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Foreword

This book is based on the lecture material for a one-semester senior-year
undergraduate or first-year graduate course in optimal control which I have
taught at the Swiss Federal Institute of Technology (ETH Zurich) for more
than twenty years. The students taking this course are mostly students in
mechanical engineering and electrical engineering taking a major in control.
But there also are students in computer science and mathematics taking this
course for credit.

The only prerequisites for this book are: The reader should be familiar with
dynamics in general and with the state space description of dynamic systems
in particular. Furthermore, the reader should have a fairly sound understand-
ing of differential calculus.

The text mainly covers the design of open-loop optimal controls with the help
of Pontryagin’s Minimum Principle, the conversion of optimal open-loop to
optimal closed-loop controls, and the direct design of optimal closed-loop
optimal controls using the Hamilton-Jacobi-Bellman theory.

In theses areas, the text also covers two special topics which are not usually
found in textbooks: the extension of optimal control theory to matrix-valued
performance criteria and Lukes’ method for the iterative design of approxi-
matively optimal controllers.

Furthermore, an introduction to the phantastic, but incredibly intricate field
of differential games is given. The only reason for doing this lies in the
fact that the differential games theory has (exactly) one simple application,
namely the LQ differential game. It can be solved completely and it has a
very attractive connection to the H∞ method for the design of robust linear
time-invariant controllers for linear time-invariant plants. — This route is
the easiest entry into H∞ theory. And I believe that every student majoring
in control should become an expert in H∞ control design, too.

The book contains a rather large variety of optimal control problems. Many
of these problems are solved completely and in detail in the body of the text.
Additional problems are given as exercises at the end of the chapters. The
solutions to all of these exercises are sketched in the Solution section at the
end of the book.
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1 Introduction

1.1 Problem Statements

In this book, we consider two kinds of dynamic optimization problems: op-
timal control problems and differential game problems.

In an optimal control problem for a dynamic system, the task is finding an
admissible control trajectory u : [ta, tb] → Ω ⊆ Rm generating the corre-
sponding state trajectory x : [ta, tb] → Rn such that the cost functional J(u)
is minimized.

In a zero-sum differential game problem, one player chooses the admissible
control trajectory u : [ta, tb] → Ωu ⊆ Rmu and another player chooses the
admissible control trajectory v : [ta, tb] → Ωv ⊆ Rmv . These choices generate
the corresponding state trajectory x : [ta, tb] → Rn. The player choosing u

wants to minimize the cost functional J(u, v), while the player choosing v

wants to maximize the same cost functional.

1.1.1 The Optimal Control Problem

We only consider optimal control problems where the initial time ta and the
initial state x(ta) = xa are specified. Hence, the most general optimal control
problem can be formulated as follows:

Optimal Control Problem:
Find an admissible optimal control u : [ta, tb] → Ω ⊆ Rm such that the
dynamic system described by the differential equation

ẋ(t) = f(x(t), u(t), t)

is transferred from the initial state

x(ta) = xa

into an admissible final state

x(tb) ∈ S ⊆ Rn ,
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4 1 Introduction

and such that the corresponding state trajectory x(.) satisfies the state con-
straint

x(t) ∈ Ωx(t) ⊆ Rn

at all times t ∈ [ta, tb], and such that the cost functional

J(u) = K(x(tb), tb) +
∫ tb

ta

L(x(t), u(t), t) dt

is minimized.

Remarks:

1) Depending upon the type of the optimal control problem, the final time
tb is fixed or free (i.e., to be optimized).

2) If there is a nontrivial control constraint (i.e., Ω �= Rm), the admissible
set Ω ⊂ Rm is time-invariant, closed, and convex.

3) If there is a nontrivial state constraint (i.e., Ωx(t) �= Rn), the admissible
set Ωx(t) ⊂ Rn is closed and convex at all times t ∈ [ta, tb].

4) Differentiability: The functions f , K, and L are assumed to be at least
once continuously differentiable with respect to all of their arguments.

1.1.2 The Differential Game Problem

We only consider zero-sum differential game problems, where the initial time
ta and the initial state x(ta) = xa are specified and where there is no state
constraint. Hence, the most general zero-sum differential game problem can
be formulated as follows:

Differential Game Problem:
Find admissible optimal controls u : [ta, tb] → Ωu ⊆ Rmu and v : [ta, tb] →
Ωv ⊆ Rmv such that the dynamic system described by the differential equa-
tion

ẋ(t) = f(x(t), u(t), v(t), t)

is transferred from the initial state

x(ta) = xa

to an admissible final state

x(tb) ∈ S ⊆ Rn

and such that the cost functional

J(u) = K(x(tb), tb) +
∫ tb

ta

L(x(t), u(t), v(t), t) dt

is minimized with respect to u and maximized with respect to v.
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1.2 Examples 5

Remarks:

1) Depending upon the type of the differential game problem, the final time
tb is fixed or free (i.e., to be optimized).

2) Depending upon the type of the differential game problem, it is specified
whether the players are restricted to open-loop controls u(t) and v(t) or
are allowed to use state-feedback controls u(x(t), t) and v(x(t), t).

3) If there are nontrivial control constraints, the admissible sets Ωu ⊂ Rmu

and Ωv ⊂ Rmv are time-invariant, closed, and convex.

4) Differentiability: The functions f , K, and L are assumed to be at least
once continuously differentiable with respect to all of their arguments.

1.2 Examples

In this section, several optimal control problems and differential game prob-
lems are sketched. The reader is encouraged to wonder about the following
questions for each of the problems:

• Existence: Does the problem have an optimal solution?

• Uniqueness: Is the optimal solution unique?

• What are the main features of the optimal solution?

• Is it possible to obtain the optimal solution in the form of a state feedback
control rather than as an open-loop control?

Problem 1: Time-optimal, friction-less, horizontal motion of a mass point

State variables:
x1 = position
x2 = velocity

control variable:
u = acceleration

subject to the constraint
u ∈ Ω = [−amax, +amax] .

Find a piecewise continuous acceleration u : [0, tb] → Ω, such that the dy-
namic system [

ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 0

][
x1(t)
x2(t)

]
+

[
0
1

]
u(t)

is transferred from the initial state[
x1(0)
x2(0)

]
=

[
sa

va

]
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6 1 Introduction

to the final state [
x1(tb)
x2(tb)

]
=

[
sb

vb

]
in minimal time, i.e., such that the cost criterion

J(u) = tb =
∫ tb

0

dt

is minimized.

Remark: sa, va, sb, vb, and amax are fixed.

For obvious reasons, this problem is often named “time-optimal control of
the double integrator”. It is analyzed in detail in Chapter 2.1.4.

Problem 2: Time-optimal, horizontal motion of a mass with viscous friction

This problem is almost identical to Problem 1, except that the motion is no
longer frictionless. Rather, there is a friction force which is proportional to
the velocity of the mass.

Thus, the equation of motion (with c > 0) now is:[
ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 −c

][
x1(t)
x2(t)

]
+

[
0
1

]
u(t) .

Again, find a piecewise continuous acceleration u : [0, tb] → [−amax, amax]
such that the dynamic system is transferred from the given initial state to
the required final state in minimal time.

In contrast to Problem 1, this problem may fail to have an optimal solution.
Example: Starting from stand-still with va = 0, a final velocity |vb| > amax/c

cannot be reached.

Problem 3: Fuel-optimal, friction-less, horizontal motion of a mass point

State variables:
x1 = position
x2 = velocity

control variable:
u = acceleration

subject to the constraint
u ∈ Ω = [−amax, +amax] .
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1.2 Examples 7

Find a piecewise continuous acceleration u : [0, tb] → Ω, such that the dy-
namic system [

ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 0

][
x1(t)
x2(t)

]
+

[
0
1

]
u(t)

is transferred from the initial state[
x1(0)
x2(0)

]
=

[
sa

va

]
to the final state [

x1(tb)
x2(tb)

]
=

[
sb

vb

]
and such that the cost criterion

J(u) =
∫ tb

0

|u(t)| dt

is minimized.

Remark: sa, va, sb, vb, amax, and tb are fixed.

This problem is often named “fuel-optimal control of the double integrator”.
The notion of fuel-optimality associated with this type of cost functional
relates to the physical fact that in a rocket engine, the thrust produced by
the engine is proportional to the rate of mass flow out of the exhaust nozzle.
However, in this simple problem statement, the change of the total mass over
time is neglected. — This problem is analyzed in detail in Chapter 2.1.5.

Problem 4: Fuel-optimal horizontal motion of a rocket

In this problem, the horizontal motion of a rocket is modeled in a more real-
istic way: Both the aerodynamic drag and the loss of mass due to thrusting
are taken into consideration. State variables:

x1 = position
x2 = velocity
x3 = mass

control variable:
u = thrust force delivered by the engine

subject to the constraint

u ∈ Ω = [0, Fmax] .

The goal is minimizing the fuel consumption for a required mission, or equiv-
alently, maximizing the mass of the rocket at the final time.
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8 1 Introduction

Thus, the optimal control problem can be formulated as follows:

Find a piecewise continuous thrust u : [0, tb] → [0, Fmax] of the engine such
that the dynamic system⎡⎣ ẋ1(t)

ẋ2(t)
ẋ3(t)

⎤⎦ =

⎡⎣ x2(t)
1

x3(t)

{
u(t) − 1

2Aρcwx2
2(t)

}
−αu(t)

⎤⎦
is transferred from the initial state⎡⎣x1(0)

x2(0)
x3(0)

⎤⎦ =

⎡⎣ sa

va

ma

⎤⎦
to the (incompletely specified) final state⎡⎣x1(tb)

x2(tb)
x3(tb)

⎤⎦ =

⎡⎣ sb

vb

free

⎤⎦
and such that the equivalent cost functionals J1(u) and J2(u) are minimized:

J1(u) =
∫ tb

0

u(t) dt

J2(u) = −x3(tb) .

Remark: sa, va, ma, sb, vb, Fmax, and tb are fixed.

This problem is analyzed in detail in Chapter 2.6.3.

Problem 5: The LQ regulator problem

Find an unconstrained control u : [ta, tb] → Rm such that the linear time-
varying dynamic system

ẋ(t) = A(t)x(t) + B(t)u(t)

is transferred from the initial state

x(ta) = xa

to an arbitrary final state

x(tb) ∈ Rn
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1.2 Examples 9

and such that the quadratic cost functional

J(u) =
1
2
xT(tb)Fx(tb) +

1
2

∫ tb

ta

(
xT(t)Q(t)x(t) + uT(t)R(t)u(t)

)
dt

is minimized.

Remarks:

1) The final time tb is fixed. The matrices F and Q(t) are symmetric
and positive-semidefinite and the matrix R(t) is symmetric and positive-
definite.

2) Since the cost functional is quadratic and the constraints are linear, au-
tomatically a linear solution results, i.e., the result will be a linear state
feedback controller of the form u(t) = −G(t)x(t) with the optimal time-
varying controller gain matrix G(t).

3) Usually, the LQ regulator is used in order to robustly stabilize a nonlinear
dynamic system around a nominal trajectory:

Consider a nonlinear dynamic system for which a nominal trajectory has
been designed for the time interval [ta, tb]:

Ẋnom(t) = f(Xnom(t), Unom(t), t)

Xnom(ta) = Xa .

In reality, the true state vector X(t) will deviate from the nominal state
vector Xnom(t) due to unknown disturbances influencing the dynamic
system. This can be described by

X(t) = Xnom(t) + x(t) ,

where x(t) denotes the state error which should be kept small by hopefully
small control corrections u(t), resulting in the control vector

U(t) = Unom(t) + u(t) .

If indeed the errors x(t) and the control corrections can be kept small, the
stabilizing controller can be designed by linearizing the nonlinear system
around the nominal trajectory.

This leads to the LQ regulator problem which has been stated above. —
The penalty matrices Q(t) and R(t) are used for shaping the compromise
between keeping the state errors x(t) and the control corrections u(t),
respectively, small during the whole mission. The penalty matrix F is an
additional tool for influencing the state error at the final time tb.

The LQ regulator problem is analyzed in Chapters 2.3.4 and 3.2.3. — For
further details, the reader is referred to [1], [2], [16], and [25].
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10 1 Introduction

Problem 6: Goh’s fishing problem

In the following simple economic problem, consider the number of fish x(t)
in an ocean and the catching rate of the fishing fleet u(t) of catching fish per
unit of time, which is limited by a maximal capacity, i.e., 0 ≤ u(t) ≤ U . The
goal is maximizing the total catch over a fixed time interval [0, tb].

The following reasonably realistic optimal control problem can be formulated:

Find a piecewise continuous catching rate u : [0, tb] → [0, U ], such that the
fish population in the ocean satisfying the population dynamics

ẋ(t) = a
(
x(t) − x2(t)

b

)
− u(t)

with the initial state

x(0) = xa

and with the obvious state constraint

x(t) ≥ 0 for all t ∈ [0, tb]

is brought up or down to an arbitrary final state

x(tb) ≥ 0

and such that the total catch is maximized, i.e., such that the cost functional

J(u) = −
∫ tb

0

u(t) dt

is minimized.

Remarks:

1) a > 0, b > 0; xa, tb, and U are fixed.

2) This problem nicely reveals that the solution of an optimal control prob-
lem always is “as bad” as the considered formulation of the optimal control
problem. This optimal control problem lacks any sustainability aspect:
Obviously, the fish will be extinct at the final time tb, if this is feasible.
(Think of whaling or raiding in business economics.)

3) This problem has been proposed (and solved) in [18]. An even more
interesting extended problem has been treated in [19], where there is a
predator-prey constellation involving fish and sea otters. The competing
sea otters must not be hunted because they are protected by law.

Goh’s fishing problem is analyzed in Chapter 2.6.2.
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1.2 Examples 11

Problem 7: Slender beam with minimal weight

A slender horizontal beam of length L is rigidly clamped at the left end and
free at the right end. There, it is loaded by a vertical force F . Its cross-section
is rectangular with constant width b and variable height h(�); h(�) ≥ 0 for
0 ≤ � ≤ L. Design the variable height of the beam, such that the vertical
deflection s(�) of the flexible beam at the right end is limited by s(L) ≤ ε

and the weight of the beam is minimal.

Problem 8: Circular rope with minimal weight

An elastic rope with a variable but circular cross-section is suspended at the
ceiling. Due to its own weight and a mass M which is appended at its lower
end, the rope will suffer an elastic deformation. Its length in the undeformed
state is L. For 0 ≤ � ≤ L, design the variable radius r(�) within the limits
0 ≤ r(�) ≤ R such that the appended mass M sinks by δ at most and such
that the weight of the rope is minimal.

Problem 9: Optimal flying maneuver

An aircraft flies in a horizontal plane at a constant speed v. Its lateral
acceleration can be controlled within certain limits. The goal is to fly over a
reference point (target) in any direction and as soon as possible.

The problem is stated most easily in an earth-fixed coordinate system (see
Fig. 1.1). For convenience, the reference point is chosen at x = y = 0. The
limitation of the lateral acceleration is expressed in terms of a limited angular
turning rate u(t) = ϕ̇(t) with |u(t)| ≤ 1.

�

�

�

target

�

aircraft

x(t)

y(t) �
�

�
��v

........

........

........
.........
.........
..........
...........

.........�
ϕ(t)

Fig. 1.1. Optimal flying maneuver described in earth-fixed coordinates.
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12 1 Introduction

Find a piecewise continuous turning rate u : [0, tb] → [−1, 1] such that the
dynamic system ⎡⎣ ẋ(t)

ẏ(t)
ϕ̇(t)

⎤⎦ =

⎡⎣ v cos ϕ(t)
v sin ϕ(t)

u(t)

⎤⎦
is transferred from the initial state⎡⎣ x(0)

y(0)
ϕ(0)

⎤⎦ =

⎡⎣ xa

ya

ϕa

⎤⎦
to the partially specified final state⎡⎣ x(tb)

y(tb)
ϕ(tb)

⎤⎦ =

⎡⎣ 0
0

free

⎤⎦
and such that the cost functional

J(u) =
∫ tb

0

dt

is minimized.

Alternatively, the problem can be stated in a coordinate system which is fixed
to the body of the aircraft (see Fig. 1.2).

�

�

right�

aircraft

�

target

x1(t)

x2(t)
�

forward

v

Fig. 1.2. Optimal flying maneuver described in body-fixed coordinates.

This leads to the following alternative formulation of the optimal control
problem:

Find a piecewise continuous turning rate u : [0, tb] → [−1, 1] such that the
dynamic system[

ẋ1(t)
ẋ2(t)

]
=

[
x2(t)u(t)

− v − x1(t)u(t)

]
co

nt
ro

len
gin

ee
rs

.ir



1.2 Examples 13

is transferred from the initial state[
x1(0)
x2(0)

]
=

[
x1a

x2a

]
=

[ − xa sin ϕa + ya cos ϕa

− xa cos ϕa − ya sin ϕa

]
to the final state[

x1(tb)
x2(tb)

]
=

[
0
0

]
and such that the cost functional

J(u) =
∫ tb

0

dt

is minimized.

Problem 10: Time-optimal motion of a cylindrical robot

In this problem, the coordinated angular and radial motion of a cylindrical
robot in an assembly task is considered (Fig. 1.3). A component should be
grasped by the robot at the supply position and transported to the assembly
position in minimal time.

����������

����������

�

.....................
......

.....................
........

.....................
.........

.....................
..........

.............................................................................................
......
.....................

........
.....................

.........
.....................

..........
.................. .................. .................. ..................

θt

�������������
�

ma

θ0

�

mn

�M

���
F

..................................................................... �
ϕ, ϕ̇

����
�����

r, ṙ
r0

Fig. 1.3. Cylindrical robot with the angular motion ϕ and the radial motion r.

State variables:
x1 = r = radial position

x2 = ṙ = radial velocity

x3 = ϕ = angular position

x4 = ϕ̇ = angular velocity
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14 1 Introduction

control variables:
u1 = F = radial actuator force

u2 = M = angular actuator torque

subject to the constraints

|u1| ≤ Fmax and |u2| ≤ Mmax, hence

Ω = [−Fmax, Fmax] × [−Mmax, Mmax] .

The optimal control problem can be stated as follows:

Find a piecewise continuous u : [0, tb] → Ω such that the dynamic system⎡⎢⎢⎣
ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
x2(t)

[u1(t)+(max1(t)+mn{r0+x1(t)})x2
4(t)]/(ma+mn)

x4(t)
[u2(t)−2(max1(t)+mn{r0+x1(t)})x2(t)x4(t)]/θtot(x1(t))

⎤⎥⎥⎦
where

θtot(x1(t)) = θt + θ0 + max2
1(t) + mn{r0+x1(t)}2

is transferred from the initial state⎡⎢⎣
x1(0)
x2(0)
x3(0)
x4(0)

⎤⎥⎦ =

⎡⎢⎣
ra

0
ϕa

0

⎤⎥⎦
to the final state⎡⎢⎣

x1(tb)
x2(tb)
x3(tb)
x4(tb)

⎤⎥⎦ =

⎡⎢⎣
rb

0
ϕb

0

⎤⎥⎦
and such that the cost functional

J(u) =
∫ tb

0

dt

is minimized.

This problem has been solved in [15].
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1.2 Examples 15

Problem 11: The LQ differential game problem

Find unconstrained controls u : [ta, tb] → Rmu and v : [ta, tb] → Rmv such
that the dynamic system

ẋ(t) = A(t)x(t) + B1(t)u(t) + B2v(t)

is transferred from the initial state

x(ta) = xa

to an arbitrary final state

x(tb) ∈ Rn

at the fixed final time tb and such that the quadratic cost functional

J(u, v) =
1
2
xT(tb)Fx(tb)

+
1
2

∫ tb

ta

(
xT(t)Q(t)x(t) + uT(t)u(t) − γ2vT(t)v(t)

)
dt

is simultaneously minimized with respect to u and maximized with respect
to v, when both of the players are allowed to use state-feedback control.

Remark: As in the LQ regulator problem, the penalty matrices F and Q(t)
are symmetric and positive-semidefinite.

This problem is analyzed in Chapter 4.2.

Problem 12: The homicidal chauffeur game

A car driver (denoted by “pursuer” P) and a pedestrian (denoted by “evader”
E) move on an unconstrained horizontal plane. The pursuer tries to kill the
evader by running him over. The game is over when the distance between
the pursuer and the evader (both of them considered as points) diminishes to
a critical value d. — The pursuer wants to minimize the final time tb while
the evader wants to maximize it.

The dynamics of the game are described most easily in an earth-fixed coor-
dinate system (see Fig. 1.4).

State variables: xp, yp, ϕp, and xe, ye.

Control variables: u ∼ ϕ̇p (“constrained motion”) and ve (“simple motion”).
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16 1 Introduction

�

�

�

P

xp

yp �
�

�
���

wp

........

........

........
.........
.........
..........
...........

..........�
ϕp

�

E

xe

ye �����
we

........

........
........
........	 ve

Fig. 1.4. The homicidal chauffeur game described in earth-fixed coordinates.

Equations of motion:

ẋp(t) = wp cos ϕp(t)

ẏp(t) = wp sin ϕp(t)

ϕ̇p(t) =
wp

R
u(t) |u(t)| ≤ 1

ẋe(t) = we cos ve(t) we < wp

ẏe(t) = we sin ve(t)

Alternatively, the problem can be stated in a coordinate system which is fixed
to the body of the car (see Fig. 1.5).

�

�

right�

P

�

E

x1

x2

�

front

wp

�
�
��	we........................


v

Fig. 1.5. The homicidal chauffeur game described in body-fixed coordinates.

This leads to the following alternative formulation of the differential game
problem:

State variables: x1 and x2.

Control variables: u ∈ [−1,+1] and v ∈ [−π, π].
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1.2 Examples 17

Using the coordinate transformation

x1 = (xe−xp) sin ϕp − (ye−yp) cos ϕp

x2 = (xe−xp) cos ϕp + (ye−yp) sin ϕp

v = ϕp − ve ,

the following model of the dynamics in the body-fixed coordinate system is
obtained:

ẋ1(t) =
wp

R
x2(t)u(t) + we sin v(t)

ẋ2(t) = − wp

R
x1(t)u(t) − wp + we cos v(t) .

Thus, the differential game problem can finally be stated in the following
efficient form:

Find two state-feedback controllers u(x1, x2) 
→ [−1,+1] and v(x1, x2) 
→
[−π,+π] such that the dynamic system

ẋ1(t) =
wp

R
x2(t)u(t) + we sin v(t)

ẋ2(t) = − wp

R
x1(t)u(t) − wp + we cos v(t)

is transferred from the initial state

x1(0) = x10

x2(0) = x20

to a final state with

x2
1(tb) + x2

2(tb) ≤ d2

and such that the cost functional

J(u, v) = tb

is minimized with respect to u(.) and maximized with respect to v(.).

This problem has been stipulated and partially solved in [21]. The complete
solution of the homicidal chauffeur problem has been derived in [28].
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18 1 Introduction

1.3 Static Optimization

In this section, some very basic facts of elementary calculus are recapitulated
which are relevant for minimizing a continuously differentiable function of
several variables, without or with side-constraints.

The goal of this text is to generalize these very simple necessary conditions
for a constrained minimum of a function to the corresponding necessary con-
ditions for the optimality of a solution of an optimal control problem. The
generalization from constrained static optimization to optimal control is very
straightforward, indeed. No “higher” mathematics is needed in order to de-
rive the theorems stated in Chapter 2.

1.3.1 Unconstrained Static Optimization

Consider a scalar function of a single variable, f : R → R. Assume that f is
at least once continuously differentiable when discussing the first-order neces-
sary condition for a minimum and at least k times continuously differentiable
when discussing higher-order necessary or sufficient conditions.

The following conditions are necessary for a local minimum of the function
f(x) at xo:

• f ′(xo) =
df(xo)

dx
= 0

• f �(xo) =
d�f(xo)

dx�
= 0 for � = 1, . . . , 2k−1

and f2k(xo) ≥ 0 where k = 1, or 2, or, . . . .

The following conditions are sufficient for a local minimum of the function
f(x) at xo:

• f ′(xo) =
df(xo)

dx
= 0 and f ′′(xo) > 0 or

• f �(xo) =
d�f(xo)

dx�
= 0 for � = 1, . . . , 2k−1

and f2k(xo) > 0 for a finite integer number k ≥ 1.

Nothing can be inferred from these conditions about the existence of a local
or a global minimum of the function f !

If the range of admissible values x is restricted to a finite, closed, and bounded
interval Ω = [a, b] ⊂ R, the following conditions apply:

• If f is continuous, there exists at least one global minimum.
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1.3 Static Optimization 19

• Either the minimum lies at the left boundary a, and the lowest non-
vanishing derivative is positive,
or
the minimum lies at the right boundary b, and the lowest non-vanishing
derivative is negative,
or
the minimum lies in the interior of the interval, i.e., a < xo < b, and the
above-mentioned necessary and sufficient conditions of the unconstrained
case apply.

Remark: For a function f of several variables, the first derivative f ′ general-
izes to the Jacobian matrix ∂f

∂x as a row vector or to the gradient ∇xf as a
column vector,

∂f

∂x
=

[
∂f

∂x1
, . . . ,

∂f

∂xn

]
, ∇xf =

(
∂f

∂x

)T

,

the second derivative to the Hessian matrix

∂2f

∂x2
=

⎡⎢⎢⎢⎢⎢⎣
∂2f

∂x2
1

. . .
∂2f

∂x1∂xn

...
...

∂2f

∂xn∂x1
. . .

∂2f

∂x2
n

⎤⎥⎥⎥⎥⎥⎦
and its positive-semidefiniteness, etc.

1.3.2 Static Optimization under Constraints

For finding the minimum of a function f of several variables x1, . . . , xn under
the constraints of the form gi(x1, . . . , xn) = 0 and/or gi(x1, . . . , xn) ≤ 0, for
i = 1, . . . , �, the method of Lagrange multipliers is extremely helpful.

Instead of minimizing the function f with respect to the independent vari-
ables x1, . . . , xn over a constrained set (defined by the functions gi), minimize
the augmented function F with respect to its mutually completely indepen-
dent variables x1, . . . , xn, λ1, . . . , λ�, where

F (x1, . . . , xn, λ1, . . . , λ�) = λ0f(x1, . . . , xn) +
�∑

i=1

λigi(x1, . . . , xn) .

Remarks:

• In shorthand, F can be written as F (x, λ) = λ0f(x) + λTg(x) with the
vector arguments x ∈ Rn and λ ∈ R�.
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20 1 Introduction

• Concerning the constant λ0, there are only two cases: it attains either
the value 0 or 1.

In the singular case, λ0 = 0. In this case, the � constraints uniquely de-
termine the admissible vector xo. Thus, the function f to be minimized
is not relevant at all. Minimizing f is not the issue in this case! Nev-
ertheless, minimizing the augmented function F still yields the correct
solution.

In the regular case, λ0 = 1. The � constraints define a nontrivial set of
admissible vectors x, over which the function f is to be minimized.

• In the case of equality side constraints: since the variables x1, . . . , xn,
λ1, . . . , λ� are independent, the necessary conditions of a minimum of the
augmented function F are

∂F

∂xi
= 0 for i = 1, . . . , n and

∂F

∂λj
= 0 for j = 1, . . . , � .

Obviously, since F is linear in λj , the necessary condition ∂F
∂λj

= 0 simply
returns the side constraint gi = 0.

