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Preface

This textbook evolved from our course teachings both at Chiba University and at Harbin
Institute of Technology (HIT). It is intended for use in graduate courses on advanced con-
trol method. Many case studies are included in the book, hence it is also useful for practicing
control engineers.

Robust control aims at conducting realistic system design in the face of model uncertainty.
Since its advent in the 1980s, it has received extensive attention and have been applied to many
real-world systems such as steel making process, vehicles, mass storage devices, and so on.

In this book, our ultimate goal is to summarize comprehensively the major methods and
results on robust control, and provide a platform for readers to study and apply robust control.
We also intend to provide a shortcut to the frontier of robust control research for those who
are interested in theoretical research. Further, we hope to achieve the following goals:
1. Easy to understand: presenting profound contents in the most concise manner;
2. Showing the essence of robust control clearly and thoroughly;
3. Emphasizing engineering implications while keeping the theoretic rigor;
4. Self-contained: reducing to the lowest level the necessity of referring to other sources.

In order to realize the preceding objectives, whenever we introduce a new content, we first
use a simple example or the concept that the readers are familiar with to illustrate the engi-
neering background and idea clearly. Then we show the simplest proof known to the authors.
All examples in this book stem from engineering practice and have clear backgrounds. It is
hoped that this will help the readers learn how to apply these knowledge. For each important
result, a rigorous proof is provided. To be self-contained, a quite complete coverage on linear
algebra and convex analysis is provided, including proofs.

The book falls into three parts: mathematical preliminaries, fundamentals of linear systems
and robust control. Chapters 2 and 3 summarize the knowledge of linear algebra, convex anal-
ysis, and LMI, which are required in order to understand the robust control theory completely.
Chapter 4 reviews the basics of linear systems. Chapter 5 analyzes the performance speci-
fications of reference tracking, disturbance rejection and fast response. Chapter 6 treats the
stabilization of a given plant by using state feedback and observer. Further, Chapter 7 shows
how to use a simple formula to parameterize all controllers that can stabilize a given plant,
and analyze the structure of the closed-loop system, including the two-degree-of-freedom sys-
tem. Chapter 8 provides several important results that bridge the time domain and frequency
domain characteristics of signals/systems, especially the KYP lemma that lays the foundation
for solving the robust control problem in the time domain. Chapter 9 describes some of the
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xviii Preface

main results on the Riccati equation. Chapter 10 discusses the limitation of feedback control,
so as to provide a guide for setting up reasonable performance specifications as well as the
design of easy-to-control systems. Chapter 11 discusses the model uncertainty, including its
classification, the features of different types, and the modeling methods. Chapter 12 is about
the robust control analysis based on the gain information of uncertainty. The central issue is
how to use the nominal model and the bounding function of uncertainty gain to derive the con-
ditions for robust stability and robust performance. Based on Lyapunov stability theory and
quadratic common Lyapunov functions, Chapter 13 establishes the robust stability conditions
for systems with parameter uncertainty, and discusses Lur’e systems as well as passive sys-
tems. Chapter 14 presents the so-called IQC (integral quadratic constraint) theory. Chapters
15 and 16 handle, respectively, the H2 and H∞ control theory and their applications. Chapter
17 is devoted to the robustness analysis and design of systems with multiple uncertainties.
Chapter 18 covers systems with parameter uncertainty. Chapter 19 focuses on the parametric
systems and shows how to improve the transient response by placing the closed-loop poles in
a suitable region. Chapter 20 treats systems with known time-varying parameters. A higher
performance can be achieved through the gain-scheduling of the controller, that is, letting the
controller parameters vary together with the plant parameters. Finally, Chapter 21 describes
how to use the positive real property of an uncertain system to realize robust control. Its essence
is to make use of the phase information of uncertainty.

This book is an extended version of our textbook written in Chinese and published by Sci-
ence Press, Beijing. Many staffs and students at HIT involved in the translation. Meanwhile,
students at Chiba University helped us in doing the application researches and numerical
designs. All case studies included in the book were conducted by our students. Without their
efforts, this book will not be as it is.

We are indebted to Prof. Stephen Boyd and Prof. Kemin Zhou. Their books on convex
analysis and small-gain approach to robust control have a significant influence on the writing
of this book. Further, we would like to thank our supervisors, Prof. Tsutomu Mita and Prof.
Zicai Wang, who guided us into the wonderful field of control engineering.

Kang-Zhi Liu
Yu Yao
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List of Abbreviations

For simplicity, frequently used words are abbreviated as follows.

ARE algebraic Riccati equation
BMI bilinear matrix inequality
BIBO bounded-input bounded-output
EVP eigenvalue problem
GEVP generalized eigenvalue problem
HDD hard disk drive
IQC Integral quadratic constraint
LFT linear fractional transformation
LMI linear matrix inequality
LPV linear parameter varying
MIMO multi-input multi-output
PSS power system stabilizer
RTP rapid thermal processing
SISO single-input single-output
SVD singular value decomposition
1-DOF 1-degree-of-freedom
2-DOF 2-degree-of-freedom
i.e. that is
w.r.t. with respect to
iff if and only if
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Notations

The notations used in this book are listed below.

:= defined as
⇔ equivalent to
∈ belong to
∀ for all
⊂ included in
∅ empty set
δij Dirac index, satisfying δii = 1, δij = 0(i �= j)
R field of real numbers
C field of complex numbers
R

n n-dimensional space of real vectors
C

n n-dimensional space of complex vectors
R

m×p set of real matrices with m rows and p columns
C

m×p set of complex matrices with m rows and p columns
F In stating a result which is true for both real and

complex variables, F is used to present both.
sup Supremum (i.e., least upper bound), may be

regarded as the maximum max in engineering.
inf Infimum (i.e., greatest lower bound), may be

regarded as the minimum min.
max

i
maximum w.r.t. all variables i

x̄ conjugate of x = a + jb, namely x̄ = a − jb.
R(x), �(x) real and imaginary parts of a complex number x.
arg (x) phase angle of a complex number x
û(s) = L[u(t)] Laplace transform of time function u(t)
û(jω) = F [u(t)] Fourier transform of time function u(t)
u̇(t), ü(t) First and second derivatives of u(t) about time t
A = (aij ) matrix with aij as its element in the ith row and

jth column
X∗ = X̄T Conjugate transpose of complex matrix Xco
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xxii Notations

He(X) He(X) = X + X∗

F∼(s) F∼(s) = FT (−s)
diag(a1, · · · , an) diagonal matrix with ai as its ith diagonal element
det(A) determinant of square matrix A
λi(A) the ith eigenvalue of matrix A
σ(A) set of eigenvalues {λ1, · · · , λn} of matrix A
ρ(A) spectral radius max

i
|λi(A)| of matrix A

σi(A) the ith singular value of matrix A. Be cautious
not to confuse with the eigenvalue set σ(A).

rank(A) rank of matrix A
A⊥ orthogonal matrix of matrix A (m × n), i.e., a matrix with

the maximum rank among all matrices U satisfying
AU = 0 (m ≤ n) or UA = 0 (m ≥ n).

Tr(A) trace of A = (aij ) ∈ C
n×n, i.e., the sum of its

diagonal elements
∑n

i=1 aii
ImA {y ∈ C

n |y = Ax , x ∈ C
m}, image of A.

Ker A {x |Ax = 0, x ∈ C
n}, kernel space of A.

A ⊗ B Kronecker product
A ⊕ B Kronecker sum
vec(A) vector formed by sequentially aligning the columns

of matrix A starting from the first column
A† pseudo-inverse of matrix A
A > 0(≥ 0) positive definite (positive semidefinite) matrix
‖x‖ norm of vector x
‖A‖ norm of matrix A
〈u, v〉 inner product of vectors u, v.
〈A,B〉 inner product of matrices A,B.
span{u1, · · · , uk} space spanned by the vector set u1, · · · , uk

conv C convex hull of set C
x ≺ y inequality of vectors (x, y), satisfying xi < yi.
∂f(x)

∂x first-order partial derivative of function f(x) whose
transpose is the gradient ∇f(x) of f(x).

∂2f(x)
∂x2 second-order partial derivative of f(x) whose

transpose is the Hessian matrix ∇2f(x) of f(x).
F�(M,X) lower linear fractional transformation
Fu(M,X) upper linear fractional transformation
f1(t) ∗ f2(t) convolution integral of f1(t) and f2(t)
dom f domain of function f

f
′
(x) derivative of function f(x)

Res
si

f̂(s) residue of complex function f̂(s) at the point sico
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1
Introduction

Mathematical model is indispensable in the simulation of physical systems or the design of
control systems. The so-called natural science is, in fact, the systematic and categorized study
of various kinds of physical, chemical, and other natural phenomena. Various models are used
to describe and reproduce the observed phenomena. The models used in engineering are usu-
ally described as differential equations, difference equations, or statistical data. It may be said
that the design of modern control systems is essentially based on the models of systems.

However, a mathematical model cannot describe the physical phenomenon of a system per-
fectly. Even if it could, the model would be unnecessarily complicated which makes it difficult
to capture the main characteristic of the system. In particular, this is often the case in engineer-
ing practice. In almost all cases, a system is not isolated from the outside world. Instead, it is
constantly influenced by the surrounding environment. It is difficult to describe the external
influence by models. This means that there is inevitably a gap between the actual system and
its mathematical model. This gap is called as the model uncertainty. The purpose of robust
control is to extract the characteristics of model uncertainty and apply this information to the
design of control system, so as to enhance the performance of the actual control system to the
limit.

1.1 Engineering Background of Robust Control

Here, we give some specific examples to illustrate the model uncertainty.

Example 1.1 Hard disk (refer to Figure 1.1(a)) is commonly used as the data storage device
for computers. The frequency response of a hard disk drive (HDD in short hereafter) is shown
in Figure 1.1(b) as the dotted line. The approximate model only considers the rigid body and
is described as a double integrator (the solid line). Since the arm is very thin, the drive has
numerous resonant modes in the high-frequency band, and these resonant modes vary with the
manufacturing error in mass production. So it is difficult to obtain the exact model. Therefore,
we have to design the control system based on the model of rigid body.

Robust Control: Theory and Applications, First Edition. Kang-Zhi Liu and Yu Yao.
© 2016 John Wiley & Sons Singapore Pte. Ltd. Published 2016 by John Wiley & Sons, Singapore Pte. Ltd.
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Figure 1.1 Hard disk drive and its frequency response (a) Photo, (b) Bode plot
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Figure 1.2 Motor drive system (a) Two-mass–spring system, (b) Motor drive

Example 1.2 The system in Figure 1.2(a) is called two-mass–spring system. As shown in
Figure 1.2(b), this is essentially a motor drive system in which the motor and load are con-
nected through a shaft. The purpose is to control the load speed indirectly by controlling the
motor inertia moment. There are many such systems around us. Typical examples are the DVD
drive in home electronics, the rolling mill in steel factory, and so on.

Let JM be the inertia moment of the motor, k the spring constant of the shaft, JL the inertia
moment of the load, and DM and DL the viscous friction coefficients of the motor and the
load. In addition, the motor speed is ωM , the load speed is ωL, the torsional angle of the shaft
is φ, and the motor torque is u. As the direct measurement of load speed is difficult, we usually
measure the motor speed ωM only. The equations of moment balance as well as the speed
equation are

JLω̇L + DLωL = kφ + d

φ̇ = ωM − ωL

JM ω̇M + DMωM + kφ = u.
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Introduction 3

Here, d denotes the torque disturbance acting on the load. Select the state vector as x =
[ωL φ ωM ]T , the following state equation is obtained easily:

ẋ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−DL

JL

k

JL

0

−1 0 1

0 − k

JM

−DM

JM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

x +

⎡

⎢
⎢
⎢
⎢
⎣

1
JL

0

0

⎤

⎥
⎥
⎥
⎥
⎦

d +

⎡

⎢
⎢
⎢
⎢
⎣

0

0

1
JM

⎤

⎥
⎥
⎥
⎥
⎦

u (1.1)

y = [0 0 1]x. (1.2)

However, in practice the motor load is rather diverse. Specifically, the load inertia moment
JL and the spring constant k of the shaft change over a wide range. This will undoubtedly
affect the performance of the motor drive system.

As illustrated by these examples, the mathematical model of a system always contains some
uncertain part. Nevertheless, we still hope that a control system, designed based on a model
with uncertainty, can run normally and has high performance. To achieve this goal, it is obvious
that we should make use of all available information about the uncertainty. For example, in
the loop shaping design of the classical control, a very important principle is to ensure that
the high-frequency gain of controller rolls off sufficiently to avoid exciting the unmodeled
high-frequency dynamics of the plant, so that the controller can be successfully applied to the
actual system. In addition, the open-loop transfer function needs also to have sufficient gain
margin and phase margin so as to ensure that the closed-loop system is insensitive to the model
uncertainty in the low- and middle-frequency domain. This implies that the information about
model uncertainty has already been used indirectly in system designs based on the classical
control methods. Of course, indirect usage of model uncertainty has only a limited effect. So,
the mission of robust control theory is to develop an effective, high-performance design method
that makes use of the uncertainty information fully and directly for systems with uncertainty.

Next, we use an example to show the influence of model uncertainty. It will be illustrated
that if the model uncertainty is neglected in the system design, the controller may have trouble
when applied to the actual system. In the worst case, even the stability of the closed-loop
system may be lost.

Example 1.3 Consider a system containing both rigid body and a resonant mode (a simplified
dynamics of HDD)

P̃ (s) =
1
s2 − 0.1 × ω2

n

s2 + 2ζωns + ω2
n

, ζ = 0.02, ωn = 5.

In the control design, only the rigid body model P (s) = 1/s2 is considered, and the resonant
mode −0.1 × ω2

n/(s2 + 2ζωns + ω2
n) is ignored. In the stabilization design of the rigid body

model, we hope that the closed-loop system response is fast enough while the overshoot is as
small as possible. So the damping ratio of the closed-loop system is set as 1/2 and the natural
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Figure 1.3 Bode plot of open-loop transfer function

frequency set as 4 [rad/s] (slightly lower than the natural frequency of the resonant mode).
The corresponding characteristic polynomial is

p(s) = s2 + 4s + 16.

The following proportional derivative (PD) compensator is able to achieve the goal:

K(s) = 4(s + 4).

However, when this controller is applied on the actual system P̃ (s), we find that the charac-
teristic polynomial of the actual closed-loop becomes

p̃(s) = s4 − 5.8s3 + 1.8s2 + 103.2s + 400

which obviously has unstable roots. In fact, the closed-loop poles are xx

5.2768 ± j3.8875, −2.3768 ± j1.9357,

in which two of them are unstable. That is, the closed-loop system not only fails to achieve
performance improvement but also losses the stability. This phenomenon is known as
spillover in vibration control. The reason for the spillover is clear from Figure 1.3, the Bode
plot of the open-loop transfer function P̃K. Since the response speed of the closed loop is
designed too fast for the rigid body model, the roll-off of the controller gain is not sufficient
near ωn = 5 rad/s, the natural frequency of the resonant mode, which excites the resonant
mode.

1.2 Methodologies of Robust Control

In this section, various descriptions of model uncertainty and the corresponding robust control
methods are briefly illustrated for single-input single-output systems.
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1.2.1 Small-Gain Approach

Suppose that the system model is P (s) while the actual system is P̃ (s). If no information
is known about the structure of the actual system P̃ (s), the simplest method is to regard the
difference between them as the model uncertainty Δ(s), that is,

P̃ (s) = P (s) + Δ(s). (1.3)

Then, the closed-loop system can be transformed equivalently into the system of Figure 1.4 in
which

M(s) =
K

1 + PK

is the closed-loop transfer function about P (s) and should be stable.
As for the description of the characteristics of Δ(s), a straightforward method is to use the

frequency response. In general, the frequency response of Δ(s) varies within a certain range,
such as

0 ≤ |Δ(jω)| ≤ |W (jω)| ∀ω. (1.4)

Here W (s) is a known transfer function whose gain specifies the boundary of the uncertainty
Δ(s). When Δ(s) is a stable transfer function,

|M(jω)Δ(jω)| < 1 ∀ω ⇔ |M(jω)W (jω)| < 1 ∀ω (1.5)

guarantees the stability of the closed-loop system for all uncertainties Δ(s). This condition is
known as the small-gain condition. The reason for the stability of the closed-loop system is
clear. The open-loop transfer function in Figure 1.4 is L(s) = M(s)Δ(s) and is stable. L(jω)
does not encircle the critical point (−1, j0) when the small-gain condition is satisfied, so the
Nyquist stability condition holds. Here, the information of uncertainty gain is used.

Chapter 12 describes in detail the robust analysis based on the small-gain condition, while
Chapters 16 and 17 provide the corresponding robust design methods.

1.2.2 Positive Real Method

On the contrary, in (1.3 ) if the phase angle arg Δ(jω) of the uncertainty Δ(s) changes in a
finite range, particularly when

− 90◦ ≤ arg Δ(jω) ≤ 90◦ ∀ω ⇔ R[Δ(jω)] ≥ 0 ∀ω, (1.6)

Δ

M

y u
−

Figure 1.4 Closed-loop system with uncertainty
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6 Robust Control

the following condition guarantees the stability of the closed-loop system for all the uncertain-
ties Δ(s):

− 90◦ < arg M(jω) < 90◦ ∀ω ⇔ R[M(jω)] > 0 ∀ω. (1.7)

This is because the open-loop transfer function L(s) = M(s)Δ(s) is stable and the phase
angle is never equal to ±180◦. As such, L(jω) does not encircle the critical point (−1, j0),
and the Nyquist stability condition is met.

For all frequencies ω, a transfer function satisfying R[G(jω)] ≥ 0 is called a positive real
function. So the previous condition is named as the positive real condition. General positive
real condition is described detailedly in Section 13.4, and the robust design based on positive
real condition is discussed in Chapter 21.

1.2.3 Lyapunov Method

For systems with known dynamics but uncertain parameters, such as the two-mass–spring sys-
tem, methods based on quadratic Lyapunov function are quite effective. For example, consider
an autonomous system

ẋ = Ax , x(0) �= 0.

If the quadratic Lyapunov function

V (x) = xT Px , P > 0

satisfies the strictly decreasing condition

V̇ (x) < 0 ∀x �= 0,

then V (x) converges to zero eventually since it is bounded below. As V (x) is positive definite,
V (x) = 0 implies that x = 0. Further, the strictly decreasing condition is equivalent to the
inequality on the matrix A:

AT P + PA < 0.

Even if some parameters of the matrix A take value in a certain range, the stability of the
system is secured so long as there exists a matrix P > 0 satisfying this inequality.

Refer to Chapter 13 for the analysis on such uncertain systems and Section 18.3, Chapter
19, and Chapter 20 for the design methods.

1.2.4 Robust Regional Pole Placement

For a system with parameter uncertainty, we can place the poles of the closed-loop system in
some region of the complex plane, such as the region shown in Figure 1.5, so as to guarantee
the quality of transient response. Detailed design conditions and design methods are given in
Chapter 19.
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0−r

σ

θ
Re

Im

Figure 1.5 Regional pole placement

1.2.5 Gain Scheduling

Many nonlinear systems can be described as linear systems with time-varying parameters, in
which the time-varying parameters are bounded functions of some states. Such a system is
called as a linear parameter-varying (LPV) system . When the states contained in the LPV
system can be measured online, the time-varying parameters can be computed. Then, if the
controller parameters vary in accordance with the time-varying parameters, it is possible to
obtain a better control performance. This method is called as gain scheduling. The details can
be found in Chapter 20.

Example 1.4 Let us look at a very simple example: a one-link arm. Assume that the angle
between the arm and the vertical line is θ, the mass and inertia moment are m,J , the distance
between the center of gravity and the joint is l, and the control torque is u. Then the motion
equation is

Jθ̈ + mgl sin θ = u.

