by Kalman methods or otherwise.

3. Given that d, r are known, estimate the required steady-state values of x,u to

get desired output, i.e. y = r, from the estimator

y = r = Cxss + Duss + d; xss = Axss + Buss (4.60)

4. One can compute xss, uss by solving (4.60) as simultaneous equations.

5. The control law is implemented as

u = −K(x−xss)+ uss (4.61)

Theorem 4.2 If one drives state estimates to xss, uss, then the output y must con-
verge to r, even if the model is uncertain.

Proof: The observer update equation is given from

zk+1 = Ãzk + B̃uk −L(C̃zk + Duk −yk) (4.62)

This uses y from the actual plant. Assume the process output is steady, then the state

estimate z will settle if and only iff

C̃zk + Duk = yk; uk = uk−1 = · · · (4.63)

This in turn implies that the observer output must equal to the process output. How-

ever, steady state also implies (from 4.60) that x = x ss, u = uss and therefore the

values xss, uss are consistent with an observer output equal to the set point r. This in

turn must imply that the process output is r. ��

Remark 4.6 One can also set up the disturbance model on the states or inputs if
that is more appropriate see [90] or Section 2.3.4.

Summary: Consistent steady-state values xss, uss can be computed from (4.60).

Use of these in conjunction with observer (4.58) and control law (4.61) gives offset

free tracking in the steady state.
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4.5 Formulation for finite impulse response models

This can be stated by inspection given the results earlier in this chapter, as a finite

impulse response (FIR) model is the same as an MFD model with particular choices

of D,N. Again remember the requirements for the cost function is that the minimum

is consistent with zero tracking errors and the need for offset free prediction in the

steady state. The former requirement is satisfied by a cost of the form (4.6) and offset

free prediction for FIR models was discussed in the previous chapter (Section 3.5).

The GPC algorithm for FIR models can now be summarised.

Step 1. Take the prediction equation of (3.61)

y→ = CH∆u→+ M∆u←+ Lŷ (4.64)

and note that CH = H (where H is given in for instance eqn.(3.21) and Section

4.2.2).

Step 2. Subsitute this into the cost (4.6). Hence

J = [ r→−Lŷ−H∆u→−M∆u←]T [ r→−Lŷ−H∆u→−M∆u←]+ λ ∆u→
T ∆u→ (4.65)

Step 3. Minimise J w.r.t. ∆ u→ to give

∆u→ = [HT H + λ I]−1HT [ r→−Lŷ−M∆u←] (4.66)

Step 4. Extract the first element ∆uk

∆uk = eT
1 [HT H + λ I]−1HT [ r→−Lŷ−M∆u←]

= Pr r→− Ďk∆u←−Nkŷ
(4.67)

One notes that this has the same form as (4.25) with the only difference being the

orders of Nk,Ďk. That is less emphasis is placed on measured outputs (Nk has just

one term) and more emphasis is placed on past inputs ( Ďk has the same number of

terms as the FIR model).

Remark 4.7 The control law of (4.67) is more commonly known as DMC [23]. The
only significant difference with GPC [21] is the model used.

Summary: GPC for FIR models takes the same form as GPC for MFD models

except that the compensators have different orders.
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4.6 Formulation for independent models

As stated in the earlier chapters an independent model (IM) can take the form of any

model we wish, transfer function, MFD, FIR, state-space, etc. Hence a GPC algo-

rithm based on an IM will make use of the corresponding control law formulation

for the given model type, e.g. (4.25, 4.52, 4.67,...) as appropriate. There is, how-

ever, one important difference which is obvious from consideration of the prediction

equations given in the prediction chapter (Section 3.6).

Much like with an observer, an IM has states and outputs which are different from

the process states and outputs and the offset between the process and the IM must

be included to give unbiased predictions. Let y̌ be the output of the IM and y be the

measured process output.

4.6.1 IM is a transfer function or MFD

Take the prediction equation of (3.64)

y→ = H∆u→+ P∆u←+ Q y̌←+ L[y− y̌] (4.68)

One notes that this differs in form from (3.21) due to the additional term L[y k − y̌k]
to compensate for any bias caused by Q acting on y̌← as opposed to y←. Substituting

(4.68) into (4.6) and using the results of Section 4.3, one can state the the resulting

control law by inspection as

∆u→ = [HT H + λ I]HT [ r→−P∆u←−Q y̌←−Lyk + Ly̌k] (4.69)

or in terms of z-transforms (using obvious substitutions)

∆uk = Pr r→− Ďk∆u←− Ňk y̌←−Mky+ Mky̌ (4.70)

One can group common terms to give

Dk∆u = Pr r→−−Nk y̌←−Mky (4.71)

where Dk = [1+ z−1D̃k], Nk = [Ňk −Mk]. Of course it is implicit in this control law

that the IM model update is actually part of the control law calculation, so one must

include the following IM equations in the compensator

D(z)y̌ = N(z)u(z); uk = uk−1 + ∆uk (4.72)
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Summary: For MFD models and an IM prediction, the GPC compensator takes

the form of the following equations:

Dk∆u = Pr r→−Nk y̌←−Mky
D(z)y̌ = N(z)u(z)

uk = uk−1 + ∆uk

(4.73)

4.6.2 Closed-loop poles in the IM case with an MFD model

One can compute the closed-loop poles by combining the compensator equations

(4.73) with the model. First simplify the compensator into a single relationship by

introducing the IM (4.72) into (4.71) and eliminate the IM output y̌.

Dk(z)∆u = Prr−Nk(z)[D−1N]u−Mk(z)y (4.74)

Collect common terms

Diu = Prr−Mky; Di = [Dk∆ + NkD−1N] (4.75)

Now compensator (4.75) is in a similar form to the control laws for GPC and GPCT

(e.g. (4.31)) and thus we can use analogies to derive sensitivity and closed-loop

poles. Hence, by inspection (say from (4.36)), the closed-loop poles for model (4.32)

in conjunction with compensator (4.73) can be computed from

Pc = DiD̂+ MkN̂ = [Dk∆ + NkD−1N]D̂+ MkN̂
= Dk∆D̂+ NkN̂ + MkN̂

(4.76)

This can be simplified to

Pc = Dk∆D̂+[Nk + Mk]︸ ︷︷ ︸
Nim

N̂ (4.77)

which is unsurprisingly identical in form to (4.36).

Summary: The nominal closed-loop poles for compensation based on an IM

model are the same as with a more conventional use of the MFD model and the

implied compensator can be reduced to a similar form.

4.6.3 IM is a state-space model

For use of a cost function (4.6), the appropriate prediction equations are modified to

y→ = Px̂+ H∆u→+ L[yk − y̌k] (4.78)
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where augmented state x̂ includes the current value of u. There is no need for an

observer to estimate x, as the IM model states are known and there is no need to esti-

mate d or xss,uss, as this role (disturbance modelling) is taken by the bias correction

term L[yk − y̌k]. The control law therefore takes the form

∆uk = Pr r→− K̂x−Pr(1)[yk − y̌k] (4.79)

Remark 4.8 One can form similar relationships for use with cost function (4.50).

4.7 General comments on stability analysis of GPC

The closed-loop poles for unconstrained GPC can be computed for both the state-

space and transfer function prediction models (e.g. 4.36, 4.48). This is because the

control law reduces to a fixed linear feedback law. However, there are few generic

a priori stability results with GPC; that is to say, for an arbitrary set of ny, nu, λ
the resulting control law may be destabilising or give poor performance. The next

chapter will discuss means of avoiding this apparent weakness and in this chapter

we have simply stated how the closed-loop poles can be computed. However, two

observations are in order.

1. Assuming the same performance index and the same information (say full

states can be observed), then each algorithm should give identical closed-loop

poles and identical tracking performance. This is obvious because if one min-

imises the same performance index with the same d.o.f., the optimum control

increment must be the same. Assuming full information and no uncertainty,

each model will give identical predictions and hence the performance indices

will be equivalent.

2. The closed-loop pole polynomial tends to have as many non zero poles as there

are open-loop process poles (including the integrator) ¶. If this is not true, there

is a good chance you have a bug in your code. You will note that the order of

Pc arising from, for instance eqn.(4.36) appears to be greater than this; in this

case polynomial Pc will have several zero coefficients.

Summary: When coding, you should check for errors by ensuring consistency of

behaviour in the nominal case, regardless of the model adopted.

¶This conclusion is obvious from (4.48) which shows that the number of poles is given by the dimension

of the closed-loop state matrix.
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4.8 Constraint handling

It was stated in optimisation (4.15) that MPC can deal, systematically, with con-

straints. However, this chapter has so far ignored that rather important point. This

was largely to illustrate that in the constraint free case a fixed term control law arises,

and hence one can do stability and sensitivity analysis. It is worthwhile doing a

proper analysis of the unconstrained problem because if the control law does not

give good performance and robustness in the unconstrained case then one cannot ex-

pect good performance in the constrained case. Unfortunately the opposite does not

hold true so that good performance of the unconstrained loop does not need to imply

good performance of the constrained loop; we shall consider this issue in more detail

in Chapter 8.

In this section the aim is to demonstrate how optimisation (4.15) is set up and hence

solved.

4.8.1 The constraint equations

The constraints may occur on any variables in the loop. The desire is that none of

the constraints are violated by the optimal predictions. Hence the normal procedure

is to compare the predictions with the constraints over the horizons n y, nu in the

performance index J. The following subsections show how to set up the equations

for these comparisons for common constrained variables. One can easily extend this

methodology to other variables if required.

Key point: The constraint equations should be expressed in terms of the d.o.f., in

this case ∆u→. One can then select the d.o.f. to ensure constraint satisfaction.

4.8.1.1 Input rate constraints

Take upper and lower limits on the input rate to be

∆u ≤ ∆u ≤ ∆u (4.80)

Given that the input increments are predicted to be zero beyond the horizon n u, one

can check the constraints up to then with the following:




∆u
∆u
...

∆u




︸ ︷︷ ︸
∆U

≤




∆uk

∆uk−1

...

∆uk+nu−1


 ≤




∆u
∆u
...

∆u




︸ ︷︷ ︸
∆U

(4.81)
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or in simpler terms

∆U ≤ ∆u→ ≤ ∆U (4.82)

A more conventional representation for this is in terms of a single set of linear in-

equalities, for instance [
I
−I

]
∆u→−

[
∆U
−∆U

]
≤ 0 (4.83)

where I represents a suitable dimension identity matrix.

4.8.1.2 Input constraints

First one must express the future inputs in terms of the d.o.f. ∆ u→. It is easy to see

that

u→ = CI/∆∆u→+




I
I
...

I




︸︷︷︸
L

uk−1 (4.84)

(Recall that CI/∆ is a Toeplitz matrix based on I/(1− z−1) and hence is lower trian-

gular with identity matrices filling the lower triangular part.)

Take upper and lower limits on the input

u ≤ u ≤ u (4.85)

One can test for satisfaction of these constraints over the prediction horizon n u (this

automatically gives satisfaction thereafter, as the predictions assume that u k+nu+i =
uk+nu−1, ∀i ≥ 0) with the following:




u
u
...

u




︸ ︷︷ ︸
U

≤




uk

uk+1

...

uk+nu−1


 ≤




u
u
...

u




︸ ︷︷ ︸
U

(4.86)

Hence, substituting from (4.84)

U ≤CI/∆∆u→+ Luk−1 ≤U (4.87)

Rearranging into a more conventional form gives[
CI/∆
−CI/∆

]
∆u→−

[
U −Luk−1

−U −Luk−1

]
≤ 0 (4.88)
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4.8.1.3 Output constraints

Output constraints can be set up analogously to input constraints by defining: (i) the

dependence on the d.o.f. and (ii) the constraint limits – here we shall use Y , Y . For

illustration, using the predictions (3.21), the corresponding linear inequalities are:

[
H
−H

]
∆u→−

[
Y −Q∆u←−Py←
−Y −Q∆u←−Py←

]
≤ 0 (4.89)

Note that the ouput constraints are taken up to the prediction horizon n y. In fact as

will be discussed in the chapter on feasibility, one should ordinarily take the horizon

even bigger than this, as non-inclusion in the cost function J does not imply that the

outputs are no longer changing. It could be that the unconsidered part of the output

prediction, beyond the horizon ny, does violate a constraint. Failure to account for

this may not be resolved simply by the usual receding horizon arguments.

4.8.1.4 Summary

All the constraints must be satisfied simultaneously; hence one can combine equa-

tions (4.83, 4.88, 4.89) into a single set of linear inequalities of the form:

C∆u→−dk ≤ 0 (4.90)

where

C =




I
−I

CI/∆
−CI/∆

H
−H




; d =




∆U
−∆U

U −Luk−1

−U −Luk−1

Y −Q∆u←−Py←
−Y −Q∆u←−Py←




dk depends upon past input and output information and C is time invariant.

The reader will note that even with a relatively small nu and ny, nevertheless there

can be a very large number of linear inequalities. Let the system be n× n; then the

constraints above give p inequalities where

p = 2n(2nu + ny) (4.91)

Summary: Constraints at each sampling instant can be represented by a set of

linear inequalities (4.90) that depend upon the d.o.f. and the current state. Even

low dimensional systems can require large numbers of inequalities to be handled.
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4.8.2 Solving the constrained optimisation

We shall leave a more detailed discussion of this until later. Substituting from (4.90)

and, for instance (4.21), optimisation (4.15) takes the form

min
∆u→

J = ∆u→
T S∆u→+ 2∆u→

T f s.t. C∆u→−dk ≤ 0 (4.92)

where S = HT H + λ I, f = [P∆u←+Qy←− r→]. This is known as a quadratic program-

ming (QP) problem for which solvers are easy to find. Most industrial suppliers of

MPC write their own solvers and indeed the topic is still open to new ideas in the

academic literature. Some discussion of this can be found in [13, 78]. Here it is

suffice to say:

1. Solving a high dimensional QP on-line is considered tractable in the process

industry where time constants are not fast.

2. MATLAB supplies a QP solver which will often compute the answer with 10

d.o.f. or more in well under a second.

3. The conventional approach is the active set method. This has guarantees of

convergence and is fairly simple to code; the theoretical limits on the number

of iterations is very large but rarely approached in practice.

4. Interior point methods are becoming more popular, as are multiparametric

methods.

Summary: The on-line optimisation reduces to a QP for which standard solvers

exist. It is considered a tractable problem.

4.8.3 Hard and soft constraints

In practical problems it is common to find that the desirable constraints are inconsis-

tent; that is, they cannot all be satisfied simultaneously. In the case that constraints

(4.90) do not admit a solution, then the MPC optimisation is ill posed and has no so-

lution. Clearly one cannot afford for this to happen on a real process as the resulting

control would be arbitrary. Each process will build in its own fail safes for such an

occurrence but a more generic procedure does exist.

Constraints should be placed into two categories:

1. Hard limits – e.g. valves cannot go beyond fully open or fully shut.

2. Soft limits – these can be violated though at some penalty such as loss of

product quality and safety values blowing.
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The soft limits should then be further prioritised into a ranking of importance. In the

event that constraints (4.90) cannot be satisfied, then one could gradually relax the

soft constraints in the given priority order until a feasible solution exists.

The topic of how and which constraints to relax is a little open ended and will be

very process dependent. Based on the process given, appropriate algorithms largely

exist in the literature but these are more in the realm of the numerical analyist than

the control engineer so are not given here. The simplest approach is to choose the

control that gives the least maximum weighted constraint violation (e.g. [101]) over

all the soft constraints; that is, minimise an infinity norm, e.g.

min
∆u→

W‖C∆u→−dk‖ ∞ (4.93)

where W is a weighting matrix (Wi,i is infinite for hard constraints and 0 for rows with

negative values – satisfied constraints). Standard linear programming algorithms

using slack variables or Lawson’s algorithm [101] (a form of interior point method)

will solve this problem.

Summary: In the event of infeasibility of constraints, the soft constraints must be

relaxed to ensure the MPC algorithm has a well-posed optimisation. This procedure

is nongeneric and may often be dealt with at a higher (supervisory) level rather than

in the MPC algorithm. A more detailed discussion is given in Chapter 8.

4.8.4 Stability with constraints

Although one can define an MPC algorithm that does constraint handling, it is not

straightforward to establish if that algorithm will be stabilising. The stability of the

underlying linear controller (e.g. 4.31, 4.47) does not guarantee the stability of the

constrained controller, at least in the finite horizon case which is typical in practice.

There is no easy answer to this failing; however, the lack of a guarantee of stability

does not imply instability. In practice, if sensible guidelines (use a large enough

output and constraint horizon) are followed and one avoids infeasibility, then the

constrained loop will have a similar performance to the unconstrained loop. This

topic is considered in more detail in the Chapters 6 and 8.

Summary: Practical industrial algorithms with constraint handling do not have

stability guarantees, but this is rarely a problem.
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4.9 Simple variations on the basic algorithm

4.9.1 Alternatives to the 2-norm

In the late 1980s and early 1990s there was some investigation into the use of 1-

norms and ∞ -norms (e.g. [1], [106], [159]) in the performance index as opposed to

the 2-norm. This amounts to minimising the worst case error or the sum of the error

moduli. Such a change facilitated better a priori robustness results for certain classes

of model uncertainty and moreover a reduction in computational load was possible

as the optimisation implied was a linear program (LP) rather than quadratic program

(QP). However, the typical control was not smooth and therefore such approaches

were never really accepted as attractive in practice. This area is open to further

study.

4.9.2 Alternative parameterisations of the degrees of freedom

Classical MPC algorithms use the future control increments as the d.o.f. in the op-

timisation. Although in practice this works quite well for nu large enough, it could

be argued that it is inefficient and not always numerically well conditioned. It is

possible to use other parameterisations. There are many possibilities such as presta-

bilisation [60]; closed-loop prediction [59],[66], [129]; Laguerre functions [154];

non-symmetric spacing of control changes and PFC [98]. In truth this area is under-

researched and the author is unaware of any good summaries. Significant improve-

ments in performance or reductions in computation are possible with a change in

the parameterisation of the d.o.f. so some possibilities are discussed later and the

concept is implicit in Chapter 6.

4.9.3 Improving response to measurable disturbances

In many process there are measurable disturbances with a known effect on the output

predictions. In this case one could improve closed-loop response significantly by in-

corporating this knowledge into the prediction equations. For instance, if the process

took the form

D(z)y = N(z)u+
ζ
∆

+ c(z) f (4.94)

where c(z) is known and f is a measurable disturbance, then it is straightforward to

rederive the prediction equations to include f . The resulting predictions would take

a form similar to (3.21), e.g.

y→k
= H∆u→k−1

+ P∆u←k−1
+ Qy←k

+ F

[
∆ f←
∆ f→

]
; F = C−1

D

[
Hc

Cc

]
(4.95)
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Clearly substituting (4.95) into (4.6) gives the optimum control law as

∆u→ = [HT H + λ I]HT [ r→−P∆u←−Qy←−F

[
∆ f←
∆ f→

]
] (4.96)

Although one could argue that, at least in steady state, the integrator will deal with

all disturbances, it is important to remember that the more accurate the predictions,

the better the control is likely to be!

Summary: If you have any information that can be used to improve prediction

accuracy, use it! Performance is directly linked to prediction accuracy.

4.10 Predictive functional control (PFC)

This algorithm is discussed more fully in Chapter 13 and so only a summary is given

here.

In PFC use is made of coincidence points. That is, a few points in the future are

selected and the predicted errors are considered only at these rather than over an en-

tire horizon. The optimisation is replaced by equality conditions, hence simplifying

computation considerably. In practice it can give a very similar performance to MPC

with a much simpler and faster algorithm which thus can be implemented cheaply

and on fast processes. However, not much has appeared in the literature and this

algorithm is justified mainly by successful industrial implementation.

Summary: Until now applications of PFC have largely been restricted to the SISO

case. On many applications the performance is very similar to that achievable with

a full GPC algorithm and this at fraction of the complication and computational

load.

4.10.1 Predictive functional control with one coincidence point

A typical algorithm with just one coincidence point would set a target trajectory

(n-steps ahead) such as

target = yk +(r−yk)(1− β n) (4.97)

That is, the target assumes the response of a first order lag with pole β moving from

the current to the desired output. The designer selects the pole β to be close to the

desired closed-loop response.

However, instead of using the whole trajectory, PFC selects just one point n y steps

ahead, where ny is denoted as the coincidence horizon. Let the corresponding pre-

diction be

yk+ny = eT
ny

y→ (4.98)
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PFC then uses the d.o.f. in y→ (usually just one control move is assumed free, hence

∆u→ = ∆uk) to satisfy the equality

yk+ny = target

eT
ny

y→ = yk +(r−yk)(1− β ny)
(4.99)

where eny is the nth
y standard basis vector. Equality (4.99) has a unique solution

which can be written down by inspection. For instance, taking predictions (3.21),

the computation (4.99) reduces to

eT
ny

[H∆uk + P∆u←+ Qy←] = β ny y←+(1− β ny)r (4.100)

This can easily be rearranged into the same form as (4.31) with

Dk = [1+
z−1eT

ny
P

eT
ny

G
]; Nk =

eT
ny

Q− β ny

eT
ny

G
; Pr =

1− β ny

eT
ny

G
(4.101)

Summary: The structure of a PFC control law is the same as other common pre-

dictive control laws. This depends solely on the model used to form the predictions.

4.10.2 PFC tuning parameters

Tuning of the coincidence horizons and β is by trial and error. However, one can

usually estimate β very quickly as it corresponds to the desired (realistic) closed-

loop dynamic. One then does a search over n y to find the coincidence horizon giving

the best performance. Such a search involves computation of controllers as in (4.101)

and hence is very fast.

Summary: PFC often gives a similar performance to GPC with far simpler algo-

rithm and trivial on-line computation. For SISO systems it is worth considering it

first.

4.10.3 PFC with two coincidence points

Where the set point has ramp characteristics, the d.o.f. are parameterised in terms

of a step in control at sample k and a ramp rate in the control thereafter. Equality

conditions then result from the selection of two coincidence horizons. This facilitates

the tracking of ramps with no lag but the tuning (essentially a global search) is less

straightforward. Nevertheless, its simplicity and success in practice are still major

justifications for this algorithm.

4.10.4 Limitations and summary

PFC is not really intended for multivariable plants which is one of the major strengths

of other MPC algorithms, hence it does not merit a large part in this book. Moreover
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its major strength, that is its simplicity and hence appeal to engineers who find MPC

hard to follow, is also a weakness for processes with more complex dynamics. For

some unstable processes and indeed some stable processes it is not straightforward

and perhaps not even possible [133] to get good performance from PFC. MPC algo-

rithms are better able to handle complexity because they make more use of model

information, the price of course being a higher load and a less transparent algorithm.

4.11 Other performance indices

Practical algorithms often use a slightly more involved cost of the form

J =
ny

∑
i=1

‖rt+i −yt+i‖2
2 +

nu−1

∑
i=0

λ ‖∆ut+i‖2
2 +

nu−1

∑
i=0

λ ‖ut+i −uss‖2
2 (4.102)

where uss is the predicted steady-state input.

Following through the algebra the reader will see that this performance index still re-

duces to a simple quadratic in the future control moves and hence the implementation

complexity is equivalent. There are, however, more weights to tune.

In fact readers will have understood by now that within certain limits they can choose

whatever performance index they please. One of the major advanatages of MPC is

its flexibility; users can set it up and tune it for their own specific needs and often

with very little effort beyond the basic algorithm.

Summary: MPC is flexible in terms of the models and performance indices that it

can utilise.
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5

Examples – tuning predictive control and
numerical conditioning

This chapter gives a a series of examples and demonstrates how MPC might be tuned

quickly and effectively. The aim is to give the reader some insight into what effects

the tuning parameters have. It is included solely for completeness and has been

kept brief, as the information is already available in other books on the topic. In

particular however, you should use the insight gained in this chapter to give a better

understanding as to why there has been a move in the academic literature towards

infinite horizons. As you read this chapter, concentrate on insight.

The chapter is divided into stable and unstable processes because as is well known

very different rules are needed for these. For instance, stable processes can always be

stabilised, albeit with small bandwidth, by low gain control. Unstable processes on

the other hand need a sufficiently high gain to be stabilised and moreover are usually

conditionally stable.

A summary of the observations is given in Section 5.7 for the reader who wants

simply to scan the chapter.

5.1 Matching closed-loop and open-loop behaviour

This section gives a quick overview of what will be observed in this chapter.

If one is to expect good closed-loop behaviour then it is necessary that minimis-

ing J gives a control trajectory, in particular the first increment, that is close to the

closed-loop optimal. This means that the prediction class used must include at least

one member that is close to the optimal closed-loop trajectories. If the prediction

class used to minimise J does not include a solution near to the desired closed-loop

behaviour, then the optimisation is ill posed; that is, one is minimising something

which has little bearing on what one really wants and as such control can become

arbitrary and at best give poor performance.

We will return to this theme throughout the book and in particular in Chapter 6, as

it is central to producing a well-posed MPC algorithm. For this chapter the focus
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TABLE 5.1

Notation used in Figures 5.1–5.3

ny = 3 ny = 5 ny = 10 ny = 20

Solid Dotted Dashed Dash-dot

will be simply on illustrating the performance that arises from various choices of

the tuning parameters. The link to how well posed the optimisation is will be made

retrospectively.

Summary: One would not expect MPC to give good control if the basic setup of

the optimisation objective and d.o.f. was poor.

5.2 Single-input/single-output examples

For simplicity a single example is taken to illustrate the effects of changing the tuning

parameters. The reader should note that while the effects may vary from one example

to another, the main trends would be expected to be similar. You will gain a better

appreciation only by doing your own designs on several examples. The reader is also

reminded that the choice of underlying prediction model (and therefore control law)

should not affect nominal performance. Hence only one of the control laws of the

previous chapter will be used for illustration.

The following section implements the control law of (4.25) on a system given as

y =
z−1 + .2z−2

(1−0.9z−1)(1−0.8z−1)
u (5.1)

The simulations given are the closed-loop response to a unit step in the set point for

various selections of tuning parameters. A summary of the results is given after the

simulations have been displayed. No advance information of set point changes is

assumed so Pr(z) is replaced by the appropriate scalar.

5.2.1 Effect of varying the output horizon

Figures 5.1–5.3 show the responses for nu = 1, 2, 5 respectively, when the output

horizon is varied. The notation used for plots represented different n y is detailed in

Table 5.1.

5.2.2 Effect of varying the input horizon

Figure 5.4 shows the responses for ny = 10 for different nu as detailed in Table 5.2.
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FIGURE 5.1
Responses for varying ny with nu = 1.

TABLE 5.2
Notation used in Figure 5.4

nu = 1 nu = 2 nu = 3 nu = 5

Solid Dotted Dashed Dash-dot

5.2.3 Effect of varying the control weighting

Figure 5.5 shows the responses for ny = 10, nu = 3 for different λ as detailed in

Table 5.3.

5.2.4 Summary

It is noted that the impact of changes to an individual horizon depends upon how the

other horizon is selected. So for instance:

• If nu is small (Figure 5.1) increasing ny causes the loop dynamics to slow

down.
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FIGURE 5.2
Responses for varying ny with nu = 2.

TABLE 5.3
Notation used in Figure 5.5

λ = .1 λ = 1 λ = 10 λ = 100

Solid Dotted Dashed Dash-dot

• If nu is large (Figure 5.3), increasing ny improves performance.

• If ny is large (Figure 5.4), then increasing nu improves performance.

• If ny is small, then increasing nu can lead to near deadbeat behaviour.

• Increasing λ slows down the responses.

5.2.4.1 Best choice of horizons

From the above observations one could make the following inferences:

1. As ny is increased, nominal closed-loop performance improves if n u is large

enough.
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FIGURE 5.3
Responses for varying ny with nu = 5.

2. As nu is increased nominal closed-loop performance improves if n y is large

enough. However, for many models, there is not much change beyond n u = 3.

Summary: It seems that for many processes, one can optimise expected closed-

loop performance by choosing ny and nu to be as large as possible.

5.2.4.2 Choice of horizons ny, nu to ensure a well-posed optimisation

These example responses have also demonstrated the need to give a good match

between the open-loop prediction class and the closed-loop behaviour that is desired.

For instance:

• With ny large and nu = 1 (dash-dot line of Figure 5.1), the minimisation has

only one control move available and hence chooses the move that is likely to

eliminate steady-state offset; this is often called mean-level control. Hence at

best one will get open-loop dynamics.

• A better response (Figure 5.3) arises where more control changes are allowed

in transients and hence the open-loop predictions can be closed to the desired
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FIGURE 5.4
Responses for varying nu with ny = 10.

closed-loop behaviour. Unsurprisingly larger n u results in better closed-loop

performance.

However, it should be emphasised that the conclusions of Section 5.2.4.1 are in-

complete. They only apply where ny � nu and this is because of arguments about

mismatch between the predictions and the desired behaviour. If n y ≈ nu, then a sub-

stantial amount of transient behaviour (that beyond n y) is not included within the

cost function and this could imply a poorly defined optimisation as one is only op-

timising part of the transient behaviour, regardless of the impact on the ignored part

and hence on the actual closed-loop behaviour. Hence, with n y ≈ nu, it is difficult to

say a priori whether the resulting controller will give good behaviour. This issue is

discussed more fully in Chapter 6.

Summary: The optimisation maybe ill posed unless the following are true:

1. nu should be large.

2. ny −nu should be greater than the settling time.
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FIGURE 5.5
Responses for varying λ with nu = 3, ny = 10.

5.2.4.3 Choice of λ

The effect of changes to control weighting (Figure 5.5) seems fairly clear; that is, the

more the weighting the less active the input changes are. However, one should take

this conclusion with some caution, as it is also subject to the remarks of Section 5.1;

that is, how well posed is the performance index?

Try the example of (5.1) with nu = 1, ny = 40 and λ = 1, 100, 1000, 10000 and plot

the corresponding step responses in Figure 5.6. Surprisingly perhaps, the responses

vary very little despite the large changes in λ . In fact one can only just begin to

notice a difference once λ = 10000 which is several orders of magnitude greater

than that required to make the changes observed in Figure 5.5. One might wonder:

how effective is λ as a tuning parameter?

There is a need for some simple insight. The reason for the apparent ineffectiveness

of λ is that the performance index is dominated by the steady-state output tracking

error. So the optimisation places all the emphasis on making tracking errors small

and the impact of the control weighting is relatively small. However, if one changed

the output horizon to, for instance, ny = 8, the control weighting now has a large
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FIGURE 5.6
Responses for varying λ with ny = 40, nu = 1.

impact, as the cost is no longer dominated by tracking errors.

In conclusion, control weighting has an impact where the magnitude of the control

weighting terms λ ‖∆ u→‖2
2 is of similar or larger magnitude than the tracking error

term. Hence the required λ is closely linked to the input and output horizons. The

typical guideline of normalising signals and then making all the weights unity is a

good default only where nu is large.

Summary: λ is an effective tuning parameter only for the ranges of λ where the

gradient (w.r.t. the d.o.f.) of the term λ ‖∆ u→‖2
2 is similar enough in magnitude to

the gradient of the tracking error term.

5.3 The benefits of systematic constraint handling

One of the advantages of MPC is the ability to incorporate constraints into the optimi-

sation. This advantage is demonstrated in this section by way of a simple simulation
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example and some simple discussion.

More traditional strategies such as PID may use integral desaturation and other tech-

niques to deal with constraints, but in essense these reduce to the statement: if the
controller demands a control action that exceeds constraints, then replace it with a
control action at the constraint. MPC however, because it can include knowledge

of the constraints within the optimisation, can be far more intelligent and hence give

large improvements in performance where constraints are active.

5.3.1 Simple example of weakness in a saturation policy

Consider the case where you are driving a car around a corner. The PID controller

takes the curvature of the road and the limits of the car to set a desired speed, say

40 mph. However, the PID controller does not look farther down the road and notice

constraints on future behaviour such as: (i) an impending tighter curvature, (ii) a

parked car to be avoided or (iii) a rather large pothole. Hence, when these factors

become ‘present’, it is too late to take evasive action, as the car is already operating

at its limit and a crash follows.

MPC on the other hand looks at the behaviour over a sensible future horizon, say

100 yds ahead. As such its strategy takes account of future constraints and thus takes

the car along the road more cautiously so that there is sufficient control freedom

remaining to deal with the constraints when they arise.

The key point to notice is that current behaviour is affected by future constraints. If

one ignores future constraints, then the current behaviour maybe unwise.

5.3.2 Numerical illustration of the weaknesses in saturation policies

Next an illustration is given of how much improvement in performance systematic

constraint handling can give as opposed to a simple saturation policy, that is, one

where if the input exceeds a limit, then one simply implements the input at that limit.

Consider the process

y =
0.1z−1 −0.2z−2

1−1.5z−1
u (5.2)

and include input limits

−1.7 ≤ ∆u ≤ 2; |∆u| ≤ 1.4 (5.3)

Take the tuning parameters to be ny = 10,nu = 3, λ = 0.02 and find the closed-loop

step responses. These are displayed in Figure 5.7 where the dotted line is for the

constrained MPC and the solid line represents a strategy using simple saturation. One

can see clearly that, even though there seems to be very little difference in the input

plots, this difference is enough to make the closed-loop output simulation unstable
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FIGURE 5.7
Responses in the presence of constraints.

for the saturation algorithm (solid line). That is, failure to take proper account of the

constraints during the control calculations has led to disaster, i.e. instability.

The proper constrained algorithm proposed trajectories satisfying constraints over

the whole future horizon and hence did not overstretch itself; hence the correspond-

ing responses are good. The saturation algorithm simply chooses the current action

without consideration of the impact over the future with possibly dire consequences

for performance.

Several papers and books have appeared (e.g. [13], [149]) discussing this issue and

looking at the implied quadratic programming problem in more detail. Hence that

discussion is not repeated here. It is clear that at times saturation gives the same

result as a proper constrained optimisation; however, it is also clear that many times

it does not, especially for the MIMO case and where there are state constraints.

Failure to include constraints can have serious consequences for performance and

even stability. In fact the arguments go back to those of Section 5.1 – in order to give

a well-posed optimisation one must ensure a good match between the predictions and

the resulting closed-loop behaviour. At the very least this implies that the prediction
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class allowed within the optimisation must satisfy constraints over the entire future;

these are often denoted as feasible predictions∗.
Summary: If constraints are present, these should usually be included explicitly

into the optimisation of predicted performance or in other words one should opti-

mise over a feasible prediction class.

Simple saturation strategies may work well on tame examples but should be used

with extreme caution.

5.4 Unstable examples

In theory predictive control should deal well with unstable systems. However, in

this section one will observe a conclusion that seems to contradict that given for

stable systems. That is, if one increases the output horizon beyond a certain point,

performance deteriorates rather than improves. Moreover, the use of n u = 1 is often

incompatible with good performance, unlike for stable systems.

Readers will be aware that unstable systems are usually conditionally stable; that is,

the gain must lie between an upper and lower limit. In a similar vein, convention-

ally designed MPC controllers of unstable systems are conditionally stabilising in

that the output horizon must lie between an upper and a lower limit. This will be

demonstrated next.

5.4.1 Effects of tuning parameters on unstable systems – a counter in-
tuitive result

Take the unstable example of (5.2). Plot the closed-loop responses for n u = 1, ny =
2,6,10 and 40 (solid, dotted, dashed and dash-dot lines, respectively) in Figure 5.8

and nu = 2, ny = 2,6,10 and 40 in Figure 5.9. In each case let λ = 1.

It is clear that increasing nu from 1 to 2 has improved performance dramatically;

the reason for this will be explained in more detail in a later chapter. However the

following are more interesting:

• For nu = 1 the system is unstable for low ny and the closed-loop is arbitrarily

slow for high ny.

• For nu = 2 the system is unstable for low ny (solid line), performs well for

intermediate ny and then is beginning to lose performance for high n y (dash-

dot line).

∗These are discussed in more detail in Chapter 8.
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FIGURE 5.8
Responses for varying ny with nu = 1.

• In both cases performance deteriorates with high n y.

As it happens with nu = 1 the optimisation is simply ill posed for the reasoning given

in Section 5.1. That is, with only one d.o.f. the open-loop predictions cannot both

be stabilised and achieve the target set point; one d.o.f. is needed to stabilise the

unstable dynamics and another to achieve a given target. Hence as n y increases, the

focus of the optimisation is ensuring that the unstable open-loop predictions do not

diverge to a large number which implies that the current input increment must be

very small, hence resulting in very slow closed-loop dynamics.

With nu = 2 there is sufficient d.o.f. to achieve both requirements, hence there is

a dramatic improvement in performance. However, now as n y becomes larger the

the solution loses accuracy, hence the deterioration. The reader might be wonder-

ing how this can be, as logically increasing ny means that one has captured more of

the predictions, hence there should be a better match between predictions and actual

behaviour, implying an improvement in performance. The explanation and corre-

sponding warning is given in the next section and a suitable solution is given in a

later chapter.
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FIGURE 5.9
Responses for varying ny with nu = 2.

Summary: Use of high ny in a standard MPC design may cause severe perfor-

mance degradation for an open-loop unstable plant. This seems counter intuitive

given the insights of Section 5.2.4.1.

For unstable processes it may be difficult to obtain good performance with n u = 1.

A typical guideline is that nu ≥ p+ 1, where p is the number of unstable poles.

5.5 Numerical ill-conditioning with open-loop unstable systems

The basic difficulty with MPC of unstable systems is that the optimisation of (4.4)

is ill-conditioned for large ny and ill posed for small ny. Hence if ny is small the

minimisation may not give a sensible answer due to ignored transient behaviour and

instability can result. However, if ny is large, the ill-conditioning will cause an erro-

neous solution to the optimisation and again instability may result.

We shall not dwell on the use of small ny, as this is obviously ill posed. If one
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minimises over a small prediction horizon, one is not taking into account behaviour

beyond that. If that behaviour is divergent, as the prediction equations would suggest,

then to ignore it is foolish. MPC works on the basis that the part of the predictions

that are ignored (beyond the output horizon) should be largely in steady state †; this

is clearly not the case for unstable systems.

If one takes ny to be large there is a hope that the predictions will have settled and

the unstable dynamics will not cause the predictions to diverge beyond the output

horizon. Hence use of large ny should give good performance, in principle at least.

Why does this expectation fail then for large ny?

5.5.1 How does ill-conditioning arise?

Consider the optimisation of (4.4). This is based on matrices H,P,Q. For an unstable

system the coefficients of these matrices diverge with the row index. For instance, the

elements of H include the coefficients of the system step response, which diverges.

As a consequence, even though H itself is Toeplitz, it contains elements with a large

variation in magnitude. Hence H, P, Q are ill-conditioned matrices.

One can demonstrate the ill-conditioning quite effectively using a graph of the con-

troller coefficients Nk, Dk against prediction horizon ny. Take the unstable system

G(z) =
0.5z−1 + z−2

1−4z−1 + 3.75z−2
(5.4)

Sketch in Figure 5.10 the coefficients Nk(1), Dk(2) vs ny for nu = 1,2 (solid and dot-

ted lines respectively). It is clear that the coefficients converge well at first (as would

be expected) but then beyond ny = 20 the ill-conditioning is so bad that even with 16

decimal places of MATLAB the controller coefficients become random (there were

smaller inaccuracies at lower ny).

The value of ny at which the ill-conditioning becomes significant is process and

precision dependent and so an analysis of this is not interesting. As the optimisation

is ill conditioned it is more fruitful to find means of ensuring the optimisation has

better conditioning. This is done in Chapter 7.

Summary: To apply a conventional MPC algorithm to unstable systems one must

choose ny carefully, not too small and not too large. One must also use the result

with caution. In fact you are better advised not to use a conventional algorithm at

all and use more recent variants such as those based on the closed-loop paradigm

(see Chapter 7) which have better conditioning.

Remark 5.1 The results of this section have been illustrated with transfer function
models [104]. However, similar conclusions will apply to GPC based on state-space
models (see [113]). FIR models do not apply to unstable processes.

†This is so that the ignored errors are essentially zero.
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FIGURE 5.10
Coefficient values for varying ny.

5.6 MIMO examples

This chapter contains only a brief summary of applications to MIMO examples, as

most the conclusions are the same as for the SISO case. The focus is on what changes

and what else the designer must bear in mind.

Due to the use of a performance index, GPC gives an optimal management of inter-

action, at least by way of performance specified in J. Hence if the designer wishes

to trade off performance in one loop with another, the systematic route is via the

weightings in J. That is, if one increases the relative weight on one loop w.r.t. to

another, then the relative errors will reduce. However, there is no simple analytic

link to the actual weights, at least not when J is quadratic. So if the variance in one

loop was too high, one could increase the weight on that loop but this would be a

trial and error process and the repercussions on errors in the other loops would not

be known a priori.
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FIGURE 5.11
Responses for a MIMO system with output weights diag([1 1]).

An example is given next based on a simplified boiler model for electricity genera-

tion. This is a stiff system whose state-space matrices are given as

A =


−0.0042 0 0.0050

0.0192 −0.1000 0

0 0 −0.1000


 ; B =


 0 −0.0042

0 0.0191

0.1000 0




C =
[

1.6912 13.2160 0

0.8427 0 0

]
; D =

[
0 1.6854

0 −0.1568

] (5.5)

Closed-loop responses for a step demand in power output are given in Figures 5.11,

5.12 for tuning parameters ny = 20, nu = 3 and output weights Wy = diag([1,1]), Wy =
diag([1,10]), respectively. It is clear that changing the emphasis on the second out-

put (the pressure) has changed the performance, that is the speed in this loop, at the

expense of more input activity. However, it is difficult from this to say what the

weighting should be. (We should note that a 3 bar variation is larger than would usu-

ally be tolerated.) One could reduce the peak in firing rate (fuel flow) by increasing

the weighting on this input, say to 20, which gives the response of Figure 5.13. It is

evident however, that this process is somewhat ad hoc.
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FIGURE 5.12
Responses for a MIMO system with output weights diag([1 10]).

Summary: MIMO design is linked directly to the cost function J. The predicted

performance is always optimised w.r.t. J and not less mathematical concepts such

as overshoot or relative bandwidth. You change the design by changing J, usually

the weights.

The means of selecting weights to achieve the best by way of other than the 2-norm

objective of (4.16) is not clear and can be a very time consuming part of an MPC

design.

5.7 Summary of guidelines

In order to ensure that the optimisation is well posed, that is the minimisation bearing

a direct relationship to the expected closed-loop behaviour, one should choose:

1. The output horizon ny should be larger than nu plus the system settling time.

For a rigorous proof one should choose n y = ∞ .
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FIGURE 5.13
Responses for a MIMO system with input weights diag([1, 20]).

2. The input horizon should be as large as the expected transient behaviour. In

practice a value of nu ≥ 3 often seems to give performance close to the ‘global
optimal’. To achieve closed-loop behaviour close to open-loop behaviour, n u =
1 will often be sufficient.

3. The weighting matrices can be used to shift the emphasis onto different loops

but the efficacy of any change depends on the corresponding gradients in the

cost function; sometimes an apparently large change in weight may have neg-

ligible effect on the optimum but this could probably be easily understood with

a simple analysis of the actual objective (4.16).

4. With unstable processes one should plot‡ a graph analogous to Figure (5.10) to

ensure the answer is reliable. Alternatively use a better conditioned approach

to be presented in Chapter 7.

‡As an alternative, do a more rigorous conditioning analysis.
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Stability guarantees and optimising
performance

It will be shown that two main components ensure∗ the existence of an a priori sta-

bility guarantee for an MPC algorithm. These are:

1. The current prediction class now must contain as a member the optimal trajec-

tories from the previous sampling instant (denoted the tail).

2. The cost should contain infinite output horizons.

Furthermore to ensure good performance there are two further requirements:

3. The minimisation of prediction mismatch is needed.

4. To facilitate the proofs in the constrained case the concept of invariance (Chap-

ter 11) is required.

The first three of these four components and the relevant discussions are introduced

in this chapter.