• For an inequality constraint gi(x) ≤ 0, two cases have to be distinguished:
Either the minimum xo lies in the interior of the set defined by this
constraint, i.e., gi(xo) < 0. In this case, this constraint is irrelevant for the
minimization of f because for all x in an infinitesimal neighborhood of xo,
the strict inequality holds; hence the corresponding Lagrange multiplier
vanishes: λo

i = 0. This constraint is said to be inactive. — Or the
minimum xo lies at the boundary of the set defined by this constraint, i.e.,
gi(xo) = 0. This is almost the same as in the case of an equality constraint.
Almost, but not quite: For the corresponding Lagrange multiplier, we get
the necessary condition λo

i ≥ 0. This is the so-called “Fritz-John” or
“Kuhn-Tucker” condition [7]. This inequality constraint is said to be
active.

Example 1: Minimize the function f = x2
1−4x1+x2

2+4 under the constraint
x1 + x2 = 0 .

Analysis for λ0 = 1:

F (x1, x2, λ) = x2
1 − 4x1 + x2

2 + 4 + λx1 + λx2

∂F

∂x1
= 2x1 − 4 + λ = 0

∂F

∂x2
= 2x2 + λ = 0

∂F

∂λ
= x1 + x2 = 0 .
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1.3 Static Optimization 21

The optimal solution is:

xo
1 = 1

xo
2 = −1

λo = 2 .

Example 2: Minimize the function f = x2
1+x2

2 under the constraints 1−x1 ≤
0, 2 − 0.5x1 − x2 ≤ 0, and x1 + x2 − 4 ≤ 0 .

Analysis for λ0 = 1:

F (x1, x2, λ1, λ2, λ3) = x2
1 + x2

2

+ λ1(1−x1) + λ2(2−0.5x1−x2) + λ3(x1+x2−4)

∂F

∂x1
= 2x1 − λ1 − 0.5λ2 + λ3 = 0

∂F

∂x2
= 2x2 − λ2 + λ3 = 0

∂F

∂λ1
= 1 − x1

{
= 0 and λ1 ≥ 0
< 0 and λ1 = 0

∂F

∂λ2
= 2 − 0.5x1 − x2

{
= 0 and λ2 ≥ 0
< 0 and λ2 = 0

∂F

∂λ3
= x1 + x2 − 4

{
= 0 and λ3 ≥ 0
< 0 and λ3 = 0

The optimal solution is:

xo
1 = 1

xo
2 = 1.5

λo
1 = 0.5

λo
2 = 3

λo
3 = 0 .

The third constraint is inactive.co
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22 1 Introduction

1.4 Exercises

1. In all of the optimal control problems stated in this chapter, the control
constraint Ω is required to be a time-invariant set in the control space
Rm.

For the control of the forward motion of a car, the torque T (t) delivered
by the automotive engine is often considered as a control variable. It can
be chosen freely between a minimal torque and a maximal torque, both
of which are dependent upon the instantaneous engine speed n(t). Thus,
the torque limitation is described by

Tmin(n(t)) ≤ T (t) ≤ Tmax(n(t)) .

Since typically the engine speed is not constant, this constraint set for
the torque T (t) is not time-invariant.

Define a new transformed control variable u(t) for the engine torque such
that the constraint set Ω for u becomes time-invariant.

2. In Chapter 1.2, ten optimal control problems are presented (Problems
1–10). In Chapter 2, for didactic reasons, the general formulation of an
optimal control problem given in Chapter 1.1 is divided into the categories
A.1 and A.2, B.1 and B.2, C.1 and C.2, and D.1 and D.2. Furthermore, in
Chapter 2.1.6, a special form of the cost functional is characterized which
requests a special treatment.

Classify all of the ten optimal control problems with respect to these
characteristics.

3. Discuss the geometric aspects of the optimal solution of the constrained
static optimization problem which is investigated in Example 1 in Chapter
1.3.2.

4. Discuss the geometric aspects of the optimal solution of the constrained
static optimization problem which is investigated in Example 2 in Chapter
1.3.2.

5. Minimize the function f(x, y) = 2x2 + 17xy + 3y2 under the equality
constraints x − y = 2 and x2 + y2 = 4.co
nt
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2 Optimal Control

In this chapter, a set of necessary conditions for the optimality of a solution of
an optimal control problem is derived using the calculus of variations. This
set of necessary conditions is known by the name “Pontryagin’s Minimum
Principle” [29]. Exploiting Pontryagin’s Minimum Principle, several optimal
control problems are solved completely.

Solving an optimal control problem using Pontryagin’s Minimum Principle
typically proceeds in the following (possibly iterative) steps:

• Formulate the optimal control problem.

• Existence: Determine whether the problem can have an optimal solution.

• Formulate all of the necessary conditions of Pontryagin’s Minimum Prin-
ciple.

• Globally minimize the Hamiltonian function H:
uo(xo(t), λo(t), λo

0, t)=arg minu∈ΩH(xo(t), u, λo(t), λo
0, t) for all t∈ [ta, tb].

• Singularity: Determine whether the problem can have a singular solution.
There are two scenarios for a singularity:
a) λo

0 = 0 ?
b) H �= H(u) for t ∈ [t1, t2] ? (See Chapter 2.6.)

• Solve the two-point boundary value problem for xo(·) and λo(·) .

• Eliminate locally optimal solutions which are not globally optimal.

• If possible, convert the resulting optimal open-loop control uo(t) into an
optimal closed-loop control uo(xo(t), t) using state feedback.

Of course, having the optimal control law in a feedback form rather than in
an open-loop form is advantageous in practice. In Chapter 3, a method is pre-
sented for designing closed-loop control laws directly in one step. It involves
solving the so-called Hamilton-Jacobi-Bellman partial differential equation.

For didactic reasons, the optimal control problem is categorized into several
types. In a problem of Type A, the final state is fixed: xo(tb) = xb. In a
problem of Type C, the final state is free. In a problem of Type B, the final
state is constrained to lie in a specified target set S. — The Types A and
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24 2 Optimal Control

B are special cases of the Type C: For Type A: S = {xb} and for Type C:
S = Rn.

The problem Type D generalizes the problem Type B to the case where there
is an additional state constraint of the form xo(t) ∈ Ωx(t) at all times.

Furthermore, each of the four problem types is divided into two subtypes
depending on whether the final time tb is fixed or free (i.e., to be optimized).

2.1 Optimal Control Problems with a Fixed Final State

In this section, Pontryagin’s Minimum Principle is derived for optimal control
problems with a fixed final state (and no state constraints). The method of
Lagrange multipliers and the calculus of variations are used.

Furthermore, two “classics” are presented in detail: the time-optimal and the
fuel-optimal frictionless horizontal motion of a mass point.

2.1.1 The Optimal Control Problem of Type A

Statement of the optimal control problem:

Find a piecewise continuous control u : [ta, tb] → Ω ⊆ Rm, such that the
constraints

x(ta) = xa

ẋ(t) = f(x(t), u(t), t) for all t ∈ [ta, tb]

x(tb) = xb

are satisfied and such that the cost functional

J(u) = K(tb) +
∫ tb

ta

L(x(t), u(t), t) dt

is minimized;

Subproblem A.1: tb is fixed (and K(tb) = 0 is suitable),

Subproblem A.2: tb is free (tb > ta).

Remark: ta, xa ∈ Rn, xb ∈ Rn are specified; Ω ⊆ Rm is time-invariant.co
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2.1 Type A: Fixed Final State 25

2.1.2 Pontryagin’s Minimum Principle

Definition: Hamiltonian function H : Rn × Ω × Rn × {0, 1} × [ta, tb] → R ,

H(x(t), u(t), λ(t), λ0, t) = λ0L(x(t), u(t), t) + λT(t)f(x(t), u(t), t) .

Theorem A

If the control uo : [ta, tb] → Ω is optimal, then there exists a nontrivial vector[
λo

0

λo(tb)

]
�= 0 ∈ Rn+1 with λo

0 =
{

1 in the regular case
0 in the singular case,

such that the following conditions are satisfied:

a) ẋo(t) = ∇λH|o = f(xo(t), uo(t), t)

xo(ta) = xa

xo(tb) = xb

λ̇o(t) = −∇xH|o = −λo
0∇xL(xo(t), uo(t), t) −

[
∂f

∂x
(xo(t), uo(t), t)

]T
λo(t) .

b) For all t ∈ [ta, tb], the Hamiltonian H(xo(t), u, λo(t), λo
0, t) has a global

minimum with respect to u ∈ Ω at u = uo(t), i.e.,

H(xo(t), uo(t), λo(t), λo
0, t) ≤ H(xo(t), u, λo(t), λo

0, t)
for all u ∈ Ω and all t ∈ [ta, tb].

c) Furthermore, if the final time tb is free (Subproblem A.2):

H(xo(tb), uo(tb), λo(tb), λo
0, tb) = −λo

0

∂K

∂t
(tb) .

2.1.3 Proof

According to the philosophy of the Lagrange multiplier method, the n-vector
valued Lagrange multipliers λa, λb, and λ(t), for t = ta, . . . , tb, and the scalar
Lagrange multiplier λ0 are introduced. The latter either attains the value 1
in the regular case or the value 0 in the singular case. With these multipliers,
the constraints of the optimal control problem can be adjoined to the original
cost functional.

This leads to the following augmented cost functional:

J = λ0K(tb) +
∫ tb

ta

[
λ0L(x(t), u(t), t) + λ(t)T{f(x(t), u(t), t) − ẋ}] dt

+ λT
a {xa − x(ta)} + λT

b {xb − x(tb)} .
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26 2 Optimal Control

Introducing the Hamiltonian function

H(x(t), u(t), λ(t), λ0, t) = λ0L(x(t), u(t), t) + λ(t)Tf(x(t), u(t), t)

and dropping the notation of all of the independent variables allows us to
write the augmented cost functional in the following rather compact form:

J = λ0K(tb) +
∫ tb

ta

[
H − λTẋ

]
dt

+ λT
a {xa − x(ta)} + λT

b {xb − x(tb)} .

According to the philosophy of the Lagrange multiplier method, the aug-
mented cost functional J has to be minimized with respect to all of its mu-
tually independent variables x(ta), x(tb), λa, λb, and u(t), x(t), and λ(t) for
all t ∈ (ta, tb), as well as tb (if the final time is free). The two cases λ0 = 1
and λ0 =0 have to be considered separately.

Suppose that we have found the optimal solution xo(ta), xo(tb), λo
a, λo

b , λo
0,

and uo(t) (satisfying uo(t) ∈ Ω), xo(t), and λo(t) for all t ∈ (ta, tb), as well
as tb (if the final time is free).

The rules of differential calculus yield the following first differential δJ of
J(uo) around the optimal solution:

δJ =

[
λ0

∂K

∂t
+ H − λTẋ

]
tb

δtb

+
∫ tb

ta

[
∂H

∂x
δx +

∂H

∂u
δu +

∂H

∂λ
δλ − δλTẋ − λTδẋ

]
dt

+ δλT
a {xa − x(ta)} − λT

a δx(ta)

+ δλT
b {xb − x(tb)} − λT

b (δx + ẋδtb)tb
.

Since we have postulated a minimum of the augmented function at J(uo),
this first differential must satisfy the inequality

δJ ≥ 0

for all admissible variations of the independent variables. All of the variations
of the independent variables are unconstrained, with the exceptions that δu(t)
is constrained to the tangent cone of Ω at uo(t), i.e.,

δu(t) ∈ T (Ω, uo(t)) for all t ∈ [ta, tb] ,

such that the control constraint u(t)∈Ω is not violated, and

δtb = 0

if the final time is fixed (Problem Type A.1).
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2.1 Type A: Fixed Final State 27

However, it should be noted that δẋ(t) corresponds to δx(t) differentiated
with respect to time t. In order to remove this problem, the term

∫
λTδẋ dt

is integrated by parts. Thus, δẋ(t) will be replaced by δx(t) and λ(t) by λ̇(t).
This yields

δJ =

[
λ0

∂K

∂t
+ H − λTẋ

]
tb

δtb − (
λTδx

)
tb

+
(
λTδx

)
ta

+
∫ tb

ta

[
∂H

∂x
δx +

∂H

∂u
δu +

∂H

∂λ
δλ − δλTẋ + λ̇Tδx

]
dt

+ δλT
a {xa − x(ta)} − λT

a δx(ta)

+ δλT
b {xb − x(tb)} − λT

b (δx + ẋδtb)tb

=

[
λ0

∂K

∂t
+ H

]
tb

δtb

+
∫ tb

ta

[(
∂H

∂x
+ λ̇T

)
δx +

∂H

∂u
δu +

(
∂H

∂λ
− ẋT

)
δλ

]
dt

+ δλT
a {xa − x(ta)} +

(
λT(ta) − λT

a

)
δx(ta)

+ δλT
b {xb − x(tb)} −

(
λT(tb) + λT

b

)
(δx + ẋδtb)tb

≥ 0 for all admissible variations.

According to the philosophy of the Lagrange multiplier method, this inequal-
ity must hold for arbitrary combinations of the mutually independent vari-
ations δtb, and δx(t), δu(t), δλ(t) at any time t ∈ [ta, tb], and δλa, δx(ta),
and δλb. Therefore, this inequality must be satisfied for a few very specially
chosen combinations of these variations as well, namely where only one single
variation is nontrivial and all of the others vanish.

The consequence is that all of the factors multiplying a differential must
vanish.

There are two exceptions:

1) If the final time tb is fixed, the final time must not be varied; therefore,
the first bracketed term must only vanish if the final time is free.

2) If the optimal control uo(t) at time t lies in the interior of the control
constraint set Ω, then the factor ∂H/∂u must vanish (and H must have a
local minimum). If the optimal control uo(t) at time t lies on the bound-
ary ∂Ω of Ω, then the inequality must hold for all δu(t) ∈ T (Ω, uo(t)).
However, the gradient ∇uH need not vanish. Rather, −∇uH is restricted
to lie in the normal cone T ∗(Ω, uo(t)), i.e., again, the Hamiltonian must
have a (local) minimum at uo(t).
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28 2 Optimal Control

This completes the proof of Theorem A.

Notice that there are no conditions for λa and λb. In other words, the bound-
ary conditions λo(ta) and λo(tb) of the optimal “costate” λo(.) are free.

Remark: The calculus of variations only requests the local minimization of
the Hamiltonian H with respect to the control u. — In Theorem A, the
Hamiltonian is requested to be globally minimized over the admissible set Ω.
This restriction is justified in Chapter 2.2.1.

2.1.4 Time-Optimal, Frictionless,
Horizontal Motion of a Mass Point

Statement of the optimal control problem:

See Chapter 1.2, Problem 1, p. 5. — Since there is no friction and the final
time tb is not bounded, any arbitrary final state can be reached. There exists
a unique optimal solution.

Using the cost functional J(u) =
∫ tb

0
dt leads to the Hamiltonian function

H = λ0 + λ1(t)x2(t) + λ2(t)u(t) .

Pontryagin’s necessary conditions for optimality:

If uo : [0, tb] → [−amax, amax] is the optimal control and tb the optimal final
time, then there exists a nontrivial vector⎡⎣ λo

0

λo
1(tb)

λo
2(tb)

⎤⎦ �=
⎡⎣ 0

0
0

⎤⎦ ,

such that the following conditions are satisfied:

a) Differential equations and boundary conditions:

ẋo
1(t) = xo

2(t)

ẋo
2(t) = uo(t)

λ̇o
1(t) = − ∂H

∂x1

= 0

λ̇o
2(t) = − ∂H

∂x2

= −λo
1(t)

xo
1(0) = sa

xo
2(0) = va

xo
1(tb) = sb

xo
2(tb) = vb .
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2.1 Type A: Fixed Final State 29

b) Minimization of the Hamiltonian function:

H(xo
1(t), x

o
2(t), u

o(t), λo
1(t), λ

o
2(t), λ

o
0) ≤ H(xo

1(t), x
o
2(t), u, λo

1(t), λ
o
2(t), λ

o
0)

for all u ∈ Ω and all t ∈ [0, tb]

and hence
λo

2(t)u
o(t) ≤ λo

2(t)u
for all u ∈ Ω and all t ∈ [0, tb] .

c) At the optimal final time tb:

H(tb) = λo
0 + λo

1(tb)x
o
2(tb) + λo

2(tb)u
o(tb) = 0 .

Minimizing the Hamiltonian function yields the following preliminary control
law:

uo(t) =

⎧⎪⎨⎪⎩
+amax for λo

2(t) < 0
u ∈ Ω for λo

2(t) = 0
−amax for λo

2(t) > 0 .

Note that for λo
2(t) = 0, every admissible control u ∈ Ω minimizes the Hamil-

tonian function.

Claim: The function λo
2(t) has only isolated zeros, i.e., it cannot vanish on

some interval [a, b] with b > a.

Proof: The assumption λo
2(t) ≡ 0 leads to λ̇o

2(t) ≡ 0 and λo
1(t) ≡ 0. From the

condition c at the final time tb,

H(tb) = λo
0 + λo

1(tb)x
o
2(tb) + λo

2(tb)u
o(tb) = 0 ,

it follows that λo
0 = 0 as well. — This contradiction with the nontriviality

condition of Pontryagin’s Minimum Principle proves the claim.

Therefore, we arrive at the following control law:

uo(t) = −amax sign{λo
2(t)} =

⎧⎪⎨⎪⎩
+amax for λo

2(t) < 0

0 for λo
2(t) = 0

−amax for λo
2(t) > 0 .

Of course, assigning the special value uo(t) = 0 when λo
2(t) = 0 is arbitrary

and has no special consequences.
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30 2 Optimal Control

Plugging this control law into the differential equation of xo
2 results in the

two-point boundary value problem

ẋo
1(t) = xo

2(t)

ẋo
2(t) = −amax sign{λo

2(t)}
λ̇o

1(t) = 0

λ̇o
2(t) = −λo

1(t)

xo
1(0) = sa

xo
2(0) = va

xo
1(tb) = sb

xo
2(tb) = vb ,

which needs to be solved. — Note that there are four differential equations
with two boundary conditions at the initial time 0 and two boundary condi-
tions at the (unknown) final time tb.

The differential equations for the costate variables λo
1(t) and λo

2(t) imply that
λo

1(t) ≡ co
1 is constant and that λo

2(t) is an affine function of the time t:

λo
2(t) = −co

1t + co
2 .

The remaining problem is finding the optimal values (co
1, c

o
2) �=(0, 0) such that

the two-point boundary value problem is solved.

Obviously, the optimal open-loop control has the following features:

• Always, |uo(t)| ≡ amax, i.e., there is always full acceleration or decelera-
tion. This is called “bang-bang” control.

• The control switches at most once from −amax to +amax or from +amax

to −amax, respectively.

Knowing this simple structure of the optimal open-loop control, it is almost
trivial to find the equivalent optimal closed-loop control with state feedback:

For a constant acceleration uo(t) ≡ a (where a is either +amax or −amax),
the corresponding state trajectory for t > τ is described in the parametrized
form

xo
2(t) = xo

2(τ) + a(t − τ)

xo
1(t) = xo

1(τ) + xo
2(τ)(t − τ) +

a

2
(t − τ)2

or in the implicit form

xo
1(t) − xo

1(τ) =
xo

2(τ)
a

(
xo

2(t) − xo
2(τ)

)
+

1
2a

(
xo

2(t) − xo
2(τ)

)2

.
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2.1 Type A: Fixed Final State 31

In the state space (x1, x2) which is shown in Fig. 2.1, these equations define a
segment on a parabola. The axis of the parabola coincides with the x1 axis.
For a positive acceleration, the parabola opens to the right and the state
travels upward along the parabola. Conversely, for a negative acceleration,
the parabola opens to the left and the state travels downward along the
parabola.

The two parabolic arcs for −amax and +amax which end in the specified final
state (sb, vb) divide the state space into two parts (“left” and “right”).

The following optimal closed-loop state-feedback control law should now be
obvious:

• uo(x1, x2) ≡ +amax for all (x1, x2) in the open left part,

• uo(x1, x2) ≡ −amax for all (x1, x2) in the open right part,

• uo(x1, x2) ≡ −amax for all (x1, x2) on the left parabolic arc which ends
at (sb, vb), and

• uo(x1, x2) ≡ +amax for all (x1, x2) on the right parabolic arc which ends
at (sb, vb).
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Fig. 2.1. Optimal feedback control law for the time-optimal motion.
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32 2 Optimal Control

2.1.5 Fuel-Optimal, Frictionless,
Horizontal Motion of a Mass Point

Statement of the optimal control problem:

See Chapter 1.2, Problem 3, p. 6. — This problem has no solution, if the
fixed final time tb is too small, i.e., if the required transfer of the plant from
the initial state (sa, va) to the final state (sb, vb) is not possible in time. If
the final time is sufficiently large, there exists at least one optimal solution.

Hamiltonian function:

H = |u(t)| + λ1(t)x2(t) + λ2(t)u(t) in the regular case with λo
0 = 1

H = λ1(t)x2(t) + λ2(t)u(t) in the singular case with λo
0 = 0 .

Pontryagin’s necessary conditions for optimality:

If uo : [0, tb] → [−amax, amax] is an optimal control, then there exists a
nontrivial vector ⎡⎣ λo

0

λo
1(tb)

λo
2(tb)

⎤⎦ �=
⎡⎣ 0

0
0

⎤⎦ ,

such that the following conditions are satisfied:

a) Differential equations and boundary conditions:

ẋo
1(t) = xo

2(t)

ẋo
2(t) = uo(t)

λ̇o
1(t) = − ∂H

∂x1

= 0

λ̇o
2(t) = − ∂H

∂x2

= −λo
1(t)

xo
1(0) = sa

xo
2(0) = va

xo
1(tb) = sb

xo
2(tb) = vb .

b) Minimization of the Hamiltonian function:

H(xo
1(t), x

o
2(t), u

o(t), λo
1(t), λ

o
2(t), λ

o
0) ≤ H(xo

1(t), x
o
2(t), u, λo

1(t), λ
o
2(t), λ

o
0)

for all u ∈ Ω and all t ∈ [0, tb]

and hence
λo

0|uo(t)| + λo
2(t)u

o(t) ≤ λo
0|u| + λo

2(t)u
for all u ∈ Ω and all t ∈ [0, tb] .
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2.1 Type A: Fixed Final State 33

Minimizing the Hamiltonian function yields the following control law:

in the regular case with λo
0 = 1:

uo(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+amax for λo
2(t) < −1

u ∈ [0, amax] for λo
2(t) = −1

0 for λo
2(t) ∈ (−1,+1)

u ∈ [−amax, 0] for λo
2(t) = +1

−amax for λo
2(t) > +1

and in the singular case with λo
0 = 0:

uo(t) =

⎧⎪⎨⎪⎩
+amax for λo

2(t) < 0
0 for λo

2(t) = 0
−amax for λo

2(t) > 0 .

From the analysis of Problem 1 in Chapter 2.1.4, we already know that λo
2(t)

can only have a zero at a discrete time in the singular case. Therefore,
assigning uo(t)=0 for λo

2(t)=0 is acceptable.

Again, the differential equations for the costate variables λo
1(t) and λo

2(t)
imply that λo

1(t) ≡ co
1 is constant and that λo

2(t) is an affine function of the
time t:

λo
2(t) = −co

1t + co
2 .

Clearly, for co
1 �= 0, the costate variable λo

2(t) can only attain the values +1
and −1 at one discrete time, each. In this, case we may arbitrarily assign
uo(t)=0 for λo

2(t)= ±1. — However, there are constellations concerning the
initial state (sa, va) and the final state (sb, vb), where λo

2(t)≡−1 or λo
2(t)≡+1

is necessary.

Remarks:

• The singular case with λo
0 =0 is only necessary, if the final time tb corre-

sponds to the final time tb,min of the time-optimal case and if the optimal
control needs to switch. In this case, the optimal control law is:

uo(λo
2(t)) = −amax sign{λo

2(t)} .

• In all other cases, we have λ0
0 = 1.

• If tb > tb,min, there are cases where λo
2(t) ≡ −1 or λo

2(t) ≡ +1 is necessary.
Then, there are infinitely many optimal solutions. They are characterized
by the fact that only acceleration or deceleration occurs in order to arrive
at the specified terminal state in time.
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• In the remaining (more general) cases with tb > tb,min, we obtain the
following optimal control law with co

1 �=0:

uo(λo
2(t)) =

⎧⎪⎨⎪⎩
+amax for λo

2(t) < −1
0 for λo

2(t) ∈ [−1, 1]
−amax for λo

2(t) > +1 .

The resulting two-point boundary value problem

ẋo
1(t) = xo

2(t)

ẋo
2(t) = uo{λo

2(t)}
λo

1(t) ≡ co
1

λo
2(t) = co

2 − co
1t

xo
1(0) = sa

xo
2(0) = va

xo
1(tb) = sb

xo
2(tb) = vb

remains to be solved by finding the optimal values co
1 and co

2.

In the general case, where the optimal solution is unique, it has the following
features:

• Always, |uo(t)| ≡ amax or 0, i.e., there is always full acceleration, or full
deceleration, or the speed x2 is constant. This may be call “boost-sustain-
boost” control.

• The control switches at most once each from −amax to 0 and from 0 to
+amax, or from +amax to 0 and from 0 to −amax, respectively.

• In the state space (x1, x2), the optimal trajectory consists at most of one
parabolic arc with uo ≡ ±amax, and one parabolic arc with uo ≡ ∓amax,
and a straight line parallel to the x1 axis in-between (see Fig. 2.2).

• In the singular case, the fuel-optimal trajectory degenerates to the time-
optimal one. The middle straight-line section with uo ≡ 0 vanishes.

The construction of the fuel-optimal state trajectory proceeds as follows:
First, choose the pair of parabolic arcs starting at the initial state (sa, va)
and ending at the final state (sb, vb), respectively, which corresponds to the
time-optimal motion (see Fig. 2.1). Then, choose the straight-line section
between these two parabolic arcs, such that the moving state (x1, x2) arrives
at the final state (sb, vb) just in time.
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Fig. 2.2. Optimal feedback control law for the fuel-optimal motion.

2.2 Some Fine Points

2.2.1 Strong Control Variation and
Global Minimization of the Hamiltonian

In Chapter 2.1.3, we have derived the necessary condition that the Hamilton-
ian function H must have a local minimum with respect to u at uo(t) for all
t ∈ [ta, tb] because we have considered a “weak” variation δu(·) which is small
in the function space L∞

m (ta, tb) and which contributes a small variation∫ tb

ta

∂H

∂u
δu dt

to the differential δJ .

Alternatively, we may consider a “strong” variation δu[u, τ, δτ ](·) of the form

δu[u, τ, δτ ](t) =

⎧⎨⎩
0 for t < τ , τ ∈ (ta, tb)
u − uo(t) for τ ≤ t < τ + δτ , u ∈ Ω
0 for τ + δτ ≤ t ≤ tb

which is small in the function space L1
m(ta, tb). Its contribution to the differ-

ential δJ ≥ 0 is:(
H(xo(τ), u, λo(τ), λo

0, τ) − H(xo(τ), uo(τ), λo(τ), λo
0, τ)

)
δτ .

Since this contribution must be non-negative for all u∈Ω and for all τ ∈ [ta, tb)
and since δτ ≥ 0, it follows that the Hamiltonian function must be globally
minimized, as formulated in Theorem A.
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36 2 Optimal Control

2.2.2 Evolution of the Hamiltonian

Consider the value of the Hamiltonian function along an optimal trajectory
according to the time-varying function Ho : [ta, tb] → R:

Ho(t) = H(xo(t), uo(t), λo(t), λo
0, t) .