If we set p(t) = sin θ/θ, the motion equation can be rewritten as

Jθ̈(t) + mglp(t)θ(t) = u(t).

This can be regarded as an LPV system with a time-varying parameter p(t). Clearly, the
time-varying parameter satisfies

|p(t)| =
∣
∣
∣
∣
sin θ(t)

θ(t)

∣
∣
∣
∣ ≤ 1

and is bounded. In the control design, a better performance may be obtained by using a con-
troller containing p(t), or the control design is made easier. For example, when we use the
control input

u(t) = mglp(t)θ(t) − 2ζωnJθ̇(t) − ω2
nJθ(t),
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the closed-loop system becomes

θ̈ + 2ζωnθ̇ + ω2
nθ = 0.

By adjusting the damping ratio ζ and the natural frequency ωn, we can easily achieve a high
control performance. In this designed input, the first term about the time-varying parameter
is in fact a nonlinear term mgl sin θ.

1.3 A Brief History of Robust Control

As mentioned earlier, in the classical control design, the model uncertainty in the
high-frequency domain is taken into account, and effective feedback control is realized
by tuning controller parameters online. However, model uncertainty is excluded from the
modern control theory. So, it is rare that a controller designed by pole placement or least
quadratic Gaussian (LQG) optimal control theory can be directly applied to the actual system.
This is because the actual control effect is quite different from the design specification and
simulation. In successful applications of modern control, filters are always used to filter out
the high-frequency component of the output signal before feeding it to the controller. This in
fact considers the neglected high-frequency characteristic of the plant indirectly.

For example, although the state feedback least quadratic control has a gain margin rang-
ing from 1/2 to infinity and a phase margin of ±60◦ [82], Doyle [23] proved that in the
output feedback of LQG control, even a small perturbation in the gain may destabilize the
closed-loop system. Facing this flaw of the modern control theory, researchers, mainly from
North America, began to consider how to deal with model uncertainty. First of all, inspired by
the perturbation theory in mathematics, in 1964 Cruz et al. [19] analyzed the rate of relative
change of the closed-loop transfer function H(s) = L(s)/(1 + L(s)), that is,

ΔH/H

ΔL/L
=

L + ΔL

1 + L + ΔL
− L

1 + L
ΔL

L

H

when the open-loop transfer function L(s) has a small perturbation. It is easy to know that
when the perturbation ΔL approaches zero,

lim
ΔL→0

ΔH/H

ΔL/L
=

1
1 + L

:= S(s)

holds. This is the reason why the transfer function S(s) is called as the sensitivity. Unfortu-
nately, this relationship is valid only for very small perturbations and has nothing to do with
the dynamic property of uncertainty. So, it makes no sense in handling uncertainty.

In the 1980s, Zames [99] and Doyle-Stein [28] for the first time challenged the issue of
model uncertainty and discussed how to introduce the information of model uncertainty
into the feedback control design. Both of them believe that the model uncertainty should
be described by the range of the gain of its frequency response. The former stressed that
the disturbance should be treated as a set and the control performance of the disturbance
control measured by the H∞ norm of the closed-loop transfer function. Meanwhile, the latter
proposed the small-gain principle. In the following decade, robust control was developed
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along this line. Because the uncertainty and the control performance are characterized in the
form of frequency response, robust control research commenced in the frequency domain,
and the main mathematical tools were operator theory and Nevanlinna–Pick interpolation
theory [48]. Later, Doyle advocated the use of state space in H∞ control problems and
completed the Riccati equation solution [36] with Glover in 1988. Particularly, the famous
paper published in 1989, known as DGKF paper [26], has an immeasurable impact on the
robust control research thereafter. This is because it reveals that, to solve the H∞ control
problem, one does not need to use advanced mathematical tools in function spaces which is
formidable for engineers and the familiar state-space tool is sufficient.

In a roughly same period, Boyd [9, 10] advocated the application of numerical method
and optimization approach to robust control. In particular, the book [10] had a great impact. It
happened in the end of 1980s that Russian mathematicians Nesterov and Nemirovski [72] com-
pleted the numerical approach, the interior point method, to convex programming, thus paving
the way for solving the robust problems by optimization methods. Since 1990s, numerous
robust control methods based on LMI tools have sprung up. In particular, the French school,
represented by Gahinet, not only proposed the LMI solution to H∞ control but also solved a
series of robust control problems, such as regional pole placement and gain scheduling [33, 16,
3]. Moreover, they developed the LMI toolbox [35] which helped promoting the LMI approach.
So far, the mainstream of robust control is LMI. This book presents the major contents of robust
control mainly based on the LMI approach.

The aforementioned studies are all robust control methods that use the information of uncer-
tainty gain or parameter uncertainty. When the phase information of uncertainty is known and
its range is not big, it is effective to use the phase information to design robust control system.
Haddad-Berstein [37] and Tits [88] have done some works in this direction. More new results
on this approach will be shown in this book.
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2
Basics of Linear Algebra and
Function Analysis

In this chapter, the fundamentals of linear algebra and function analysis to be used in this book
will be briefly summarized, and several new mathematical tools will be introduced.

2.1 Trace, Determinant, Matrix Inverse, and Block Matrix

First, the trace Tr(A) of a square matrix A is the sum of all diagonal elements and has the
following properties:

1. Tr(αA) = αTr(A) ∀α ∈ F, A ∈ F
n×n.

2. Tr(A + B) = Tr(A) + Tr(B) ∀A,B ∈ F
n×n.

3. Tr(AB) = Tr(BA) ∀A ∈ F
n×m, B ∈ F

m×n.

These properties can be easily verified based on the definition of trace.
The properties of determinant are summarized in the following. For square matrices A,B

with the same size, the determinant of their product satisfies

det(AB) = det(A) det(B), (2.1)

that is, the determinant of a matrix product is equal to the product of matrix determinants.
From this equation and the identity A−1A = I , it is easy to see that

det(A−1) =
1

det(A)
. (2.2)

Further, for a block triangular matrix with square diagonal blocks A,B (the sizes may be
different), its determinant can be calculated by

det
[
A ∗
0 B

]

= det(A) det(B), (2.3)

Robust Control: Theory and Applications, First Edition. Kang-Zhi Liu and Yu Yao.
© 2016 John Wiley & Sons Singapore Pte. Ltd. Published 2016 by John Wiley & Sons, Singapore Pte. Ltd.
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det
[
A 0
∗ B

]

= det(A) det(B). (2.4)

When square matrices A,B are both nonsingular, the inverse of their product satisfies

(AB)−1 = B−1A−1. (2.5)

Partition a square matrix A as

A :=

[
A11 A12

A21 A22

]

(2.6)

in which A11 and A22 are square. If A11 is nonsingular, then A can be decomposed as
[
A11 A12

A21 A22

]

=

[
I 0

A21A
−1
11 I

][
A11 0
0 A22 − A21A

−1
11 A12

][
I A−1

11 A12

0 I

]

. (2.7)

Similarly, when A22 is nonsingular, we have
[
A11 A12

A21 A22

]

=

[
I A12A

−1
22

0 I

][
A11 − A12A

−1
22 A21 0

0 A22

][
I 0

A−1
22 A21 I

]

. (2.8)

Based on these decompositions, it is easy to derive the following formulae:

det(A) = det(A11) det(A22 − A21A
−1
11 A12),when det(A11) �= 0; (2.9)

det(A) = det(A22) det(A11 − A12A
−1
22 A21),when det(A22) �= 0. (2.10)

Further, for matrices B ∈ F
m×n and C ∈ F

n×m,

det
[

Im B
−C In

]

= det(In + CB) = det(Im + BC ) (2.11)

holds. Particularly, for vectors x, y ∈ C
n, there holds

det(In + xy∗) = 1 + y∗x. (2.12)

In addition, it is also easy to verify the following inversion formula about block triangular
matrices1:

[
A11 0
A21 A22

]−1

=

[
A−1

11 0
−A−1

22 A21A
−1
11 A−1

22

]

, (2.13)

[
A11 A12

0 A22

]−1

=

[
A−1

11 −A−1
11 A12A

−1
22

0 A−1
22

]

. (2.14)

1 The nondiagonal block on the right-hand side of the equation is obtained by multiplying clockwise the inverses of
diagonal blocks and the nondiagonal block of the original matrix.

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�
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It is worth noting that for a general nonsingular matrix A partitioned as (2.6), its inverse
can be calculated using the decompositions (2.7) and (2.8), the inversion formulae (2.13) and
(2.14) for block triangular matrices, and the property (RST )−1 = T−1S−1R−1. So, there is
no need to remember the rather complicated inversion formulae.

Moreover, from the identities

A − ABA = A(I − BA) = (I − AB)A, (I − AB)−1(I − AB) = I ,

we obtain the following properties of matrix inverse:

A(I − BA)−1 = (I − AB)−1A, (2.15)

(I − AB)−1 = I + (I − AB)−1AB = I + A(I − BA)−1B. (2.16)

In deriving the second equation of (2.16), we have used the property of (2.15). Based on them,
we can deduce a very useful identity. Assume that A,B,C,D are matrices of appropriate
dimensions, with A and D being invertible. Then,

(A − BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1 (2.17)

holds. This identity is proved as follows. First of all, according to (2.15), (2.16) the left-hand
side of (2.17) can be written as

(I − A−1BD−1C)−1A−1 = [I + A−1B(I − D−1CA−1B)−1D−1C]A−1

since A − BD−1C = A(I − A−1BD−1C). Then, substitution of (I − D−1CA−1B)−1 =
(D − CA−1B)−1D gives the right-hand side of (2.17).

2.2 Elementary Linear Transformation of Matrix and Its Matrix
Description

Elementary linear transformation of block matrices will be frequently used when we per-
form similarity transformation on the state-space realization of transfer function in subsequent
chapters. Here, we illustrate the elementary transformation of matrix and its matrix description
briefly. Matrix A ∈ R

m×n is used as an example.
(1) Interchange of row i and row j
This is realized by premultiplying matrix A with the matrix T obtained from performing

the same transformation on the identity matrix In.

For example, to exchange row 1 and row 3 of matrix A =

⎡

⎣
a1
a2
a3

⎤

⎦ (ai is a row vector), we

transform I3 in the same way so that

I3 =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ → T =

⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦ ⇒ TA =

⎡

⎣
a3
a2
a1

⎤

⎦ .

Obviously, by exchanging column j and column i of T , we can restore it back to the identity
matrix. So T−1 is obtained by the same transformation on the identity matrix.
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(2) Interchange of column i and column j
This is achieved by transforming the identity matrix In in the same way to obtain a matrix

T and then postmultiplying matrix A by T .
For example, to exchange column 1 and column 3 of matrix A = [a1 a2 a3] (ai is a column

vector), we transform I3 in the same way so that

T =

⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦ ⇒ AT = [a3 a2 a1].

Further, exchanging row j and row i of T , the identity matrix is recovered. So T−1 is obtained
by the same transformation on the identity matrix.

(3) Adding α times row i to row j
This is realized by transforming the identity matrix In in the same way to matrix T and then

premultiplying matrix A with T .

For example, when adding 2 times row 1 of matrix A =

⎡

⎣
a1
a2
a3

⎤

⎦ to row 3, we transform I3 in

the same way so that

T =

⎡

⎣
1 0 0
0 1 0
2 0 1

⎤

⎦ ⇒ TA =

⎡

⎣
a1
a2

a3 + 2a1

⎤

⎦ .

Moreover, the identity matrix is recovered by multiplying column j of T by −α and adding it
to column i. So, T−1 is obtained by the same transformation on the identity matrix.

(4) Adding α times column i to column j
This is achieved by transforming the identity matrix In in the same way to matrix T and

then postmultiplying matrix A with T .
For example, when adding 2 times column 1 to column 3 of matrix A = [a1 a2 a3], we

perform the same transformation on I3 so that

T =

⎡

⎣
1 0 2
0 1 0
0 0 1

⎤

⎦ ⇒ AT = [a1 a2 2a1 + a3].

Multiplying column j by (−α) and adding it to column i recover the identity matrix. So T−1

is obtained by the same transformation on the identity matrix.
(5) Multiplying row i by α
This is realized by premultiplying matrix A with the matrix T obtained from the same trans-

formation on the identity matrix In.

When we want to multiply row 1 of matrix A =

⎡

⎣
a1
a2
a3

⎤

⎦ by 3, we perform the same transfor-

mation on I3 so that

T =

⎡

⎣
3 0 0
0 1 0
0 0 1

⎤

⎦ ⇒ TA =

⎡

⎣
3a1
a2
a3

⎤

⎦ .
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14 Robust Control

When α �= 0, multiplying column i of T by α−1 yields the identity matrix. So T−1 can be
obtained by the same transformation on the identity matrix.

(6) Multiplying column i by α
This is done by performing the same transformation on the identity matrix In to get a matrix

T and then postmultiplying matrix A by T .
For example, multiplying column 3 of matrix A = [a1 a2 a3] by 2 is carried out as follows:

transforming I3 in the same way, then we have

T =

⎡

⎣
1 0 0
0 1 0
0 0 2

⎤

⎦ ⇒ AT = [a1 a2 2a3].

Obviously, when α �= 0, multiplying row j of T by α−1 yields the identity matrix. So T−1 is
obtained by the same transformation on the identity matrix.

These rules of elementary transformation also apply to block matrices. Note that in mul-
tiplying a matrix to a block matrix, row blocks must be multiplied from the left and column
blocks be multiplied from the right.

2.3 Linear Vector Space

A vector space is a nonempty set composed of vectors with the same dimension whose ele-
ments share the same character. When all elements are real numbers, the n-dimensional vector
space is denoted by R

n. When all elements are complex numbers, the n-dimensional vector
space is written as C

n. F
n is used to denote both R

n and C
n. The real vector space R

n has the
following properties:

1. If x, y ∈ R
n, then x + y ∈ R

n.
2. If x ∈ R

n and a ∈ R, then ax ∈ R
n.

These two properties can be condensed into one (see Exercise 2.2):

ax + by ∈ R
n for any x, y ∈ R

n and a, b ∈ R.

Similarly, the complex vector space C
n has the following property:

ax + by ∈ C
n for any x, y ∈ C

n and a, b ∈ C.

ax + by is a linear operation on the vectors x, y. The vector space is closed w.r.t. this linear
operation, so it is called a linear vector space.

As a house is supported by pillars, a vector space is formed by a set of special vectors called
basis. Moreover, as a wall is placed in the plane formed by some of the pillars, any vector lies
in a plane spanned by some base vectors. Abstraction of this master and servant relationship
leads to the concepts of linear independence and linear dependence. Further, just as a building
can be separated into several rooms, a vector space can be decomposed into several subspaces.
In addition, the features such as the length of vector and the angle between two vectors can be
expressed by norm and inner product, respectively. In the following subsections, we describe
these basic properties of vector space in detail.
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Basics of Linear Algebra and Function Analysis 15

2.3.1 Linear Independence

Let x1, x2, . . . , xk ∈ F
n and αi ∈ F (i = 1, . . . , k). Then, the vector

α1x1 + · · · + αkxk (2.18)

is called a linear combination of x1, x2, . . . , xk
2, α1, α2, . . . , αk are called the combination

coefficients.
A set of vectors x1, x2, . . . , xk is said to be linearly dependent if there exists at least a nonzero

scalar in α1, α2, . . . , αk satisfying

α1x1 + α2x2 + · · · + αkxk = 0. (2.19)

Conversely, when the equation holds only for α1 = · · · = αk = 0, the vectors x1, x2, . . . , xk

are said to be linearly independent.
When vectors x1, x2, . . . , xk are linearly dependent, there must be a nonzero scalar αi in

the combination coefficients satisfying (2.19). Without loss of generality, we may set α1 �= 0.
Then, x1 can be written as

x1 = −α2

α1
x2 − · · · − αk

α1
xk. (2.20)

That is, x1 is a linear combination of x2, . . . , xk. Therefore, the so-called linear dependence
of x1, x2, . . . , xk means that there exists a vector that can be expressed as a linear combina-
tion of other vectors. On the contrary, in a set of linearly independent vectors, no vector can
be expressed as a linear combination of other vectors. The concepts of linear independence
and linear dependence are illustrated intuitively in Figure 2.1. This picture shows the linear
dependence of u and {x1, x2} as well as the linear independence of v and {x1, x2}.

Let us imagine picking up vectors one by one from a set of linearly independent vectors
and doing linear combination. For one vector, its linear combinations form a straight line in
the space. For two vectors, their linear combinations form a plane; the linear combinations
of three vectors form a three-dimensional space (see Figure 2.2). As such, whenever a new
linearly independent vector is added, the space formed by linear combination expands into a
new direction3.

u
x2

x10

v

Figure 2.1 Linear independence and linear dependence

2 Note that the elements of vector xj and the coefficient αi share the same nature. For example, when the elements
of xj are real numbers, the coefficient αi must also be real.
3 However, as shown in the next section, the number of linearly independent vectors cannot exceed the dimension of
the linear space. Therefore, the expansion of space is constrained by the dimension.
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u0 au + bv

0

w

au + bv + cw

u

v

au + bv

v

u0

Figure 2.2 Number of linearly independent vectors and expansion of space

Example 2.1 For vectors u = [1 0 2]T , v = [0 2 1]T and w = [2 2 5]T , there holds

2u + v − w = 2

⎡

⎣
1
0
2

⎤

⎦+

⎡

⎣
0
2
1

⎤

⎦−

⎡

⎣
2
2
5

⎤

⎦ = 0.

So they are linearly dependent. However, for u and v

au + bv =

⎡

⎣
a
2b

2a + b

⎤

⎦ = 0 ⇒ a = b = 0,

so they are linearly independent. Similarly, u and w, and v and w are also linearly independent,
respectively. Geometrically, u and v are vectors pointing in different directions, their linear
combination forming a plane. w is located in this plane. This is why w is linearly dependent
on {u, v}. Moreover, the linear combination of u and w as well as the linear combination of
v and w also forms a plane, respectively.

2.3.2 Dimension and Basis

The next question is, how many linearly independent vectors there are in F
n? Before answering

this question, let us look at an example. Here, ei denotes a vector whose elements are all 0
except that the ith one is 1.

Example 2.2 In the three-dimensional space R
3, any vector u can be expressed as

u =

⎡

⎣
x
y
z

⎤

⎦ = x

⎡

⎣
1
0
0

⎤

⎦+ y

⎡

⎣
0
1
0

⎤

⎦+ z

⎡

⎣
0
0
1

⎤

⎦ = xe1 + ye2 + ze3. (2.21)

That is, u can be expressed as a linear combination of (e1, e2, e3). Clearly, (e1, e2, e3) are
linearly independent. Therefore, the number of linearly independent vectors in R

3 is 3, equal
to the number of elements in a vector.
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Basics of Linear Algebra and Function Analysis 17

In fact, vectors (e1, e2, e3) are unit vectors along the x-axis, y-axis, and z-axis, respectively,
also known as the natural basis of R

3.

Extending this example, we see that any vector in F
n must be a linear combination of the

following n vectors:

e1, . . . , ei, . . . , en.

Thus, linearly independent vectors contained in an n-dimensional linear space are no more than
n. Further, since these vectors are linearly independent, the number of linearly independent
vectors is n. In summary, we get the following theorem.

Theorem 2.1 The dimension of linear vector space F
n equals the largest number of linearly

independent vectors in it.

Secondly, a set formed by the linear combinations of {u1, u2, . . . , uk} is called a space
spanned by them, denoted by

span{u1, u2, . . . , uk} := {x | x = α1u1 + · · · + αkuk, αi ∈ F}. (2.22)

Moreover, the set of vectors {u1, u2, . . . , un} ⊂ F
n is called a basis of F

n if its elements are
all linearly independent. The following theorem shows that F

n can be spanned by this basis.