Earlier chapters gave stability results for the constraint free case or rather showed

how the implied closed-loop poles could be computed; see for instance eqns.(4.36,

4.48). Clearly however, these results are not valid when constraints are active as they

are based on linear analysis. This chapter will show how a more generic approach to

stability can be developed and moreover one that also applies to the constrained case

(where a nonlinear analysis must be used). Nevertheless it is noted here for com-

pleteness that the proof only applies to the constrained case when there is feasibility;

this concept and suitable definitions will be discussed in a later chapter.

This chapter is organised as follows. The first two sections further elaborate on the

issue of prediction mismatch raised in Chapter 5. Prediction mismatch is expected

in the setup of finite horizon MPC algorithms such as GPC and DMC and prevents

straightforward stability proofs. Section 6.3 then shows how the move to infinite

horizon reduces the prediction mismatch and hence facilitates a stability result. Prac-

tical means (based in dual mode ideas [83]) of deploying infinite prediction horizons

are then given in the last two sections.

∗They are sufficient, not necessary.
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FIGURE 6.1
Optimised predicted input trajectories.

Summary: Stability can be guaranteed by the appropriate use of infinite hroizons

and inclusion of the tail.

6.1 Prediction mismatch in MPC

One of the major weaknesses of the original predictive control algorithms such as

DMC, GPC, IDCOM is the prediction structure used in the optimisation of perfor-

mance. In simple terms the class of predictions over which the optimisation is per-

formed is not necessarily closely matched to the resulting closed-loop responses. As

such the optimisation could be ill posed; that is, finding a minimum for the given ob-

jective need not imply good performance. This weakness will be further illustrated

using some examples.

6.1.1 Illustration of ill-posed objective

Take the example

y(z) = z−1 1−2z−1

(1+ z−1 + 0.9z−2)
u(z) (6.1)

with tuning parameters ny = 15, nu = 1, 2, 5, λ = 1.
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FIGURE 6.2
Optimised input predictions and closed-loop input trajectories.

Assuming no advance knowledge of set point changes, find the input trajectory opti-

mising the objective (4.6) at the first sample when the set point change occurs. Plot

in Figure 6.1 the optimum predicted input trajectories using dotted, dashed, dash-dot

and solid lines, respectively, for nu = 1, 2, 5 and a global optimum. It is clear that the

predicted input trajectories are not at all close to the optimum (especially for n u = 1),

although, by chance, the first move may be fairly close.

Secondly, Figure 6.2 compares the open-loop predictions (dotted lines) to the corre-

sponding closed-loop behaviour (solid lines). If the two are not similar then the op-

timisation must be ill posed. The open-loop optimised input trajectories are plotted

alongside the closed-loop responses that arise from the respective receding horizon

implementations. The plots are given in Figure 6.2a, b, c for n u = 1,2,5 respectively.

Again it is clear that for small nu there is a large difference between the optimal

open-loop predictions and the actual closed-loop behaviour.

Summary: The minimisation of finite horizon GPC may be ill posed; that is, for

small nu the optimal prediction may bear only a small relationship to the actual or

desired behaviour.
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FIGURE 6.3
Optimum open- and closed-loop input trajectories.

6.1.2 Example where prediction mismatch causes instability

One can see the consequences of mismatch very clearly if one takes the example

of a nonminimum phase process and a low output horizon. In this case, because of

the low output horizon, the optimised inputs from minimising J can actually be the

opposite of the true optimal values.

Consider the example

y(z) = z−1 1−2z−1

1−0.9z−1
(6.2)

with ny = 2, nu = 1, λ = 1. In Figure 6.3 is given the optimised open-loop predic-

tions (at the step change) in dotted lines along with the global optimal closed-loop

trajectories in a solid line. The two sets of lines are clearly very different; in fact the

supposed optimal open-loop prediction for the input trajectory has the wrong sign

for this choice of tuning parameters. Unsurprisingly in this case the GPC control law

is destabilising.

This illustration is partly analogous to not looking far enough ahead when driving at

speed. Using the insights of Chapter 5 it is reasonable to expect that a higher value

of ny, and preferably also nu, is required to give good performance.

Summary: Prediction mismatch can cause instability, even for stable open-loop

processes.
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6.1.3 Summary

It is clear from these examples that with finite horizons, ny and nu, the optimal open-

loop predictions may not be well matched either to the consequent closed-loop be-

haviour arising from a receding horizon implementation or to the global optimum.

In this case one may ask:

Is minimising J meaningful?

The answer to this question is complex but was partially given in the previous chapter

on tuning for GPC type algorithms. If one ensures that both n u and ny are sufficiently

large, then the mismatch between open-loop predictions and closed-loop behaviour

will be small and hence the minimisation will be well posed. What we mean by

sufficiently large will become clear later in this chapter. It should be noted however,

that computational limitations may imply that nu (or the number of d.o.f. in the

optimisation) must be small. In this case use of the GPC paradigm could inevitably

give significant mismatch between the open-loop predictions and desired closed-loop

behaviour and this must be taken into account in the design stage.

Summary: GPC algorithms can give poor performance, even for the nominal case.

• With nu (and/or ny) small, the GPC algorithm may have a poorly posed ob-

jective.

• The parameterisation of the d.o.f. may be poor.

• The algorithm may be set up with significant prediction mismatch.

Remark 6.1 As ever the observations of this section also apply to MIMO processes
but the effects will be harder to pinpoint due to the interactions taking place. How-
ever the same general guideline follows: choose the output horizon large enough
and the input horizon as big as you can.

6.2 Feedforward design in MPC

One of the supposed advantages of MPC is that it can make systematic use of advance

knowledge of set points and disturbances. However, as will be shown here, one must

treat this claim with caution [109]. Following the same lines as in Section 6.1, it

will be shown here that the default choice of feedforward compensator (i.e. Pr of
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eqn.(4.26)) is often poor. This is also due to the mismatch between the assumptions

made on the open-loop predictions and the actual closed-loop behaviour.

6.2.1 Structure of the set point prefilter

The default prefilter Pr is anticausual; that is, it contains powers of z rather than z−1.

Hence the current control action depends upon future set points. Assume that the

default prefilter is given as

Pr = p1z+ p2z2 + · · ·+ pnyz
ny (6.3)

If one wanted to reduce the advance information used by the control law to say n r

steps, this is equivalent to assuming that rk+nr+i = rk+nr , i > 0. One can achieve this

most simply by rewriting the prefilter as

Pr = p1z+ p2z2 + · · ·+ pnr−1znr−1 +[pnr + pnr+1 + · · ·+ pny]z
nr (6.4)

If no advance knowledge is available, then Pr = Nk(1), i.e. a simple gain.

6.2.2 Mismatch between predictions and actual behaviour

In the performance index minimisation, only a few control moves are allowed even

though in the closed-loop it is known that a control move is ultimately to be allowed

at every sample. Because the optimisation is working with just a few moves, it

will optimise tracking over the whole output horizon, assuming just those few input

changes. If there is a set point change towards the latter end of the horizon, the

optimisation will request some movement from the inputs now in order to prepare

for that set point change. That is, it starts moving too soon because the current

minimisation does not have the freedom to use later control moves. One will then get

a slow creeping of the output towards the expected set point with a faster movement

once the set point has actually occurred.

One can illustrate this with the following example:

y =
z−1

1−0.8z−1
u; ny = 15, nu = 1 or 3 or 5, λ = 1 (6.5)

The closed-loop step responses are given in Figures 6.4, 6.5, 6.6 for n u = 1, 3, 5

respectively where plots for a full 15th order prefilter Pr are given in dashed lines

and for a 5th order prefilter in dotted lines. The set point is in solid lines.

It is clear that in each case one actually gets better performance by using less infor-

mation about the future set point (a lower order prefilter), that is the dotted line is far

better than the dashed line. The significance is less as nu increases.

The cause of the poor performance is evident from an inspection of the input plots.

If the order of the prefilter is too high, the input starts moving far too soon because in
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FIGURE 6.4
Illustration of poor performance from using advance knowledge – n u = 1.

the prediction stage it sees no other option. An optimal solution to this problem, that

is, how much advance information to use and how to design a better feedforward Pr,

is an open question and very process dependent [109]. However, the designer should

be aware of the dangers so that if necessary simple modifications, such as reducing

the order of the prefilter, can be made.

Summary: If the output horizon ny is large and nu is small, then you may get

benefits from reducing the order of any feedforwards in the control law. Usually

the effect is less noticeable for higher nu.

6.2.3 Making better use of advance information

We have identified an apparent contradiction. That is, better control arises by ig-

noring available information. Even if we know that the set-point is to change in 10

samples time, we deny that information to the controller. This seems perverse in

that surely an optimal controller law should make optimal use of the information and

hence give better performance with than without that information.
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FIGURE 6.5
Illustration of poor performance from using advance knowledge – n u = 3.

6.2.3.1 Understanding the misuse of future information

Of course the reason for this puzzle, already identified, is the mismatch between

the predictions used in the cost optimisation and the actual closed-loop responses.

During the optimisation, the algorithm is only aware of n u control moves with which

to optimise performance over a horizon n y; in the closed-loop there will actually be

ny control moves. Therefore it gives a solution which is optimum assuming only

nu control moves but nonsense if more control moves are actually available. For

instance, the algorithm sees a set point change 15 samples away but only has one or

two control moves now to counter it when it would be better to wait until just a few

samples before the set point change.

Summary: If there is a significant mismatch between the structure of the pre-

dictions and the actual closed-loop behaviour, then the optimisation may well be

meaningless and at best ill posed.

6.2.3.2 Alternative choices for the feedforward

Unfortunately there is no easy solution to the problem identified here. The easi-

est solution is to increase nu to match the amount of future information available;

co
nt

ro
len

gin
ee

rs
.ir



Stability guarantees and optimising performance 111

10 15 20 25 30 35 40 45 50
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Outputs and set point

5 10 15 20 25 30 35 40 45 50
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Inputs

FIGURE 6.6
Illustration of poor performance from using advance knowledge – n u = 5.

then the control algorithm has available control moves near the time of the set point

changes. This of course is an unacceptable solution, as high values of n u imply both

high computational loads and can also give ill-conditioned optimisations.

A second and simpler solution is to limit the amount of set point information given

to the control algorithm to be of the order of n u and at most a bit less than the

system closed-loop rise time. This improves matters and is a practical solution that

is perhaps the only realistic option during constraint handling.

A third solution [109] is to use a different structure for the future control trajec-

tory ∆u→, for instance, not assuming that all the control moves in the prediction are

consequent but instead allowing gaps. Hence there is some freedom to deal with in-

formation appertaining to horizons further into the future. This discussion, however,

is implicitly a part of the next few sections on stability and is left until then.

There is also an ‘optimal’ solution for the constraint free case [109]. It is known that

the nominal closed-loop transferences, e.g. (4.35) are:

u = D̂[Dk(z)∆D̂+ Nk(z)N̂]−1Pr(z)r
y = N̂[Dk(z)∆D̂+ Nk(z)N̂]−1Pr(z)r

(6.6)

These are clearly linear in the feedforward compensator Pr. Hence one can substitute

closed-loop predictions (6.6) into a cost function of the form (4.6) and minimise
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w.r.t. the parameters of Pr. Hence this will therefore give optimal closed-loop use of

feedforward. The GPC algorithm is then a two-stage design: (i) use (4.25) to define

the loop compensator Nk,Dk and (ii) optimise closed-loop tracking by selecting Pr to

minimise J w.r.t. closed-loop predictions. We omit the details of these computations

as: (i) the result depends upon the choice of r and (ii) the most common use of GPC

is for constraint handling. Thus it is doubtful that practitioners would ever use this

procedure.

As yet there has not been a good summary in the literature of how to optimise the

use of advance information for the constraint handling case. The author believes that

practically future information is rarely available and even if it is, the information is

probably not used in the way suggested possible by early papers [21].

Summary:

1. If you have information about future set point changes (or measurable distur-

bances) that enter the control law through feedforward compensators, then

it is often wise to limit the amount of advance information used and hence

avoid pitfalls such as those illustrated in Figures 6.4 and 6.5.

2. If you get poor performance from a GPC implementation on the nominal

model, then there is likely to be a large mismatch between the predictions

used in the cost function and the desired or actual closed-loop responses;

this implies an ill-posed optimisation. If you want good performance, the

prediction class should include a member close to the closed-loop optimum

[138].

6.3 Infinite horizons imply stability

The observations of the previous sections were not fully understood at first and it

was considered, at least in the academic literature, that the issues of both tuning

and stability were major problems with GPC and variants. Although often in prac-

tice good control and good robustness margins were achieved, rigorous proofs were

scarce. Many papers were written on heuristic guidelines for tuning parameters such

as the control and output horizon and the effects of changing the control weighting.

However, even given such guidelines, it was still only a posteriori stability checks

that could be performed; that is, find the control law and then compute the implied

closed-loop poles in the nominal case (unconstrained) – say from (4.36).

A more generic solution to this frustrating issue became common knowledge in the

early 1990s (e.g. [22, 60, 87, 94, 107, 110, 138]) (though actually in the literature
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from the late 1970s, e.g. [55, 69]). This solution was to make use of the well known

linear quadratic (LQ) optimal control results of the 1960’s. However, before this

result can be presented, the reader should first be familiar with one element necessary

for the proof, that is the tail. The tail is defined in the next section and this is then

followed by the proof itself.

6.3.1 Definition of the tail

It was stated in the introduction to this chapter that the inclusion of the tail within

the class of predictions was important to giving a well-posed MPC algorithm; here a

definition for the tail is given.

Let the optimal predictions at sampling instant k be given by the pair:

∆u→k−1
=




∆uk

∆uT
k+1|k

∆uT
k+2|k

...


 ; y→k

=




yk+1|k
yT

k+2|k
yT

k+3|k
...


 (6.7)

At the next sampling instant, that is k + 1, the first components of this pair have

already occurred and hence can no longer be called predictions. The part that still

constitutes a prediction is called the tail, i.e.

∆u→k−1,tail
=




∆uk+1|k
∆uT

k+2|k
∆uT

k+3|k
...


 ; y→k,tail

=




yk+2|k
yT

k+3|k
yT

k+4|k
...


 (6.8)

It is important to note that the predictions given in the tail at k + 1 were those com-

puted at the previous sampling instant k.

A convenient stability proof is facilitated if the tail, that is the pair (∆ u→k,tail
, y→k,tail

),
are included in the class of possible predictions at k + 1. That is the d.o.f. must be

parameterised such that, for the nominal case, one can enforce:

∆u→k
= ∆u→k−1,tail

; y→k+1
= y→k,tail

(6.9)

In more detail this implies, for example, that one could choose

∆u→k
=




∆uk+1

∆uT
k+2|k+1

∆uT
k+3|k+1

...


 =




∆uk+1|k
∆uT

k+2|k
∆uT

k+3|k
...


 (6.10)
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Summary: The tail is those parts of the predictions made at the previous sample

which have still to take place. These should ideally be part of the current prediction

class.

6.3.2 Infinite horizons and the tail

The reader is reminded that the arguments given next apply to the nominal case only.

It is assumed that if a law is stabilising for the nominal case with reasonably fast

convergence, then the gain and phase margins are likely to be large enough to imply

a good degree of robustness. A detailed discussion of how to handle uncertainty in a

systematic fashion is left for a later chapter.

Consider the infinite horizon cost† and optimisation

Jk = min
∆uk+i, i=0,1,...

J =
∞

∑
i=1

‖rk+i −yk+i‖2
2 + λ ‖∆uk+i−1‖2

2 (6.11)

After optimisation a whole input trajectory is defined, let this trajectory be given as

∆u→
T
k−1

= [∆uT
k ,∆uT

k+1|k, ... (6.12)

Of this trajectory, the first element ∆uk is implemented. Now consider the optimisa-

tion to be performed at the next sampling instant k + 1. Clearly, when dealing with

the nominal case and selecting the input increments for all future time, the optimal

values cannot differ from those computed previously ‡. Hence

∆u→
T
k

= [ ∆uT
k+1, ∆uT

k+2|k+1
, ... ]

= [ ∆uT
k+1|k, ∆uT

k+2|k, ... ]
(6.13)

That is the new optimum must coincide with the tail, (∆ u→k
= ∆u→k−1,tail

).

Now consider the implications on the cost function J using the notation that J k is

defined as the minimum of J at the kth sampling instant. From consideration of

(6.11) it is clear that

Jk+1 = Jk −‖rk+1−yk+1‖2
2 − λ ‖∆uk‖2

2 (6.14)

That is Jk and Jk+1 share common terms apart from the values associated to sample

k which do not appear in Jk+1. Hence it is clear from (6.14) that

Jk+1 ≤ Jk (6.15)

†For simplicity the weights here are scalar but clearly arguments transfer easily to matrix weights. Also

the results will apply to any weights which are monotonically increasing with prediction horizon.
‡This is a well-known observation in optimal control theory.
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That is, the optimal predicted cost Jk can never increase. Moreover it is monotoni-

cally decreasing. This can be demonstrated by a simple contradiction.

If Jk = Jk+1, then ‖rk+1 − yk+1‖2
2 + λ ‖∆uk‖2

2 = 0 which implies the output is at set

point and no input increment was required. This can only happen repeatedly if the

plant is in steady state at the desired set point. If Jk 	= Jk+1, then Jk+1 < Jk; that

is there is a decrease in cost. In summary, if one uses ny = nu = ∞ , then the cost

function J becomes a Lyapunov function.

What is most significant here is that the stability proof does not entail computation of

implied closed-loop poles (e.g. 4.36). That is, one can state in advance of computing

the control law that it will be stabilising. This is called an a priori guarantee.

Summary: Using J as a potential Lyapunov function has now become an accepted

method for establishing a priori stability of MPC control laws.

1. Use of infinite horizons guarantees that J is Lyapunov.

2. Implicit in the proof that J is Lyapunov is the incorporation of the tail into

the class of possible predictions.

6.3.3 Only the output horizon needs to be infinite

The above conclusions require only infinite output horizons because even if n u is

finite, the same arguments will follow. Consider the following optimisation

Jk = min
∆uk+i, i=0,1,...

J =
∞

∑
i=1

‖rk+i −yk+i‖2
2 +

nu

∑
i=1

λ ‖∆uk+i−1‖2
2 (6.16)

Now enforce condition (6.13) which implies that ∆u k+nu|k+1 = 0. Hence

Jk+1 = Jk −‖rk+1−yk+1‖2
2 − λ ‖∆uk‖2

2 (6.17)

More importantly, at sampling instant k + 1, one has freedom to select ∆ u→ such that

(6.13) is not satisfied if this makes Jk+1 smaller still.

Remark 6.2 It is worth noting that if nu is small, although one can obtain a guar-
antee of stability there may still be significant prediction mismatch (as highlighted in
Section 5.2.4.2) and this could result in poor transient performance.

Remark 6.3 Although it may not be obvious, the proofs given are tacitly assuming
that limi→ ∞ |rk+i − yk+i| = 0 (or in the worst case is bounded). If not, the stability
proof breaks down. Such an assumption may not be automatic where n u is small,
especially in the presence of large step changes or large disturbances. However,
these issues do not belong here but rather in a discussion on feasibility (see Chapter
8).
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Summary:

• Infinite output horizons imply that the cost function is Lyapunov in the nom-

inal case, which implies closed-loop stability.

• This result relies on the d.o.f. being such that condition (6.13) can always be

satisfied (inclusion of the tail).

6.4 Stability proofs with constraints

The significance of the above a priori result is the constraint handling case. It was

noted earlier that one could not easily assess stability during constraint handling,

as linear analysis does not apply; the implied control law is nonlinear in the pres-

ence of constraints. However, the Lyapunov stability proof above also applies to the

nonlinear case. The only requirement is that the constrained optimisation is always

feasible; that is, there always exists a future input trajectory ∆ u→ such that constraints

are predicted to be satisfied over the entire future. This requirement is a demanding

one that may not be met in practice; however, it will not concern us in this chapter.

Summary: The Lyapunov stability proof also applies during constraint handling.

6.4.1 Are infinite horizons impractical?

Although the solution of the infinite horizon optimal control problem implied by

(6.11) is well known from the 1960’s and straightforward to solve, this only applies

to the unconstrained linear case. Practical MPC algorithms deal with constraints so

that the actual optimisation (see Section 4.8.2) required takes the form:

Jk = min
∆u→k−1

J s.t. C∆u→k−1
−dk ≤ 0 (6.18)

where C∆u→k−1
−dk ≤ 0 represent the constraints (dk is time varying; that is, it de-

pends on the current state). This is a quadratic programming problem and hence can

be solved in principle. However, one will immediately notice that:

• ∆u→k−1
may be infinite dimensional.

• Matrix C and vector dk have an infinite row dimension.

• As posed, the optimisation maybe intractable.
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• In fact the only exception, tractable problem, is if both n u is finite (which limits

the number of d.o.f.) and there are only input constraints (no state/output

constraints) so that C,d have finite row dimension.

Summary: In the presence of constraints a simplistic implementation of MPC

based on large (infinite) horizons may be intractable.

6.4.2 Alternatives to optimal control

The remainder of this chapter will show how researchers have reformulated optimi-

sation (6.18) to give a tractable problem with a useful solution.

It is interesting that historical developments in MPC started from simple controllers

such as minimum variance control in the 1970s; and gradually increased complexity,

for instance GPC in the 1980s; and then in the 1990s has returned to a form of optimal

control, though in a more tractable formulation. The quest for the new millenium

is perhaps to maintain the benefits of optimal control but increase transparency, to

reduce computational load and extensions to more demanding cases such as model

uncertainty and nonlinearity.

This increase in the complexity of the control strategy reflects the increase in com-

puting power available and hence problems such as (6.18) look increasingly tractable

whereas in the 1970s they were not and hence complexity in itself does not need to

be unreasonable in some scenarios.

6.5 Dual mode control – an overview

The terminology dual mode control [83] is more often associated with nonlinear

control strategies and is not strictly valid for the strategies to be dicussed here. How-

ever, it conveys the principle philosophy, hence its adoption in this book. The most

popular realisations of infinite horizon MPC have a dual mode form and so the next

section gives an overview of the principal components in a dual mode strategy.

6.5.1 What is dual mode control?

This is a control strategy which has two modes. One mode is used when the system

is far away from steady state or far from the operating point. The second mode is

used when close to the desired operating point. Hence there is an implied switching

between one mode of operation and another as the process converges to the desired

state.
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In MPC, the notation dual mode does not imply a switching between modes in real

time, but rather is a description of how the predictions are set up. Hence, consider a

prediction over ny steps; then one could take the first nc steps to be within mode 1

and the remaining steps to be in mode 2.

x→ = [xk+1|k,xk+2|k, . . . ,xk+nc|k︸ ︷︷ ︸
Mode 1

,xk+nc+1|k, . . . ,xk+ny|k︸ ︷︷ ︸
Mode 2

] (6.19)

One must emphasise that this switching is in the predictions only. The closed-loop

control law has a single mode but uses dual mode predictions in the optimisation.

Moreover it would be usual to take ny in mode 2 to be infinite.

6.5.2 The structure of dual mode predictions

The most usual assumption, at least in MPC, is that the first nc control moves ∆uk+i,

i = 0, ...,nc − 1, are free and that the remaining moves ∆uk+i, i ≥ nc are given by a

fixed feedback law. So for instance, in the state-space case the predictions could be

given by

xk+i = Axk+i−1 + Buk+i−1, uk+i−1 are d.o.f. i = 1,2, ...,nc

xk+i = [A−BK]xk+i−1, uk+i−1 = −Kxk+i−1, i > nc
(6.20)

Efficient realisations of this will be discussed in a different chapter. Also modifica-

tion of this concept for other model forms and offset free prediction is omitted as

straightforward (see Chapters 3 and 4).

Summary: Dual mode control refers to the predictions being separated into near

transients (mode 1 behaviour) and asymptotic predictions (mode 2 behaviour). It is

normal for mode 2 behaviour to be given by a known control law.

6.5.3 Overview of MPC dual mode algorithms

Dual mode describes a philosophy and hence many different variants can be de-

veloped. This section illustrates just one such variant and several others will be

discussed in the following chapter. Assume a state-space model for the following §.

Preliminaries:

1. Define a control law, say u = −Kx.

2. Define a terminal invariant (see Section 11.7) region S in the phase plane

for state x, assuming the given feedback. This region may be ellipsoidal or

polyhedral. Assume S is set up so that given recursive use of the nominal

feedback u = −Kx, x ∈ S implies constraints are satisfied.

§However, one can equally apply this principle to transfer function models.
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3. Define nc and compute the prediction equations as discussed in (6.20).

4. Define an on-line performance measure as

Jk =
∞

∑
i=1

‖rk+i −yk+i‖2
2 + λ ‖∆uk+i−1‖2

2 (6.21)

and the vector of d.o.f.

∆u→k−1
= [∆uT

k , . . . ,∆uT
k+nc−1]

T (6.22)

5. Define the inequalities C∆ u→k−1
− dk ≤ 0 as ensuring constraint satisfaction

during the first nc steps only.

6.5.4 Two possible dual mode algorithms

Algorithm 6.1 Dual mode control 1: At each sampling instant, minimise the infi-
nite horizon cost as follows;

min
∆u→k

Jk s.t.

{
C∆u→k

−dk ≤ 0

uk+i = −Kxk+i, i ≥ nc
(6.23)

Algorithm 6.2 Dual mode control 2: Choose a state feedback K and find a set S
satisfying (11.6). Then minimise the infinite horizon cost as follows;

min
∆u→k

Jk s.t.




C∆u→k
−dk ≤ 0

uk+i = −Kxt+i, i > nc

xk+nc+1|k ∈ S

(6.24)

Remark 6.4 The difference in these two algorithms is the constraint xk+nc+1|k ∈ S
in the latter algorithm. This constraint ensures that the predictions do not violate
constraints beyond nc. However, it is not always applied explicitly but sometimes is
taken for granted as in the former algorithm. The relevance of this will be discussed
in Chapter 8.

6.5.5 Is a dual mode strategy guaranteed stabilising?

It was stated throughout this chapter that the inclusion of certain components is suf-

ficient to guarantee nominal stability. The main two of these are the use of infinite

horizons and the inclusion of the tail. These two together are sufficient to prove that

the cost function J is a Lyapunov function. Dual mode control uses infinite horizons;

hence it is only required to demonstrate the inclusion of the tail.
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120 Model-based predictive control: a practical approach

Assume that the terminal feedback is K so that the closed-loop dynamic in the far

future is given by xk+i+1 = Φ xk+i, Φ = A−BK. Compare the predictions at two

consequent sampling instants:

∆u→k−1
=




∆uk

∆uk+1|k
...

∆uk+nu−1|k
−Kxk+nu|k
−K Φ xk+nu|k
−K Φ 2xk+nu|k

...




:




∆uk+1

...

∆uk+nu−1|k+1

∆uk+nu|k+1

−Kxk+nu+1|k+1

−K Φ xk+nu+1|k+1

...




= ∆u→k
(6.25)

In order for these two vectors to be the same one needs to ensure

∆uk+i|k+1 = ∆uk+i|k, i = 1, ...,nu −1

∆uk+nu|k+1 = −Kxk+nu|k
xk+nu+1|k+1 = Φ xk+nu|k

(6.26)

Clearly the first of these is straightforward, as ∆uk+i|k+1, i = 1, ...,nu − 1 constitute

d.o.f. Second, one can force ∆uk+nu|k+1 =−Kxk+nu|k, as this also is a d.o.f. Finally,

the satisfaction of the first two implies that xk+nu+1|k+1 = Φ xk+nu|k as

∆uk+nu|k+1 = −Kxk+nu|k ⇒ xk+nu+1|k+1 = Φ xk+nu|k (6.27)

Summary: The tail is in the class of possible dual mode predictions. Hence dual

mode predictions lend themselves to an MPC law with guaranteed stability.

6.5.6 How do dual mode predictions make infinite horizon MPC more
tractable ?

The main motivation for using dual mode predictions is that they give a handle on the

predictions over an infinite horizon. That is, the part of the prediction in mode 2 can

be analysed using standard linear analysis, as they are given by the implementation

of simple linear feedback law. Hence although the predictions evolve over an infinite

horizon, one can define these predictions with just a finite number of d.o.f. and

moreover it can be shown that for many practical cases, the terminal set S (see

algorithm 6.2) is finitely determined [33]; hence the implied optimisation is finite

dimensional.

Summary: Dual mode predictions allow a reduction in the number of d.o.f. and

constraints to be handled while still allowing the use of infinite input and output

prediction horizons.
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6.6 Implementation of dual mode MPC

The previous section illustrated, in principle, that the dual mode concept gives guar-

anteed stability when deployed in MPC. It remains now to give the details of how

the control law is computed and in particular how the dual mode concept facilitates

the minimisation of an infinite horizon cost function and the handling of constraints

over an infinite horizon.

The key ingredient in dual mode strategies is the separation: mode 1 is totally free

whereas mode 2 is predetermined. This separation limits the number of d.o.f. to

those in mode 1 hence giving tractable optimisations. Second, by predetermining the

behaviour of mode 2 predictions, one opens them up to linear analysis. In particular,

it is noted that the predictions in mode 2 are deterministic given the predicted value

of the state xk+nc which has an affine dependence on the d.o.f. ∆ u→k
and hence is easy

to handle.

This section will be split into four parts. The first shows how to compute a quadratic

cost function over an infinite horizon with linear predictions. The second shows how

to construct a performance index with dual mode predictions and the third shows

how to set up constraint equations for dual mode predictions. These parts are then

united to define the dual mode MPC algorithm.

6.6.1 The cost function for linear predictions over infinite horizons

Assume that predictions are deterministic, then one can evaluate the corresponding

infinite horizon cost function using a Lyapunov type of equation. For instance, as-

sume

xk+i+1 = Φ xk+i = Φ ixk; uk+i = −Kxk+i = −K Φ ixk (6.28)

and that

Jk =
∞

∑
i=0

xT
k+i+1Qxk+i+1 + uT

k+iRuk+i (6.29)

Substitute into (6.29) from (6.28):

J = ∑ ∞
i=0 xT

k (Φ i+1)T QΦ i+1xk + xT
k KT (Φ i)T RΦ iKxk

= ∑ ∞
i=0 xT

k [(Φ i+1)T QΦ i+1 + KT (Φ i)T RΦ iK]︸ ︷︷ ︸
P

xk

= xT
k Pxk

(6.30)

where

P =
∞

∑
i=0

(Φ i+1)T QΦ i+1 +(Φ i)T KT RK Φ i
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122 Model-based predictive control: a practical approach

It can be shown be simple substitution that one can solve for P using a Lyapunov

equation

Φ T PΦ = P− Φ T QΦ −KT RK (6.31)

Summary: For linear predictions (6.28), the quadratic cost function (6.29) takes

the form below where P is determined from a Lyapunov equation.

J = xT
k Pxk (6.32)

6.6.2 Forming the cost function for dual mode predictions

The state evolves according to model (6.20). Hence it is convenient to separate cost

(6.29) into two parts for modes 1 and 2.

J = J1 + J2;
J1 = ∑ nc−1

i=0 xT
k+i+1Qxk+i+1 + uT

k+iRuk+i

J2 = ∑ ∞
i=0 xT

k+nc+i+1Qxk+nc+i+1 + uT
k+nc+iRuk+nc+i

(6.33)

The cost J1 can be constructed using the usual arguments of Section 3.2. For instance

x→ = Pxxxk + Hx u→k−1
(6.34)

where x→, u→ are defined for a horizon nc. Hence

J1 = [Pxxxk + Hx u→k−1
]T diag(Q)[Pxxxk + Hx u→k−1

]+ u→k−1
diag(R)u→k−1

(6.35)

Using the result of the previous section, it is clear that the cost J2 depends only on

xk+nc|k and can be represented as

J2 = xT
k+nc|kPxk+nc|k; Φ T PΦ = P− Φ T QΦ −KT RK (6.36)

One can use the last block rows of prediction (6.34) to find a prediction for x k+nc|k;

define this as

xk+nc|k = Pncxk + Hnc u→k−1
(6.37)

where Pnc, Hnc are the nth
c block rows of Pxx, Hx respectively. Hence

J2 = [Pncxk + Hnc u→k−1
]P[Pncxk + Hnc u→k−1

] (6.38)

Finally one can combine J1, J2 from (6.35, 6.38) to give:

J = [Pxxxk + Hx u→k−1
]T diag(Q)[Pxxxk + Hx u→k−1

]+ u→k−1
diag(R)u→k−1

+[Pncxk + Hnc u→k−1
]P[Pncxk + Hnc u→k−1

]
(6.39)

This can be simplified and is summarised next.
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Summary: The dual mode performance index takes a simple quadratic form with

nc block d.o.f.

J = u→
T
k−1

Su→k−1
+ u→

T
k−1

Lxk + k (6.40)

where S = HT
x diag(Q)Hx +diag(R)+HT

nc
PHnc , L = 2[HT

x diagQPxx +HT
nc

PPnc ] and

k does not depend on the d.o.f. u→k−1
.

6.6.3 Constraint handling with dual mode predictions

It will be demonstrated in Section 11.7 [33] that for an autonomous model, such

as given in (6.28), one could construct a maximal admissible set S max which was

such that for any state within the set, the evolution of inputs and states, under state

feedback u = −Kx, would be such that no constraints are violated. Let S max be

represented by linear inequalities:

Smax = {x : Cmaxx−dmax ≤ 0} (6.41)

In dual mode predictions, the behaviour is equivalent to the autonomous model (6.28)

for i ≥ nc; hence constraints are guaranteed to be satisfied during mode 2 if and only

if xk+nc|k ∈ Smax. One can substitute for xk+nc|k from eqn.(6.37) to give

Cmax[Pncxk + Hnc u→k−1
]−dmax ≤ 0 (6.42)

Constraints during mode 1 can be tested (see eqn. 4.90) explicitly using expressions

of the form

Cu→−d ≤ 0 (6.43)

Remark 6.5 It is common practice in the literature to use the terminology terminal
set or target set for Smax; that is the set in which x must lie after nc steps. As will be
apparent later the definition of this set (and implicitly of K) is a key design parameter
in dual mode MPC.

Summary: Dual mode predictions satisfy constraints over the entire horizon if and

only if

Cu→−d ≤ 0 and Cmax[Pncxk + Hnc u→k−1
]−dmax ≤ 0 (6.44)

6.6.4 Computing the dual mode MPC control law

We now have all the components required to define a dual mode MPC algorithm.

The cost is given in (6.40) and the constraints are given by (6.44). Hence the on-line
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124 Model-based predictive control: a practical approach

computation¶ is:

min
u→

u→
T
k−1

Su→k−1
+ u→

T
k−1

Lxk s.t. constraints (6.44) (6.45)

It is noted that one no longer needs to make explicit the constraint u k+nc+i|k =
−Kxk+nc+i−1|k, as this is implicit in the definition of J and the definition of the con-

straints.

Remark 6.6 Recall that u→k−1
in the optimisation comprises the first nc control

moves only. The choice of nc therefore controls the number of d.o.f. in the opti-
misation.

Summary: Despite the use of infinite horizons, a dual mode implementation of

MPC reduces to a quadratic program with a finite, and possibly small, number of

d.o.f. and a finite number of constraints.

6.6.5 Remarks on stability and performance of dual mode control

A remarkable result has arisen. Irrespective of the choice of K (as long as it is

stabilising), the dual mode MPC algorithm is guaranteed stable for the nominal case.

In essence, fixing the d.o.f. beyond some point in the horizon does not affect the

stability proof so long as any prediction assumptions are reproducible at subsequent

sampling instants, that is, inclusion of the tail. As will be seen in Chapter 7 this still

allows a lot of flexibility in the design.

The main result of this chapter is based on the incorporation of the two key compo-

nents of an infinite horizon and the tail. However as noted in the introduction there

are two other equally important components which affect performance: (i) prediction

mismatch and (ii) feasibility.

• If the choice of terminal control law K is poor, then there could still be sig-

nificant prediction mismatch; and when nc is small, this could lead to poor

performance.

• If the choice of K is highly tuned such as to allow good performance, then the

terminal set Smax may be small and the optimisation of (6.45) may be infeasi-

ble; that is, it may not be possible to satisfy all the constraints. The particular

problem here is the requirement that the state enter the terminal set S max in at

most nc steps and this could be problematic where nc is small.

¶Clearly this is for state feedback actually implemented as in (4.52). The reader will need to rework some

of the details for other prediction models.
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Feasibility now becomes a big issue, as the constraints are not just on the inputs,

which can always be satisfied, but also on the states. State constraints may be incon-

sistent with input constraints and there may be no systematic way of correcting this

due to the artificial nature of the terminal constraint x k+nc|k ∈ S max. In the event of

infeasibility the algorithm is undefined.

Subsequent chapters will look at how the choice of terminal control law affects both

performance and feasibility.

Summary:

1. The use of infinite horizons and incorporation of the tail allows stability guar-

antees.

2. The dual mode paradigm gives an implementation of infinite horizon MPC

which is computationally tractable and relatively straightforward to imple-

ment.

3. However, dual mode MPC may not have either a good performance or a large

region of applicability. A good compromise between large terminal sets and

good performance is a significant design issue which is tackled in the next

chapter.
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7

Closed-loop paradigm

The previous chapter has shown that dual mode predictions facilitate the design of

MPC algorithms with both guaranteed stability and the potential for good perfor-

mance. This chapter will consider some consequent themes:

1. What is a good way to set up a dual mode MPC algorithm?

2. What are some common choices of dual mode MPC algorithms?

3. Are dual mode algorithms necessary?

First the reader will be formally introduced to the closed-loop paradigm which is a

numerically robust and insightful way of implementing dual mode algorithms. This

paradigm is then used to develop the insights given in the remainder of the chapter.

Summary: The closed-loop paradigm is an alternative mechanism for implement-

ing MPC algorithms which can have advantages.

7.1 Introduction to the closed-loop paradigm

The closed-loop paradigm (CLP) was originally proposed as part of an algorithm

stable generalised predictive control (SGPC,[60]) but can be abbreviated hereafter

as stable predictive control (SPC) to take account of other strategies. Increasingly

this paradigm is being adopted by researchers in MPC due to the good properties it

introduces into the predictive control problem. For instance:

1. It gives better numerical conditioning [104, 113] of the optimisation which is

essential for open-loop unstable plant.

2. It gives useful insight into the structure of dual mode strategies in that it shows

how far one is away from optimum due to constraint handling.

3. It makes robustness analysis more straightforward (e.g. [40, 66, 114]) even for

the constrained case.

127
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128 Model-based predictive control: a practical approach

It can be shown that algebraically, the CLP is identical to an equivalent open-loop

paradigm (OLP) strategy (all the work in this book so far is OLP as it uses open-loop

predictions). Hence ultimately whether one uses a CLP or an OLP approach will

depend a little on personal preference and the particular scenario.

7.1.1 Overview of the CLP concept

The basic idea is to choose a stabilising control law (which could be arbitrary but

usually is chosen with some aim) and assume that this law is present throughout the

predictions. Alternatively one could take the view that the control law is hardwired

into the prediction computation which implies one has pseudo closed-loop predic-

tions. Philosophically one could consider this as analogous to the control law used

in mode 2 of dual mode MPC with the only difference being that the terminal law

is now also deployed during mode 1. The prediction equations in Section 7.1.2 will

make this clearer.

7.1.1.1 Trival guarantee of stability

If the predictions are set up as being based on a stabilising control law and hence

based on a stable closed loop, then one has a potentially trivial stability proof; sim-

ply use the control trajectories associated to this underlying law, which by definition

is selected to be stabilising. However, this strategy is unlikely to be optimal unless

the underlying control law itself is optimal, which need not be the case in general.

Moreover, the closed-loop predictions associated to this underlying law may not sat-

isfy constraints and hence could be infeasible; this invalidates any stability guarantee

outside the associated maximal admissible set (MAS) [33].

Finally of course the reader would realise that so far such a strategy has no direct

link to MPC, as it reduces to implementing a known stabilising control law with no

reference to how this law may be derived. A partial link could be made by assuming

that the underlying stabilising control law is derived via an MPC algorithm.

7.1.1.2 Modification of CLP predictions to allow constraint handling

The two major contributions of MPC are that it gives a systematic design of a stabilis-

ing control law for the MIMO case in the constraint free case and it allows systematic

on-line constraint handling; that is, it can propose valid (satisfying constraints) in-

put trajectories even when the state is outside the MAS of the implied underlying

linear control law. The use of CLP predictions would only be beneficial if both of

these advantages could be retained. The first is automatic, using MPC to design the

unconstrained control law. The incorporation of the second is explained next.

In dual mode control constraint handling is achieved by choosing control moves in

mode 1 (these are the d.o.f.) so that the state in mode 2 is inside the MAS S max
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Closed-loop paradigm 129

associated to the control law implied in mode 2. With the CLP the same philosophy

is adopted in that d.o.f. are introduced in mode 1 and these are used to ensure that

the mode 2 predictions are inside the MAS Smax of the underlying control law.

The only remaining question is, how are d.o.f. introduced into the mode 1 predictions

when mode 1 is already based on a stabilising control law? The answer is simple; the

d.o.f. are simply perturbations to the control moves determined by the underlying

law. These perturbations are selected to ensure constraint satisfaction during the

mode 1 predictions and to ensure that the mode 2 predictions are inside the associated

MAS.

The beauty of the CLP approach is that the d.o.f. can be set up as perturbations

about the most desirable performance [137], that is, the performance that arises from

unconstrained control. Hence one gains insight into the impact of constraints by

viewing the magnitude of these perturbations. That is, the larger the perturbations,

the further the constrained optimal behaviour is away from unconstrained behaviour

and hence the greater the impact constraints are having on performance.

Stability reduces to ensuring that the perturbations converge to zero which is intu-

itively easy to interpret. Even more significantly, the desirable control law is explic-

itly included in the predictions which gives a good structure to the predictions and

improves numerical conditioning. Moreover it alleviates problems with prediction

mismatch, as by definition the class of predictions can include the desirable closed-

loop behaviour.

Summary: The closed-loop paradigm uses perturbations to the unconstrained op-

timal control law as d.o.f. This gives good insight into the impact of constraints on

performance and improves the conditionning of the optimisation.

7.1.1.3 Illustration of prediction structure with the CLP

It will be easier to understand the previous two sections after seeing the prediction

structure so this is illustrated next. The OLP (as given in Chapter 3) and CLP pre-

diction structures are given together to aid comparison.

u→OLP
=




uk|k
uk+1|k

...

uk+nc−1|k
−Kxk+nc|k

...

−K Φ ny−ncxk+nc|k




; u→CLP
=




−Kxk + ck

−Kxk+1|k + ck+1

...

−Kxk+nc|k + ck+nc−1

−Kxk+nc|k
...

−K Φ ny−ncxk+nc|k




(7.1)

From here it is clear that the d.o.f. in the OLP predictions are the first n c control

moves; that is uk+i, i = 0, ...,nc − 1, whereas in the CLP predictions the d.o.f. are
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the perturbations ck+i, i = 0, ...,nc −1. The mode 2 predictions are the same, that is,

based on xk+nc|k.

Theorem 7.1 The OLP and CLP paradigms give an identical prediction class.

Proof: This is obvious, as during mode 1 the corresponding terms are

uk+i|k : Kxk+i|k + ck+i (7.2)

Clearly uk+i|k, ck+i have the same dimension and hence can be selected to ensure

equivalence. The mode 2 predictions are the same if x k+nc|k is the same which is true

if the mode 1 predictions are the same. ��
Corollary 7.1 The OLP and CLP paradigms parameterise the d.o.f. in a different
way.

Proof: This is obvious from the predictions. The significance will be seen later in

the formulation of the cost function J using both prediction sets; in general the CLP

predictions give a better conditioned optimisation. ��
Summary: The OLP and CLP are equivalent in the space covered but have dif-

ferent parameterisations of the d.o.f. In fact the CLP can be viewed as a means of

normalising the space of optimisation variables which improves conditioning.

7.1.2 CLP predictions

For completeness this section gives the CLP predictions (analogous to those derived

in Sections 3.2, 3.3 for OLP) which can be deployed in MPC algorithms.