Its total derivative with respect to the time t is:

dHo(t)
dt

=
∂H|o
∂x

ẋo(t) +
∂H|o
∂λ

λ̇o(t) +
∂H|o
∂u

u̇o(t) +
∂H|o
∂t

.

According to Pontryagin’s Minimum Principle, the first two terms cancel.
The third term vanishes due to the minimization of the Hamiltonian function.
This is true, even if uo(t) lies on the boundary ∂Ω of the control constraint
set Ω, because the latter is time-invariant and because the gradient ∇uH|o
is transversal to ∂Ω, i.e., −∇uH|o lies in the normal cone T ∗(Ω, uo(t)) of the
tangent cone T (Ω, uo(t)) of Ω at uo(t).

Therefore, the total derivative of the Hamiltonian function along an optimal
trajectory is identical to its partial derivative:

dHo(t)
dt

=
∂H

∂t
(xo(t), uo(t), λo(t), λo

0, t) .

In the special case of a time-invariant optimal control problem, this leads to:

H ≡ constant if the final time tb is fixed,

H ≡ 0 if the final time tb is free.

These facts are trivial. But sometimes, they are useful in the analysis of
singular optimal control problems (see Chapter 2.6) or for the investigation
of jump discontinuities of the optimal solution (see Chapter 2.5.4).

2.2.3 Special Case: Cost Functional J(u) = ± xi(tb)

In the formulation of the most general optimal control problem in Chap-
ter 1.1, it has been implicitly assumed that the integrand L(x, u, t) of the
cost functional is not identical to any of the functions fi(x, u, t) of the vector
function f(x, u, t) in the state differential equation.

However, if the cost functional is of the form

J(u) = xi(tb) =
∫ tb

ta

fi(x(t), u(t), t) dt ,
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this assumption is violated. In this case, the standard problem statement is
devious in the sense that the nontriviality condition[

λo
0

λo(tb)

]
�= 0 ∈ Rn+1

of Pontryagin’s Minimum Principle is useless: The forbidden situation

λ0 = λ1(tb) = . . . = λi(tb) = . . . = λn(tb) = 0

is equivalent to the seemingly acceptable situation

λ0 = 1

λi(tb) = −1

λj(tb) = 0 for all j �= i .

Problem solving technique for J(u) = xi(tb):

The additional Lagrange multiplier λ0 for the cost functional is no longer
needed. The correct Hamiltonian function in this case is: H : Rn ×Ω×Rn ×
[ta, tb] → Rn,

H(x(t), u(t), λ(t), t) = λT(t)f(x(t), u(t), t) .

The obvious new nontriviality condition is:

λo(tb) �= 0 ∈ Rn with λo
i (tb) = 1 or 0 .

Problem solving technique for J(u) = −xi(tb):

The minimization of −xi(tb) is equivalent to the maximization of xi(tb).
Therefore, there are two routes: Either we minimize J(u) = −xi(tb) and
use Pontryagin’s Minimum Principle, or we maximize J(u)=xi(tb) and use
Pontryagin’s Maximum Principle, i.e., we globally maximize the Hamiltonian
function rather than minimizing it.

For more details and for a highly rigorous treatment of optimal control prob-
lems with a cost functional of the form J(u) = x1(tb), the reader is referred
to [20]. — See also Chapter 1.2, Problem 4 and Chapter 2.8.4.co
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38 2 Optimal Control

2.3 Optimal Control Problems with a Free Final State

In this section, Pontryagin’s Minimum Principle is derived for optimal control
problems with a completely unspecified final state (and no state constraints).
For illustration, the LQ regulator problem is solved.

2.3.1 The Optimal Control Problem of Type C

Statement of the optimal control problem:

Find a piecewise continuous control u : [ta, tb] → Ω ⊆ Rm, such that the
constraints

x(ta) = xa

ẋ(t) = f(x(t), u(t), t) for all t ∈ [ta, tb]

are satisfied and such that the cost functional

J(u) = K(x(tb), tb) +
∫ tb

ta

L(x(t), u(t), t) dt

is minimized;

Subproblem C.1: tb is fixed,

Subproblem C.2: tb is free (tb > ta).

Remark: ta, xa ∈ Rn are specified; Ω ⊆ Rm is time-invariant.

2.3.2 Pontryagin’s Minimum Principle

Definition: Hamiltonian function H : Rn × Ω × Rn × [ta, tb] → R ,

H(x(t), u(t), λ(t), t) = L(x(t), u(t), t) + λT(t)f(x(t), u(t), t) .

Note: For the problem of Type C, the singular case with λo
0 =0 cannot occur.

Theorem C

If the control uo : [ta, tb] → Ω is optimal, then the following conditions are
satisfied:

a) ẋo(t) = ∇λH|o = f(xo(t), uo(t), t)

xo(ta) = xa

λ̇o(t) = −∇xH|o = −∇xL(xo(t), uo(t), t) −
[

∂f

∂x
(xo(t), uo(t), t)

]T
λo(t)

λo(tb) = ∇xK(xo(tb), tb) .
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2.3 Type C: Free Final State 39

b) For all t ∈ [ta, tb] the Hamiltonian H(xo(t), u, λo(t), t) has a global mini-
mum with respect to u ∈ Ω at u = uo(t), i.e.,

H(xo(t), uo(t), λo(t), t) ≤ H(xo(t), u, λo(t), t)
for all u ∈ Ω and all t ∈ [ta, tb].

c) Furthermore, if the final time tb is free (Subproblem C.2):

H(xo(tb), uo(tb), λo(tb), tb) = −∂K

∂t
(xo(tb), tb) .

2.3.3 Proof

Proving Theorem C proceeds in complete analogy to the proof of Theorem A
given in Chapter 2.1.3.

Since singularity with λo
0 = 0 cannot occur in optimal control problems of

Type C, the augmented cost functional is:

J = K(x(tb), tb) +
∫ tb

ta

[
L(x, u, t) + λ(t)T{f(x, u, t) − ẋ}]dt + λT

a {xa − x(ta)}

= K(x(tb), tb) +
∫ tb

ta

[
H − λTẋ

]
dt + λT

a {xa − x(ta)} ,

where H = H(x, u, λ, t) = L(x, u, t) + λTf(x, u, t) is the Hamiltonian func-
tion.

According to the philosophy of the Lagrange multiplier method, the aug-
mented cost functional J has to be minimized with respect to all of its mu-
tually independent variables x(ta), λa, x(tb), and u(t), x(t), and λ(t) for all
t ∈ (ta, tb), as well as tb (if the final time is free).

Suppose, we have found the optimal solution xo(ta), λo
a, xo(tb), and uo(t)

(satisfying uo(t) ∈ Ω), xo(t), and λo(t) for all t ∈ (ta, tb), as well as tb (if the
final time is free).

The following first differential δJ of J(uo) around the optimal solution is
obtained (for details of the analysis, consult Chapter 2.1.3):

δJ =

[(
∂K

∂x
− λT

)
(δx + ẋδtb)

]
tb

+

[
∂K

∂t
+ H

]
tb

δtb

+
∫ tb

ta

[(
∂H

∂x
+ λ̇T

)
δx +

∂H

∂u
δu +

(
∂H

∂λ
− ẋT

)
δλ

]
dt

+ δλT
a {xa − x(ta)} +

(
λT(ta) − λT

a

)
δx(ta) .
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40 2 Optimal Control

Since we have postulated a minimum of the augmented function at J(uo),
this first differential must satisfy the inequality

δJ ≥ 0

for all admissible variations of the independent variables. All of the variations
of the independent variables are unconstrained, with the exceptions that δu(t)
is constrained to the tangent cone of Ω at uo(t), i.e.,

δu(t) ∈ T (Ω, uo(t)) for all t ∈ [ta, tb] ,

such that the control constraint u(t)∈Ω is not violated, and

δtb = 0

if the final time is fixed (Problem Type C.1).

According to the philosophy of the Lagrange multiplier method, this inequal-
ity must hold for arbitrary combinations of the mutually independent varia-
tions δtb, and δx(t), δu(t), δλ(t) at any time t ∈ (ta, tb), and δλa, δx(ta), and
δx(tb). Therefore, this inequality must be satisfied for a few very specially
chosen combinations of these variations as well, namely where only one single
variation is nontrivial and all of the others vanish.

The consequence is that all of the factors multiplying a differential must
vanish.

There are two exceptions:

1) If the final time is fixed, it must not be varied; therefore, the second
bracketed term must only vanish if the final time is free.

2) If the optimal control uo(t) at time t lies in the interior of the control
constraint set Ω, then the factor ∂H/∂u must vanish (and H must have a
local minimum). If the optimal control uo(t) at time t lies on the bound-
ary ∂Ω of Ω, then the inequality must hold for all δu(t) ∈ T (Ω, uo(t)).
However, the gradient ∇uH need not vanish. Rather, −∇uH is restricted
to lie in the normal cone T ∗(Ω, uo(t)), i.e., again, the Hamiltonian must
have a (local) minimum at uo(t).

This completes the proof of Theorem C.

Notice that there is no condition for λa. In other words, the boundary con-
dition λo(ta) of the optimal costate λo(.) is free.

Remark: The calculus of variations only requests the local minimization of
the Hamiltonian H with respect to the control u. — In Theorem C, the
Hamiltonian is requested to be globally minimized over the admissible set Ω.
This restriction is justified in Chapter 2.2.1.
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2.3 Type C: Free Final State 41

2.3.4 The LQ Regulator Problem

Statement of the optimal control problem:

See Chapter 1.2, Problem 5, p. 8. — This problem has a unique optimal
solution (see Chapter 2.7, Theorem 1).

Hamiltonian function:

H =
1
2
xT(t)Q(t)x(t) +

1
2
uT(t)R(t)u(t) + λT(t)A(t)x(t) + λT(t)B(t)u(t) .

Pontryagin’s necessary conditions for optimality:

If uo : [ta, tb] → Rm is the optimal control, then the following conditions are
satisfied:

a) Differential equations and boundary conditions:

ẋo(t) = ∇λH = A(t)xo(t) + B(t)uo(t)

λ̇o(t) = −∇xH = − Q(t)xo(t) − AT(t)λo(t)

xo(ta) = xa

λo(tb) = ∇xK = Fxo(tb) .

b) Minimization of the Hamiltonian function:

H(xo(t), uo(t), λo(t), t) ≤ H(xo(t), u, λo(t), t)
for all u ∈ Rm and all t ∈ [ta, tb]

and hence
∇uH = R(t)uo(t) + BT(t)λo(t) = 0 .

Minimizing the Hamiltonian function yields the following optimal open-loop
control law:

uo(t) = −R−1(t)BT(t)λo(t) .

Plugging this control law into the differential equation of x results in the
linear two-point boundary value problem

ẋo(t) = A(t)xo(t) − B(t)R−1(t)BTλo(t)

λ̇o(t) = − Q(t)xo(t) − AT(t)λo(t)

xo(ta) = xa

λo(tb) = Fxo(tb)

which needs to be solved.
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42 2 Optimal Control

The two differential equations are homogeneous in (xo; λo) and at the final
time tb, the costate vector λ(tb) is a linear function of the final state vector
xo(tb). This leads to the conjecture that the costate vector might be a linear
function of the state vector at all times.

Therefore, we try the linear ansatz

λo(t) = K(t)xo(t) ,

where K(t) is a suitable time-varying n by n matrix.

Differentiating this equation with respect to the time t, and considering the
differential equations for the costate λ and the state x, and applying the
ansatz in the differential equations leads to the following equation:

λ̇ = K̇x + Kẋ = K̇x + K(A − BR−1BTK)x = − Qx − ATKx

or equivalently to:(
K̇ + ATK + KA − KBR−1BTK + Q

)
x ≡ 0 .

This equation must be satisfied at all times t ∈ [ta, tb]. Furthermore, we
arrive at this equation, irrespective of the initial state xa at hand, i.e., for all
xa ∈ Rn. Thus, the vector x in this equation may be an arbitrary vector in
Rn. Therefore, the sum of matrices in the brackets must vanish.

The result is the optimal state feedback control law

uo(t) = −G(t)xo(t) = −R−1(t)BT(t)K(t)xo(t) ,

where the symmetric and positive-(semi)definite n by n matrix K(t) is the
solution of the matrix Riccati differential equation

K̇(t) = − AT(t)K(t) − K(t)A(t) + K(t)B(t)R−1(t)BT(t)K(t) − Q(t)

with the boundary condition

K(tb) = F

at the final time tb. Thus, the optimal time-varying gain matrix G(t) =
R−1BT(t)K(t) of the state feedback controller can (and must) be computed
and stored in advance.

In all of the textbooks about optimal control of linear systems, the LQ prob-
lem presented here is extended or specialized to the case of a time-invariant
system with constant matrices A and B, and to constant penalty matrices Q
and R, and to “infinite horizon”, i.e., for the time interval [ta, tb] = [0,∞].
This topic is not pursued here. The reader is referred to standard textbooks
on linear optimal control, such as [1], [11], [16], and [25].
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2.4 Type B: Partially Constrained Final State 43

2.4 Optimal Control Problems with a
Partially Constrained Final State

In this section, Pontryagin’s Minimum Principle is derived for optimal control
problems with a partially specified final state (and no state constraints). In
other words, the final state xo(tb) is restricted to lie in a closed “target set”
S ⊆ Rn. — Obviously, the Problem Types A and C are special cases of the
Type B with S = {xb} and S = Rn, respectively.

2.4.1 The Optimal Control Problem of Type B

Statement of the optimal control problem:

Find a piecewise continuous control u : [ta, tb] → Ω ⊆ Rm, such that the
constraints

x(ta) = xa

ẋ(t) = f(x(t), u(t), t) for all t ∈ [ta, tb]

x(tb) ∈ S

are satisfied and such that the cost functional

J(u) = K(x(tb), tb) +
∫ tb

ta

L(x(t), u(t), t) dt

is minimized;

Subproblem B.1: tb is fixed,

Subproblem B.2: tb is free (tb > ta).

Remark: ta, xa ∈ Rn, S ⊆ Rn are specified; Ω ⊆ Rm is time-invariant.

2.4.2 Pontryagin’s Minimum Principle

Definition: Hamiltonian function H : Rn × Ω × Rn × {0, 1} × [ta, tb] → R ,

H(x(t), u(t), λ(t), λ0, t) = λ0L(x(t), u(t), t) + λT(t)f(x(t), u(t), t) .

Theorem B

If the control uo : [ta, tb] → Ω is optimal, then there exists a nontrivial vector[
λo

0

λo(tb)

]
�= 0 ∈ Rn+1 with λo

0 =
{

1 in the regular case
0 in the singular case ,
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44 2 Optimal Control

such that the following conditions are satisfied:

a) ẋo(t) = ∇λH|o = f(xo(t), uo(t), t)

xo(ta) = xa

λ̇o(t) = −∇xH|o = −λo
0∇xL(xo(t), uo(t), t) −

[
∂f

∂x
(xo(t), uo(t), t)

]T
λo(t)

λo(tb) = λo
0∇xK(xo(tb), tb) + qo with qo ∈ T ∗(S, xo(tb))1 .

b) For all t ∈ [ta, tb], the Hamiltonian H(xo(t), u, λo(t), λo
0, t) has a global

minimum with respect to u ∈ Ω at u = uo(t), i.e.,

H(xo(t), uo(t), λo(t), λo
0, t) ≤ H(xo(t), u, λo(t), λo

0, t)
for all u ∈ Ω and all t ∈ [ta, tb].

c) Furthermore, if the final time tb is free (Subproblem B.2):

H(xo(tb), uo(tb), λo(tb), λo
0, tb) = −λo

0

∂K

∂t
(xo(tb), tb) .

2.4.3 Proof

Proving Theorem B proceeds in complete analogy to the proof of Theorem A
given in Chapter 2.1.3.

With λo
0 =1 in the regular case and λo

0 =0 in the singular case, the augmented
cost functional is:

J = λ0K(x(tb), tb)

+
∫ tb

ta

[
λ0L(x, u, t) + λ(t)T{f(x, u, t) − ẋ}]dt + λT

a {xa − x(ta)}

= λ0K(x(tb), tb) +
∫ tb

ta

[
H − λTẋ

]
dt + λT

a {xa − x(ta)} ,

where H = H(x, u, λ, λ0, t) = λ0L(x, u, t) + λTf(x, u, t) is the Hamiltonian
function.

According to the philosophy of the Lagrange multiplier method, the aug-
mented cost functional J has to be minimized with respect to all of its mu-
tually independent variables x(ta), λa, x(tb), and u(t), x(t), and λ(t) for all
t ∈ (ta, tb), as well as tb (if the final time is free).

Suppose, we have found the optimal solution xo(ta), λo
a, xo(tb) (satisfying

xo(tb) ∈ S), and uo(t) (satisfying uo(t) ∈ Ω), xo(t), and λo(t) for all t ∈
(ta, tb), as well as tb (if the final time is free).

1 Normal cone of the tangent cone T (S, xo(tb)) of S at xo(tb). This is the
so-called transversality condition.
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The following first differential δJ of J(uo) around the optimal solution is
obtained (for details of the analysis, consult Chapter 2.1.3):

δJ =

[(
λ0

∂K

∂x
− λT

)
(δx + ẋδtb)

]
tb

+

[
λ0

∂K

∂t
+ H

]
tb

δtb

+
∫ tb

ta

[(
∂H

∂x
+ λ̇T

)
δx +

∂H

∂u
δu +

(
∂H

∂λ
− ẋT

)
δλ

]
dt

+ δλT
a {xa − x(ta)} +

(
λT(ta) − λT

a

)
δx(ta) .

Since we have postulated a minimum of the augmented function at J(uo),
this first differential must satisfy the inequality

δJ ≥ 0

for all admissible variations of the independent variables. All of the variations
of the independent variables are unconstrained, with the exceptions that δu(t)
is constrained to the tangent cone of Ω at uo(t), i.e.,

δu(t) ∈ T (Ω, uo(t)) for all t ∈ [ta, tb] ,

such that the control constraint u(t) ∈Ω is not violated, and that δx(tb) is
constrained to the tangent cone of S at xo(tb), i.e.,

δx(tb) ∈ T (S, xo(tb)) ,

such that the constraint x(tb)∈S is not violated, and

δtb = 0

if the final time is fixed (Problem Type B.1).

According to the philosophy of the Lagrange multiplier method, this inequal-
ity must hold for arbitrary combinations of the mutually independent varia-
tions δtb, and δx(t), δu(t), δλ(t) at any time t ∈ (ta, tb), and δλa, δx(ta), and
δx(tb). Therefore, this inequality must be satisfied for a few very specially
chosen combinations of these variations as well, namely where only one single
variation is nontrivial and all of the others vanish.

The consequence is that all of the factors multiplying a differential must
vanish.

There are three exceptions:

1) If the final time is fixed, it must not be varied; therefore, the second
bracketed term must only vanish if the final time is free.
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2) If the optimal control uo(t) at time t lies in the interior of the control
constraint set Ω, then the factor ∂H/∂u must vanish (and H must have a
local minimum). If the optimal control uo(t) at time t lies on the bound-
ary ∂Ω of Ω, then the inequality must hold for all δu(t) ∈ T (Ω, uo(t)).
However, the gradient ∇uH need not vanish. Rather, −∇uH is restricted
to lie in the normal cone T ∗(Ω, uo(t)), i.e., again, the Hamiltonian must
have a (local) minimum at uo(t).

3) If the optimal final state xo(tb) lies in the interior of the target set S,
then the factor in the first round brackets must vanish. If the optimal
final state xo(tb) lies on the boundary ∂S of S, then the inequality must
hold for all δx(tb) ∈ T (S, xo(tb)). In other words, λo(tb) can be of the
form

λo(tb) = λo
0∇xK(xo(tb), tb) + q ,

where q must lie in the normal cone T ∗(S, xo(tb)) of the target set S at
xo(tb). This guarantees that the resulting term satisfies

−qTδx(tb) ≥ 0

for all permissible variations δx(tb) of the final state xo(tb).

This completes the proof of Theorem B.

Notice that there is no condition for λa. In other words, the boundary con-
dition λo(ta) of the optimal costate λo(.) is free.

Remark: The calculus of variations only requests the local minimization of
the Hamiltonian H with respect to the control u. — In Theorem B, the
Hamiltonian is requested to be globally minimized over the admissible set Ω.
This restriction is justified in Chapter 2.2.1.

2.4.4 Energy-Optimal Control

Statement of the optimal control problem:

Consider the following energy-optimal control problem for an unstable sys-
tem: Find u : [0, tb] → R, such that the system

ẋ(t) = ax(t) + bu(t) with a > 0 and b > 0

is transferred from the initial state

x(0) = x0 > 0

to the final state

0 ≤ x(tb) ≤ c , where c < eatbx0 ,
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2.4 Type B: Partially Constrained Final State 47

at the fixed final time tb and such that the cost functional

J(u) =
∫ tb

0

1
2
u2(t) dt

is minimized.

Since the partially specified final state xo(tb) lies within the set of all of the
reachable states at the final time tb, a non-singular optimal solution exists.

Hamiltonian function:

H =
1
2
u2(t) + λ(t)ax(t) + λ(t)bu(t) .

Pontryagin’s necessary conditions for optimality:

If uo : [0, tb] → R is an optimal control, then the following conditions are
satisfied:

a) Differential equations and boundary conditions:

ẋo(t) = ∇λH = axo(t) + buo(t)

λ̇o(t) = −∇xH = −aλo(t)

xo(0) = x0

xo(tb) ∈ S

λo(tb) = qo ∈ T ∗(S, xo(tb)) .

b) Minimization of the Hamiltonian function:

uo(t) + bλo(t) = 0 for all t ∈ [0, tb] .

Since the system is unstable and c<eatbx0, it is clear that the optimal final
state lies at the upper boundary c of the specified target set S = [0, c].

According to Pontryagin’s Minimum Principle, the costate trajectory λ(.) is
described by

λo(t) = e−atλo(0) ,

where λo(0) is its unknown initial condition. Therefore, at the final time tb,
we have:

λo(tb) = q0 = e−atbλo(0) > 0

as required, provided λo(0) > 0.

Using the optimal open-loop control law

uo(t) = −bλo(t) = −be−atλo(0) ,
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48 2 Optimal Control

the unknown initial condition λo(0) can be determined from the boundary
condition xo(tb) = c as follows:

ẋo(t) = axo(t) − b2e−atλo(0)

xo(t) = eatx0 −
∫ t

0

ea(t−σ)
(
b2e−aσλo(0)

)
dσ

= eatx0 − b2λo(0)eat

∫ t

0

e−2aσ dσ

= eatx0 +
b2λo(0)

2a
eat

(
e−2at − 1

)
xo(tb) = c = eatbx0 − b2λo(0)

a
sinh(atb)

λo(0) =
a(eatbx0 − c)
b2 sinh(atb)

> 0 .

Therefore, the explicit formula for the optimal open-loop control is:

uo(t) = − bλo(t) = − a(eatbx0 − c)
b sinh(atb)

e−at .

2.5 Optimal Control Problems with State Constraints

In this section, Pontryagin’s Minimum Principle is derived for optimal con-
trol problems of the general form of Type B, but with the additional state
constraint xo(t) ∈ Ωx(t) for all t ∈ [ta, tb] for some closed set Ωx(t) ⊂ Rn.

As an example, the time-optimal control problem for the horizontal, friction-
less motion of a mass point with a velocity constraint is solved.

2.5.1 The Optimal Control Problem of Type D

Statement of the optimal control problem:

Find a piecewise continuous control uo : [ta, tb] → Ω ⊆ Rm, such that the
constraints

xo(ta) = xa

ẋo(t) = f(xo(t), uo(t), t) for all t ∈ [ta, tb]

xo(t) ∈ Ωx(t) for all t ∈ [ta, tb] ,

Ωx(t) = {x∈Rn | G(x, t) ≤ 0; G : Rn × [ta, tb] → R}
xo(tb) ∈ S ⊆ Rn
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are satisfied and such that the cost functional

J(u) = K(xo(tb), tb) +
∫ tb

ta

L(xo(t), uo(t), t) dt

is minimized;

Subproblem D.1: tb is fixed,

Subproblem D.2: tb is free (tb > ta).

Remark: ta, xa ∈ Rn, Ωx(t) ⊂ Rn, and S ⊆ Rn are specified; Ω ⊆ Rm is
time-invariant. The state constraint Ωx(t) is defined by the scalar inequality
G(x, t) ≤ 0. The function G(x, t) is assumed to be continuously differentiable.
Of course, the state constraint could also be described by several inequalities,
each of which could be active or inactive at any given time t.

2.5.2 Pontryagin’s Minimum Principle

For the sake of simplicity, it is assumed that the optimal control problem is
regular with λo

0 =1. Thus, the Hamiltonian function is

H(x(t), u(t), λ(t), t) = L(x(t), u(t), t) + λT(t)f(x(t), u(t), t) .

Assumption:

In the formulation of Theorem D below, it is assumed that the state constraint
xo(t) ∈ Ωx(t) is active in a subinterval [t1, t2] of [ta, tb] and inactive for
ta ≤ t < t1 and t2 < t ≤ tb.

The following notation for the function G and its total derivatives with re-
spect to time along an optimal trajectory is used:

G(0)(x(t), t) = G(x(t), t)

G(1)(x(t), t) =
d

dt
G(x(t), t) =

∂G(x(t), t)
∂x

ẋ(t) +
∂G(x(t), t)

∂t

G(2)(x(t), t) =
d

dt
G(1)(x(t), t)

...

G(�−1)(x(t), t) =
d

dt
G(�−2)(x(t), t)

G(�)(x(t), u(t), t) =
d

dt
G(�−1)(x(t), t)

Note: In G(�), u appears explicitly for the first time. Obviously, � ≥ 1.
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Theorem D

If the control uo : [ta, tb] → Ω is optimal (in the non-singular case with
λo

0 =1), then the following conditions are satisfied:

a) ẋo(t) = ∇λH|o = f(xo(t), uo(t), t)

for t /∈ [t1, t2]:

λ̇o(t) = −∇xH|o

= −∇xL(xo(t), uo(t), t) −
[

∂f

∂x
(xo(t), uo(t), t)

]T
λo(t)

for t ∈ [t1, t2]:

λ̇o(t) = −∇xH |o = −∇xH|o − µo
�(t)∇xG(�)|o

= −∇xL(xo(t), uo(t), t) −
[

∂f

∂x
(xo(t), uo(t), t)

]T
λo(t)

− µo
�(t)∇xG(�)(xo(t), uo(t), t)

with µo
�(t) ≥ 0

xo(ta) = xa

for t /∈ [t1, t2]: xo(t) ∈ int(Ωx), i.e., G(xo(t), t) < 0

for t ∈ [t1, t2]: xo(t) ∈ ∂Ωx, i.e., G(xo(t), t) ≡ 0,
in particular:
for t = t2 (or equivalently for t = t1):
G(xo(t), t) = G(1)(xo(t), t) = · · · = G(�−1)(xo(t), t) = 0
and
for t ∈ [t1, t2]: G(�)(xo(t), uo(t), t) ≡ 0

xo(tb) ∈ S

for t = t2 (or alternatively for t = t1):

λo(t2−) = λo(t2+) +
�−1∑
0

µo
i∇xG(i)(xo(t2), t2)

with µo
i ≥ 0 for all i, i = 0, . . . , � − 1

λo(tb) = ∇xK(xo(tb), tb) + qo with qo ∈ T ∗(S, xo(tb))2 .

b) For t /∈ [t1, t2], the Hamiltonian H(xo(t), u, λo(t), t) has a global minimum
with respect to u ∈ Ω at uo(t), i.e.,

H(xo(t), uo(t), λo(t), t) ≤ H(xo(t), u, λo(t), t)
for all u ∈ Ω and all t.