Theorem 2.2 Let {u1, u2, . . . , un} ⊂ F
n be a basis of F

n. Then, F
n = span{u1, u2, . . . , un}.

Proof. x ∈ F
n whenever x ∈ span{u1, u2, . . . , un}. Then, apparently span{u1, u2, . . . ,

un} ⊂ F
n. Set a square matrix as [u1 u2 · · ·un] = U . Due to the linear independence of

base vectors, the algebraic equation

0 = [u1 u2 · · ·un]c = Uc, c ∈ F
n

only has a trivial solution c = 0. So U must be nonsingular. Then, for any x ∈ F
n,

by setting α = U−1x, we have x = Uα =
∑

αiui (αi ∈ F is an element of α). So
F

n ⊂ span{u1, u2, . . . , un}, which ends the proof. •

According to this theorem, any vector x ∈ F
n can be described as

x = α1u1 + · · · + αnun (2.23)

by using a basis {u1, . . . , un} and scalars αi (i = 1, . . . , n). Here, (α1, . . . , αn) is called the
coordinate of vector x on the basis {u1, . . . , un}. Geometrically, αi is the projection of x in
the direction of base vector ui (see Example 2.2).
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2.3.3 Coordinate Transformation

Let us consider the relation of two bases {v1, . . . , vn}, {u1, . . . , un} of F
n. First, according to

the definition of basis, there is tij ∈ F such that vj is described as

vj = t1ju1 + · · · + tnj un = [u1 · · · un]

⎡

⎢
⎣

t1j
...

tnj

⎤

⎥
⎦ .

Aligning all vj horizontally, we get

[v1 · · · vn] = [u1 · · · un]T, T = (tij ).

Owing to the linear independence of basis, matrices [v1 · · · vn], [u1 · · · un] must be nonsin-
gular. Therefore, the matrix T transforming {u1, . . . , un} to {v1, . . . , vn} must also be nonsin-
gular. For any vector x ∈ F

n, let its coordinates on basis {u1, . . . , un} be (α1, . . . , αn), and the
coordinates on basis {v1, . . . , vn} be (β1, . . . , βn). Then

x = [u1 · · · un]

⎡

⎢
⎣

α1
...

αn

⎤

⎥
⎦ = [v1 · · · vn]T−1

⎡

⎢
⎣

α1
...

αn

⎤

⎥
⎦ = [v1 · · · vn]

⎡

⎢
⎣

β1
...

βn

⎤

⎥
⎦ .

Therefore, between the coordinates on these two bases, there holds
⎡

⎢
⎣

β1
...

βn

⎤

⎥
⎦ = T−1

⎡

⎢
⎣

α1
...

αn

⎤

⎥
⎦ . (2.24)

This equation is called a coordinate transformation.

Example 2.3 Consider a vector x = [1 1]T = e1 + e2 whose coordinate is (1, 1) on the nat-
ural basis e1 = [1 0]T , e2 = [0 1]T . In a new coordinate system that rotates 45◦ counter-
clockwise, the base vectors become u1 = [cos 45◦ sin 45◦]T , u2 = [− sin 45◦ cos 45◦]T . The
coordinate of x turns out to be (

√
2, 0) (show it by drawing a figure). That is, this vector can

be expressed as x =
√

2u1.
From the viewpoint of coordinate transformation, since u1 = cos 45◦e1 + sin 45◦e2, u2 =

− sin 45◦e1 + cos 45◦e2, the transformation matrix T from (e1, e2) to (u1, u2) is

T =

[
cos 45◦ − sin 45◦

sin 45◦ cos 45◦

]

⇒ T−1 =

⎡

⎢
⎢
⎣

1√
2

1√
2

− 1√
2

1√
2

⎤

⎥
⎥
⎦ .

Therefore, the coordinate of x in the new coordinate system becomes T−1[1 1]T = [
√

2 0]T .

2.4 Norm and Inner Product of Vector

In this section, we discuss the issues of vector size as well as the relation of directions between
vectors.
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2.4.1 Vector Norm

The size of real numbers or complex numbers is measured by their absolute values. Now, how
should we measure the size of a vector? To answer this question, let us review the notion of
distance in Euclidean space. The distance between a point P (x, y, z) and the origin in the
three-dimensional Euclidean space is defined as

d(P ) =
√

x2 + y2 + z2. (2.25)

As is well known, this denotes the length of vector u = [x y z]T . The size of vector (as well as
matrix and function described later) is called the norm and denoted by ‖·‖ (Figure 2.3). So d(P )
can also be written as d(P ) = ‖u‖. After investigating the property of function ‖u‖ = d(P )
carefully, we see that it satisfies the following conditions (refer to Exercise 2.5):

1. ‖u‖ ≥ 0 (positivity)
2. ‖u‖ = 0 iff u ≡ 0 (positive definiteness)
3. ‖αu‖ = |α|‖u‖ for any scalar α ∈ R (homogeneity)
4. ‖u + v‖ ≤ ‖u‖ + ‖v‖ for any vectors u, v (triangle inequality)

These properties of Euclidean distance form the starting point for treating the norms of vector
or function. Hereafter, a scalar real-valued function defined in any vector space (as well as
matrix space, function space) is called a norm of the corresponding space so long as it satisfies
all the aforementioned properties, and is used to measure the size of vector (matrix, function). It
is worth noting that for real-valued vector (matrix, function), the property (3) holds for α ∈ R.
However, for complex-valued vector (matrix, function), the property (3) holds for α ∈ C.

Norm is simply an extension of the distance notion in three-dimensional Euclidean space,
and its property is identical to that of the distance in Euclidean space. Therefore, we may
imagine intuitively any norm in terms of Euclidean distance.

For a vector u ∈ F
n, the frequently used norms are listed as follows:

1-norm ‖u‖1 =
∑n

i=1 |ui|
2-norm ‖u‖2 =

√∑n
i=1 |ui|2

Infinity-norm ‖u‖∞ = max
1≤i≤n

|ui|

O

z

y

x

z

y

x

P

Figure 2.3 Distance in Euclidean space
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Example 2.4 Let us prove that the function f(u) =
∑n

i=1 |ui| meets the condition of norm.
Obviously, f(u) ≥ 0. Secondly

f(u) = 0 ⇔ |ui| = 0 ∀i ⇔ ui = 0 ∀i ⇔ u = 0

holds. It is also easy to see that

f(αu) =
n∑

i=1

|αui| = |α|
n∑

i=1

|ui| = |α|f(u).

Further,

f(u + v) =
n∑

i=1

|ui + vi| ≤
n∑

i=1

(|ui| + |vi|) = f(u) + f(v)

is true because the triangle inequality |ui + vi| ≤ |ui| + |vi| holds for scalars. So, this f(u)
is indeed a norm.

2.4.2 Inner Product of Vectors

In vector space, there is a direction relation between vectors, that is, the angle between them,
in addition to their sizes. Here, we consider how to describe this direction relation.

In the two-dimensional Euclidean space R
2, the angle between two vectors is defined as

the geometric angle between them (refer to Figure 2.4). Suppose that the coordinates of two
vectors are ui = [xi yi]

T (i = 1, 2), respectively, in Figure 2.4. Then, the angle between them
can be calculated based on the cosine rule

‖u1 − u2‖2
2 = ‖u1‖2

2 + ‖u2‖2
2 − 2‖u1‖2‖u2‖2 cos θ. (2.26)

Expanding the left-hand side according to the definition of 2−norm, we get

cos θ =
x1x2 + y1y2

‖u1‖2‖u2‖2
=

uT
1 u2

‖u1‖2‖u2‖2
. (2.27)

uT
1 u2 is a function mapping two vectors into a scalar, called inner product and denoted by

〈u1, u2〉 := uT
1 u2. (2.28)

O
x

y

u1
u2

θ

Figure 2.4 Inner product and angle
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Then, we have

cos θ =
〈u1, u2〉

‖u1‖2‖u2‖2
, θ ∈ [0, π]. (2.29)

Therefore, inner product and angle have a one-to-one relationship. In vector spaces with higher
dimensions as well as matrix and function spaces to be described later on, the angle cannot be
drawn. So, it is necessary to use the inner product to define the angle between the elements of
each space.

Generalizing the preceding example, we define the inner product between real-valued vec-
tors u, v ∈ R

n as
〈u, v〉 := uT v. (2.30)

Similarly, the inner product between complex-valued vectors u, v ∈ C
n is defined as

〈u, v〉 := u∗v (2.31)

which takes complex value. Further, the angle between two vectors u, v is defined via4

cos θ =
R(〈u, v〉)
‖u‖2‖v‖2

, θ ∈ [0, π]. (2.32)

According to this definition of inner product, when 〈u, v〉 = 0 the angle between u, v is 90◦.
In this case, we say that u, v are orthogonal, denoted as u⊥v.

Example 2.5 Given vectors

u =
[
1
1

]

, v =
[
−1
1

]

, w =
[
1
0

]

.

Let the angle between u, v be φ and the angle between u,w be θ. Calculation based on inner
product yields

cos φ =
uT v

‖u‖2‖v‖2
= 0 ⇒ φ = 90◦,

cos θ =
uT w

‖u‖2‖w‖2
=

1√
2

⇒ θ = 45◦.

We can verify the correctness of the calculation by drawing a figure.

The inner product defined in vector space F
n has the following properties. They can be

validated according to the definition:

1. 〈x, αy + βz〉 = α〈x, y〉 + β〈x, z〉 holds for any scalars α, β ∈ F.

4 As is well known, in geometry a complex number a + jb can be expressed as a vector [a b]T in two-dimensional

real space. Therefore, a complex-valued vector u and a real-valued vector

[
R(u)
�(u)

]
are one to one. It is easy to verify

thatR(〈u, v〉) = [R(u) �(u)]
[
R(v)
�(v)

]
. This is why the angle between complex vectors u, v is defined as such.
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2. 〈x, y〉 = 〈y, x〉.
3. 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 iff x = 0.

√
〈u, u〉 satisfies all conditions of norm and is called an induced norm. In fact, there holds√

〈u, u〉 = ‖u‖2. The inner product and induced norm have the following properties.

Theorem 2.3 For any u, v ∈ F
n, the following statements are true.

1. |〈u, v〉| ≤ ‖u‖2‖v‖2 (Cauchy–Schwarz inequality). The equality holds only when u = αv
(α is a constant), u = 0 or v = 0.

2. ‖u + v‖2
2 + ‖u − v‖2

2 = 2‖u‖2
2 + 2‖v‖2

2 (parallelogram law).

3. ‖u + v‖2
2 = ‖u‖2

2 + ‖v‖2
2 when u⊥v (Pythagoras’ law).

2.5 Linear Subspace

2.5.1 Subspace

All linear combinations of vectors x1, x2, . . . , xk ∈ F
n

span{x1, x2, . . . , xk} := {x | x = α1x1 + · · · + αkxk, αi ∈ F} (2.33)

is called the subspace spanned by x1, x2, . . . , xk. In the subspace S := span{x1, x2, . . . , xk},
any u, v ∈ S can be written as

u = α1x1 + · · · + αkxk, v = β1x1 + · · · + βkxk (2.34)

with combination coefficients αi, βi ∈ F(i = 1, . . . , k). So, for any a, b ∈ F, there holds

au + bv = (aα1 + bβ1)x1 + · · · + (aαk + bβk)xk. (2.35)

Further, since aαi + bβi ∈ F, we have au + bv ∈ S. In other words, the subspace S satisfies
the property of linear space. Therefore, a subspace itself is also a linear space. Note that a
subspace must contain the origin.

Moreover, in the subspace S of F
n, a set of linearly independent vectors with the largest

possible number is called a basis of S5. The number of vectors contained in the basis of S is
called the dimension of the subspace S, denoted as dim(S). In other words, the dimension of
subspace S is equal to the number of linearly independent vectors contained in S.

Example 2.6 In Example 2.1, vectors u = [1 0 2]T and v = [0 2 1]T are linearly indepen-
dent, so they span a two-dimensional subspace in R

3. This can be verified from the fact that
span{u, v} forms the gray plane in Figure 2.5.

On the other hand, the vector w = [2 2 5]T is linearly dependent on u and v so that
span{u, v, w} = span{u, v}. This can also be validated from the fact that w locates in the
gray plane shown in Figure 2.5.

5 Note that the vectors contained in a basis must be linearly independent. On the other hand, a vector set {x1, . . . , xk}
that spans S = span{x1, . . . , xk} may have linearly dependent vectors.
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y

x

z

uv

w

O

Figure 2.5 Linear subspace and basis

2.6 Matrix and Linear Mapping

2.6.1 Image and Kernel Space

Multiplying vector x ∈ F
n to matrix A ∈ F

m×n, we get a new vector

y = Ax ∈ F
m. (2.36)

That is, the matrix A can be regarded as a mapping from linear space F
n to linear space F

m6

A : F
n �→ F

m. (2.37)

This mapping obviously has the following linearity property:

A(ax + by) = a(Ax ) + b(Ay) ∀a, b ∈ F, x, y ∈ F
n. (2.38)

So it is called a linear mapping.
The image (range) of linear mapping A is denoted by

ImA := {y ∈ F
m | y = Ax , x ∈ F

n}. (2.39)

ImA is a subspace of F
m (prove it). Also, it is conceivable that some nonzero vector x �= 0 in

the domain F
n may be mapped to the origin of the image F

m, that is, Ax = 0. The set of such
vectors is called the kernel space (null space) of A and is denoted as

KerA := {x ∈ F
n | Ax = 0}. (2.40)

It is easy to see that KerA is a subspace of the domain F
n (refer to Exercise 2.6). The rela-

tionship between these subspaces is illustrated in Figure 2.6.

Example 2.7 Mapping vector x = [x1 x2 x3]
T with matrix

A =
[
1 1 0
0 0 1

]

,

6 In fact, A is the matrix description of this linear mapping.
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KerA

ImA

O

A

A
n m

Figure 2.6 Image and kernel space

the map y is

y = Ax =
[
x1 + x2

x3

]

= (x1 + x2)
[
1
0

]

+ x3

[
0
1

]

.

So the image becomes

ImA = span
{[

1
0

]

,

[
0
1

]}

= R
2. (2.41)

Secondly, since

Ax = 0 ⇒ x2 = −x1, x3 = 0 ⇒ x = x1[1 − 1 0]T ,

the kernel space is given by

KerA = span{[1 − 1 0]T }. (2.42)

Further, the following relationships between dimensions are true:

dim(KerA) + dim(ImA) = n, dim(ImA) = dim [(KerA)⊥]. (2.43)

Note that (KerA)⊥ is also a subspace of F
n.

Lemma 2.1 Let ai(i = 1, 2, . . . , n) be a column vector of matrix A ∈ F
m×n. Then

ImA = span{a1, a2, . . . , an}

holds and

dim(ImA) = maximum number of linearly independent columns of A

= maximum number of linearly independent rows of A.

Clearly, the dimension of image Im A is no more than the dimension of domain F
n

(Figure 2.7). That is,

dim(ImA) ≤ n = dim(domain) = number of columns of A. (2.44)
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ξ

x

ζ

y
T

A

B

M

ξ̂ ζ̂

{u1, . . . , uu}

{v1, . . . , vu} {v1, . . . , vu}

{u1, . . . , uu}

T

Figure 2.7 Linear transformation described by mapping matrix

2.6.2 Similarity Transformation of Matrix

Consider a linear mapping M that maps vector x ∈ F
n into y ∈ F

n. Let the coordinate of x in
the basis {ui} be ξ, the coordinate of y be ζ, and the matrix description of mapping M be A.
Then, ζ = Aξ holds. Similarly, when the coordinate of x in the basis {vi} is ξ̂, the coordinate
of y is ζ̂, and the matrix description of mapping M is B, then ζ̂ = Bξ̂. Further, assume that
the matrix transforming basis {ui} into basis {vi} is T . Then, according to (2.24), the relation
between the coordinates on each basis, we have

ξ̂ = T−1ξ, ζ̂ = T−1ζ ⇒ T ζ̂ = ζ = Aξ = AT ξ̂ ⇒ ζ̂ = T−1AT ξ̂.

Therefore, we obtain the following relation:

B = T−1AT . (2.45)

Matrices A,B both express the same linear mapping; only the coordinate systems are different.
For this reason, the preceding equation is called similarity transformation.

Example 2.8 Consider the mapping that rotates vector u an angle of θ counterclockwise in
R

2. On the natural basis {e1, e2}, let the coordinate of vector u be ξ = [r cos φ r sinφ]T .
Then, the coordinate ζ of its image v is obtained as

ζ =
[
r cos(φ + θ)
r sin(φ + θ)

]

= r

[
cos φ cos θ − sin φ sin θ
sin φ cos θ + cos φ sin θ

]

=
[
cos θ − sin θ
sin θ cos θ

]

ξ

from Figure 2.8. So, the matrix description of this mapping is

A =
[
cos θ − sin θ
sin θ cos θ

]

.

Considering the same mapping on another basis {u1, u2} = {2e1, 3e2}, the transformation
matrix between the bases is obviously

T =
[
2 0
0 3

]

.
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e1

e2

u

v

φ
θ

Figure 2.8 Rotation of vector

Therefore, the matrix description of this mapping on the basis {u1, u2} is equal to
B = T−1AT .

2.6.3 Rank of Matrix

The rank of matrix A is defined as the dimension of its image, that is,

rank(A) = dim (ImA). (2.46)

So

rank(A) = number of linearly independent columns of A (2.47)

= number of linearly independent rows of A. (2.48)

For instance, in Example 2.7 rank(A) = 2.
When matrix A ∈ F

m×n satisfies m ≤ n (wide matrix) and rank(A) = m, it has full row
rank. Similarly, when it satisfies n ≤ m (tall matrix) and rank(A) = n, it has full column rank.
Also, a square matrix with full rank is called a nonsingular matrix.

The following lemma holds w.r.t. matrix multiplication.

Lemma 2.2 The following statements hold:

1. For matrix A ∈ F
m×n, rank(A) = rank(AT ) = rank(PA) when T and P are nonsingular

matrices with appropriate dimensions.
2. (Sylvester’s inequality) Assume that A ∈ F

m×n, B ∈ F
n×k. The following relationship is

true:

rank(A) + rank(B) − n ≤ rank(AB) ≤ min{rank(A), rank(B)}.

Moreover, there hold the following relations between the image, kernel space, and determi-
nant of a matrix.

Theorem 2.4 For square matrix A ∈ F
n×n, the following statements are equivalent:

1. KerA �= {0}.
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2. ImA �= F
n.

3. det(A) = 0.

From this theorem, we see that det(A) = 0 is equivalent to the existence of linearly depen-
dent column/row in A.

Example 2.9 In matrix

A =

⎡

⎣
1 0 2
1 0 2
0 1 1

⎤

⎦ := [a1 a2 a3],

as a3 = 2a1 + a2, we have

ImA = span{a1, a2} �= R
3, det(A) = 0

KerA = span{[2 1 − 1]T } �= {0}.

2.6.4 Linear Algebraic Equation

Let us consider the following linear algebraic equation:

Ax = b (2.49)

where A ∈ F
n×m and b ∈ F

n are given matrix and vector, respectively, x ∈ F
m is the unknown

vector. The left-hand side of this equation can be interpreted as a linear combination of the
columns of matrix A with elements of vector x as the coefficients. Therefore, if this equation
has a solution, the vector b can be written as a linear combination of the columns of A.

The following theorem is very famous.

Theorem 2.5 For the linear equation (2.49), the following statements are equivalent:

1. There exists a solution x ∈ F
m.

2. b ∈ ImA.
3. rank[A b] = rank(A).
4. KerA∗ ⊂ Kerb∗.