7.1.2.1 CLP predictions for state-space models

For simplicity the details of how to incorporate integral action are omitted. These

follow the same lines as given in Section 2.3.4.

The equations within the prestabilised loop (during prediction) are

xk+i|k = Axk+i−1|k + Buk+i; uk+i = −Kxk+i|k + ck+i (7.3)

Removing the dependent variable uk+i one gets:

xk+i|k = [A−BK]xk+i−1|k + Bck+i; uk+i = −Kxk+i|k + ck+i (7.4)

Simulating these forward in time with Φ = A−BK one gets:

x→k
=




Φ
Φ 2

Φ 3

...




︸ ︷︷ ︸
Pcl

xk +




B 0 0 . . .

Φ B B 0 . . .

Φ 2B Φ B B . . .
...

...
...

...




︸ ︷︷ ︸
Hc

c→k
(7.5)
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or in more compact form

x→k
= Pclxk + Hc c→k

(7.6)

The corresponding input predictions can be written as

u→k
=




−K
−K Φ
−K Φ 2

...




︸ ︷︷ ︸
Pclu

xk +




B 0 0 . . .

−KB B 0 . . .

−K Φ B −KB B . . .
...

...
...

...




︸ ︷︷ ︸
Hcu

c→k
(7.7)

or

u→k
= Pcluxk + Hcu c→k

(7.8)

The state after nc steps will be denoted as

xk+nc|k = Pcl2xk + Hc2 c→k
(7.9)

Summary: Predictions are affine in the current state and the d.o.f. and hence have

an equivalent form to (3.1).

7.1.2.2 CLP predictions with transfer function models

In this case (see Chapter 3 to remind yourself of notation) the nominal control law

(eqn.(4.25)) takes the form:

∆uk = Pr r→−Nk y←− Ďk∆u← (7.10)

One can then perturb the implied control action by a simple modification as follows:

∆uk = Pr r→−Nk y←− Ďk∆u←+ ck (7.11)

or with the more usual representation of eqn.(4.31)

Dk(z)∆uk = Pr(z)rk+1 −Nk(z)yk + ck (7.12)

The model equation is

A(z)y = b(z)∆u (7.13)

and hence closed-loop predictions can be formulated by solving the model and con-

troller simultaneously. This is illustrated using the Toeplitz/Hankel methodology

given in Chapter 3.

1. The model and controller equations over the prediction horizon are:

CA y→+ HA y← = Czb∆u→+ Hzb∆u←
Cz−1Nk

y→+ Hz−1Nk
y← = −CDk ∆u→−HDk ∆u←− c→

(7.14)
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132 Model-based predictive control: a practical approach

2. Eliminate ∆u→ using the second of these equations:

∆u→ = C−1
Dk

[Cz−1Nk
y→+ Hz−1Nk

y←−HDk∆u←− c→]

3. Then substitute ∆ u→ into the first equation

CA y→+ HA y← = CzbC−1
Dk

[Cz−1Nk
y→+ Hz−1Nk

y←−HDk ∆u←− c→]
+Hzb∆u←

[CA −CzbC−1
Dk

Cz−1Nk
]y→ = [CzbC−1

Dk
Hz−1Nk

+ HA]y←+[CzbC−1
Dk

HDk + Hzb]∆u←
−CzbC−1

Dk
c→

CPc︷ ︸︸ ︷
[CDkCA −CzbCz−1Nk

] y→ = [CzbHz−1Nk
+CDk HA]y←+[CzbHDk +CDk Hzb]∆u←

−Czb c→
y→ = C−1

Pc
{[CzbHz−1Nk

+CDk HA]y←
+[CzbHDk +CDkHzb]∆u←−Czb c→}

(7.15)

Note that Pc is the implied closed-loop polynomial derived with the given con-

trol law.

4. In a similar way one can derive that

∆u→ = C−1
Pc

[[CzbHz−1Nk
+CDk HA]︸ ︷︷ ︸

Py

y←+[CzbHDk +CDk Hzb]︸ ︷︷ ︸
Pu

∆u←−CA c→]
(7.16)

Remark 7.1 The reader will notice in (7.15, 7.16) a nice separation between the
part of the predictions dependent on past information and that dependent on the per-
turbations c→. This neat separation aids both insight and computation. For instance
if the underlying control law is ’optimal’, then one would ideally choose c→ = 0.

Summary: CLP predictions take the same neat form as given in (3.1) with the

exception that the d.o.f. are expressed in terms of the perturbation c rather than in

terms of u. Hence these can be substituted into MPC in a straightforward manner.

7.1.3 CLP structure

It is useful to have a picture in one’s head of how the CLP paradigm might be im-

plemented. As there is an implied underlying control law throughout the prediction

structure, this could be viewed as hardwired into the system; that is, one could actu-

ally implement this control law. The MPC algorithm then supplies the perturbations

c to improve performance or for constraint handling. For the control law of (7.12)

this scenario can be represented by Figure 7.1:
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FIGURE 7.1
Control loop with the closed-loop paradigm.

Here the fixed control law has parameters Pr,Nk,Dk. This is considered as being

always implemented. The past inputs and outputs are used to form the predictions

(7.15, 7.16) hence these along with the future set point are used in the optimisation

stage which produces the best choice of c→, the perturbation to the underlying control

law.

A similar diagram could be constructed for state-space implementations.

Remark 7.2 The informed reader will notice a strong link with reference governor
strategies [34, 37, 38]. This is unsurprising, as reference governor strategies are
often MPC algorithms that simply deploy an alternative parameterisation of the d.o.f.
to simplify computation [119].

7.2 Setting up an MPC problem with the closed-loop paradigm

Next the MPC implementation of the CLP is introduced in more detail. This follows

the same pattern as for the OLP given in Chapters 3 and 4 and hence is shown here

only briefly.
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134 Model-based predictive control: a practical approach

The main components of MPC are predictions, a performance index, d.o.f. and con-

straints. Hence there is a need to define each of these components for the CLP.

1. The d.o.f. are the perturbations c identified in Figure 7.1. It is usual to define

these as:

c→
T
k

= [cT
k|k, . . . ,c

T
k+nc−1|k]; ck+nc+i|k = 0, i ≥ 0 (7.17)

That is, assume a finite number∗ (nc) of nonzero values for c. Beyond nc the

perturbations are zero and the loop acts in a linear fashion and is equivalent to

mode 2 of the dual mode predictions.

2. The performance index is the the usual infinite horizon cost

Jk = min
ck+i, i=0,1,...

J =
∞

∑
i=1

‖rk+i −yk+i‖2
2 + λ ‖∆uk+i−1‖2

2 (7.18)

J needs to be formulated in terms of the d.o.f. c→.

3. The predictions (7.15, 7.16) come from simulating the loop of Figure 7.1,

hence they are closed-loop predictions. There is a dependence on initial values

in the loop and the assumptions on the perturbations c→.

4. The constraints (4.90) or (6.44) need to be formulated in terms of their depen-

dence on the predictions, e.g. (7.15, 7.16) or (7.6, 7.8, 7.9).

Summary: To design a CLP MPC law, one needs to define the usual components

of predictions, constraints, and objective in terms of the d.o.f. c→.

7.2.1 Setting up the cost function and computing the control law for
state-space models

Assuming that c→ comprises only a finite number of nonzero values, then the cost

function can be set up as for dual mode predictions where mode 2 is the part where

c = 0. Hence, following the procedure of Section 6.6.2 and using prediction equa-

tions (7.6, 7.8, 7.9) give the cost function as

J = [Pclxk + Hc c→k
]T diag(Q)[Pclxk + Hc c→k

]
+[Pcluxk + Hcu c→k

]T diag(R)[Pcluxk + Hcu c→k
]

+[Pcl2xk + Hc2 c→k
]T P[Pcl2xk + Hc2 c→k

]
= c→

T Sc c→+ 2 c→
T Scxx+ k

(7.19)

where
Sc = HT

c diag(Q)Hc + HT
cudiag(R)Hcu + HT

c2PHc2

Scx = HT
c diag(Q)Pcl + HT

cudiag(R)Pclu + HT
c2PPcl2

(7.20)

∗Hence this gives an equivalence to mode 1 of the dual mode predictions.
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and k does not depend upon c→ and hence can be ignored. This is quadratic in the

degrees of freedom c→.

The MPC law is derived by minimising w.r.t. to the d.o.f., that is

min
c→

J = c→
T Sc c→+ 2 c→

T Scxx (7.21)

which implies that the optimal unconstrained c→ is given from

c→ = −S−1
c Scxx (7.22)

Notably this is a state feedback; that is, the optimal unconstrained perturbation is

given by an additional feedback loop. The underlying control law is defined as u =
−Kx+ c where c→ = −S−1

c Scxx.

Summary: The CLP MPC control law in the unconstrained state-space case is

equivalent to a fixed state feedback:

u = − [K + S−1
c Scx]︸ ︷︷ ︸

Kc

x (7.23)

7.2.2 Including the constraints for state-space models

Take the constraint equations of (6.44) which apply to dual mode algorithms. One

can simply substitute in the predictions of (7.6, 7.8, 7.9) as appropriate in order to

express the constraints in terms of c→.

The constraints are represented by the inequalities

C∆u→−d ≤ 0 and Cmaxxk+nc|k −dmax ≤ 0 (7.24)

Substituting these gives inequalities of the form

C[Pcluxk + Hcu c→k
]−d ≤ 0

Cmax[Pcl2xk + Hc2 c→k
]−dmax ≤ 0

(7.25)

Hence the entire constraint set (for the state-space models) is[
CHcu

CmaxHc2

]
︸ ︷︷ ︸

Ccl p

c→k
+

[
CPclu

CmaxHc2

]
︸ ︷︷ ︸

Pcl p

xk −
[

d
dmax

]
︸ ︷︷ ︸

dcl p

≤ 0 (7.26)

Remark 7.3 For transfer function models one would use predictions (7.15,7.16) for
mode 1 constraints, i.e.

C[Py y←+ Pu u←+ Hcu c→]−d ≤ 0 (7.27)
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136 Model-based predictive control: a practical approach

The MAS (mode 2 constraints) would take the form

Cmaxt f

[
∆u←
y←

]
+CmaxHc2 c→−dmaxt f ≤ 0 (7.28)

where matrices Cmaxt f ,Cmax,dmaxt f are easy to define.

Summary: The constraint equations are affine in the d.o.f. c→, the current state and

the limits.

7.2.3 The constrained optimisation

The MPC optimisation (state-space case) using the CLP is given as

min
c→

J = c→
T Sc c→+ 2 c→

T Scxx s.t. Ccl p c→−Pcl px−dcl p ≤ 0 (7.29)

The constrained control law is then defined as

uk = −Kxk + ck (7.30)

where ck is the first element of the optimising c→.

Remark 7.4 1. A similar method will give the solution in the transfer function
case where the control law would take the form of (7.12).

2. As with the OLP, the matrices in (7.29) depend upon the weights and the num-
ber of d.o.f. nc. However, additionally they also depend upon the choice of
terminal control law.

Summary: The computation of the MPC control law using the CLP reduces to

the solution of a quadratic programming problem in the d.o.f. c→ where c is the

perturbation to the underlying (or mode 2) control law.

7.3 Different choices for mode 2 of dual mode control

Dual mode control with the OLP and the closed-loop paradigm give the same result;

they differ only in the parameterisation of the d.o.f. but give identical solutions in

the absence of numerical errors. That is, the control law of (7.30) can be shown to be

identical to that which arises from the corresponding OLP minimisation (6.45). This

is because one has used the same cost function and equivalent d.o.f.
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From here on this book will adopt the CLP where infinite horizon algorithms are

used; this because, as will be illustrated, there are benefits to be had over the OLP

implementation.

However, first in this section we will give an overview of the different forms of

dual mode control that have been popularised in the literature, followed by some

comments on their respective strengths and weaknesses. The reader is reminded of

the terminology:

1. Terminal control law: Sometimes denoted terminal conditons, this is the im-

plied control law used in mode 2 of the predictions.

2. Terminal region or target set: This is the maximal admissible set† associated

to the terminal control law.

Two main tuning parameters affect dual mode control. The most obvious is the

number of d.o.f. but the second and in practice equally important one is the selection

of the terminal control law. The following sections look at the effects of changing

the terminal control law.

Remark 7.5 If nc is large, say around the system settling time, then the choice of
terminal control law will have negligible effect on the unconstrained control law
(7.23), as all the transients will occur in mode 1 and mode 2 will comprise of only
small numbers. In other words

lim
nc→∞

[K + S−1
c Scx] = Kopt (7.31)

where Kopt is the optimal controller minimising (6.11); this can be derived using
optimal control algorithms.
However, it is usually assumed that for computational reasons nc is small. In this
case the choice of terminal control law has a significant effect as it shapes much of
the transients which are now in mode 2 of the predictions.

Summary: The choice of terminal control law has a significant impact on uncon-

strained and constrained performance for small n c.

7.3.1 Dead beat terminal conditions (SGPC)

The dead beat choice was popularised in the MPC field by [22, 60, 87] but actually

known earlier (e.g. [55, 69]). Historically these were the first insightful suggestions

of how to guarantee, a priori, the stability of MPC algorithms.

†In nonlinear MPC and computational simpler algorithms this set may be chosen to be an alternative

invariant set and hence possible smaller than the MAS.
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The key idea was to use a dead beat form of terminal mode, i.e. force the predicted

output to be identically equal to the set point for n steps (n the model order). Hence,

for the nominal case, the predicted output would remain at the set point thereafter,

assuming that the corresponding predicted ∆u were also zero.

One can easily demonstrate the consistency of the above statements. Take the incre-

mental form of the model difference equation, for instance eqn.(3.14)

yk+1 = −A1yk · · ·−An+1yk−n + b1∆uk + ...+ bn−1∆uk−n+1

Next set all the past outputs equal to a constant r and past input increments equal to

zero. Now compute the next predicted output:

yk+1 = −A1r · · ·−An+1r + b1∆uk + ...+ bn−1∆uk−n+1

= −[A1 + · · ·+ An+1]r + 0

= r
(7.32)

(Recall that [A1 + · · ·+ An+1] = −1 because A(z) = a(z)∆(z).)
What remains now is to ask how the requirement that

yk+i|k = r, i = nc + n,nc + n+ 1, . . .,nc + 2n (7.33)

might be best ensured and implemented in a control law design?

7.3.1.1 Implementing a dead beat terminal constraint

The dual mode paradigm gives the most obvious insight into how this constraint can

be enforced‡. It is clear that the terminal control law should be a dead beat control

law as by definition this can ensure condition (7.33). Hence

• In the state-space case one should choose K such that

(A−BK)n = 0 (7.34)

where n is the state dimension. Then, for instance

xk+nc+n|k = (A−BK)nxk+nc|k = 0 (7.35)

A dead beat feedback can be constructed via a pole placement design where

all the poles are on the origin.

• In the transfer function case one should choose Nk, Dk such that the implied

closed-loop poles are zero, i.e.

Pc = ADk + bNk = 1 (7.36)

‡The reader may like to note that some earlier papers [22, 87] used an alternative and numerically inferior

[104] approach which, however, may be the only option for nonlinear systems.
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It is straightforward to show from the closed-loop transferences of Figure

7.1 (or otherwise) that condition (7.36) implies that y k+nc+n|k = r (assuming

Pr(1) = Nk(1)). For simplicity it would be usual to take the minimum order

Nk, Dk satisfying (7.36) hence giving a unique solution. Other choices are

related to robust design covered in a later chapter.

Having selected the terminal control law all the other details follow automatically

from the sections on dual mode control and the CLP.

Summary: A terminal condition given by a constant output and unchanging input

can be implemented by selecting the mode 2 control law as a dead beat controller.

7.3.1.2 Strengths and weaknesses of dead beat terminal conditions

Although innovative when first proposed, actually dead beat terminal conditions are

not to be recommended in general. There are some obvious weaknesses to the law

Kc of for instance (7.23) when K is dead beat:

1. Dead beat control is known to use very active input signals. Hence the terminal

region Smax will be small.

2. As Smax is small, the use of small nc will give rise to frequent infeasibility. To

improve the volume of feasibility regions one would need a large n c with a

consequent increase in the on-line computational load.

3. Dead beat control would tend to give poor performance, measured by way of

typical quadratic performance indices such as (6.11). If n c is small, a signifi-

cant part of the transients are under dead beat control and hence performance

is expected to be poor.

4. Dead beat control usually has poor robustness; some of this poor sensitivity

will inevitably be inherited by the associated MPC law (e.g. (7.23)) when n c

is small.

In fact the only obvious positive to dead beat conditions is that the transients have a

fixed length, that is n + nc, and as such the constraint equations are also limited to

this horizon. This means the number of inequalities implied, in for instance (7.26),

may be far fewer than with other terminal control laws. This simplifies (reduces the

complexity of) the optimisation.

Summary: Dead beat terminal conditions should be avoided unless, such as in

some nonlinear applications, it is the only stabilising control law which can be

easily computed.
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7.3.2 No terminal control (NTC)

In fact this is same as the standard GPC/DMC algorithm but with an infinite output

horizon as in eqn.(6.16). By no terminal control (NTC) it is intended that the terminal

control law is ∆uk+nc+i|k = 0, i ≥ 0 for the transfer function formulation or can

be realised by a zero state feedback K = 0 (implemented as in eqn.(4.61)) in the

state feedback case. This is the most popular approach deployed in industry, more

especially because the standard DMC algorithm can be used. The reader will note

that DMC and GPC are in fact dual mode strategies although such a link is not usually

made. However, there are significant weaknesses in using NTC strategies which will

be detailed next:

1. Mode 2 is given by open-loop behaviour. In many cases this may imply poor

performance and hence one returns to the earlier arguments on prediction mis-

match and the possible impact on closed-loop performance.

2. The terminal region may be large (infinite) if there are only input constraints

because the terminal input is zero. However, conversely S max may be small in

the presence of state constraints, as the behaviour is uncontrolled in mode 2.

3. The combination of an infinite output horizon and small n c will give open-

loop behaviour, essentially equivalent to potentially poorly performing integral

control (see Section 5.2.4.2). This because the cost function is dominated by

output errors and the cost minimisation is effectively subject to the constraint

that the asymptotic error is as small as possible with nc control moves.

4. It is not appropriate to unstable open-loop systems, as the implied terminal

cost (6.32) with open-loop behaviour is infinite.

Summary: NTC is easy to code and has good feasibility in the absence of state

constraints. However, where nc is small it may result in unnecessarily detuned

performance. The reader is reminded that if one can deploy large n c, then all algo-

rithms will perform well.

7.3.3 Terminal mode by elimination of unstable modes (EUM)

The main weakness of SGPC (dead beat terminal conditions) is that it can give over-

tuned control whereas the weaknesses of NTC terminal conditions are that it is po-

tentially undertuned and not applicable to unstable processes.

An equivalent of NTC for unstable processes was developed independently by sev-

eral authors, some using the CLP approach [41, 42, 107, 110] with transfer functions

and some using the OLP approach [94] with state-space models. The basic problem

was how to eradicate the unstable predictions from mode 2 when the implied mode 2

control law was zero. The natural answer deployed by all the authors was to ensure
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that the predicted state at the end of mode 1 was solely inside the stable manifold so

that the mode 2 predictions would then be convergent.

For convenience here we use the pseudonym EUM for eliminate unstable modes.

EUM forms a middle ground between SGPC and NTC. SGPC places an explicit

dead beat constraint on mode 2 predictions which is severe; EUM on the other hand

deploys a milder but explicit dead beat constraint on states solely within the unstable

manifold. NTC places no terminal constraint at all. For stable processes EUM and

NTC are equivalent.

The EUM algorithm selects only the unstable modes to penalise in mode 2 and hence

it is algebraically more difficult to set up than SGPC and NTC. This is because the

dead beat constraint on the unstable manifold is not easily realised as a fixed state

feedback and hence does not fit easily into the dual mode template of the previous

chapter. Instead one has to include the EUM constraint explicity as a set of linear

equalities to be satisfied.

One can still construct the dual mode predictions and in line with the rest of this

chapter, here we will do this using a CLP as opposed to an OLP. We will illustrate

the procedure for both state-space and transfer function models.

7.3.3.1 Predictions with cancellation of unstable modes: state-space models

Let a state-space matrix have some unstable eigenvalues. Decompose the system

into stable and unstable modes using the eigenvalue/vector decomposition:

A = [Ws,Wu]diag[Λ s, Λ u]
[

V T
s

V T
u

]
(7.37)

where subscript s is used for stable and u for unstable. Clearly if a state lies solely in

the stable manifold of A, then it must satisfy:

V T
u x = 0 (7.38)

Given this, the predicted state evolution would follow

xk+i|k = Aixk = Ws Λ i
sV

T
s xk (7.39)

To be more specific, assuming that V T
u xk+nc|k = 0, then the mode 2 predictions are

given by

xk+nc+i|k = Ws Λ i
sV

T
s xk+nc|k; uk+nc+i = 0 (7.40)

Given predictions (7.40) it is easy (following the procedure of Section 6.6.1) to for-

mulate the implied mode 2 cost as§:

∞

∑
i=1

xT
k+nc+i|kQxk+nc+i|k = xk+nc|kPeumxk+nc|k (7.41)

§Recall that the implied control is zero and hence is not included.
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7.3.3.2 EUM control law for the state-space case

The unconstrained EUM control law contains 3 components:

1. Mode 1 predictions

2. Mode 2 predictions

3. The constraint on xk+nc|k

Assuming that the mode 1 predictions are given by (7.6, 7.8, 7.9) and the mode 2

cost is given by (7.41) then the optimisation required is:

min
c→

J = c→
T Seum c→+ 2 c→

T Seumxx s.t.

{
V T

u Hc2 c→+V T
u Pcl2x = 0

C[Pcluxk + Hcu c→k
]−d ≤ 0

(7.42)

where

Seum = HT
c diag(Q)Hc + HT

cudiag(R)Hcu + HT
c2PeumHc2

Seumx = HT
c diag(Q)Pcl + HT

cudiag(R)Pclu + HT
c2PeumPcl2

Summary: The required optimisation for EUM MPC has both equality and in-

equality constraints but otherwise has a standard form.

7.3.3.3 EUM predictions for the transfer function case

In this case it is easier to represent the predictions using transfer functions. Con-

sider the predictions of (3.19) and represent by an equivalent transfer function; this

procedure was outlined in Section 3.7.2.1. Hence

y→(z) =
p(z)+ b(z)u→(z)

A(z)
(7.43)

where p(z) = [1 z−1 z−2 . . .](Hzb∆u←−HA∆u←). In order for the predictions to be

stable there must be no unstable modes. Let A(z) = a+(z)a−(z) where a+ contains

the unstable factors. Therefore, in order for the predictions to converge the following

must be true:

p(z)+ b(z)u→(z) = a+ φ (7.44)

where φ is a finite order polynomial. Eqn. (7.44) places a constraint on the possible

choices for u→; the result is given in eqn.(3.86).

Remark 7.6 The approach to EUM given here does not make use of predictions
(7.15). However, this is because the terminal control law is K = 0. The prestabilisa-
tion is performed algebrically through (7.44) and hence has some equivalence to the
CLP philosophy [107, 113].
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7.3.3.4 Strengths and weaknesses of EUM

These are analogous to the strengths and weaknesses of NTC but with the obvious

improvement of being applicable to unstable open-loop plant. In fact for stable pro-

cesses NTC and EUM are identical¶.

The main reservation over EUM is similar to that for SGPC. If nc is small then the

constraint (7.38) may be difficult to realise; that is, the associated MAS for K = 0 and

x in the stable manifold could be small. This limitation could be significant and is

due to the restriction that the input moves be zero beyond n c, a weakness which could

also hamper performance due to the arguments on prediction mismatch. Examples

of the poor performance due to the use of EUM constraints are given in [132, 133].

Remark 7.7 Other work (e.g. [107]) extended EUM and looked at the minimal
constraints that one could impose on the predictions to ensure convergence and so
maximise the d.o.f. for performance. The key observation is that the terminal control
moves need not be zero and this relaxes the condition that the state be in the stable
manifold in only nc steps. However, although interesting, this is largely superceded
by later work and hence is discussed no further here.

Summary: The EUM control law is slightly more involved than other dual mode

algorithms due to the need to include an equality constraint (i.e. 7.38). However,

this can be incorporated quite neatly if desired (see eqn.(3.86)) hence MPC still

reduces to a straightforward QP optimisation.

7.3.4 Terminal mode is optimal (LQMPC)

One logical choice [113, 137, 145] for K is in fact that which minimises the infinite

horizon cost in the constraint free case. Define such an algorihm as linear quadratic

optimal MPC (LQMPC). The advantage of such a choice is that for any n c, if the

unconstrained optimum is feasible, then the dual mode algorithm will find that so-

lution; that is no prediction mismatch in the unconstrained case. Moreover, if n c is

large enough, then the dual mode algorithm can find the optimal for the constrained

infinite dimensional optimisation. This is because, at least in the prediction stage

when one expects the outputs to settle, there always exists an nc large enough so that

the optimum xk+nc|k ∈ S max for any given stabilising K. In practice this nc may not

be very large.

No details are given for this algorithm, as they are implicit in Section 7.1.1. It should

be noted that in the constraint free case this algorithm will given the optimal c→ = 0;

that is, the term in (7.22) c→ = −S−1
c Scx = 0, which implies that Scx = 0 and the cost

¶Of course the EUM paradigm does have the flexibility to allow poles near the stability boundary to be

treated as unstable so that they do not play a part in mode 2 predictions.
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is centered on the origin, i.e. J = c→
T Sc c→! In this case the size of the perturbations c

is a direct measure of the distance from the unconstrained optimum.

However it is still necessary to consider strengths and weaknesses.

1. The major weakness is that for a well-tuned K the terminal region S max may

be small. Hence for a large region of attraction one would need a large n c.

2. The major strength is that the prediction class includes the unconstrained op-

timum and hence there is a good chance that one will have no prediction mis-

match which implies good closed-loop performance.

3. The predictions evolve over an infinite horizon, so irrespective of n c, the con-

straint equations may contain a large number of rows. Hence it is less straight-

forward to use structure in the constraint equations to simplify the optimisa-

tion, even when there are no state constraints.

Summary: Using a mode 2 control law of Kopt ensures a well posed optimisa-

tion and a well-conditioned one. However, for a tightly tuned K opt , feasible (and

terminal) regions may not be large and the control law may not be robust.

7.3.5 Summary of dual mode algorithms and key points

One critically important issue not yet considered in this book is the impact of mod-

elling accuracy. The focus so far has been on optimisation of nominal performance,

but this is partially meaningless in the absence of an accurate model. Recall the ob-

servation that one cannot control better than one can model. Hence if the model is

very inaccurate, what point is there in producing an optimal control law?

A highly tuned control law is not robust in general and hence the LQMPC algorithm

may actually perform poorly on real applications if used naively. Industry largely

uses a GPC/DMC (NTC) type of algorithm with small nu but large ny – this can

reduce to low gain integral control but in the presence of significant plant uncertainty

may give as good performance as one could reasonably expect, and with a relatively

simple optimisation. In a later chapter we will consider robustness, but it should be

noted that you are better to improve the robustness of wisely chosen control law that

an over ambitiously tuned one.

Four algorithms have been given, SGPC, NTC, EUM and LQMPC. It is clear that

LQMPC is the best algorithm on average but one might still think that none of them

is entirely satisfactory. The question of which to choose, or modify, will however

be process dependent. The designer will need to ask questions over the complex-

ity of optimisation they can allow (for instance, how many constraint inequalities

they can carry and how many d.o.f.), whether they want optimal performance or are

happy with eliminating tracking offset using relatively low gain control. The tight-
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ness of constraints allied to limits on nc places a restriction on the allowable terminal

controller.

The conclusion we have reached, however, is somewhat surprising. In simple terms,

MPC reduces to optimal control with constraint handling. The key advances since

the 1960’s where optimal control was not so readily accepted in industry are:

• The computing power is now available to do on-line optimisation of quite large

quadratic programming problems.

• The evolution of MPC has produced a mechanism (dual mode MPC) for re-

formulating the infinite d.o.f. constrained optimal control problem as one with

only a few d.o.f. Hence the optimisation is now tractable.

However, to get truly optimal control one may need a large number of d.o.f. and

hence in many cases one may use a slightly suboptimal variant (for instance NTC)

which could have a larger terminal region.

Summary: The choice of the mode 2 control law has a large impact on perfor-

mance and feasibility. The choice must reflect model accuracy and control objec-

tives.

7.4 Are dual mode-based algorithms used in industry?

Given all the recent academic developments in MPC, it is rather odd to note that

industrial applications very rarely use state-space or transfer function models. More-

over, they very rarely use algorithms that can be related closely to optimal control

and hence with a priori stability results. Why is this?

7.4.1 Efficacy of typical industrial algorithm

The most popular algorithm is essentially of the DMC form (Section 4.5) using the

following guidelines:

• ny is large and certainly greater than the system rise time.

• nu is small, often just one.

• Models are usually step responses (e.g. DMC).

It should be emphasised (as argued in the previous two chapters) that these guidelines

can ensure control that is close to linear quadratic optimal anyhow, at least for n u ≥ 3.
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• If ny−nu is greater than the system rise-time, then predictions will have all but

settled and hence the difference on the numerical value of the cost between

using an infinite and finite horizon is negligible. Given model uncertainty,

such differences are irrelevant to practical control.

• For well-chosen sample rates, the principle dynamics of the input will have

around 10 significant moves in a typical transient. In conjunction with the

receding horizon implementation nu = 3 is often enough to get close to this.

• For‖ nu = 1, DMC will give an open-loop form of response (at least if λ is

small).

7.4.2 The potential role of dual mode algorithms

The basic MPC algorithm using finite horizons can give good performance, not with

standing arguments on prediction mismatch given in Chapters 5 and 6. Hence one

might wonder why bother with dual mode implementations. The simple answer is

that there is no need for many cases, but:

1. The development of dual mode paradigms/infinite horizon algorithms solved

a theoretical problem for the academics and hence gave MPC some analytic

rigor. The insight gained is invaluable in understanding better the strengths

and weaknesses of more typical MPC implementations.

2. When dealing with unstable open-loop processes or those with quite complex

transient behaviour, a dual mode type of algorithm is likely to perform well

with minimal tuning as the necessary insight is inbuilt.

Summary: In practice the DMC/GPC algorithm is good enough to handle most

industrial problems. Recent advances have given a better understanding of why

this is so.

7.5 Advantages and disadvantages of the CLP over the open loop
predictions

In many cases whether one uses an OLP or CLP implementation of dual mode con-

trol, it will make little practical difference apart from the issue of insight. This is

‖We ignore here open-loop unstable plant and excessive nonminimum phase characteristics which need

more precise tuning and hence higher nu.
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because if one minimises the same objective with the same d.o.f. (a reparameter-

isation of the d.o.f. does not change the potential effects), then one must get the

same answer. However, the reader will also be aware that the conditioning of dif-

ferent parameterisations can vary significantly. In general it is better to solve a well

conditioned problem as opposed to a poorly conditioned problem.

Herein lies one major potential benefit of the CLP; it changes the conditioning of the

optimisation problem. In cases where the OLP is poorly conditioned the CLP may

not be and hence it will give more reliable answers. Of course one should add that

the contrary could also occur and the reader may be best advised in general to check

the conditioning with both approaches.

In this section we give a brief overview of some well understood problems which

give useful insight to the control designer.

7.5.1 Cost function for optimal stable predictive control (LQMPC)

By optimal stable predictive control we mean the algorithm LQMPC of Section 7.3.4.

In this section we will compare the cost function that arises from using the OLP

and CLP. For simplicity of presentation the SISO case is used and comments on

extensions to the MIMO case are given at the end.

7.5.1.1 LQMPC cost function with OLP

The cost, ignoring terms that do not depend upon the d.o.f., for an arbitrary dual

mode algorithm was given in Section 6.6.2 as:

J = ∆u→
T
k−1

S∆u→k−1
+ ∆u→

T
k−1

Lxk (7.45)

where S = HT diag(Q)H + diag(R)+ HT
nc

PHnc , L = 2[HT diagQPx + HT
nc

PPnc ].
What is clear is that there is a need to compute matrices H, Hnc , Px, Pnc and then

combine these to form matrices S, L. However, there is no useful insight into the

conditioning of S, L and of the problem in general. The constrained optimum, that

is, ∆u→
T
k−1

= S−1Lxk may be easy to compute or not depending on the conditioning

of matrix S.

7.5.1.2 LQMPC cost function with CLP

For the CLP the cost is given in Section 7.2.1 as

min
c→

J = c→
T Sc c→+ 2 c→

T Scxx (7.46)

where Sc, Scx have apparently complex definitions (7.20). However, it is known that

for SISO LQMPC:

Sc = µ I; Scx = 0 (7.47)
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with µ a scalar. One can prove this easily by noting a few things:

1. The unconstrained optimum c must be zero because:

• By definition the control law minimising J in the absence of constraints

is given as u = −Koptx.

• The LQMPC control law is given by u = −Koptx+ c.

2. If the unconstrained optimal c→ = 0, then the cost function of (7.46) must be

such that Scx = 0.

• The cost of (7.46) is quadratic.

• If the optimum of a quadratic is the origin, then the cross terms must be

zero.

3. The matrix Sc = diag( µ )I where µ is a scalar.

• The cost function uses infinite horizons.

• The impact on the cost of an identical perturbation now or at a later sam-

pling instant must be identical.

• One could compute µ but in the SISO case it is irrelevant.

Summary: For LQMPC, in the SISO case the objective function reduces to

J = c→
T c→ (7.48)

7.5.1.3 MIMO case and other terminal conditions

For arbitrary positive definite Q and MIMO systems a similar result will follow but

in this case Sc will be block diagonal with each block the same.

One would compute the implied cost (6.11) for c 0 = 1, ci = 0, i ≥ 1 when u =
−Koptx + c and this would give Q̂. For instance, given a state feedback, one can

easily show that

Q̂ = BT Σ B+ R, Σ − Φ T ΣΦ = Q+ KT RK (7.49)

Hence one can replace the optimisation of (7.46) with

J =
nc−1

∑
i=0

cT
k+i|kQ̂ck+i|k (7.50)

This is expected to be better conditioned optimisation than that given in (7.45), if

nothing else because the level functions are spheres (in the SISO case) as opposed

to ellipsoids or for the MIMO case ellipsoids of the input dimension N repeated n c

times as opposed to a N ×nc dimensional ellipsoid. Also the optimisation is centred

at the origin.
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Remark 7.8 The same arguments may not cross over to EUM, NTC and SGPC im-
plementations because there the objective is not solely to minimise the weighted norm
of c→. That is, the underlying control law is not the optimum.

Summary: Use of the CLP, especially with algorithm LQMPC, gives a well struc-

tured objective function with the unconstrained optimum on the origin.

7.5.2 Improved numerical conditioning with the CLP

The issue highlighted in this section appertains directly to an open-loop unstable

plant and hence may be considered a rather special case. The reader is referred back

to Section 5.4 for an illustration of the potential numerical difficulties caused by

unstable processes. This is one case where the use of the CLP could be considered

advisable.

7.5.2.1 Round-off errors

The difficulty with unstable processes is that the open-loop predictions diverge.

Hence if one computes the prediction matrices, these rapidly become ill conditioned

as the later rows contain very large values compared to the earlier rows. In the

simplest case where only a few decimal places can be stored the important values

containing the transients would be lost (even replaced by zero in the worst case) as

the computer concentrated on storing the large values. Hence it is clear that MPC

based on unstable predictions is unreliable for large output horizons simply because

of round-off errors. Note, we have already discussed in Chapter 6 the issue of pre-

diction mismatch which will inevitably occur in this case so this discussion is not

repeated.

The advantage of the CLP is that it uses stable predictions in mode 1 and mode 2

and hence the prediction matrices do not contain coefficients with large variations in

magnitude. This helps avoid issues with round-off errors as well as reduces predic-

tion mismatch.

7.5.2.2 Conditioning errors

Let us suppose for a minute that the computer stores sufficient decimal places that

round off in the prediction matrices is not an important issue. Reference to equa-

tion (7.45) shows that it is necessary to compute the matrices S = H T diag(Q)H +
diag(R)+HT

nc
PHnc , L = 2[HT diag(Q)Px +HT

nc
PPnc ]. These involve multiplication of

matrices that are already poorly conditioned. Moreover if matrix H has a range of

coefficients over 10n, then S is likely to have a range of coefficients over 10 2n, i.e. the

problem is accentuated. Matrix S could therefore have very poor conditioning and

yet the algorithm requires one further step equivalent to the inversion of S and then
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FIGURE 7.2
Dependence of norm of controller coefficients on n c.

multiplication of L. The summary is that unless the computer stores several more

decimal places than 2n, the result could be seriously in error if not arbitrary.

These consequences are well illustrated in [104, 113] and similar plots are given here,

in Figure 7.2, for convenience. The plots show the log of the absolute values of the

coefficients of Kc of eqn.(7.23) which for LQMPC should be independent of n c and

therefore should be horizontal lines. The solid lines show the resulting coefficients

using the CLP and the ‘+’ denotes the coefficients using the OLP. It is clear that

for small nc where the computer has ample precision the two algorithms behave

identically. However, as nc increases the conditioning of the OLP approach becomes

rapidly worse such that the control law cannot be computed reliably whereas CLP

continues to behave well.
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For information the example has state-space models

A =




2.6 −0.05 −0.5 1

1 0 0 0

0 1 0 0

0 0 0 1


 ; B =




1

0

0

1


 ; C =

[
1 −2.2 1.12 0

]
; λ = 1

(7.51)

The optimal control law has coefficients

K = [1.2452 0.0256 −0.3165 0.8827] (7.52)

Remark 7.9 It should be noted that the poor performance does not arise until n c

is relatively large and hence one may therefore think that this result is irrelevant
because practical guidelines suggest that nc should be small. However, there are two
counter arguments to this:

1. If approach 1 is known to be more poorly conditioned than approach 2, then
approach 1 should not be used anyway and at best with caution.

2. LQMPC produces a difficult dilemma. If it is well tuned the terminal region
maybe small and hence good feasibility necessitates the use of large n c [64].
If one wants nc small, then LQMPC may not be the best algorithm to choose.

Summary: With unstable open-loop plant the reader is advised to use the CLP,

especially if any horizons are large. Moreover, it is worth checking the conditioning

of any implied computations.

7.5.3 Improved robust design with CLP

We will only give a brief overview of this issue here, as it forms the topic of a later

chapter.

A major weakness of MPC is the need for an on-line optimisation (due to the con-

straints) at each sampling instant. As such there is no fixed linear control law and

hence the approach does not appear to lend itself to traditional robust analysis and

design∗∗.

One potential benefit of the CLP is that the terminal control law can be hardwired

(see Figure 7.1) and hence some design for robustness can be integrated into it. The

perturbations used for constraint handling are then acting on a robustified loop and

used wisely one can achieve a constrained control law with better robustness than

will arise through the use of the OLP.

∗∗Without going into computational demanding approaches such as those based on linear matrix inequal-

ities and linear time varying representations, e.g. [59].
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Constraint handling and feasibility issues in
MPC

So far this book has dealt with the set up and tuning of MPC in the unconstrained case

and this despite the fact that constraint handling is one of the major selling points of

MPC. This is deliberate, as readers need to have a good feel for the underlying MPC

algorithm before they are in a position to gain insight on the effect of constraints

upon the optimisation.

A general observation is that the MPC algorithm optimises predicted behaviour sub-

ject to constraints being satisfied by those predictions. For instance, a racing driver

optimises expected speed around a corner subject to staying on the track. However,

this chapter introduces a more problematic element: what if the constraints cannot

be satisfied? What do drivers do if the entry speed to the corner is so fast that they

cannot stay on the track?

Summary: This chapter looks at how an MPC algorithm can be modified in the

event that not all the desired constraints can be satisfied.

8.1 Introduction

The first questions the reader will need to know are what is feasibility and how is this

term used in MPC?

8.1.1 Description of feasibility

Feasibility is usually a term applied to optimisation problems and describes whether

a solution exists. For instance, consider the following quadratic program:

min
x

x2 s.t.

[
1

−1

]
x ≤

[−1

0

]
(8.1)

This implies that both x ≤ −1 and x ≥ 0. Clearly these two are incompatible so it

is not possible to find any values of x which satisfy the constraints; this problem is

described as infeasible.

153
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8.1.2 Feasibility in MPC

At times authors may use terminology such as algorithm X is infeasible, or approach

Y is infeasible. Technically this is a misuse of language, but the authors simply

mean that the optimisation problem that arises from the use of these algorithms is

infeasible.

Alternatively, you may find the terminology that a given state x is infeasible. Once

again this is a referred issue; i.e. the author is saying that if that value of state

were to be used in the optimisation, then the optimisation would be infeasible. It

is often convenient to use such shorthand terminology and the reader will become

accustomed to it.

8.1.3 Overview of chapter

To some extent feasibility issues belong to the realm of the optimisation specialist

and hence are not given a lot of space in this book. However, some of the concepts are

particular to the MPC problem and these should be highlighted. Hence this chapter

aims to answer questions such as:

• Why is feasibility important?

• What causes infeasibility in predictive control?

• How can one avoid or deal with infeasibility?

The reader should be aware that there are no simple answers to the problem in general

and what is required is an awareness of the different compromises that are possible.

The most suitable compromise can then be used for a given application. This chap-

ter will discuss how infeasiblility arises and various mechanisms for avoiding it or

tackling it.

Summary: Infeasibility implies that, for the current state, the constraints within

the MPC algorithm cannot be satisfied. This chapter looks at mechanisms for over-

coming or avoiding this.

8.2 Constraints in MPC

A discussion on feasibility requires clear assumptions on the constraints in the opti-

misation, as infeasibility is defined as an inability to satisfy all the constraints simul-

taneously.
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8.2.1 Hard constraints

Hard constraints are constraints which must be satisfied. For instance, they may be

limits on actuators or or on valves (which must lie between 0% and 100%) open.

There is no point in a controller asking an input to go to a value beyond a hard con-

straint, as this cannot be achieved. What will occur is a mismatch between predicted

behaviour and actual behaviour, the consequences of which could be arbitrary (see

Chapter 6).

For this chapter define hard constraints as

CH u→+ HHx−dH ≤ 0 (8.2)

where it is clear from the description that the constraints are state dependent as the

predictions are state dependent.

8.2.2 Soft constraints

Soft constraints are those which should be satisfied if possible. For instance, there

may be temperature or pressure limitations to prevent fatigue damage to equipment

or to ensure quality. It is assumed that if necessary, soft constraints can be violated

(ignored). Usually soft constraints are on outputs/states although they could also be

applied to inputs. Such violations may have no effect on nominal stability results.

For this chapter define soft constraints as

CS u→+ HSx−dS ≤ 0 (8.3)

8.2.3 Terminal constraints

These are somewhat artificial in that they arise from the control algorithm. The

reader will recall that dual mode algorithms assume certain behaviour in mode 2.

This assumption is only valid if the state during mode 2 is inside the associated

maximal admissible set (MAS, see Section 11.9.1), this set being defined as the space

within which soft and hard constraints are satisfied by the nominal control loop. The

set into which the predictions are constrained is called a terminal set or a terminal

region or terminal constraints or end point constraints.

Clearly terminal constraints are a form of soft constraint in that they are applied on

far future predictions and arise from the desire for a guarantee of stability. However,

they do in fact contain a mixture of hard constraints and soft constraints, this being

obvious from the description of maximal admissible sets.

For this chapter define terminal constraints as

CT u→+ HT x−dT ≤ 0 (8.4)
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Summary: Constraints are a combination of hard, soft and terminal constraints.