2 Normal cone of the tangent cone T (S, xo(tb)) of S at xo(tb).
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2.5 Type D: Problems with State Constraints 51

For t ∈ [t1, t2], the augmented Hamiltonian function
H = H(xo(t), u, λo(t), t) + µo

�(t)G
(�)(xo(t), u, t)

has a global minimum with respect to all {u ∈ Ω | G(�)(xo(t), u, t) = 0}
at uo(t), i.e.,
H(xo(t), uo(t), λo(t), t) + µo

�(t)G
(�)(xo(t), uo(t), t)

≤ H(xo(t), u, λo(t), t) + µo
�(t)G

(�)(xo(t), u, t)
for all u ∈ Ω with G(�)(xo(t), u, t) = 0 and all t ∈ [t1, t2].

c) Furthermore, if the final time tb is free (Subproblem D.2):

H(xo(tb), uo(tb), λo(tb), tb) = −∂K

∂t
(xo(tb), tb) .

2.5.3 Proof

Essentially, proving Theorem D proceeds in complete analogy to the proofs of
Theorems A and B given in Chapters 2.1.3 and 2.3.3, respectively. However,
there is the minor complication that the optimal state xo(.) has to slide along
the boundary of the state constraint set Ωx(t) in the interval t ∈ [t1, t2] as
assumed in the formulation of Theorem D.

In keeping with the principle of optimality (see Chapter 3.1), the author
prefers to handle these minor complications as follows:

At time t2, the following conditions must hold simultaneously:

G(xo(t2), t2) = 0

G(1)(xo(t2), t2) = 0
...

G(�−1)(xo(t2), t2) = 0 .

Furthermore, the condition

G�(xo(t), t) = 0

must be satisfied for all t ∈ [t1, t2].

Of course, alternatively and equivalently, the � conditions for G, G(1), . . . ,
G(�−1) could be stated for t= t1 rather than for t= t2.

With the Lagrange multiplier vectors λa and λ(t) for t ∈ [ta, tb] and the
scalar Lagrange multipliers µ0, µ1, . . . , µ�−1, and µ�(t) for t ∈ [t1, t2], the
augmented cost functional J can be written in the following form:

J = K(x(tb), tb) +
∫ tb

ta

[
L(x, u, t) + λ(t)T{f(x, u, t) − ẋ}] dt

+ λT
a {xa−x(ta)} +

∫ t2

t1

µ�(t)G(�)(x, u, t) dt +
�−1∑
i=0

µiG
(i)(x(t2), t2) .
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Defining the support function

κ(t1, t2) =

{ 0 for t < t1
1 for t ∈ [t1, t2]
0 for t > t2

and using the Dirac function δ(·) allows us to incorporate the last two terms
of J into the first integral. The result is:

J = K(x(tb), tb) + λT
a {xa − x(ta)}

+
∫ tb

ta

[
L(x, u, t) + λT{f(x, u, t) − ẋ}

+ κ(t1, t2)µ�G
(�)(x, u, t) + δ(t−t2)

�−1∑
i=0

µiG
(i)(x(t2), t2)

]
dt

= K(x(tb), tb) + λT
a {xa − x(ta)}

+
∫ tb

ta

[
H − λTẋ + δ(t−t2)

�−1∑
i=0

µiG
(i)(x(t2), t2)

]
dt ,

where

H = L(x, u, t) + λTf(x, u, t) + κ(t1, t2)µ�G
(�)(x, u, t)

= H(x, u, λ, t) + κ(t1, t2)µ�G
(�)(x, u, t) .

According to the philosophy of the Lagrange multiplier method, the aug-
mented cost functional J has to be minimized with respect to all of its mu-
tually independent variables x(ta), λa, x(tb), and u(t), x(t), and λ(t) for all
t ∈ (ta, tb), and µ0,. . . µ�−1, and µ�(t) for all t ∈ [t1, t2], as well as tb (if the
final time is free). — Note that all of the scalar Lagrange multipliers µi must
be non-negative (see Chapter 1.3.2).

Suppose, we have found the optimal solution xo(ta), λo
a, xo(tb) (satisfying

xo(tb) ∈ S), and uo(t) (satisfying uo(t) ∈ Ω), xo(t) (satisfying xo(t) ∈ ∂Ωx(t)
for t ∈ [t1, t2] and xo(t) ∈ int{Ωx(t)} for t /∈ [t1, t2]), and λo(t) for all t ∈
(ta, tb), and µo

0 ≥ 0, . . . , µo
�−1 ≥ 0, and µo

�(t) ≥ 0 for all t ∈ [t1, t2], as well as
tb (if the final time is free).

The following first differential δJ of J(uo) around the optimal solution is
obtained (for details of the analysis, consult Chapter 2.1.3):

δJ =

[(
∂K

∂x
− λT

)
(δx + ẋδtb)

]
tb

+

[
∂K

∂t
+ H

]
tb

δtb +
�−1∑
i=0

δµiG
(i)(x(t2), t2)
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+ δλT
a {xa − x(ta)} +

(
λT(ta) − λT

a

)
δx(ta)

+
∫ tb

ta

[(
∂H

∂x
+ λ̇T + δ(t−t2)

�−1∑
i=0

µi
∂G(i)

∂x

)
δx +

∂H

∂u
δu

+

(
∂H

∂λ
− ẋT

)
δλ + κ(t1, t2)G(�)(x, u, t)δµ�

]
dt .

Since we have postulated a minimum of the augmented function at J(uo),
this first differential must satisfy the inequality

δJ ≥ 0

for all admissible variations of the independent variables. All of the variations
of the independent variables are unconstrained, with the exceptions that δu(t)
is constrained to the tangent cone of Ω at uo(t), i.e.,

δu(t) ∈ T (Ω, uo(t)) for all t ∈ [ta, tb] ,

such that the control constraint u(t) ∈Ω is not violated, and that δx(tb) is
constrained to the tangent cone of S at xo(tb), i.e.,

δx(tb) ∈ T (S, xo(tb)) ,

such that the constraint x(tb)∈S is not violated, and

δtb = 0

if the final time is fixed (Problem Type D.1).

According to the philosophy of the Lagrange multiplier method, this inequal-
ity must hold for arbitrary combinations of the mutually independent vari-
ations δtb, and δx(t), δu(t), δλ(t), δµ�(t) at any time t ∈ (ta, tb), and δλa,
δx(ta), and δx(tb). Therefore, this inequality must be satisfied for a few very
specially chosen combinations of these variations as well, namely where only
one single variation is nontrivial and all of the others vanish.

The consequence is that all of the factors multiplying a differential must
vanish.

There are three exceptions:

1) If the final time is fixed, it must not be varied; therefore, the second
bracketed term must only vanish if the final time is free.

2) If the optimal control uo(t) at time t lies in the interior of the control
constraint set Ω, then the factor ∂H/∂u must vanish (and H must have a
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54 2 Optimal Control

local minimum). If the optimal control uo(t) at time t lies on the bound-
ary ∂Ω of Ω, then the inequality must hold for all δu(t) ∈ T (Ω, uo(t)).
However, the gradient ∇uH need not vanish. Rather, −∇uH is restricted
to lie in the normal cone T ∗(Ω, uo(t)), i.e., again, the Hamiltonian must
have a (local) minimum at uo(t).

3) If the optimal final state xo(tb) lies in the interior of the target set S,
then the factor in the first round brackets must vanish. If the optimal
final state xo(tb) lies on the boundary ∂S of S, then the inequality must
hold for all δx(tb) ∈ T (S, xo(tb)). In other words, λo(tb) can be of the
form

λo(tb) = λo
0∇xK(xo(tb), tb) + q ,

where q must lie in the normal cone T ∗(S, xo(tb)) of the target set S at
xo(tb). This guarantees that the resulting term satisfies

−qTδx(tb) ≥ 0

for all permissible variations δx(tb) of the final state xo(tb).

This completes the proof of Theorem D.

Notice that there is no condition for λa. In other words, the boundary con-
dition λo(ta) of the optimal costate λo(.) is free.

Remarks:
• The calculus of variations only requests the local minimization of the

Hamiltonian H with respect to the control u. — In Theorem D, the
Hamiltonian H is requested to be globally minimized over the admissible
set Ω. This restriction is justified in Chapter 2.2.1.

• Note that the expression for the differential δJ contains none of the vari-
ations δµ0, . . . , δµ�−1, δµ�(t), δt1, and δt2 because all of them are multi-
plied by vanishing factors.

2.5.4 Time-Optimal, Frictionless, Horizontal Motion of a
Mass Point with a Velocity Constraint

The problem considered in this section is almost identical to Problem 1
(Chapter 1.2, p. 5) which has been solved in Chapter 2.1.4.1, but now, the
the velocity constraint |x2(t)| ≤ 1 must be obeyed at all times t ∈ [0, tb].

Statement of the optimal control problem:

Find u : [0, tb] → [−1, 1], such that the dynamic system

ẋ1(t) = x2(t)
ẋ2(t) = u(t)

with the velocity constraint
|x2(t)| ≤ 1 for t ∈ [0, tb]
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2.5 Type D: Problems with State Constraints 55

is transferred from the initial state
x1(0) = 10
x2(0) = 0

to the final state
x1(tb) = 0
x2(tb) = 0

and such that the cost functional

J(u) =
∫ tb

0

dt

is minimized.

Remark: For the analysis of this problem, the velocity constraint is best
described in the following form:

G(x1, x2) = x2
2 − 1 ≤ 0 .

The optimal solution:

Obviously, the optimal solution is characterized as follows:

t = 0 xo
2 = 0 xo

1 = 10
t = 0 . . . 1 uo ≡ −1
t = t1 = 1 xo

2 = −1 xo
1 = 9.5

t = 1 . . . 10 uo ≡ 0 xo
2 ≡ −1

t = t2 = 10 xo
2 = −1 xo

1 = 0.5
t = 10 . . . 11 uo ≡ 1

tb = 11 xo
2 = 0 xo

1 = 0 .

Intermezzo:

The optimal control problem is regular, i.e., λo
0 = 1.

For formulating Pontryagin’s necessary conditions for the optimality of a
solution, the following items are needed:

G(x1, x2) = x2
2 − 1

Ġ(x1, x2) = 2x2u , hence � = 1

∇xG(x1, x2) =
[

0
2x2

]
∇xĠ(x1, x2) =

[
0
2u

]
.
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The Hamiltonian functions are

H = 1 + λ1x2 + λ2u

and
H = 1 + λ1x2 + λ2u + κ(1, 10)2µ1(t)x2u ,

respectively.

Pontryagin’s necessary conditions:

a) ẋ1 = x2

ẋ2 = u u ∈ [−1,+1]

for t /∈ [1, 10] :

λ̇1 = − ∂H

∂x1
= 0

λ̇2 = − ∂H

∂x2
= −λ1

for t ∈ [1, 10] :

λ̇1 = − ∂H

∂x1
= 0

λ̇2 = − ∂H

∂x2
= −λ1 − µ1(t)2u µ1(t) ≥ 0

Ġ(x, u) = 2x2u ≡ 0

x1(0) = 10
x2(0) = 0

for t = 10 :
G(x) = x2

2(10) − 1 = 0
λ2(10−) = λ2(10+) + µ02x2(10) µ0 ≥ 0

x1(11) = 0
x2(11) = 0

b) for t /∈ [1, 10] :
minimize the Hamiltonian H w.r. to u ∈ [−1,+1]

for t ∈ [1, 10] :
minimize the Hamiltonian H w.r. to u ∈ [−1,+1]
under the constraint Ġ(x, u) = 2x2u = 0

c) H ≡ H(11) = 0 ,

since the problem is time-invariant and the final time tb is free.
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The minimization of the Hamiltonian functions yields the following results:

For t ∈ [0, 1) and t ∈ (10, 11] (see Chapter 2.1.4.1):

uo(t) = − sign{λo
2(t)} =

⎧⎪⎨⎪⎩
+1 for λo

2(t) < 0

0 for λo
2(t) = 0

−1 for λo
2(t) > 0 .

For t ∈ [1, 10], the scalar optimal control u is determined by the constraint
Ġ ≡ 0 alone and hence

uo(t) ≡ 0 while xo
2(t) ≡ −1 .

It remains to be proved that the dynamics of the costate variables λ1(t) and
λ2(t) admit a solution leading to the proclaimed optimal control uo(.).

Since λ̇0
1(t) vanishes at all times, the costate variable λo

1(t) is constant:

λo
1(t) ≡ λo

1 .

In the interval t ∈ [1, 10], the control u vanishes. Therefore, λo
2(t) is an affine

function of the time t. Since we are working our way backwards in time, we
can write:

λo
2(t) = λo

2(11) + λo
1(11 − t) ,

where, of course, the values of λo
1 and λo

2(11) are unknown yet.

In order for the proposed control uo(.) to be optimal we need the following
conditions:

λo
2(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λo
2(11) < 0 for t = 11

λo
2(11) + λo

1 ≤ 0 for t = 10+

λo
2(11) + λo

1 − 2µo
0 for t = 10−, µo

o ≥ 0
λo

2(11) + 10λo
1 − 2µo

0 ≥ 0 for t = 1
λo

2(11) + 11λo
1 − 2µo

0 > 0 for t = 0 .

Thus, at the moment, we have three unknowns: λo
1, λo

2(11), and µo
0.

Exploiting condition c of Pontryagin’s Minimum Principle,

H|o = 1 + λo
1x

o
2(t) + λo

2(t)u
o(t) ≡ 0 ,

and again working backwards in time evolves in the following steps:

At the final time tb = 11:

H(11) = 0 = 1 + λo
1 · 0 + λo

2(11) · 1 .

Thus, we find λo
2(11) = −1.
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At t = 10+:

H(10+) = 0 = 1 + λo
1 · (−1) + (−1 + λo

1) · (+1) .

At t = 10−:

H(10−) = 0 = 1 + λo
1 · (−1) + (−1 + λo

1 − 2µo
0) · 0 .

This condition yields the result λo
1 = 1.

At time t = 1+:

H(1+) = 0 = 1 + 1 · (−1) + (9 − 2µo
0) · 0 .

At time t = 1−:

H(1−) = 0 = 1 + 1 · (−1) + (9 − 2µo
0) · (−1) .

Therefore, we must have µo
0 = 4.5 .

And finally, we verify that the Hamiltonian vanishes at the initial time t = 0
as well:

H(0) = 0 = 1 + 1 · 0 + 1 · (−1) .

In summary, we have found:

λo
2(t) =

{−(t − 10) for t = 10+ . . . 11
−(t − 1) for t = 0 . . . 10−

and

uo(t) =

⎧⎨⎩
+1 for t = 10+ . . . 11

0 for t = 1+ . . . 10−

−1 for t = 0 . . . 1− .

All of the necessary conditions of Pontryagin’s Minimum Principle are satis-
fied. And we have found the optimal solution, indeed.
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2.6 Singular Optimal Control

In this section, the special case is treated where the Hamiltonian function H is
not an explicit function of the control u during a time interval [t1, t2] ⊆ [ta, tb].
Therefore, the optimal control cannot be found directly by globally minimiz-
ing H. — This special case has already been mentioned in the introductory
text of Chapter 2 on p. 23.

Two optimal control problems involving singular optimal controls are ana-
lyzed in Chapters 2.6.2 and 2.6.3.

2.6.1 Problem Solving Technique

Most often, this special case arises if the Hamiltonian function H is an affine
function of the control u. For the sake of simplicity, the discussion concen-
trates on a time-invariant optimal control problem with a constrained scalar
control variable.

In this case, the Hamiltonian function has the following form:

H = g(x(t), λ(t), λ0) + h(x(t), λ(t), λ0)u(t)

with u ∈ [umin, umax] ⊂ R and where f and g are two scalar-valued functions:
f : Rn × Rn × {0, 1} → R, g : Rn × Rn × {0, 1} → R.

The singular case occurs when the “switching function” h vanishes at all
times t in a time interval [t1, t2]:

h(xo(t), λo(t), λo
0) ≡ 0 for t ∈ [t1, t2] ⊆ [ta, tb] .

Obviously, in this situation, all u ∈ [umin, umax] globally minimize the Hamil-
tonian function H.

A work-around for this nasty situation follows from the fact that, with h ≡ 0
in this time interval, all of the total derivatives of the switching function h
along the optimal trajectory must vanish in this time interval as well, i.e.,
ḣ ≡ 0, ḧ ≡ 0, h(3) ≡ 0, and so on.

The differentiation is continued until the control variable u explicitly ap-
pears in a derivative. Interestingly, this always happens in an even derivative
h(2k) ≡ 0 for some k ≥ 1. (See [24] for a proof of this fact and [22] for some
interesting comments.)

Thus, we obtain the following necessary conditions for an optimal solution
to evolve along a singular arc in the time interval [t1, t2]:

h(2k)(xo(t), uo(t), λo(t), λo
0) ≡ 0 , and

h(2k−1)(xo(t), λo(t), λo
0) ≡ 0 , and

...
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...

ḣ(xo(t), λo(t), λo
0) ≡ 0 , and

h(xo(t), λo(t), λo
0) ≡ 0 .

If the final time tb is free, then the condition

H = g(xo(t), λo(t), λo
0) ≡ 0

must be satisfied as well.

In order to determine the singular optimal control, we proceed as follows:
First we solve the condition h(2k) ≡ 0 for uo(t). Then, we verify that the
corresponding trajectories xo(.) and λo(.) satisfy the additional 2k conditions
h(2k−1) ≡ 0, . . . , ḣ ≡ 0, and h ≡ 0 (and H ≡ 0 if the final time tb is free)
simultaneously as well.

If all of these necessary conditions for a singular optimal arc are satisfied,
we have found a candidate for an optimal control. Note that no sufficiency
condition is implied.

2.6.2 Goh’s Fishing Problem

Statement of the optimal control problem:

See Chapter 1.2, Problem 6, p. 10. — If the catching capacity U of the fishing
fleet and the final time tb are sufficiently large, the optimal solution contains
a singular arc.

Hamiltonian function:

H = − λ0u(t) + λ(t)ax(t) − λ(t)
a

b
x2(t) − λ(t)u(t) .

Pontryagin’s necessary conditions for optimality:

If uo : [0, tb] → [0, U ] is an optimal control, then there exists a nontrivial
vector [

λo
0

λo(tb)

]
�=

[
0
0

]
,

such that the following conditions are satisfied:

a) Differential equations and boundary conditions:

ẋo(t) = axo(t) − a

b
xo2(t) − uo(t)

xo(t) ≥ 0 for all t ∈ [0, tb]
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λ̇o(t) = −∂H

∂x
= a

(
2
b
xo(t) − 1

)
λo(t)

xo(0) = xa > 0

xo(tb) ≥ 0

λo(tb)
{

= 0 for xo(tb) > 0
≤ 0 for xo(tb) = 0 .

b) Minimization of the Hamiltonian function:

H(xo(t), uo(t), λo(t), λo
0) ≤ H(xo(t), u, λo(t), λo

0)
for all u ∈ [0, U ] and all t ∈ [0, tb]

and hence
− λo

0u
o(t) − λo(t)uo(t) ≤ − λo

0u − λo(t)u
for all u ∈ [0, U ] and all t ∈ [0, tb] .

For convenience, we write the Hamiltonian function in the form

H = g(x(t), λ(t), λ0) − h(x(t), λ(t), λ0)u(t)

with the switching function

h(x(t), λ(t), λ0) = λo
0 + λo(t) .

Minimizing the Hamiltonian function yields the following preliminary control
law:

uo(t) =

⎧⎪⎨⎪⎩
U for h(t) > 0
u ∈ [0, U ] for h(t) = 0
0 for h(t) < 0 .

Analysis of a potential singular arc:

If there is a singular arc, the switching function h and its first and second
total derivate ḣ and ḧ, respectively, have to vanish simultaneously along the
corresponding trajectories x(.) and λ(.), i.e.:

h = λ0 + λ ≡ 0

ḣ = λ̇ = a

(
2
b
x − 1

)
λ ≡ 0

ḧ =
2a

b
ẋλ + a

(
2
b
x − 1

)
λ̇

=
2a

b

(
ax − a

b
x2 − u

)
λ + a2

(
2
b
x − 1

)2

λ ≡ 0 .
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Due to the nontriviality requirement for the vector (λ0, λ(tb)), the following
conditions must be satisfied on a singular arc:

λo
0 = 1

λo(t) ≡ −1

xo(t) ≡ b

2

uo(t) ≡ ab

4
≤ U .

Therefore, a singular arc is possible, if the catching capacity U of the fleet is
sufficiently large, namely U ≥ ab/4 . — Note that both the fish population
x(t) and the catching rate u(t) are constant on the singular arc.

Since the differential equation governing λ(t) is homogeneous, an optimal
singular arc can only occur, if the fish population is exterminated (exactly)
at the final time tb with λ(tb) = −1, because otherwise λ(tb) would have to
vanish.

An optimal singular arc occurs, if the initial fish population xa is sufficiently
large, such that x = b/2 can be reached. Obviously, the singular arc can last
for a very long time, if the final time tb is very large. — This is the sustain-
ability aspect of this dynamic system. Note that the singular “equilibrium”
of this nonlinear system is semi-stable.

The optimal singular arc begins when the population x = b/2 is reached
(either from above with uo(t) ≡ U or from below with uo(t) ≡ 0. It ends
when it becomes “necessary” to exterminate the fish exactly at the final time
tb by applying uo(t) ≡ U .

For more details about this fascinating problem, see [18].

2.6.3 Fuel-Optimal Atmospheric Flight of a Rocket

Statement of the optimal control problem:

See Chapter 1.2, Problem 4, p. 7. — The problem has a (unique) optimal
solution, provided the specified final state xb lies in the set of states which
are reachable from the given initial state xa at the fixed final time tb. If
the final state lies in the interior of this set, the optimal solution contains a
singular arc where the rocket flies at a constant speed. (“Kill as much time
as possible while flying at the lowest possible constant speed.”)

Minimizing the fuel consumption
∫ tb

0
u(t)dt is equivalent to maximizing the

final mass x3(tb) of the rocket. Thus, the most suitable cost functional is

J(u) = x3(tb) ,
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2.6 Singular Optimal Control 63

which we want to maximize. — It has the special form which has been
discussed in Chapter 2.2.3. Therefore, λ3(tb) takes over the role of λ0. Since
we want to maximize the cost functional, we use Pontryagin’s Maximum
Principle, where the Hamiltonian has to be globally maximized (rather than
minimized).

Hamiltonian function:
H = λ1ẋ1 + λ2ẋ2 + λ3ẋ3

= λ1x2 +
λ2

x3

(
u − 1

2
Aρcwx2

2

)
− αλ3u .

Pontryagin’s necessary conditions for optimality:

If uo : [0, tb] → [0, Fmax] is an optimal control, then there exists a nontrivial
vector ⎡⎣λo

1(tb)
λo

2(tb)
λo

3(tb)

⎤⎦ �=
⎡⎣ 0

0
0

⎤⎦ with λo
3(tb) =

{
1 in the regular case
0 in a singular case,

such that the following conditions are satisfied:

a) Differential equations and boundary conditions:

ẋo
1(t) = xo

2(t)

ẋo
2(t) =

1
xo

3(t)

(
uo(t) − 1

2
Aρcwxo2

2 (t)
)

ẋo
3(t) = −αuo(t)

λ̇o
1(t) = − ∂H

∂x1
= 0

λ̇o
2(t) = − ∂H

∂x2
= − λo

1(t) + Aρcw
λo

2(t)x
o
2(t)

xo
3(t)

λ̇o
3(t) = − ∂H

∂x3
=

λo
2(t)

xo2
3 (t)

(
uo(t) − 1

2
Aρcwxo2

2 (t)
)

.

b) Maximization of the Hamiltonian function:

H(xo(t), uo(t), λo(t)) ≥ H(xo(t), u, λo(t))

for all u ∈ [0, Fmax] and all t ∈ [0, tb]

and hence (λo
2(t)

xo
3(t)

− αλo
3(t)

)
uo(t) ≥

(λo
2(t)

xo
3(t)

− αλo
3(t)

)
u

for all u ∈ [0, Fmax] and all t ∈ [0, tb] .
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With the switching function

h(t) =
λo

2(t)
xo

3(t)
− αλo

3(t),

maximizing the Hamiltonian function yields the following preliminary control
law:

uo(t) =

⎧⎪⎨⎪⎩
Fmax for h(t) > 0
u ∈ [0, Fmax] for h(t) = 0
0 for h(t) < 0 .

Analysis of a potential singular arc:

If there is a singular arc, the switching function h and its first and second
total derivative ḣ and ḧ, respectively, have to vanish simultaneously along
the corresponding trajectories x(.) and λ(.), i.e.:

h(t) =
λ2

x3
− αλ3 ≡ 0

ḣ(t) =
λ̇2

x3
− λ2ẋ3

x2
3

− αλ̇3

= − λ1

x3
+ Aρcw

λ2x2

x2
3

+
αλ2u

x2
3

− αλ2

x2
3

(
u − 1

2
Aρcwx2

2

)
= − λ1

x3
+ Aρcw

λ2

x2
3

(
x2+

α

2
x2

2

)
≡ 0

ḧ(t) = − λ̇1

x3
+

λ1ẋ3

x2
3

+ Aρcw

( λ̇2

x2
3

− 2λ2ẋ3

x3
3

)(
x2+

α

2
x2

2

)
+ Aρcw

λ2

x2
3

(1+αx2) ẋ2

= − αλ1u

x2
3

+ Aρcw

(
x2+

α

2
x2

2

)(−λ1

x2
3

+ Aρcw
λ2x2

x3
3

+
2αλ2u

x3
3

)
+ Aρcw

λ2

x3
3

(
1+αx2

)(
u − 1

2
Aρcwx2

2

)
≡ 0 .

The expression for ḧ can be simplified dramatically by exploiting the condi-
tion ḣ ≡ 0, i.e., by replacing the terms

λ1

x2
3

by Aρcw
λ2

x3
3

(
x2 +

α

2
x2

2

)
.
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After some tedious algebraic manipulations, we get the condition

ḧ(t) = Aρcw
λ2

x3
3

(
1+2αx2+

α2

2
x2

2

)(
u − 1

2
Aρcwx2

2

) ≡ 0 .

Assuming that λ2(t) ≡ 0 leads to a contradiction with Pontryagin’s nontriv-
iality condition for the vector (λ1, λ2, λ3). Therefore, ḧ can only vanish for
the singular control

uo(t) =
1
2
Aρcwxo2

2 (t) .

A close inspection of the differential equations of the state and the costate
variables and of the three conditions h ≡ 0, ḣ ≡ 0, and ḧ ≡ 0 reveals that
the optimal singular arc has the following features:

• The velocity xo
2 and the thrust uo are constant.

• The costate variable λo
3 is constant.

• The ratio
λo

2(t)
xo

3(t)
= αλo

3 is constant.

• The costate variable λo
1 is constant anyway. It attains the value

λo
1 = Aρcwαλo

3

(
xo

2 +
α

2
xo2

2

)
.