Further, the following conclusions are true when a solution exists:
5. Given a special solution x0, all solutions are characterized by the set

x0 + KerA = {x0 + y | y ∈ KerA}. (2.50)

6. A unique solution exists if the matrix A has full column rank.

Example 2.10 Given the following matrix and vectors

A =

⎡

⎣
1 0 2
1 0 2
0 1 1

⎤

⎦ , b1 =

⎡

⎣
0
1
0

⎤

⎦ , b2 =

⎡

⎣
1
1
2

⎤

⎦ .
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Expanding Ax = b1, we obtain

x1 + 2x3 = 0, x1 + 2x3 = 1, x2 + x3 = 0.

The first two equations are contradictory, so no solution exists. This corresponds to b1 /∈ ImA.
On the other hand, expansion of Ax = b2 about vector b2 ∈ ImA yields

⎧
⎨

⎩

x1 + 2x3 = 1
x1 + 2x3 = 1
x2 + x3 = 2

⇒

⎡

⎣
x1
x2
x3

⎤

⎦ =

⎡

⎣
1 − 2x3
2 − x3

x3

⎤

⎦ , x3 �= 0. (2.51)

Meanwhile, x0 = [−1 1 1]T is a special solution of Ax = b2. Together with KerA =
span{[2 1 − 1]T }, we obtain the general solution

x = x0 + y =

⎡

⎣
−1
1
1

⎤

⎦+ α

⎡

⎣
2
1
−1

⎤

⎦ =

⎡

⎣
−1 + 2α
1 + α
1 − α

⎤

⎦ (2.52)

according to Theorem 2.5 where α is an arbitrary real number. This agrees with (2.51) with
x3 = 1 − α in the solution.

2.7 Eigenvalue and Eigenvector

When square matrix A ∈ F
n×n, scalar λ ∈ C, and vector u ∈ C

n satisfy

Au = λu, u �= 0, (2.53)

λ is called the eigenvalue of A, and u the eigenvector of A. It is worth noting that even if the
matrix A is real, its eigenvalue and eigenvector are not necessarily real.

Further, when (2.53) is true, there also holds

det(λI − A) = 0. (2.54)

Therefore, the eigenvalues can be equivalently regarded as the roots of the determinant
det(λI − A). det(λI − A) is called the characteristic polynomial of A, and its roots are
called the characteristic roots. Since the degree of the characteristic polynomial is n, there
are n eigenvalues. The set of all eigenvalues of A is denoted by

σ(A) = {λ1, . . . , λn}. (2.55)

Example 2.11 Compute the eigenvalues and eigenvectors of real matrix

A =
[
0 1
3 2

]

.

Solution The characteristic polynomial of A is

det(λI − A) =
∣
∣
∣
∣

λ −1
−3 λ − 2

∣
∣
∣
∣ = (λ + 1)(λ − 3).
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Therefore, its eigenvalues are λ = −1, 3. The eigenvectors can be calculated by the following
method. For λ1 = −1, set the corresponding eigenvector as u = [α β]T which satisfies

(λ1I − A)u =
[
−1 −1
−3 −3

] [
α
β

]

= 0.

Solving this simultaneous equation, we get β = −α. So, when α = 1 is selected, one eigen-
vector is obtained as u = [1 − 1]T . Obviously, if α is nonzero, αu is also an eigenvector. That
is, eigenvector is not unique.

Similarly, eigenvector v = [γ δ]T corresponding to the eigenvalue λ2 = 3 is obtained by
solving simultaneous equation (λ2I − A)v = 0. One eigenvector is v = [1/3 1]T . The eigen-
vectors in this example are shown in Figure 2.9.

From the calculations, we have

A[u v] = [Au Av ] = [u v]
[
−1 0
0 3

]

.

Therefore, when a vector x = c1u + c2v in the subspace

span{u v} := {x | x = c1u + c2v, ci ∈ R}

is mapped by matrix A, there holds Ax = c1Au + c2Av = −c1u + 3c2v ∈ span{u v}. This
property is also noteworthy. �

Viewing the matrix A from the angle of mapping7, an eigenvector is a special vector in
the domain of A. Being mapped by A, this vector remains on the same straight line; only the
length changes |λ| times. In other words, the absolute value of an eigenvalue of A may be
interpreted as the amplification rate of the corresponding eigenvector. When the eigenvalue is
a real number, its sign indicates the directional relation between the image and the eigenvector.
Figure 2.9 shows such a relation in the forgoing example.

When there exist multiple eigenvalues and the number of eigenvectors is less than that of
multiple eigenvalues, we need to extend the notion of eigenvector, that is, to consider gener-
alized eigenvector. For example, when matrix A has r multiple eigenvalues λ and there are

u

v

Au

Av

O

Figure 2.9 Eigenvalues and eigenvectors

7 From the viewpoint of system engineering, A can be regarded as a signal amplifier with u as its input signal.
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nonzero vectors u1, u2, . . . , ur satisfying

A[u1 u2 · · · ur] = [u1 u2 · · · ur]

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λ 1
λ 1

. . .
. . .
λ 1

λ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (2.56)

only u1 is an eigenvector, while u2, . . . , ur are not. u2, . . . , ur are called the generalized eigen-
vectors. Expanding this equation, we see that the generalized eigenvectors satisfy

Aui = λui + ui−1, i ≥ 2. (2.57)

This property shows that when we map the subspace span{u1, . . . , ur} := {x | x =∑
ciui, ci ∈ C ∀i} spanned by the eigenvectors and generalized eigenvectors by matrix

A, its image still returns to the same subspace. A subspace with such property is called an
invariant subspace of matrix A.

In general, when there exist n × r matrix U and r × r matrix Λ satisfying

AU = UΛ, (2.58)

the subspace S = ImU = {y ∈ C
n | y = Ux , x ∈ C

r} with the columns of U as its basis
becomes an invariant subspace of A. Obviously, any subspace formed by eigenvectors is
A-invariant. It should be noted that the so-called invariant subspace must correspond to a spe-
cific mapping and a subspace alone does not have such property. For details about invariant
subspace, refer to Section 2.8.

The following Cayley–Hamilton theorem plays an important role in the analysis of linear
system structure.

Theorem 2.6 (Cayley–Hamilton) Assume that A ∈ C
n×n and

det(λI − A) = λn + a1λ
n−1 + · · · + an. (2.59)

Then, the following matrix equation holds:

An + a1A
n−1 + · · · + anI = 0. (2.60)

This implies that An (and higher power of A) is a linear combination of I, . . . , An−1.

2.8 Invariant Subspace

We regard square matrix A as a linear mapping A : F
n �→ F

n. In subspace S of F
n, if any

vector returns to S after being mapped by A, that is,

Ax ∈ S ∀x ∈ S, (2.61)
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we say that S is an invariant subspace of the mapping A, or simply A-invariant. This property
of invariant subspace can be succinctly expressed as

AS ⊂ S. (2.62)

The concept of invariant subspace of linear mapping plays a very important role in the analysis
of system structure.

Several examples are used to illustrate the invariant subspace. For example, if λ is an eigen-
value of matrix A and x is the corresponding eigenvector, then Ax = λx holds. This implies
that the one-dimensional subspace span{x} spanned by the eigenvector is A-invariant.

Example 2.12 Prove that {0}, C
n, KerA, and ImA are A-invariant subspaces.

Solution Obviously, A{0} ⊂ {0}, AC
n ⊂ C

n hold. Ax = 0 is true for any x ∈ KerA. So,
KerA is A-invariant because 0 ∈ KerA. Also, the matrix A considered in this section is square,
so naturally we have ImA ⊂ C

n, that is, the image is contained in the domain. Thus, mapping
ImA again with A, the image still returns to ImA. �

In general, subspaces spanned by all the eigenvectors corresponding to eigenvalues
λ1, . . . , λk of A (not necessarily distinct) as well as all eigenvectors and generalized
eigenvectors are A-invariant. Let us see the following example.

Example 2.13 Suppose that matrix A ∈ C
3×3 has a Jordan canonical form

A
[
x1 x2 x3

]
=
[
x1 x2 x3

]
⎡

⎣
λ1 1

λ1
λ2

⎤

⎦ .

Let us consider the following subspaces:

S1 = span{x1}, S2 = span{x2}, S3 = span{x3},
S12 = span{x1, x2}, S13 = span{x1, x3}.

Since x1, x3 are eigenvectors of matrix A, both S1 and S3 are invariant subspaces.
As for S12, for any x ∈ S12, we have x = ax1 + bx2 ⇒ Ax = aAx1 + bAx2 =
aλ1x1 + b(x1 + λ1x2) = (aλ1 + b)x1 + (bλ1)x2 ∈ S12. Therefore, S12 is also A-invariant.
Similarly, S13 is A-invariant. However, S2 = span{x2} is not an invariant subspace because
Ax2 = λ1x2 + x1, and x1 (independent of x2) is not contained in S2. So Ax2 ∈ S2 does
not hold.

The following theorem shows that, when performing similarity transformation on matrix A
with the basis of A-invariant subspace, A can be transformed into a block triangular matrix.

Theorem 2.7 Assume that S ⊂ C
n is A-invariant and set its basis as {t1, . . . , tk} (k < n).

Then

1. The following equation holds for some matrix A11 ∈ C
k×k

AT1 = T1A11, T1 = [t1 · · · tk].
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2. There exist vectors tk+1, . . . , tn ∈ C
n such that the matrix

T = [t1 · · · tk | tk+1 · · · tn] = [T1 T2]

is nonsingular and satisfies

AT = T

[
A11 A12
0 A22

]

in which A21, A22 are compatible matrices.

2.8.1 Mapping Restricted in Invariant Subspace

Let us consider restricting the mapping A in its invariant subspace S and denote this mapping
by A|S. According to Theorem 2.7, for matrix T constructed by the basis of S, there must be
a square matrix A satisfying

AT = TA. (2.63)

This matrix A is exactly the matrix description of A|S, the mapping restricted in subspace S.
Clearly, elements of σ(A), the eigenvalue set of A, are also eigenvalues of A. They are called
the eigenvalues of mapping A restricted to subspace S, denoted as

σ(A|S) = σ(A). (2.64)

2.8.2 Invariant Subspace over R
n

As mentioned earlier, real matrix may have complex eigenvalues and complex eigenvectors. In
such case, the subspace with eigenvectors as the basis is naturally a complex subspace. This is
why we have been discussing invariant subspaces over C

n up to now. However, a real matrix
can also have real invariant subspace. For example, when the matrix A ∈ R

n×n has complex
eigenvalue a + jb and eigenvector x + jy , by comparing the real and imaginary parts of the
two sides of A(x + jy) = (a + jb)(x + jy), we get Ax = ax − by ,Ay = bx + ay . Thus,

A[x y] = [x y]
[

a b
−b a

]

holds. Next, by the assumption that the eigenvalue is complex (i.e., b �= 0), we can prove that
x, y, are linearly independent8. Therefore, when setting U = [x y], we have

AU = UΛ, Λ :=
[

a b
−b a

]

. (2.65)

Then, ImU ⊂ R
n is a real invariant subspace of A. The background is that the characteristic

polynomial of a real matrix has real coefficients, so when there is a complex eigenvalue, its

8 First, a − jb is also an eigenvalues of A, its corresponding eigenvector is x − jy which is linearly independent
of x + jy as the eigenvalues are different. If x, y are not linearly independent, there must be a nonzero scalar c ∈
R such that y = cx . This means that x + jy = (1 + jc)x and x − jy = (1 − jc)x are linearly dependent, which is
contradictory.
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conjugate must also be an eigenvalue. In fact, the eigenvalues of Λ are a ± jb which are also
eigenvalues of A.

Although a real invariant subspace of matrix A does not contain the complex eigenvectors
of A, they however can be generated from the basis of the subspace. For example, in the
preceding example, the eigenvectors of Λ are v1,2 = [1 ± j]T , and the eigenvectors of A can
be generated by [x y]v1,2 = x ± jy . Repetition of this argument leads to Theorem 2.8.

Theorem 2.8 Assume that S = Im T is an n-dimensional invariant subspace of A ∈ R
n×n

and the matrix description of the mapping A|S restricted in S is A. Then, S ⊂ R
n iff A is a

real matrix.

Moreover, from this theorem, we immediately get the following corollary.

Corollary 2.1 For A ∈ R
n×n, let S ⊂ R

n be an invariant subspace of A with basis
{t1, . . . , tk} (k < n). Then, the following statements are true:

1. There exists a matrix A11 ∈ R
k×k satisfying

AT1 = T1A11, T1 = [t1 · · · tk].

2. There exist vectors tk+1, . . . , tn ∈ R
n such that the matrix

T = [t1 · · · tk | tk+1 · · · tn] = [T1 T2]

is nonsingular and satisfies

AT = T

[
A11 A12
0 A22

]

.

Here A21andA22 are real matrices with suitable dimensions.

This corollary shows that any real square matrix can always be transformed into a real block
triangular matrix by a real transformation matrix. Its difference from Theorem 2.7 is that
Theorem 2.7 only says that any matrix can be transformed into a complex block triangular
matrix.

2.8.3 Diagonalization of Hermitian/Symmetric Matrix

When A ∈ F
n×n satisfies

A∗ = A, (2.66)

it is called an Hermitian matrix. Particularly, when A is a real square matrix, this relation
becomes

AT = A. (2.67)

Such matrix A is called a symmetric matrix. Here, we show a result about the diagonal-
ization of Hermitian matrix which is derived from Theorem 2.7 and Corollary 2.1. The
conclusions are particularly useful in discussing the singular value decomposition (SVD) in
Section 2.12.

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

34 Robust Control

Theorem 2.9 For an Hermitian matrix A, the following statements are true:

1. All eigenvalues of A are real.
2. There exists a unitary matrix U ∈ F

n×n which diagonalizes A:

U ∗AU =

⎡

⎢
⎣

λ1
. . .

λn

⎤

⎥
⎦, U ∗U = I .

Note that for a real matrix, the transformation matrix for diagonalization is an orthonormal
matrix.

Example 2.14 Diagonalize the matrix A =
[
1 2
2 1

]

.

First of all, det(λI − A) = (λ − 1)2 − 4 = 0 leads to the eigenvalues λ1 = 3, λ2 = −1.
Let the eigenvector corresponding to λ1 = 3 be x1. Then

(λ1I − A)x1 =
[

2 −2
−2 2

]

x1 = 0 ⇒ x1 =
[
a
a

]

, a �= 0.

Normalizing x1, we get the eigenvector u1 = [1 1]T /
√

2. Similarly, the eigenvec-
tor corresponding to λ2 = −1 is x2 = [b − b]T , and the normalized eigenvector is
u2 = [1 − 1]T /

√
2. Clearly, u1⊥u2. Setting the similarity transformation matrix as

U = [u1 u2], it is orthonormal, and the transformed matrix is a diagonal matrix

U ∗AU =
1
2

[
1 1
1 −1

]T [
1 2
2 1

] [
1 1
1 −1

]

=
[
3 0
0 −1

]

.

2.9 Pseudo-Inverse and Linear Matrix Equation

For a nonsquare or singular matrix, there is no inverse in the normal sense. However, we may
define the so-called pseudo-inverse. The pseudo-inverse is denoted as A† and satisfies all the
following conditions:

1. AA†A = A.
2. A†AA† = A†.
3. (AA†)∗ = AA†.
4. (A†A)∗ = A†A.

A† can be calculated via SVD (refer to Section 2.12). Suppose that the SVD of A is

A = UΣV ∗, Σ =
[
Σr 0
0 0

]

, det(Σr) �= 0.

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

Basics of Linear Algebra and Function Analysis 35

Then, A† is given by

A† = V Σ†U ∗, Σ† =
[
Σ−1

r 0
0 0

]

.

It can be proven that the pseudo-inverse exists and is unique [8]. The pseudo-inverse is very
useful in solving linear vector (or matrix) equations.

Lemma 2.3 [8] The linear matrix equation

AXB = C (2.68)

is solvable iff

AA†CB†B = C. (2.69)

Further, its general solution is given by

X = A†CB† + Y − A†AYBB† (2.70)

where Y is an arbitrary compatible matrix.

2.10 Quadratic Form and Positive Definite Matrix

2.10.1 Quadratic Form and Energy Function

The scalar function ax2
1 + 2bx1x2 + cx2

2 of vector x = [x1 x2]
T is called a quadratic form

because all its terms are second-order functions of variables x1, x2
9. The energy function of

a physical system is usually described by second-order function of physical variables (states).
For example, the kinetic energy mv2/2 of a mass m is a second-order function of the speed,
and the rotational energy Jω2/2 of a rigid body with inertia J is also a second-order function
of the angular velocity ω. System stability or control performance is closely related to energy,
so we often encounter quadratic forms in system analysis and design. More details will be
provided in the Lyapunov stability analysis of Chapter 13 and Section 4.3.

In general, the quadratic form of an n-dimensional real vector x has the form of

V (x) =
n∑

i=1

n∑

j=1

bij xixj

=(b11x
2
1 + b12x1x2 + · · · + b1nx1xn) + · · ·

+ (bn1xnx1 + bn2xnx2 + · · · + bnnx2
n) (2.71)

in which bij ∈ R. Using xixj = xjxi and setting

aii = bii , aij = aji =
bij + bji

2
, i �= j, (2.72)

9 The cross term x1x2 is also regarded as being second order.
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we can always write V (x) as
V (x) = xT Ax (2.73)

with a symmetric matrix A = (aij ). For example, the quadratic form in the preceding example
can be written as

ax2
1 + 2bx1x2 + cx2

2 = [x1 x2]
[
a b
b c

] [
x1
x2

]

.

Similarly, the quadratic form about complex vector x ∈ C
n can be defined as

V (x) = x∗Ax (2.74)

with an Hermitian matrix10 A∗ = A. As energy is real valued, to fit this fact, the quadratic form
is also restricted to real number. This is why the quadratic form of complex vector is defined
as such (V ∗(x) = V (x) holds).

Energy is always positive. So the quadratic form describing energy should also be posi-
tive. This naturally leads to the notion of positive definite function. For any nonzero vector
x ∈ F

n, quadratic form satisfying V (x) = x∗Ax ≥ 0 is called a positive semidefinite func-
tion, and quadratic form satisfying V (x) = x∗Ax > 0 is called a positive definite function. By
definition, whether a quadratic form is positive definite or not does not depend on the vector x,
but is determined solely by the coefficient matrix A. Matrix with such property is the positive
definite matrix/positive semidefinite matrix to be discussed in the next subsection.

2.10.2 Positive Definite and Positive Semidefinite Matrices

When an Hermitian matrix A = A∗ satisfies x∗Ax > 0 for any x �= 0, it is called a positive
definite matrix, denoted by A > 0. Similarly, if x∗Ax ≥ 0 for any x �= 0, A is called a positive
semidefinite matrix, denoted by A ≥ 0. For example, B∗B ≥ 0 since

x∗B∗Bx = ‖Bx‖2
2 ≥ 0

for matrix B and arbitrary vector x.
The following lemma gives conditions for an Hermitian matrix A to be positive (semi)

definite.

Theorem 2.10 When A ∈ F
n×n is Hermitian, the following statements hold:

1. A ≥ 0 iff its eigenvalues are all nonnegative.
2. A > 0 iff its eigenvalues are all positive.
3. When A ≥ 0, there exists B ∈ F

n×r such that A is decomposed as A = BB∗ where r ≥
rank(A).

For a semidefinite matrix A, we define its square root as the positive semidefinite matrix
A1/2 = (A1/2)∗ ≥ 0 satisfying

A = A1/2A1/2. (2.75)

10 Note that all eigenvalues of an Hermitian matrix are real (refer to Exercise 2.16).
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From Theorem 2.9, we see that A1/2 can be computed by

A1/2 = U diag(
√

λ1, . . . ,
√

λn)U ∗. (2.76)

Schur’s lemma is shown as follows. It describes the relation between the whole matrix and
its blocks for positive (semi)definite matrices.