These are usually represented jointly in the simple form:
CH

CS

CT




︸ ︷︷ ︸
C

u→+


HH

HS

HT




︸ ︷︷ ︸
H

x−

dH

dS

dT




︸ ︷︷ ︸
d

≤ 0 (8.5)

8.3 Why is feasibility important?

Before one leaps into a detailed discussion, the reader will be wondering why fea-

sibility is such a big issue. This was partially answered in the example of Section

6.1.2 where it was shown that a mismatch between predictions and actual behaviour

can lead to disaster.

8.3.1 Consequences of infeasibility

The basis of MPC is the optimisation of predicted performance subject to those pre-

dictions satisfying constraints. If the constraints cannot be satisfied, then optimisa-

tion is ill posed and therefore meaningless. In fact the optimisation itself is undefined

and any answer will be arbitrary (some default). Arbitrary control decisions could

cause random closed-loop behaviour and at worst instability.

Remark 8.1 At times ([92, 100, 149]) saturation control∗ is equivalent to the con-
strained optimal, but it is doubtful that this could be extended easily to a case with
state constraints or the MIMO case with several interacting inputs and outputs. At
the very least some comprehensive plant-dependent tests would be needed before
saturation control was accepted.

Summary: Without feasibility the MPC optimisation is ill posed and there is no

assurance that the answer has any useful meaning.

8.3.2 Recursive feasibility

In general, an MPC optimisation being feasible now need not imply it will be feasible

at the next sampling instant. There is a need in MPC for the algorithm to be feasible,

at every sampling instant. This requirement is called recursive feasibility, that is:

∗If the desired input exceeds its limit, simply set the input at the nearest limit.
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Recursive feasibility: Feasibility now implies feasibility at the next
sample and hence at all future samples.

Within MPC, feasibility should really be defined as recursive feasibility but in prac-

tice the reader will have to read any document carefully to be clear on what is being

implied.

By recursive feasibility, one is saying that one can set up the predictions so that any

guarantees given now, can also be given at the next sampling instant (hence the word

recursion). Failure to make such an assurance can allow infeasibility at some point in

the future, at which point the MPC control law would become undefined. A simple

illustration would be: driving your car with a strategy that keeps you on the road now,

need not imply you stay on the road 50 yds later when you come to a sharp corner;

hence your driving strategy was flawed. For a general assurance, your strategy must

have infinite horizons and allow for all possible future scenarios.

8.3.2.1 The certain case

For the certain case recursive feasibility is relatively straightforward to establish, as

it can be shown that the MAS (or any suitable invariant set) is a possible choice for

the terminal region. One need only ensure that the tail (Section 6.3.1) is included

in the prediction class and the arguments are then the same as those for guaranting

stability where one falls back on the previous optimum predictions.

8.3.2.2 The uncertain case

The tail cannot be defined in the case with uncertainty and hence simple results do not

apply. Consider an example where at each sample, a system is subject to a random

but unknown bounded disturbance b. Set up an MPC strategy that ensures recursive

feasibility.

• The one-step ahead prediction is given as

xk+1 = Φ xk + b

• Assume the current nominal predictions are feasible if x ∈ S where S is as

large as possible. However, due to b, xk ∈ S does not need to imply xk+1 ∈ S
and hence one would not have recursive feasibility.

• Recursive feasibility is defined such that for some set S f ,

xk ∈ S f ⇒ xk+1 ∈ S f . ∀b (8.6)

and x ∈ S f ensures constraint satisfaction.

• The set S f may be far smaller than S.
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• The description of such an S f may be nontrivial in general [19, 40, 59] and

moreover S f may put severe limitations on allowable control moves.

Summary: An MPC algorithm is well-posed iff it has a guarantee of recursive

feasibility. That is, any strategies proposed now cannot move you to a position

where the algorithm becomes infeasible. This is easy to establish only for the

certain case.

8.4 What causes infeasibility in predictive control?

Having accepted that infeasibility is undesirable and to be avoided, one needs to

ask how infeasibility can arise. If one can identify the source, one is half way to

producing an avoidance strategy. The following gives a brief overview of typical

causes and possible mechanisms for avoiding them.

8.4.1 Incompatible constraints due to overambitious performance re-
quirements

The most obvious cause of infeasibility is an incompatibility between soft and hard

constraints. For instance if you want the internal house temperature to be 25 degrees

when the external temperature is minus 25 degrees, it may simply be impossible

given the maximum power output of the central heating. In this case you need to

modify your objectives, that is, accept that the internal temperature will be cooler

than desired.

Hard constraints dictate the most that can be delivered by a process. Soft constraints

usually relate to what is desired. If the most desirable behaviour cannot be achieved

with the components/actuators/etc. in place, then the desirable behaviour (soft con-

straints) must be modified to one that is achievable.

8.4.2 Conflicts with terminal mode control laws

Terminal constraints are artifical in that they are introduced to give a control law a

guarantee of stability. However, they also ensure that the prediction class is feasible

over an entire future horizon and so could be viewed as essential. If one cannot

choose a prediction class that satisfies constraints over the entire horizon, then a

problem is predicted to occur at some point.

If the terminal constraints are infeasible, then once again the optimisation is ill posed

and hence the control trajectory that arises could be meaningless. One needs a strat-

co
nt

ro
len

gin
ee

rs
.ir



Constraint handling and feasibility issues in MPC 159

egy to ensure that the whole prediction class is feasible if one wants confidence in

the control moves proposed by your MPC algorithm.

Fortunately this is not the whole story. A terminal constraint is based on an assumed

terminal control law. If this is highly tuned, the associated terminal set may be

small. However, there may exist an alternative terminal law with a far larger MAS

and hence lack of membership of the given terminal region does not need to imply

that a convergent and feasible sequence of control moves does not exist.

Summary: If terminal constraints are infeasible, then replace with alternative ter-

minal constraints associated to a terminal law with a larger MAS. To simply ignore

them could give rise to an ill-posed optimisation.

8.4.3 Model uncertainty

Model uncertainty may cause infeasibility because the actual behaviour differs from

the predicted behaviour. Hence, even though the nominal predictions could satisfy

constraints over the entire future, a small change in the model will cause the actual

behaviour to differ, and the associated predictions at the subsequent sampling instant

could then violate constraints.

This issue is discussed briefly in Chapter 11 and is hard to deal with in general

outside the use of a little back off. That is, do not drive the system so close to the

limits that you have no flexibility left to deal with small variations from the expected

behaviour.

One can form algorithms based on invariant sets (Section 11.11) to handle model

uncertainty; however, the results are usually very conservative, as guarantees must

allow for the worst case (which will arise with negligible probability). A more prag-

matic approach is to accept that guarantees cannot be given where there is significant

uncertainty and make other contingencies for the rare occasions where infeasibility

arises.

Summary: It is probably not good economics to use algorithms giving a guarantee

of feasibility for the uncertain case, as the performance will be overly conservative.

8.4.4 Unstable open-loop processes

For the rare processes that are open-loop unstable one gets hard constraints on the

outputs/states. That is, one can easily formulate scenarios whereby if an output goes

outside a certain range, the system can no longer be stabilised. As such these systems

must be treated with caution and it is paramount that the control strategy ensures

recursive feasibility (eqn. (8.6)) of the most important constraints, including some

allowance for uncertainty. This requires some rigorous analysis (e.g. [19]) beyond

the scope of this book. The simplest way to view this is that the system should be

constrained to lie within a certain space which still allows some slack in the control
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variables should it be needed.

8.5 Typical techniques for avoiding infeasibility

Having overviewed the typical causes of infeasibility one is in a position to propose

strategies for dealing with them. We should however, make a key conceptual state-

ment. If you want to be sure not to crash, either you do not drive at all or you drive

very slowly – this may be an unacceptable solution.

In the following the assumption is taken that a guarantee of recursive feasibility is

unrealistic in practice, although it may be reasonable for the nominal case. Hence,

results are given for the nominal case and it is assumed that a sensibly tuned algo-

rithm will deal with uncertainty.

The stronger a guarantee you want, the more conservative your control law will be.

In practise there must be a compromise between feasibility assurances and perfor-

mance.

8.5.1 Constraint softening

This is the most practically relevant strategy [93], but this book will not attempt to

detail a precise algorithm, as there are too many process dependent decisions for this

to be useful. Rather we will highlight the key issues and show how decisions can be

included in an algorithm.

8.5.1.1 Simple strategy

If the constraint set (8.5) is inconsistent, then some constraints must be either relaxed

or removed. A process dependent strategy could be developed using the following

logic†.

1. Relax (or remove) least important soft constraints and test for feasibility.

2. Relax (or remove) next most important constraints and test for feasibility.

3. etc.

The hope is that once enough soft constraints have been relaxed, the whole constraint

set (8.5) will become feasible and one can continue. The decision making process is

†This relates to those constraints which are predicted to be violated. Relaxing nonactive constraints will

change nothing.
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taken by a supervisory controller before the constraints are downloaded to the MPC

algorithm.

8.5.1.2 Relaxation based on infinity norms

The above strategy is a little crude in that the relaxation of a constraint is predeter-

mined and hence may be more than required. An alternative is to define a variable

s ≥ 0 and replace the soft constraints by:

CS u→+ HSx−dS ≤ s (8.7)

The vector s defines the constraint violations (if positive). A possible strategy is then

to minimise the maximum (weighted) value of s s.t. hard and terminal constraints.

This will minimise the predicted soft constraint violations and is a relatively simple

optimisation to set up (requiring only a linear program).

Remark 8.2 The weakness of these approaches is that all the emphasis is placed
on the soft constraints and none on the performance. A better strategy may wish
to find some compromise between predicted performance and the violations of the
soft constraints. The reader will also note that these issues are process dependent
and outside the context of the MPC algorithm. Usually they would be taken by a
supervisory controller.

Summary: Feasibility would usually be ensured by a systematic relaxation of soft

constraints. This would be determined at a supervisory level.

8.5.2 Back off and borders

This topic (e.g. [19, 40]) is mentioned in Section 8.3.2 above but is not a mainstream

topic within MPC although it is used in the process industry. The basic idea is not to

drive the system to the input limits, but to leave some extra freedom for emergencies.

Typical examples may be when driving on the road, you never brake to the maximum

or turn the steering wheel as far as you can; rather you leave a little extra to cope with

the unexpected; i.e. the need to stop quicker or turn sharper. A racing driver takes the

car right to the limit but as a consequence a small amount of uncertainty frequently

results in the car leaving the track – they had no slack.

How much to back off the constraints and how exactly to incorporate this is process

dependent. Clearly one should not do this unless necessary, as there will be a com-

promise with performance. Also one would expect no slack in the current control

move (as you may need it all right now) and then increasing back off (slack) the

further into the future of the predictions (where uncertainty is larger). The slack you

allow yourself in the future predictions is used to deal with any differences between

the predictions you make and the actual behaviour.
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8.5.3 Simple illustration of back off

This illustration uses input limits only. Let the actual input limit be

uk+i ≤ u, ∀i (8.8)

Now back off these constraints by a time dependent value b i; that is, let the MPC

algorithm use constraints

uk+i ≤ u−bi, ∀i (8.9)

It is assumed that bi ≥ bi−1.

Theorem 8.1 Using constraints (8.9) on the predictions ensures that extra control
capacity is introduced at each sample to deal with uncertainty.

Proof: At sampling instant k the constraints are given in (8.9). At sampling instant

k + 1 they will be given by

uk+1+i ≤ u−bi, ∀i (8.10)

Comparing (8.9, 8.10) one sees that the back off on the constraint on prediction u k+i

has changed from bi to bi−1; hence the predicted control uk+i has an extra potential

movement of bi −bi−1. 
�
It is probably unwise to design the back off to give a guarantee of feasibility as the re-

sult will be too conservative. However some back off may improve the robustness of

the feasibility assumptions in the presence of uncertainty. When producing invariant

sets for uncertain systems (Chapter 11) the required back off can be automatically

incorporated via the invariance conditions [19].

Summary: Using artificially tight constraints on future predictions automatically

builds in some slack which can be used to retain feasibility in the presence of mod-

erate uncertainty. The slack should be montonically increasing with the horizon.

8.6 Set point management and reference governor strategies

An obvious cause of infeasibility is due to a rapid set point change. This implies

a large change in terminal constraint set (8.4) (due to a shift in steady-state values)

and hence these may become inconsistent. The usual solution to this deployed in

industrial software is to use an optimisation on top of the predictive controller. The

role of this scheduling optimiser is to ensure that all set point trajectories are sensible.

This is discussed no further, as the optimiser involves plant-wide knowledge and

is application specific. Our interest is what to do when the optimiser fails to give

feasible set points.
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One popular algorithm for modifying set points to ensure they are feasible is ref-

erence governor [34] or management [36, 37, 38] strategies. These are motivated

by 2 objectives: (i) computational simplicity and (ii) the integrity of an underlying

controller. The idea is to modify the set point as required to ensure constraint sat-

isfaction in the loop. Several ways of doing this exist and so it is best to read the

literature if you want a comprhensive overview. This section simply summarises the

main concepts and key insights.

8.6.1 Two reference governor algorithms

If feasibility is lost due to a set point change, then there is a fault in the requested

strategy and asking for optimality is unrealistic. The main goal is to ensure a smooth

transition back to feasibility with minimum perturbation to the nominal (and ac-

cepted) inner control loop.

With reference governor algorithms, the key philosophy is to send the MPC algo-

rithm a set point w which is different from the true one r when changes in true

set point would cause infeasibility. The controller set point w therefore has slower

changes in value than the true set point. One might also argue that the simpler the

strategy for regaining feasibility, the better. Two simple algorithms are given next.

Overview of algorithm: Let the set point at sample k be rk and let the set point sent

to MPC be wk where it may be that wk �= rk. Assume now that at the next sampling

instant the set point changes to rk+1 �= rk. Select wk+1 to ensure feasibility of the

inner loop control law. It remains then to ask how w is selected to ensure feasibility.

Two simple possibilites are given next.

Exponential changes: Drive the MPC algorithm with a set point

wk+i|k = wk +[rk+1 −wk](1− µ i−1) (8.11)

where 0 ≤ µ ≤ 1 and µ is chosen close enough to 1 to ensure feasibility. The closer

µ is to one, the slower that w changes and therefore the slower the terminal set (8.4)

changes.

Step changes only: Drive the inner loop with

wk+i|k = wk +[rk+1−wk]β ; 0 ≤ β ≤ 1 (8.12)

This time the smaller β is, the slower w changes. β may be selected to optimise

predicted performance or to maximise speed of convergence of w to r. If the desired

set point is infeasible in steady state, then this algorithm will minimise the offset.

Remark 8.3 • It may not be wise to drive wk+1 as close to rk+1 as possible,
as this puts one on the limit of feasibility which has implications for robust
stability. A little caution is always wise, as one wants to be sure of feasibility
at the following sampling instant, given some uncertainty.

co
nt

ro
len

gin
ee

rs
.ir



164 Model-based predictive control: a practical approach

• Other reference governor algorithms are available in the literature for the
interested reader. These are a bit more sophisticated and hence allow better
optimality but at some increase in computation.

Summary: Reference governor strategies can slow down requested set point

changes to ensure the retention of feasibility and therefore controller integrity.

8.6.2 Links between the CLP and reference governor strategies

It should be noted that philosophically [119] there is actually little difference be-

tween reference management and MPC strategies and this becomes especially obvi-

ous when one uses the CLP. For instance consider [101, 103, 105] which are MPC

strategies incorporating reference governor concepts.

• Both assume a fixed underlying loop controller. The design of this loop con-

troller is not a central issue and is assumed given.

• Both manipulate the set point to this loop (see Figure 7.1) to ensure constraint

satisfaction.

1. Reference governor strategies use the set point variable itself.

2. MPC based on the CLP uses perturbations to the set point.

• Both use knowledge of loop variables to optimise the set point and hence im-

plicity introduce an outer loop.

• Both use predictions to check constraint satisfaction.

One might wonder then what the difference is, as these are usually presented as

conceptually different. In fact the difference is simply in the parameterisation of the

d.o.f. allowed for constraint handling.

Summary: Reference governor (management) strategies are equivalent to CLP

MPC strategies. The differences are only in how the d.o.f. are parameterised.

8.7 Non-dual mode algorithms and feasibility

Often infeasibility is caused by the artificial terminal constaint (8.4) introduced to

guarantee stability. This is an odd dichotomy; the very mechanism introduced to

ensure stability could be the cause of instability (via infeasibility). Hence the price

one pays for the guarantee of stability is a restricted region of applicability. That is,

the algorithm is only defined in the space in which the terminal constraint is feasible.

co
nt

ro
len

gin
ee

rs
.ir



Constraint handling and feasibility issues in MPC 165

Nondual mode based algorithms are those that do not deploy a terminal constraint

beyond the usual assumption of the input going to a steady value after n u steps. By

avoiding the need for such a constraint, these algorithms can have ‡ a larger feasibility

region; hence, rather perversely, they may in fact have better stability properties,

despite the lack of a guarantee of stability.

One could argue that GPC with a large ny and any nu (except for open-loop unsta-

ble plant) will always give good and stable performance. If an accurate model is

available, higher nu will give better tuning but the difference with optimal control

will probably be negligible for nu ≥ 5. Hence given that stability guarantees require

terminal constraints and hence [64] large numbers of d.o.f., one may argue that prac-

tically one is just as wise to ignore dual mode algorithms and revert to GPC for

practical industrial control where there is significant uncertainty.

A good discussion of options to ensure feasibility and guarantees of stability are

in [64],[108]. The major underlying principle is to define a trajectory u→ which is

known to be feasible w.r.t. input constraints (although it may not satisfy the terminal

constraints) and which is guaranteed to give stable/convergent predictions. One can

always use this trajectory when more optimal trajectories are infeasible. The defini-

tion of a feasible trajectory set is easy for stable plant (if suboptimality is accepted

and there are no hard state constraints).

Summary: Terminal constraints (dual mode algorithms) give a stability guarantee

but may also limit applicability to smaller regions than algorithms without termi-

nal constraints. The terminal mode should be chosen wisely to avoid feasibility

problems.

8.8 Summary

The MPC controller is only defined if the constraint set is feasible. Hence it is

paramount that one sets up the strategy such that feasibility is always ensured.

One’s wish list may be overambitious, for instance, the desire to achieve a optimal

performance subject to tight limits on states. In this case there must be a systematic

rule base that allows constraints or tracking requirements to be relaxed to ensure fea-

sibility and therefore to ensure the consistency (well posedness) of the MPC law. The

best means of relaxing requirements is process dependent and hence not discussed

in detail in this book.

It is worthwhile identifying the main causes of infeasibility in a given process, for

instance is it: (i) the terminal constraints; (ii) disturbances; (iii) over large setpoint

‡In particular this applies where there are input constraints only.
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changes or (iv) soft constraints? This insight will direct the designer to the most

appropriate formulation for the MPC algorithm.

Summary: The MPC algorithm is only well defined when constraints are feasible.

Hence feasibility is essential.
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9

Improving robustness – the constraint free
case

It has been shown in the previous chapters that unconstrained ∗ MPC gives a fixed

control law. As such this law can be analysed to give loop sensitivities. The obvious

question that arises is:

Can MPC be tuned systematically to give a robust design?

The answer to this is both yes and no. This chapter will overview the common tech-

niques available to improve the robustness of an MPC law and discuss how flexible

they are. For authors interested in algorithms with a relatively low on-line computa-

tional burden there are two popular methods and most focus will be given to these.

The chapter is separated into sections introducing sensitivity functions and then de-

scriptions and example implementations of the two popular approaches of: (i) the

T-filter [158] and (ii) the Youla parameter approach [60].

Summary: This chapter demonstrates how the robustness of MPC can be improved

in the absence of constraints.

9.1 Key concept used in robust design for MPC

For the reader interested only in understanding the key concepts, a brief summary

is given next. Practitioners in MPC use what might be called a two d.o.f. or a two

stage design. This draws on the work in the robust control literature, in particular,

the Youla parameterisation [157]. Because of the particular structure of the MPC

control law it is known that there is a decoupling between complementary sensitivity

∗It is noted that constraint handling implies nonlinear control, hence sensitivity analysis is not strictly

applicable and this is discussed later.
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and other sensitivity functions, or in other words:

For the nominal case the robust design and design for performance are decoupled.

That is, one can tune the MPC law for optimal performance and then do a robust

design as a separate stage without any effect at all on nominal performance †, that is,

the complementary sensitivity. There are many works looking at this, for instance

[9, 21, 51, 60, 62, 66, 114, 150, 158] to name just a few.

9.2 Sensitivity functions for MPC with MFD models

In this section the sensitivity functions will derived for the MIMO case assuming

an MPC controller structure and transfer function (MFD) models. In the SISO case

there would be some simplification as commutativity is no longer an issue. These

functions will be needed in later sections to analyse the impact on sensitivity of

differing robust design methods.

9.2.1 Complementary sensitivity

Let the MPC control law and plant be given by

D∆u = Pr−Ny; Ay = Bu (9.1)

We will need the two alternative model and controller forms:

A−1B = B̃Ã−1; D−1N = N̂D̂−1 (9.2)

Complementary sensitivity is the transference from the set point to the output. This

can be computed by solving the model and controller equations of (9.1) as simulta-

neous equations. An example procedure for deriving the complementary sensitivity

is given next.

Ay = BD−1∆−1[Pr−Ny]
(A∆ + BD−1N)y = BD−1Pr

(B−1A∆ + D−1N)y = D−1Pr
(DB−1A∆ + N)y = Pr
(DÃ∆B̃−1 + N)y = Pr

(DÃ∆ + NB̃)B̃−1y = Pr
y = B̃ [DÃ∆ + NB̃]−1︸ ︷︷ ︸

Pc

Pr

(9.3)

†However, it could be argued that the sensitivity achievable will depend on the original tuning.
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Hence the complementary sensitivity is defined as

Sc = B̃P−1
c P (9.4)

where Pc defines the closed-loop poles:

Pc = [DÃ∆ + NB̃] (9.5)

If needed, the transference from set point to the input is given as u = ÃP−1
c Pr.

9.2.2 Sensitivity functions used for robustness analysis

This section rapidly runs through the definitions of sensitivity to multiplicative un-

certainty, to disturbances and to measurement noise.

9.2.2.1 Sensitivity to multiplicative uncertainty

In this case one is interested in robust stability, that is, for what range of uncertainty

the closed-loop system is guaranteed to remain stable. Hence it is based on an anal-

ysis of the closed-loop poles. Closed-loop poles can be derived from

[I + GK] = 0; G = A−1B, K = D−1∆−1N (9.6)

Multiplicative uncertainty can be modelled as:

G → (1+ µ )G (9.7)

for µ a scalar (possibly frequency dependent). Substituting this into expression (9.6)

the closed-loop poles for the uncertain case are derived from

0 = [1+ GK + µ GK] = [1+ GK]−1(1+ µ GK[1+ GK]−1) (9.8)

As it is known that [1+GK] has stable roots by design (this is the nominal case), the

system can be destabilised if and only if | µ GK[1+GK]−1| ≥ 1. Hence the sensitivity

to multiplicative uncertainty is defined as

SG = [1+ GK]−1GK
= [G−1 + K]−1K
= [Ã∆B̃−1 + D−1N]−1D−1N
= B̃[DÃ∆ + NB̃]−1N
= B̃P−1

c N

(9.9)

Sensitivity to multiplicative uncertainty: MIMO case

SG = B̃P−1
c N (9.10)
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9.2.2.2 Disturbance and noise rejection

A disturbance ( ζ ) and noise (n) enter the system model as follows:

Ay = Bu+C
ζ
∆

+ An︸ ︷︷ ︸
f

(9.11)

For convenience these can be grouped as the term f . Redoing the algebra of eqn.(9.3)

gives:

Ay = BD−1∆−1[Pr−Ny]+ f
(A∆ + BD−1N)y = BD−1Pr + f

(B−1A∆ + D−1N)y = D−1Pr + B−1 f
(DB−1A∆ + N)y = Pr + DB−1 f
(DÃ∆B̃−1 + N)y = Pr + DB−1 f

(DÃ∆ + NB̃)B̃−1y = Pr + DB−1 f
y = B̃P−1

c [Pr + DB−1 f ]

(9.12)

Hence the sensitivities Syd , Syn of the output to disturbances/noise, respectively, are

defined as

Syd = B̃P−1
c DB−1 C

∆
; Syn = B̃P−1

c DB−1A (9.13)

Using a similar procedure the sensitivities Sud, Sun of the input to disturbances/noise

can be defined as:

Sud = ÃP−1
c NA−1 C

∆
; Sun = ÃP−1

c NA−1A (9.14)

Given the definitions above, it is easy to do a sensitivity analysis. The objective

hereafter is to ask, how might one do a robust design?

Summary: The sensitivity functions for an MPC control law are straightforward

to define.

Sensitivity to multiplicative uncertainty

SG = B̃P−1
c N (9.15)

Sensitivity to disturbances

Syd = B̃P−1
c D∆B−1 C

∆︸ ︷︷ ︸
Output sensitivity

; Sud = ÃP−1
c NA−1 C

∆︸ ︷︷ ︸
Input sensitivity

(9.16)

Sensitivity to noise

Syn = B̃P−1
c D∆B−1A︸ ︷︷ ︸

Output sensitivity

; Sun = ÃP−1
c N︸ ︷︷ ︸

Input sensitivity

(9.17)
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9.3 T-filter approach

The use of the T-filter and how it alters the nominal control law was introduced in

Sections 3.3.3, 4.3.4. This section looks in more detail on the effects the T-filter has

on sensitivity. It should be emphasised that the major selling point of the T-filter is

that one can modify sensitivity to parameter or signal uncertainty without any impact

on the nominal tracking (complementary sensitivity); hence there is in effect a two

stage design. First design tracking performance and then add a T-filter to improve

sensitivity.

9.3.1 Overview

The use of a T-filter is the most popular approach to robust design in GPC. The

prime reason is that the selection is based on intuition and hence is easily accessible

to practising engineers; the T-filter can be considered as acting a little like a low-pass

filter and hence is philosphically equivalent to a simple measurement filter taking out

the high frequency noise.

Of course the downside of this is that the approach does not lend itself to systematic

design [158]; that is, one cannot easily choose a T-filter to give a specified effect.

Rather it is a suck it and see approach; i.e. choose a T-filter and try it. If the chosen

T-filter does not achieve the desired sensitivity, it may not be obvious how to redesign

it to improve matters. Some guidelines exist [158] but these are fairly simplistic and

also do not cover all sensitivities, i.e. SG,Syd ,Syn,Sun,Sud .

9.3.2 How a T-filter is included

T (z) is treated like a design polynominal within the system model. Hence let the

model be

a(z)y = b(z)u+ T(z)
ζ
∆

(9.18)

where T represents the colouring of the disturbance and noise signal (denoted f in

equation 9.11). In practice the characteristics of f are not fully known; hence one

could argue that T should be selected to best represent the key disturbances that one

wants to reject using the well-known argument, ‘the best way to reject disturbances
is to include them in the system model’. Of course the downside of this is that T will

also affect the robustness to model parameter uncertainty and in a way that is not

always beneficial. Hence it is not always best to use T to give the best disturbance

model; that is, one may accept worse disturbance rejection to improve robustness to

model uncertainty. Of course one is then brought back to the question, how can T be

selected systematically?
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Chapter 3 details the impact that a T-filter has on predictions (Section 3.3.3) and

hence on the consequent control law (Section 4.3.4). In summary (for the SISO

case) the control law of (9.1) is replaced by

D̃
∆u
T

= Pr− Ñ
y
T

(9.19)

Alternatively one could view that the individual compensators are replaced as fol-

lows:

D → D̃
T

; N → Ñ
T

(9.20)

The impact on the sensitivity is transparent by direct substitution of (9.20) into

eqns.(9.10, 9.13, 9.14) but noting that Pc is also redefined according to eqn.(9.5).

For completeness the new sensitivity functions are derived next.

The equivalent of (9.5) is:

P̃c =
D̃Ã∆ + ÑB̃

T
= Pc (9.21)

Hence substituting (9.20, 9.21) into (9.10, 9.13, 9.14) gives:

SG = B̃P−1
c

Ñ
T

(9.22)

Syd =
B̃P−1

c D̃∆B−1C
∆T

; Syn =
B̃P−1

c D̃∆B−1A
T

(9.23)

Sud =
ÃP−1

c ÑA−1C
∆T

; Sun =
ÃP−1

c Ñ
T

(9.24)

Because the controller parameters change (see eqn.(9.20) and Section 4.3.4) one

cannot easily compare the new and old sensitivities except by direct computation;

that is, using an a posteriori analysis. However, it is clear that T appears in the

denominator of many of the new sensitivities and hence there is an expectation that

if 1/T is a low pass filter, then sensitivity will be improved at high frequencies. This

expectation is largely realised in practice.

Remark 9.1 A typical choice of T is (1− 0.8z−1)n, n = 1 or 2. This choice is
intuitive in that if sampling at about 1/10 of the rise time‡, then a typical dominant
process pole would be around 0.8. Hence this is a sensible pole for a low-pass filter
on output measurements.

Summary: The use of a T-filter is simple and moreover recognised as essential in

many real applications to reduce the input sensitivity to high frequency noise. It

often has little effect on the output sensitivity but has a noticeable effect on input

sensitivity Sun.

‡This is a common guideline for MPC.
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9.3.3 Illustration of the T-filter

This section will be used to illustrate the impact of the T-filter on sensitivity for some

simple examples.

9.3.3.1 Example 1

Consider the following example and design an MPC control law with two possible

T-filters

G(z) =
z−1

(1−0.9z−1)(1−0.5z−1)
;

{
T1(z) = 1−0.8z−1

T2(z) = (1−0.8z−1)2 (9.25)

The sensitivity functions are plotted in Figure 9.1 where the solid line represents

T = 1, the dashed line T = T1 and the dotted line T = T2. The inclusion of the T-

filter has given good reductions in every sensitivity function over the high frequency

range and this bears a strong link to the amount of implied filtering.

• SG is actually better over the whole frequency range so T has improved robust

stability.

• Output sensitivity is worse at mid and low frequencies and better at high fre-

quencies. One might argue that at low frequencies the sensitivity tends to zero

anyway (due to the integral).

• The input sensitivity is better over the whole frequency range.

• The reader is reminded that the above changes come at no cost to the nominal

tracking performance.

9.3.3.2 Example 2

Consider the example below and two possible T-filters

G(z) =
z−1 −1.3z−2

(1− z−1 + 0.8z−2)
;

{
T1(z) = 1−0.8z−1

T2(z) = (1−0.8z−1)2 (9.26)

The sensitivity functions are plotted in Figure 9.2 where the solid line represents

T = 1, the dashed line T = T1 and the dotted line T = T2.

In this case the T-filter seems to have made the sensitivity far poorer especially with

strong filtering.

• SG is worse over what is most likely to be the critical frequency range and

better only at very high frequencies.

• Output sensitivity varies between better and worse with and without filtering

and there is no conclusive statement that can be made.
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• The input sensitivity is better over the high frequencies and worse over mid

and low frequencies.

9.3.3.3 Examples with the MIMO case

Due to the potential interactive effects it is not so easy to illustrate the impact of a

T-filter on a MIMO process. However, one could expect similar trends, that is a re-

duction in input sensitivity (Sun) to noise possibly at the expense of poorer sensitivity

elsewhere.

More importantly one should note that if a systematic design of T is difficult for the

SISO case, it is far harder for the MIMO case where T (z) could become an MFD. To

the authors knowledge no systematic rule base exists beyond the obvious choice of

some ‘logical’ low pass filtering. As a consequence no illustrations are given here.

Summary:

1. Although intuitive arguments suggest that the T-filter will improve sensitiv-

ity, this is not always the case. It is paramount that the user do some analysis

before implementing on a real process.

2. In many cases it will be observed that a T-filter trades off sensitivity in differ-

ent frequency bands; that is, pushing sensitivity down at high frequency can

push it up at low or intermediate frequencies.

9.4 Youla parameter approaches

This section introduces a more systematic method for improving robustness. The

downside of this is that the design is no longer intuitive and requires both optimisa-

tion and more precise specification of objectives.

9.4.1 Introducing a Youla parameterisation into a MPC control law

The Youla parameterisation [157] has been used as a tool to improve the robustness

of fixed linear control loops and is well known in the robust control literature. In

essence the minimal order control law is modified with a d.o.f. (denoted here as

the Youla parameter Q). If incorporated in a particular way, this Q can be shown

to alter the system sensitivity functions without the altering nominal performance

(complementary sensitivity). In fact the T-filter approach of the previous section

is in effect a form of Youla parameterisation, as the complementary sensitivity is

unaffected by the change of controller due to T . In this section it will be shown how
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the effect of the Youla parameter upon sensitivity can be made more transparent and

hence d.o.f. can be made available for a systematic robust design.

For an MPC control law (9.1) the Youla parameter Q can be introduced by modifying

the compensators as follows:

Youla parameterisation (MIMO case):

D → D−QB
N → N + QA∆

(9.27)

Substitution of (9.27) into (9.3) will modify the complementary sensitivity as fol-

lows:

y = B̃[DÃ∆ + NB̃]−1Pr

y → B̃
−1

[(D−QB)Ã∆ +(N + QA∆)B̃]︸ ︷︷ ︸
Pcq

Pr (9.28)

However it can be shown that Pcq = Pc and therefore complementary sensitivity are

actually independent of Q. For instance:

Pcq = (D−QB)Ã∆ +(N + ∆QA)B̃
= DÃ∆ + NB̃−QBÃ∆ + ∆QBB̃
= DÃ∆ + NB̃
= Pc

(9.29)

Summary: Nominal tracking/performance is unaffected by Q, that is, by the con-

troller modification of (9.27).

9.4.2 Effects of the Youla parameter on sensitivity

It has been noted that one can modify D, N without affecting nominal tracking.

However, Q has a marked effect on the sensitivity functions and this is discussed

next. With little further explanation we will simply substitute the control parameter-

isation (9.27) into the sensitivities given in (9.10, 9.13, 9.14). What is most notable

is that the sensitivity functions are affine (linear) in Q. Hence there is a direct cor-

respondence between Q and sensitivity which can be used in a systematic design

procedure [60].
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Sensitivity to multiplicative uncertainty:

SG = B̃P−1
c N → B̃P−1

c [N + QA∆] (9.30)

Output sensitivity:

Syd = B̃P−1
c D∆B−1 C

∆ → B̃P−1
c (D−QB)∆B−1 C

∆ ;

Syn = B̃P−1
c DB−1A → B̃P−1

c (D−QB)B−1A
(9.31)

Output sensitivity:

Sud = ÃP−1
c NA−1 C

∆ → ÃP−1
c (N + QA∆)A−1 C

∆ ;

Sun = ÃP−1
c NA−1A → ÃP−1

c (N + QA∆)
(9.32)

As the sensitivities are affine in Q, optimisation over Q to minimise sensitivity is

straightforward. These ideas were introduced into MPC in [60] and many other

authors (e.g. [9], [51]) found subsequent applications. Here we re-emphasise the

key points are that predictive controllers are such that:

Summary:

1. The controller denominator is wholly in the forward path and the controller

is wholly in the return path.

2. This separation causes the sensitivity functions to be linear (affine) in Q.

3. Q has no effect on nominal tracking (complementary sensitivity).

9.4.3 Optimising sensitivity

The dependence on Q is affine and therefore it is easy to manipulate/select Q to

have the most desired affect. However, herein lies a caveat; one needs a precise

numerical objective. In the robust control literature it is normal to define weighting

functions which implicitly set this objective. Such a procedure can be followed and

a possible mechanism is detailed in [51]. In line with the philosophy of the rest of

this book, however, we will illustrate how more simple minded algorithms can give

effective results. The following algorithm could be coded and understood in just a

few minutes.

Algorithm 9.1 1. Let the given sensitivity function be

Si(z) = Gi(z)+ Hi(z)Q(z) (9.33)

2. Define
Q(z) = Q0 + Q1z−1 + · · ·+ Qnz−n (9.34)
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3. Compute the frequency response of Si(z) at a set of frequencies ω i and stack
in a vector s as

s =




S(ω 1)
S(ω 2)

...
S(ω n)


 =




G(ω 1)
G(ω 2)

...
G(ω n)


−FQ; Q =




Q0

Q1

...
Qn


 (9.35)

where the details of how to compute F are omitted as cumbersome to write
although trivial in structure§.

4. Select Q as follows¶:
min

Q
‖Ws‖r (9.36)

where typically r = 1,2 or ∞ and W is a weighting matrix chosen to emphasise
given frequency ranges.

The next section will illustrate this algorithm and its efficacy.

Remark 9.2 If there is a desire to minimise several sensitivity functions, the appro-
priate vectors can be stacked within s. This does not increase the complexity of the
algorithm beyond the increase in the number of rows in s.

Summary: One can use a simple optimisation to minimise the sensitivity w.r.t. the

parameters of Q(z) as a suboptimal alternative to a rigorous robust design.

9.4.4 Use of Q on examples 1 and 2

Take example 2 from Section 9.3.3.2 and design a 10-term Q to minimise the 2-

norm of s contructed from Syd and Sud (with unity weighting, i.e. W = 1). The

corresponding sensitivities (in dash-dot lines) are given in Figure 9.3 and are overlaid

with the T-filter results of Figure 9.2.

The results do not look much different from those obtained by the T-filter (dashed

and dotted lines) in this case. However, some important points should be made:

1. The result is optimum w.r.t. the objective given (which was simplistic).

2. One has the option of giving a more specific objective:

• Use frequency weighting to emphasise certain frequencies.

§One wants the ith row of FQ = H( ω i)Q( ω i). So Fi,k+1 contains terms of the form ejk ω iT , T the sampling

period.
¶To ensure real answers one should include matching positive and negative frequencies in s.
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• Use an infinity norm to minimise the worst case.

3. Neither of these are true with the T-filter with which the consequent sensitivity

is hard to control.

9.4.5 Example 3

This example [114] is a good illustratation of the potential benefit of the Youla pa-

rameterisation. It comprises a set of three plants of which the first is the nominal

model from which the basic MPC controller will be computed. The denominator

will be taken to be constant:

A(z) = 1−1.8z−1 + .27z−2 + .27z−3

B(z) = z−1 + 0.1z−2 −0.2z−3 (9.37)

A set of possible numerator perturbations are given as:

δ b1 = z−1[0.533z−1 −0.1333z−2−0.333z−3]
δ b2 = z−1[−0.35z−1 −0.035z−2 + 0.07z−3]
δ b3 = z−1[0.3404z−1 + 0.0851z−2 + 0.2128z−3]

(9.38)

so that B(z) = b0(z)+ λ δ b1 + λ 2 δ b2 + λ 3 δ b2, |λ i| ≤ 1, ∑ |λ i| ≤ 1. The nominal

controller is not robustly stable over the whole class of possible numerators. How-

ever, after addition of a Youla parameter stabilisation is achieved. Figure 9.4 shows

plots of the sensitivity function SG of eqn.(9.30) against frequency ω T = 0, ...,2π
for a 3rd, 10th and 20th order Q(z). It is clear that Q has allowed a significant, and

systematic, improvement in the sensitivity, which becomes close to flat (except at

low frequencies due to the integrator) for large orders as expected.

Summary: The Youla parameter approach allows a systematic minimisation of

sensitivity and hence is a useful tool for ensuring robust stability.

9.4.6 Potential improvements and comments

• In general one may wish Q to be a transfer function. Unfortunately the simplest

computations, as given here, imply that Q is restricted to a FIR; denominator

terms imply a more complex optimisation or more algebra. It is possible of

course to find a high order FIR and then find a transfer function approximation,

or to fix the denominator a priori using some form of low pass guidelines as in

T-filter design.

• A systematic approach, based on the robust literature, for selecting Q is given

in [52] and [9, 10]. However, the selection of weighting or objective functions

as required for a rigorous H ∞ algorithm is often a little arbitrary and could
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nullify the supposed benefits; it requires good experience with the algorithms

so is not for the novice. Approaches limited to FIRs are available in [60, 62].

• There is an integrator in the control law and hence a difference operator ∆ in

SG (eqn. 9.15). This means that many of the standard results in the robust liter-

ature will need modification (for instance, one might use ∆ = 1− (1− ε )z−1),

as they do not apply when there are poles/zeros on the stability boundary.

• It is well known that the optimum Q to minimise the ∞ -norm of S G gives a flat

spectrum (where there is no ∆) and hence an analytic result can be given for

Q where there is no integral.

This author favours the simpler FIR based approach where this gives good results,

as this is straightforward to code and understand. However one obvious weakness

of a restriction to FIR models comes across clearly in the Figure 9.3 where one can

see spiky sensitivity. A good compromise solution would be to specify a given set of

poles for Q(z); for instance, as one would via the T-filter approach, and then add the

Youla parameter after this. A two stage Youla parameterisation could be given as: (i)

first select an optimum T-filter and find the corresponding control law and then (ii)

select an optimum Q to improve sensitivity in targeted frequency bands, i.e.

Initialise Include T−filter Add Youla

D → D̃
T

→ D̃−BQ
T

N → Ñ
T

→ Ñ + A∆Q
T

(9.39)

Hence the T-filter is used to give good high frequency noise rejection via the low-

pass characteristics and then Q is used to meet more general sensitivity objectives as

required over the mid frequency range.

Summary: An effective and simple strategy would take the T-filter based controller

as a start point and use the Youla parameterisation approach to further improve

sensitivity if required.

9.5 Internal model approaches

This section is deliberately brief and indicates methods which may be more popular

with users of state-space models, as in this case the form of the Youla parameteri-

sation would be different. Moreover the Youla parameterisation is likely to be in-

corporated into the state observer. One could argue the case for a Kalman filtering

approach, as this is supposedly optimal, in conjunction with the nominal control law.
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However, there are two weaknesses to this argument. First this assumes knowledge

of the signal characteristics which usually have to be estimated and secondly it does

not cater for all the sensitivity functions (such as SG) but rather gives optimal state

estimation for a given signal uncertainty. The reader is referred to other more com-

prehensive literature such as that on robust control for a fuller description of these

approaches as they need not be restricted to an MPC context.

A simpleminded (but not rigorous) approach which could be linked to an observer

based control design is based on the internal model principle (e.g. [30]) and is out-

lined next.

9.5.1 Nominal case

Let the control law be represented as

u = Ky+ Pr (9.40)

(The observer is implicit in K,P.) Now assume there is a model Gm of the real

process G. Simulate Gm alongside the real process and compute the error between

the two so that

e = Gu−Gmu = y−Gmu (9.41)

Use this error to generate a perturbation δ u to the control law.

δ u = −Qe = −Q(y−Gmu) (9.42)

The overall closed-loop is now represented by two equations

y = Gu; u = Ky+ Pr + δ u = Ky+ Pr−Q(y−Gmu) (9.43)

Clearly if G = Gm, Q does not appear in the nominal closed-loop dynamic, hence Q
introduced as in (9.42) is a form of Youla parameterisation.

9.5.2 Uncertain case

Now let the true process by uncertain. Using a multiplicative uncertainty descrip-

tion gives G = Gm(1 + µ ). Substitute this into (9.43) and rederive the closed-loop

equations as follows:

(I + Q(Gm[1+ µ ]−Gm)−KGm[1+ µ ])u = Pr
(I + µ QGm−KGm[1+ µ ])u = Pr
(I + µ QGm−KGm[1+ µ ])u = Pr

(1−KGm + µ [QGm −KGm])u = Pr

(9.44)

The sensitivity function SG is therefore given as

SG = (1−KGm)−1[QGm −KGm] (9.45)
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which is affine in Q. Once again the Youla parameter can be used to minimise sen-

sitivity in a straightforward manner. However, one cannot simply choose Q = K, as

this would remove all output feedback from the control law.
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FIGURE 9.1
Sensitivity for example 1.
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The relationship between model structure and
the robustness of MPC

The purpose of this chapter is to highlight the importance of the modelling stage and

assumptions. There are two main aspects to this:

1. Models are used to form system predictions and prediction accuracy is funda-

mental to the efficacy of the control design.

2. Models implicitly contain a disturbance model. The accuracy of this model

has an impact on the accuracy of prediction and therefore the consequent be-

haviour.