• If the optimal trajectory has a singular arc, then λo
3(tb)=1 is guaranteed.

We conclude that the structure of the optimal control trajectory involves
three types of arcs: “boost” (where uo(t)≡Fmax), “glide” (where uo(t)≡0),
and “sustain” (corresponding to a singular arc with a constant velocity x2).

The reader is invited to sketch all of the possible scenarios in the phase plane
(x1, x2) and to find out what sequences of “boost”, “sustain”, and “glide”
can occur in the optimal transfer of the rocket from (sa, va) to (sb, vb) as the
fixed final time tb is varied from its minimal permissible value to its maximal
permissible value.

2.7 Existence Theorems

One of the steps in the procedure to solve an optimal control problem is
investigating whether the optimal control at hand does admit an optimal
solution, indeed. — This has been mentioned in the introductory text of
Chapter 2 on p. 23.

The two theorems stated below are extremely useful for the a priori investi-
gation of the existence of an optimal control, because they cover a vast field
of relevant applications. — These theorems have been proved in [26].
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66 2 Optimal Control

Theorem 1. The following optimal control problem has a globally optimal
solution:

Find an unconstrained optimal control u : [ta, tb] → Rm, such that the dy-
namic system

ẋ(t) = f(x(t)) + B(x(t))u(t)

with the continuously differentiable functions f(x) and B(x) is transferred
from the initial state

x(ta) = xa

to an arbitrary final state at the fixed final time tb and such that the cost
functional

J(u) = K(x(tb)) +
∫ tb

ta

[
L1(x(t)) + L2(u(t))

]
dt

is minimized. Here, K(x) and L1(x) are convex and bounded from below
and L2(u) is strictly convex and growing without bounds for all u ∈ Rm with
‖u‖→∞.

Obviously, Theorem 1 is relevant for the LQ regulator problem.

Theorem 2. Let Ω be a closed, convex, bounded, and time-invariant set
in the control space Rm. — The following optimal control problem has a
globally optimal solution:

Find an optimal control u : [ta, tb] → Ω ⊂ Rm, such that the dynamic system

ẋ(t) = f(x(t), u(t))

with the continuously differentiable function f(x, u) is transferred from the
initial state

x(ta) = xa

to an unspecified final state at the fixed final time tb and such that the cost
functional

J(u) = K(x(tb)) +
∫ tb

ta

L(x(t), u(t)) dt

is minimized. Here, K(x) and L(x, u) are continuously differentiable func-
tions.

Obviously, Theorem 2 can be extended to the case where the final state
x(tb) at the fixed final time tb is restricted to lie in a closed subset S ⊂ Rn,
provided that the set S and the set W (tb)⊂Rn of all reachable states at the
final time tb have a non-empty intersection. — Thus, Theorem 2 covers our
time-optimal and fuel-optimal control problems as well.
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2.8 Non-Scalar-Valued Cost Functional 67

2.8 Optimal Control Problems
with a Non-Scalar-Valued Cost Functional

Up to now, we have always considered optimal control problems with a scalar-
valued cost functional. In this section, we investigate optimal control prob-
lems with non-scalar-valued cost functionals. Essentially, we proceed from
the totally ordered real line (R,≤) to a partially ordered space (X0,�) with
a higher dimension [30] into which the cost functional maps.

For a cost functional mapping into a partially ordered space, the notion
of optimality splits up into superiority and non-inferiority [31]. The latter
is often called Pareto optimality. Correspondingly, depending on whether
we are “minimizing” or “maximizing”, an extremum is called infimum or
supremum for a superior solution and minimum or maximum for a non-
inferior solution.

In this section, we are only interested in finding a superior solution or infimum
of an optimal control problem with a non-scalar-valued cost functional.

The two most interesting examples of non-scalar-valued cost functionals are
vector-valued cost functionals and matrix-valued cost functionals.

In the case of a vector-valued cost functional, we want to minimize several
scalar-valued cost functionals simultaneously. A matrix-valued cost func-
tional arises quite naturally in a problem of optimal linear filtering: We want
to infimize the covariance matrix of the state estimation error. This problem
is investigated in Chapter 2.8.4.

2.8.1 Introduction

Let us introduce some rather abstract notation for the finite-dimensional
linear spaces, where the state x(t), the control u(t), and the cost J(u) live:

X : state space

U : input space

Ω ⊆ U : admissible set in the input space

(X0,�) : cost space with the partial order � .

The set of all positive elements in the cost space X0, i.e., {x0 ∈ X0 |x0 � 0},
is a convex cone with non-empty interior. An element x0 ∈ X0 in the interior
of the positive cone is called strictly positive: x0 � 0.

Example: Consider the linear space of all symmetric n by n matrices which is
partially ordered by positive-semidefinite difference. The closed positive cone
is the set of all positive-semidefinite matrices. All elements in the interior of
the positive cone are positive-definite matrices.
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68 2 Optimal Control

Furthermore, we use the following notation for the linear space of all linear
maps from the linear space X to the linear space Y:

L(X ,Y) .

Examples:

• Derivative of a function f :Rn→Rp :
∂f

∂x
∈ L(Rn, Rp)

• Costate: λ(t) ∈ L(X ,X0)

• Cost component of the extended costate: λ0 ∈ L(X0,X0) .

2.8.2 Problem Statement

Find a piecewise continuous control u : [ta, tb] → Ω ⊆ U , such that the
dynamic system

ẋ(t) = f(x(t), u(t), t)

is transferred from the initial state

x(ta) = xa

to an arbitrary final state at the fixed final time tb and such that the cost

J(u) = K(x(tb)) +
∫ tb

ta

L(x(t), u(t), t) dt

is infimized.

Remark: ta, tb, and xa ∈ X are specified; Ω ⊆ U is time-invariant.

2.8.3 Geering’s Infimum Principle

Definition: Hamiltonian H : X × U × L(X ,X0) × L(X0,X0) × R → X0 ,

H(x(t), u(t), λ(t), λ0, t) = λ0L(x(t), u(t), t) + λ(t)f(x(t), u(t), t) .

Here, λ0 ∈ L(X0,X0) is a positive operator, λ0 � 0. In the regular case, λ0

is the identity operator in L(X0,X0), i.e., λ0 = I.

Theorem

If uo : [ta, tb] → Ω is superior, then there exists a nontrivial pair (λo
0, λ

o(tb))
in L(X0,X0)×L(X ,X0) with λ0 � 0, such that the following conditions are
satisfied:
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2.8 Non-Scalar-Valued Cost Functional 69

a) ẋo(t) = f(xo(t), uo(t), t)

xo(ta) = xa

λ̇o(t) = −∂H

∂x
|o = − λo

0

∂L

∂x
(xo(t), uo(t), t) − λo(t)

∂f

∂x
(xo(t), uo(t), t)

λo(tb) = λo
0

∂K

∂x
(xo(tb)) .

b) For all t ∈ [ta, tb], the Hamiltonian H(xo(t), u, λo(t), λo
0, t) has a global

infimum with respect to u ∈ Ω at uo(t), i.e.,

H(xo(t), uo(t), λo(t), λo
0, t) � H(xo(t), u, λo(t), λo

0, t)
for all u ∈ Ω and all t ∈ [ta, tb] .

Note: If we applied this notation in the case of a scalar-valued cost functional,
the costate λo(t) would be represented by a row vector (or, more precisely,
by a 1 by n matrix).

Proof: See [12].

2.8.4 The Kalman-Bucy Filter

Consider the following stochastic linear dynamic system with the state vector
x(t) ∈ Rn, the random initial state ξ, the output vector y(t) ∈ Rp, and the
two white noise processes v(t) ∈ Rm and r(t) ∈ Rp (see [1] and [16]):

ẋ(t) = A(t)x(t) + B(t)v(t)

x(ta) = ξ

y(t) = C(t)x(t) + r(t) .

The following statistical characteristics of ξ, v(.), and r(.) are known:

E{ξ} = xa

E{v(t)} = u(t)

E{r(t)} = r(t)

E{[ξ−xa][ξ−xa]T} = Σa ≥ 0

E{[v(t)−u(t)][v(τ)−u(τ)]T} = Q(t)δ(t−τ) with Q(t) ≥ 0

E{[r(t)−r(t)][r(τ)−r(τ)]T} = R(t)δ(t−τ) with R(t) > 0 .
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70 2 Optimal Control

The random initial state ξ and the two white noise processes v(.) and r(.)
are known to be mutually independent and therefore mutually uncorrelated:

E{[ξ−xa][v(τ)−u(τ)]T} ≡ 0

E{[ξ−xa][r(τ)−r(τ)]T} ≡ 0

E{[r(t)−r(t)][v(τ)−u(τ)]T} ≡ 0 .

A full-order unbiased observer for the random state vector x(t) has the fol-
lowing generic form:

˙̂x(t) = A(t)x̂(t) + B(t)u(t) + P (t)[y(t)−r(t)−C(t)x̂(t)]

x̂(ta) = xa .

The covariance matrix Σ(t) of the state estimation error x(t) − x̂(t) satisfies
the following matrix differential equation:

Σ̇(t) = [A(t)−P (t)C(t)]Σ(t) + Σ(t)[A(t)−P (t)C(t)]T

+ B(t)Q(t)BT(t) + P (t)R(t)PT(t)

Σ(ta) = Σa .

We want to find the optimal observer matrix P o(t) in the time interval
[ta, tb], such that the covariance matrix Σo(tb) is infimized for any arbitrarily
fixed final time tb. In other words, for any suboptimal observer gain ma-
trix P (.), the corresponding inferior error covariance matrix Σ(tb) will satisfy
Σ(tb)−Σo(tb) ≥ 0 (positive-semidefinite matrix). — This translates into the
following

Statement of the optimal control problem:

Find an observer matrix P : [ta, tb] → Rn×p, such that the dynamic system

Σ̇(t) = A(t)Σ(t) − P (t)C(t)Σ(t) + Σ(t)AT(t) − Σ(t)CT(t)P (t)T

+ B(t)Q(t)BT(t) + P (t)R(t)PT(t)

is transferred from the initial state

Σ(ta) = Σa

to an unspecified final state Σ(tb) and such that the cost functional

J(P ) = Σ(tb) = Σa +
∫ tb

ta

Σ̇(t) dt

is infimized.
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2.8 Non-Scalar-Valued Cost Functional 71

The integrand in the cost functional is identical to the right-hand side of the
differential equation of the state Σ(t). Therefore, according to Chapter 2.2.3
and using the integral version of the cost functional, the correct formulation
of the Hamiltonian is:

H = λ(t)Σ̇(t)

= λ(t)
(
A(t)Σ(t) − P (t)C(t)Σ(t) + B(t)Q(t)BT(t)

+ Σ(t)AT(t) − Σ(t)CT(t)P (t)T + P (t)R(t)PT(t)
)

with
λ(tb) = I ∈ L(X0,X0) ,

since the optimal control problem is regular.

Necessary conditions for superiority:

If P o : [t0, tb] → Rn×p is optimal, then the following conditions are satisfied:
a) Differential equations and boundary conditions:

Σ̇o = AΣo − P oCΣo + ΣoAT − ΣoCTP oT + BQBT + P oRP oT

Σo(ta) = Σa

λ̇o = −∂H

∂Σ
|o = −λoU(A − PCo)

λo(tb) = I .

b) Infimization of the Hamiltonian (see [3] or [12]):
∂H

∂P
|o = λoU(P oR − ΣoCT)T ≡ 0 .

Here, the following two operators have been used for ease of notation:

U : M 
→ M + MT for a quadratic matrix M

T : N 
→ NT for an arbitrary matrix N.

The infimization of the Hamiltonian yields the well-known optimal observer
matrix

P o(t) = Σo(t)CT(t)R−1(t)

of the Kalman-Bucy Filter.

Plugging this result into the differential equation of the covariance matrix
Σ(t) leads to the following well-known matrix Riccati differential equation
for the Kalman-Bucy Filter:

Σ̇o(t) = A(t)Σo(t) + Σo(t)AT(t)
− Σo(t)CT(t)R−1(t)C(t)Σo(t) + B(t)Q(t)BT(t)

Σo(ta) = Σa .
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2.9 Exercises

1. Time-optimal damping of a harmonic oscillator:

Find a piecewise continuous control u : [0, tb] → [−1,+1], such that the
dynamic system [

ẋ1(t)
ẋ2(t)

]
=

[
0 1
−1 0

][
x1(t)
x2(t)

]
+

[
0
1

]
u(t)

is transferred from the initial state[
x1(0)
x2(0)

]
=

[
sa

va

]
to the final state[

x1(tb)
x2(tb)

]
=

[
0
0

]
in minimal time, i.e., such that the cost functional J =

∫ tb

0
dt is minimized.

2. Energy-optimal motion of an unstable system:

Find an unconstrained optimal control u : [0, tb] → R, such that the
dynamic system

ẋ1(t) = x2(t)

ẋ2(t) = x2 + u(t)

is transferred from the initial state

x1(0) = 0

x2(0) = 0

to a final state at the fixed final time tb satisfying

x1(tb) ≥ sb > 0

x2(tb) ≤ vb

and such that the cost functional

J(u) =
∫ tb

0

u2(t) dt

is minimized.

3. Fuel-optimal motion of a nonlinear system:

Find a piecewise continuous control u : [0, tb] → [0,+1], such that the
dynamic system

ẋ1(t) = x2(t)

ẋ2(t) = −x2
2 + u(t)

co
nt

ro
len

gin
ee

rs
.ir



2.9 Exercises 73

is transferred from the given initial state

x1(0) = 0

x2(0) = va (0 < va < 1)

to the fixed final state at the fixed final time tb

x1(tb) = sb (sb > 0)

x2(tb) = vb (0 < vb < 1)

and such that the cost functional

J(u) =
∫ tb

0

u(t) dt

is minimized.

4. LQ model-predictive control [2], [16]:

Consider a linear dynamic system with the state vector x(t) ∈ Rn and
the unconstrained control vector u(t) ∈ Rm. All of the state variables
are measured and available for state-feedback control. Some of the state
variables are of particular interest. For convenience, they are collected in
an output vector y(t) ∈ Rp via the linear output equation

y(t) = C(t)x(t) .

Example: In a mechanical system, we are mostly interested in the state
variables for the positions in all of the degrees of freedom, but much less
in the associated velocities.

The LQ model-predictive tracking problem is formulated as follows:

Find u : [ta, tb] → Rm such that the linear dynamic system

ẋ(t) = A(t)x(t) + B(t)u(t)

is transferred from the given initial state x(ta)=xa to an arbitrary final
state x(tb) at the fixed final time tb and such that the positive-definite
cost functional

J(u) =
1
2
[yd(tb)−y(tb)]TFy[yd(tb)−y(tb)]

+
1
2

∫ tb

ta

(
[yd(t)−y(t)]TQy(t)[yd(t)−y(t)] + uT(t)R(t)u(t)

)
dt

is minimized. The desired trajectory yd : [ta, tb] → Rp is specified in
advance. The weighting matrices Fy, Qy(t), and R(t) are symmetric and
positive-definite.
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Prove that the optimal control law is the following combination of a feed-
forward and a state feedback:

u(t) = R−1(t)BT(t)w(t) − R−1(t)BT(t)K(t)x(t)

where the n by n symmetric and positive-definite matrix K(t) and the
p-vector function w(t) have to be calculated in advance for all t ∈ [ta, tb]
as follows:

K̇(t) = − AT(t)K(t) − K(t)A(t)
+ K(t)B(t)R−1(t)BT(t)K(t) − CT(t)Qy(t)C(t)

K(tb) = CT(tb)FyC(tb)

ẇ(t) = − [A(t)−B(t)R−1(t)BT(t)K(t)]Tw(t) − C(t)Qy(t)yd(t)

w(tb) = C(tb)Fy yd(tb) .

The resulting optimal control system is described by the following differ-
ential equation:

ẋ(t) = [A(t)−B(t)R−1(t)BT(t)K(t)]x(t) + B(t)R−1(t)BT(t)w(t) .

Note that w(t) at any time t contains the information about the future of
the desired output trajectory yd(.) over the remaining time interval [t, tb].

5. In Chapter 2.8.4, the Kalman-Bucy Filter has been derived. Prove that
we have indeed infimized the Hamiltonian H. — We have only set the first
derivative of the Hamiltonian to zero in order to find the known result.
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3 Optimal State Feedback Control

Chapter 2 has shown how optimal control problems can be used by exploiting
Pontryagin’s Minimum Principle. Once the resulting two-point boundary
value problem has been solved, the optimal control law is in an open-loop
form: uo(t) for t ∈ [ta, tb].

In principle, it is always possible to convert the optimal open-loop control law
to an optimal closed-form control law by the following brute-force procedure:
For every time t ∈ [ta, tb], solve the “rest problem” of the original optimal
control problem over the interval [t, tb] with the initial state x(t). This yields
the desired optimal control uo(x(t), t) at this time t which is a function of the
present initial state x(t). — Obviously, in Chapters 2.1.4, 2.1.5, and 2.3.4,
we have found more elegant methods for converting the optimal open-loop
control law into the corresponding optimal closed-loop control law.

The purpose of this chapter is to provide mathematical tools which allow us
to find the optimal closed-loop control law directly. — Unfortunately, this
leads to a partial differential equation for the “cost-to-go” function J (x, t)
which needs to be solved.

3.1 The Principle of Optimality

Consider the following optimal control problem of Type B (see Chapter 2.4)
with the fixed terminal time tb:

Find an admissible control u : [ta, tb] → Ω ⊆ Rm, such that the constraints

x(ta) = xa

ẋ(t) = f(x(t), u(t), t) for all t ∈ [ta, tb]

x(tb) ∈ S ⊆ Rn

are satisfied and such that the cost functional

J(u) = K(x(tb)) +
∫ tb

ta

L(x(t), u(t), t) dt

is minimized.
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76 3 Optimal State Feedback Control

Suppose that we have found the unique globally optimal solution with the
optimal control trajectory uo : [ta, tb] → Ω ⊆ Rm and the corresponding
optimal state trajectory xo : [ta, tb] → Rn which satisfies xo(ta) = xa and
xo(tb) ∈ S.

Now, pick an arbitrary time τ ∈ (ta, tb) and bisect the original optimal control
problem into an antecedent optimal control problem over the time interval
[ta, τ ] and a succedent optimal problem over the interval [τ, tb].

The antecedent optimal control problem is:

Find an admissible control u : [ta, τ ] → Ω, such that the dynamic system

ẋ(t) = f(x(t), u(t), t)

is transferred from the initial state

x(ta) = xa

to the fixed final state

x(τ) = xo(τ)

at the fixed final time τ and such that the cost functional

J(u) =
∫ τ

ta

L(x(t), u(t), t) dt

is minimized.

The succedent optimal control problem is:

Find an admissible control u : [τ, tb] → Ω, such that the dynamic system

ẋ(t) = f(x(t), u(t), t)

is transferred from the given initial state

x(τ) = xo(τ)

to the partially constrained final state

x(tb) ∈ S

at the fixed final time tb and such that the cost functional

J(u) = K(x(tb)) +
∫ tb

τ

L(x(t), u(t), t) dt

is minimized.
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3.1 Principle of Optimality 77

The following important but almost trivial facts can easily be derived:

Theorem: The Principle of Optimality

1) The optimal solution of the succedent optimal control problem coincides
with the succedent part of the optimal solution of the original problem.

2) The optimal solution of the antecedent optimal control problem coincides
with the antecedent part of the optimal solution of the original problem.

Note that only the first part is relevant to the method of dynamic program-
ming and to the Hamilton-Jacobi-Bellman Theory (Chapter 3.2).

Proof

1) Otherwise, combining the optimal solution of the succedent optimal con-
trol problem with the antecedent part of the solution of the original op-
timal control problem would yield a better solution of the latter.

2) Otherwise, combining the optimal solution of the antecedent optimal con-
trol problem with the succedent part of the solution of the original optimal
control problem would yield a better solution of the latter.

Conceptually, we can solve the succedent optimal control problem for any
arbitrary initial state x∈Rn at the initial time τ , rather than for the fixed
value xo(τ) only. Furthermore, we can repeat this process for an arbitrary
initial time t ∈ [ta, tb], rather than for the originally chosen value τ only.
Concentrating only on the optimal value of the cost functional in all of these
cases yields the so-called optimal cost-to-go function

J (x, t) = min
u(·)

{
K(x(tb)) +

∫ tb

t

L(x(t), u(t), t) dt
∣∣∣ x(t) = x

}
.

Working with the optimal cost-to-go function, the Principle of Optimality
reveals two additional important but almost trivial facts:

Lemma

3) The optimal solution of an antecedent optimal control problem with a
free final state at the fixed final time τ and with the cost functional

J = J (x(τ), τ) +
∫ τ

ta

L(x(t), u(t), t) dt

coincides with the antecedent part of the optimal solution of the original
optimal control problem.

4) The optimal costate vector λo(τ) corresponds to the gradient of the opti-
mal cost-to-go function, i.e.,

λo(τ) = ∇xJ (xo(τ), τ) for all τ ∈ [ta, tb] ,

provided that J (x, τ) is continuously differentiable with respect to x at
xo(τ).
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78 3 Optimal State Feedback Control

Proof

3) Otherwise, combining the optimal solution of the modified antecedent
optimal control problem with the succedent part of the solution of the
original optimal control problem would yield a better solution of the latter.

4) This is the necessary condition of Pontryagin’s Minimum Principle for the
final costate in an optimal control problem with a free final state, where
the cost functional includes a final state penalty term (see Chapter 2.3.2,
Theorem C).

3.2 Hamilton-Jacobi-Bellman Theory

3.2.1 Sufficient Conditions for the Optimality of a Solution

Consider the usual formulation of an optimal control problem with an un-
specified final state at the fixed final time:

Find a piecewise continuous control u : [ta, tb] → Ω such that the dynamic
system

ẋ(t) = f(x(t), u(t), t)

is transferred from the given initial state x(ta)=xa to an arbitrary final state
at the fixed final time tb and such that the cost functional

J(u) = K(x(tb)) +
∫ tb

ta

L(x(t), u(t), t) dt

is minimized.

Since the optimal control problem is regular with λo
0 = 1, the Hamiltonian

function is

H(x, u, λ, t) = L(x, u, t) + λTf(x, u, t) .

Let us introduce the n + 1-dimensional set Z = X × [a, b] ⊆ Rn × R, where
X is a (hopefully very large) subset of the state space Rn with non-empty
interior and [a, b] is a subset of the time axis containing at least the interval
[ta, tb], as shown in Fig. 3.1.

Let us consider arbitrary admissible controls û : [ta, tb] → Ω which generate
the corresponding state trajectories x̂ : [ta, tb] → Rn starting at x(ta) = xa.
We are mainly interested in state trajectories which do not leave the set Z,
i.e., which satisfy x(t) ∈ X for all t ∈ [ta, tb].
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3.2 Hamilton-Jacobi-Bellman Theory 79

� t

�x ∈ Rn⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X

ta tb

...............
.................

...................
........................

...............................................
...........................................................................................................................................................................................................................................................................................................................

...........................................
...................................

x̂
�xa

�x̂(tb)

Z

Fig. 3.1. Example of a state trajectory x̂(.) which does not leave X .

With the following hypotheses, the sufficient conditions for the global op-
timality of a solution of an optimal control problem can be stated in the
Hamilton-Bellman-Jacobi Theorem below.

Hypotheses

a) Let û : [ta, tb] → Ω be an admissible control generating the state trajectory
x̂ : [ta, tb] → Rn with x̂(ta) = xa and x̂(.) ∈ Z.

b) For all (x, t) ∈ Z and all λ ∈ Rn, let the Hamiltonian function
H(x, ω, λ, t) = L(x, ω, t) + λTf(x, ω, t) have a unique global minimum
with respect to ω ∈ Ω at

ω = ũ(x, λ, t) ∈ Ω .

c) Let J (x, t) : Z → R be a continuously differentiable function satisfying
the Hamilton-Jacobi-Bellman partial differential equation

∂J (x, t)
∂t

+ H
[
x, ũ

(
x,∇xJ (x, t), t

)
,∇xJ (x, t), t

]
= 0

with the boundary condition

J (x, tb) = K(x) for all (x, tb) ∈ Z .

Remarks:

• The function ũ is called the H-minimizing control.

• When hypothesis b is satisfied, the Hamiltonian H is said to be “normal”.

co
nt

ro
len

gin
ee

rs
.ir



80 3 Optimal State Feedback Control

Hamilton-Jacobi-Bellman Theorem

If the hypotheses a, b, and c are satisfied and if the control trajectory û(.)
and the state trajectory x̂(.) which is generated by û(.) are related via

û(t) = ũ
(
x̂(t),∇xJ (x̂(t), t), t

)
,

then the solution û, x̂ is optimal with respect to all state trajectories x
generated by an admissible control trajectory u, which do not leave X. Fur-
thermore, J (x, t) is the optimal cost-to-go function.

Lemma

If Z = Rn × [ta, tb], then the solution û, x̂ is globally optimal.

Proof

For a complete proof of these sufficiency conditions see [2, pp. 351–363].

3.2.2 Plausibility Arguments about the HJB Theory

In this section, a brief reasoning is given as to why the Hamilton-Jacobi-
Bellman partial differential equation pops up.

We have the following facts:

1) If the Hamiltonian function H is normal, we have the following unique
H-minimizing optimal control:

uo(t) = ũ
(
xo(t), λo(t), t

)
.

2) The optimal cost-to-go function J (x, t) must obviously satisfy the bound-
ary condition

J (x, tb) = K(x)

because at the final time tb, the cost functional only consists of the final
state penalty term K(x).

3) The Principle of Optimality has shown that the optimal costate λo(t)
corresponds to the gradient of the optimal cost-to-go function,

λo(t) = ∇xJ (xo(t), t) ,

wherever J (xo(t), t) is continuously differentiable with respect to x at
x = xo(t).
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3.2 Hamilton-Jacobi-Bellman Theory 81

4) Along an arbitrary admissible trajectory u(.), x(.), the corresponding
suboptimal cost-to-go function

J(x(t), t) = K(x(tb)) +
∫ tb

t

L(x(t), u(t), t) dt

evolves according to the following differential equation:

dJ

dt
=

∂J

∂x
ẋ +

∂J

∂t
= λTf(x, u, t) +

∂J

∂t
= −L(x, u, t) .

Hence,
∂J

∂t
= − λTf(x, u, t) − L(x, u, t) = −H(x, u, λ, t) .

This corresponds to the partial differential equation for the optimal cost-
to-go function J (x, t), except that the optimal control law has not been
plugged in yet.

3.2.3 The LQ Regulator Problem

A simpler version of the LQ regulator problem considered here has been
stated in Problem 5 (Chapter 1, p. 8) and analyzed in Chapter 2.3.4.

Statement of the optimal control problem

Find an optimal state feedback control law u : Rn × [ta, tb] → Rm, such that
the linear dynamic system

ẋ(t) = A(t)x(t) + B(t)u(t)

is transferred from the given initial state x(ta)=xa to an arbitrary final state
at the fixed final time tb and such that the quadratic cost functional

J(u) =
1
2
xT(tb)Fx(tb)

+
∫ tb

ta

(1
2
xT(t)Q(t)x(t) + xT(t)N(t)u(t) +

1
2
uT(t)R(t)u(t)

)
dt

is minimized, where R(t) is symmetric and positive-definite, and F , Q, and[
Q(t) N(t)

NT(t) R(t)

]
are symmetric and positive-semidefinite.