Lemma 2.4 (Schur’s Lemma) Partition Hermitian matrix X = X∗ as

X =
[
X11 X12
X∗

12 X22

]

in which X11,X22 are square. Then, the following statements are true:

1. X > 0 iff one of the following conditions is satisfied:

(a) X22 > 0, X11 − X12X
−1
22 X∗

12 > 0.

(b) X11 > 0, X22 − X∗
12X

−1
11 X12 > 0.

2. X ≥ 0 iff one of the following conditions holds:

(a) X22 ≥ 0, KerX22 ⊂ KerX12, X11 − X12X
†
22X

∗
12 ≥ 0.

(b) X11 ≥ 0, KerX11 ⊂ KerX∗
12, X22 − X∗

12X
†
11X12 ≥ 0.

When the elements of matrix X are variables, matrix inequality such as X11 −
X12X

−1
22 X∗

12 > 0 is nonlinear and difficult to solve numerically. With Schur’s lemma, it is
possible to change it into a linear matrix inequality by extending the size of matrix inequality.
This is the most important application of Schur’s lemma.

2.11 Norm and Inner Product of Matrix

2.11.1 Matrix Norm

Assume that A = (aij ) ∈ F
m×n. The mapping of vectors using this matrix is shown in

Figure 2.10. From the viewpoint of system, the matrix can be regarded as an amplifier and
the vector as a signal. So, u corresponds to the input and Au the output.

Then, a matrix norm can be regarded as the amplification rate of signal. Therefore, the matrix
norm can be defined by the ratio of input and output vector norms. A norm defined like this is
called an induced norm. But it should be noted that the ratio of input and output vector norms
is not a fixed number. It varies with the change in the direction of input vector.

A uAu

Figure 2.10 Mapping vector with matrix
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Example 2.15 Multiplying input vectors u1 = [1 0]T , u2 = [0 1]T , and u3 = [1 1]T /
√

2
to matrix A = [1 2

3 4], we get output vectors y1 = [1 3]T , y2 = [2 4]T , and y3 = [3 7]T /
√

2,
respectively. Therefore, the 2-norm ratios of input and output are, respectively,√

10, 2
√

5,
√

29. Apparently, they are not equal.

Therefore, we should use the supremum of the ratio of input and output vector norms as the
norm of matrix. For example,

‖A‖1 := sup
u�=0

‖Au‖1

‖u‖1
(2.77)

‖A‖2 := sup
u�=0

‖Au‖2

‖u‖2
(2.78)

‖A‖∞ := sup
u�=0

‖Au‖∞
‖u‖∞

(2.79)

are all norms of matrix A.
Secondly, from the geometric viewpoint, matrix A is a mapping that maps the vector space

F
n into the vector space F

m. The induced norm of matrix indicates the maximum amplification
rate of vector length after the mapping.

The matrix norms ‖A‖1, ‖A‖2, ‖A‖∞ do not depend on the input vector u, but are deter-
mined solely by its elements:

1-norm ‖A‖1 = max
1≤j≤n

m∑

i=1

|aij | (column sum)

2-norm ‖A‖2 =
√

λmax(A∗A)

Infinity-norm ‖A‖∞ = max
1≤i≤m

n∑

j=1

|aij | (row sum)

Example 2.16 Prove the formula of 1-norm. First, according to the definition of vector’s
1-norm,

‖Au‖1 =
m∑

i=1

∣
∣
∣
∣
∣
∣

n∑

j=1

aij uj

∣
∣
∣
∣
∣
∣
≤

m∑

i=1

n∑

j=1

|aij ||uj | =
n∑

j=1

(
m∑

i=1

|aij |
)

|uj |

≤ max
1≤j≤n

m∑

i=1

|aij |
n∑

j=1

|uj | = max
1≤j≤n

m∑

i=1

|aij |‖u‖1

⇒ ‖Au‖1

‖u‖1
≤ max

1≤j≤n

m∑

i=1

|aij |co
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holds. This inequality is true for arbitrary vector u. So when the left-hand side takes the supre-
mum w.r.t to u, the inequality is still satisfied. That is, ‖A‖1 ≤ maxj

∑m
i=1 |aij |. Next, we prove

the opposite inequality. Assume that the column sum takes the maximum at the j∗th column,
that is,

m∑

i=1

|aij∗ | = max
1≤j≤n

m∑

i=1

|aij |.

Set u∗ = ej∗ (it is the column vector whose all elements are zero except that the j∗th element
is 1). Then ‖u∗‖ = 1 and

‖Au∗‖1 =
m∑

i=1

|aij∗ | = max
1≤j≤n

m∑

i=1

|aij | = max
1≤j≤n

m∑

i=1

|aij |‖u∗‖1

⇒ ‖Au∗‖1

‖u∗‖1
= max

1≤j≤n

m∑

i=1

|aij | ⇒ ‖A‖1 ≥
‖Au∗‖1

‖u∗‖1
= max

1≤j≤n

m∑

i=1

|aij |.

So, we have

‖A‖1 = max
1≤j≤n

m∑

i=1

|aij |.

In Example 2.15, ‖A‖1 = 2 + 4 = 6, the input direction that yields the maximum amplifi-
cation is [0 1]T . In addition, ‖A‖2 =

√
15 +

√
221 and ‖A‖∞ = 7.

As another important feature of induced norm, the following so-called submultiplicative
property holds

‖AB‖ ≤ ‖A‖‖B‖. (2.80)

It can be derived easily as follows. Assume that

y = Av , v = Bu .

Then

‖y‖
‖u‖ =

‖y‖
‖v‖

‖v‖
‖u‖ ≤ sup

‖y‖
‖v‖ sup

‖v‖
‖u‖

⇒ sup
‖y‖
‖u‖ ≤ sup

‖y‖
‖v‖ sup

‖v‖
‖u‖

⇒ ‖AB‖ ≤ ‖A‖‖B‖.

2.11.2 Inner Product of Matrix

The inner product of matrices A,B ∈ F
m×n is defined by the trace of their product. That is,

〈A,B〉 = Tr(A∗B). (2.81)
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It is easy to see that it satisfies all properties of inner product. To understand why the inner
product of matrix is defined as such, we denote the ith columns of A,B by ai, bi. Then, we
have

Tr(A∗B) =
n∑

i=1

a∗
ibi = vec(A)∗vec(B) = 〈vec(A), vec(B)〉. (2.82)

That is, the inner product of matrices is equal to the inner product of the vectors formed,
respectively, by the columns of these matrices. Furthermore, the scalar

‖A‖F :=
√

Tr(A∗A) (2.83)

induced by the matrix inner product is called Frobenius norm of matrix A. Via the SVD to be
introduced in the following section, it is easy to prove that ‖A‖F satisfies

‖A‖2
F =

n∑

i=1

σ2
i (A) ≥ ‖A‖2

2. (2.84)

2.12 Singular Value and Singular Value Decomposition

What the matrix norm introduced in Section 2.11.1 represents is the maximal possible ampli-
fication rate for input vectors in all directions. However, a vector has its own direction. The
amplification rate is different when the direction of vector differs. However, the matrix norm
cannot express this property. On the other hand, although the absolute value of eigenvalue of a
square matrix indicates the degree of amplification in the corresponding eigenvector direction,
for nonsquare matrix, eigenvalue cannot be defined. To overcome this difficulty, we note that
for a matrix A of arbitrary size, A∗A is always square and positive semidefinite11. Owing to
this property, we introduce a nonnegative real number called singular value.

The singular value of matrix A ∈ F
m×n is defined as

σi(A) :=
√

λi(A∗A) (2.85)

in which λi(A
∗A) stands for the ith largest eigenvalue of A∗A. So, σi(A) is the ith largest

singular value of A. Further, there exists a nonzero vector vi �= 0 satisfying

A∗Avi = σ2
i vi, (2.86)

which is called a singular vector. Obviously, by premultiplying both sides with v∗ and taking
square root, we obtain

‖Avi‖2

‖vi‖2
= σi. (2.87)

Hence, in the sense of vector 2-norm, a singular value indicates the amplification rate of input
vector in the direction of the corresponding singular vector.

The largest and the smallest singular values of matrix A are denoted, respectively, by
σmax(A), σmin(A). Clearly,

σmax(A) = ‖A‖2. (2.88)

11 All eigenvalues of a positive semidefinite matrix are nonnegative real numbers (refer to Exercise 2.16).
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Next, we show a quite useful result, known as singular value decomposition (SVD).

Theorem 2.11 For any matrix A ∈ F
m×n, there exist unitary matrices

U = [u1 u2 · · · um] ∈ F
m×m, V = [v1 v2 · · · vn] ∈ F

n×n

such that A is decomposed into

A = UΣV ∗, Σ =
[
Σ1 0
0 0

]

(2.89)

where

Σ1 =

⎡

⎢
⎢
⎢
⎣

σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σp

⎤

⎥
⎥
⎥
⎦

,

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, p = min{m,n}. (2.90)

σi is the ith singular value of A, ui and vj are, respectively, the ith left singular vector and
the jth right singular vector. First, from AV = UΣ we have

Avi = σiui. (2.91)

Next, after taking conjugate transpose on both sides of AV = UΣ, we premultiply V and
postmultiply ui to the equation and get

A∗ui = σivi. (2.92)

These two equations can be further written as

A∗Avi = σ2
i vi,

AA∗ui = σ2
i ui.

So, σ2
i is an eigenvalue of AA∗ or A∗A, ui the eigenvector of AA∗, and vi the eigenvector of

A∗A. These relationships are illustrated in Figure 2.11.

Example 2.17 We consider mapping the unit disk {x ∈ R
2 | ‖x‖2 ≤ 1} with a 2 × 2 real

matrix A. Note that a two-dimensional unitary matrix U corresponds to a rotation matrix and
can always be written as12

U =
[
cos θ − sin θ
sin θ cos θ

]

12 Assume that U = (uij ). Expanding UT U = I , we get u2
11 + u2

21 = 1, u2
12 + u2

22 = 1, and u11u12 + u21u22 = 0.
From the first two equations, we have u11 = cos θ, u21 = sin θ, u22 = cos φ, u12 = sin φ. From the third equation,
we get sin(θ + φ) = 0 ⇒ φ = −θ. Therefore, sin φ = − sin θ, cos φ = cos θ.
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A

A∗

vi

σiui

uj
σjvj

mn

Figure 2.11 Relationships between singular vectors

with a variable θ. If the singular values σ1, σ2 of A are both nonzero, then

y = Ax = U

[
σ1

σ2

]

V T x ⇒ ŷ := UT y =
[
σ1

σ2

]

V T x

⇒ ŷ2
1

σ2
1

+
ŷ2

2

σ2
2

= xT V V T x = xT x ≤ 1

holds. In the coordinate ŷ, this inequality represents an ellipsoid whose long-axis length is 2σ1
and short-axis length is 2σ2. Moreover, because of

y = Uŷ =
[
cos θ − sin θ
sin θ cos θ

]

ŷ,

it becomes an ellipsoid rotating an angle of θ counterclockwise in the coordinate system y.
From relations Av1 = σ1u1, Av2 = σ2u2, we see that the long-axis direction of the image is
u1 and the short-axis direction is u2. Finally, v1 in the domain is mapped to the long-axis
direction and v2 mapped to the short-axis direction.

As shown by this example, geometrically the singular values of matrix A are equal to the
half-lengths of the ellipsoid’s axes:

E = {y | y = Ax , x ∈ F
n, ‖x‖2 ≤ 1}.

So, v1 is the direction that maximizes ‖y‖2 among all vectors x. On the contrary, vn is the
direction that minimizes ‖y‖2.

By the SVD, we see that

σ2
max(A)I − A∗A = σ2

max(A)I − V Σ2V ∗ = V (σ2
max(A)I − Σ2)V ∗ ≥ 0. (2.93)

Obviously, γ2I − A∗A ≥ 0 fails for γ < σmax(A). Therefore, the largest singular value is
equivalent to the minimum among all positive real number γ satisfying

γ2I − A∗A ≥ 0. (2.94)

This inequality may be used as an equivalent definition of the largest singular value. This
relationship will play a role in solving H∞ control problem and other issues later.
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2.13 Calculus of Vector and Matrix

2.13.1 Scalar Variable

When the variable of vector/matrix function is a scalar, the calculus is defined by those of its
elements about the scalar. For example, when the variable is t

ẋ(t) :=

⎡

⎢
⎣

x1(t)
...

xn(t)

⎤

⎥
⎦ , Ȧ(t) := [ȧij (t)],

∫

A(t)dt :=
[∫

aij (t)dt
]

. (2.95)

Here, ȧ(t) denotes the first derivative d
dt a(t) of a(t) about t. Further, similar to scalar functions,

the derivative formula of product and the partial integration formula hold. Namely,

d

dt
(AB) =

dA
dt

B + A
dB
dt

(2.96)

∫ b

a

dA

dt
Bdt = AB

∣
∣
∣
b

a
−
∫ b

a

A
dB
dt

dt . (2.97)

These properties are easy to verify.

2.13.2 Vector or Matrix Variable

For a scalar function f(x) of column vector x = [x1, . . . , xn]T , its partial derivatives are
defined as follows:

∂f

∂x
:=

[
∂f

∂x1
, . . . ,

∂f

∂xn

]

, (2.98)

∂2f

∂x2 :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2f

∂x2
1

· · · ∂2f

∂xn∂x1

...
...

∂2f

∂x1∂xn

· · · ∂2f

∂x2
n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.99)

According to the definition, the following equations hold for b ∈ R
n, AT = A ∈ R

n×n:

∂

∂x
bT x = bT ,

∂

∂x
xT Ax = 2xT A,

∂2

∂x2 xT Ax = 2A. (2.100)

Similar to the partial derivatives about column vector, for a scalar function, its first-order
partial derivative about a matrix is given by differentiating the scalar function with matrix
elements one by one and putting them in the same order as the transpose of the original matrix.
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Specifically, for X ∈ F
m×n, we have

∂f(X)
∂X

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂f

∂x11
· · · ∂f

∂x1n

...
...

∂f

∂xm1
· · · ∂f

∂xmn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂f

∂x11
· · · ∂f

∂xm1

...
...

∂f

∂x1n
· · · ∂f

∂xmn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.101)

When A,B,X are matrices with appropriate dimensions, the following differentiation formu-
lae hold:

∂

∂X
Tr(AXB) = AT BT

∂

∂X
Tr(AXT B) = BA

∂

∂X
Tr(AX−1B) = −(X−1BAX−1)T

∂

∂X
det(X) =

∂

∂X
det(XT ) = det(X)(XT )−1

∂

∂X
log det(X) = (XT )−1.

2.14 Kronecker Product

The Kronecker product of matrices A ∈ F
m×n and B ∈ F

p×q is an mp × nq matrix defined
by

A ⊗ B =

⎡

⎢
⎣

a11B · · · a1nB
...

...
am1B · · · amnB

⎤

⎥
⎦ . (2.102)

Meanwhile, the Kronecker sum of square matrices A ∈ F
n×n and B ∈ F

m×m is defined as

A ⊕ B = A ⊗ Im + In ⊗ B. (2.103)

Putting the columns of matrix A into a vector sequentially from the first column, we get

vec(A) = [a11 · · · am1 · · · a1n · · · amn ]T . (2.104)

Kronecker product and Kronecker sum have the following properties:

1. For arbitrary scalar α, there holds

α(A ⊗ B) = (αA) ⊗ B = A ⊗ (αB).

2. For A ∈ F
l×m, B ∈ F

p×q and C ∈ F
m×n,D ∈ F

q×r, we have

(AC ) ⊗ (BD) = (A ⊗ B)(C ⊗ D).
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3. Let λi, μj (i = 1, . . . , n, j = 1, . . . ,m) be the eigenvalues of square matrices
A ∈ F

n×n, B ∈ F
m×m, respectively, and xi, yj be their corresponding eigenvectors. The

following statements are true:
(a) The eigenvalues of Kronecker product A ⊗ B are λiμj (i = 1, . . . , n, j = 1, . . . ,m)

with corresponding eigenvectors xi ⊗ yj .
(b) The eigenvalues of Kronecker sum A ⊕ B are λi + μj (i = 1, . . . , n, j = 1, . . . ,m)

with corresponding eigenvectors xi ⊗ yj .
4. For matrices A,B,C with appropriate dimensions, there holds

vec(ABC ) = (CT ⊗ A)vec(B).

5. When the elements of matrices A(t), B(t) are differentiable w.r.t. scalar t, the following
differentiation formula holds:

d

dt
(A(t) ⊗ B(t)) =

(
d

dt
A(t)

)

⊗ B(t) + A(t) ⊗
(

d

dt
B(t)

)

.

All these properties can be verified by using simple matrices such as 2 × 2 matrices.

2.15 Norm and Inner Product of Function

2.15.1 Signal Norm

Consider the disturbance attenuation problem shown in Figure 2.12. Typical disturbance
response is shown in Figure 2.12(b). In order to quantify the effect of disturbance attenuation
(the size of disturbance response), as well as the quality of reference tracking (the size of
tracking error), we need an objective measure on signal size. The measure of signal size is
called signal norm. On one hand, as a signal is a function of time, it does not make sense
considering only the response amplitude at a particular time instant t0. We must investigate
the whole time response. On the other hand, the size of signal is used to compare the relation
between different signals. When we observe two signals in time sequence, the size order
of signals changes at different moments, making it impossible to conduct an objective
comparison. Therefore, we need to find a measure of signal size that is independent of time.
This means that the signal norm must be independent of specific time instant.

Commonly used signal norms are shown as follows.

G

yd

(a)
t

y

(b)

Figure 2.12 Disturbance attenuation (a) System (b) Disturbance response
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(a)

t

u2

(b) (c)

t

u

t

u
∞

Figure 2.13 Signal norms (a) 1-norm (b) 2-norm (c) Infinity-norm

2.15.1.1 Scalar Signal

1. 1-norm (area of absolute value; refer to Figure 2.13(a))

‖u‖1 =
∫ ∞

0
|u(t)|dt (2.105)

2. 2-norm (square root of squared area; refer to Figure 2.13(b))

‖u‖2 =

√∫ ∞

0
u2(t)dt (2.106)

3. Infinity-norm (maximum amplitude; refer to Figure 2.13(c))

‖u‖∞ = sup
t∈[0,∞)

|u(t)| (2.107)

All these functions are independent of specific time instants; their values indicate different
aspects of the response. It is easy to prove that they all satisfy the condition of norm and thus
can be used as a norm.

It should be noted that in comparing two signals, we must use the same norm. This is because
different norms have different values even for the same signal.

Example 2.18 For the signal below, calculate the norms defined earlier.

u(t) = e−3t, t ≥ 0.

Solution Calculation based on the definitions yields

‖u‖1 =
∫ ∞

0
e−3tdt =

1
3
, ‖u‖2 =

√∫ ∞

0
e−6tdt =

√
6

6
,

‖u‖∞ = max
t≥0

|e−3t| = 1.