This chapter will study the two aspects separately, that is, how the modelling stage

affects the prediction errors and also how assumptions on the model structure affects

the implied sensitivities corresponding to the resulting control law.

Summary:

• It is useful to be aware of the impact on sensitivity of modelling assumptions.

• Although strictly speaking this chapter deals only with the constraint free

case, because the insights are based on predictions, one might expect similar

insights to apply to the constrained case.

10.1 Introduction

It will have been noted in the first few chapters that MPC can make use of many

model structures of which the most popular are FIR and transfer function or state

space. Within the choice of transfer function models there are numerous choices

due to the different noise models that can be adopted although these are usually

summarised by some design freedom such as in the T-filter. The question that is of

interest to the control designer is to understand the pros and cons associated to each

model choice.
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This chapter will look in detail at the impact the model structure has on the con-

trol law and hence on sensitivity. The reader is reminded that historically industrial

variants of MPC favoured FIR models (which were easy to understand but had large

numbers of coefficients) whereas academics favoured transfer function/state-space

models (which were more compact and easier to analyse). One might be wondering

whether there is some reason for the industrial preference, over and above the ease of

interpretation of step responses, or perhaps whether there are actually disadvantages

to the use of FIR models.

Unsurprisingly this chapter has a sizable overlap with the previous chapter due to the

links with observer (e.g. the T-filter) design. The aim is to analyse this and hence

to gain some insight. The key thing that will become apparent and was clear from

Chapter 3 is that different models imply the use of different predictors which hence

give different prediction errors. This in turn has an impact on performance.

Summary: The use of different prediction models implies the use of different ob-

servers (or T-filters/disturbance models) and hence gives rise to control laws with

different loop sensitivity.

10.1.1 Importance of prediction errors

For convenience this chapter uses the hat (.̂) notation to denote both a current mea-

surement and a prediction.

In predictive control design the optimisation of the chosen cost depends explicitly

on the system predictions ŷk+ j|k. Therefore it is not unreasonable to expect that the

quality of control is closely correlated to the accuracy of prediction.

In reality one is minimising terms of the form ŷ2
k+ j|k when in fact one wants to min-

imise the true and unknown output prediction y k+ j|k. Let e denote the prediction

error, then the actual output is given as yk+ j|k = ŷk+ j|k + ek| j+k. Hence the error in

the square of the output prediction is:

y2
k+ j|k = [ŷk+ j|k + ek| j+k]

2 = ŷ2
k+ j|k + e2

k| j+k + 2[ŷk+ j|k][ek| j+k]︸ ︷︷ ︸
Error in J

(10.1)

On average the sign of the error term [ŷ k+ j|k][ek| j+k] will be zero mean. Hence to give

a synergy [126] between the modelling and the control design (that is, to minimise

errors in the performance index), one models with the aim of forming the predictions

which minimise e2
k| j+k. That is, the model is chosen to minimise the effect of mea-

surement noise and unmeasurable disturbances in introducing prediction errors into

the cost J. One would expect that on average this modelling strategy would minimise

the effect of such errors on the resulting control law ∗.

∗It should be noted, however, that some researchers are looking more closely at the impact of minimising

the cross term.
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10.1.2 Overview of chapter

The chapter is arranged as follows. First the predictions associated to common mod-

els are analysed to make inferences about the variance of the prediction errors. Then

some sections illustrate through examples the prediction errors and sensitivity func-

tions that arise with the use of different models. Parameter uncertainty is excluded

from the discussions in this chapter.

10.2 Summary of models to be compared

Let G(z) denote the system model such that a generic process can be represented as:

y(z) = G(z)u(z)+ F(z)d(z); ŷ(z) = y(z)+ ζ (z) (10.2)

where ŷ denotes the measurement, the term d(z) represents disturbance effects and

ζ (z) represents noise effects. We will use the case where d(z) is integrated and

filtered white noise; that is, it has the form d(z) = v(z)/∆(z), ∆(z) = (1− z−1),
where v, ζ are both unknown and zero mean. This model allows for nonzero steady

state disturbances on the system state.

For the purposes of this chapter it is assumed that F(z) = 1; clearly the conclusions

will reflect this assumption.

10.2.1 Prediction models and prediction errors

For clarity of presentation, this section gives a brief summary of the prediction mod-

els derived in Chapter 3. We will consider the nominal case (no parameter uncer-

tainty) only, so that in the case where v = 0, ζ = 0, exact predictions are possible. ŷ
denotes both measured output and predictions based on measured data.

Summary: The aim of this section is to look at the prediction errors inherent in

prediction models due to measurement noise.

10.2.1.1 Prediction and prediction errors with FIR models

The development here is a brief summary of that available in Section 3.5.2. The step

response H(z) = G(z)/∆(z), ∆(z) = 1− z−1 gives a prediction model:

y(z) = H(z)∆u(z)+
y0

1− z−1
+

v f (z)
∆(z)

(10.3)

where y0 is an unknown initialisation point to cater for the operating point and past

disturbances and v f (z) corresponds future (unknown) disturbances only. This model

is equivalent to (10.2) if F(z) = 1 and otherwise introduces bias into the predictions.
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Given that the term v f is unknown (and zero mean) one can write the difference

equation form of (10.3) at two different sampling instants and eliminate y 0. Hence

the prediction is given from:

yk+i|k = ŷk +
i−1

∑
j=0

Hi− j∆uk+ j|k +
n

∑
j=1

[Hj+i −Hj]∆uk− j (10.4)

The true prediction requires n = ∞ ; however, lim j→∞ [Hj+i−Hj] = 0, hence for large

enough n, the truncation errors will be minimal. In this section truncation errors are

ignored.

• The main cause of error therefore is through the measurement ŷ k which is

corrupted by noise ζ k (i.e. ŷk = yk + ζ k).

• Past disturbances are included exactly through y0 when F(z) = 1.

• Therefore prediction errors are dominated by ζ (z), unscaled and unfiltered and

future unknown vk. Assuming that on average v(z) = 0, the variance of such

prediction errors is therefore equal to the variance of ζ k.

Summary: Assuming no truncation errors, one can approximate the variance of

the prediction errors for step response models as

var(ek+i|k) ≤ var(ζ k) = σ 2 (10.5)

10.2.1.2 Prediction and prediction errors with transfer function models

This section gives a brief summary of results available in Section 3.3.3.3. A typical

transfer function model used for prediction is

A(z)∆(z)
T (z)

ŷ(z) =
B(z)
T (z)

∆u(z)+
A(z)
T (z)

v(z) (10.6)

This is equivalent to process (10.2) with F = I if G(z)= A(z)−1B(z), and A(z)/T (z)=
I. If A(z)/T (z) �= I then prediction model (10.6) introduces bias, as for prediction

one must assume v(z) is unknown and therefore must be ignored.

Solving difference equation (10.6) recursively to compute the corresponding predic-

tions (3.34) gives the prediction equation

ŷk+i|k = eT
i [H∆u→+ P̃∆ ũ←+ Q̃ ỹ←] (10.7)

where ei is the ith standard basis vector and the notation is ũ = u/T, ỹ = y/T .

Assuming that T (z) = A(z) the prediction (10.7) has no bias, so the only source of

error is through the term Q̃ ỹ←. Now ỹ = ŷ/T whereas the true filtered output would
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be y/T . Hence the prediction error is given by

ek+i|k = Q̃[ ỹ←− (y/T )← ] = Q̃ ˜ζ←; ˜ζ =
ζ
T

(10.8)

We use the following two assumptions to form an upper bound on the variance of

this prediction error.

Assumption 1: For a zero mean variable xk and Q a row vector, the following is true

E[(Q x←)2] = E[(Q1xk)2]+ E[(Q2xk−1)2]+ · · · ≤ QQT var(x) (10.9)

Assumption 2: Consider the filter h(z) = ∑ ∞
i=0 hiz−i and corresponding filtered vari-

able ẽ = he. An upper bound on the variance of ẽ is given as follows:

ẽk = h0ek + h1ek−1 + h2ek−2 + · · · ⇒ var(ẽ) ≤ var(e)
∞

∑
i=0

h2
i (10.10)

Using these two assumptions, with h = 1 and h(z) = 1/T(z), respectively, gives

potential conservative upper bounds on error variance as follows:

• T = 1: The variance of ek+i|k in (10.8) is given from assumption 1 noting that

var(ζ ) = σ 2. Hence

var(ek+i|k) ≤ ‖eT
i Q‖2 σ 2 (10.11)

• T �= 1: Using the bound (10.11) and assumption 2 (eqn. (10.10)) gives

var(ek+i|k) ≤ ‖eT
i Q̃‖2var( ˜ζ )

≤ ‖eT
i Q̃‖2var(ζ ) ∑ ∞

j=0 h2
j

≤ [‖eT
i Q̃‖2 ∑ ∞

j=0 h2
j ]σ 2

(10.12)

Summary: One can form an upper bound on the variance of the i-step ahead pre-

diction errors for transfer function models as

var(ek+i|k) ≤ [‖eT
i Q̃‖2

∞

∑
j=0

h2
j ]σ

2 (10.13)

10.2.1.3 Prediction and prediction errors with independent model approach

The difficulty with FIR models is that they require a large number of parameters and

by necessity they must also be truncated. An independent model gives equivalent

predictions, in that they are based predominantly on input information and a current

disturbance estimate. However, an independent model (IM) can be constructed as a

transfer function or state-space model and hence has fewer parameters and also no

truncation errors.
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The prediction errors will be illustrated with a transfer function model. Let the IM

and associated output y̌ be

Ay̌ = Bu (10.14)

From eqn.(3.21) predictions based on (10.14) are

y̌k+i|k = eT
i [H∆u→+ P∆ u←+ Q y̌←] (10.15)

As with FIR model (10.3) one should correct for past disturbances and initialisation

errors to ensure zero offset. Hence the predictions are adapted to

ŷk+i|k = eT
i [H∆u→+ P∆ u←+ Q y̌←]+ ŷk − y̌k (10.16)

The only error (for no parameter uncertainty) in this prediction is the use of ŷ instead

of the unknown y. Hence the prediction errors are summarised as var(ζ ) = σ 2.

Summary: The variance of the prediction errors for independent models is

var(ek+i|k) ≤ var(ζ k) = σ 2 (10.17)

This is actually better than the notional answer for FIR models due to the lack of

truncation errors.

10.2.2 Analytical comparison of prediction errors from FIR, indepen-
dent and transfer function models

This section contrasts the prediction errors for FIR, transfer function and IM and

hence outlines a simple intuitive argument for why step response models have been

so successful in practice and why transfer functions cannot be used readily without

a T-filter. The discussion is based on the assumption that F(z) = 1 (see model (10.2)

and clearly different conclusions may follow if F(z) �= 1.

The models of (10.3, 10.6) are quite different in structure and these differences can

have significant repercussions on prediction accuracy in cases where v �= 0, ζ �= 0,

see (10.5, 10.13, 10.17). These errors are now compared. To simplify the presenta-

tion (as it does not affect the conclusions) the comparisons use the assumption that

the future values of vk, ζ k are zero. First some observations are in order.

Observation 1: It is known that the row sums of Q (see eqn.(3.21)) are all one

and hence in many cases ‖eT
i Q̃‖1 � 1. Therefore in the absence of a T-filter, the

prediction errors may have a much larger variance that σ 2.

A simple example illustrates this observation quite well:

A(z) = [1−0.9z−1] ⇒ eT
1 Q = [1.9,−0.9] ⇒ ‖eT

i Q‖2
2 = 4.42 (10.18)

Observation 2: The case is not so clear when a T-filter is included as in eqn.(10.12).

It is easy to show that ∑ (eT
i Q̃) = T (1) and typically T (1)
 1. However, a filter with

a small bandwidth may also have ∑ ∞
i=0 h2

i � 1.
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A simple example illustrates this observation quite well:

T (z) = 1−0.8z−1 ⇒
{

T (1) = 0.2

∑ h2
i = 1/0.36 ≈ 3

(10.19)

So the net effect on (10.13) is hard to estimate, especially given the potential conser-

vatism in (10.12). For instance, it is known that T = A gives equivalent errors to the

FIR model. Generally a low-pass T-filter reduces the error variance.

Summary: In practice one can only bound the prediction error variance for transfer

function models accurately by computing the numerical values of (10.12) which

implies a case by case comparison. However, simple observations indicate that the

use of transfer function models may give prediction errors with a larger variance.

10.3 Numerical examples of predictions errors

This section computes the variances given in (10.5, 10.13, 10.17) and compares them

with values arising from actual data.

10.3.1 Details of simulation parameters

The following two models are used for illustration:

Example 1 : G(z) =
z−1

1−0.9z−1

Example 2 : G(z) =
2z−1 + 1.4z−2 −0.2z−3

1−1.1z−1 + 0.24z−2−0.05z−3 + 0.04z−4

(10.20)

For each of these it is assumed that var(vk) = σ 2 = 0.0393 and the FIR models are

truncated after 30 terms. The default T-filter [21] is 1−0.8z−1 and hence

1

T
=

∞

∑
i=0

0.8iz−i;
∞

∑
i=0

h2
i =

1

0.36
(10.21)

10.3.2 Summary of error comparisons

The upper bounds on prediction error variance of equations (10.5, 10.13, 10.17) are

computed; these are denoted theoretical bounds. Also some open-loop simulations

are performed with random inputs and the experimental prediction error variances

are computed. For ease of comparison, all the variances are plotted (y-axis) against

prediction horizon (x-axis). The notation used is summarised in Table 10.1. Figures

10.1–10.3 show the variance due to noise (with v = 0). A logarithmic sale is used

because at times the difference in size of the error variances are orders of magnitude.
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TABLE 10.1

Notation in Figures 10.1-10.3

Theoretical bounds Experimental results

Transfer function (no T-filter) Circles Dashed line

Transfer function (with T-filter) Crosses Solid line

FIR model Squares Dotted line

Independent model Squares Dash-dot line
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FIGURE 10.1
Variance due to noise with example 1.

10.3.2.1 Discussion of dependence of prediction errors due to noise

Figure 10.1 illustrates the results for example 1 and Figure 10.2 for example 2.

• For the transfer function without a T-filter, experimental and theoretical results

match and notably are quite poor.

• The theoretical upper bounds with a T-filter are lower and the experimental

results even better.

• The bounds (theoretical and experimental) for the FIR model (which is slightly

worse due to truncation errors) and independent model are by far the lowest.

Figure 10.3 uses example 2 with T (z) = A(z) to illustrate that the variance is then as

small as with the independent model.
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FIGURE 10.2
Variance due to noise with example 2.
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FIGURE 10.3
Variance due to noise (T = A) with example 2.
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Summary: For model (10.2) with F(z) = 1 and v(z) = 0, the independent model

and FIR approach give the most accurate predictions. The transfer function can

give equally good results if T = A.

10.3.2.2 Discussion of dependence of prediction errors on disturbances

The experimental results for nonzeros disturbances show a similar trend. In fact

these are harder to illustrate experimentally, as an increase in error with prediction

horizon is to be expected. At sampling instant k, the n-step ahead prediction cannot

use information about the next n future values of v k; hence the computed variance

will increase linearly with prediction horizon, even for an ideal model. The main

point to observe therefore is the difference between the strategies.

Notably the transfer function (no T-filter) is, relative to the others, very poor. Also

once again the independent model often outperforms the other approaches unless

T = A or truncation of the FIR is not severe.

10.3.3 Conclusions

It is apparent that a simple analysis of model (10.2) with F = 1 gives that predictions

from an FIR (or IM) model are less sensitive to noise and changing disturbances on

the output. This of course is unsurprising given that the prediction is based mainly

on input information.

Transfer function models realign the state at each sampling instant and hence put far

more emphasis on output measurements, that is, on possibly noisy data. Incorpora-

tion of an appropriate T-filter will usually eradicate these differences, but in essence

this is equivalent to using an FIR model. Moreover it is less obvious how to select

T (z) for the multivariable case.

In the case where there is a known disturbance model (F(z) �= 1), the conclusions

may be somewhat different and this needs further consideration.

Summary:

1. If you have noisy measurements, you could get noisy control action from a

transfer function based MPC control law; this is unacceptable on real plant.

2. The FIR model often gives lower variance prediction errors without the need

for filter (robust) design.

3. The use of an independent model is an effective means of combining low

complexity models with the good performance of FIR models.
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10.4 Effect of model structure on loop sensitivity

So far this chapter has looked at the impact of modelling assumptions on prediction

accuracy. However, one could argue† that the issue of most significance is the impact

on the sensitivity of the corresponding closed-loop.

The intuitive arguments will not change in that one would expect those models giving

low error variances for the predictions to give rise to lower loop sensitivity to noise.

Hence this section contains the following:

• A summary of the sensitivity functions for each model.

• Simulation examples contrasting the nominal loop sensitivity with different

model structures.

The reader is reminded again that the complementary sensitivity is the same regard-

less of the model structure.

10.4.1 Control law structure and sensitivity functions

Much of the background for sensitivity functions was given in the previous chap-

ter, so the corresponding results are simply summarised here. The exception is the

control law structure that arises with an IM. It should be noted that the use of a step

response and an IM model is exactly equivalent (if one assumes truncation errors are

minimal) so only the results for the IM repeated here.

10.4.1.1 MPC with an independent model

This is a brief reminder of results in Section 4.6. The predictions that arise with an

IM take the form of eqn.(10.16). Substitution into (4.4) and minimisation w.r.t. ∆ u→
gives a control law of the form (see Sections 4.3.1, 4.6)

Dk(z)∆u = −Nk(z)ŷ−Mk(z)y; Âŷ = B̂u︸ ︷︷ ︸
Control law

(10.22)

This can be simplified to

Diu = −Mky; Di = [Dk∆ + NkÂ−1B̂] (10.23)

†An exception is the constrained case.
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TABLE 10.2

Control laws for different model structures

Algorithm Control law Controller

GPC Dk∆u = −Nky K = [Dk∆]−1Nk

GPCT
Dk

T
∆u = −Nk

T
y K = [Dk∆]−1Nk

GPCI Diu = −Mky K = D−1
i Mk

TABLE 10.3
Sensitivity to noise and disturbances

Algorithm Output sensitivity to noise Output sensitivity to disturbances

GPC Syn = [A+ B(Dk∆)−1Nk]−1A Syd = [A+ B(Dk∆)−1Nk]−1

GPCT Syn = [A+ B(Dk∆)−1Nk]−1A Syd = [A+ B(Dk∆)−1Nk]−1

GPCI Syn = [A+ BD−1
i Mk]−1A Syd = [A+ BD−1

i Mk]−1

Algorithm Input sensitivity to noise Input sensitivity to disturbances

GPC Sun = [Dk∆ + NkA−1B]−1Nk Sud = [Dk∆ + NkA−1B]−1NkA−1

GPCT Sun = [Dk∆ + NkA−1B]−1Nk Sud = [Dk∆ + NkA−1B]−1NkA−1

GPCI Sun = [Di + MkA−1B]−1Mk Sud = [Di + MkA−1B]−1MkA−1

10.4.1.2 Summary of control laws

The z-transform representation of the control laws for GPC (GPC without a T-filter),

GPCT (GPC with a T-filter) and GPCI (GPC based on an IM‡) are summarised in

Table 10.2. Again, it is emphasised, as seen in Chapter 4, that Dk, Nk for GPC and

GPCT will be different in general.

Summary: Different model structures give different control laws and hence differ-

ent loop sensitivity. However, the complementary sensitivity is the same for each.

10.4.1.3 Computation of sensitivity

For the control laws of the form given in Table 10.2 the sensitivities were fully de-

rived in the previous chapter. The summary is given in Tables 10.3:

The sensitivity to multiplicative model uncertainty for the nominal case is

Sg = [I + KG]−1KG (10.24)

The different controllers to be substituted into this expression are summarised in

Table 10.2.

‡This is equivalent to DMC.
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TABLE 10.4

Notation used in plots

Algorithm Notation

GPC Solid line

GPCT Dashed line

GPCI Dotted line

10.4.2 Numerical example

The sensitivity functions for the differing model structure are best illustrated through

Bode plots in the frequency range ω T is 0 to π . The notation used is given in Table

10.4.

The following example illustrates a point but does not constitute a proof that the

same observations will follow for all examples.

For the following SISO example, the controller is designed with n y = 30, nu =
3, Wu = 1.

A(z) = 1−1.8z−1 + 0.81z−2

B(z) = 0.01z−1 + 0.003z−2

T (z) = 1−0.8z−1

(10.25)

The corresponding sensitivity functions are displayed in Figures 10.4, 10.5.

A summary of the observations is given next.

• Using an IM has much reduced the input sensitivity to noise and disturbances

(as well as multiplicative uncertainty) in the high frequency range.

• The output variance is also smaller for high frequencies.

• There is a larger variance of output at intermediate frequencies where one

might consider noise/disturbances are less likely to occur.

• Clearly GPCT is better than GPC and more interestingly (as discussed in

[158]), if T (z) = A(z), the sensitivity plots of GPCT exactly replicate those

of GPCI.

• GPCI has better robustness to model uncertainty.

Summary: For this example, using an IM has given good loop sensitivity without

the need for a filter (or observer) design.

10.4.2.1 MIMO examples

It is also possible to plot equivalent Bode plots for MIMO examples. However, due to

the interactive effects it is much harder to make intuitive observations and one would
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FIGURE 10.4
Closed-loop sensitivities to noise and disturbances.

need more mathematical measures to give an effective comparison. Nevertheless, for

completeness the plots for a MIMO example are given next.

Consider a 2 by 2 plant with reasonably large interactions in the step response charac-

teristics. The step responses are smooth without nonminimum phase characteristics.

A(z) =
[

1 0

0 1

]
+

[−1.3 0

0 −0.7

]
z−1 +

[
0.4 0

0 −0.18

]
z−2 (10.26)

B(z) =
[

0.5 0.2

−0.6 1

]
z−1 +

[−0.5 0.3

0.3 1

]
z−2 +

[
2 0.5

0.6 0.5

]
z−3 (10.27)

With T (z) = 1−0.8z−1,nu = 5, ny = 30,Wu = 1 the corresponding closed-loop sen-

sitivity functions (with the notation of Table 10.4) are plotted in Figures 10.6 – 10.10,

where the subplot position corresponds to the matrix position; that is, row ’i’, col ’j’

of the figure corresponds to Si, j.

The observations are:

• The independent model algorithm has the lowest input and output sensitivity

for high frequencies, but poorer at intermediate frequencies.
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FIGURE 10.5
Closed-loop sensitivity to multiplicative uncertainty.

• For robustness to multiplicative uncertainty the case is less clear-cut though

GPCI is clearly better than GPC.

Summary: The GPCI has again outperformed GPC although the MIMO charac-

teristics make simple conclusions difficult and more mathematical measures are

needed.

10.5 Conclusions

The purpose of this chapter was to highlight the issue that modelling assumptions and

structure are important. Although generic conclusions are not possible, some insight

into the impact of modelling assumptions on sensitivity was given. This insight could

be used to improve a design before one is forced to resort to robust control theory for

a more rigorous, but also more demanding, design.

Insights:

1. For the examples shown GPCI has outperformed GPC and also on average
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FIGURE 10.6
Output sensitivity to disturbances.

outperformed GPCT (except when T = A)§.

2. GPCI often gives good sensitivity, in particular to noise, without the need to

design a filter (or Youla parameter). This is not the case with GPC.

Consequent actions:

1. It is worth considering the use of an IM at the outset of a control design.

2. Sensitivity is model dependent and in practice an off-line case by case com-

parison is essential before the optimal model structure could be selected. The

conclusions will change for different models and moreover if the disturbance

model differs from that in (10.2).

One might argue, at least in the unconstrained case, that the Youla parameterisation

can be used to adapt all controllers, regardless of the underlying model structure, to

§Choosing T = A may not be wise or simple for the general MIMO case.

co
nt

ro
len

gin
ee

rs
.ir



The relationship between model structure and the robustness of MPC 201

10
−2

10
−1

10
0

10
1

10
−0.8

10
−0.5

10
−0.2

10
0.1

Frequency
10

−2
10

−1
10

0
10

1
10

−2

10
−1

10
0

Frequency

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

Frequency
10

−2
10

−1
10

0
10

1

10
−0.6

10
−0.4

10
−0.2

Frequency

FIGURE 10.7
Input sensitivity to disturbances.

have similar robustness and to give a convenient decoupling of performance objec-

tives from robustness objectives ([30, 60]). This is true for the constraint free case.

However, one strength of predictive control is the ability to do on-line constraint han-

dling and the systematic extension of sensitivity functions to this case is nontrivial ¶.

In the meantime, one can argue that if the prediction structure gives low sensitivity

in the nominal case, this is likely to carry over to the constrained case.

¶Some ideas are presented in the next chapter.
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FIGURE 10.8
Output sensitivity to noise.

Summary: The reader is wise to check sensitivities before accepting a given model

form (or observer).

1. The typical academic practice of using realigned models in predictive control

can lead to poor sensitivity with respect to noise. A T-filter (or appropriate

observer design) is usually required to overcome this but the design of a T-

filter is not obvious beyond the guideline of using a low-pass filter.

2. State-space designs would need an equivalent ‘robust’ observer design.

3. Using an IM often gives low sensitivity to noise without the need for an extra

design parameter. This is equivalent to a more efficient implementation of

popular step response models such as used in the DMC algorithm.co
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FIGURE 10.9
Input sensitivity to noise.
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FIGURE 10.10
Sensitivity to multiplicative uncertainty.
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11

Robustness of MPC during constraint
handling and invariant sets

This chapter develops the work of the previous two chapters by introducing con-

straint handling into the uncertain case. It is separated into two major parts. The first

part will look at intuitive and relatively simple ways of improving robustness and

the second part will look at more rigorous, but also more computationally demand-

ing algorithms based in invariant sets. In both approaches use will be made of the

closed-loop paradigm (CLP) as it is very difficult to establish robust stability with an

open-loop paradigm (OLP).

Summary: The introduction of constraints makes robustness analysis far more

complex than the constraint free case.

11.1 Illustration of why robustness is hard to quantify during
constraint handling

Robustness margins are difficult to determine during constraint handling because the

control law becomes nonlinear and hence standard sensitivity analysis, as used in the

previous few chapters, is not applicable. In fact, one could have very good sensitivity

in the unconstrained case and yet the presence of a constraint could make the margin

arbitrarily small.

Consider the following simple example:

G(z) =
z−1

1−2z−1
; u = −u (11.1)

Let the first input arising from an unconstrained control law be u 0 = u; then it is

simple to see that the process can only be stabilised if ui = u, ∀i > 0, that is if the

input is placed on a constraint. Next add a small parameter uncertainty so that the

process is actually given by G(z) = z−1/(1− 2.0001z−1). It is now apparent that if

the first control is u0 = u, the system is guaranteed unstable [61], regardless of the

unconstrained stability margins; this because the system could be stabilised only by

selecting ui < u which of course is not possible.
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Remark 11.1 One could show a similar effect by adding an arbitrarily small distur-
bance [40, 64].

This problem is not noticed in the unconstrained case, as the control law is linear

and hence the possible choices for ui are not limited. Nominal sensitivity functions

are applicable only when a control law is in linear operation, which implies that the

state is inside the maximal admissible set. In the example given, the state has been

deliberately chosen just outside the maximal admissible set (MAS) ∗.

It is noted that being outside the MAS does not imply instability [24] in general.

More analysis is required to form the sets within which a saturated controller will

give desirable behaviour.

Summary: Good sensitivity in the unconstrained case does not imply good sensi-

tivity when constraints are active. The precise implications of this are difficult to

generalise.

11.2 Feasibility

Feasibility is the subject of Chapter 8 but is mentioned again here, as it is a central

issue when establishing robust stability in the presence of constraints.

An MPC problem is deemed feasible if it is possible, with the d.o.f. available, to

satisfy all the constraints (input/output constraints and terminal constraints). One of

the difficulties with establishing robustness results when constraints are present is

that the answer is directly linked to feasibility. Hence in general one cannot separate

the two discussions. For instance, there is little use stating that a given control law is

robust with good margins if it requires infeasible control moves †; either the control

moves will not be implementable or some other constraint will be violated.

In the robust case the problem is complicated by the fact that it maybe difficult to

ensure feasibility due to the uncertainty about future behaviour. For instance, a car

driver cannot guarantee to stay in lane subject to all possible actions by other drivers

and the possible presence of parked cars. They could, however, give a guarantee

subject to sensible assumptions on the behaviour of others. For this chapter it will be

assumed that the uncertainty is bounded in some sense so that results can be derived.

In general of course, uncertainty bounds are approximations and no absolute guar-

antee can be given. The designer must make a judgement as to where to draw the

line between the potential benefits (improved nominal performance) from ignoring

∗The shape of the maximal admissible set will vary due to uncertainty and may not be computable in

general.
†This is highlighted in Section 11.1.
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uncertainty and the improved safety from incorporating some robust design. As yet

no algorithm exists to formulate this trade-off.

Summary: Robust stability results imply a guarantee of feasibility. In practice such

a guarantee requires restrictive assumptions about the uncertainty which comes at

the cost of a loss in nominal performance.

11.3 Simple methods for improving robustness during constraint
handling

The word simple here refers to the ease of coding and implementation. However,

simple methods are not rigorous and hence there may be no guarantees of robust

stability; rather there will be intuitive arguments for why robust performance should

be improved.

11.3.1 The T-filter

The reader will recall the sensitivity improvements brought about by the introduction

of a T-filter discussed in Chapter 9. The T-filter can be thought of as a low-pass

filter on the output measurements and hence reduces controller sensitivity to high

frequency noise but has little impact on low frequency behaviour. As this filter is

hardwired into the prediction structure, the same benefits can be expected to carry

across to the case where constraint handling is required (assuming feasibility). A

simple illustration can be used to show this.

Take the model

G(z) =
z−1

1−1.3z−1 + 0.4z−2
; |∆u| ≤ 0.2 (11.2)

Form a predictive controller without a T-filter (GPC, solid line) and with a T-filter

T = 1− 0.8z−1 (GPCT, dotted line), and form closed-loop simulations in the pres-

ence of measurement noise. The unconstrained simulations are in Figure 11.1 and

constrained simulations are in Figure 11.2.

The observations are:

• In the unconstrained case, GPCT clearly outperforms GPC by way of reduced

input activity.

• In the constrained case, the same benefit still applies and as a consequence the

ouput is also less noisy.
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FIGURE 11.1
Closed-loop simulations without input constraints.

• If anything the improvement in performance is less for the constrained case.

That is, in this case, the constraints, by limiting control movement, have actu-

ally improved the behaviour of GPC.

The effect of including the T-filter is very dependent both on the magnitude of the

constraints and the noise and also on the system model. Hence it would be dangerous

to take these observations too far. One cannot really generalise except to say that if

the predictions (e.g. (3.21)) are less noisy, due to the filtering, then this must impact

on the consequent control law, even when constraints are active.

Summary: The benefits of including a T-filter are expected to carry across to the

constrained case. However, it is not possible to define analytically what the benefit

will be.

11.3.2 Youla approaches

Using the same logic as above, one might think that there should be a way of using

the improved sensitivity achieved via the Youla parameterisation during constraint
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FIGURE 11.2
Closed-loop simulations with input constraints.

handling. However, there is a key difference:

• The T-filter acts on the open-loop predictions.

• The Youla approach modifies the implied closed-loop.

Hence if one is to use the Youla approach, then one must use closed-loop predictions,

that is the CLP.

If one uses the CLP, then one can always design the nominal loop to be as robust

as possible. The constraint handling reduces to the selection of c→, which does not

impact on the robustness of the inner loop. However, as with the T-filter, this is

equivalent to using different prediction equations (see Chapter 7). Now the predic-

tion equations are derived from the inner loop and hence depend upon the controller

parameters. The hope is that the implied feedback reduces prediction sensitivity.

Summary: Closed-loop predictions have a different sensitivity to uncertainty.

Hence the CLP has the potential to be used to advantage. An illustration is given

next.
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11.4 Youla parameter and robust predictive control with con-
straint handling

This section gives a brief overview of an example presented in [114] which illustrates

the potential benefits of the CLP in conjunction with a Youla parameterisation. The

approach is simple to implement but does not have rigorous guarantees. The aim

is to develop a means of giving a constraint handling predictive control law with a

similar guarantee of robustness as achieved in the absence of constraints.

11.4.1 Nominal feedback for use in the CLP

In the CLP the set point to the loop combines with the control variable (d.o.f.) (Figure

7.1). The nominal control law (i.e. N, D) can be considered as already being chosen

to both optimise performance and sensitivity, so any Youla parameter (as discussed

in Section 9.4) is already incorporated. When constraints are inactive, the optimal

value of c is zero and therefore the Youla parameter will increase the level of model

uncertainty with which the control law can cope.

11.4.2 Introducing constraint handling

With the CLP, constraints are handled by a suitable modification of the perturbation

signal c. However, constraint handling depends upon predictions which in turn de-

pend upon output measurements and hence, as shown in Figure 7.1, this introduces

an additional feedback loop. As with the T-filter (Section 11.3.1) the impact on sen-

sitivity is difficult to analyse in general. One would expect that by giving the inner

loop (or the closed-loop predictions themselves) better robustness properties, this is

inherited to some extent by the constrained optimum.

Conjecture 11.1 If one can prove that the perturbation signal c is convergent, then
one must have robust stability.

Proof: This is trivial as once c = 0, one is left with only the inner loop which is

robust stable by definition. �	
The optimisation (e.g. see Section 7.5.1.2) is to minimise the weighted norm of c→;

hence one might expect that in general c does converge to zero and in fact this is

trivial to prove for the nominal case‡. Unfortunately this assumes feasibility and it is

nontrivial in general to ensure that the constraints remain feasible. For this section

feasibility is assumed and therein lies the weakness of the method. More rigorous

‡This follows a similar approach to that given in Section 6.3.
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methods which can ensure recursive feasibility (e.g. [59, 125]) are given later in this

chapter.

Summary: A stability proof requires a recursive guarantee of feasibility which is

nontrivial. If one assumes recursive feasibility, then it is necessary only to show

that c→ is stable/convergent.

11.4.3 Constraint satisfaction for a set of plants

Given that one cannot form tight equations for constraint handling over an uncer-

tainty set, one might wonder what can be done that is simple. The most important

point (as illustrated in Section 11.1) is to ensure that the choice of c→ is such that

constraints are satisfied no matter which member of the uncertain model set is the

true model.

The evolution of the inputs/outputs in the closed-loop of Figure 7.1 will vary with the

model parameters, hence predicted constraint satisfaction with one assumed model

G does not need to imply predicted constraint satisfaction with the model G + δ G.

An obvious way to avoid this pitfall, is to form (and check) the set of all possible

predictions over the entire uncertainty class. However, this is not computational

tractable (without using conservative bounds) in general.

Alternatively one could calculate the predictions explicitly for each of a finite set of

possible plants G(i) = b(i)

a(i) (the superscript (.)(i) denotes the ith member of the model

set). The input predictions, for instance, would take the form




ut

ut+1

...


 = G(i)

c




ct
...

ct+nc


+ p(i)

2 (11.3)

where G(i)
c , p(i)

2 depend upon N, D, a(i), b(i). One would then need to check that

predictions (11.3) satisfy input constraints for all (i) (each uncertainty member), so

the dimension of the constraint set is increased significantly. However, the number

of d.o.f. nc is unchanged.

Summary: If the optimising c→ satisfies constraints for each member of the class,

then the same c→ must be feasible for the true model. It may not be simple in general

to ensure the recursive existence of such a c→; in this section it is assumed.

11.4.4 Simulation study

This section will illustrate the benefits of the simple approach proposed above by

way of an example. We take the example given in Section 9.4.5, which comprises a

set of uncertain models and an appropriate choice for Q(z). The reader is reminded
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FIGURE 11.3
Perturbation δ b2, nQ = 0.

that the loop is not robust stable, for the whole set of plants, without Q. Hence even

in the unconstrained case, the nominal control law could fail.

Input constraints are introduced as follows:

|∆u| < 0.3; −1.5 < u < 1.5 (11.4)

Closed-loop simulations are performed where a unit set point change is demanded

at the 5th sample instant and a disturbance of magnitude 0.1 enters the system at the

20th sample instant. The output, set point, input and input increment are overlaid on

plots (a) and the d.o.f. c→ are shown on plots (b). Constraints are known to be active

because c→ 
= 0.

• Figure 11.3 shows that, without a Youla parameter and with the plant numera-

tor given as b+ δ b2, the tracking is rather bumpy.

• Figure 11.4 shows that, with a Youla parameter and with the plant numerator

given as b+ δ b2, the tracking is smooth, albeit with slower convergence than

for the nominal plant.

• The reader is reminded that without Q, the nominal loop is unstable should the

numerator be b+ δ b3, but when Q is included, performance is still stable – see

Figure 11.5.
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FIGURE 11.4
Perturbation δ b2 and nQ = 10.

11.4.5 Conclusions

Predictive control gives a nonlinear control law when constraints are active and this

implies that traditional linear robustness analysis/design cannot be implied. Never-

theless, prestabilising the plant with the nominal optimal predictive control law and

using the input to this loop as the control variable, linear robust design can still be

applied to some advantage.

Summary: The benefits of the Youla parameterisation and formal robust design

can still be applied, to some extent, during constraint handling and moreover it is

a relatively simple approach to implement. However, there are no guarantees of

recursive feasibility.

11.5 Using constraint tightening

This section gives a brief summary of one other simple approach (also see Section

8.5.2) that is similar in philosophy to back off and used in the process industry. If
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Perturbation δ b3 and nQ = 10.

there is a danger of violating a constraint, the system is not driven as hard; that is,

one backs off a little from the constraints. The amount by which one backs off is

a safety margin that can be used to ensure feasibilty and stability in the event of an

unexpected disturbance or other occurrence.

Unfortunately, the drawback of this approach is that guarantees, especially recursive

ones, can usually only be given by deploying very conservative bounds and hence a

huge sacrifice to performance. For instance, if you want to be sure not to crash your

car, don’t drive it! Without guarantees, the amount of back off to deploy becomes less

of an analytic decision and more based on engineering judgement. As a consequence

this topic is not discussed in detail in this book although the reader is reminded

that a prerequisite to predicted satisfaction of constraints is that the inner loop is

robustly stable; otherwise some predictions will be unstable and hence inevitably

violate constraints.

It is possible [40] to find the maximum deviation between the input predictions for

the nominal model a, b and the other models in the set; define these as follows

Uj = max
i

(u(i)
t+ j −u(0)

t+ j); Lj = min
i

(u(i)
t+ j −u(0)

t+ j)

Then one can artificially tighten the actual constraints by U j, Lj at the upper and
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lower limits respectively, and this will ensure the feasibility of the whole prediction

class (11.3) given the feasibility of the nominal model predictions. The advantage

is that on-line one needs only to consider a single set of constraints; however, the

tightening will be conservative in general.

A more detailed discussion of this approach using rigorous set theory was presented

in [19].

Summary: If you want to have more control freedom to deal with the unexpected,

do not drive the predictions up against hard constraints except at the current sam-

pling instant.

11.6 Recursive feasibility for the uncertain case

The results in the first half of this chapter have assumed feasibility, that is, the ex-

istence of a c→ such that constraints can be satisfied, at each sampling instant. For

the nominal case feasibility at time k implies feasibility at time k + 1, hence this

assumption causes no difficulties. However, when there is model uncertainty and/or

disturbances, feasibility does not carry over from one sample to the next in a straight-

forward manner, as only one (for the true model) of the expected predictions from

(11.3) actually is true and the others are all different at k + 1 from what was conjec-

tured at sample instant k. That is, in general (with a slight abuse of notation):

u→k+1|k+1
= u→k+1|k 
⇒ y→k+1|k+1

= y→k+1|k (11.5)

Exact results guaranteeing feasibility require artificially tight constraints; that is, they

are conservative. Hence in practice, guarantees of feasibility for ‘all possible’ (most

of which are highly improbable) future scenarios are not desirable due to the potential

loss of performance. In practice one selects a control algorithm such that feasibility

is probable, but accepts that some (unlikely) scenarios may cause infeasibility.

Nevertheless, for completeness, the remainder of this chapter looks at some algo-

rithms which do give a guarantee of recursive feasibility and convergence for the un-

certain case. The notes are deliberately brief, as this author believes that the insight

gained is more important than the details of the algorithms; widespread industrial

acceptance is still some way in the future.

The methods to be presented are based on a powerful paradigm which can also be

used for other benefits, that is the properties of invariant sets. One might recall from

Chapter 6 that dual mode MPC strategies implicitly use the property of invariance

in mode 2. The remaining sections will first discuss invariant sets and second their

properties. It will then be shown how invariant sets can be used to assess stability in
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the nominal case and then finally MPC algorithms will be proposed for establishing

robust stability with constraint handling.

Summary: Guarantees of recursive feasibility in the presence of uncertainty are

possible but usually require conservative assumptions and hence a degradation in

nominal performance. A robust loop may be a sluggish one.

The most popular results in the literature are based on invariant sets.

11.7 Definition of invariant sets for unconstrained closed-loop
systems

A set is invariant [5] if, once a state enters that set it can no longer leave. So, for

instance, a set S is invariant iff:

xk ∈ S ⇒ xk+1 ∈ S (11.6)

The reader may like to note that condition (11.6) implies that x k+i ∈ S , ∀i > 0.

There are various types of invariance, e.g. [5, 56], but this book will focus mainly on

controlled invariance, that is, the invariance that arises in the closed-loop system for

a fixed control law.

Assuming that a system is subject to feedback, the shape of the invariant set depends

upon two factors:

1. The system dynamics (or model)

2. The feedback law

In this section for ease of presentation, use will be made of state-space models and

state feedback. However, invariance can equally be defined for input/output models.

The underlying equations will be taken as:

1. The system dynamics: xk+1 = Axk = Buk

2. The feedback law: u = −Kx.

3. Closed-loop dynamics:

xk+1 = Φ xk; Φ = A−BK (11.7)

For such a closed-loop, set S is invariant if

xk ∈ S ⇒ Φ xk ∈ S (11.8)
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It remains now to show how sets can be constructed which satisfy this condition. Two

types of invariant sets are considered here: (i) ellipsoidal sets and (ii) polyhedral sets.

For simplicity of presentation it is assumed, without loss of generality, that the origin

is strictly inside the invariant set.

Summary: An invariant set is one which once entered cannot be left. Its definition

depends upon the model and the control law.

11.7.1 Ellipsoidal invariant sets

Define an ellipsoidal set

S = {x : xTWx ≤ 1}; W > 0 (11.9)

The closed-loop state update is given in (11.7).

Theorem 11.1 The set S of (11.9) is invariant for model (11.7) if

Φ TW Φ −W ≤ 0 (11.10)

Proof: Substitute (11.7) into invariance condition (11.8), i.e.

xT
k Wxk = 1 ⇒ xT

k+1W xk+1 ≤ 1

xT
k Wxk = 1 ⇒ xT

k Φ TW Φ xk ≤ 1

⇒ xT
k [Φ TW Φ −W ]xk ≤ 0, ∀xk ∈ S

≡ Φ TW Φ −W ≤ 0

(11.11)

�	
Summary: An ellipsoidal set xTWx ≤ 1 is invariant for autonomous state-space

model xk+1 = Φ xk if

Φ TW Φ −W ≤ 0

11.7.2 Polyhedral invariant sets

Let a polyhedral set (with no redundant constraints) be given as

S = {x : Mx−d ≤ 0} (11.12)

Theorem 11.2 The polyhedral set (11.12) is invariant for model (11.7) if

‖eT
i [M Φ −M]‖2 < 1, ∀i (11.13)

where ei is the ith standard basis vector.
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Proof: Substitution of (11.7) into condition (11.13) gives

Mx−d ≤ 0 ⇒ M Φ x−d ≤ 0 (11.14)

Assuming (this is necessary if x = 0 is feasible) that eT
i d > 0, this in turn implies that

eT
i [M Φ −M]x < 0, ∀x s.t. eT

i Mx > 0 (11.15)

Hence this gives a set of eigenvalue conditions which ensure that the norm is always

reducing, i.e.