Analysis of the problem

The Hamiltonian function

H =
1
2
xTQx + xTNu +

1
2
uTRu + λTAx + λTBu
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82 3 Optimal State Feedback Control

has the following H-minimizing control:

u = −R−1[BTλ + NTx] = −R−1[BT∇xJ + NTx] .

Thus, the resulting Hamilton-Jacobi-Bellman partial differential equation is

0 =
∂J
∂t

+ H(x, ũ(x,∇xJ , t),∇xJ , t)

=
∂J
∂t

+
1
2

(
xTQx − xTNR−1NTx −∇xJ TBR−1BT∇xJ
+ ∇xJ T[A−BR−1NT]x + xT[A−BR−1NT]

T∇xJ
)

with the boundary condition

J (x, tb) =
1
2
xTFx .

Obviously, an ansatz for the optimal cost-to-go function J (x, t) which is
quadratic in x should work. This results in a partial differential equation in
which all of the terms are quadratic in x. The ansatz

J (x, t) =
1
2
xTK(t)x

leads to

∇xJ (x, t) = K(t)x and
∂J (x, t)

∂t
=

1
2
xTK̇(t)x .

The following final form of the Hamilton-Jacobi-Bellman partial differential
equation is obtained:

1
2
xT

(
K̇(t) + Q − NR−1NT − K(t)BR−1BTK(t)

+ K(t)[A−BR−1NT] + [A−BR−1NT]
T
K(t)

)
x = 0

J (x, tb) =
1
2
xTFx .

Therefore, we get the following optimal state feedback control law:

u(t) = −R−1(t)[BT(t)K(t)+NT(t)]x(t) ,

where the symmetric and positive-(semi)definite matrix K(t) has to be com-
puted in advance by solving the matrix Riccati differential equation

K̇(t) = − [A(t)−B(t)R−1(t)NT(t)]
T
K(t) − K(t)[A(t)−B(t)R−1(t)NT(t)]

− K(t)B(t)R−1(t)BT(t)K(t) − Q(t) + N(t)R−1(t)NT(t)

with the boundary condition

K(tb) = F .
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3.2 Hamilton-Jacobi-Bellman Theory 83

3.2.4 The Time-Invariant Case with Infinite Horizon

In this section, time-invariant optimal control problems with the uncon-
strained control vector u(t) ∈ Rm, an infinite horizon, and a free final state
x(tb) at the infinite final time tb = ∞ are considered.

The most general statement of this optimal control problem is:

Find a piecewise continuous control u : [0,∞) → Rm, such that the com-
pletely controllable dynamic system

ẋ(t) = f(x(t), u(t))

is transferred from the given initial state

x(0) = xa

to an arbitrary final state x(∞)∈Rn at the infinite final time and such that
the cost functional

J(u) =
∫ ∞

0

L(x(t), u(t)) dt

is minimized and attains a finite optimal value.

In order to have a well-posed problem, the variables of the problem should be
chosen in such a way that the intended stationary equilibrium state is at x=0
and that it can be reached by an asymptotically vanishing control u(t) → 0
as t → ∞. Therefore, f(0, 0) = 0 is required. — Furthermore, choose the
integrand L of the cost functional with L(0, 0)=0 and such that it is strictly
convex in both x and u and such that L(x, u) grows without bound, for all
(x, u) where either x, or u, or both x and u go to infinity in any direction in
the state space Rn or the control space Rm, respectively. — Of course, we
assume that both f and L are at least once continuously differentiable with
respect to x and u.

Obviously, in the time-invariant case with infinite horizon, the optimal cost-
to-go function J (x, t) is time-invariant, i.e.,

J (x, t) ≡ J (x) ,

because the optimal solution is shift-invariant. It does not matter whether
the system starts with the initial state xa at the initial time 0 or with the
same initial state xa at some other initial time ta �= 0.

Therefore, the Hamilton-Jacobi-Bellman partial differential equation

∂J (x, t)
∂t

+ H
[
x, ũ

(
x,∇xJ (x, t), t

)
,∇xJ (x, t), t

]
= 0
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84 3 Optimal State Feedback Control

degenerates to the partial differential equation

H
[
x, ũ

(
x,∇xJ (x)

)
,∇xJ (x)

]
= 0

and loses the former boundary condition J (x, tb) = K(x).

In the special case of a dynamic system of first order (n = 1), this is an
ordinary differential equation which can be integrated using the boundary
condition J (0) = 0.

For dynamic systems of higher order (n ≥ 2), the following alternative prob-
lem solving techniques are available:

a) Choose an arbitrary positive-definite function K(x) with K(0) = 0 which
satisfies the usual growth condition. Integrate the Hamilton-Jacobi-Bell-
man partial differential equation over the region Rn×(−∞, tb] using the
boundary condition J (x, tb)=K(x) . The solution J (x, t) asymptotically
converges to the desired time-invariant optimal cost-to-go function J (x)
as t → −∞,

J (x) = lim
t→−∞J (x, t) .

b) Solve the two equations

H(x, u, λ) = 0

∇uH(x, u, λ) = 0

in order to find the desired optimal state feedback control law uo(x) with-
out calculating the optimal cost-to-go function J (x). Since both of these
equations are linear in the costate λ, there is a good chance3 that λ can
be eliminated without calculating λ = ∇xJ (x) explicitly. This results in
an implicit form of the optimal state feedback control law.

Example

Let us assume that we have already solved the following LQ regulator problem
for an unstable dynamic system of first order:

ẋ(t) = ax(t) + bu(t) with a > 0, b �= 0

x(0) = xa

J(u) =
1
2

∫ ∞

0

(
qx2(t) + u2(t)

)
dt with q > 0 .

3 at least in the case n=1 and hopefully also in the case n=m+1
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3.2 Hamilton-Jacobi-Bellman Theory 85

The result is the linear state feedback controller

u(t) = − gx(t)

with

g = bk =
a + a

√
1 + b2q

a2

b
.

Now, we want to replace this linear controller by a nonlinear one which
is “softer” for large values of |x|, i.e., which shows a suitable saturation
behavior, but which retains the “stiffness” of the LQ regulator for small
signals x. — Note that, due to the instability of the plant, the controller
must not saturate to a constant maximal value for the control. Rather, it
can only saturate to a “softer” linear controller of the form u = − g∞x for
large |x| with g∞ > a/b.

In order to achieve this goal, the cost functional is modified as follows:

J(u) =
1
2

∫ ∞

0

(
qx2(t) + u2(t) + βu4(t)

)
dt with β > 0 .

According to the work-around procedure b, the following two equations must
be solved:

H(x, u, λ) =
q

2
x2 +

1
2
u2 +

β

2
u4 + λax + λbu = 0

∂H

∂u
= u + 2βu3 + λb = 0 .

Eliminating λ yields the implicit optimal state feedback control law

3βu4 +
4βa

b
xu3 + u2 +

2a

b
xu − qx2 = 0 .

The explicit optimal state feedback control is obtained by solving this equa-
tion for the unique stabilizing controller u(x):

u(x) = arg

⎧⎨⎩3βu4+
4βa

b
xu3+u2+

2a

b
xu−qx2 =0

∣∣∣∣∣ u<−a
b x for x>0

u=0 for x=0
u>−a

b x for x<0

⎫⎬⎭.

The small-signal characteristic is identical with the characteristic of the LQ
regulator because the fourth-order terms u4 and xu3 are negligible. Con-
versely, for the large-signal characteristic, the fourth-order terms dominate
and the second-order terms u2, xu, and x2 are negligible. Therefore, the
large-signal characteristic is

u ≈ −4a

3b
x .

In Fig. 3.2, the nonlinear optimal control law is depicted for the example
where a = 1, b = 1, q = 8, and β = 1 with the LQ regulator gain g = 4 and
the large-signal gain g∞ = − 4

3 .

co
nt

ro
len

gin
ee

rs
.ir



86 3 Optimal State Feedback Control
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Fig. 3.2. Optimal nonlinear control law.

The inclined reader is invited to verify that replacing the term βu4 in the
cost functional by βu2k with k ≥ 2 results in the large-gain characteristic

u ≈ − 2ka

(2k−1)b
x .

3.3 Approximatively Optimal Control

In most cases, no analytical solution of the Hamilton-Jacobi-Bellman partial
differential equation can be found. Furthermore, solving it numerically can
be extremely cumbersome.

Therefore, a method is presented here which allows to find approximate so-
lutions for the state feedback control law for a time-invariant optimal control
problem with an infinite horizon.

This method has been proposed by Lukes in [27]. It is well suited for prob-
lems where the right-hand side f(x, u) of the state differential equation, and
the integrand L(x, u) of the cost functional, and the optimal state feedback
control law u(x) can be expressed by polynomial approximations around the
equilibrium x ≡ 0 and u ≡ 0, which converge rapidly. (Unfortunately, the
problem presented in Chapter 3.2.4 does not belong to this class.)

Let us consider a time-invariant optimal control problem with an infinite
horizon for a nonlinear dynamic system with a non-quadratic cost functional,
which is structured as follows:

Find a time-invariant optimal state feedback control law u : Rn →Rm, such
that the dynamic system

ẋ(t) = F (x(t), u(t)) = Ax(t) + Bu(t) + f(x(t), u(t))

is transferred from an arbitrary initial state x(0)=xa to the equilibrium state
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x = 0 at the infinite final time and such that the cost functional

J(u) =
∫ ∞

0

L(x(t), u(t)) dt

=
∫ ∞

0

(1
2
xT(t)Qx(t) + xT(t)Nu(t) +

1
2
uT(t)Ru(t) + �(x(t), u(t))

)
dt

is minimized.

In this problem statement, it is assumed that the following conditions are
satisfied:

• [A, B] stabilizable

• R > 0

• Q = CTC ≥ 0

• [A, C] detectable

•
[

Q N
NT R

]
≥ 0

• f(x, u) contains only second-order or higher-order terms in x and/or u

• �(x, u) contains only third-order or higher-order terms in x and/or u .

3.3.1 Notation

Here, some notation is introduced for derivatives and for sorting the terms
of the same order in a polynomial approximation of a scalar-valued or a
vector-valued function around a reference point.

Differentiation
For the Jacobian matrix of the partial derivatives of an n-vector-valued func-
tion f with respect to the m-vector u, the following symbol is used:

fu =
∂f

∂u
=

⎡⎢⎢⎢⎢⎣
∂f1

∂u1

. . .
∂f1

∂um

...
...

∂fn

∂u1

. . .
∂fn

∂um

⎤⎥⎥⎥⎥⎦ .

Note that a row vector results for the derivative of a scalar function f .

Sorting Powers
In polynomial functions, we collect the terms of the same power as follows:

f(x, u) = f (2)(x, u) + f (3)(x, u) + f (4)(x, u) + . . .

�(x, u) = �(3)(x, u) + �(4)(x, u) + �(5)(x, u) + . . .

J (x) = J (2)(x) + J (3)(x) + J (4)(x) + . . .

uo(x) = uo(1)(x) + uo(2)(x) + uo(3)(x) + . . . .
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Example: In the simplest case of a scalar function � with the scalar arguments
x and u, the function �(3)(x, u) has the following general form:

�(3)(x, u) = αx3 + βx2u + γxu2 + δu3 .

For the derivatives of the functions f and �, the powers are sorted in the
analogous way, e.g.,

fu(x, u) = f (1)
u (x, u) + f (2)

u (x, u) + f (3)
u (x, u) + . . .

�u(x, u) = �(2)u (x, u) + �(3)u (x, u) + �(4)u (x, u) + . . . .

Notice the following fact for the derivative of a function with respect to a
scalar-valued or a vector-valued argument:

�(k)
u (x, u) =

∂�(k+1)(x, u)
∂u

.

In the previous example, we get

�(2)u (x, u) =
∂�(3)(x, u)

∂u
= βx2 + 2γxu + 3δu2 .

In general, this kind of notation will be used in the sequel. There is one
exception though: In order to have the notation for the derivatives of the
cost-to-go function J match the notation used by Lukes in [27], we write

Jx(x) = J [2]
x (x) + J [3]

x (x) + J [4]
x (x) + . . .

instead of J (1)
x (x) + J (2)

x (x) + J (3)
x (x) . . . . — Note the difference in the

“exponents” and their brackets.

3.3.2 Lukes’ Method

In the first approximation step, the linear controller uo(1) is determined by
solving the LQ regulator problem for the linearized dynamic system and for
the purely quadratic part of the cost functional.

In each additional approximation step of Lukes’ recursive method, one addi-
tional power is added to the feedback law u(x), while one additional power
of the approximations of f and � is processed.

As shown in Chapter 3.2.4, the following two equations have to be solved
approximately in each approximation step:

H = Jx(x)F (x, u) + L(x, u) = 0 (1)

Hu = Jx(x)Fu(x, u) + Lu(x, u) = 0 . (2)
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3.3 Approximatively Optimal Control 89

In the problem at hand, we have the following equations:

H = Jx(x)[Ax+Bu+f(x, u)]

+
1
2
xTQx + xTNu +

1
2
uTRu + �(x, u) = 0 (3)

Hu = Jx(x)(B+fu(x, u)) + xTN + uTR + �u(x, u) = 0 . (4)

Solving the implicit equation (4) for uo yields:

uoT = − [Jx(x)(B+fu(x, uo)) + xTN + �u(x, uo)]R−1 . (4′)

1st Approximation: LQ-Regulator

ẋ(t) = Ax + Bu

J(u) =
∫ ∞

0

(1
2
xTQx + xTNu +

1
2
uTRu

)
dt

uo(1) = Gx with G = −R−1(BTK + NT) ,

where K is the unique stabilizing solution of the matrix Riccati equation

[A−BR−1NT]
T
K+K[A−BR−1NT]−KBR−1BTK+Q−NR−1NT =0 .

The resulting linear control system is described by the differential equation

ẋ(t) = [A+BG]x(t) = Aox(t)

and has the cost-to-go function

J (2)(x) =
1
2
xTKx with J [2]

x (x) = xTK .

2nd Approximation

uo(x) = uo(1)(x) + uo(2)(x)

Jx(x) = J [2]
x (x) + J [3]

x (x)

a) Determining J [3]
x (x):

Using (3) yields:

0 = (J [2]
x + J [3]

x )[Ax + B(uo(1)+uo(2)) + f(x, uo(1)+uo(2))]

+
1
2
xTQx + xTN(uo(1)+uo(2)) +

1
2
(uo(1)+uo(2))

T
R(uo(1)+uo(2))

+ �(x, uo(1)+uo(2))
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90 3 Optimal State Feedback Control

Cubic terms:

0 = J [3]
x [Ax + Buo(1)] + J [2]

x [Buo(2) + f (2)(x, uo(1))]

+ xTNuo(2) +
1
2
uo(1)TRuo(2) +

1
2
uo(2)TRuo(1) + �(3)(x, uo(1))

= J [3]
x Aox + J [2]

x f (2)(x, uo(1)) + �(3)(x, uo(1))

+ [J [2]
x B + xTN + uo(1)TR]︸ ︷︷ ︸

= 0

uo(2)

Therefore, the equation for J [3]
x (x) is:

0 = J [3]
x Aox + J [2]

x f (2)(x, uo(1)) + �(3)(x, uo(1)) . (6)

b) Determining uo(2)(x):

Using (4′) yields:

(uo(1)+uo(2))T = −
[
(J [2]

x +J [3]
x )(B+fu(x, uo(1)+uo(2))

+ xTN + �u(x, uo(1)+uo(2))
]
R−1

Quadratic terms:

uo(2)T = −
[
J [3]

x B + J [2]
x f (1)

u (x, uo(1)) + �(2)u (x, uo(1))
]
R−1 (7)

Note that in the equations (6) and (7), uo(2) does not contribute to the right-
hand sides. Therefore, these two equations are decoupled. Equation (7) is an
explicit equation determining uo(2). — This feature appears in an analogous
way in all of the successive approximation steps.

3rd Approximation:

u∗(x) = uo(1)(x) + uo(2)(x)

uo(x) = u∗(x) + uo(3)(x)

Jx(x) = J [2]
x (x) + J [3]

x (x) + J [4]
x (x)

a) Determining J [4]
x (x):

0 = J [4]
x Aox + J [3]

x Buo(2)

+ J [3]
x f (2)(x, u∗) + J [2]

x f (3)(x, u∗)

+
1
2
uo(2)TRuo(2) + �(4)(x, u∗)
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b) Determining uo(3)(x):

uo(3)T = − [J [4]
x B + J [3]

x f (1)
u (x, u∗) + J [2]

x f (2)
u (x, u∗) + �(3)u (x, u∗)]R−1

kth Approximation (k ≥ 4)

u∗(x) =
k−1∑
i=1

uo(i)

uo(x) = u∗(x) + uo(k)(x)

Jx(x) =
k+1∑
j=2

J [j]
x (x)

a) Determining J [k+1]
x (x):

For k even:

0 = J [k+1]
x Aox +

k−1∑
j=2

J [k+2−j]
x Buo(j) +

k∑
j=2

J [k+2−j]
x f (j)(x, u∗)

+

k
2∑

j=2

uo(j)TRuo(k+1−j) + �(k+1)(x, u∗)

For k odd:

0 = J [k+1]
x Aox +

k−1∑
j=2

J [k+2−j]
x Buo(j) +

k∑
j=2

J [k+2−j]
x f (j)(x, u∗)

+

k−1
2∑

j=2

uo(j)TRuo(k+1−j) +
1
2
uo( k+1

2 )
T
Ruo( k+1

2 ) + �(k+1)(x, u∗)

b) Determining uo(k)(x):

uo(k)T = −
[
J [k+1]

x B + �(k)
u (x, u∗) +

k−1∑
j=1

J [k+1−j]
x f (j)

u (x, u∗)
]
R−1

These formulae are valid for k≥2 already, if the value of a void sum is defined
to be zero.
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92 3 Optimal State Feedback Control

3.3.3 Controller with a Progressive Characteristic

For a linear time-invariant dynamic system of first order, we want to design
a time-invariant state feedback control u(x), the characteristic of which is
super-linear, i.e., u(x) is progressive for larger values of the state x.

In order to achieve this goal, we formulate a cost functional which penalizes
the control quadratically and the state super-quadratically.

As an example, let us consider the optimal state feedback control problem
described by the following equations:

ẋ(t) = ax(t) + u(t)

J(u) =
∫ ∞

0

(
q cosh(x(t)) − q +

1
2
u2(t)

)
dt ,

where a and q are positive constants.

Using the series expansion

cosh(x) = 1 +
x2

2!
+

x4

4!
+

x6

6!
+

x8

8!
+ . . .

for the hyperbolic cosine function, we get the following correspondences with
the nomenclature used in Chapter 3.3.2:

A = a

B = 1
f(x, u) ≡ 0

fu(x, u) ≡ 0
R = 1
N = 0
Q = q

�(x, u) = q
(x4

4!
+

x6

6!
+

x8

8!
+ . . .

)
�u(x, u) ≡ 0 .

1st Approximation: LQ-Regulator

ẋ(t) = ax + u

J(u) =
∫ ∞

0

(1
2
qx2 +

1
2
u2

)
dt

uo(1) = −Kx ,
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3.3 Approximatively Optimal Control 93

where
K = a +

√
a2 + q

is the positive solution of the Riccati equation

K2 − 2aK − q = 0 .

The resulting linear control system is described by the differential equation

ẋ(t) = [a − K]x(t) = Aox(t) = −
√

a2 + q x(t)

and has the cost-to-go function

J (2)(x) =
1
2
Kx2 =

1
2

(
a +

√
a2 + q

)
x2

with the derivative

J [2]
x (x) = Kx =

(
a +

√
a2 + q

)
x .

2nd Approximation

From
0 = J [3]

x Aox + J [2]
x f (2) + �(3)

we get
J [3]

x = 0 .

Since fu(x, u) ≡ 0, �u(x, u) ≡ 0, B = 1, and R = 1, we obtain the following
result for all k ≥ 2:

uo(k) = −J [k+1]
x .

Hence,
uo(2) = −J [3]

x = 0 .

3rd Approximation

0 = J [4]
x Aox + J [3]

x Buo(2) +
3∑

j=2

J [5−j]
x f (j) +

1
2
uo(2)TRuo(2) + �(4)

J [4]
x =

qx3

4!
√

a2 + q

uo(3) = −J [4]
x = − qx3

4!
√

a2 + q
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94 3 Optimal State Feedback Control

4th Approximation

0 = J [5]
x Aox +

3∑
j=2

J [6−j]
x Buo(j) +

4∑
j=2

J [6−j]
x f (j) +

2∑
j=2

uo(j)Ruo(5−j) + �(5)

J [5]
x = 0

uo(4) = −J [5]
x = 0

5th Approximation

0 = J [6]
x Aox +

4∑
j=2

J [7−j]
x Buo(j) +

5∑
j=2

J [7−j]
x f (j)

+
2∑

j=2

uo(j)Ruo(6−j) +
1
2
uo(3)Ruo(3) + �(6)

J [6]
x =

(
q

6!
− q2

2(4!)2(a2 + q)

)
x5√
a2 + q

uo(5) = −J [6]
x = −

(
q

6!
− q2

2(4!)2(a2 + q)

)
x5√
a2 + q

6th Approximation

0 = J [7]
x Aox +

5∑
j=2

J [8−j]
x Buo(j) +

6∑
j=2

J [8−j]
x f (j) +

3∑
j=2

uo(j)Ruo(7−j) + �(7)

J [7]
x = 0

uo(6) = −J [7]
x = 0

7th Approximation

0 = J [8]
x Aox +

6∑
j=2

J [9−j]
x Buo(j) +

7∑
j=2

J [9−j]
x f (j)

+
3∑

j=2

uo(j)Ruo(8−j) +
1
2
uo(4)Ruo(4) + �(8)
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J [8]
x =

(
q

8!
−

( q

6!
− q2

2(4!)2(a2 + q)

) 1
4!(a2 + q)

)
x7√
a2 + q

uo(7) = −J [8]
x = −

(
q

8!
−

( q

6!
− q2

2(4!)2(a2 + q)

) 1
4!(a2 + q)

)
x7√
a2 + q

and so on . . .

Finally, we obtain the following nonlinear, approximatively optimal control

uo(x) = uo(1)(x) + uo(3)(x) + uo(5)(x) + uo(7)(x) + . . . .

Pragmatically, it can be approximated by the following equation:

uo(x) ≈ −(a+
√

a2+q )x − qx3

4!
√

a2+q
− qx5

6!
√

a2 + q
− qx7

8!
√

a2 + q
− . . . .

The characteristic of this approximated controller truncated after four terms
is shown in Fig. 3.3.

�

�
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96 3 Optimal State Feedback Control

3.3.4 LQQ Speed Control

The equation of motion for the velocity v(t) of an aircraft in horizontal flight
can be described by

mv̇(t) = −1
2
cwArρv2(t) + F (t) ,

where F (t) is the horizontal thrust force generated by the jet engine, m is the
mass of the aircraft, cw is the aerodynamic drag coefficient, Ar is a reference
cross section of the aircraft, and ρ is the density of the air.

The aircraft should fly at the constant speed v0. For this, the nominal thrust

F0 =
1
2
cwArρv2

0

is needed.

We want to augment the obvious open-loop control strategy F (t)≡F0 with
a feedback control such that the velocity v(t) is controlled more precisely,
should any discrepancy occur for whatever reason.

Introducing the state variable

x(t) = v(t) − v0

and the correcting additive control variable

u(t) =
1
m

(
F (t) − F0

)
the following nonlinear dynamics for the design of the feedback control are
obtained:

ẋ(t) = a1x(t) + a2x
2(t) + u(t)

with a1 = −cwArρv0

m

and a2 = −cwArρ

2m
.

For the design of the feedback controller, we choose the standard quadratic
cost functional

J(u) =
1
2

∫ ∞

0

(
qx2(t) + u2(t)

)
dt .
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3.3 Approximatively Optimal Control 97

Thus, we get the following correspondences with the nomenclature used in
Chapter 3.3.2:

A = a1

B = 1

f(x, u) = a2x
2

fu(x, y) ≡ 0

f (1)(x, u) = 2a2x

f (2)(x, u) = 2a2

f (3)(x, u) = 0

Q = q

R = 1

�(x, u) ≡ 0 .

1st Approximation: LQ-Regulator

ẋ(t) = a1x + u

J(u) =
∫ ∞

0

(1
2
qx2 +

1
2
u2

)
dt

uo(1) = −Kx ,

where
K = a1 +

√
a2
1 + q

is the positive solution of the Riccati equation

K2 − 2a1K − q = 0 .

The resulting linear control system is described by the differential equation

ẋ(t) = [a1 − K]x(t) = Aox(t) = −
√

a2
1 + q x(t)

and has the cost-to-go function

J (2)(x) =
1
2
Kx2 =

1
2

(
a1 +

√
a2
1 + q

)
x2

with the derivative

J [2]
x (x) = Kx =

(
a1 +

√
a2
1 + q

)
x .
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2nd Approximation

From
0 = J [3]

x Aox + J [2]
x f (2) + �(3)

we get

J [3]
x =

a1+
√

a2
1+q√

a2
1+q

a2x
2 .

Since fu(x, u) ≡ 0, �u(x, u) ≡ 0, B = 1, and R = 1, we obtain the following
result for all k ≥ 2:

uo(k) = −J [k+1]
x .

Hence,

uo(2) = −J [3]
x = −a1+

√
a2
1+q√

a2
1+q

a2x
2 .

Since the equation of motion is quadratic in x, the algorithm stops here.
Therefore, the approximatively optimal control law is:

u(x) = uo(1)(x) + uo(2)(x) = −
(
a1+

√
a2
1+q

)
x − a1+

√
a2
1+q√

a2
1+q

a2x
2 .

The characteristic of this approximated controller is shown in Fig. 3.4.

�

�
...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

....................................................................................................................
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Fig. 3.4. Characteristic of the LQQ controller for v0 = 100 m/s and q = 0.001
with cw = 0.05, Ar = 0.5 m2, ρ = 1.3 kg/m3, and m = 200 kg.
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3.4 Exercises

1. Consider a bank account with the instantaneous wealth x(t) and with
the given initial wealth xa at the given initial time ta = 0. At any time,
money can be withdrawn from the account at the rate u(t)≥0. The bank
account receives interest. Therefore, it is an unstable system (which, alas,
is easily stabilizable in practice). Modeling the system in continuous-time,
its differential equation is

ẋ(t) = ax(t) − u(t)
x(0) = xa ,

where a > 0 and xa > 0. The compromise between withdrawing a lot of
money from the account and letting the wealth grow due to the inter-
est payments over a fixed time interval [0, tb] is formulated via the cost
functional or “utility function”

J(u) =
α

γ
x(tb)γ +

∫ tb

0

1
γ

u(t)γ dt

which we want to maximize using an optimal state feedback control law.
Here, α>0 is a parameter by which we influence the compromise between
being rich in the end and consuming a lot in the time interval [0, tb].
Furthermore, γ ∈ (0, 1) is a “style parameter” of the utility function. Of
course, we must not overdraw the account at any time, i.e., x(t)≥ 0 for
all t ∈ [0, tb]. And we can only withdraw money from the account, but
we cannot invest money into the bank account, because our salary is too
low. Hence, u(t) ≥ 0 for all t ∈ [0, tb].

This problem can be solved analytically.