Clearly, the values of various norms are different. �
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2.15.1.2 Vector Signal

Let a vector signal u(t) be

u(t) =

⎡

⎢
⎣

u1(t)
...

un(t)

⎤

⎥
⎦ . (2.108)

Its various kinds of norms are defined as follows:

‖u‖1 =
∫ ∞

0

n∑

i=1

|ui(t)|dt , (2.109)

‖u‖2 =

√
√
√
√
∫ ∞

0

n∑

i=1

u2
i (t)dt , (2.110)

‖u‖∞ = max
1≤i≤n

sup
t∈[0,∞)

|ui(t)|. (2.111)

2.15.2 Inner Product of Signals

For quadratically integrable scalar signals u(t), v(t), their inner product is defined as

〈u, v〉 =
∫ ∞

0
u(t)v(t)dt . (2.112)

And for quadratically integrable vector signals u(t), v(t) ∈ R
n, their inner product is

〈u, v〉 =
∫ ∞

0
uT (t)v(t)dt =

n∑

i=1

∫ ∞

0
ui(t)vi(t)dt . (2.113)

In circuit theory, in addition to the difference of amplitude between sine waves with the
same frequency, there also exists the phase difference. Let us consider how to describe this
characteristic. Intuitively, the sine wave sin(ωt + ϕ) is the projection on the vertical axis of a
unit vector rotating counterclockwise with an angular velocity ω from an initial angle ϕ in the
two-dimensional vector space. Therefore, the phase difference of the sine wave signals sin(ωt)
and sin(ωt − ϕ) can be thought of as the angle between the two unit vectors rotating at the
same speed. The next question is, how to use the inner product to express the phase angle?
Noting that the integrals of the product of trigonometric functions are equal in each cycle, we
define the inner product and norm of trigonometric functions (vectors) u(t), v(t) with the same
frequency as

〈u, v〉 =
2
T

∫ T

0
uT (t)v(t)dt , (2.114)

‖u‖ =
√
〈u, u〉 =

√
2
T

∫ T

0
uT (t)u(t)dt . (2.115)
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For example, the inner product of u(t) = A sin(ωt), v(t) = B sin(ωt − ϕ) is

〈u, v〉 = AB
2
T

∫ T

0
sin(ωt) sin(ωt − ϕ)dt

= AB
1
T

∫ T

0
[cos(ϕ) − cos(2ωt − ϕ)]dt = AB cos ϕ.

Based on this equation and the definition of norm, it is easy to know that ‖u‖ = A, ‖v‖ = B
by setting v(t) as u(t) and u(t) as v(t), respectively. Thus,

cos ϕ =
〈u, v〉
‖u‖‖v‖ . (2.116)

This confirms that the phase difference between two trigonometric signals with the same fre-
quency indeed has the same meaning as the angle between two vectors in vector space. In
fact, the inner product and norm defined earlier apply to any periodic functions with the same
period.

2.15.3 Norm and Inner Product of Signals in Frequency Domain

In the frequency domain, the 2-norm of a quadratically integrable vector signal û(s) = L[u(t)]
is defined as

‖û‖2 =

√
1
2π

∫ ∞

−∞
û∗(jω)û(jω)dω. (2.117)

Moreover, the inner product between quadratically integrable vector signals f̂(s), ĝ(s) is
defined as

〈f̂ , ĝ〉 =
1
2π

∫ ∞

−∞
f̂ ∗(jω)ĝ(jω)dω. (2.118)

The inner product defined as such has the following properties, which can be simply proved
based on the previous definition (Exercise 2.31).

Lemma 2.5 Assume that vector functions f̂(s), ĝ(s) are quadratically integrable. Then, the
following statements hold:

1. 〈af̂ , bĝ〉 = āb〈f̂ , ĝ〉 for arbitrary a, b ∈ C.

2. 〈f̂ , f̂〉 = ‖f̂‖2
2.

3. 〈f̂ , Hĝ〉 = 〈H∼f̂ , ĝ〉 holds when matrix H(s) has no poles on the imaginary axis.

4. If A∗(jω)A(jω) = I (∀ω), then ‖Af̂‖2 = ‖f̂‖2.

The statement (4) means that the 2-norm is invariant w.r.t. all-pass transfer function
(matrix)13. This property will be frequently used hereafter. According to Parseval’s theorem
in Section 8.1, when the norm/inner product is bounded in the time domain, the time domain
and frequency domain norms/inner products defined earlier are equal to each other.

13 A transfer matrix satisfying A∗(jω)A(jω) = I (∀ω) is known as the all-pass transfer matrix. See Section 9.3 and
Section 10.1.2 for the detail.
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2.15.4 Computation of 2-Norm and Inner Product of Signals

Assume that f̂(s), ĝ(s) are both strictly proper, rational functions (vectors) with real coef-
ficients and have no purely imaginary poles14. Then, lim

R→∞
R · f̂T (−Rej θ)ĝ(Rej θ) = 0 is

true. Therefore, the integral

lim
R→∞

∫ 3π/2

π/2
f̂T (−Rej θ)ĝ(Rej θ)d(Rej θ)

along a semicircle with infinite radius is also zero. Hence, we have

〈f̂ , ĝ〉 =
1
2π

∫ ∞

−∞
f̂ ∗(jω)ĝ(jω)dω =

1
2πj

∮

∂Ω
f̂T (−s)ĝ(s)ds . (2.119)

The path of the final closed integral is composed of the imaginary axis and a semicircle on the
left half-plane with infinite radius. According to the residue theorem, the inner product 〈f̂ , ĝ〉
equals the sum of residues of all poles of f̂T (−s)ĝ(s) on the left half-plane. That is, let si be
an arbitrary left-half- plane pole of f̂T (−s)ĝ(s); then

〈f̂ , ĝ〉 =
∑

i

Res
R(si)<0

f̂T (−s)ĝ(s) (2.120)

holds in which Ressi
denotes the residue at the point si. Therefore, the calculation of inner

product boils down to the calculation of residue.
Further, for a stable function ĝ(s), its poles are the same as the left-half-plane poles of

ĝT (−s)ĝ(s). Substituting f̂(s) = ĝ(s) into (2.120), we see that the 2-norm ‖g‖2 = ‖ĝ‖2 of
stable function ĝ(s) can be calculated as follows by using residue

‖g‖2 = ‖ĝ‖2 =
√∑

i

Res
si

ĝT (−s)ĝ(s). (2.121)

Here, si denotes a pole of ĝ(s).

Example 2.19 Let u(t) be the input of stable transfer function G(s) = 1/(s + 1) and y(t)
be the output.

1. Calculate the 2-norm of the unit impulse response g(t).
2. For u(t) = e−5t, compute ‖y‖2.

Solution (1) First, G(−s)G(s) = 1/(1 − s)(1 + s) has a pole p = −1 on the left half-plane.
The residue at the pole is

lim
s→−1

(s + 1)G(−s)G(s) = lim
s→−1

(s + 1)
1

(1 − s)(s + 1)
= lim

s→−1

1
1 − s

=
1
2

.

So, ‖g‖2 = 1/
√

2.

14 Refer to Chapter 4 for the concepts of strict properness, pole, and stability.
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(2) Since û(s) = 1/(s + 5), ŷ(s) is equal to 1/(s + 1)(s + 5) and has two poles
p = −1,−5. The residues at the stable poles of ŷ(−s)ŷ(s) = 1/(1 − s)(5 − s)(1 + s)(5 + s)
are

lim
s→−1

(s + 1)ŷ(−s)ŷ(s) =
1
48

, lim
s→−5

(s + 5)ŷ(−s)ŷ(s) = − 1
240

.

So, ‖y‖2 = 1/
√

60. �

The following lemma shows that stable function is orthogonal to antistable function without
purely imaginary poles.

Lemma 2.6 Assume that f̂(s) is a stable (vector) function and ĝ(s) is an antistable (vector)
function without purely imaginary poles, both being strictly proper. Then, there hold

〈f̂ , ĝ〉 = 0, ‖f̂ + ĝ‖2
2 = ‖f̂‖2

2 + ‖ĝ‖2
2.

Proof. As f̂ , ĝ are strictly proper and have no imaginary poles, their inner product exists.
Also, since f̂T (−s)ĝ(s) has no poles on the left half-plane, according to (2.120), 〈f̂ , ĝ〉 = 0
is true. The second equation comes from Pythagoras’ law (refer to Theorem 2.3(3)). •

The following simple results will be used in the proofs of Chapter 10 (Exercise 2.32).

Lemma 2.7 Let R(λ) > 0, R(η) > 0. Then, we have

〈
1

λ − s
,

1
η − s

〉

=
1

λ̄ + η
,

∥
∥
∥
∥

1
λ − s

∥
∥
∥
∥

2

2
=

1
2R(λ)

. (2.122)

2.15.5 System Norm

The transfer function of a system is essentially used for quantifying its amplification or atten-
uation ability of input signal. When analyzing the amplification or attenuation rate (i.e., gain)
of a system from the angle of frequency response, since

ŷ(jω) = G(jω)û(jω) (2.123)

we see that the gain at frequency ω is |G(jω)|. However, in comparing the gains of two systems,
if we use |G(jω)|, then we will get completely different conclusions at different frequen-
cies. For example, in Figure 2.14 |G1(jω1)| > |G2(jω1)| at frequency ω1, while |G1(jω2)| <
|G2(jω2)| at frequency ω2. In order to avoid such situation, a measure independent of specific
frequency is necessary.

The norms of the system shown in Figure 2.15 are defined as follows.
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dB
G1 G2

1 2

Figure 2.14 Comparison of gains of transfer functions

(a)

G ∞

dB

|G(jω)|

ω

(b)

G

yu

Figure 2.15 System and frequency response (a) Transfer function (b) H∞ norm

2.15.5.1 Transfer Function

H2 norm:

‖G‖2 =

√
1
2π

∫ ∞

−∞
|G(jω)|2dω =

√∫ ∞

0
g2(t)dt . (2.124)

Here, g(t) = L−1[G(s)] denotes the unit impulse response of transfer function G(s). H2 norm
is the square root of the squared area of the frequency response gain, which is also equal to the
square root of the squared area of unit impulse response. The second equality in the equation
comes from Parseval’s theorem (refer to Section 8.1).
H∞ norm:

‖G‖∞ = sup
ω∈(−∞,∞)

|G(jω)| (2.125)

As shown in Figure 2.15(b), the H∞ norm is the maximal amplitude of the frequency response
of transfer function.

Example 2.20 Calculate the H2 norm and H∞ norm of stable transfer function

G(s) =
10

(s + 1)(s + 10)
.

Solution First, we calculate the unit impulse response of G(s). By partial fraction expansion,
we get

G(s) =
10
9

(
1

s + 1
− 1

s + 10

)

.
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So, the unit impulse response is

g(t) =
10
9

(e−t − e−10t), t ≥ 0.

Thus, we get

‖G‖2 =

√∫ ∞

0
|g(t)|2dt =

√
5
11

.

On the other hand,

|G(jω)|2 =
100

(ω2 + 1)(ω2 + 100)

is a continuous function. So the slope is zero at its maximum point. The solutions of 0 =
d|G(jω)|2

dω = d|G(jω)|2
dω2

dω2

dω = 2ω d|G(jω)|2
dω2 are ω = 0 and ω = ∞. Since |G(j∞)| = 0, we finally

get

‖G‖∞ = |G(j0)| = 1.

In fact, for this example, there is no need to calculate the H∞ norm. The conclusion can be
obtained simply by drawing the Bode plot. �

2.15.5.2 Transfer Matrix

H2 norm:

‖G‖2 =

√
1
2π

∫ ∞

−∞
Tr(G∗(jω)G(jω))dω

=

√∫ ∞

0
Tr(gT (t)g(t))dt , g(t) = L−1[G(s)] (2.126)

The relationship between input/output sizes and the H2 norm of transfer matrix, as well as the
calculation method of the H2 norm, will be explained detailedly in Chapter 15.
H∞ norm:

‖G‖∞ = sup
ω∈[0,∞)

σmax(G(jω)) (2.127)

Here, σmax(G(jω)) denotes the largest singular value of matrix G(jω). The calculation
method of H∞ norm will be introduced in Example 8.2 of Section 8.2.1, while its relation
with the input and output will be introduced in Chapter 16.
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2.15.6 Inner Product of Systems

For quadratically integrable transfer matrices F̂ (s), Ĝ(s) and unit impulse response matrices
F (t), G(t), their inner products are defined, respectively, as

〈F̂ (jω), Ĝ(jω)〉 =
1
2π

∫ ∞

−∞
Tr(F̂ ∗(jω)Ĝ(jω))dω, (2.128)

〈F (t), G(t)〉 =
∫ ∞

0
Tr(FT (t)G(t))dt . (2.129)

And they are equal (refer to Section 8.1).

Exercises

2.1 Prove that the following equation holds for any matrices B ∈ R
n×m, C ∈ R

m×n

det(In + BC ) = det(Im + CB).

In particular, when b is a column vector and c is a row vector, det(I + bc) = 1 + cb.

2.2 Prove that the statement
(a) If x, y ∈ R

n, then x + y ∈ R
n.

(b) If x ∈ R
n and a ∈ R, then ax ∈ R

n.
is equivalent to the following statement:

For any x, y ∈ R
n and a, b ∈ R, there holds ax + by ∈ R

n.

2.3 Calculate the 1-norm, 2-norm, and infinity-norm of vector x = [1 2 3]T .

2.4 Given vectors u = [0 1]T and v = [1 1]T , calculate the 2-norm, inner product, and the
angle between them, respectively.

2.5 The distance between the origin and the point P (x, y, z) in the three-dimensional
Euclidean space is

d(P ) =
√

x2 + y2 + z2.

Prove that this distance function d(P ) satisfies the norm condition.

2.6 Prove that the image ImA of matrix A ∈ F
m×n is a subspace in the range F

m and the
kernel space KerA is a subspace in the domain F

n.

2.7 Given a matrix

A =
[
1 0 0
0 0 1

]

,

find rank(A) and the bases of ImA = {y ∈ R2 | y = Ax , x ∈ R3}, KerA = {x ∈
R3 | Ax = 0}.
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2.8 Discuss the existence and uniqueness of the solution of linear algebraic equation
⎡

⎣
2 −1
−3 3
−1 2

⎤

⎦x = b, b =

⎡

⎣
1
0
1

⎤

⎦ .

If b changes to b = [1 1 1]T , whether there is a solution or not?

2.9 Find the general solution for algebraic equation
⎡

⎣
1 2 3 4
0 −1 −2 2
0 0 0 1

⎤

⎦x =

⎡

⎣
3
2
1

⎤

⎦ .

How many free parameters are there in the solution?

2.10 Consider the equation

x[n] = Anx[0] + An−1bu[0] + An−2bu[1] + · · · + Abu[n − 2] + bu[n − 1]

where A ∈ R
n×n, b ∈ R

n are known. To ensure that this equation has a solution
u[0], . . . , u[n − 1] for arbitrary x[n], x[0], what condition (A, b) must satisfy?

2.11 Given matrix A ∈ R
m×n, rank(A) = min(m,n), consider the linear algebraic

equation Ax = b.
(a) If m > n, no solution exists except the case of b ∈ Im(A). However, there exists

a solution that minimizes the norm ‖e‖2 = eT e of error e = Ax − b. Prove that the
minimum solution is x = (AT A)−1AT b.

(b) If m < n, there exist an infinite number of solutions. Prove that the solution min-
imizing the norm ‖x‖2 = xT x is x = AT (AAT )−1b. (Hint: Use the Lagrange mul-
tiplier method.)

2.12 Calculate the eigenvalues and eigenvectors of matrices

A =
[
0 1
3 −2

]

, B =
[
0 1
3 0

]

.

2.13 Calculate the eigenvalues and eigenvectors of matrix

A =

⎡

⎣
1 1 0
0 0 1
0 0 1

⎤

⎦

and convert it into the Jordan canonical form. Then, compute Ak using the Jordan
canonical form (k is a natural number).

2.14 Let λ and x be the eigenvalue and eigenvector of matrix A, respectively. Prove that the
matrix function f(A) has the eigenvalue f(λ) and the eigenvector x. (Hint: Use Taylor
expansion of f(λ).)
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2.15 Assume that the eigenvalues of matrix A are distinct and that λi, qi are, respectively,
the eigenvalue and right eigenvector satisfying Aqi = λiqi.
(a) Set Q = [q1 q2 · · · qn]. Prove that Q is nonsingular.
(b) Set a row vector pi as the ith row of the inverse of Q, that is,

P = Q−1 :=

⎡

⎢
⎣

p1
...

pn

⎤

⎥
⎦ .

Prove that pi is a left eigenvector of A, that is, it satisfies piA = λipi.

2.16 Prove that all eigenvalues of an Hermitian matrix A ∈ F
n×n are real numbers, and then

prove that all eigenvalues of a positive semidefinite matrix are nonnegative.

2.17 Prove, based on Theorem 2.7, that when a subspace S (except the zero vector) is an
invariant subspace of A, there must be a nonzero vector x ∈ S and a scalar λ satisfying
Ax = λx. (This means that the subspace S must contain some eigenvectors of A.)

2.18 Check whether the symmetric matrix

A1 =
[
2 1
1 1

]

, A2 =

⎡

⎣
2 1 1
1 1 1
1 1 2

⎤

⎦

is positive definite using Schur’s lemma.

2.19 Find the singular values and singular vectors of the matrices in Exercise 2.12.

2.20 When matrix A is an Hermitian matrix, discuss the relationship between its eigenvalues
and singular values.

2.21 Calculate the 1-norm, 2-norm, and infinity-norm of the matrices in Exercise 2.12.

2.22 Mimicking Example 2.16 to prove that the induced norms defined by ‖A‖p =
sup ‖Au‖p

‖u‖p
(p = 2, ∞) are equal to

‖A‖2 =
√

λmax(A∗A), ‖A‖∞ = max
1≤i≤m

n∑

j=1

|aij |.

2.23 For the matrix

A =
[
1 + sin2θ sin θ cos θ
sin θ cos θ 1 + cos2θ

]

,

calculate the mapping in Example 2.17 and verify it by drawing a figure.

2.24 For matrix A(t) ∈ R
n×n, prove the following equation using A−1A = I

dA−1

dt
= −A−1 dA

dt
A−1.
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2.25 Prove the differentiation equation (2.100) about matrix.

2.26 Among the following functions, which can be used as a norm?
(a) sup

t
|u̇(t)|

(b) |u(0)| + sup
t

|u̇(t)|

(c) lim
T→∞

√
1
T

∫ T

−T u2(t)dt

2.27 Calculate the H2 norm and H∞ norm of stable transfer function

G(s) =
s + 1

(s + 2)(s + 5)
.

2.28 Calculate the H2 norm of the following stable transfer function by using, respectively,
the residue and impulse response methods

G(s) =
s + 5

(s + 1)(s + 10)
.

2.29 Prove the following equations. If necessary, it may be assumed that the H2 norm or H∞
norm of transfer function G(s) exists.
(a) ‖DG‖2 = ‖G‖2, ‖DG‖∞ = ‖G‖∞ for the time delay D(s) = e−sT .
(b) ‖AG‖2 = ‖G‖2, ‖AG‖∞ = ‖G‖∞ for the all-pass filter A(s) = s−a

s+a (a > 0).

(These properties indicate that the H2 and H∞ norms of transfer function are invariant
to time delay and all-pass filter.)

2.30 Prove that the function defined in (2.118) is an inner product.

2.31 Prove Lemma 2.5.

2.32 Prove Lemma 2.7.

Notes and References

The fundamentals of complex analysis can be found in Ref. [1]. Bellman [7] and Kodama and
Suda [49] are classical references for linear algebra. Boullion and Odell [8] provides a quite
complete summary on the generalized inverse matrices. For more details about the norms and
inner products of signals and systems, refer to Refs [9], [10] and [100]. Liu et al. [62] inves-
tigated the engineering implication of system norms and revealed the essence of weighting
function.

Due to the page limitation, some proofs are omitted. They are provided on the supplementary
web site of this book.co
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Basics of Convex Analysis and
LMI

In the analysis and design of robust control systems, linear matrix inequality (LMI) method
plays a vital role. Meanwhile, convex analysis is an essential knowledge for the understanding
of LMI approach and other associated optimization methods. So, this chapter introduces both
of them briefly.