λ (mi[Φ T Φ − I]mT
i ) ≤ 0 (11.16)

�	

Remark 11.2 It is clear from the above that where a matrix Φ has distinct and real
eigenvalues (assumed modulus less than one as Φ is stable), one could construct
an invariant set from the eigenvectors. For more general approaches the reader is
referred to the literature, e.g. [5].

Summary: A polyhedral set S = {x : Mx− d ≤ 0} is invariant for autonomous

model xk+1 = Φ xk if λ (mi[Φ T Φ − I]mT
i ) ≤ 0, ∀i.

11.7.3 Link between invariance and stability

The reason why invariance is so popular as a tool is that an invariance condition

is equivalent to a stability test. For instance, one could take the invariance test as

equivalent to a Lyapunov function.

• The ellipsoidal invariant set (11.9) could be considered to represent a Lya-

punov function J = xTWx. If the invariance condition is satisfied, then J is

monotonically decreasing. As W is positive definite, this implies that x is con-

vergent.

• The polyhedral invariant set (11.12) could also be considered to represent a

Lyapunonv function J = ‖Mx‖ ∞ . Again if condition (11.16) is satisfied, then

J must be monotonically decreasing which in turn implies that x must be con-

vergent.

Summary: The existence of an invariant set is equivalent to the existence of a

Lyapunonv function and hence is equivalent to a stability test.
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11.8 Invariance and constraint handling

It has just been shown that the existence of an invariant set is equivalent to a Lya-

punov stability test. As was noted in Chapter 6 Lyapunov stability tests can also be

applied during constrained handling. This section will show how invariant sets can

be used to guarantee convergence in the presence of constraints.

11.8.1 Ensuring constraint satisfaction by set membership

A few lemmata are used here to show how one can use a set membership test to

ensure predicted constraint satisfaction. This section deals only with the principle

that the sets exist and does not tackle the question of how the invariant sets should

be computed.

Lemma 11.1 If there exists an invariant set (11.8) for autonomous model (11.7),
then this set can always be scaled to be small enough so that constraints are always
satisfied.

Proof: The input is given by the feedback u = −Kx and x is restricted to satisfy

xTWx ≤ 1. Hence [59], we can always take W large enough, so that the allowable

values for x ensure Kx is smaller than the input limits. �	

Lemma 11.2 If there exists an invariant set (11.12) for autonomous model (11.7),
then this set can always be scaled to be small enough so that constraints are always
satisfied.

Proof: The constraints can be stated naturally as linear inequalities, for instance,

u < u → −Kx ≤ u. Hence one needs only scale the rows of M to be large enough

so that Mx−d≤ 0 implies that x is small enough that −Kx≤ u. In general of course,

one would assume that constraint−Kx≤ u was included systematically in the choice

of M, d (recall that the choice of K is implicit in the definition of M anyway). �	
Summary: If there exists an invariant set for an autonomous model, then one can

find an invariant set within which the closed-loop trajectories always satisfy con-

straints.

11.8.2 Using invariant sets in predictive control

One major ability of MPC is on-line constraint handling, that is, the ability to opti-

mise performance subject to there being no predicted constraint violations. However,

in practice the predictions evolve over an infinite horizon, especially in the case of

dual mode algorithms and this seems to imply that the constraints should be checked
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over an infinite number of sampling instants. Invariant sets are the key to overcoming

this obstacle.

First remind yourself of the two key points:

• Once a state enters an invariant set, it never leaves.

• An invariant set can be defined so that if the state is within it, then the state/input

trajectories of the closed-loop system do not violate any constraints.

Now consider the dual mode paradigm (see Section 6.6.3). The terminal mode of a

dual mode prediction is equivalent to unconstrained behaviour of a known closed-

loop. Hence this behaviour can be captured by an invariant set and more importantly

we can make the following lemma.

Lemma 11.3 Let S be an invariant set for system A and control law B and further-
more let this set be scaled such that the closed-loop input/state trajectories satisfy
constraints C. Then constraint satisfaction in mode 2 is ensured by membership of
S .

Proof: The proof is obvious though one should note that membership of S is suffi-

cient but may not be necessary. �	

Theorem 11.3 The constraints used in a dual mode algorithm can be posed as: (i)
an explicit comparison of input/state predictions with their respective limits during
mode 1 and (ii) the membership of an appropriate invariant set as the state enters
mode 2.

Proof: Again this is obvious. �	

Remark 11.3 The most notable thing about this theorem is the following observa-
tion. The invariant set will be finitely determined. Hence constraint satisfaction over
an infinite horizon can be ensured by checking a finite number of inequalities:

• Linear inequalities representing constraints during mode 1.

• Either linear inequalities (11.12) or quadratic inequalities (11.8) ensure mem-
bership of the terminal invariant set.

Summary: Membership of an appropriate invariant set is equivalent to testing for

constraint satisfaction of the closed-loop predictions over an infinite horizon. The

number of inequalities in the implied invariant set will be finite and often quite

small.
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11.9 Computing invariant sets

It remains now to show how invariant sets can be computed in general. We note, as

discussed the Chapter 8 and was indicated in Section 7.4.1, that there is a general

desire for the terminal invariant sets to be as large as possible, as this reduces conser-

vatism and hence suboptimality. However, the desire to maximise volume may come

into conflict with the desire for a simple definition.

This section focuses first on computing invariant sets for the certain case. The un-

certain case is discussed in a subsequent section.

11.9.1 Computing polyhedral invariant sets

The MAS was developed in [33]. This set is the largest possible invariant set for a

given system, constraints and control law and in that sense membership of the set is

both necessary and sufficient for constraint satisfaction assuming the specified linear

control. This follows from the fact that any states outside the set, by definition, are

violating a constraint. In the following an overview is given of how to determine the

MAS.

Given that u = −Kx, let the constraints (input/output/state) at each sampling instant

be represented by the set of linear inequalities:

Cxk+i −d ≤ 0, ∀i ≥ 0 (11.17)

Let the closed-loop dynamics be xk+1 = Φ xk and define the candidate set S̃n in which

constraints are satisfied for the first n steps of the predicted response as

S̃n = {x :




C Φ
C Φ 2

...

C Φ n




︸ ︷︷ ︸
Cn

x−




d
d
...

d




︸ ︷︷ ︸
dn

≤ 0} (11.18)

Set S̃n is invariant if x ∈ S̃n ⇒ Φ x ∈ S̃n. The test for invariance is by contradiction;

i.e. does there exist x ∈ S̃n such that Φ x 
∈ S̃n. More specifically, one can maximise

(w.r.t. x) each of the row sums of Cnx−dn, in turn subject to the remainder of the

constraints in S̃n being satisfied. If any of the maximal row sums is greater than zero,

then there exists an x such that x ∈ S̃n but Φ x 
∈ S̃n.

Hence the formulation of the MAS is via a sequence of linear programs or iteration:

1. Define S̃1, set i = 1.
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2. Test whether S̃i is invariant.

3. If S̃i invariant, exit else i = i+ 1 and go to step 2.

Convergence: This iteration will terminate with finite i so long as the asymptotic

point for the state; that is, limi→∞ xk+i = limi→∞ Φ ixk is strictly inside the interior of

the constraints (11.17).

Observation: Many of the rows in the MAS S̃n may be redundant and hence it is

often worthwhile removing these.

Remark 11.4 There has been some work on limited complexity invariant polyhe-
drals using conditions such as (11.16), but that work is large in itself and hence is
not discussed here. The motivation of the work is to derive an invariant set defined
by far fewer inequalities. Of course the price one pays is that the set will be con-
servative in volume; that is, membership is a sufficient but not necessary test for
feasibility.

Summary: Given constraints (11.17) at each sampling instant, the MAS is invari-

ant and defined as

S̃n = {x :




C Φ
C Φ 2

...

C Φ n


x−




d
d
...

d


 ≤ 0} (11.19)

for large enough n. For typical closed-loop poles, say modulus 0.8 to 0.9, n is likely

to be in the region 10–20 and hence may not be large.

11.9.2 Ellipsoidal sets

Ellipsoidal invariant sets have the advantage of having a simple definition (11.8)

which reduces complexity, but they have the disadvantages of being both suboptimal

in volume (as the MAS is known to be polyhedral) and more difficult to compute.

Moreover, using ellipsoidal terminal sets within MPC implies the mixing of linear

and quadratic constraints in the MPC optimisation (e.g. modify the optimisation in

Section 7.2.3 by replacing the MAS with constraint (11.8) ) and this can lead to a

nontrivial calculation (e.g. [67]).

Nevertheless, with some modification of objectives, ellipsoidal sets can also be used

to computational advantage [65] and to handle robust problems [59]. Hence this

section outlines some methods by which ellipsoidal invariant sets can be computed.

11.9.2.1 Simple choices of ellipsoidal invariant set

A simple choice of invariant set arises from the level set of the performance index

(for the infinite horizon case). It was shown in Section 6.6 that the unconstrained
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optimum could be written as J = xT Px and moreover that this was a Lyapunonv

function. Hence P is a suitable candidate for the matrix W of (11.8).

In an equally simple fashion, one could make use of the eigenvalue/vector decompo-

sition of Φ and the observation that the eigenvalues are all modulus less than one to

form a suitable ellipsoid.

Both these choices may be quite conservative in volume by comparison with other

ellipsoids and hence are not favoured in general.

11.9.2.2 Maximal volume ellipsoidal sets

The condition for invariance is given as

Φ TW Φ −W < 0 (11.20)

This can be represented as a linear matrix ineqaulity(LMI) [11, 59].[
W−1 Φ W−1

W−1 Φ T W−1

]
≥ 0 (11.21)

Input constraints can be handled using the following observation:

|KT
i x|2 ≤ |KT

i W 1/2W−1/2x|2 ≤ ‖KT
i W 1/2‖2

2|W−1/2x|2
≤ (KT

i W Ki)(xTW−1x) ≤ KT
i WKi ≤ u2 (11.22)

Hence the constraints −KT
i x ≤ u could be achieved via satisfaction of the LMIs[
W−1 W−1Ki

KT
i W−1 u2

]
≥ 0; i = 1,2, ... (11.23)

Finally, the set given in (11.8) is invariant and moreover constraints are satisfied if

both LMIs (11.21, 11.23) are satisfied and W > 0 (positive definite). Recall however,

that these conditions are sufficient but not necessary.

Remark 11.5 Lower constraints on the input and state constraints give rise to LMIs
similar to (11.23). Hence each separate constraint will give rise to an additional
LMI to be satisfied. Other constraints can also be handled in a similar fashion.

Theorem 11.4 The maximum volume invariant elliposid such that constraints are
guaranteed to be satisfied can be computed from the following optimisation:

Max logdet(W−1) s.t. (11.21,11.23) (11.24)

Proof: LMI (11.21) ensures invariance. The set of LMIs in (11.23) ensure constraint

satisfaction inside the set. The volume of an ellipsoid is inversely proportional to the

product of the eigenvalues, that is, the determinant. �	
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Remark 11.6 LMI methods are becoming popular in the literature but still require
quite significant computation compared, for instance, to a conventional quadratic
programming (QP) optimisation. The real potential is in the application to model
uncertainty and nonlinearity. There is not space in this book to discuss this properly
and so the reader is referred elsewhere for a detailed study of LMI techniques.

Summary:

• An ellipsoidal invariant set within which constraints are satisfied is given by

xTWx ≤ 1 where conditions (11.21, 11.23) and W > 0 all apply.

• For the certain case the ellipsoidal set is suboptimal in volume and hence its

use may unnecessarily restrict the regions within which an MPC algorithm

is defined.

11.10 Invariance in the presence of uncertainty

One important motivation for introducing invariant sets was to handle uncertainty;

this section demonstrates how that can be achieved. First MAS are discussed and

dismissed and then some space is given to ellipsoidal sets.

In practice all systems exhibit some uncertainty, by way of disturbances or parameter

uncertainty. Clearly the invariance conditions (11.6) or (11.16) may no longer be

valid in the presence of uncertainty and the conditions need reformulating.

Uncertainty affects the autonomous model assumption whereby (11.7) must be re-

placed by:

1. Disturbance uncertainty:

xk+1 = Φ xk + β (11.25)

where β is unknown but possibly bounded.

2. Parameter uncertainty: xk+1 = [Φ + ∆Φ ]xk

For convenience hereafter, we will quantify the parameter uncertainty using linear

differential inclusions; for instance, let the closed-loop state-space matrix be de-

scribed as:

Φ = ∑ µ i Φ i, ∑ µ i = 1, µ i ≥ 0 (11.26)

Summary: In the presence of uncertainty, the invariance conditions need reformu-

lating so that they apply to the whole uncertainty class. To do this an uncertainty

class must be defined.
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11.10.1 Polyhedral sets and uncertainty

The MAS defined in (11.19) was for the nominal case only. Yet even here the com-

plexity could be considered quite large. If instead one were to use model (11.26),

then to check and allow recursive constraint satisfaction over a prediction horizon of

just 2, one would require the following linear inequalities:

S = {x :




C Φ 1

. . .

C Φ n

C Φ 1 Φ 1

C Φ 1 Φ 2

...

C Φ n Φ n−1




x−




d
d
...

d


 ≤ 0} (11.27)

Evidently there is a combinatorial explosion in the number of inequalities which is

simply not manageable for large prediction horizons.

Hence, in general, one cannot form an MAS in the uncertain case. In fact a more

fruitful way forward is to return to the definition given in (11.16), predefine the

complexity (number of inequalities) and then search for appropriate coefficients [5].

This avenue is not pursued in this book due to limitations in space and a desire not

to get into more mathematical algorithms.

Summary The MAS is not easy to define in the uncertain case. Algorithms do exist

which search for low dimensional invariant polyhedrals to cater for uncertainty, but

those are outside of the scope of this book.

11.10.2 Ellipsoidal invariance in the presence of uncertainty

The topic of ellipsoidal invariance will also not be discussed in detail here as the

mathematics quickly gets more complex than fits in the scope of this book. Hence

only the main concepts are outlined. Two issues are discussed separately: (i) uncer-

tainty due to exogeneous signals such as disturbances and (ii) parameter uncertainty.

More generally one can also consider mild nonlinearity but that is not discussed here.

11.10.2.1 Disturbance uncertainty

The most important observation [19] here is that, perhaps counter to one’s intuition,

in the presence of disturbances small invariant sets are not possible. This in turn

means that for either a well tuned loop or one with tight constraints it may not be

possible to define an invariant set.
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The explanation is simple. The invariance condition can be written as

xT
k+1W xk+1 ≤ xT

k Wxk (11.28)

[xT
k Φ T + β T ]W [Φ xk+1 + β ] ≤ xT

k W xk

xT
k Φ TW Φ xk+1 + 2β TW Φ x+ β T β ≤ xT

k W xk

xT
k Φ TW Φ xk+1 ≤ xT

k W xk −2β TW Φ x− β T β

Now consider the case where x is small (or even zero), then the invariance condition

reduces to

0 ≤ 0− β T β (11.29)

and clearly this is inconsistent.

Well tuned controllers in conjunction with input constraints often result in small

invariant sets so one can quickly set up a contradiction such that for certain input

limits in the face of uncertainty, an invariant set will not exist for a given fixed state

feedback. In the presence of disturbance uncertainty, the invariant set must be big

enough so that for a state x on the boundary, then x T [W − Φ TW Φ ]x > β T β . Hence

the larger the possible disturbance signal, the larger the invariant set needs to be.

It is quite possible that the size of invariant set required comes into conflict with

the LMI requirements of Theorem 11.4, in particular constraints (11.23); and then a

simple invariant set cannot be defined.

This is still an active research area and the material is not really suitable for this

book. One might conjecture however, that seeking such rigor in a real world scenario

is perhaps an unrealistic objective.

Summary: In the presence of disturbances and constraints, it maybe impossible to

define an invariant set. This is because invariance requires the natural change in the

state always to be larger than the effect of the disturbance.

11.10.2.2 Parameter uncertainty

This case can be handled more easily than the above because parameter uncertainty

is proportional to the magnitude of the state, whereas a disturbance signal is not.

Hence one can obtain realistic invariant sets.

Consider the condition (11.20) for invariance for a certain process. This must be

satisfied for each member of the class of uncertainty, that is:

Φ T
i W Φ i −W < 0; ∀i (11.30)

This gives rise to a number of LMIs conditions analogous to (11.21).

Summary: One can easily state the LMI conditions for an invariant ellipsoid to

exist in the case of parameter uncertainty. However, this does not need to imply the

conditions can be satisfied or that the implied computation is simple.
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11.11 Using ellipsoidal invariant sets in robust MPC design

This chapter will only mention algorithms for robust design in passing as I believe

the technology is still several years ahead of implementation. However, it is useful to

be aware of them, as recent work on robust MPC has almost universally been based

on invariant sets and LMIs. There exist [11] many efficient tools for solving LMI

problems, although these are still slower than QP. Also LMI methods can be used for

off-line analysis, to give confidence in expected algorithm behaviour.

The power of invariant sets is that if one can ensure that the predictions enter an in-

variant set, then once inside stability/convergence/constraint satisfaction are guaran-

teed. Moreover, as noted in Section 11.10.2.2 the set can be defined for an uncertain

class; that is, it is not restricted only to the nominal case. The difficulty is then sim-

plified to finding a robust method of driving the state inside an invariant set (which

is naturally larger than the origin).

11.11.1 Overview

There are two main branches to the use of LMIs and ellipsoidal invariance:

1. The first branch [59] allowed the feedback K to be the d.o.f. and searched

for a K such that the current state was inside an invariant set for the given

constraints and model uncertainty. This could give rise to cautious control and

requires a significant on-line computation.

2. The second approach predetermined the K and found the maximum volume

invariant set (for the given number of d.o.f.) [66]. This could give better

performance and required only a small on-line computation [65] but feasibility

was restricted by the off-line assumption on the underlying K.

3. Most results are still restricted to ellipsoidal§ spaces (but see [15]) and this is

a severe restriction given that realistic MAS are polyhedral.

11.11.2 Algorithm of Kothare et al

In [59] the authors took the premise of a linear time varying (LTV) process where

the state matrices A(k),B(k) lay somewhere inside a polytope. However, its time

variation was assumed unknown. Let the vertices of such a polytope be given by

Ai, Bi, i = 1, . . . In order to guarantee convergence the objective was to find a state

§Or suboptimal polyhedral spaces.
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feedback (full state knowledge was assumed) such that

|λ (Ai −BiK)| < 1, ∀i (11.31)

Given that Φ i = Ai −BiK, choosing K is nontrivial so the problem was replaced by

an alternative test. Define an ellipse as

S = {x : xT Px ≤ 1} (11.32)

where P is yet to be selected. Now S is invariant if xk ∈ S ⇒ xk+1 ∈ S for each model

in the set. Therefore the test for stability of the uncertain system is equivalent to the

test

Φ T
i PΦ i −P < 0, ∀i; P > 0 (11.33)

The objective then is to parameterise K in such a way that one can optimise the pre-

dicted performance subject to inequalities (11.33) and subject to u =−Kx satisfying

input constraints (see eqn. 11.23). The d.o.f. in the optimisation are both K and P,

as the only requirement on P is that it is positive definite.

One then finds that the optimal K is time varying, so as the state moves nearer the

origin K becomes gradually more highly tuned. The downsides of this algorithm are

that:

1. The computation of K arises from a very involved LMI computation, at each

sampling instant.

2. At each step, it is assumed that in the predictions the control law is linear.

However, it is known that, in general, the optimal trajectory (during constraint

handling) is nonlinear during the transients.

There have been many subsequent developments in the literature.

Summary: One can formulate an MPC algorithm that handles constraints with a

guarantee of recursive feasibility and convergence and also allows for parameter

uncertainty. However, the on-line computational load is large and the associated

theory is demanding. The algorithm is restricted to ellipsoidal regions.

11.11.3 Using the closed-loop paradigm

It was shown in [66] that one could build on the above algorithm and derive a far

simpler algorithm by deploying the CLP. The key idea is to use transient d.o.f. to

enlarge the volume of the invariant set rather than changes in the underlying control

law.

The algorithm proposed transferred the major computational burden from on-line to

off-line and also simplified the off-line computation to the search for ellipsiodal sets

only (the implied K is given unlike in [59]).
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Off-line:

• Choose a nominal control law (with optimised robustness) and find an ellip-

soidal invariant set. (The volume/shape depends on constraints.)

• Assume that pertubations c→ will be used. Hence create an autonomous system

in which a finite number of future c appear as states.

• Find the maximum volume ellipsoidal sets for the augmented system.

On-line:
Select the minimum norm c→ so that the augmented state is inside the appropriate

ellipsiodal set. The computation reduces to finding the only positive real root of a

polynomial. This is trivial and in fact far simpler than a QP [65].

Summary: If you are prepared to fix some parameter, such as the underlying con-

trol law, then one can simplify the algorithm while still handling the robust case.

However, the feasible region is limited by the assumptions made.

11.11.3.1 Summary

It is re-emphasised that the robust algorithms make use of invariant sets and as such

the algorithms are only defined when the state is within those sets. However, there

may be many points outside the invariant sets [56] for which a robust control strategy

exists. Hence the algorithms can still be very conservative.

Summary: To obtain a guarantee of robust stability in the presence of constraints,

it is likely that the associated algorithm will give conservative performance and be

valid only within a quite restricted region.

11.12 Conclusions

This chapter has shown that invariant sets are invaluable for improving performance

of predictive control, extending applicability and also allowing analysis of expected

behaviour. The key message is that set membership is equivalent to testing for con-

straint satisfaction, over an infinite horizon and possibly for the uncertain case. A

known control law is implied within the set definition and hence set membership

also gives a handle on the performance.
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Summary:

1. MPC algorithms are often defined as optimising some cost (usually with in-

finite output horizons) subject to constraints during the first n c samples and

membership of an invariant set within nc steps. This automatically gives

recursive feasibility.

2. The definition of the invariant set is a major tuning parameter for small n c, as

it carries an implied control law from the nth
c step to the infinite horizon (see

Section 7.3).

3. The use of invariant sets in MPC allows relatively straightforward extension

to the uncertain case.
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Optimisation and computational efficiency in
predictive control

One of the key components of an MPC algorithm is the optimisation. However,

optimisation is such a large topic in itself that it would be difficult to say much

meaningful in this book. Hence instead the focus will be to:

• Indicate the main optimisation algorithms used by MPC and give some brief

discussion upon them.

• Look at how the optimisation burden can be reduced by changes in objective.

Issues of how to improve the robustness or efficiency of an optimisation algorithm

itself are considered to be outside the scope of the control engineer, although of

course they are important. Some discussion of these points appears in [13, 78] and

hence is not repeated here.

Predictive control strategies allow for the systematic handling of constraint, perfor-

mance, and stability. However, the associated algorithms can be computational bur-

densome and/or difficult to unravel. This chapter will discuss and compare a few

algorithms based on invariant sets which meet the additional requirement for com-

putational simplicity. There may of course be a concomitant loss of optimality, but

this can be minimal and often is a small price to pay when one considers the signifi-

cant improvements in efficiency.

Summary: This chapter focuses mainly on how the MPC algorithm itself can be

modified to reduce computational load. For a full discussion of optimisation algo-

rithms, the reader is referred elsewhere.

12.1 Optimisation algorithms in MPC

It will be apparent (e.g. Section 4.8.2) by now that the most typical MPC algorithms

require the on-line solution of a quadratic programming (QP) problem. For GPC ∗

∗It is assumed that readers can supply their own details for CLP and dual mode algorithms.
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this can be summarised as:

min
∆u→

J = ∆u→
T S∆u→+ 2∆u→

T f s.t. C∆u→−d ≤ 0 (12.1)

The question that may be on the reader’s mind is, how easy is a QP to solve?

12.1.1 Active set methods

The most common method for solving a QP is the active set method (ASM). This

book will not give fine details as the interested person should read a book on optimi-

sation. The QP algorithm is available within MATLAB and hence readily accessible

to researchers as a tool.

At the constrained optimum, some of the constraints would be active and the remain-

der would be inactive. The aim of the ASM is to find this separation. Here a brief

summary of the key steps is given.

1. Ignoring ordering issues for simplicity, separate the constraints as follows †:

Cac∆u→−dac = 0

Cin∆u→−din < 0

}
; C =

[
Cac

Cin

]
; d =

[
dac

din

]
(12.2)

2. Then, ignoring the inactive constraints Cin∆u→− din < 0, one can rewrite the

optimisation (12.1) as

∆u→test
= argmin

∆u→
J = ∆u→

T S∆u→+ 2∆u→
T f s.t. Cac∆u→−dac = 0 (12.3)

3. Substitute ∆u→test
into the inactive constraints and compute l

l = max(Cin∆u→test
−din) (12.4)

• If l ≤ 0, then ∆ u→test
is a feasible solution and may be the optimum. One

can test whether ∆u→test
is the global optimum by looking at the associated

lagrange multipliers, which should be positive.

• If l > 0, then ∆ u→test
is infeasible and cannot be the optimal.

4. If ∆u→test
is not the global optimum, change‡ the definition of active and inac-

tive sets and redo steps 1 to 3.

Summary: The ASM gives a systematic means of selecting a potential active set

and iterating through these potential sets to find the global optimum. Although the

upper limit on the number of iterations is prohibitively large, it is rarely approached

in practice and the ASM is widely used.

†Typically one could initialise by setting as active those constraints violated by the unconstrained opti-

mum.
‡The details of how this update occurs is outside the scope of this book.
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12.1.2 Interior point methods

These are becoming more popular than ASM methods within MPC, as the conver-

gence rates are far faster. However, the associated optimisation at each iteration is

more demanding. Again the reader is referred elsewhere (e.g. [93, 155]) for a de-

tailed discussion and only a brief summaryis given here.

1. Replace the optimisation (12.1) by the optimisation (e.g. see [101] for an early

variant):

min
∆u→

J = ∆u→
T S∆u→+ 2∆u→

T f+‖W (i)(C∆u→−d)‖ (12.5)

where W (i) maybe a diagonal weighting matrix at the ith iteration or a function.

2. W (i)(C∆u→−d) is chosen to approach infinity§ as the constraint becomes ac-

tive, and so the optimum for (12.5) will always choose C∆ u→−d < 0; hence

we have the name interior point.

Summary: Interior point methods are guaranteed to converge, within a given ac-

curacy, much faster than QP algorithms. Hence these are becoming popular.

12.1.3 Multi parametric quadratic programming (MPQP)

This is a relatively recent development (e.g. [7, 8]) which is still an area of active

research. The algorithm makes use of the observation in Section 12.1.1 that, should

a given active set be feasible, the optimisation (12.1) can be replaced by (12.3). As

this is a quadratic program with equality constraints, then the solution has a fixed

form, that is one could write:

∆u→test
= −Kacx+ kac (12.6)

The reader will note that this is a fixed state feedback plus a constant (which depends

upon the active constraint values). This feedback is feasible for all x such that the

ignored constraints, that is Cin∆u→test
−din, are feasible and optimal if in addition the

associated lagrange multipliers are positive.

MPQP is therefore summarised (rather crudely) below:

Algorithm 12.1 Off-line:

1. For all feasible active sets, define a region S (i) such that x ∈ S(i) implies that
the control trajectory ∆ u→ = −K(i)x+ k(i) is feasible and optimal.

2. Reduce the regions S(i) so that there is no overlap or duplication.

§For instance, a typical choice makes use of log(d−C∆u→).
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On-line:

1. Do set membership tests to locate in which set S(i) the current state lies.

2. Implement the associated control law (e.g. (12.6)).

The advantage of this algorithm is that all possible control laws are defined off-line

hence transferring on-line computation to off-line. This should enable a reduction in

on-line computational demand as well as improving visibility (potential for off-line

analysis) of the nonlinear constrained control law. The weakness of this algorithm

is that there may be a very large number of possible active sets and this implies not

only a large search to find the correct S (i) but also large data storage requirements.

Current work is looking at how to improve efficiency; for instance, means of testing

set membership by just a functional evaluation and hence also avoiding the need to

store the region definitions.

Summary: MPQP replaces the on-line QP optimisation by a series of set member-

ship tests. These tests can be carried out efficiently but the potentially large number

of alternative active sets is still an issue that needs to be fully resolved before this

algorithm can be used for large problems.

12.1.4 Simple but suboptimal approaches

In the original constrained GPC paper [149] there is some discussion of how the op-

timum might be related to the constraints. It is shown that in some cases saturation

control is optimal and in the worst case is still feasible [24]. Other papers (e.g. [130])

have also shown that, at times, one can find the global optimum (or a suboptimum but

feasible trajectory) with just a few very simple tests (at most nc iterations). However,

there is not, to the authors knowledge, a neat summary in existence of how to form

an optimal synergy between the QP problem and the MPC optimisation. It should be

possible to use the special structure (such as constraint symmetry and Toeplitz struc-

tures in C) of the MPC problem to write an application specific QP algorithm that is

highly efficient especially if one were to accept a small degree of suboptimality. For

instance, one avenue being pursued within MPQP, to reduce the number of sets, is to

say that only the first control move needs to be computed explicitly; one only needs

to know that the remainder are feasible.

12.2 Introduction to computationally efficient MPC

The first section looked at the optimisation algorithm itself. The remainder of this

chapter concentrates on how the MPC optimisation can be modified in order to bring

co
nt

ro
len

gin
ee

rs
.ir



Optimisation and computational efficiency in predictive control 235

about a reduction in the on-line computational load [2],[118],[146], [156].

12.2.1 Concepts used to reduced on-line computation

To reduce the computational burden associated to constraint handling one first needs

a good understanding of what makes explicit constraint handling necessary. This

leads to insight as to when explicit constraint handling can be avoided.

• Explicit constraint handling is required to avoid prediction mismatch (see Sec-

tion 6.1) and hence to enhance performance.

• Explicit constraint handling is required to avoid infeasibility and hence poten-

tial instability/poor performance.

• Explicit constraint handling is not required when the state is inside the maxi-

mal admissible set (MAS) or other invariant set, so that unconstrained control

satisfies constraints.

• Constraint satisfaction can at times be ensured by a simple set membership test

rather than explicit comparison of predictions with constraints.

The aim now is to build on these observations in order to develop algorithms that

reduce the on-line computational burden.

Summary:

• Constraint handling is not required inside the MAS (or any invariant set)

associated to the applied control law.

• The key to eliminating on-line optimisation burden is to transfer as much as

possible of the constraint handling to off-line computations.

12.2.2 Invariant sets

This section gives a brief review of invariant sets (see Chapter 11) which is required

for developments hereafter.

12.2.2.1 Polyhedral invariant sets

If complex enough¶ [33], polyhedral sets maximise the reachable space in the linear

case. However, maximal volume is achieved at the cost of high complexity and these

can be difficult to define in the presence of uncertainty.

¶Low dimensional polyhedral sets, hence conservative in the volumes contained, will not be considered

here.
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12.2.2.2 Ellipsoidal invariant sets

Ellipsoidal sets can be defined with only a few parameters, even in the uncertain

case, but may be conservative in the volumes contained. They are not maximal in

volume, even for symmetric constraints and can be particularly conservative for non-

symmetric constraints. Hence not all initial states x0 which if left to evolve freely

given the state-feedback law ui =−K0xi and model (2.16) and still satisfy constraints

(12.8) are contained in the set. So, the use of ellipsoidal invariant sets may limit

unnecessarily the available control authority, especially if the state feedback is fixed.

12.2.2.3 Can MPC be tuned systematically to change the volume of the associ-
ated invariant set?

For the simple case of open-loop stable systems which are subject to input constraints

only, varying the control weighting in the MPC cost is sufficient to increase the

volume of the MAS (e.g. [2], [118], [146], [156]. However, this does not apply to

the general case with state constraints. The obvious question then is, how can one

design the control law to maximise the volume of the associated MAS ? This is still

an open question although it has been tackled for ellipsoidal invariant sets using LMI

methods (e.g. [59, 123]).

Summary: Constraint handling requirements are reduced if the terminal invariant

set is as large as possible. However, one does not want to make the associated

control law too detuned, as this detuning is partially inherited by the corresponding

dual model MPC algorithm.

12.2.3 Methods illustrated in this chapter

This chapter will first demonstrate three approaches with negligible on-line optimi-

sation. These methods are based on the off-line computation of large invariant sets

and trade-off optimality for computational gains. A by-product of the reduction in

computation and making more use of invariance is an increase in the transparency of

how the controller works when constraints are active. One method [156], [146] will

be called NESTED as it makes use of invariant sets which are preferably nested; the

second method [129] is called ONEDOF as it deploys just one d.o.f. and the third is

called efficient MPC [66] (EMPC). As this topic is becoming more specialised the

algorithms will not be described in fine detail.

Summary: The methods to be illustrated reduce computational load by making

maximum use of the concept of invariance.
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12.2.4 Notation and assumptions

For simplicity the ideas will be illustrated only on state-space models

xk+1 = Axk + Buk; yk = Hxk (12.7)

and perfect state knowledge is assumed. For possible extensions to deal with estima-

tion errors see [20]. State and input constraints will be denoted by

Cx−d ≤ 0; Eu− f ≤ 0 (12.8)

Under the assumption of a fixed state feedback u = −Kx, the two sets of constraints

can be combined into:

Gx−h ≤ 0; G =
[

C
−EK

]
; h =

[
d
f

]
(12.9)

The underlying MPC strategy will be taken as the dual mode strategy of [137] (Sec-

tion 7.3.4) implemented using the CLP. Hence for K0 the optimal feedback:

min
ci,i=0,..,nc−1

J2 =
nc−1

∑
i=0

cT
i Wci s.t.




ui = −K0xi + ci, i = 0,1, ...,nc −1

ui = −K0xi, i ≥ nc

constraints (12.8)
model (12.7)

(12.10)

where W is defined from a corresponding infinite horizon cost; hence

W = R+ BT PLB; PL = AT PLA−AT PLB(R+ BT PLB)−1BT PLA+ Q (12.11)

An ellipsoidal invariant set assciated to K0 will be defined as

SE = {x : xT Px ≤ 1 }; P > 0 (12.12)

where (A−BK0)T P(A−BK0) ≤ P and P small enough such that (12.8) is satisfied

for all x ∈ S.

The MAS [33] SP is defined as:

SP = {x : Gax−ha ≤ 0}; Ga =




G
GΦ

...

GΦ i−1


 ; ha =




h
h
...

h


 (12.13)

Many of the constraints used in the definition of SP may be redundant and should be

removed off-line.
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12.3 Three computationally efficient algorithms using invariant
sets

The size of invariant sets varies enormously with the tuning of the control law. This

very fact was fundamental in the algorithms proposed in [59, 118, 146, 156]. Three

controllers based on this insight are illustrated next.

12.3.1 Algorithms of [146], [156] (NESTED)

Given the work of [2], it is logical to find K that optimises (12.10) for a range of R
from the desired value R0 to a very high value Rn. Let the controllers and invariant

sets associated to choice Ri be Ki and Si, respectively. It is reasonable (although not

necessary) to expect that often Ri < Ri−1 ⇒ Si−1 ⊂ Si. Given that the desired

choice for R is R0, then all other choices lead to suboptimal controllers but in general

allow the definition of larger invariant sets and hence extend the applicability of

control. A logical control law [146] is therefore given as follows:

Algorithm 12.2 NESTED

1. Let i = 0

2. Test whether x ∈ Si

(a) If x 
∈ Si, then set i = i+ 1 and go to step 2.

(b) If x ∈ Si, let K = Ki.

3. Implement the control law u = −Kx

4. Update sample instant and go to step 1.

Remark 12.1 • This control law is defined for all x ∈ S0

⋃
S1

⋃ · · ·⋃Sn. For a
stable plant, applicability can usually be widened by increasing R n however
the resulting controller Kn will be suboptimal.

• The algorithm may not deal well with open-loop unstable plant where a non-
linear control law is required to increase the stabilisable region.

• The same algorithm can also be developed using ellipsoidal invariant sets
[153] and as such would more easily incorporate uncertainty.

• Performance can be considerably suboptimal although it will be reliable within
the given sets.
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• The main computational load is the set membership tests. Each of these could
require significant numbers of multiplications and therefore one may not want
a large number of sets or any computational benefit will be lost.

Summary: NESTED makes use of a set of known control laws. Hence its be-

haviour can be analysed and made robust but it will be limited to the MAS of the

given linear control laws.

12.3.2 One d.o.f. algorithms (ONEDOF)

One major shortcoming of NESTED is the potential conservatism. This is a con-

sequence of not having any explicit optimisation in the on-line algorithm. If one

were to allow some optimisation, albeit a trivial one, it is possible to reduce this

conservatism considerably.

A simple algorithm ONEDOF using this philosophy was proposed in [64, 118, 129].

It is based on two control laws K0, Kn, that is, the desired (highly tuned) control law

and the law with maximal volume MAS. Despite the use of just a single degree of

freedom and only two control laws, it frequently outperforms NESTED.

Algorithm 12.3 ONEDOF

1. Define Φ 0 = A−BK0, Φ n = A−BKn, denote by x0 the current state, and let
the predicted state evolution with each control law be respectively,

xk = Φ k
0x0; xk = Φ k

nx0 (12.14)

2. Compute predicted inputs and corresponding state predictions (α a scalar)

uk = −(1− α )K0 Φ k
0x0 − α Kn Φ k

nx0

xk = (1− α )Φ k
0x0 + α Φ k

nx0

(12.15)

3. Substitute predictions (12.15) into the constraints Cx k − d ≤ 0, Euk − f ≤
0, k = 0,1, ... and 0 ≤ α ≤ 1 to give feasible region

m α −n ≤ 0 (12.16)

where m, n are linear in the initial state x0.

4. Minimise α subject to (12.16). Use the optimum α to compute u0 from (12.15)

5. Update the sampling instant and go to step 2.

Remark 12.2 • The on-line optimisation is equivalent to minimisation ‖ of α
w.r.t. the scalar α and subject to (12.16). This requires only a simple set of
inequality checks and hence is trivial.

‖It is easy to show that minimising J with predictions (12.15) is equivalent to minimising α .
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• If x is well inside Sn, then the optimal α will be much less than 1 thereby
indicating that and one can use a control law somewhat more highly tuned
than Kn and still satisfy constraints.

Hence α is used to gradually increase the tuning as x converges to the origin. In this

sense it also has connections to [59] which designs a control law so that the state is

always on the border of the invariant set for the control law selected.

Summary: ONEDOF improves on NESTED by allowing less conservative be-

haviour when the state is not near a set boundary. Hence one can use far fewer sets.

The implied computation is trivial and can be much less than NESTED.

12.3.3 Algorithm of [65]

The idea of using invariant sets of varying size allied to an implied control law was

implicit in [59] but the proposed algorithm calculates the time varying control law

on-line and hence requires a considerable amount of on-line computation in order

to handle the performance minimisation simultaneously. It is possible to reduce this

dramatically by transferring the burden from on-line to off-line computation [65, 66].

This approach is demonstrated next.

The main idea was to use the insight gained with the CLP and produce an invariant

set which incorporated d.o.f. during the transients. Hence invariance is defined by

the existence of a feasible control trajectory such that an augmented state remains

within an invariant set. By allowing freedom within the transients of the control

trajectory, as in dual mode control, the invariant set is enlarged and there is also

more flexibility to optimise performance.

In order to present this algorithm the reader needs to be aware of how d.o.f. are used

to form an augmented state and then how this is used to form an invariant set.

12.3.3.1 The autonomous model

Here we show how the ellipsoidal invariant sets (12.12) can be enlarged by adding

d.o.f. with a fixed K. The d.o.f. c i (see eqn.(12.10)) must be added to the state vector

to create an autonomous system from the equations (12.7) and u k = −Kxk + ck,

ck = 0,k ≥ nc. This can be done as follows:

Xk+1 = Ψ Xk; Xk+1 =




xk+1

c1

c2

...

cnc−1

0




; Xk =




xk

c0

c1

...

cnc−2

cnc−1




; Ψ =


 Φ B 0 . . . 0

0 0 I
0 0 0 . . . 0




(12.17)
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where Φ = A−BK and I is an identity matrix.

12.3.3.2 Setting up the invariant set

The d.o.f. ci can be considered as states in an augmented autonomous model (12.17)

and hence one can define an invariant set SX for the expanded state X; this is chosen

so that X ∈ SX implies predicted constraint satisfaction and convergence (following

similar lines to those in Section 11.9.2).

SX has an obvious projection SE onto x-space and thus for all x ∈ SE , there must exist

a set of d.o.f. C = [cT
0 , ...,cT

nc−1]
T such that X ∈ SX , i.e. giving feasible predictions.

What remains therefore is to show an efficient means of selecting the d.o.f. C so as

to optimise J of (12.10).

Remark 12.3 The volume of SE increases with nc; that is, one can use the d.o.f.
to enlarge the feasible region. However, the complexity of description of S E cannot
change so the only cost of increasing the number of d.o.f. n c is the off-line computa-
tional load.

12.3.3.3 EMPC algorithm

Algorithm 12.4 EMPCold

1. Define invariant set SX = {X : XT PX X ≤ 1} and its projection to x-space SE =
{x : xT Px ≤ 1} for given nc and also the invariant set SE0 for nc = 0.

2. If the current state x0 ∈ SE0, u = −K0x is feasible. Use u0 = −K0x0.

3. If x0 
∈ SE0,

(a) Minimise w.r.t. C the J of (12.10) s.t. X ∈ SX .

(b) Of the optimum C, use c0 to compute current control u0 = −K0x0 + c0.

4. Update sample instant and go to step 2.

Remark 12.4 The computation implied in step 3a above is trivial [66]: it reduces
to finding the only positive real root of a polynomial. Moreover, the online objective
is to minimise the desired J; that is, unlike with NESTED, one maintains an explicit
handle on performance.

Remark 12.5 Handling constraints through the use of ellipsoidal sets is conserva-
tive. This can be reduced by scaling C thereby allowing X0 to move outside SX ; the
lost guarantee of feasibility can be regained by requiring X1 ∈ SX and ensuring that
constraints are satisfied at current time. This requires the solution of the roots of a
quadratic [65].
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Summary: EMPC allows systematic incorporation of the d.o.f. during transients

which increases the feasible region, but it is restricted to ellipsoidal regions. The

implied on-line computation is the solution of the only positive real root of a poly-

nomial which is trivial.

12.3.4 Overview of QPMPC, NESTED, ONEDOF, EMPC

• The transparency of NESTED enhances the reliablity of implementation, but:

1. It has restricted applicability and may not extend easily to cases with

state with constraints.

2. The control can be significantly suboptimal unless many sets are used

which could make it computationally demanding.

• ONEDOF has similar feasibility regions to NESTED but:

1. It allows a systematic improvement in performance and a reduction in

the computational load.

2. The analysis of performance is less straightforward.

• EMPC performs an explicit, but trivial, optimization of the true cost J and

hence is the most optimal.

1. It allows systematic inclusion of d.o.f. in transient which increases fea-

sible regions.

2. It is restricted to ellipsoidal sets which limits applicability.

3. The optimisation, although simple, is more demanding than ONEDOF.

It remains now to illustrate these three algorithms on some numerical examples, and

in particular, to investigate how much suboptimality has been traded in return for the

reduction in on-line computation.

Summary: The main price of computational simplicity is a reduction in the size

of the feasible region. This is because there are less d.o.f. to give freedom in the

predictions. There will also be some suboptimality due to the implied restriction in

the parameterisation of the future control trajectory.

12.3.5 Examples

The purpose of this section is to illustrate, by simulation, the algorithms of NESTED,

EMPC and ONEDOF and contrast their performance to the global optimum (LQMPC

of Section 7.3.4 with large nc). Examples are restricted to second order systems for

which it is possible to plot feasible regions.
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For the NESTED algorithm, the maximal volume set will correspond to the optimal

control gains obtained for control weighting R ∗ 100 where R will be taken to be

R = 0.1.