2. Find a state feedback control law for the asymptotically stable first-order
system

ẋ(t) = ax(t) + bu(t) with a < 0, b > 0

such that the cost functional

J = kx2(tb) +
∫ tb

0

(
qx2(t) + cosh(u(t)) − 1

)
dt

is minimized, where k > 0, q > 0, and tb is fixed.

3. For the nonlinear time-invariant system of first order

ẋ(t) = a(x(t)) + b(x(t))u(t)

find a time-invariant state feedback control law, such that the cost func-
tional

J(u) =
∫ ∞

0

(
g(x(t)) + ru2k(t)

)
dt

is minimized.
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100 3 Optimal State Feedback Control

Here, the functions a(x), b(x), and g(x) are continuously differentiable.
Furthermore, the following conditions are satisfied:

a(0) = 0
da

dx
(0) �= 0

a(.) : either monotonically increasing or monotonically decreasing
b(x) > 0 for all x ∈ R

g(0) = 0
g(x) : strictly convex for all x ∈ R

g(x) → ∞ for |x| → ∞
r > 0
k : positive integer .

4. Consider the following “expensive control” version of the problem pre-
sented in Exercise 3:

For the nonlinear time-invariant system of first order

ẋ(t) = a(x(t)) + b(x(t))u(t)

find a time-invariant state feedback control law, such that the system is
stabilized and such that the cost functional

J(u) =
∫ ∞

0

u2k(t) dt

is minimized for every initial state x(0) ∈ R.

5. Consider the following optimal control problem of Type B.1 where the cost
functional contains an additional discrete state penalty term K1(x(t1)) at
the fixed time t1 within the time interval [ta, tb]:

Find a piecewise continuous control u : [ta, tb] → Ω, such that the dynamic
system

ẋ(t) = f(x(t), u(t))

is transferred from the initial state

x(ta) = xa

to the target set S at the fixed final time,

x(tb) ∈ S ⊆ Rn ,

and such that the cost functional

J(u) = K(x(tb)) + K1(x(t1)) +
∫ tb

ta

L(x(t), u(t)) dt
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is minimized.

Prove that the additional discrete state penalty term K1(x(t1)) leads to
the additional necessary jump discontinuity of the costate at t1 of the
following form:

λo(t−1 ) = λo(t+1 ) + ∇xK1(xo(t1)) .

6. Consider the following optimal control problem of Type B.1 where there
is an additional state constraint x(t1)∈S1⊂Rn at the fixed time t1 within
the time interval [ta, tb]:

Find a piecewise continuous control u : [ta, tb] → Ω, such that the dynamic
system

ẋ(t) = f(x(t), u(t))

is transferred from the initial state

x(ta) = xa

through the loophole4 or across (or onto) the surface5

x(t1) ∈ S1 ⊂ Rn

to the target set S at the fixed final time,

x(tb) ∈ S ⊆ Rn ,

and such that the cost functional

J(u) = K(x(tb)) +
∫ tb

ta

L(x(t), u(t)) dt

is minimized.

Prove that the additional discrete state constraint at time t1 leads to
the additional necessary jump discontinuity of the costate at t1 of the
following form:

λo(t−1 ) = λo(t+1 ) + qo
1

where qo
1 satisfies the transversality condition

q1 ∈ T ∗(S1, x
o(t1)) .

Note that this phenomenon plays a major role in differential game prob-
lems. The major issue in differential game problems is that the involved
“surfaces” are not obvious at the outset.

4 A loophole is described by an inequality constraint g1(x(t1)) ≤ 0.
5 A surface is described by an equality constraint g1(x(t1)) = 0.
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4 Differential Games

A differential game problem is a generalized optimal control problem which
involves two players rather than only one. One player chooses the control
u(t) ∈ Ωu ⊆ Rmu and tries to minimize his cost functional, while the other
player chooses the control v(t) ∈ Ωv ⊆ Rmv and tries to maximize her cost
functional. — A differential game problem is called a zero-sum differential
game if the two cost functionals are identical.

The most intriguing differential games are pursuit-evasion games, such as the
homicidal chauffeur game, which has been stated as Problem 12 in Chapter 1
on p. 15. For its solution, consult [21] and [28].

This introduction into differential games is very short. Its raison d’être here
lies in the interesting connections between differential games and the H∞
theory of robust linear control.

In most cases, solving a differential game problem is mathematically quite
tricky. The notable exception is the LQ differential game which is solved
in Chapter 4.2. Its connections to the H∞ control problem are analyzed in
Chapter 4.3. For more detailed expositions of these connections, see [4] and
[17].

The reader who is interested in more fascinating differential game problems
should consult the seminal works [21] and [9] as well as the very complete
treatise [5].

4.1 Theory

Conceptually, extending the optimal control theory to the differential game
theory is straightforward and does not offer any surprises (initially): In
Pontryagin’s Minimum Principle, the Hamiltonian function has to be glob-
ally minimized with respect to the control u. In the corresponding Nash-
Pontryagin Minimax Principle, the Hamiltonian function must simultane-
ously be globally minimized with respect to u and globally maximized with
respect to v.
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104 4 Differential Games

The difficulty is: In a general problem statement, the Hamiltonian function
will not have such a minimax solution. — Pictorially speaking, the chance
that a differential game problem (with a quite general formulation) has a
solution is about as high as the chance that a horseman riding his saddled
horse in the (u, v) plane at random happens to ride precisely in the Eastern
(or Western) direction all the time.

Therefore, in addition to the general statement of the differential game prob-
lem, we also consider a special problem statement with “variable separa-
tion”. — Yes, in dressage competitions, horses do perform traverses. (No-
body knows whether they think of differential games while doing this part of
the show.)

For simplicity, we concentrate on time-invariant problems with unbounded
controls u and v and with an unspecified final state at the fixed final time tb.

4.1.1 Problem Statement

General Problem Statement

Find piecewise continuous controls u : [ta, tb] → Rmu and v : [ta, tb] → Rmv ,
such that the dynamic system

ẋ(t) = f(x(t), u(t), v(t))

is transferred from the given initial state

x(ta) = xa

to an arbitrary final state at the fixed final time tb and such that the cost
functional

J(u, v) = K(x(tb)) +
∫ tb

ta

L(x(t), u(t), v(t)) dt

is minimized with respect to u(.) and maximized with respect to v(.).

Subproblem 1: Both users must use open-loop controls:

u(t) = u(t, xa, ta), v(t) = v(t, xa, ta) .

Subproblem 2: Both users must use closed-loop controls in the form:

u(t) = ku(x(t), t), v(t) = kv(x(t), t) .

Special Problem Statement with Separation of Variables

The functions f and L in the general problem statement have the following
properties:

f(x(t), u(t), v(t)) = f1(x(t), u(t)) + f2(x(t), v(t))

L(x(t), u(t), v(t)) = L1(x(t), u(t)) + L2(x(t), v(t)) .
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4.1 Theory 105

Remarks:

1) As mentioned in Chapter 1.1.2, the functions f , K, and L are assumed
to be at least once continuously differentiable with respect to all of their
arguments.

2) Obviously, the special problem with variable separation has a reasonably
good chance to have an optimal solution. Furthermore, the existence
theorems for optimal control problems given in Chapter 2.7 carry over to
differential game problems in a rather straightforward way.

3) In the differential game problem with variable separation, the distinction
between Subproblem 1 and Subproblem 2 is no longer necessary. As in
optimal control problems, optimal open-loop strategies are equivalent to
optimal closed-loop strategies (at least in theory). — In other words,
condition c of the Theorem in Chapter 4.1.2 is automatically satisfied.

4) Since the final state is free, the differential game problem is regular, i.e.,
λo

0 = 1 in the Hamiltonian function H.

4.1.2 The Nash-Pontryagin Minimax Principle

Definition: Hamiltonian function H : Rn × Rmu × Rmv × Rn → R ,

H(x(t), u(t), v(t), λ(t)) = L(x(t), u(t), v(t)) + λT(t)f(x(t), u(t), v(t)) .

Theorem

If uo : [ta, tb] → Rmu and vo : [ta, tb] → Rmv are optimal controls, then the
following conditions are satisfied:

a) ẋo(t) = ∇λH|o = f(xo(t), uo(t), vo(t))

xo(ta) = xa

λ̇o(t) = −∇xH|o

= −∇xL(xo(t), uo(t), vo(t)) −
[

∂f

∂x
(xo(t), uo(t), vo(t))

]T
λo(t)

λo(tb) = ∇xK(xo(tb)) .

b) For all t ∈ [ta, tb], the Hamiltonian H(xo(t), u, v, λo(t)) has a global saddle
point with respect to u ∈ Rmu and v ∈ Rmv , and the saddle is correctly
aligned with the control axes, i.e.,

H(xo(t), uo(t), vo(t), λo(t)) ≤ H(xo(t), u, vo(t), λo(t)) for all u ∈ Rmu

and

H(xo(t), uo(t), vo(t), λo(t)) ≥ H(xo(t), uo(t), v, λo(t)) for all v ∈ Rmv .
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106 4 Differential Games

c) Furthermore, in the case of Subproblem 2:

When the state feedback law v(t) = kv(x(t), t) is applied, uo(.) is a
globally minimizing control of the resulting optimal control problem of
Type C.1 and, conversely, when the state feedback law u(t) = ku(x(t), t)
is applied, vo(.) is a globally maximizing control of the resulting optimal
control problem of Type C.1.

4.1.3 Proof

Proving the theorem proceeds in complete analogy to the proofs of Theorem C
in Chapter 2.3.3 and Theorem A in Chapter 2.1.3.

The augmented cost functional is:

J = K(x(tb)) +
∫ tb

ta

[
L(x, u, v) + λ(t)T{f(x, u, v)−ẋ}]dt + λT

a {xa−x(ta)}

= K(x(tb)) +
∫ tb

ta

[
H − λTẋ

]
dt + λT

a {xa−x(ta)} ,

where H = H(x, u, v, λ) = L(x, u, v) + λTf(x, u, v) is the Hamiltonian func-
tion.

According to the philosophy of the Lagrange multiplier method, the aug-
mented cost functional J has to be extremized with respect to all of its
mutually independent variables x(ta), λa, x(tb), and u(t), v(t) x(t), and λ(t)
for all t ∈ (ta, tb).

Suppose that we have found the optimal solution xo(ta), λo
a, xo(tb), and uo(t),

vo(t), xo(t), and λo(t) for all t ∈ (ta, tb).

The following first differential δJ of J(uo) around the optimal solution is
obtained:

δJ =

[(
∂K

∂x
− λT

)
δx

]
tb

+ δλT
a {xa − x(ta)} +

(
λT(ta) − λT

a

)
δx(ta)

+
∫ tb

ta

[(
∂H

∂x
+ λ̇T

)
δx +

∂H

∂u
δu +

∂H

∂v
δv +

(
∂H

∂λ
− ẋT

)
δλ

]
dt .

Since we have postulated a saddle point of the augmented function at J(uo),
this first differential must satisfy the following equality and inequalities

δJ

{ = 0 for all δx, δλ, and δλa ∈ Rn

≥ 0 for all δu ∈ Rmu

≤ 0 for all δv ∈ Rmv .
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4.1 Theory 107

According to the philosophy of the Lagrange multiplier method, this equality
and these inequalities must hold for arbitrary combinations of the mutually
independent variations δx(t), δu(t), δv(t), δλ(t) at any time t ∈ (ta, tb), and
δλa, δx(ta), and δx(tb). Therefore, they must be satisfied for a few very
specially chosen combinations of these variations as well, namely where only
one single variation is nontrivial and all of the others vanish.

The consequence is that all of the factors multiplying a differential must
vanish. — This completes the proof of the conditions a and b of the theorem.

Compared to Pontryagin’s Minimum Principle, the condition c of the Nash-
Pontryagin Minimax Principle is new. It should be fairly obvious because
now, two independent players may use state feedback control. Therefore,
if one player uses his optimal state feedback control law, the other player
has to check whether Pontryagin’s Minimum Principle is still satisfied for his
(open-loop or closed-loop) control law. — This funny check only appears in
differential game problems without separation of variables.

Notice that there is no condition for λa. In other words, the boundary con-
dition λo(ta) of the optimal costate λo(.) is free.

Remark: The calculus of variations only requires the local minimization of
the Hamiltonian H with respect to the control u and a local maximization
of H with respect to v. — In the theorem, the Hamiltonian is required to
be globally minimized and maximized, respectively. Again, this restriction is
justified in Chapter 2.2.1.

4.1.4 Hamilton-Jacobi-Isaacs Theory

In the Nash-Pontryagin Minimax Principle, we have expressed the necessary
condition for H to have a Nash equilibrium or special type of saddle point
with respect to (u, v) at (uo, vo) by the two inequalities

H(xo, uo, v, λo) ≤ H(xo, uo, vo, λo) ≤ H(xo, u, vo, λo) .

In order to extend the Hamilton-Jacobi-Bellman theory in the area of optimal
control to the Hamilton-Jacobi-Isaacs theory in the area of differential games,
Nash’s formulation of the necessary condition for a Nash equilibrium is more
practical:

min
u

max
v

H(xo, u, v, λo) = max
v

min
u

H(xo, u, v, λo) = H(xo, uo, vo, λo) ,

i.e., it is not important whether H is first maximized with respect to v and
then minimized with respect to u or vice versa. The result is the same in
both cases.
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108 4 Differential Games

Now, let us consider the following general time-invariant differential game
problem with state feedback:

Find two state feedback control laws u(x) : Rn → Rmu and v : Rn → Rmv ,
such that the dynamic system

ẋ(t) = f(x(t), u(t), v(t))

is transferred from the given initial state

x(ta) = xa

to an arbitrary final state at the fixed final time tb and such that the cost
functional

J(u, v) = K(x(tb)) +
∫ tb

ta

L(x(t), u(t), v(t)) dt

is minimized with respect to u(.) and maximized with respect to v(.).

Let us assume that the Hamiltonian function

H = L(x, u, v) + λTf(x, u, v)

has a unique Nash equilibrium for all x ∈ Rn and all λ ∈ Rn. The corre-
sponding H-minimizing and H-maximizing controls are denoted by ũ(x, λ)
and ṽ(x, λ), respectively. In this case, H is said to be “normal”.

If the normality hypothesis is satisfied, the following sufficient condition for
the optimality of a solution of the differential game problem is obtained.

Hamilton-Jacobi-Isaacs Theorem

If the cost-to-go function J (x, t) satisfies the boundary condition

J (x, tb) = K(x)

and the Hamilton-Jacobi-Isaacs partial differential equation

−∂J
∂t

= min
u

max
v

H(x, u, v,∇xJ ) = max
v

min
u

H(x, u, v,∇xJ )

= H(x, ũ(x,∇xJ ), ṽ(x,∇xJ ),∇xJ )

for all (x, t) ∈ Rn × [ta, tb], then the state feedback control laws

u(x) = ũ(x,∇xJ ) and v(x) = ṽ(x,∇xJ )

are globally optimal.

Proof: See [5].
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4.2 LQ Differential Game 109

4.2 The LQ Differential Game Problem

For convenience, the problem statement of the LQ differential game (Chap-
ter 1.2, Problem 11, p. 15) is recapitulated here.

Find the piecewise continuous, unconstrained controls u : [ta, tb] → Rmu and
v : [ta, tb] → Rmv such that the dynamic system

ẋ(t) = Ax(t) + B1u(t) + B2v(t)

is transferred from the given initial state

x(ta) = xa

to an arbitrary final state at the fixed final time tb and such that the quadratic
cost functional

J(u, v) =
1
2
xT(tb)Fx(tb)

+
1
2

∫ tb

ta

(
xT(t)Qx(t) + uT(t)u(t) − γ2vT(t)v(t)

)
dt ,

with F > 0 and Q > 0 ,

is simultaneously minimized with respect to u and maximized with respect
to v. Both players are allowed to use state feedback control. This is not
relevant though, since the problem has separation of variables.

4.2.1 The LQ Differential Game Problem Solved with the
Nash-Pontryagin Minimax Principle

The Hamiltonian function is

H =
1
2
xTQx +

1
2
uTu − 1

2
γ2vTv + λTAx + λTB1u + λTB2v .

The following necessary conditions are obtained from the Nash-Pontryagin
Minimax Principle:

ẋo = ∇λH|o = Axo + B1u
o + B2v

o

λ̇o = −∇xH|o = − Qxo − ATλo

xo(ta) = xa

λo(tb) = Fxo(tb)

∇uH|o = 0 = uo + BT
1 λo

∇vH|o = 0 = − γ2vo + BT
2 λo .
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110 4 Differential Games

Thus, the global minimax of the Hamiltonian function yields the following
H-minimizing and H-maximizing control laws:

uo(t) = −BT
1 λo(t)

vo(t) =
1
γ2

BT
2 λo(t) .

Plugging them into the differential equation for x results in the linear two-
point boundary value problem

ẋo(t) = Axo(t) − B1B
T
1 λo(t) +

1
γ2

B2B
T
2 λo(t)

λ̇o(t) = − Qxo(t) − ATλo(t)

xo(ta) = xa

λo(tb) = Fxo(tb) .

Converting the optimal controls from the open-loop to the closed-loop form
proceeds in complete analogy to the case of the LQ regulator (see Chap-
ter 2.3.4).

The two differential equations are homogeneous in (xo; λo) and at the final
time tb, the costate vector λ(tb) is a linear function of the final state vector
xo(tb). Therefore, the linear ansatz

λo(t) = K(t)xo(t)

will work, where K(t) is a suitable time-varying n by n matrix.

Differentiating this ansatz with respect to the time t, and considering the
differential equations for the costate λ and the state x, and applying the
ansatz in the differential equations leads to the following equation:

λ̇ = K̇x + Kẋ = K̇x + KAx − KB1B
T
1 Kx +

1
γ2

KB2B
T
2 Kx

= − Qx − ATKx

or equivalently(
K̇ + ATK + KA − KB1B

T
1 K +

1
γ2

KB2B
T
2 K + Q

)
x ≡ 0 .

This equation must be satisfied at all times t ∈ [ta, tb]. Furthermore, we
arrive at this equation, irrespective of the initial state xa at hand, i.e., for all
xa ∈ Rn. Thus, the vector x in this equation may be an arbitrary vector in
Rn. Therefore, the sum of matrices in the brackets must vanish.
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4.2 LQ Differential Game 111

The resulting optimal state-feedback control laws are

uo(t) = −BT
1 K(t)xo(t) and

vo(t) =
1
γ2

BT
2 K(t)xo(t) ,

where the symmetric, positive-definite n by n matrix K(t) is the solution of
the matrix Riccati differential equation

K̇(t) = − ATK(t) − K(t)A − Q + K(t)
[
B1B

T
1 − 1

γ2
B2B

T
2

]
K(t)

with the boundary condition

K(tb) = F

at the final time tb.

Note: The parameter γ must be sufficiently large, such that K(t) stays finite
over the whole interval [ta, tb].

4.2.2 The LQ Differential Game Problem Solved with the
Hamilton-Jacobi-Isaacs Theory

Using the Hamiltonian function

H =
1
2
xTQx +

1
2
uTu − 1

2
γ2vTv + λTAx + λTB1u + λTB2v ,

the H-minimizing control

ũ(x, λ) = −BT
1 λ(t) ,

and the H-maximizing control

ṽ(x, λ) =
1
γ2

BT
2 λ(t) ,

the following symmetric form of the Hamilton-Jacobi-Isaacs partial differen-
tial equation can be obtained:

−∂J
∂t

= H
(
x, ũ(x,∇xJ ), ṽ(x,∇xJ ),∇xJ

)
=

1
2
xTQx − 1

2
(∇xJ )TB1B

T
1 ∇xJ +

1
2γ2

(∇xJ )TB2B
T
2 ∇xJ

+
1
2
(∇xJ )TAx +

1
2
xTAT∇xJ

J (x, tb) =
1
2
xTFx .
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112 4 Differential Games

Inspecting the boundary condition and the partial differential equation re-
veals that the following quadratic separation ansatz for the cost-to-go func-
tion will be successful:

J (x, t) =
1
2
xTK(t)x with K(tb) = F .

The symmetric, positive-definite n by n matrix function K(.) remains to be
found for t ∈ [ta, tb).

The new, separated form of the Hamilton-Jacobi-Isaacs partial differential
equation is

0 =
1
2
xT

(
K̇(t) + Q − K(t)B1B

T
1 K(t) +

1
γ2

K(t)B2B
T
2 K(t)

+ K(t)A + ATK(t)
)

x .

Since x ∈ Rn is the independent state argument of the cost-to-go function
J (x, t), the partial differential equation is satisfied if and only if the matrix
sum in the brackets vanishes.

Thus, finally, the following closed-loop optimal control laws are obtained for
the LQ differential game problem:

u(x(t)) = − BT
1 K(t)x(t)

v(x(t)) =
1
γ2

BT
2 K(x)x(t) ,

where the symmetric, positive-definite n by n matrix K(t) is the solution of
the matrix Riccati differential equation

K̇(t) = − ATK(t) − K(t)A + K(t)B1B
T
1 K(t) − 1

γ2
K(t)B2B

T
2 K(t) − Q

with the boundary condition

K(tb) = F .

Note: The parameter γ must be sufficiently large, such that K(t) stays finite
over the whole interval [ta, tb].co
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4.3 H∞-Control via Differential Games 113

4.3 H∞-Control via Differential Games

In this section, the so-called “full-information” H∞-control problem for a
linear time-invariant plant is investigated.

H∞ Problem Statement

For the linear, time-invariant dynamic system

ẋ(t) = Ax(t) + B1w(t) + B2u(t)

z(t) = C1x(t) + D11w(t) + D12u(t)

find a linear, time-invariant controller of the form

u(t) = −Gx(t) ,

such that the H∞-norm of the closed-loop control system with the disturb-
ance input vector w to the design output z is bounded by a given value γ > 0,
i.e.,

sup
w∈L2(0,∞)

‖w‖2=1

‖z‖2

‖w‖2
= ‖Tzw‖∞ ≤ γ .

Here, the norms ‖z‖2 and ‖w‖2 are defined as

‖z‖2 =

√∫ ∞

0

zT(t)z(t) dt

‖w‖2 =

√∫ ∞

0

wT(t)w(t) dt .

The following well-posedness conditions are needed:

1) [A, B2] stabilizable

2) [A, C1] detectable

3) DT
12D12 invertible

4) D11 sufficiently small, i.e., σ(D11)<γ, where σ(D11) denotes the maximal
singular value of D11.

Differential Game Problem Statement

This H∞ problem statement is equivalent to the following statement of a
differential game problem:

For the linear, time-invariant dynamic system

ẋ(t) = Ax(t) + B1w(t) + B2u(t)

z(t) = C1x(t) + D11w(t) + D12u(t)
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114 4 Differential Games

with an arbitrary initial state x(0)=xa, find a linear, time-invariant controller
of the form

u(t) = −Gx(t) ,

such that the cost functional

J(u, w) =
1
2

∫ ∞

0

{zT(t)z(t) − γ2wT(t)w(t)} dt ,

is both minimized with respect to u(.) and maximized with respect to w(.).

Analysis of the Problem

For the analysis of this infinite horizon differential game problem, the follow-
ing substitutions are useful:

i =
[

w
u

]
B = [B1 B2 ]

D1• = [D11 D12 ]

R̄ =
[

DT
11D11−γ2I DT

11D12

DT
12D11 DT

12D12

]
.

The Hamiltonian function is:

H =
1
2
zTz − γ2

2
wTw + λTẋ

=
1
2
(C1x+D1•i)T(C1x+D1•i) − γ2

2
wTw + λTAx + λTBi

=
1
2
xTCT

1 C1x +
1
2
xTCT

1 D1•i +
1
2
iTDT

1•C1x +
1
2
iTDT

1•D1•i − γ2

2
wTw

+
1
2
λTAx +

1
2
xTATλ +

1
2
λTBi +

1
2
iTBTλ

=
1
2
xTCT

1 C1x +
1
2
xTCT

1 D1•i +
1
2
iTDT

1•C1x +
1
2
iTR̄i

+
1
2
λTAx +

1
2
xTATλ +

1
2
λTBi +

1
2
iTBTλ

=
1
2
[
i+R̄−1(BTλ+DT

1•C1x)
]
R̄
[
i+R̄−1(BTλ+DT

1•C1x)
]

+
1
2
xTCT

1 C1x +
1
2
λTAx +

1
2
xTATλ

− 1
2
(BTλ+DT

1•C1x)TR̄−1(BTλ+DT
1•C1x) .
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4.3 H∞-Control via Differential Games 115

By assumption, the top left element DT
11D11−γ2I of R̄ is negative-definite

and its bottom right element DT
12D12 is positive-definite. Therefore, the

Hamiltonian has a Nash equilibrium at

i =
[

w
u

]
= −R̄−1(BTλ+DT

1•C1x) ,

where it attains the value

H(i) =
1
2
xTCT

1 C1x +
1
2
λTAx +

1
2
xTATλ

− 1
2
(BTλ+DT

1•C1x)TR̄−1(BTλ+DT
1•C1x) .

Using the proven ansatz λ(t) = Kx(t) with the symmetric n by n matrix K,
we get

i =
[

w
u

]
= −R̄−1(BTK+DT

1•C1)x ,

and

H(i) =
1
2
xT

(
CT

1 C1 + KA + ATK

− (BTK+DT
1•C1)TR̄−1(BTK+DT

1•C1)
)
x

=
1
2
xT

(
CT

1 C1 − CT
1 D1•R̄−1DT

1•C1 − KBR̄−1BTK

+ K(A−BR̄−1D1•C1) + (A−BR̄−1D1•C1)TK
)
x .

As required for a time-invariant differential game problem with infinite termi-
nal time, the Hamiltonian function is set to zero (for all x∈Rn) by choosing
K such that it satisfies the algebraic matrix Riccati equation

0 = ĀTK + KĀ − KS̄K + Q̄ ,

where, for convenience, the substitutions

Ā = A − BR̄−1D1•C1

S̄ = BR̄−1BT

Q̄ = CT
1 C1 − CT

1 D1•R̄−1DT
1•C1

have been used. The matrix K must be chosen to be the unique stabilizing
solution of the algebraic matrix Riccati equation such that the matrix A−S̄K
is a stability matrix.

For more details, see [17].
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Solutions to Exercises

Chapter 1

1. Define the new control variable u ∈ [0, 1] which has the time-invariant
constraint set Ω = [0, 1]. With the new control variable u(t), the engine
torque T (t) can be defined as

T (t) = Tmin(n(t)) + u(t)[Tmax(n(t)) − Tmin(n(t))] .

2. • Problem 1 is of Type A.2.
• Problem 2 is of Type A.2.
• Problem 3 is of Type A.1.
• At first glance, Problem 4 appears to be of Type B.1. However, consid-

ering the special form J = −x3(tb) of the cost functional, we see that it
is of Type A.1 and that it has to be treated in the special way indicated
in Chapter 2.1.6.

• Problem 5 is of Type C.1.
• Problem 6 is of Type D.1. But since exterminating the fish population

prior to the fixed final time tb cannot be optimal, this problem can be
treated as a problem of Type B.1.

• Problem 7 is of Type B.1.
• Problem 8 is of Type B.1.
• Problem 9 is of Type B.2 if it is analyzed in earth-fixed coordinates,

but of Type A.2 if it is analyzed in body-fixed coordinates.
• Problem 10 is of Type A.2.