3.1 Convex Set and Convex Function

3.1.1 Affine Set, Convex Set, and Cone

3.1.1.1 Affine Set

Given two points (vectors) x1, x2 pointing to different directions in R
n space, a new point

y = θx1 + (1 − θ)x2 = x2 + θ(x1 − x2) (3.1)

may be created using an arbitrary real number θ. The set of all these points forms a straight line
passing through x1, x2 (imagine the two-dimensional case and refer to Figure 3.11). As long as
x1, x2 are not zero vectors and the angle between them is neither 0 [rad] nor π [rad], this line
does not pass through the origin. y = x2 when θ = 0, and y = x1 when θ = 1. In particular,
when θ takes value in the interval [0, 1], this set becomes the line segment between x1 and
x2. The feature of Eq. (3.1) is that coefficients of the linear combination of vectors x1, x2 sum
to 1. This is a special case of linear combination, called affine combination.

For any two points x1, x2 in the set C ⊂ R
n, if their affine combination still belongs to C,

then C is called an affine set. That is, θx1 + (1 − θ)x2 ∈ C holds for any θ ∈ R. It is worth

1 Originally both x1 and x2 are vectors, so they should be drawn as vectors connecting the origin and end point x1, x2.
However, the sets to be studied later do not necessarily contain the origin. It is rather cumbersome to draw the vector
from the origin every time. For this reason, we usually omit the origin and only use the vertex of a vector to represent
it. One more benefit of this convention is that it is very easy to describe a set in multidimensional spaces.

Robust Control: Theory and Applications, First Edition. Kang-Zhi Liu and Yu Yao.
© 2016 John Wiley & Sons Singapore Pte. Ltd. Published 2016 by John Wiley & Sons, Singapore Pte. Ltd.
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x1

x2

θ = 0.5

θ = 1

θ = 0
θ = −0.3

θ = 1.3

Figure 3.1 Affine set

noting that an affine set can be extended to the infinity along certain direction, so it is not
bounded (refer to Figure 3.1).

Example 3.1 The solution set of linear equation Ax = b is an affine set. This can be easily
understood as follows. Assume that x1, x2 are two arbitrary solutions. Mapping their affine
combination θx1 + (1 − θ)x2 with A, we get

A(θx1 + (1 − θ)x2) = θAx1 + (1 − θ)Ax2

= θb + (1 − θ)b

= b.

So, θx1 + (1 − θ)x2 is again a solution.

The notion of affine set can be extended to affine combinations of more than two points.
For example, using coefficients θi ∈ R satisfying θ1 + · · · + θk = 1 to do affine combination
of k points x1, . . . , xk ∈ C, we obtain a new point θ1x1 + · · · + θkxk. As long as the set C
is affine, we may use the induction method to show that this new point θ1x1 + · · · + θkxk is
also contained in the set C (Exercise 3.1).

Affine combinations of three points x1, x2, x3 pointing in different directions form a plane.
In general, affine combinations of several points form a hyperplane2. This means that an affine
set is a hyperplane. However, an affine set does not necessarily contain the origin, so it is not
necessarily a subspace. Shifting one point to the origin via translation, an affine set turns into
a subspace. Specifically, assume that the set C is affine and x0 ∈ C. Then, the set

V = C − x0 = {x − x0 | x ∈ C} (3.2)

becomes a subspace. That is, the set V is closed w.r.t the manipulation of linear combination.
To see this, let v1, v2 ∈ V and α, β be any real numbers; then x1 = v1 + x0, x2 = v2 + x0 are
also points in C. The point

αv1 + βv2 + x0 = α(x1 − x0) + β(x2 − x0) + x0 = αx1 + βx2 + (1 − α − β)x0

is an affine combination of point x0, x1, x2, so it belongs to C. Therefore, (αx1 + βx2 + x0) −
x0 = αv1 + βv2 ∈ V holds. This shows that V is indeed a subspace.

2 For details on the hyperplane, refer to Subsection 3.1.2.
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From (3.2) we see that the affine set C in turn can be expressed by a subspace V and a point
x0 ∈ C as

C = V + x0 = {x = v + x0 | v ∈ V }. (3.3)

3.1.1.2 Convex Set

Further, restricting the combination coefficients to nonnegative real numbers in the affine com-
bination, that is, θi ≥ 0 and θ1 + · · ·+ θk = 1. If any point obtained from the combination of
xi ∈ C still belongs to C, that is

θ1x1 + · · ·+ θkxk ∈ C, (3.4)

then the set C is called a convex set. Such combination is called convex combination. The
convex combination of two points x1, x2 is a line segment, and the convex combination of
three points x1, x2, x3 is a triangle. In general, a convex set is not necessarily a compact set.
For example, any quadrant of the two-dimensional space is a convex set, but unbounded. In
addition, it should be remembered that the combination coefficients of a convex combination
are all nonnegative, and their sum is 1. Due to these constraints, the coefficient θi is limited in
the interval [0, 1].

The characteristic of convex set is that all points in the segment between two points of the
set are again in the convex set (see (a) of Figure 3.2). Why? This is because for any θ ∈ [0, 1],
θx1 + (1 − θ)x2 ∈ C as long as x1, x2 ∈ C. Since an affine set contains all points of the line
connecting any two points of the set, it naturally contains the segment between these two
points. Therefore, an affine set automatically becomes a convex set.

Moreover,

conv C = {θ1x1 + · · ·+ θkxk | xi ∈ C, θi ≥ 0, θ1 + · · ·+ θk = 1}, (3.5)

a set formed by all convex combinations of finite points xi (i = 1, . . . , k) in a set C that is
not necessarily convex is called a convex hull of the set C. Here, k, the number of combined
points is arbitrary. This set is a closed convex set, and it is also the minimum set that contains
the set C. For example, the convex hull of the nonconvex set in (b) of Figure 3.2 is equal to
the set shown in Figure 3.3.

(a) (b)

Figure 3.2 Convex set (a) and nonconvex set (b)
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Figure 3.3 Convex hull of nonconvex set

x

θx

0

Figure 3.4 Cone

3.1.1.3 Cone

Next, we consider cones. A set C is called a cone if θx ∈ C for any vector x ∈ C and coef-
ficient θ ≥ 0. Because the coefficient θ is limited to nonnegative real number, θx can stretch
arbitrarily in the x direction, but not along the −x direction (refer to Figure 3.4). Obviously,
a cone is not bounded. In particular, a cone with convexity is called a convex cone. For a con-
vex cone C, due to its convexity, a point formed by a convex combination of any two points
x1, x2 ∈ C belongs to C; further, multiplication of this point by a positive constant still belongs
to C. Therefore, for any θ1, θ2 ≥ 0 there holds

θx1 + θ2x2 ∈ C. (3.6)

The shape of a two-dimensional cone looks like a cut of pie (Figure 3.4). Moreover, the point
θx1 + · · ·+ θkxk formed by linear combination with coefficients θ1, . . . , θk ≥ 0 is called a
conic combination.

The so-called conic hull of a set C is the set of all conic combinations of points in C,
that is,

{θ1x1 + · · ·+ θkxk | xi ∈ C, θi > 0, i = 1, . . . , k} (3.7)

in which k is an arbitrary natural number. It is the smallest one in all convex cones that contain
the set C.

3.1.2 Hyperplane, Half-Space, Ellipsoid, and Polytope

3.1.2.1 Hyperplane

The so-called hyperplane refers to a set that includes all points x ∈ R
n satisfying the equation

aT x = b w.r.t. vector a ∈ R
n and scalar b ∈ R. In other words, a hyperplane is the set

{x ∈ R
n | aT x = b}. (3.8)
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a

x0

x a
T x = b

(a)

0

a

x1

x2

x3

(b)

Figure 3.5 Hyperplanes (a) One-dimensional case (b) Two-dimensional case

In the two-dimensional space, this set is a straight line with a normal vector a (Figure 3.5(a));
the set becomes a plane with a normal vector a in the three-dimensional space (Figure 3.5(b)).
This statement may be understood as follows. If x0 is a point on the hyperplane, all points on
the hyperplane satisfy

aT (x − x0) = b − b = 0.

This shows that the vector a is orthogonal to the vector x − x0 connecting two points on the
hyperplane. Therefore, a is a normal vector of the hyperplane.

Example 3.2 A hyperplane about vector a and scalar b below

a = [1 1 1]T , b = 1

is given by
x1 + x2 + x3 = 1 ⇒ x3 = 1 − (x1 + x2).

There are two free variables (x1, x2) here. So, it is a plane and shown in Figure 3.5(b). It is
seen from this figure that a is indeed the normal vector of the hyperplane.

Later on, we will need to find the intersection point of the normal and hyperplane. So its
calculation method is described here. If we extend the normal vector a by multiplying it with a
constant β, it will eventually intersect the hyperplane. Let the point of intersection be x0 = βa.
Then, we have

b = aT (βa) = β‖a‖2 ⇒ β =
b

‖a‖2 .

So, the point of intersection is x0 = b
‖a‖2 a.

3.1.2.2 Half-Space

A hyperplane separates a space into two half-spaces. These (closed) half-space are the set
{x|aT x ≤ b} and the set {x|aT x ≥ b} (refer to Figure 3.6). They are the solution sets of lin-
ear inequalities. Although a half-space is a convex set (think why), it is however not affine.
Figure 3.6 shows that it cannot be extended to the opposite side of the hyperplane aT x = b.
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a

x 0
aT x ≥ b

a
T x ≤ b

x0

Figure 3.6 Half-space

a

x 0

x2

x1

x0

Figure 3.7 Vector x1 − x0 in the upper half-space aT (x − x0) ≥ 0 has an acute angle with a, vector
x2 − x0 in the lower half-space aT (x − x0) ≤ 0 has an obtuse angle with a

In addition, when a point x0 satisfies aT x0 = b, that is, it is a point on the hyperplane
{x | aT x = b}, the half-space {x|aT x ≤ b} can be expressed as follows:

{x|aT (x − x0) ≤ 0}. (3.9)

Geometrically, this means that the vector from a point x0 on the hyperplane to any point x
in the half-space {x|aT x ≤ b} always form an obtuse angle with the normal vector a of the
hyperplane (Figure 3.7). Therefore, the half-space {x ∈ R

n | aT x ≤ b} is on the side opposite
to a while the half-space {x ∈ R

n | aT x ≥ b} is on the same side of a. Clearly, the boundary
of these two half-spaces is the hyperplane {x | aT x = b}. It is worth noting that a half-space
is not closed w.r.t the operation of linear combination, so it is not a subspace.

3.1.2.3 Ellipsoid

The so-called ellipsoid is a set of vectors (see Figure 3.8):

E = {x | (x − xc)
T P−1(x − xc) ≤ 1} (3.10)
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x1

x2

y1y2

xc

Figure 3.8 Ellipsoid in the two-dimensional space: it becomes symmetric in the y coordinate after
translation and rotation

in which xc is the center of ellipsoid and matrix P = PT is positive definite. Let λi be an
eigenvalue of P ; then

√
λi is the length of a semiaxis of the ellipsoid. For example, in the case

of three-dimensional space, P can be diagonalized as

UPUT =

⎡

⎣
λ1

λ2
λ3

⎤

⎦

by using a unitary matrix U . Therefore, after a translation x̂ = x − xc and a rotation y = Ux̂,
this set satisfies

(Ux̂)T

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
λ1

1
λ2

1
λ3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(Ux̂) = yT

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
λ1

1
λ2

1
λ3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

y

=
y2

1

λ1
+

y2
2

λ2
+

y2
3

λ3

≤ 1

in the y coordinate. This confirms that
√

λ1,
√

λ2,
√

λ3 are indeed the lengths of semiaxes.
Further, the volume of a three-dimensional ellipsoid is proportional to

λ1λ2λ3 = det(P )

(Exercise 3.3). In general, the volume vol(E) of an n-dimensional ellipsoid is equal to

vol(E) = det(P ). (3.11)

Here, we have omitted the factor which depends on the dimension of ellipsoid.
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a1
a2

a3

a4

a5

P

Figure 3.9 Polyhedron P formed by the intersections of half-spaces with normal ai

3.1.2.4 Polyhedron

A polyhedron is the following set of vectors:

P = {x|aT
i x ≤ bi, i = 1, . . . ,m; cT

j x = dj , j = 1, . . . , p}. (3.12)

By definition, a polyhedron is the intersection of several half-spaces and hyperplanes
(Figure 3.9). Affine sets, segments, and half-space are all polyhedra. It is easy to know that a
polyhedron is convex (Exercise 3.4).

For example, the first quadrant

{x ∈ R
3 | xi ≥ 0, i = 1, 2, 3}

of the three-dimensional space is a polyhedron. It is the intersection of three half-spaces x1 ≥
0, x2 ≥ 0, and x3 ≥ 0. Incidentally, this set is also a cone.

Next, a bounded polyhedron is called a polytope. For example, the cube

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1

in the three-dimensional space is the intersection of six half-spaces, which is obviously
bounded.

3.1.3 Separating Hyperplane and Dual Problem

3.1.3.1 Separating Hyperplane

The two-dimensional plane shown in Figure 3.10 has two convex sets C,D. Consider the case
when they are disjoint. Intuitively, there should be a straight line passing through the area
between these two convex sets. That is, we can use a straight line to separate the convex sets
C,D. This is proved in the sequel.

First, we assume that the convex sets C and D are compact sets (i.e., closed and bounded)
for simplicity. Since they are disjoint, C ∩ D = ∅ holds. The distance between points u ∈ C
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C

D

c

d

x0

a

Figure 3.10 Separating hyperplane

and v ∈ D is ‖u − v‖2. Meanwhile, the distance between two sets is defined as the infimum
of point-wise distance, denoted by

dist(C,D) := inf{‖u − v‖2 | u ∈ C, v ∈ D}. (3.13)

It is the shortest distance between any two points in these two sets. Due to C ∩ D = ∅ and
their compactness, this distance is not zero. In addition, owing to the compactness of C,D,
there must be points c ∈ C, d ∈ D satisfying

‖c − d‖2 = dist(C,D) > 0.

Figure 3.10 shows that a line, which passes through the midpoint of the segment connecting
the points c, d and is perpendicular to the vector d − c, can separate these two sets. The normal
vector of this line {x | aT x = b} is a = d − c. Lastly we need only to calculate the offset b.
To this end, we note that the midpoint of the segment connecting c and d is x0 = (c + d)/23;
as a result, we have

b = aT x0 =
1
2
(d − c)T (c + d) =

‖d‖2
2 − ‖c‖2

2

2
.

Now, we prove that this line separates these two sets. Note that the feature of the open
half-plane on the a side is aT x > b, while the open half-plane on the opposite side satisfies
aT x < b. We prove that D is contained in the open half-plane aT x > b by contradiction.
Namely, we suppose that there is a point u ∈ D satisfying aT u ≤ b and then deduce a
contradiction. By assumption, we have

0 ≥ aT u − b = (d − c)T u − (d − c)T (d + c)
2

= (d − c)T

(

u − 1
2
(d + c)

)

= (d − c)T

(

u − d +
1
2
(d − c)

)

= (d − c)T (u − d) +
1
2
‖d − c‖2

2.

3 This can be understood easily by setting the origin and drawing the vector sum c + d in Figure 3.10
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It means that (d − c)T (u − d) < 0 since ‖d − c‖2 > 0. Further, the derivative of the distance
function4 ‖d + t(u − d) − c‖2

2 about variable t ∈ [0, 1] satisfies

d

dt
‖d + t(u − d) − c‖2

2

∣
∣
∣
t=0

= 2(u − d)T (d + t(u − d) − c)
∣
∣
∣
t=0

= 2(d − c)T (u − d) < 0.

Therefore, for sufficiently small t, there holds

‖d + t(u − d) − c‖2 < ‖d − c‖2.

However, from u, d ∈ D and the convexity of D, we have d + t(u − d) = tu + (1 − t)d ∈ D.
This inequality implies that the distance between this point and c is even shorter than the
shortest distance, which is obviously contradictory. By a similar argument, C belongs to the
open half-plane aT x < 0.

As such, we have proved that the line aT x = b separates the convex sets C,D. That is,

C ⊂ {x | aT x < b}, D ⊂ {x | aT x > b}. (3.14)

When the convex sets C,D are compact, it is clear that these two sets are disjoint with the
separating line aT x = b in between.

In a space with a higher dimension, the line that separates two convex sets turns into a
hyperplane and is called a separating hyperplane. The preceding proof is independent of the
space dimension, so it applies to any space.

However, when one of C and D is open or unbounded, it may approach arbitrarily close to
the separating hyperplane aT x = b. Therefore, in this case, we can only conclude that

C ⊂ {x | aT x ≤ b}, D ⊂ {x | aT x ≥ b}. (3.15)

A major application of separating hyperplane is that if a problem can be transformed into a
problem that two sets are disjoint, then it can further be converted equivalently to the existence
of a separating hyperplane. In this way, it is possible to transform a problem which is difficult
to solve directly into an easier one. This new problem is known as the dual problem.

The duality result to be shown in Example 3.3 is very effective in testing the feasibility of
LMI which will be described in the next section.

Example 3.3 Prove that the following statements are equivalent:

1. There is no x ∈ R
m satisfying LMI

F (x) = F0 + x1F1 + · · ·+ xmFm < 0, Fi = FT
i , i = 0, 1, . . . ,m. (3.16)

(The LMI F (x) < 0 is said to be infeasible.)
2. There is a nonzero matrix W = WT ≥ 0 satisfying

Tr(F0W ) ≥ 0, Tr(FiW ) = 0, i = 0, 1, . . . ,m. (3.17)

4 This function is the distance from a point on the segment between two points u, d in the set D to a point c in the
set C.
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Proof. (2)⇒(1): As long as the statement (2) is true,

Tr(W 1/2F (x)W 1/2) = Tr(F (x)W ) = Tr(F0W ) ≥ 0

holds for any x ∈ R
m. Owing to W 
= 0 and W ≥ 0, if F (x) < 0, then Tr(W 1/2F (x)W 1/2)

< 0. However, it is contradictory to the statement (2). This shows that F (x) < 0 has no solu-
tion.

(1)⇒(2): In this case, the set F (Rm) = {F (x) | x ∈ R
m} and the set S− of negative def-

inite Hermitians are disjoint. As these two sets are both convex, there must be a separating
hyperplane. Further, since both F (Rm) and S− are sets of Hermitians, the space under consid-
eration is that of Hermitians. So, the normal W of the separating hyperplane also becomes an
Hermitian. The inner product of matrix A,B is Tr(AT B); thus there exist a matrix W = WT

and a ∈ R satisfying

Tr(F (x)W ) ≥ a ∀x ∈ R
m; Tr(HW ) ≤ a ∀H < 0.

The first inequality can be expanded into

Tr(F0W ) − a ≥ −x1Tr(F1W ) − · · · − xmTr(FmW )

= −[x1 · · · xm]

⎡

⎢
⎣

Tr(F1W )
...

Tr(FmW )

⎤

⎥
⎦ .

To ensure that the right-hand side is bounded for any x ∈ R
m, there must be Tr(FiW ) =

0 (i = 1, . . . ,m). So Tr(F0W ) ≥ a. Moreover, to ensure that the left-hand side of the sec-
ond inequality Tr(HW ) ≤ a is bounded from above, there should be W ≥ 0 and a ≥ 0. This
completes the proof. •

3.1.3.2 Converse Separating Hyperplane Theorem

In general, the existence of a separating hyperplane may not be able to guarantee that the two
separated sets are disjoint. For example, although x = {0} separates two sets, C = D = {0},
but both are the same. However, if two sets C,D are both convex and at least one of them is
open, then the existence of a separating hyperplane guarantees that they are disjoint. This is
one of the so-called converse separating hyperplane theorems.

This converse separating hyperplane theorem can be explained as follows. Here, assume that
the separating hyperplane is {x | aT x = b} and the set C is open and located in the half-space
aT x ≤ b. If C intersects the separating hyperplane aT x = b at point x0, then since C is open,
there must be a x ∈ C satisfying aT x > b in the neighborhood of x0. This contradicts the
assumption that C is located in the half-space aT x ≤ b. Therefore, C must be located in the
half-space aT x < b. On the other hand, the set D is located in the half-space aT x ≥ b. So
these two sets are disjoint.