12.3.5.1 Example 1 – A double integrator

A =
[

1 .1

0 1

]
; B =

[
0

0.0787

]
; H =

[
1 0

]
(12.18)

with constraint matrices

C =




1 −0.333

−0.333 1

−1 0.333

0.333 −1


 ; d =




1

1

1

1


 ; E =

[
1

−1

]
; f =

[
1

1

]
(12.19)

Using Q = CTC and R = 0.1 and nc = 3.

12.3.5.2 Example 2 – Unstable process

A =
[

1.2 .1

0 1

]
; B =

[
0

0.0787

]
; H =

[
0.1 2

]
(12.20)

with constraint matrices

C =




1 −0.333

−0.333 1

−1 0.333

0.333 −1


 ; d =




1

1

1

1


 ; E =

[
1

−1

]
; f =

[
1

1

]
(12.21)

Using Q = CTC and R = 0.1 and nc = 3.

12.3.5.3 Regions of attraction

The regions of attraction for the algorithms are plotted in Figures 12.1, 12.2 and 12.3

for examples 1 and 2, respectively. The regions for NESTED (which are the same

for ONEDOF) are in dotted lines; for EMPC are in dashed lines; and for QPMPC in

dash-dot lines. For completeness the maximal admissible set for n c = 0 is shaded.

For example 1 (Figure 12.1) it is clear that increasing the control weighting alone is

a quite effective way of enlarging the region of attraction and in fact this is far more

effective than EMPC.

For example 2 Figure 12.2 (only half the regions are plotted for clarity – the plot

is symmetrical), a very different picture emerges. In this instance, NESTED has

performed poorly and in fact although increasing the control weighting enlarges the

overall region of attraction, in some directions it has contracted. EMPC gives a

slightly fatter set.
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FIGURE 12.1
Regions of attraction for model (12.18).
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FIGURE 12.2
Regions of attraction for model (12.20) with state constraints.
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FIGURE 12.3
Regions of attraction for model (12.20) without state constraints.

Summary: Although feasible regions can be increased by changes in R or using

the autonomous model formulation, the improvements can be poor when compared

to the more usual LQMPC algorithm (dash-dot lines).

12.3.5.4 Closed-loop performance - simulations

To make the comparison more meaningful it is necessary to consider initial condi-

tions which lie inside the regions of attraction of all the algorithms under considera-

tion.

Here the plots are given for just one example, as these are illustrative of all the others.

Take example 1 and an initial state (marked with a square in Figure 12.1) Base the

NESTED algorithm on 3 sets for R = 0.1,1,10. The input, output and state trajecto-

ries are displayed in Figures 12.4, 12.5 where the solid lines are used for LQMPC,

the dotted lines are used for NESTED and the dashed lines are used to denote con-

straints. The simulations for LQMPC, ONEDOF and EMPC are indistinguishable

but there is clearly a sudden change in the NESTED input plot; this corresponds to

a switching from control law K1 to K0 and is evidence of the suboptimality in the

algorithm.

Summary: NESTED shows a distinct change in control (Figure 12.4) and therefore

suboptimality. EMPC and ONEDOF are often able to come arbitrarily closed to the

global optimal with a negligible computational burden.
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FIGURE 12.4
Output and input trajectories for example 1.
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FIGURE 12.5
State trajectories for example 1.
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TABLE 12.1

Run time costs

x0 LQMPC Optimal ONEDOF NESTED EMPC

[−0.9,0.3]T 6.112 6.112 6.112 6.867 6.112

[−0.95,0.05]T infeas 9.464 9.464 10.896 infeas

[−0.36,0.55]T infeas 2.9434 2.9771 3.419 infeas

(2.9415 for nc ≥ 8)

12.3.5.5 Run time costs

The run time costs are computed for some closed-loop simulations x 0 = [−0.9,0.3]T ,

[−0.95,0.05]T , [−0.36,0.55]T respectively and tabulated in Table 12.1. Where marked

as such, LQMPC is infeasible, for nc = 3; the global optimum assumes large nc.

• In the second test, LQMPC and EMPC are infeasible. Nevertheless ONEDOF

is indistinguishable from the global optimum! NESTED is again suboptimal.

• If NESTED makes use of more sets, e.g. using R = 0.1, 0.3, 1, 3, 10 the

associated run time cost is to 6.246, 10.161 for simulations 1, 2 respectively;

that is, more sets imply better optimality.

• In the third test, LQMPC (with 3 d.o.f.) and EMPC are infeasible. ONEDOF

has performed very well and has near optimal responses whereas NESTED is

nearly 20% worse. Performance with NESTED can be improved by increasing

the number of sets.

Summary:

1. Where it is feasible, ONEDOF often gives performance close to the global

optimum. This is particular useful in cases where retuning R is a more effec-

tive way of increasing feasible regions than increasing n c.

2. EMPC is effective where feasible but the restriction to ellipsoidal sets is a

problem.

12.3.5.6 Computational load comparisons

NESTED: Has a low load if a small number of sets are deployed but this

results in poor performance. Good performance requires more sets and hence

a high computational load.

ONEDOF: has a very low computational load – essentially the update of vec-

tors m, n in (12.16).
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EMPC: Has a larger load than ONEDOF but with no increase in complexity

can be applied to the robust case!

12.3.6 Summary

This section has illustrated some possible means of reducing computational load

within MPC while still doing constraint handling. Unsurprisingly there is a price to

pay either in reduced feasibility regions and/or suboptimality. There are few results

in the literature looking at this area, as it is assumed that for most processes the

computational demand of a QP is not a problem. This may change if MPC is to

become more widely used, such as on processes with sample times of milliseconds.

Summary: It has been shown that algorithms such as NESTED and, in particular,

ONEDOF can give near optimal control with a low load where retuning R is an

effective means of forming large invariant sets. However, there remains the funda-

mental problem of how to form large invariant sets, when retuning R is ineffective.

12.4 Stability analysis and options within ONEDOF

The previous section did not discuss stability. In is easy to show that NESTED and

EMPC∗∗ are guaranteed stabilising for the nominal case. However, this is not the

case for ONEDOF and hence some brief discussion is given in this section for com-

pleteness. Second, ONEDOF was presented as a modification of NESTED, however

other equally effective alternatives exist and so again for completeness some discus-

sion is given here.

12.4.1 Stability of ONEDOF using LMIs

The easiest stability analysis for ONEDOF is based on invariant sets and is a straight-

forward application of ideas used in [5, 59] and also given in Section 11.10.2.2.

Consider the two control laws (12.15) within ONEDOF. These laws, when combined

with model (12.7) and used alone, give rise to two possible closed-loop systems:

xk+1 = Φ xk; Φ = A−BK
xk+1 = Φ nxk; Φ n = A−BKn

(12.22)

∗∗In fact EMPC can relatively easily be applied to the uncertain case too as can NESTED with suitable

set definitions.
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Now, the current control is given from

u = [−(1− α )K + α Kn]x (12.23)

where α is unknown a priori. Therefore the true system closed-loop could be arbi-

trarily time varying within the convex hull of Φ , Φ n:

xk+1 = Ψ xk; Ψ = (1− α k)Φ + α k Φ n, 0 ≤ α k ≤ 1 (12.24)

A sufficient (though not necessary) test for the convergence of x k in such a system is

given by the following LMI invariance conditions:

Φ T PΦ −P ≤ 0
˜Φ T P ˜Φ −P ≤ 0

; P > 0 (12.25)

The existence of any P satisfying (12.25) would therefore verify that the system

(12.24) was stable for any time variation of α .

Remark 12.6 If no solution exists to (12.25), this does not mean that the control law
will be detabilising; rather it only shows that we have not yet proved it is stabilising.
If a proof is desirable, then the optimal unconstrained control law K would need to be
detuned towards Kn until a suitable invariant set can be defined. Less conservative
tests for stability are possible [128] but too advanced for this book.

Summary: Simple LMI tests can be use to analyse the stability of ONEDOF; these,

however, are sufficient but not necessary. This author has yet to find examples

where ONEDOF did not perform well.

12.4.2 Options in ONEDOF

Philosophically the key component in ONEDOF can be viewed as the definition of

a better parameterisation of the d.o.f. for control; that is, interpolate between whole

trajectories which have good properties.

The main idea used in the early papers [64, 118] was to define and use, in an efficient

manner, two control trajectories:

• The first satisfied constraints and asymptotically the model output trajectories

converged. Define such a future control trajectory as u f eas.

u f eas = ũk|k, ũk+1|k, . . . (12.26)

• The second gives optimal performance in the absence of constraints:

uopt = ûk|k, ûk+1|k, . . . (12.27)
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The desire is to use uopt where this is feasible. If it is not, then uopt and u f eas are

combined so as to optimise predicted performance s.t. constraints being satisfied.

Hence define the predicted input trajectory as:

umix = (1− α k)uopt + α ku f eas; 0 ≤ α k ≤ 1 (12.28)

where clearly (12.28) is guaranteed to contain at least one feasible choice. Substitut-

ing umix into (12.10, 12.7) it is easy to show that J is minimised by minimising α k

s.t. constraints, that is, a linear program (LP) in just one variable.

What remains is to ask how u f eas might be determined, as this is the main component

of ONEDOF. Some different alternatives are outlined next.

Summary: ONEDOF requires a feasible trajectory. The feasible region and com-

putational load of the algorithm depend upon how this feasible trajectory is defined.

1. The tail: The tail was discussed in Section 6.3.1. It was shown that including

the tail [64] as a possible choice of the new predicted control trajectory facil-

itated a convenient proof of stability because this enabled a guarantee both of

feasibility and a reduction in the cost. The weakness of this choice is that the

feasibility of the tail is not robust to even small uncertainty, as the tail could

be on a constraint boundary and takes no account of new measurements.

2. Mean level: The mean level choice [118] is similar to the sort of philosophy

adopted in [16, 59]. That is, as the control law is made successively more cau-

tious (equivalent to increasing R in (12.10)), then the control moves become

smaller and hence the unconstrained control law is more likely to be feasible

and satisfy (12.8). This choice is also robust to some parameter/signal un-

certainty. The weakness of this choice is that the extension to cater for state

constraints is not obvious.

3. Open-loop response: This choice is crude but simple [121, 131] and it is re-

stricted to the case of stable open-loop plant. It reduces to low gain integral

control, that is choose

u f eas = [ǔ, ǔ, . . .]; ǔ =
u∞

β
+

(β −1)uk−1

β
; β ≥ 1 (12.29)

This means that the input gradually creeps toward the predicted steady-state

value without any overshoots. This can be represented as a state feedback but

the weakness, as with mean level, is that it does not easily take account of state

constraints.

4. Reduced order MPQP [134]: This choice constitutes work in progress. The

idea is to find the maximal volume feasible region for a given n c and then

parameterise the boundary of this region. This should entail far fewer re-

gions than MPQP. One would then associate the current state measurement to a
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boundary and hence identify quickly an associated feasible trajectory. The ad-

vantage is that the feasible region is large but one may inherit a large overhead

in data storage and searching over sets, as with the full MPQP.

Summary: Many options exist within ONEDOF. If the process can only cope with

a limited computational burden, then it is worth investigating whether ONEDOF

has enough flexibility to handle the problem. The implied coding and on-line com-

putation are very small compared to conventional MPC allied to a QP.

12.5 Conclusions

It is possible to formulate MPC algorithms with a relatively low computational bur-

den. The key concepts implicit in this are:

• Transference of on-line optimisation to off-line computations and analysis is

used.

• Membership of an invariant set is used to test for constraint satisfaction.

• Alternative parameterisations of the d.o.f. in the optimisation. Use whole

trajectories rather than individual values.

1. In NESTED the d.o.f. are the choice of underlying control law.

2. In ONEDOF the d.o.f. is an interpolation between two possible input

trajectories.

3. In EMPC the d.o.f. are absorbed into the model and the optimisation is

changed from a QP to a simpler one.

• Suboptimality is implicit due to the restriction in the parameterisation of the

d.o.f. and hence also the implied restriction in the volume of feasible region.

Summary: One can often get very good performance and constraint handling with

recursive feasibility while using a relatively simple MPC algorithm.co
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Predictive functional control

Predictive functional control (PFC) is the product of a company, ADERSA, which

has a main aim of maximising the takeup of MPC within industry. It achieves this

partially by keeping the algorithm as simple as possible and hence this is a logical

algorithm to follow the previous chapter.

As with other predictive controllers, PFC is based on the use of predictions and hence

a prediction model; however, here the similarities stop. The design method and the

constraint handling are much less sophisticated than with typical MPC algorithms

and as a consequence the algorithm is far simpler. This simplification reduces the on-

line computational demand significantly, hence opening the door to fast applications

and nonlienar processes. Moreover the design is based on variables which engineers

can relate to easily such as the desired rise time – as such tuning can be easier.

Of course the price one pays for this simplification is a loss of rigor in that one can-

not give a priori guarantees of performance, especially during constraint handling.

Nevertheless the hundreds of successful implementations are sufficient evidence that

the strategy is often effective in practice. It should be emphasised that PFC is really

only suitable for SISO loops.

Summary: This chapter gives a brief overview of the key components in PFC and

illustrations of the efficacy of the approach despite its apparent simplicity.

13.1 Summary of the overall philosophy of PFC

This section introduces the key building blocks behind PFC. This will emulate to

some extent the building blocks of any MPC algorithm, that is, predictions, objective,

parameterisation of the d.o.f. and a receding horizon. So here the differences from

more typical MPC algorithms will be emphasised.

The aim in PFC is to get the system response to emulate that of a first order system

(with the suitable delay). Hence the design objective is parameterised by just two

variables: the delay which is given as that of the process and the desired time constant

for the closed-loop response. As such the design process is very easy for practising

engineers who have a good feel for what is a realistic closed-loop bandwidth.

253
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The design is computed by minimising the difference between the model predictions

and that of the selected first order target. This is clearly the same type of aim that

is used in conventional MPC algorithms∗. However, typically in for instance GPC,

this cost function leads to an optimisation (say least squares) which hence entails

a significant computational burden. PFC avoids this burden by only comparing er-

rors at the same number of points as there are d.o.f. in the input trajectory. The

implication therefore is that one can make the predicted errors zero at the selected

points (denoted coincidence points). Hence the optimisation reduces to the solution

of a number of equality conditions which is equivalent to solving linear simultaneous

equations; that is, there is no optimisation and therefore only trivial computations are

required.

As with GPC/DMC, the nominal control law can lead to constraint violations and a

simple deployment of saturation control may not be a good choice. Hence PFC has

a slightly more advanced mechanism for constraint handling, although still subop-

timal. In fact the method used is very similar to that of NESTED (Section 12.3.1).

If the best PFC control law is expected to give constraint violations, then switch to

an alternative law which is expected to be feasible. Of course this implies that an

alternative strategy is known; in general the implied alternative trajectories would

have to contain none overshooting behaviour.

Summary: The focus in PFC is simplicity and intuition. This facilitates acceptance

by practising engineers and implementation on fast systems.

13.2 Derivation of the PFC control law

This section gives the mathematical details required to derive a PFC control law.

Hence it gives details of the prediction model, the objective, the parameterisation of

the d.o.f. and the optimisation.

13.2.1 Modelling and prediction

There is a preference in ADERSA for the use of the independent model (IM – see [30,

98] and Section 3.6). However, as discussed in chapter 10, the choice of prediction

model has no effect on nominal tracking and rather affects loop sensitivity. Hence

such issues are not considered in this chapter except where of significance.

∗Original papers such as [21] allowed the incorporation of such filtered objectives but these gradually

dropped out of the popular academic literature.
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The predictions can be obtained in identical fashion to that detailed in Chapter 3. For

instance for an input/output model the predictions could be given as (3.21) and for

an IM the predictions could be given from any of (3.63, 3.64, 3.75) as relevant.

13.2.2 Desired reference trajectory

PFC places the desired closed-loop dynamic into the reference trajectory. Given the

actual set point is r, the loop set point w is a first order lag and can be† defined as

follows:

wk+i|k = rk − (rk − yk)Ψ i (13.1)

whre yk is the most recent measured output and Ψ is a tuning parameter setting the

desired closed-loop pole (this is related to the implied time constant Td for the lag

through Ψ = e−T/Td , T the sample rate).

The pseudo set point wk+i|k, i > 0 follows an exponential curve from the current

output to the desired asymptotic value of the output. One chooses the curvature, that

is Ψ , according to plant requirements.

If there is a delay in the system, one could build this into the reference trajectory or

use an undelayed output from the IM.

13.2.3 The coincidence points

The control law is determined by using the d.o.f. to enforce equality of the predic-

tions and the reference trajectory at a number of points, that is, by solving for the

future control moves such that:

yk+n = wk+n, n = n1,n2, . . . (13.2)

These equalities are called coincidence points (as the predicted output and set point

coincide). Typically there are only one or two coincidence points.

One will note that no criteria are placed on the input activity. It is assumed that

the output tracking performance is the dominant criterion and the input should be

selected as required to meet this. One can, however, limit input action by a wise

parameterisation of the allowed predicted control trajectories.

13.2.4 Parameterisation of the d.o.f./future control trajectory

One significant difference between PFC and conventional MPC is the parameteri-

sation of the predicted input trajectory. Rather than using the control moves them-

selves, PFC takes the trajectory as the sum of a step change, a ramp, a parabola, etc.

†Omitting details of the delay for simplicity.
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The precise components to be included are selected to match the expected character-

istics in the set point.

• If only step changes are expected, the input is parameterised as only the current

increment in control.

• If ramp changes are expected, the input is parameterised as the current incre-

ment in control and a ramp rate on the input.

• If parabolic changes are expected, the input is parameterised as the current

increment in control, a ramp rate on the input and a parabolic component.

The advantage of this form of parameterisation is that one can achieve no lag in the

response (asymptotically). An illustration is given next.

The predictions (e.g. (3.21)) have a component H∆ u→ which details the impact of

future control moves. For a step and a ramp rate one would get

∆u→ =




∆uk

0

0
...


+




1

1

1
...


 β (13.3)

where β is the ramp rate. Hence the component of the prediction equations (3.21)

containing the d.o.f. would be altered as follows:

H∆u→ = H







∆uk

0

0
...


 +




1

1

1
...


 β


 = [H1,HE]

[
∆u
β

]
(13.4)

where H1 is the first column of H and E is a column vector of ones.

13.2.5 The control law

The control law is determined by solving the identities (13.2). Define the n th
1 standard

basis vector as en1
; then (using prediction model (3.21)) one can compute the n th

1 step

ahead prediction

yk+n1
= eT

n1
y→ = eT

n1
[H∆u→+ P∆ u←+ Q y←] (13.5)

Algorithm 13.1 PFC with one coincidence point can be determined by substituting
prediction (13.5) into coincidence condition (13.2) and then substituting in reference
trajectory (13.1) and (13.4). Hence

eT
n1

[H1∆u+ P∆ u←+ Q y←] = rk − (rk − yk)Ψ n1 (13.6)
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which implies that the control law is given from

eT
n1

H1∆u = rk − (rk − yk)Ψ n1 − eT
n1

[P∆ u←+ Q y←] (13.7)

As in Section 4.3, this can easily be expressed as a fixed linear feedback law in the

form of (4.25). Hence conventional a posteriori stability and sensitivity analysis (e.g.

Chapter 9) can be applied in a straightforward manner.

Remark 13.1 For two coincidence points (using (13.4)) the control law is given
from

eT
n1
{[H1,HE]

[
∆u
β

]
+ P∆ u←+ Q y←} = rk − (rk − yk)Ψ i (13.8)

This implies that

eT
n1

[H1,HE]
[

∆u
β

]
=

[
rk − (rk − yk)Ψ n1

rk − (rk − yk)Ψ n2

]
−

[
eT

n1

eT
n2

]
[P∆ u←+ Q y←] (13.9)

and the first control move is ∆u+ β .

Summary: PFC replaces objective optimisation by forcing a subset of the predic-

tions to exactly match a modified set point trajectory. The d.o.f. are parameterised

in an equivalent way to the set point. The on-line computational burden is negligi-

ble and gives rise a fixed linear control law.

13.3 Tuning PFC

The tuning parameters are the coincidence horizons, e.g. n 1, n2, ..., and the desired

time constant (or equivalently Ψ ). In general it is difficult to see an intuitive argument

for the tuning of the coincidence horizon and it is better to see this as a tool for

achieving the specified closed-loop dynamics. Hence a typical procedure with one

coincidence point would be as follows:

1. Choose the desired Ψ .

2. Do a search for n1 = 1, . . . , large and find the associated control law (13.7) for

each n1.

3. Select the n1 which gives closed-loop dynamics closest‡ to the chosen Ψ .

‡Use the arguments of Section 6.1 on the desire to minimise the mismatch between predictions and ex-

pected closed-loop behaviour.
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4. Simulate the proposed law. If satisfactory exit; otherwise reselect Ψ and go to

step 2.

Hence the tuning reduces to a global search, but this requires only relatively trivial

computations and hence would be quite quick. With two coincidence points, the

global search would be more involved but should still be quick.

A few heuristics would be needed to choose the optimum Ψ but the user can other-

wise be distanced from the search for the best coincidence points. That is, the user

chooses the desired Ψ and then is given the corresponding best PFC controller which

can either be accepted or rejected.

Remark 13.2 Some insight is possible into the impact of changing the coincidence
points. For stable open-loop processes with one coincidence point:

1. If n1 is large, then the control law will reduce to open-loop dynamics with in-
tegral action (because one will be choosing a single control move to eliminate
the expected steady-state error). It will hence be guaranteed stable.

2. If n1 is small, PFC is well posed only if closed-loop behaviour close to a first
order lag is realistic. This follows from arguments of prediction mismatch
(Section 6.1).

3. From point 1 it can be seen that Ψ is an effective tuning parameter only if n 1

is small. For n1 large the resulting control law will be affected only a little by
changes in Ψ . By n1 small we mean that Ψ n1 > 0.2.

Summary: The tuning reduces to choosing the desired loop pole and then a global

search to discern whether a PFC control law will give dynamics close to the re-

quested ones.

13.4 Constraint handling

PFC has a limited systematic constraint handling facility as, unlike in GPC, there is

no flexibility in the d.o.f. in the solution of the equality conditions (13.2). Hence one

has no obvious mechanism for changing the selected ∆ u→ should this be infeasible.

The only option therefore is to change the control law; that is, the underlying linear

control law is changed, on-line, to cater for different scenarios.

This thinking is analogous to the NESTED algorithm of Section 12.3.1 although

PFC would tend to use only two laws, much like algorithm ONEDOF. The resulting

algorithm can be constructed as follows:
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FIGURE 13.1
Closed-loop step responses for Ψ = 0.6.

1. Find the MAS for the desired control law and a detuned alternative.

2. If the state is not inside the MAS for the ‘optimum’ law §, then use the alter-

native control law.

The weakness of this method, as for NESTED and ONEDOF, is that there is no

obvious mechansim for finding the alternative detuned control law. The one obvious

exception is stable processes without tight state constraints; in this case it is easy to

prove that low gain integral control is always feasible.

Summary: Effective constraint handling relies on the ability to fall back to a fixed

linear control law that is known never to be infeasible. For complex dynamics this

law may be hard to determine.

§That is constraint violations are predicted.
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13.5 Simulation examples with a single coincidence point

In this section it will be illustrated just how effective PFC can be despite all the

apparent theoretical shortcomings indicated above. As the constrained case has been

discussed at depth in Chapter 12, this section will restrict itself to constraint free

simulations. The aim is to show that with the relatively simple objective (a single

coincidence point), performance may still be close to that achievable with an optimal

control law such as LQMPC. For brevity just one example is shown; it is obvious that

counter examples will exist so it is required only to show the PFC can be effective

on some examples.

Take an example with a dead time of four samples:

G(z) =
z−4[0.1+ 0.003z−1]

1−1.8z−1 + 0.81z−2
(13.10)

Plot the closed-loop responses for n1 = 3, 6, 10 with Ψ = 0.6, 0.8, 0.95. These

simulations are given in Figures 13.1–13.3.

Changing Ψ : It is clear that as Ψ is increased, the corresponding closed-loop rep-

sonses get slower. Hence Ψ can be used as a systematic tuning parameter for closed-

loop behaviour.

Changing n1: As n1 is increased the behaviour tends towards open-loop (indepen-

dent of Ψ ). Note that for n1 = 10, the input becomes almost a simple step to the

required steady-state value. In this case lower values of n1 give more aggressive

control.

Summary: The PFC tuning parameters lend themselves to simple intuition and

hence may be popular with practising engineers.

13.6 Unstable open-loop problems

Unstable processes can be difficult to control [143] and yet are quite common in some

industries. For instance, exothermic batch reactors which also have a non-minimum

phase characteristic due to the implied cooling when reactants are added or flexible

beams which have oscillatory behaviour. There is a need for systematic control de-

sign tools to handle complex instability, that is, where PID design is non-trivial or

fails¶. Moreover, for facilitating application to fast systems, these tools should do

¶One such example is a process with a factor of the form (s−a)/(s− ra), r > 1.
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FIGURE 13.2
Closed-loop step responses for Ψ = 0.8.

systematic constraint handling but without requiring a high on-line computational

load.

PFC would seem an obvious tool to try and in fact ADERSA have successfully ap-

plied PFC on many unstable systems. However, on others PFC performs poorly and

hence there is a need to understand clearly the limitations to its use.

13.6.1 Weaknesses of PFC when applied to unstable processes

The weakness of PFC is exposed most clearly with either nonminimum phase pro-

cesses and some unstable processes. Unsurprisingly, it is the identical problem that

was identified for conventional MPC algorithms in Section 6.1, that is prediction

mismatch. In summary, PFC will lead to good closed-loop performance if the pre-

dictions used are a good match to the consequent closed-loop behaviour; that is, if

forcing coincidence in the predictions is nearly equivalent to obtaining coincidence

in the closed-loop behaviour. Here, however, is a major problem.

• For nonminimum phase systems, the coincidence horizon would have to be

large enough to occur beyond the nonminimum phase characteristic.
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FIGURE 13.3
Closed-loop step responses for Ψ = 0.95.

• For unstable systems, especially with a single coincidence point, the predic-

tions must be unstable and yet the desired behaviour is stable; that is, there is

significant mismatch.

This section gives brief overview of how one can modify PFC so that it can handle

unstable systems more reliably. The motivations for such extensions are:

1. PFC is popular in industry; hence any developments to extend its capacity are

useful.

2. PFC is intuitive and computationally simple and hence has many applications

on fast systems. This is an area yet to be well exploited by more conventional

MPC algorithms.

Summary: A standard PFC algorithm can fail badly on some processes, notably

nonmimimum phase processes and those with complex instability.

13.6.2 Overcoming prediction mismatch by prediction stabilisation

The reader will not be surprised to hear that the major cause of poor performance

is prediction mismatch and hence the removal of prediction mismatch is the most
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logical means of improving the performance of PFC. This was discussed at length in

Chapters 6 and 7 and hence is not repeated here. Instead a summary is given.

The main cause of prediction mismatch is that the open-loop predictions are diver-

gent. Hence prediction mismatch can only be reduced significantly by working with

stable predictions. This means that the d.o.f. commonly adopted in PFC (Section

13.2.4) must be modified. Possible means of doing this were given in Chapter 7.

For instance, the predictions of (3.21) or (3.74) can be rewritten in transfer function

form as

y→(z) =
b(z)∆ u→(z)+ p(z)

A(z)
(13.11)

Hence one can parameterise (see Section 3.7.2) the future inputs that stabilise y→(z).
One can prestabilise in many different ways such as those illustrated in Section 7.3:

(i) dead beat conditions; (ii) EUM conditions and (iii) optimal terminal conditions.

In addition, one other option not discussed in Chapter 7 is the use of necessary and

sufficient conditions [107, 133]; these are similar to EUM but do not restrict the

future input trajectory to be FIR.

Remark 13.3 Extensions of the prestabilisation approach to augment the constraint
handling facility in PFC do exist [132] but are a little specialised for this book and
hence omitted.

Summary: The most obvious cause of poor performance in PFC is prediction

mismatch. In the case of unstable processes, this can be alleviated a little by the

use of prestabilised predictions.

13.6.3 Numerical examples

This section will demonstrate how the PFC algorithm, despite the use of only one

coincidence point can still stabilise unstable processes, some with quite complex

dynamics, and still give good performance. Moreover it will show the extent to

which a global search on the coincidence horizon can be used for tuning purposes.

13.6.3.1 Link between tuning and the closed-loop poles

Plots are given in Figures 13.4-13.7 of the maximum modulus closed-loop pole

against coincidence horizon for a number of different choices of Ψ and a number

of examples given in Table 13.1. The reader should note that the closed-loop poles

vary significantly with coincidence horizon. From the plots the reader can choose

the coincidence horizon giving a closed-loop dynamic closest to Ψ .

The notation in the plots is:

• PFC based on open-loop predictions (3.75) – dashed lines.
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TABLE 13.1

Models and simulation parameters

Pole details G(z) Tuning parameters

Example 1 z−1−0.3z−2

1−1.9+z−10.48z−2+0.18z−3 (ny = 3, Ψ = 0.6)
(pole at 1.5) (ny = 10, Ψ = 0.6)
Example 2 0.2126z−1−0.2594z−2

1−2.3967z−1+1.3499z−2 (ny = 7, Ψ = 0.5)
(pole at 1.49, zero at 1.22) (ny = 15, Ψ = 0.8)
Example 3 0.18z−1−0.2432z−2

1−2.1262z−1+1.1052z−2 (ny = 6, Ψ = 0.5)
(pole at 1.22, zero at 1.35) (ny = 15, Ψ = 0.8)
Example 4 0.2661z−1−0.2172z−2

1−2.4136z−1+1.4918z−2 (ny = 2, Ψ = 0.6)
(poles 1.2068±0.1885i) (ny = 8, Ψ = 0.2)

• PFC based on stabilised EUM predictions – dotted lines.

• PFC based on IHPC [107] predictions – solid lines

Open-loop predictions: The slowest pole always tends to one for large horizons.

The link between the achievable closed-loop pole and Ψ is weak for many examples

and good performance, if possible or stable at all, can usually only be obtained for

small horizons.

EUM predictions: PFC was able to stabilise all the examples, but sometimes only

for large horizons.

IHPC predictions: Pole behaviour was far more consistent for all coincidence hori-

zons.

13.6.3.2 Closed-loop step responses

The closed-loop step responses analogous to Figures 13.4–13.7 are given in Figures

13.8–13.11 for sensibly chosen Ψ and coincidence horizon.

Open-loop predictions: For some examples good performance is possible, but only

with small horizons. Other examples cannot be stabilised at all.

EUM predictions: These were able to stabilise all the examples, but sometimes only

for large horizons.

IHPC predictions: Behaviour was far more reliable for all coincidence horizons.

Summary: Prestabilisation allowed a guarantee of the stability of PFC for a large

enough horizon. Moreover the use of IHPC prestabilisation gave better reliability.

However, for some models open-loop predictions worked well with small coinci-

dence horizons.

co
nt

ro
len

gin
ee

rs
.ir



Predictive functional control 265

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Psi=0.5

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Psi=0.6

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Psi=0.8

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Psi=0.9

FIGURE 13.4
Closed-loop poles vs coincidence horizon for example 1.

13.7 Conclusions

PFC can be a very effective strategy despite the apparent simplicity of the underlying

concepts. Where the problem concerned has fast sample rates it is an obvious option

to consider first; that is, why consider a full scale, expensive and complicated MPC

algorithm when a simple one is good enough.

Sometimes it is better to use a fast sampling rate (fast update of the receding horizon)

with some prediction mismatch than to use slower sampling rate and less prediction

mismatch. PFC allows the former, as it allows fast sampling rates. Moreover, due to

the algorithm simplicity it is more straightforward to adapt for nonlinear models.

Summary: Despite its apparent simplicity, PFC often gives very good perfor-

mance, with constraint handling, quite similar to that achievable with a far more

complex MPC algorithm.
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FIGURE 13.5
Closed-loop poles vs coincidence horizon for example 2.
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FIGURE 13.6
Closed-loop poles vs coincidence horizon for example 3.
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FIGURE 13.7
Closed-loop poles vs coincidence horizon for example 4.
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FIGURE 13.8
Unconstrained simulations for example 1.
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FIGURE 13.9
Unconstrained simulations for example 2.
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FIGURE 13.10
Unconstrained simulations for example 3.
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FIGURE 13.11
Unconstrained simulations for example 4.
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14

Multirate systems

A book on predictive control would seem somewhat incomplete without some dis-

cussion of multirate (MR) systems simply because MPC is natural framework for

handling models that may not fit into the usual linear setup. The reader will recall

that the main building blocks of MPC are a prediction model, a performance index

and some degrees of freedom. If one can formulate these, then the design of an

MPC law can be seen as straightforward for many cases. As will be seen, although

a MR system does not easily lend itself to conventional linear models, nevertheless

one can supply a suitable prediction model and hence MPC design for this case is

straightforward.

Summary: MPC forms a natural framework within which to handle multirate sys-

tems.

14.1 An introduction to multirate systems

A system is considered MR [28] when the inputs and outputs of a system are sam-

pled at different rates. Typically this would be necessary if there were no restrictions

on the speed at which the input is updated (denote this the fast rate (FR)), but output

measurements are available only at a relatively slow rate (SR), for instance, where

a laboratory test is needed. MR systems take many forms depending on the system

dimensions and the sampling rates used; and although quite common in industry,

such systems have recieved relatively little study from process control [74, 139] aca-

demics. The purpose of this chapter is to give a brief overview of some of the main

concepts and to show how an MPC law might be developed.

In this book I have tried to avoid giving too many fine details where this does not

add to understanding and as such this chapter will deal solely with SISO dual-rate

systems; the algebra for a MIMO MR systems can be quite cumbersome [139] with-

out adding much to the basic concepts. Hence, hereafter it is assumed that the output

sample period is a simple multiple of the input sample period.

Summary: This chapter only gives an introduction to key concepts in MPC for

MR systems.

271

co
nt

ro
len

gin
ee

rs
.ir



272 Model-based predictive control: a practical approach

14.2 Background on model and controller structure

MR systems cannot be modelled by conventional one step ahead difference models

without substantial modification. This section gives a quick introduction to simple

models that can be used for dual rate (DR) systems. These models are needed for

analysis and design.

14.2.1 Modelling of MR systems

In single rate control, one assumes that an output measurement is available every

sampling instant and hence one can use z-transforms and conventional linear theory

to analyse the behaviour of the nominal loop. However, in a DR system this assump-

tion breaks down; that is, it is not obvious how to use z-transforms and hence it is

not immediately obvious how to analyse the model.

For instance, if the output is available only every m samples of the fast sample rate,

a typical model might be:

yk+m|k +a1yk +a2yk−m + · · ·+anyk−(n−1)m = b1uk +b2uk−1 + · · ·+bnuk−n+1 (14.1)

The model is based on the output every mth sample (called the SR) and the input

every sample (the FR). Any analysis needs to take proper account of the presence of

both these two distinct sampling rates. For convenience this chapter assumes that the

slower sample period is a integer multiple of the faster.

14.2.2 Control trajectory update

The second dynamic component in the loop is the controller. If the output is updated

only every mth sample, then the control law can only be updated every mth sample;

and hence the control law is implicity operating at the slow sample rate (even with

inferential control) – it does not have a linear fast rate equivalent. In fact it is well

known [139] that the control law is equivalent to a periodically time varying FR

control law. So symbolically there are m different implied laws:

uk+i|k = fi(u←, y←, r→), i = 0,1, . . . ,m−1 (14.2)

where u← has past inputs every sampling point whereas y← comprises past outputs only

at the slow sampling points. Although the control law is time varying, it varies peri-

odically over each m samples and therefore can be represented by a linear equivalent

at the slow sample rate.
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Summary:

• Linear analysis cannot be applied at the fast sample rate because the control

law is time varying.

• At the slow sample rate, linear analysis does apply.

14.2.3 Control law structure in MR systems

An important question to be answered next is: how is the time varying controller
(14.2) to be determined? To be more precise, how is one to update the control action

in between the output measurements, that is, uk+i|k, i = 1, ...,m−1? At these points

there is no new output information on which to base an updated optimisation.

There are two popular solutions to handling the MR nature of the process which then

determine the controller structure:

1. Inferential control (e.g. [72])

2. Lifting [68]

These will be introduced next.

14.2.3.1 Inferential control (IC)

IC makes use of an internal process model (see Figure 14.1) which operates at the FR.

This model is used to supply output estimates at the fast sample rate. The controller

is based on the model output, not the process output and hence can operate at the fast

sample rate.

This model can be viewed as analogous to a state estimator which supplies state val-

ues to be used in lieu of the actual (and unknown) state. Obviously some correction

is needed and this is provided using a DMC mechanism (Section 3.5), that is, a sim-

ple disturbance model for the offset between the model and process outputs. This

offset estimate can be updated only every mth sample.

However, this approach needs more study as there are several obvious weaknesses:

1. The state estimator/internal model receives actual output updates very slowly

and this could have repercussions on accuracy.

2. The approach relies on knowledge of a fast SR model which would have to

be identified from MR data; recent work [74] has shown that this is possible

in some cases but a clear understanding of the robustness of these models

constitutes work in progress.
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FIGURE 14.1
Internal model structure.

14.2.3.2 Lifting

A more popular alternative [68] has been to use lifting. In essence this transforms a

MR SISO system to a single rate MIMO system or if the system were already MIMO

it increases the dimension.

In simple terms the inter sample inputs uk+i, i = 0, ...,m−1 are treated as indepen-

dent variables, so a SISO system at the FR is transformed to a 1×m MISO system

at the SR. An illustration will make the procedure clearer.

Consider a FR state-space model of the form

xk+1 = Axk + Buk; yk = Cxk (14.3)
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The DR equivalent∗ (SR model) to this system could be written down as

xk+n = Γxk + Θ Uk; yk = Cxk; Uk =




uk
...

uk+m−1




Γ = Am, Θ =
[

Am−1B · · · AB B
] (14.4)

Model (14.4) will be denoted the lifted model, as the input has been lifted from u k

to Uk. Also the output/state is updated only every n samples of the FR. Effectively

this gives a SR model with a lifted input. In many scenarios [74] one may be able to

identify Γ, Θ (or equivalent model form) from input/output data fairly easily but not

A, B.

As the lifted system is SR (the SR at which the output is updated) one can use linear

design and analysis methods. However:

1. There is the price of working in a significantly increased dimension and hence

the design itself may be far more complex.

2. There is the so called causality constraint [17, 140] whereby one needs to en-

sure that the structure of the controller does not make current controls depen-

dent on future controls. This implies a structure constraint that the feedthrough

term in the controller must be block lower triangular.

3. For both IC and lifting based schemes there is also the issue of intersample rip-

ple [147]; to avoid this one must place additional constraints in the controller

structure.

Summary:

• IC assumes knowledge of the FR model and hence forms a linear control law

at the fast rate FR but has an estimator running at the SR.

• Lifted control forms a linear controller in an augmented space at the SR but

is applicable when a FR model is unknown.

14.2.4 Overview of chapter

This chapter will illustrate and contrast the use of IC and lifted control methodolo-

gies within MPC. This will be done by showing how an MPC control law can be

formulated, illustrating the resulting closed-loop responses and giving some insight

into the respective advantages and disadvantages.

∗Lifting can be applied to systems where many different sample rates apply and hence is a powerful tool

but the notation is cumbersome so is omitted here.
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14.3 GPC (finite output horizon) controllers for MR systems

This section will illustrate how a MR control law can be developed in conjunction

both with an IM and with lifting. It is assumed that the reader is by now fluent in

constructing prediction models and hence the focus is on the key steps rather than on

the mathematical details. This section will overview the components required which

as usual are: (i) a performance index; (ii) a prediction model and (iii) a parameter-

isation for the d.o.f. For simplicity of notation only the SISO case is given, the

extension to the MIMO case being automatic along the lines of that given in Chapter

4.

14.3.1 The internal model/inferential control

The performance index to be used here is the usual one, for instance, that of eqn.(4.4)

or (7.18) as appropriate. Given the use of an IM, the predictions are given from equa-

tions such as (3.63) or (3.64). The only major difference is that the offset correction

term in the predictions is the most recent available (see Figure 14.1), so it is only

updated every m-samples.

Given the above components, the predictive control law takes the appropriate form

of (4.70 or 14.5) but where the terms entering through M k are updated at the slow

sample rate only. The derivation of this is straightforward and left to the reader.

∆uk = Pr r→− Ďk∆u←− Ňk ŷ←︸ ︷︷ ︸
Fast update

−Mky+ Mkŷ︸ ︷︷ ︸
Slow update

(14.5)

It is noted that in this case one can use infinite horizons, the closed-loop paradigm

and other variations on the nominal control law without any particular increase in

complexity.

Summary: The IC law comprises a linear part dependent on the model states that

operates at the FR and a separate component dependent on the offset between the

process measurement and model output which is updated at the SR.

14.3.2 MPC in the lifted environment

This case is slightly different, as a FR model is assumed unknown; hence model

(14.4) is used for prediction. The implications † are that the performance index is

†This performance index is consistent with the assumptions made about state-space implementations in

Chapter 4 , e.g. eqn.(4.61).
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reformulated to only cost every mth output, as the intersample outputs cannot be

estimated. Hence:

min
ui, i=0,...,nc−1

J =
ny

∑
i=1

(r− yk+mi)2 +
nc−1

∑
i=0

λ (uk+i −uss)2

s.t.

{
uk+i = uss, i ≥ nc

constraints

(14.6)

The corresponding prediction vectors are:

y→ =




yk+m

yk+2m
...

yk+nym


 ; u→ =

[
u→1

Z

]
; u1→ =




uk

uk+1

...

uk+nc−1


 (14.7)

where Z is a vector of zeros. It is assumed that the input can be updated every sample.

Although the model is in terms of lifted variable Uk, the predictions have been stated

in terms of uk. This is because the number of d.o.f. in the optimisation relates to the

dimension of u→ and need not be a linear multiple of m, which could be implied by a

naive use of U→. The relationships are obvious and left for the reader.

Following the lines of Section 3.2, but using (14.4, 14.7), the prediction model takes

the form

y→ = [H1|H2]︸ ︷︷ ︸
H

[
u→1

Z

]
+ Pxk

H =




Θ 0 0 . . .

ΓΘ Θ 0 . . .
...

...
...

...


 ; P =




Γ
Γ2

...




(14.8)

where the partition of H is conformal with that of u→ and hence does not need to be

conformal with a neat partition of U→. One can now substitute this prediction into

(14.6) to derive the first nc steps of the optimal control trajectory as:

u→1
−Luss = [HT

1 H1 + λ I]HT
1 P︸ ︷︷ ︸

Kmr

(x− xss) (14.9)

where L is an nc vector of ones and uss, xss depend upon r and the offset term. The

corresponding U→ can be constructed from this if required.

Ignoring uss, xss, the control law would be given as the first m terms of

u→1
= −Kmrx ⇒




uk|k
uk+1|k

...


 =




K1

K2

...




︸ ︷︷ ︸
Kmr

x (14.10)
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where in general K1 �= K2 �= K2, . . .. Hence, the control law is periodically time

varying.

Summary: Lifting gives rise to a periodically time varying control law. The control

trajectories are updated only every m samples and hence one has to live with any

prediction mismatch in the optimal predictions for m samples before an update can

take place.

14.3.3 Comparison of IC and lifting based control schemes

One of the main factors in the success of MPC is the receding horizon. That is,

even if the class of predictions is simplistic (such as GPC with nu = 1) and carries

significant prediction mismatch, neverthless reasonable performance can still follow.

This is because the decisions are continually updated and at each sampling instant

a new d.o.f. is included to allow further improvement of the predictions. These

benefits still apply to the IC case.

However, lifting based control only updates decisions every m samples, at which

point nc new d.o.f. are introduced. As a consequence one has to live with any

prediction mismatch for m samples before improvements can be made and hence

intersample (between slow samples) behaviour can be poor unless a large number

of d.o.f. are used‡. To put some focus on this [136], the assumption that in the

predictions uk+i = uss can be catastrophic if nc < m, as this assumption will actually

be implemented.