3. We have found the optimal solution xo
1 = 1, xo

2 = −1, λo = 2, and the
minimal value f(xo

1, x
o
2) = 2. The straight line defined by the constraint

x1 + x2 = 0 is tangent to the contour line {(x1, x2) ∈ R2 | f(x1, x2) ≡
f(xo

1, x
o
2) = 2} at the optimal point (xo

1, x
o
2). Hence, the two gradients

∇xf(xo
1, x

o
2) and ∇xg(xo

1, x
o
2) are colinear (i.e., proportional to each other).

Only in this way, the necessary condition

∇xF (xo
1, x

o
2) = ∇xf(xo

1, x
o
2) + λo∇xg(xo

1, x
o
2) = 0

can be satisfied.
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4. We have found the optimal solution xo
1 = 1, xo

2 = 1.5, λo
1 = 0.5, λo

2 = 3,
λo

3 = 0, and the minimal value f(xo
1, x

o
2) = 3.25.

The three constraints g1(x1, x2) ≤ 0, g2(x1, x2) ≤ 0, and g3(x1, x2) ≤ 0
define an admissible set S ∈ R2, over which the minimum of f(x1, x2) is
sought. The minimum (xo

1, x
o
2) lies at the corner of S, where g1(xo

1, x
o
2) = 0

and g2(xo
1, x

o
2) = 0, while the third constraint is inactive: g3(xo

1, x
o
2) < 0.

With this solution, the condition

∇xF (xo
1, x

o
2) =∇xf(xo

1, x
o
2) + λo

1∇xg1(xo
1, x

o
2)

+ λo
2∇xg2(xo

1, x
o
2) + λo

3∇xg3(xo
1, x

o
2) = 0

is satisfied.

5. The augmented function is

F (x, y, λ0, λ1, λ2) = λ0(2x2+17xy+3y2) + λ1(x−y−2) + λ2(x2+y2−4) .

The solution is determined by the two constraints alone and therefore
λo

0 = 0. They admit the two solutions: (x, y) = (2, 0) with f(2, 0) = 8
and (x, y) = (0, 2) with f(0, 2) = 12. Thus, the constrained minimum of
f is at xo = 2, yo = 0. — Although this is not very interesting anymore,
the corresponding optimal values of the Lagrange multipliers would be
λo

1 = 34 and λo
2 = −10.5.

Chapter 2

1. Since the system is stable, the equilibrium point (0,0) can be reached with
the limited control within a finite time. Hence, there exists an optimal
solution.

Hamiltonian function:

H = 1 + λ1x2 − λ2x1 − λ2u .

Costate differential equations:

λ̇1 = − ∂H

∂x1
= λ2

λ̇2 = − ∂H

∂x2
= −λ1

The minimization of the Hamiltonian functions yields the control law

u = −sign(λ2) =

{+1 for λ2 < 0
0 for λ2 = 0

−1 for λ2 > 0 .

The assignment of u = 0 for λ2 = 0 is arbitrary. It has no consequences,
since λ2(t) only crosses zero at discrete times.
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The costate system (λ1(t), λ2(t)) is also a harmonic oscillator. Therefore,
the optimal control changes between the values +1 and −1 periodically
with the duration of the half-period of π units of time. In general, the
duration of the last “leg” before the state vector reaches the origin of the
state space will be shorter.

The optimal control law in the form of a state-vector feedback can easily
be obtained by proceeding along the route taken in Chapter 2.1.4. For a
constant value of the control u, the state evolves on a circle. For u ≡ 1,
the circle is centered at (+1, 0), for u ≡ −1, the circle is centered at
(−1, 0). In both cases, the state travels in the clock-wise direction.

Putting things together, the optimal state feedback control law depicted
in Fig. S.1 is obtained.
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Fig. S.1. Optimal feedback control law for the time-optimal motion.

There is a switching curve consisting of the semi-circles centered at (1, 0),
(3, 0), (5, 0), . . . , and at (−1, 0), (−3, 0), (−5, 0), . . . Below the switch
curve, the optimal control is uo ≡ +1, above the switch curve uo ≡ −1.
On the last leg of the trajectory, the optimal state vector travels along
one of the two innermost semi-circles.

For a much more detailed analysis, the reader is referred to [2].
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2. Since the control is unconstrained, there obviously exists an optimal non-
singular solution. The Hamiltonian function is

H = u2 + λ1x2 + λ2x2 + λ2u

and the necessary conditions for the optimality of a solution according to
Pontryagin’s Minimum Principle are:

ẋ1 = ∂H/∂λ1 = x2a)

ẋ2 = ∂H/∂λ2 = x2 + u

λ̇1 = −∂H/∂x1 = 0

λ̇2 = −∂H/∂x2 = − λ1 − λ2

x1(0) = 0

x2(0) = 0[
λo

1(tb)
λo

2(tb)

]
=

[
qo
1

qo
2

]
∈ T ∗(S, xo

1(tb), x
o
2(tb))

∂H/∂u = 2u + λ2 = 0 .b)

Thus, the open-loop optimal control law is uo(t) = − 1
2λo

2(t) .

Concerning (xo
1(tb), x

o
2(tb)) ∈ S, we have to consider four cases:

• Case 1: (xo
1(tb), x

o
2(tb)) lies in the interior of S:

xo
1(tb) > sb and xo

2(tb) < vb.
• Case 2: (xo

1(tb), x
o
2(tb)) lies on the top boundary of S:

xo
1(tb) > sb and xo

2(tb) = vb.
• Case 3: (xo

1(tb), x
o
2(tb)) lies on the left boundary of S:

xo
1(tb) = sb and xo

2(tb) < vb.
• Case 4: (xo

1(tb), x
o
2(tb)) lies on the top left corner of S:

xo
1(tb) = sb and xo

2(tb) = vb.

In order to elucidate the discussion, let us call x1 “position”, x2 “velocity”,
and u (the forced part of the) “acceleration”.

It should be obvious that, with the given initial state, the cases 1 and 2
cannot be optimal. In both cases, a final state with the same final ve-
locity could be reached at the left boundary of S or its top left corner,
respectively, with a lower average velocity, i.e., at lower cost. Of course,
these conjectures will be verified below.

Case 1: For a final state in the interior of S, the tangent cone of S is Rn

(i.e., all directions in Rn) and the normal cone T ∗(S) = {0} ∈ R2. With
λ1(tb) = λ2(tb) = 0, Pontryagin’s necessary conditions cannot be satisfied
because in this case, λ1(t) ≡ 0, and λ2(t) ≡ 0, and therefore, u(t) ≡ 0.

Case 2: On the top boundary, the normal cone T ∗(S) is described by
λ1(tb) = q1 = 0 and λ2(tb) = q2 > 0. (We have already ruled out q2 = 0.)
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In this case, λ1(t) ≡ 0, λ2(t) = q2e
tb−t > 0 at all times, and u(t) =

− 1
2λ2(t)<0 at all times. Hence, Pontryagin’s necessary conditions cannot

be satisfied. Of course, for other initial states with x2(0)>vb and x1(0)
sufficiently large, landing on the top boundary of S at the final time tb is
optimal.

Case 3: On the left boundary, the normal cone T ∗(S) is described by
λ1(tb) = q1 < 0 and λ2(tb) = q2 = 0. (We have already ruled out q1 = 0.)
In this case, λ1(t) ≡ q1 < 0, λ2(t) = q1

(
e(tb−t)−1

)
, and u(t) = − 1

2λ2(t).
The parameter q1 <0 has to be found such that the final position x1(tb)=
sb is reached. This problem always has a solution. However, we have to
investigate whether the corresponding final velocity satisfies the condition
x2(tb) ≤ vb. If so, we have found the optimal solution, and the optimal
control u(t) is positive at all times t < tb, but vanishes at the final time
tb. — If not, Case 4 below applies.

Case 4: In this last case, where the analysis of Case 3 yields a final velocity
x2(tb) > vb, the normal cone T ∗(S) is described by λ1(tb) = q1 < 0 and
λ2(tb)>0. In this case, λ1(t) ≡ q1 < 0, λ2(t) = (q1+q2)e(tb−t) − q1, and
u(t) = −1

2λ2(t). The two parameters q1 and q2 have to be determined
such that the conditions x1(tb) = sb and x2(tb) = vb are satisfied. There
exists a unique solution. The details of this analysis are left to the reader.
The major feature of this solution is that the control u(t) will be positive
in the initial phase and negative in the final phase.

3. In order to have a most interesting problem, let us assume that the spec-
ified final state (sb, vb) lies in the interior of the set W (tb) ⊂ R2 of all
states which are reachable at the fixed final time tb. This implies λo

0 = 1.

Hamiltonian function: H = u+λ1x2−λ2x
2
2 +λ2u = h(λ2)u+λ1x2−λ2x

2
2

with the switching function h(λ2) = 1 + λ2.

Pontryagin’s necessary conditions for optimality:
a) Differential equations and boundary conditions:

ẋo
1 = xo

2

ẋo
2 = −xo2

2 + uo

λ̇o
1 = 0

λ̇o
2 = −λo

1 + 2xo
2λ

o
2

xo
1(0) = 0

xo
2(0) = va

xo
1(tb) = sb

xo
2(tb) = vb

b) Minimization of the Hamiltonian function:

h(λo
2(t)) uo(t) ≤ h(λo

2(t)) u

for all u ∈ [0, 1] and all t ∈ [0, tb].
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Preliminary open-loop control law:

uo(t)

⎧⎨⎩= 0 for h(λo
2(t)) > 0

= 1 for h(λo
2(t)) < 0

∈ [0, 1] for h(λo
2(t)) = 0 .

Analysis of a potential singular arc:

h ≡ 0 = 1 + λ2

ḣ ≡ 0 = λ̇2 = −λ1 + 2x2λ2

ḧ ≡ 0 = −λ̇1 + 2ẋ2λ2 + 2x2λ̇2 = 2(u − x2
2)λ2 + 2x2ḣ .

Hence, the optimal singular arc is characterized as follows:

uo = xo2 ≤ 1 constant
λo

2 = −1 constant
λo

1 = −2xo
2 constant.

The reader is invited to sketch all of the possible scenarios in the phase
plane (x1, x2) for the cases vb > va, vb = va, and vb < va.

4. Hamiltonian function:

H =
1
2
[yd−Cx]TQy[yd−Cx] + uTRu + λTAx + λTBu .

The following control minimizes the Hamiltonian function:

u(t) = −R−1BTλ .

Plugging this control law into the differential equations for the state x
and the costate λ yields the following linear inhomogeneous two-point
boundary value problem:

ẋ = Ax − BR−1BTλ

λ̇ = − CTQyCx − ATλ + CTQyyd

x(ta) = xa

λ(tb) = CTFyCx(tb) − CTFyyd(tb) .

In order to convert the resulting open-loop optimal control law into a
closed-loop control law using state feedback, the following ansatz is suit-
able:

λ(t) = K(t)x(t) − w(t) ,

where the n by n matrix K(.) and the n-vector w(.) remain to be found.
Plugging this ansatz into the two-point boundary value problem leads to
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the following differential equations for K(.) and w(.), which need to be
solved in advance:

K̇ = − ATK − KA + KBR−1BTK − CTQyC

ẇ = − [A − BR−1BK]Tw − CTQyyd

K(tb) = CT(tb)FyC(tb)
w(tb) = CT(tb)Fyyd(tb) .

Thus, the optimal combination of a state feedback control and a feed-
forward control considering the future of yd(.) is:

u(t) = − R−1(t)BT(t)K(t)x(t) + R−1(t)BT(t)w(t) .

For more details, consult [2] and [16].

5. First, consider the following homogeneous matrix differential equation:

Σ̇(t) = A∗(t)Σ(t) + Σ(t)A∗T(t)
Σ(ta) = Σa .

Its closed-form solution is

Σ(t) = Φ(t, ta)ΣaΦT(t, ta) ,

where Φ(t, ta) is the transition matrix corresponding to the dynamic ma-
trix A∗(t). For arbitrary times t and τ , this transition matrix satisfies the
following equations:

Φ(t, t) = I

d

dt
Φ(t, τ) = A∗(t)Φ(t, τ)

d

dτ
Φ(t, τ) = −Φ(t, τ)A∗(τ) .

The closed-form solution for Σ(t) can also be written in the operator
notation

Σ(t) = Ψ(t, ta)Σa ,

where the operator Ψ(., .) is defined (in the “maps to” form) by

Ψ(t, ta) : Σa 
→ Φ(t, ta)ΣaΦT(t, ta) .

Obviously, Ψ(t, ta) is a positive operator because it maps every positive-
semidefinite matrix Σa to a positive-semidefinite matrix Σ(t).
Sticking with the “maps to” notation and using differential calculus, we
find the following useful results:

Ψ(t, τ) : Στ 
→ Φ(t, τ)ΣτΦT(t, τ)
d

dt
Ψ(t, τ) : Στ 
→ A∗(t)Φ(t, τ)ΣτΦT(t, τ) + Φ(t, τ)ΣτΦT(t, τ)A∗T(t)

d

dτ
Ψ(t, τ) : Στ 
→ −Φ(t, τ)A∗(τ)ΣτΦT(t, τ) − Φ(t, τ)ΣτA∗T(τ)ΦT(t, τ) .
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Reverting now to operator notation, we have found the following results:

Ψ(t, t) = I

d

dτ
Ψ(t, τ) = −Ψ(t, τ)UA∗(τ)

where the operator U has been defined on p. 71.

Considering this result for A∗=A−PC and comparing it with the equa-
tions describing the costate operator λo (in Chapter 2.8.4) establishes
that λo(t) is a positive operator at all times t ∈ [ta, tb], because Ψ(., .) is
a positive operator irrespective of the underlying matrix A∗.

In other words, infimizing the Hamiltonian H is equivalent to infimizing Σ̇.
Of course, we have already exploited the necessary condition ∂Σ̇/∂P =0,
because the Hamiltonian is of the form H = λ Σ̇(P ).

The fact that we have truly infimized the Hamiltonian and Σ̇ with respect
to the observer gain matrix P is easily established by expressing Σ̇ in the
form of a “complete square” as follows:

Σ̇ = AΣ − PCΣ + ΣAT − ΣCTPT + BQBT + PRPT

= AΣ + ΣAT + BQBT − ΣCTR−1CΣ
+ [P − ΣCTR−1]R[P − ΣCTR−1]T .

The last term vanishes for the optimal choice P o = ΣCTR−1; otherwise
it is positive-semidefinite. — This completes the proof.

Chapter 3

1. Hamiltonian function: H =
1
γ

uγ + λax − λu

Maximizing the Hamiltonian:

∂H

∂u
= uγ−1 − λ = 0

∂2H

∂u2
= (γ−1)uγ−2 < 0 .

Since 0 < γ < 1 and u ≥ 0, the H-maximizing control is

u = λ
1

γ−1 ≥ 0 .

In the Hamilton-Jacobi-Bellman partial differential equation ∂J
∂t +H = 0

for the optimal cost-to-go function J(x, t), λ has to be replaced by ∂J
∂x

and u by the H-maximizing control

u =
(

∂J
∂x

) 1
γ−1

.
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Thus, the following partial differential equation is obtained:

∂J
∂t

+
∂J
∂x

ax +
(

1
γ
− 1

)(
∂J
∂x

) γ
γ−1

= 0 .

According to the final state penalty term of the cost functional, its bound-
ary condition at the final time tb is

J (x, tb) =
α

γ
xγ .

Inspecting the boundary condition and the partial differential equation
reveals that the following separation ansatz for the cost-to-go function
will be successful:

J (x, t) =
1
γ

xγG(t) with G(tb) = α .

The function G(t) for t ∈ [ta, tb) remains to be determined.

Using
∂J
∂t

=
1
γ

xγĠ and
∂J
∂x

= xγ−1G

the following form of the Hamilton-Jacobi-Bellman partial differential
equation is obtained:

1
γ

xγ
[
Ġ + γGa − (γ−1) G

γ
γ−1

]
= 0 .

Therefore, the function G has to satisfy the ordinary differential equation

Ġ(t) + γaG(t) − (γ−1) G
γ

γ−1 (t) = 0

with the boundary condition

G(tb) = α .

This differential equation is of the Bernoulli type. It can be transformed
into a linear ordinary differential by introducing the substitution

Z(t) = G− 1
γ−1 (t) .

The resulting differential equations is

Ż(t) =
γ

γ − 1
aZ(t) − 1

Z(tb) = α− 1
γ−1 .
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With the simplifying substitutions

A =
γ

γ − 1
a and Zb = α− 1

γ−1 ,

the closed-form solution for Z(t) is

Z(t) =
[(

Zb− 1
A

)
e−Atb +

1
A

]
eAt +

1
A

(
1 − eAt

)
.

Finally, the following optimal state feedback control law results:

u(x(t)) = G
1

γ−1 (t)x(t) =
x(t)
Z(t)

.

Since the inhomogeneous part in the first-order differential equation for
Z(t) is negative and the final value Z(tb) is positive, the solution Z(t) is
positive for all t ∈ [0, tb]. In other words, we are always consuming, at a
lower rate in the beginning and at a higher rate towards the end.

2. Hamiltonian function:

H = qx2 + cosh(u) − 1 + λax + λbu .

Minimizing the Hamiltonian function:

∂H

∂u
= sinh(u) + bλ = 0 .

H-minimizing control:

u = arsinh(−bλ) = −arsinh(bλ) .

Hamilton-Jacobi-Bellman partial differential equation:

0 =
∂J
∂t

+ H

=
∂J
∂t

+qx2+cosh
(
arsinh

(
b
∂J
∂x

))
−1+

∂J
∂x

ax−b
∂J
∂x

arsinh
(
b
∂J
∂x

)
with the boundary condition

J (x, tb) = kx2 .

Maybe this looks rather frightening, but this partial differential equation
ought to be amenable to numerical integration.
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3. Hamiltonian function: H = g(x) + ru2k + λa(x) + λb(x)u .

The time-invariant state feedback controller is determined by the following
two equations:

H = g(x) + ru2k + λa(x) + λb(x)u ≡ 0 (HJB)
∇uH = 2kru2k−1 + λb(x) = 0 . (Hmin)

The costate vector can be eliminated by solving (Hmin) for λ and plugging
the result into (HJB). The result is

(2k−1)ru2k + 2kr
a(x)
b(x)

u2k−1 − g(x) = 0 .

Thus, for every value of x, the zeros of this fairly special polynomial have
to be found. According to Descartes’ rule, this polynomial has exactly
one positive real and exactly one negative real zero for all k ≥ 1 and all
x �= 0. One of them will be the correct solution, namely the one which
stabilizes the nonlinear dynamic system. From Theorem 1 in Chapter 2.7,
we can infer that the optimal solution is unique.

The final result can be written in the following way:

u(x) = arg
u∈R

stabilizing

[
(2k−1)ru2k + 2kr

a(x)
b(x)

u2k−1 − g(x) = 0
]

.

4. In the case of “expensive control” with g(x) ≡ 0, we have to find the
stabilizing solution of the polynomial

(2k−1)u2k + 2k
a(x)
b(x)

u2k−1 = u2k−1
[
(2k−1)u + 2k

a(x)
b(x)

]
= 0 .

For the unstable plant with a(x) monotonically increasing, the stabilizing
controller is

u = − 2k

2k−1
a(x)
b(x)

,

for the asymptotically stable plant with a(x) monotonically decreasing, it
is optimal to do nothing, i.e.,

u ≡ 0 .

5. Applying the principle of optimality around the time t1 yields

J (x, t−1 ) = J (x, t+1 ) + K1(x) .
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Since the costate is the gradient of the optimal cost-to-go function, the
claim

λo(t−1 ) = λo(t+1 ) + ∇xK1(xo(t1))

is established.

For more details, see [13].

6. Applying the principle of optimality at the time t1 results in the an-
tecedent optimal control problem of Type B.1 with the final state penalty
term J (x, t+1 ) and the target set x(t1)∈S1. According to Theorem B in
Chapter 2.5, this leads to the claimed result

λo(t−1 ) = λo(t+1 ) + q0
1

where qo
1 lies in the normal cone T ∗(S1, x

o(t1)) of the tangent cone
T (S1, x

o(t1)) of the constraint set S1 at xo(t1).

For more details, see [10, Chapter 3.5].
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Index

Active, 49
Admissible, 3
Affine, 59
Aircraft, 96
Algebraic matrix Riccati equation,

115
Antecedent optimal control prob-

lem, 76, 77
Approximation, 89–91, 93–95, 98
Approximatively optimal control,

86, 95, 96
Augmented cost functional, 25, 39,

44, 51, 52, 106
Augmented function, 19

Bank account, 99
Boundary, 20, 27, 36, 40, 46, 54

Calculus of variations, 24, 40, 46,
54, 107

Circular rope, 11
Colinear, 117
Constraint, 19–22, 45, 53
Contour line, 117
Control constraint, 1, 4, 5, 22, 45,

53, 66
Convex, 66
Coordinate system

body-fixed, 12, 16
earth-fixed, 11, 15

Correction, 9

Cost functional, 4, 24, 36, 38, 43,
49, 62, 66–68, 70, 73, 76, 78,
83, 85, 87, 88, 92, 103, 104,
108, 114
matrix-valued, 67
non-scalar-valued, 67
quadratic, 9, 15, 81, 96, 109
vector-valued, 67

Cost-to-go function, 75, 77, 80, 82–
84, 88, 89, 93, 97, 108, 112

Costate, 1, 30, 33, 42, 47, 65, 68,
77, 80

Covariance matrix, 67, 70, 71

Detectable, 87, 113
Differentiable, 4, 5, 18, 49, 66, 77,

80, 83, 105
Differential game problem, 3–5, 15,

103, 104, 114
zero-sum, 3, 4

Dirac function, 52
Double integrator, 6, 7
Dynamic optimization, 3
Dynamic programming, 77
Dynamic system, 3, 4, 68, 104

Energy-optimal, 46, 72
Error, 9, 67, 70
Evader, 15, 103
Existence, 5, 6, 18, 23, 28, 65, 105
Expensive control, 100
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Feed-forward control, 74
Final state, 3, 4

fixed, 23, 24
free, 23, 38, 66, 83, 104, 109
partially constrained, 8, 12, 23,
43, 66

Final time, 4, 5, 25, 27, 36, 39, 40,
44, 45, 51, 53, 57, 60, 62, 65,
68, 70, 104, 109

First differential, 26, 39, 45, 106
Flying maneuver, 11
Fritz-John, 20
Fuel-optimal, 6, 7, 32, 66, 72

Geering’s Infimum Principle, 68
Geometric aspects, 22
Global minimum, 25, 35, 39, 44, 59
Globally minimized, 28, 40
Globally optimal, 23, 66, 80
Goh’s fishing problem, 10, 60
Gradient, 2, 19, 27, 36, 40, 46, 54,

77, 80
Growth condition, 66, 83, 84

H-maximizing control, 108, 110,
111

H-minimizing control, 79, 82, 108,
110, 111

H∞ control, 103, 113
Hamilton-Jacobi-Bellman, 77, 78,

107
partial differential equation, 79,
82–84, 86
theorem, 79, 80

Hamilton-Jacobi-Isaacs, 107, 111
partial differential equation,
108, 111, 112
theorem, 108

Hamiltonian function, 25–27, 32,
36–38, 40, 43, 44, 46, 49, 54,
56, 59, 63, 68, 71, 74, 78, 81,
103, 105, 106, 111, 114, 115

Harmonic oscillator, 72
Hessian matrix, 19
Homicidal chauffeur game, 15, 103
Horseman, 104

Implicit control law, 84, 85, 89
Inactive, 20, 21, 49
Infimize, 68, 70, 71, 74
Infimum, 67, 69
Infinite horizon, 42, 83, 86, 114
Initial state, 3, 4
Initial time, 3
Integration by parts, 27
Interior, 20, 27, 40, 46, 53, 54, 62,

67, 78
Invertible, 113

Jacobian matrix, 2, 19, 87

Kalman-Bucy Filter, 69, 71, 74
Kuhn-Tucker, 20

Lagrange multiplier, 1, 19, 20, 24,
26, 27, 37, 39, 40, 44, 45, 51–
53, 106, 107

Linearize, 9, 88
Locally optimal, 23
LQ differential game, 15, 103, 109,

111
LQ model-predictive control, 73
LQ regulator, 8, 15, 38, 41, 66, 81,

84, 88, 89, 92, 97, 110
Lukes’ method, 88

Matrix Riccati differential equation,
42, 71, 82, 111, 112

Maximize, 4, 10, 15, 37, 63, 67, 103,
104, 106, 107, 109, 114

Minimax, 104
Minimize, 3, 4, 10, 15, 20–24, 37,

63, 67, 103, 104, 106, 107, 109,
114
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Nash equilibrium, 107, 108, 115
Nash-Pontryagin Minimax Princi-

ple, 103, 105, 107, 109
Necessary, 18, 20, 23, 47, 55, 59, 60,

63, 71, 109
Negative-definite, 115
Nominal trajectory, 9
Non-inferior, 67
Nonlinear system, 9
Nontriviality condition, 25, 28, 32,

37, 43, 60, 62, 63, 65, 68
Norm, 113
Normal, 79, 108
Normal cone, 1, 27, 36, 40, 44, 46,

50, 54

Observer, 70
Open-loop control, 5, 23, 29, 30, 34,

48, 75, 96, 104, 110
Optimal control problem, 3, 5–13,

18, 22–24, 38, 43, 48, 65–67,
75, 103, 106

Optimal linear filtering, 67

Pareto optimal, 67
Partial order, 67
Penalty matrix, 9, 15
Phase plane, 65
Piecewise continuous, 5–8, 10, 12,

14, 24, 38, 43, 48, 68, 72, 78,
104, 109

Pontryagin’s Maximum Principle,
37, 63

Pontryagin’s Minimum Principle,
23–25, 32, 36–38, 43, 47–49, 75,
103, 107

Positive cone, 67
Positive operator, 68, 123, 124
Positive-definite, 9, 42, 67, 73, 81,

84, 115
Positive-semidefinite, 9, 15, 19, 42,

67, 70, 81

Principle of optimality, 51, 75, 77,
80

Progressive characteristic, 92
Pursuer, 15, 103

Regular, 20, 33, 43, 44, 49, 68, 71,
78, 105

Robot, 13
Rocket, 62, 65

Saddle point, 105–107
(see also Nash equilibrium)

Singular, 20, 23, 33, 34, 38, 43, 44,
59

Singular arc, 59, 61, 62, 64, 65, 122
Singular optimal control, 36, 59, 60
Singular values, 113
Slender beam, 11
Stabilizable, 87, 113
Stabilizing controller, 9
State constraint, 1, 4, 24, 48, 49
State-feedback control, 5, 9, 15, 17,

23, 30, 31, 42, 73–75, 81, 82,
85, 86, 92, 96, 104, 106, 108–
112

Static optimization, 18, 22
Strictly convex, 66
Strong control variation, 35
Succedent optimal control problem,

76, 77
Sufficient, 18, 60, 78
Superior, 67, 68, 71
Supremum, 67
Sustainability, 10, 62
Switching function, 59, 61, 64

Tangent cone, 1, 26, 36, 40, 44–46,
50, 53, 54

Target set, 1
Time-invariant, 104, 108
Time-optimal, 5, 6, 13, 28, 33, 48,

54, 66, 72
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Transversality condition, 1, 36, 44
Traverse, 104
Two-point boundary value problem,

23, 30, 34, 41, 75, 110

Uniqueness, 5, 34
Utility function, 99

Variable separation, 104, 105, 109
Velocity constraint, 54

Weak control variation, 35
White noise, 69, 70

Zero-sum, see Differential games
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