A second major weakness of lifting based methods is that intersample behaviour is

unobserved and hence uncontrolled [147]. This may be a structural constraint if the

ouputs are not observable. However, where a FR model can be reliably identified and

hence IC can be utilised, then inter sample outputs can be inferred and hence should

be controlled.

Summary: Lifting based control suffers from a slow receding horizon update and

hence, with small nc as typical in real applications, performance could be poor.

Moreover there is no control of intersample behaviour. IC avoids this problem

and hence should give better performance in general. However, it requires the

assumption that a FR model can be identified.

‡The reader will recall that high nc reduces prediction mismatch.
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TABLE 14.1

Closed-loop run time costs

J

Lifted algorithm 3.18

Inferential control 2.21

14.4 Simulation example contrasting lifting and IC

For simplicity this section compares lifting and IC algorithms with the cost of (14.6),

that is with a finite output horizon and costing only every mth output. Similar con-

clusions would apply for the infinite horizon (dual mode) case.

14.4.1 Simulation details

Consider an example with a FR state-space model

xk+1 =
[

0.3 0.5

0.1 0.9

]
xk +

[
0.1

0.2

]
uk; yk = [1 0]xk (14.11)

For the lifted algorithm one would assume that only the equivalent model of form

(14.4) is known. Assume that the output is sampled 4 times slower than the input,

i.e. m = 4. The control laws of (14.9) and (14.5) are implemented for n c = 1 with

ny = 8, λ = 1. The simulations are displayed in Figure 14.2 for the outputs and

inputs; circles and dotted lines are used for the IC algorithm and crosses and solid

lines are used for the lifted algorithm. The x-axis has units of the fast sample rate

so new output measurements are given only every fourth sample. The corresponding

closed-loop run time costs are given in Table 14.1 for n c = 1.

14.4.2 Discussion of simulations

It is clear both from the table and the figure that the use of a fast receding hori-

zon update allowed in IC has given a dramatic improvement in performance, even

though there has been no new output measurements. The limitation of the prediction

assumption in the lifted algorithm is very clear in Figure 14.2 where it can be seen

that the input moves to a poor default value, that is uss, during the later intersample

periods. If one uses a fast receding horizon [135], the negative effects of this poor

assumption can be alleviated, as the only predicted value actually implemented is the

current and the far future is continually updated. In the lifted framework, the first m
moves are used and hence one is forced to use a poorly defined input trajectory; that

is, to implement a poorly defined prediction.
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FIGURE 14.2
Simulations with nc = 1.

14.4.3 Summary of comparison

Finite horizon algorithms typically use input predictions which do not match the

expected or desired closed-loop behaviour. This limitation is partially overcome by

the use of the receding horizon concept whereby one updates the predictions at every

sample instant so that there is a continual improvement on the initial assumption.

Unfortunately in a lifted framework, the receding horizon update only takes place at

a SR (every m samples) and as a consequence a naive use of finite horizon MPC will

cause the control law to inherit a poor input prediction. One obvious solution to this

is to use IC, which was popular in some early papers on MR systems [72]. IC allows

the use of a fast receding horizon update to improve performance. However it should

be emphasised that IC assumes the knowledge of a FR model which is not always

a realistic assumption. Alternative ways around this are a topic of current research

[136].
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Summary:

1. IC will usually outperform lifting based algorithms when the same number

of d.o.f. are deployed.

2. IC requires knowledge of a FR model which lifting based approaches do not.

3. Lifting algorithms can fail catastrophically due to prediction mismatch if not

set up wisely [136].

14.5 Infinite horizons in the MR environment

This book demonstrated in Chapter 6 that in general one could reduce prediction

mismatch and hence improve performance, for the same number of d.o.f., by using

dual mode algorithms and infinite horizons. Clearly the same statement applies to

MR systems.

In an ideal situation one wants the optimised open-loop predictions to match the

actual closed-loop behaviour, such as in LQMPC. Hence the optimisation is well

posed. The consequence of the change to LQMPC is that the input discontinuities

apparent in Figure 14.2 should not occur, even in the lifted environment. To rephrase

this, in the nominal case, the optimal input trajectory at time k will match exactly

the optimum computed at the previous sample (in the absence of constraints). Hence

whether one updates the control law at the FR or the SR, the control inputs will be

the same (for the same performance index).

This is easy to demonstrate and hence is omitted here. But it raises the confusing

question of should IC still be prefered to lifting based control?

The equivalence between lifting and IC made two large assumptions:

1. The performance index J was the same for both. That is, they costed the

outputs only at the slow sample times.

2. In the nominal case, the optimal trajectories did not change from one sample

to another.

Of course both of these assumptions do not hold in general.

1. If a FR model were available, then one can infer and therefore should cost

intermediate outputs. Therefore to use the same performance index for both

algorithms is not sensible. Logically the lifted approach cannot not give as

tight control over the unmeasured and hence uncontrolled intersample outputs

[147].
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2. The optimal predicted trajectories are rarely globally optimal due to the re-

striction to nc d.o.f. and constraint handling. Hence as one adds further d.o.f.

at each sample, so a change in the proposed input trajectory is likely to occur.

Summary: Even with infinite horizon algorithms, IC should outperform lifting

based control, as it both: (i) observes (controls) intermediate outputs and (ii) makes

used of a faster receding horizon (but see [136]).

14.6 Conclusions

It was shown that the assumption, usual with finite horizon algorithms, that the pre-

dicted input move to a fixed value after nc steps does not mesh well with MR control

design, especially where nc is small as typical in practice. This is because the as-

sumption is made to reduce computation and not to improve control and does not

match expected closed-loop behaviour well enough (prediction mismatch). Good

control is recovered only by applying the receding horizon concept at a fast enough

update rate and this is not possible within conventional lifting based methods.

Infinite horizon algorithms overcome this limitation as they are set up to ensure a

good match between predictions and expected closed-loop behaviour. Hence in this

case the lifting based algorithm gives only a small deterioration in performance com-

pared to a FR equivalent.

The faster the rate of receding horizon update the more quickly extra d.o.f. can be

introduced to improve performance. Hence IC will always outperform lifting during

constraint handling, even for the infinite horizon case. However, FR models are not

always available. Moreover work in progress [136] is looking at means of obtaining

a fast receding horizon update with a slow (lifted) model.

Summary: Predictive control can be applied easily to the MR case. However

the best means of doing this depends upon what models can be inferred. This

topic is still in relative infancy and deserves far more attention from the academic

community.
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Modelling for predictive control

This chapter is deliberately brief, as it has the purpose of introducing the concept

only. The topic, that is, how does one set up an identification to support an MPC

design, is currently an active area of research. The basic premise taken is that the

modelling stage should have a synergy with the use of the model in the control de-

sign; they are not distinct tasks. Therefore this chapter considers how one’s approach

to modelling changes when one has a particular control law in mind. Here the iden-

tification is being used alongside a predictive controller.

Summary: The identification method adopted should support the intended control

design.

15.1 Introduction

Identification is the process whereby one discerns a system model from available in-

formation [76]. Model identification could be considered as an end in itself; however,

often the model is wanted as a base for control law design and hence the potential

utility of the model for this purpose must be considered during the identification. The

basic premise [126] taken in this chapter is that there should be a synergy between

the model identification and the role of the model in control law design. Such a view

point differs from typical practise within MPC whereby one identifies a model via

some algorithm and then uses it without considering possible interactions in these

two steps. In the case of predictive control, the potential for synergy is large and

should be exploited.

15.1.1 Multi-models in MPC

MPC is based on system predictions and in particular how these predictions depend

upon the current process state and future control moves. As discussed in Chapter 6

there is a strong relationship between prediction accuracy and performance: there is

a need for the predictions used in the optimisation to be a good match to the actual

behaviour, as a significant mismatch between predicted and actual behaviour could

283
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make the optimisation meaningless.

In [141, 142] it was noticed that conventional one-step ahead prediction models aris-

ing from least squares identification (LSI) routines often gave quite poor predictors.

The solution proposed was to filter the data before doing the identification so to em-

phasise the slower frequencies which are more important in long range prediction.

However, any filtering trades off one frequency range for another, which effectively

trades off accuracy in the near horizon against accuracy in the far horizon. Moreover,

extensions to the MIMO case, although possible in principle, were not straightfor-

ward and it was stated that in practice a sensible low-pass filter often was equally

effective; this is still the most common procedure in industry.

An alternative method to the use of a single model is to identify a separate model for

each prediction horizon and hence not to rely on a single model capturing both the

fast and slow dynamics. Here this is termed a multi-model. This underlying concept

was considered as early as the 1980’s within MUSMAR algorithm [39] and also in

[27, 75, 120]. More recently [126] gave some evidence of the efficacy of the so called

multi-model approach within MPC and hence this chapter will give a brief overview

of the approach.

Remark 15.1 Some authors have looked at how to use optimised filters along with
recursive relationships to miniminse sensitivity of predictions to uncertainty (e.g.
[43, 44, 148]). However, that work presupposes knowledge of the plant and the
uncertainty and hence is more relevant to the discussions in Chapter 9.

Summary: This chapter will give an overview of the multi-model approach to

modelling, as this gives some synergy with MPC.

15.1.2 Feasibility issues

Although not illustrated in this chapter, one of the main reasons that predictions

need to be accurate is for constraint handling, in particular for state constraints and

terminal constraints. One assumes that one can test for constraint satisfaction of

the system evolution by ensuring the predictions satisfy constraints. However, if

there are significant errors in the predictions, then this assumption will break down.

As mentioned in Chapter 8, the use of infeasible trajectories (due to a mismatch

between the predictions and the reality) can lead to disaster in the worst case and

poor performance in many cases.

Methods do exist for ensuring constraint satisfaction given some uncertainty in the

predictions, but these methods tend to be conservative in the assumptions they take

and would probably not be favoured in practice.

Summary: For reliable and robust constraint handling, the predictions must be as

accurate as possible.
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15.1.3 Closed-loop identification and iterative feedback tuning

Recent work has illustrated how closed-loop identification (e.g. [46, 47, 70]) can

support the control design more closely. This work is both mathematically com-

plex and can have slow convergence rates and hence as it sits more in the topic of

identification, only a brief summary will be given here.

The basic argument is that if one identifies in the closed-loop, then the implied fre-

quency content of the data puts greatest emphasis on critical frequencies, that is,

where 1 + GK is smallest. Or in other words frequencies near the gain/phase cross

over frequencies. Hence one expects better modelling accuracy in frequency ranges

where this is critical for performance. This in turn will result in a model based de-

sign which is less sensitive to modelling errors, as the modelling errors have been

minimised where they have the greatest effect on sensitivity.

Another developing area [48, 49] is that of iterative feedback tuning (IFT). In this,

one does not form a model at all but instead goes directly from measured process data

to the control design. By missing out the intermediate step, less bias (errors) should

be built in and hence a better control design can result. However, these methods are

very demanding on quantities of measured data ∗ and would usually be implemented

on-line in an adaptive sense. This means there are two major weaknesses when used

in conjunction with MPC:

1. The data requirements for the MIMO case can be prohibitive.

2. The methods are only applicable in the constraint free case.

Summary: This book does not look at closed-loop identification or IFT. However,

as they are becoming increasingly accepted in the literature, the reader may want

to investigate them.

15.2 Predictions models

This chapter uses matrix fraction description (MFD) models but in fact there is a

significant overlap with subspace modelling techniques. The notation to be adopted

matches that given in Section 3.4. Hence the notation for the mth order one-step

ahead MFD model used in this chapter is as follows:

yk+1|k = N[1]
1 ∆uk + N[1]

2 ∆uk−1 + · · ·+ N[1]
l ∆uk−l+1

−D[1]
1 yk −D[1]

2 yk−1 −·· ·−D[1]
m yk−m+1

(15.1)

∗A similar method [124], that is, modelling the performance index directly from data, also illustrated this

problem.
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Matrices D[1]
i , N[1]

i are the model parameters and the superscript (.) [ j] is used to

denote model parameters for j-step ahead prediction. Hence the n-step ahead pre-

dictions† are given from

yk+n|k = M[n]∆uk + M[n−1]∆uk+1|k + . . .+ M[1]∆uk+n−1|k
+N[n]

2 ∆uk+1 + . . .+ N[n]
l ∆uk−l+1

−D[n]
1 yk −D[n]

2 yk−1 − . . .−D[n]
m yk−m+1

(15.2)

A general prediction model is

y→ = H∆u→+ P∆u←+ Qy←

H =




M[1] 0 0 . . .

M[2] M[1] 0 . . .

M[3] M[2] M[1] . . .
...

...
...

...

M[n] M[n−1] M[n−2] . . .


 ; P =




N[1]
2 . . . N[1]

l

N[2]
2 . . . N[2]

l

N[3]
2 . . . N[3]

l
...

...
...

N[n]
1 . . . N[n]

l




; Q =




D[1]
1 . . . D[1]

m

D[2]
1 . . . D[2]

m

D[3]
1 . . . D[3]

m
...

...
...

D[n]
1 . . . D[n]

m




(15.3)

The question that arises then is, can we get a prediction model (15.3) which gives

more accurate prediction by trying to identify the prediction matrices H,P,Q directly

rather than via the recursive relationships of (3.51) on model (15.1)? The answer is

yes and this is described next.

Summary: The MPC optimisation depends upon the prediction equation (15.3)

and not the underlying MFD model (15.1). For an accurate control law, the deter-

mination of matrices H,P,Q is far more important than an accurate knowledge of

(15.1).

15.3 Identifying a multi-model

Predictive control requires knowledge of the parameters of eqn.(15.2), n = 1,2, ...,n y

as these comprise the components of matrices H,P,Q. It is straightforward to use

independent least squares algorithms to compute the matrices N [n]
i ,D[n]

i ,M[n]
i for all

i,n; that is, to find the best predictor first for one-step ahead prediction, secondly for

two-step ahead prediction, etc. As the predictors are identified independently, it is

not necessary that recursive relationships (3.51) hold. In fact, forcing relationships

(3.51) to hold may make the predictions less accurate when a model is formed from

real data.

†These have been called ARMarkov models [54].
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15.3.1 Algorithm details

In order to keep the dimension of the optimisations to a minimum, one should com-

pute only one row of the matrices H, P, Q at a time. For example, dropping the

superscipts to improve clarity, rewrite the generic n-step ahead prediction equation

of (15.2) as

yk+n|k = Mn∆uk + Mn−1∆uk+1|k + · · ·+ M1∆uk+n−1|k
+N2∆uk+1 + · · ·+ Nl∆uk−l

−D1yk −D2yk−1 −·· ·−Dmyk−m

(15.4)

Next, introduce the notation (.)(i) to denote the operation of taking only the ith row,

e.g.

yk+n|k =




y(1)
k+n|k

y(2)
k+n|k

...

y
(sy)
k+n|k


 ; Mj =




m(1)
j

m(2)
j
...

m(sy)
j


 ; Nj =




n(1)
j

n(2)
j
...

n(sy)
j


 ; Dj =




d(1)
j

d(2)
j
...

d(sy)
j


 (15.5)

Now the ith row of (15.4) can be written as

y(i)
k+n|k = m(i)

n ∆uk + m(i)
n−1∆uk+1|k + · · ·+ m(i)

n ∆uk+n−1|k
+n(i)

2 ∆uk+1 + · · ·+ n(i)
l ∆uk−l+1

−d(i)
1 yk −d(i)

2 yk−1 −·· ·−d(i)
m yk−m+1

(15.6)

Now putting (15.6) in the format of a vector of model parameters multiplying a vector

of model data, the n-step ahead predictor at sampling instant k can be represented as

y(i)
k+n|k = gT

k,n θ (i)
n ; gk,n =




∆uk

∆uk+1|k
...

∆uk+n−1|k
∆uk+1

...

∆uk−l+1

yk

yk−1

...

yk−m+1




; θ (i)
n =




m(i)T
n
...

m(i)T
1

n(i)T
2
...

n(i)T
l

−d(i)T
1
...

−d(i)T
m



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One can then stack eqn.(15.7) over several sampling instants in the usual fashion,

e.g.

v(i)
n = Gn θ (i)

n ; v(i)
n =




y(i)
k+n|k

y(i)
k+1+n|k+1

...

y(i)
k+r+n|k+r


 ; Gn =




gT
k,n

gT
k+1,n

...

gT
k+r,n


 (15.8)

A typical least squares solution for θ (i)
n is then given as

θ (i)
n = (GT

n Gn)−1GT
n v(i)

n (15.9)

It should be noted that for any given prediction horizon, the matrix G n is the same

for each loop, (that is index ‘i’ above) and therefore the computationally demanding

part of (15.9) need only be done once for each horizon.

The major drawback of the approach above is that for large prediction horizons, far

more plant data will be required as the dimension of θ (i)
n grows with n. In fact it can

be shown that this becomes equivalent to identifying the step response directly and

hence is no more demanding than methods currently adopted in industry. A similar

technique calls these models ARMmarkov models [54].

Summary: The multi-model identification algorithm consists of independent least

squares problems which compute each row of H,P,Q in turn.

15.3.2 Including a noise model in the multi-model

It is well known in the identification literature [76] that in order to get an accurate

model, then one needs specific assumptions on the noise model. The use of an in-

correct noise model will give a bias in the model parameters. Research is currently

ongoing in Edmonton, Canada to translate these results to the multi-model case and

hence to show how a noise model can be incorporated efficiently. For now the reader

should be aware that significant improvements in accuracy may be possible in some

cases. This chapter introduces the principle concept of utilising the multi-model but

does not focus on more advanced details of the identification algorithm.

15.3.3 Over- and underparameterisation

Usually it is dangerous to overparameterise a model as one can produce near can-

celling pole zero pairs. If these pairs are unstable, then the model will give erroneous

predictions even for small prediction horizons. However, with the multi-model, one

computes the parameters of the prediction models independently for each prediction

horizon. Therefore, the location and presence of implicit poles and zeros are of no

consequence and one can overparameterise the model with some impunity, although
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one may have to use singular value decompositions or other numerically reliable

techniques for solving (15.9).

In a similar vein, one can also underparameterise more easily. There may be cases

where for a high order process the transient dynamics can be captured with a low

order model and the asymptotic behaviour can be captured by a separate low order

model. In this case one may find that one can capture the whole dynamic with a

low order multi-model, that is, one where matrices P and Q have less columns than

implied by the underlying full order process model. This would have advantages

where a low order controller was required, as the controller order is related directly to

the number of columns in P,Q (see Section 4.3.2) and also where there are limitations

on the quantity of data.

Summary: The multi-model is far less sensitive to parameterisation errors than

prediction models based on one-step ahead models.

15.4 Examples

In this section the efficacy of the multi-model is illustrated by way of some examples.

15.4.1 No parameterisation errors

In the ideal case of linear plant of known order and a suitable noise model, one

would expect the one-step ahead model to be a near exact match (with sufficient

data) to the true plant and hence there would be little to gain with a multi-model.

This observation is borne out on examples.

15.4.2 Examples with parameterisation errors

In practice systems are never purely linear and neither are their orders known pre-

cisely and this is where the multi-model can offer improvements in prediction accu-

racy. Here two examples [126] are illustrated:

1. SISO model with two zeros and three poles.

2. High order nonlinear MIMO model with two outputs.

The models are simulated open-loop for a pseudo random binary sequence (PRBS)

input and with a slow PRBS disturbance signal plus noise on the output. The data

is then used to identify a one step ahead model (15.1) and a multi-model. Then,

using an independent set of open-loop data, the standard deviation of the associated

prediction errors for each model, each horizon and each output are computed. The
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FIGURE 15.1
Ratio multi-model:one-step ahead model of the standard deviations of n-step ahead

prediction errors.

results are displayed in Figures 15.1, 15.2 as the ratio of the errors (y-axis) for the

multi-model and one-step ahead model versus prediction horizon (x-axis); any num-

bers less than one indicate that the multi-model has better modelling accuracy. The

variables l,m are defined in eqn.(15.1). Figure 15.1 shows the results for model 1

using l = 2, m = 2, therefore underparameterising the number of poles. Figure 15.2

shows the results for model 2 with l = 5, m = 5. This is severely underparameterised.

A log scale is required due to the total failure of the one-step ahead model for large

horizons.

The observations are:

• The multi-model consistently gives significantly smaller standard deviations

than one-step ahead models.

• For model 2, standard models cannot be used to form a useful prediction model

[131]. The rapid deterioration of prediction errors with horizon is very fast (see

Figure 15.2).

• It has also been observed that the inevitable degredation of prediction errors

with horizon length can be slower with multi-models [126].

Summary: In the case of underparameterised models the multi-model can some-

times give far more accurate predictions.

15.5 Conclusions

This chapter has introduced the multi-model approach to modelling for predictive

control and demonstrated its potential advantages over the more usual one-step ahead
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FIGURE 15.2
Ratio multi-model:one-step ahead model of the standard deviation of n-step ahead

prediction errors.

prediction models.

It seems to be more robust to assumptions on model order. Often the model order

is unknown and/or there is model mismatch due to nonlinearities. Therefore a tech-

nique which is robust to such errors is advantageous. The multi-model approach

gives better accuracy when the order is underparameterised and when overparam-

eterised, does not suffer from the near cancelling pole/zero effects that predictions

based on one-step ahead models suffer from. One might also conjecture that the

multi-model approach will lend itself much more readily to the modelling of multi-

rate and stiff systems, in essence because one has much more freedom with its struc-

ture than a conventional one-step ahead prediction model. These issues are also

discussed in [54].

Summary: Not much research has gone into exploring the full potential of multi-

models and hence this is still a relatively open field. Clearly there are strong over-

laps with subspace identification and potential links with IFT and closed-loop iden-

tification.
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Conclusion

This book only scratches the surface of available knowledge and algorithms within

linear MPC, let alone nonlinear MPC. The reader may be left wanting more illustra-

tions, especially MIMO ones, and wondering why certain topics were omitted.

The simple answer is that I have tried to focus on understanding how the MPC algo-

rithm works (or fails), giving the reader insight into the algorithms presented rather

than copious examples. Many examples are available in other books (e.g. [13]) and

I am also a believer that users should simulate their own examples to learn effec-

tively∗. It seemed better to use the limited space available to say something which

complements, rather than duplicates, the existing literature. There is not space to

present every algorithm although one notable omission could be considered robust

MPC algorithms based on other norms (such as the one and infinity norms). Again

these are discussed in [13] but I do not believe have gained much acceptance as they

are not as easily tuned as 2-norm based algorithms.

The hope behind this book is that readers will go away with good insight into MPC

design and hence empowered to modify the algorithm to suit their own needs rather

than being reliant on well known algorithms or the available commercial products.

Moreover, if an implementation is performing poorly, they will be better placed to

understand why.

Summary: The beauty of MPC is its flexibility and yet relative simplicity of con-

cept. Once fully appreciated, it is often straightforward to modify the algorithm for

the specific requirements of each application.

∗I intend to produce a simple suite of MATLAB programs which readers can use to form their own

designs.
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A

Appendix: Numerical examples and questions

This appendix gives some numerical data to help students test their code and/or un-

derstanding as well as some guidelines in setting questions for teaching staff. The

intent is to make software available∗ so that users can develop and simulate their own

controllers using some of the strategies in this book.

A.1 Numerical examples of prediction

This section gives some simple numerical examples of how to predict and form a

nominal MPC law.

In general when writing your own code you need to devise your own consistency

tests to ensure that the programmes are working correctly. For instance: (i) compare

the predictions with your model to what arises from an open-loop simulation with

arbitrary inputs; (ii) compare the actual closed-loop behaviour, as tuning varies with

what you expect intuitively. Make sure you can explain any apparent anomalies.

A.1.1 State-space predictions of eqn.(3.10)

The predictions are given from




xk+1

xk+2

xk+3

...

xk+ny




︸ ︷︷ ︸
x→k

=




A
A2

A3

...

Any




︸ ︷︷ ︸
Pxx

xk +




B 0 0 . . .

AB B 0 . . .

A2B AB B . . .
...

...
...

...

Any−1B Any−2B Any−3B . . .




︸ ︷︷ ︸
Hx




uk

uk+1

uk+2

...

uk+ny−1




︸ ︷︷ ︸
u→k−1

(A.1)

∗Contact the author or publisher if you wish to find out details about this.
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and 


yk+1

yk+2

yk+3

...

yk+ny




︸ ︷︷ ︸
y→k

=




CA
CA2

CA3

...

CAny




︸ ︷︷ ︸
P

xk +




CB 0 0 . . .

CAB CB 0 . . .

CA2B CAB CB . . .
...

...
...

...

CAny−1B CAny−2B CAny−3B . . .




︸ ︷︷ ︸
H

u→k−1
(A.2)

Take a state-space model

xk+1 = Axk + Buk; yk+1 = Cxk+1 (A.3)

where

A =
[

0.9 −0.5

0 0.8

]
; B =

[
1 1

−2 0

]
; C =

[
2 0.5

−1 1

]
Then one can define the matrices (for ny = 4, nu = 2) as follows:

Pxx =




0.9 −0.5

0 0.8

0.81 −0.85

0 0.64

0.729 −1.085

0 0.512

0.6561 −1.2325

0 0.4096




; Hx =




1 1 0 0

−2 0 0 0

1.9 0.9 1 1

−1.6 0 −2 0

2.51 0.81 1.9 0.9

−1.28 0 −1.6 0

2.899 0.729 2.51 0.81

−1.024 0 −1.28 0




P =




1.8 −0.6

−0.9 1.3

1.62 −1.38

−0.81 1.49

1.458 −1.914

−0.729 1.597

1.3122 −2.2602

−0.6561 1.6421




; H =




1 2 0 0

−3 −1 00

3 1.8 1 2

−3.5 −0.9 −3 −1

4.38 1.62 3 1.8

−3.79 −0.81 −3.5 −0.9

5.286 1.458 4.38 1.62

−3.923 −0.729 −3.79 −0.81




A.1.2 Prediction with transfer function models using eqn.(3.21)

Consider the difference equation model

yk+1 = 1.3yk −0.4yk−1 + uk −2uk−1 (A.4)
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First write this in incremental form of eqn.(3.14) as

yk+1 = 2.3yk −1.7yk−1 + 0.4yk−2 + ∆uk −2∆uk−1 (A.5)

Then substitute into expressions (3.21) using:

CA =




1 0 0 0

−2.3 1 0 0

1.7 −2.3 1 0

−0.4 1.7 −2.3 1


 ; HA =



−2.3 1.7 −0.4

1.7 −0.4 0

−0.4 0 0

0 0 0




Czb =




1 0 0 0

−2 1 0 0

0 −2 1 0

0 0 −2 1


 ; Hzb =



−2

0

0

0




Hence (given nu = 2)

H =




1 0

0.3 1

−1.01 0.3

−2.433 −1.01


 ; P =




−2

−4.6

−7.18

−9.494


 ; Q =




2.3 −1.7 0.4

3.59 −3.51 0.92

4.747 −5.183 1.436

5.7351 −6.6339 1.8988




A.2 Numerical examples of control laws

In this section it is assumed for simplicity that the weighting on the controls is unity

and that ny = 4, nu = 2. The reader is reminded that these horizons are small to

facitilate numerical illustration but may not be good choices in general.

A.2.1 Control law of eqn. (4.53)

For convenience let the weighting matrix Q comprise blocks of the form C TC so that

the optimal control law is equivalent to

K = [HT H + I]−1HT P (A.6)

Then substituting in the values from Section A.1.1 gives

K =
[

0.1045 −0.3588

0.6726 −0.1212

]
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A.2.2 Control law of eqn. (4.25)

Take the prediction equations of Section A.1.2 (above and substitute into the control

law of eqn.(4.25). Then

Pr = [0.141 −0.069 −0.1758 −0.2307]
Ďk = 3.4872

Nk = [−2.0805 2.4436 −0.6974]
(A.7)

A.3 Typical questions for tutors

Most questions on MPC either test insight, and hence are essay type questions, or

require coding and simulation, and hence have no simple answers. As a consequence

there are not many questions in this book. Most numerical questions are not pen and

paper exercises, as predicting, even with SISO models, is numerically intensive for

any horizon beyond 2 or 3. As such, there is a limit to the use of numerical questions

which cannot be backed up by computer simulation. In order to compute prediction

models and controllers for more complex cases the reader is advised to ask for the

MATLAB software by contacting the publisher.

Summary: Easy questions for a tutor to set are:

• Descriptive type questions asking students to demonstrate understanding of

the comments made in the summary boxes throughout the book.

• Coursework assignments where students could be asked to produce simula-

tions demonstrating the validity, or limitations, of comments in the summary

boxes.

• Numerical questions where students are asked to compute prediction equa-

tions, constraint equations, performance indices and/or control laws for low

order examples with small horizons.

• MATLAB software will be provided to tutors so that they can produce pre-

diction equations, constraint equations and do simulations and hence validate

their answers. The software will come with some instructions and moreover

will not require any MATLAB toolboxes other than the standard control tool-

box (which comes with student MATLAB).

co
nt

ro
len

gin
ee

rs
.ir



Appendix: Numerical examples and questions 299

A.3.1 Example tutorial questions

Usually intelligent readers want to set their own questions and develop their own sce-

narios in order to test understanding, and therefore this book contains only a few il-

lustrative problems. The tutor would need to supply the model data but could use the

software provided to calculate any numerical answers. The material beyond Chapter

7 is largely beyond master’s degree level and hence readers of these should focus

mainly on the summaries and deriving their own problems to test understanding.

1. Summary boxes: Choose any summary box and base a question on it; for

instance from Section 1.2.1.

Discuss with illustrations why the use of prediction is beneficial in creating
good control strategies.

Or from Section 1.2.4:

What guidelines should be used when selecting a prediction horizon?

2. Prediction equations: Define a model, transfer function, state-space or FIR,

then specify whether the d.o.f. are the inputs or the input increments and

finally pose questions like†:

For the given model, find the prediction equations with n y = 3 and nu = 2.

What is closed-loop prediction and when is its usage advisable?

3. Control law and stability: Define a prediction equation, for instance give the

values of H, P as in eqn.(3.1) or any other prediction equation from Chapter

3. Then ask:

For the performance index and predictions given, find the corresponding pre-
dictive control law and show how you would test stability in the nominal case.

4. Tuning: This is a difficult topic to set a numerical exam question on, as it

would usually require significant computation. However, it could be ideal for

coursework assignments.

Using the software provided, illustrate and explain the effects of the tuning
parameters ny, nu, λ on several examples.

5. Sensitivity: One could focus questions on what tools the designer has avail-

able to affect sensitivity. For instance:

Derive the loop sensitivity with a GPC (or other) control law and discuss how
the T-filter can be used to improve sensitivity.

†The software provided can be used to compute the numerical answer.
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6. Stability and performance guarantees: Ask questions which test the stu-

dents’ ability of form a performance index with an infinite horizon and also

to prove that infinite horizons allow stability guarantees. One could also ask

more searching questions on tuning.

Demonstrate why infinite output horizons facilitate stability and performance
guarantees. How would the corresponding performance index be calculated?

Describe dual mode control in the context of predictive control? Include de-
tailed working on how a dual mode controller could be computed.

7. Constraint handling: Ask questions requiring students to construct the in-

equalities which ensure predicted constraint satisfaction. Ask for discussion

on how this might impact on closed-loop stability or how the resulting optimi-

sation might be solved. For instance:

Given upper and lower limits on the input and input increments, define the
constraint equation in the form C∆ u→−d ≤ 0 for nu = 3.

A.3.2 Example exam questions

Q1 (a) You are given a system that has 2 inputs u = [u1,u2]T which are subject

to upper and lower limits of [1,2]T and [−2,−3]T , respectively, and rate

constraints [0.5, 0.5]T . For a control horizon of nu = 3, define the matrix

C and vector d in the linear inequalities C∆ u→− d ≤ 0 which test for

constraint satisfaction at sampling instant k.

(b) You are given predictions that have the form

y→k
= H∆u→k−1

+ P∆ u←k−1
+ Q y←k

(A.8)

where y is the system output. Hence define the quadratic programming

problem whose solution gives the GPC control law for performance in-

dex:

J = ‖ r→− y→‖2
2 + λ ‖∆u→‖2

2 (A.9)

What is the unconstrained optimal control law?

(c) In general a system may also have constraints on the outputs and other

states. How might the objective be altered in the case that the constraints

are not consistent.

Q2 The nominal process is given by a SISO CARIMA model

a(z)yk = b(z)uk +
T (z)

∆
ζ k (A.10)
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Given that T (z) = 1, the unbiased predictions take the form

y→k
= H∆u→k−1

+ P∆ u←k−1
+ Q y←k

(A.11)

and hence the predictive control law (SISO case) has the following form:

Dk(z)∆uk = Pr(z)rk+1 −Nk(z)yk (A.12)

(a) Without giving all the working, state how the prediction structure varies

with T (z) �= 1.

(b) Hence, state how the control law structure differs from that in (A.12)

when T (z) �= 1.

(c) Plot a closed-loop diagram illustrating the constraint free implementation

of GPC and hence contrast the transference from measurement noise to

input for the control laws with and without a T-filter. Argue why the

T-filter is popular and necessary in practice.

(d) A T-filter is a form of Youla parameterisation. Illustrate another means of

incorporating a Youla parameter into the GPC control law and show how

it can be used to improve sensitivity without affecting nominal tracking.

Q3 (a) Why do you think GPC is ideally suited as a control design technique for

the multivariable case and the constrained case.

(b) A GPC control law for the model Dy = Nu (MIMO case) takes the form

Dk∆u = Prr−Nky (A.13)

Show, with your working, how to compute the closed-loop poles.

(c) It is known that for an arbitrary choice of tuning parameters, GPC may

not give good performance or even be stabilising. Suggest and justify

some guidelines.

(d) Give an overview of how GPC can be modified to give a guarantee of

stability.

Q4 (a) You are given a process Dy = Nu and a GPC control law of the form

Dk∆u = Prr−Nky

where r,y,u are the set point, output and input respectively.

Sketch the closed-loop diagram with output measurement noise and hence

compute the sensitivity S of the input to output measurement noise.

The sensitivity is too high. Discuss what changes you could make to

reduce this sensitivity and illustrate with the key equations.
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(b) Prove that the use of infinite output horizons in the GPC performance

index

J =
ny

∑
i=1

‖Wy(rk+i −yk+i)‖2
2 + λ

nu−1

∑
i=0

‖Wu(∆uk+i)‖2
2

guarantees closed-loop stability in the nominal case.

Given the limits of on-line computational load, suggest and justify some

practical guidelines for choosing the tuning parameters.

Q5 (a) You are given a system that has 3 inputs u = [u1,u2,u3]T . These are

subject to upper and lower limits of [3, 2, 2]T and [−2,−3,−1]T respec-

tively. There are no rate constraints. For a control horizon of n u = 3,

define the inequalities (in matrix form) which ensure constraint satisfac-

tion of the input predictions.

(b) State constraints are also to be included. Define the prediction equations

for the state for a prediction horizon ny = 3 and the matrix inequalities

ensuring constraint satisfaction for ny = 3. You are given the following

state-space model and upper limits:

xk+1 = Axk + Buk; x =


 4

5

3




(c) Hence define the quadratic programming problem whose solution gives

the GPC control law for performance index:

J =
3

∑
i=1

xT
k+1+iQxk+1+i + uT

k+iRuk+i

(d) Discuss why GPC is ideally suited as a control design technique for the

multivariable case and the constrained case.

Q6 (a) First show how the robustness of a nominal predictive control law might

be assessed. Second introduce and explain two methods which can be

used to improve the loop sensitivity. Contrast the two methods briefly.

(b) Why can GPC with some certain tuning parameters give poor perfor-

mance? Hence show how MPC can be tuned to give an a priori guarantee

of the stability of the resulting closed-loop, even during constraint han-

dling. Include some comment on potential weaknesses of these results.
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abbreviations, 14

acronyms, 14

algorithms, alternatives, 80

autonomous model, 240

back off, 213

closed-loop equations, 63

closed-loop equations, state-space, 67

closed-loop equations, T-filter, 64

closed-loop paradigm, 127

closed-loop paradigm, advantages, 146

closed-loop paradigm, choices, 136

closed-loop paradigm, conditioning, 149

closed-loop paradigm, constraint han-

dling, 135

closed-loop paradigm, constraints, 128

closed-loop paradigm, loop structure,

132

closed-loop paradigm, optimisation, 136

closed-loop paradigm, overview, 128

closed-loop paradigm, predictions, 129

closed-loop paradigm, robust design,

151

closed-loop paradigm, stability, 128

closed-loop pardigm, detailed deriva-

tion, 133

commutativity, 13

components of MPC, 2

computational efficiency, examples, 242

computational efficiency, MPC, 234

computational efficiency, overview, 242

computationally efficient algorithms,

238

constrained optimisation, 78

constraint handling, 5, 75, 92, 153

constraint handling, saturation, 93

constraint handling, uncertainty, 205

constraint handling, Youla, 210

constraint relaxation, 161

constraint softening, 160

constraints, 57, 154

constraints, back off, 161

constraints, hard, 155

constraints, hard and soft, 78

constraints, soft, 155

constraints, terminal, 155

control decisions, 3

control law, models, 195

control law, state-space, 66, 68

control law, transfer function, 62

control laws, summary, 196

convolution, 11

cost function, 3

CRHPC, 137

disturbances, measurable, 80

dual mode, 117

dual mode, algorithm, 119

dual mode, constraint handling, 123

dual mode, discussion, 124

dual mode, implementation, 121

dual mode, industry, 145

dual mode, overview, 118

dual mode, performance index, 122

dual mode, predictions, 118

dual mode, tractable, 120

dual model, control law, 123
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efficiency, invariant sets, 235

ellipsoidal sets, uncertainty, 225

EMPC algorithm, 240

EUM, 140

feasibility, 153, 206

feasibility, definitions, 154

feasibility, importance, 156

feasibility, invariant sets, 216

feasibility, recursive, 156, 215

feasibility, summary, 165

feasibility, uncertain case, 157

feasibility, Youla parameter, 208

feedforward, 6

feedforward, design, 109

GPC algorithm, 53

GPC algorithm, FIR model, 71

GPC algorithm, independent model,

72

GPC algorithm, state-space, 65

GPC algorithm, transfer function, 61

GPC, components, 54

GPC, multivariable, 58

Hankel matrix, 9

Hankel, dimensions, 14

identification, 283

identification, closed-loop, 285

ill posed objective, 104

ill-conditioning, 97

independent model, state-space, 73

independent model, transfer function,

72

infeasibility, avoidance, 160

infeasibility, causes, 158

infeasibility, GPC and DMC, 164

infeasibility, terminal constraints, 158

infeasibility, uncertainty, 159, 205

infeasibility, unstable processes, 159

inferential control, 273

infinite horizons, 112

infinite horizons, performance index,

121

infinite horizons, practical, 116

input trajectory, restrictions, 56

instability, 106

integral action, state-space models, 22

integral action, transfer function, 25

invariance, constraint handling, 219

invariance, disturbances, 225

invariance, parameter uncertianty, 226

invariance, stability, 218

invariance, uncertainty, 224

invariant set, ellipsoidal, 217

invariant set, polyhedral, 217

invariant set, terminal law, 236

invariant sets, 205

invariant sets, calculations, 221

invariant sets, ellipsoidal, 222

invariant sets, feasibility, 216

invariant sets, predictive control, 219

lifted algorithm, 276

lifting, 274

linear matrix inequality, 223

linear models, 17

links, optimal control, 61

LQMPC, 143

maximal admissible set, 221

model choice, summary, 199

model,importance, 2

modelling, 283

modelling, dead time, 29

modelling, disturbance, 21

modelling, disturbances, 18

modelling, feasibility, 284

modelling, introduction, 185

modelling, noise, 18

modelling, prediction errors, 186

modelling, sensitivity, 185

co
nt

ro
len

gin
ee

rs
.ir



317

modelling, state-space, 20

modelling, uncertainty, 18

models, common, 19

models, FIR, 26

models, impulse response, 26

models, independent, 27

models, MFD, 28

models, step response, 27

models, transfer function, 24

multi-model, 285

multi-model, examples, 289

multi-model, identification, 286

multi-models, 283

multi-parametric quadratic programming,

233

multirate systems, 271

multirate, comparison, 278

multirate, conclusion, 282

multirate, control law structure, 273

multirate, control trajectory, 272

multirate, finite horizons, 276

multirate, infinite horizons, 281

multirate, models, 272

multirate, numerical examples, 279

multirate, overview, 275

multirate, summary, 280

multivariable, 6

NESTED algorithm, 238

nonsquare systems, 21

notation, 9

notation, arrows, 9

NTC, 140

offset, GPC, 59

ONEDOF algorithm, 239

ONEDOF, analysis, 248

optimisation algorithms, 231

optimisation efficiency, 231

optimisation, interior point, 233

optimisation, MPC, 231

optimisation, suboptimal, 234

output horizon, 115

overview, 1, 7

overview, computational efficiency, 242

performance index, 83

performance index, GPC, 54

performance index, LQMPC, 147

performance measures, 4

performance, optimising, 103

PFC control law, 256

PFC, components, 254

PFC, constraint handling, 258

PFC, examples, 260

PFC, philosophy, 253

PFC, tuning, 257

PFC, unstable examples, 263

PFC, unstable processes, 260

polyhedral sets, uncertainty, 225

polynomial multiplication, 11

polynomial, multivariable, 13

precompensator design, 107

prediction, 31

prediction errors, 187

prediction errors, comparison, 190

prediction errors, numerical examples,

191

prediction mismatch, 104

prediction mismatch, feedforward, 107

prediction mismatch, instability, 106

prediction mismatch, summary, 107

prediction, FIR models, 41

prediction, independent models, 43

prediction, MFD, 35

prediction, numerically robust, 48

prediction, recursion, 39

prediction, state-space, 32

prediction, step response model, 42

prediction, summary, 31

prediction, T-filter, 36

prediction, T-filter equations, 37
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prediction, transfer function, 33

prediction, unstable process, 44

predictions errors, FIR model, 187

predictions errors, independent model,

189

predictions errors, transfer function, 188

predictions, dual mode, 118

predictions, importance, 2

Predictive functional control, 81, 253

quadratic programming, active set method,

232

receding horizon, 4, 57

reference governor, 162

reference governor, CLP, 164

robust algorithm, 227

robust constraint handling, 207

robust design, 167

robust design, CLP, 228

robust design, constraint handling, 205

robust design, key idea, 167

robust MPC, 227

round-off errors, 149

sensitivity functions, 168

sensitivity, complementary, 168

sensitivity, disturbances, 170

sensitivity, examples, 173

sensitivity, internal model, 179

sensitivity, MIMO example, 197

sensitivity, model structure, 195

sensitivity, modelling, 185

sensitivity, numerical example, 177

sensitivity, optimising, 176

sensitivity, T-filter, 171

sensitivity, uncertainty, 169

sensitivity, Youla parameterisation, 175

SGPC, 137

SIORHC, 137

stability guarantee, 103

stability, constraints, 116

stability, GPC, 74

stability, infinite horizons, 112

stability, with constraints, 79

steady state estimates, 23, 25, 69

summary, MPC algorithms, 53

T-filter, 26

T-filter, constraints, 207

T-filter, MIMO case, 174

T-filter, sensitivity, 171

tail, 113

target set, 123

terminal conditions, 137

terminal constraints, 155

terminal law, 137

terminal law, choices, 136

terminal law, dead beat, 137

terminal law, no control, 140

terminal law, optimal, 143

terminal law, zero unstable modes, 140

terminal laws, summary, 144

terminal region, 123, 137

terminal set, 137

Toeplitz matrix, 9

Toeplitz, dimensions, 14

tuning, 5

tuning, best, 88

tuning, control horizon, 86

tuning, control weighting, 87, 91

tuning, GPC, 85

tuning, multivariable, 99

tuning, output horizon, 86

tuning, summary, 101

tuning, unstable processes, 95

tuning, well posed, 89

weighting, inputs, 60

Youla parameter, algorithm details, 176

Youla parameterisation, 174
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