3.1.4 Affine Function

For a scalar variable x ∈ R, a map in the form of

f(x) = ax + b
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is called an affine function, in which a, b ∈ R are scalar constants. From the viewpoint of set,
it presents a line on the plane (x, f(x)) with an offset b. This line passes through the origin
when b = 0 and becomes a linear function. An affine function about vector variable x ∈ R

n

is the map
f(x) = Ax + b, A ∈ R

m×n, b ∈ R
m. (3.18)

It represents a hyperplane in the augmented space R
m × R

n (the direct sum space).
The translation

S + a = {x + a | x ∈ S}, S ⊂ R
n

is the simplest example of affine functions.
One of the important properties of affine function is that it maps a convex set into another

convex set. The image of convex set S about affine mapping f(x) = Ax + b is denoted by

f(S) = {f(x) | x ∈ S}.

θx + (1 − θ)y ∈ S holds for any θ ∈ [0, 1] as long as x, y ∈ S. Further, the convex combina-
tion of their images f(x), f(y) ∈ f(S) satisfies

θf(x) + (1 − θ)f(y) = θ(Ax + b) + (1 − θ)(Ay + b) = A[θx + (1 − θ)y] + b ∈ f(S).

So, f(S) is also convex. Similarly, if S is a convex set and f is an affine function, then the
inverse map of f

f−1(S) = {x | f(x) = Ax + b ∈ f(S)}

is also a convex set (prove it).

Example 3.4 Mapping a ball {u | ‖u‖2 ≤ 1} using the affine map

f(u) = P 1/2u + xc

about positive definite matrix P and vector xc, the image becomes an ellipsoid as shown here.
Assume that the image is x = f(u); then u = P−1/2(x − xc) and

1 ≥ uT u = [P−1/2(x − xc)]
T [P−1/2(x − xc)] = (x − xc)

T P−1(x − xc)

holds. It represents an ellipsoid centered at xc.

3.1.5 Convex Function

Consider a function f : R
n �→ R defined in a convex set domf . For any x, y ∈ domf and

θ ∈ [0, 1], if f has the property

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y), (3.19)

then f is called a convex function. Geometrically, this implies that the line segment (chord)
between (x, f(x)) and (y, f(y)) is above the graph of f (Figure 3.11). When the inequality
is strict except the two ends of the line segment as shown in Figure 3.11, f is called a strictly
convex function.
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(x, f (x))

(y, f (y))

Figure 3.11 Geometric implication of convex function

On the other hand, when −f is a convex function, f is called a concave function. That is,
a concave function f satisfies the following inequality for any x, y ∈ domf and θ ∈ [0, 1]
(consider its geometric interpretation):

f(θx + (1 − θ)y) ≥ θf(x) + (1 − θ)f(y). (3.20)

3.1.5.1 First-Order Condition for Convex Function

When f(x) is differentiable, the necessary and sufficient condition for f(x) to be a convex
function is that

f(y) ≥ f(x) + ∇f(x)T (y − x) (3.21)

holds for any x, y ∈ domf (its geometric implication is shown in Figure 3.12.) Obviously, the
right-hand side is the first-order approximation of Taylor expansion of f in the neighborhood
of x. This means that the convexity of f is equivalent to that the first-order approximation of
Taylor expansion of f is below f .

Now, we prove (3.21). We start from the scalar case. By the convexity of f ,

f(ty + (1 − t)x) ≤ tf (y) + (1 − t)f(x)

holds for 0 < t < 1. Dividing both sides by t, we get

f(y) ≥ f(x + t(y − x)) − (1 − t)f(x)
t

= f(x) +
f(x + t(y − x)) − f(x)

t
.

(x, f (x))

f(x) + ▿f (x)
T 

(y – x)

Figure 3.12 First-order condition for convex function
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(3.21) is obtained by taking the limit for t → 0. Conversely, when (3.21) holds, we choose
two different points (x, y), a combination coefficient θ ∈ [0, 1], and define z = θx + (1 − θ)y.
Applying (3.21) to (z, x) and (z, y), respectively, we get

f(x) ≥ f(z) + f ′(z)(x − z), f(y) ≥ f(z) + f ′(z)(y − z).

Multiplying the first inequality by θ and the second inequality by 1 − θ and then adding them
together, we get

θf(x) + (1 − θ)f(y) ≥ f(z) + f ′(z)[θ(x − z) + (1 − θ)(y − z)] = f(z).

Thus, the convexity of f is proved.
Next, we prove the vector case. The proof is carried out by transforming the vector

problem into a scalar one. Assume that f : R
n �→ R. Given arbitrary vectors x, y ∈ domf ,

we set a function g(t) = f(ty + (1 − t)x) about t ∈ [0, 1]. It is easy to know that
g′(t) = ∇f(ty + (1 − t)x)T (y − x). The key of proof is to use the equivalence between the
convexity of f and that of g5. Consequently, we only need to prove the equivalence between
the convexity of g and (3.21).

When g(t) is a convex function, from the convexity condition of scalar func-
tion, we know that g(1) ≥ g(0) + g′(0)(1 − 0) holds. This inequality is (3.21)
itself. On the contrary, according to the convexity of domf , if x, y ∈ domf , then
t1y + (1 − t1)x, t2y + (1 − t2)x ∈ domf holds for t1, t2 ∈ [0, 1]. Therefore, when (3.21)
holds, we have

f(t2y + (1 − t2)x) ≥ f(t1y + (1 − t1)x) + ∇f(t1y + (1 − t1)x)T

× [(t2y + (1 − t2)x) − (t1y + (1 − t1)x)]

= f(t1y + (1 − t1)x) + ∇f(t1y + (1 − t1)x)T (y − x)(t2 − t1)

⇒ g(t2) ≥ g(t1) + g′(t1)(t2 − t1).

Hence, g is a convex function.
Strictly convex condition can also be derived by the same argument. That is, when x, y ∈

domf and x 
= y, there holds the following inequality:

f(y) > f(x) + ∇f(x)T (y − x). (3.22)

3.1.5.2 Second-Order Condition for Convex Function

Second-order condition guaranteeing the convexity of a function is also known. Assume that
the domain of f is a convex set and f has second-order derivative in its domain. Further,
denote its second-order derivative (Hessian) by ∇2f . Then, the function f is convex iff, for all
x ∈ domf , the Hessian satisfies the inequality

∇2f(x) ≥ 0. (3.23)

5 This relationship is as shown in Figure 3.13. g(t) ≤ tg(1) + (1 − t)g(0) and f(ty + (1 − t)x) ≤ tf (y) +
(1 − t)f(x) are the same inequality, so they certainly are equivalent. Further, this equivalence is true for any x 
= y.
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(y,  f (y))

(x, f (x))

t

g(t)

0 1

Figure 3.13 Reducing vector problem to scalar problem

Its proof is left to the readers (Exercise 3.11).

Example 3.5 Consider a quadratic function

V (x) = xT Px + qT x + r

defined in R
n. Since ∇2V (x) = 2P , we know that the condition of convexity is P ≥ 0, the

semipositive definiteness of the matrix P . In fact, when P > 0, all points x satisfying V (x) ≤ c
form an ellipsoid.

Example 3.6 Any norm is a convex function. This is because the following inequality

‖ty + (1 − t)x‖ ≤ ‖ty‖ + ‖(1 − t)x‖ = t‖y‖ + (1 − t)‖x‖

holds for any t ∈ [0, 1]. Moreover, for the logarithmic function f(x) = log x(x > 0), we have

f ′(x) =
1
x

, f ′′(x) = − 1
x2 < 0.

Therefore, it is a strictly concave function.

Example 3.7 The following special function, called barrier function, plays a vital role in
solving the optimization problem with constraints:

f(X) = log det(X), X > 0. (3.24)

Although this function is a concave function, it is however very difficult to prove directly. For
this reason, we prove it by converting it into a scalar problem. Here, set a scalar function
g(t) = f(Z + tV ) about t in which the matrices Z > 0, V ≥ 0 are arbitrary and t is limited
to t ≥ 0. Further, when the eigenvalues of symmetric matrix Z−1/2V Z−1/2 are λ1, . . . , λn,
the eigenvalues of I + tZ−1/2V Z−1/2 will be 1 + tλ1, . . . , 1 + tλn. Noting that Z + tV =
Z1/2(I + tZ−1/2V Z−1/2)Z1/2, we obtain

g(t) = log det(Z + tV )

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

72 Robust Control

= log det(Z1/2) det(I + tZ−1/2V Z−1/2) det(Z1/2)

= log
n∏

i=1

(1 + tλi) + log det(Z)

=
n∑

i=1

log (1 + tλi) + log det(Z).

Therefore, its derivatives are

g′(t) =
n∑

i=1

λi

1 + tλi

, g′′(t) = −
n∑

i=1

λ2
i

(1 + tλi)2 .

Since g′′(t) ≤ 0 for all t, g(t) is a concave function. Therefore, f(X) is a concave function too.

3.2 Introduction to LMI

Matrix inequality in the form of

F (x) = F0 +
m∑

i=1

xiFi > 0 (3.25)

is called a linear matrix inequality, or LMI for short. Here, x ∈ R
m is an unknown vector, and

Fi = FT
i ∈ R

n×n (i = 1, . . . ,m) is a constant matrix. F (x) is an affine function of variable x.
The inequality means that F (x) is positive definite, that is, uT F (x)u > 0 for all nonzero vector
u. LMI can be solved numerically by methods such as the interior point method introduced
later. MATLAB has an LMI toolbox tailored for solving control problems.

3.2.1 Control Problem and LMI

In control problems, it is often the case that the variables are matrices. This is different from
the LMI of (3.25) in form. However, it can always be converted to (3.25) equivalently via the
introduction of matrix basis.

Example 3.8 According to the Lyapunov stability theory in Chapter 13, the necessary and
sufficient condition for the stability of a two-dimensional linear system

ẋ(t) = Ax (t), x(0) 
= 0

is that there exists a positive definite matrix P = PT ∈ R
2×2 satisfying

AP + PAT < 0.

This 2 × 2 symmetric matrix P has the following symmetric basis:6

P1 =
[
1 0
0 0

]

, P2 =
[
0 1
1 0

]

, P3 =
[
0 0
0 1

]

.

6 A matrix basis is a set composed of all linearly independent matrices with the same dimension. The linear combi-
nation of its elements can describe any matrix with the same dimension.
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By using this symmetric basis, P can be expressed as

P =
[
x1 x2
x2 x3

]

= x1P1 + x2P2 + x3P3.

Substituting this equation into the inequality about P , we get an inequality about the vector
x = [x1 x2 x3]

T in the form of (3.25). Specifically, the result obtained is

x1(AP1 + P1A
T ) + x2(AP2 + P2A

T ) + x3(AP3 + P3A
T ) < 0.

In addition, when the dimension of symmetric matrix P is n, the number of its base matrices
is n(n + 1)/2.

Therefore, linear inequality with matrix variables is also called LMI hereafter.

3.2.2 Typical LMI Problems

Now, we introduce several types of LMI problems (LMIP) which will be frequently encoun-
tered later.

3.2.2.1 Feasibility Problem: LMIP

Given an LMIP, F (x) < 0. The so-called feasibility problem is to seek a vector x∗ satisfying
F (x∗) < 0, or make the judgment that the LMI has no solution. In judging whether F (x) < 0
has a solution, we may solve the dual problem (3.17) shown in Example 3.3. That is, F (x) < 0
has no solution iff there is a nonzero matrix W = WT ≥ 0 satisfying

Tr(F0W ) ≥ 0, Tr(FiW ) = 0, i = 0, 1, . . . ,m. (3.26)

Example 3.9 In the stability problem for the two-dimensional system of Example 3.8, F (x) =
diag(AP + PAT ,−P ). Since F0 = 0, Fi = diag(APi + PiA

T ,−Pi) (i = 1, 2, 3), the
system is unstable iff there exists a nonzero matrix W = WT = diag(W1,W2) ≥ 0 satisfying

0 = Tr(FiW )

= Tr(APiW1) + Tr(PiA
T W1) + Tr(−PiW2)

= Tr(PiW1A) + Tr(PiA
T W1) + Tr(−PiW2)

= Tr(Pi(W1A + AT W1 − W2)).

Due to the special structure of symmetric basis Pi, when i = 1, 3, the previous equation implies
that the diagonal elements of W1A + AT W1 − W2 are zeros; when i = 2, the nondiagonal
elements of W1A + AT W1 − W2 are zeros. Eventually, the instability condition reduces to
the existence of nonzero matrices W1,W2 ≥ 0 satisfying the linear matrix equation

W1A + AT W1 − W2 = 0

which can be solved easily.
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3.2.2.2 Eigenvalue Problem: EVP

The following optimization problem with constraints is called an eigenvalue problem (EVP):

minimize λ

subject to λI − A(x) > 0, B(x) > 0.
(3.27)

Here, A(x) and B(x) are symmetric and affine matrix functions of vector x. Minimizing λ
subject to λI − A(x) > 0 can be interpreted as minimizing the largest eigenvalue of matrix
A(x). This is because the largest λ that does not meet λI − A(x) > 0 is the maximal λ satis-
fying det(λI − A(x)) = 0.

We may also regard λ as a variable and augment the vector x accordingly. Then, λ can be
expressed as cT x, and the two inequalities can be merged into one. Thus, we arrive at the
following equivalent EVP (Exercise 3.13):

minimize cT x

subject to F (x) > 0.
(3.28)

3.2.2.3 Generalized Eigenvalue Problem: GEVP

When λI in the EVP is generalized to λB(x), this problem becomes a generalized eigenvalue
problem (GEVP). The detail is as follows:

minimize λ

subject to λB(x) − A(x) > 0, B(x) > 0, C(x) > 0
(3.29)

in which A(x), B(x), and C(x) are symmetric and affine matrix functions of vector x. This
is equivalent to the problem of minimizing the largest generalized eigenvalue satisfying
det(λB(x) − A(x)) = 0. So it is called a generalized EVP.

This problem can also be described equivalently as

minimize λmax(A(x), B(x))

subject to B(x) > 0, C(x) > 0
(3.30)

in which λmax(A(x), B(x)) denotes the largest generalized eigenvalue of matrices
(A(x), B(x)).

3.2.3 From BMI to LMI: Variable Elimination

Let us look at the following stabilization problem.

Example 3.10 Consider the problem of stabilizing linear system

ẋ = Ax + Bu

via state feedback u = Fx . The closed-loop system is given by

ẋ = (A + BF )x.
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Therefore, the stability condition is that there exist matrices P > 0 and F satisfying

(A + BF )P + P (A + BF )T < 0.

In this inequality, a product of unknown matrices F, P appears. This kind of matrix inequality
is called a bilinear matrix inequality7, or BMI for short. BMI problem is nonconvex and very
difficult to solve numerically. From the viewpoint of system control, whether a system can be
stabilized depends on the controllability of (A,B), not the control gain F . In other words,
there must be a stabilization condition independent of F . In order to obtain this condition, we
need to apply the following theorem.

Theorem 3.1 Given real matrices E,F,G with G being symmetric. There is a matrix X
satisfying the inequality

ET XF + FT XT E + G < 0 (3.31)

iff the following two inequalities hold simultaneously:

ET
⊥GE⊥ < 0, FT

⊥ GF⊥ < 0. (3.32)

Proof. Set E⊥ = [P0, P1], F⊥ = [P0, P2] in which P0 is the largest common part of
E⊥ and F⊥. Then, [P0, P1, P2] has full column rank. So there is a matrix Q such that
T = [P0, P1, P2, Q] is nonsingular. Thus, there hold

ET = [0, 0, E1, E2], FT = [0, F1, 0, F2].

Moreover, both [E1, E2] and [F1, F2] have full column rank. Now, when
[
ET

1

ET
2

]

X[F1 F2] =

[
X11 X12

X21 X22

]

is known, X may be calculated from Xij as follows:

X =

[
ET

1

ET
2

]† [
X11 X12

X21 X22

]

[F1 F2]
†.

Therefore, we need only consider the existence of Xij . Partition TT GT according to the
decomposition of T as

TT GT =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

G11 G12 G13 G14

GT
12 G22 G23 G24

GT
13 GT

23 G33 G34

GT
14 GT

24 GT
34 G44

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3.33)

7 The so-called bilinearity means that if one variable is fixed, the function becomes a linear function of another variable.
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Multiplying (3.31) with TT and T from left and right, respectively, we get an equivalent
inequality:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

G11 G12 G13 G14

GT
12 G22 G23 + XT

11 G24 + XT
21

GT
13 GT

23 + X11 G33 G34 + X12

GT
14 GT

24 + X21 GT
34 + XT

12 G44 + X22 + XT
22

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=

⎡

⎣
S11 S12

ST
12 S22

⎤

⎦ < 0. (3.34)

According to Schur’s lemma, (3.34) is equivalent to

S11 < 0 (3.35)

G44 + X22 + XT
22 − ST

12S
−1
11 S12 < 0. (3.36)

But whenever X11, X12, X21 are given, there always exists a matrix X22 satisfying (3.36).
Consequently, (3.35) becomes the equivalent condition of (3.34). Applying Schur’s lemma
once again to S11, we obtain the following equivalent condition of (3.35):

⎡

⎢
⎢
⎣

G11 0 0

0 G22 − GT
12G

−1
11 G12 XT

11 + HT

0 X11 + H G33 − GT
13G

−1
11 G13

⎤

⎥
⎥
⎦ < 0 (3.37)

in which H = GT
23 − GT

13G
−1
11 G12. Obviously, to guarantee (3.37), there must be

G11 < 0, G22 − GT
12G

−1
11 G12 < 0, G33 − GT

13G
−1
11 G13 < 0. (3.38)

Conversely, when the preceding inequalities hold, it yields (3.37) by taking X11 = −H . There-
fore, (3.38) is equivalent to (3.37). That is, (3.38) is the solvability condition for (3.31). Finally,
these inequalities can be arranged as follows via an application of Schur’s lemma:

0 >

[
G11 G12

GT
12 G22

]

= ET
⊥GE⊥, 0 >

[
G11 G13

GT
13 G33

]

= FT
⊥ GF⊥.

•

Example 3.11 Let us use the preceding theorem to derive a stabilizability condition for
Example 3.10. The stability condition can be written as

(AP + PAT ) + PFT BT + BFP < 0.

For this inequality to have a solution F ,

(BT )T
⊥(AP + PAT )(BT )⊥ < 0

must hold. This condition only depends on matrix P , so it is an LMI. Since P⊥ does not exist,
we do not need to consider the second inequality of Theorem 3.1. After obtaining P , we may
substitute it back into the first inequality. Then, the inequality becomes an LMI about F and
can be solved numerically.
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We often need to construct a new matrix satisfying certain property from two given matrices
in transforming a control problem into LMI. The required condition is given by the following
lemma.

Lemma 3.1 Given two positive definite matrices X,Y ∈ R
n×n and a positive integer r, there

is a positive definite matrix P ∈ R
(n+r)×(n+r) satisfying

P =
[
Y ∗
∗ ∗

]

, P−1 =
[
X ∗
∗ ∗

]

iff
[
X I
I Y

]

≥ 0, rank
[
X I
I Y

]

≤ n + r.

Further, when matrix F ∈ R
n×r satisfies

FFT = Y − X−1,

One of such P is given by

P =
[

Y F
FT I

]

.

Proof. Sufficiency: according to the inversion formula, when the matrix P = [ Y P12
P21 P22

] is
nonsingular, its inverse is given by

P−1 =
[
(Y − P12P

−1
22 P21)

−1 ∗
∗ ∗

]

.

Under the given conditions, a congruent transformation on the positive semidefinite matrix

[X I
I Y ] leads to a positive semidefinite matrix [X 0

0 Y −X−1], whose rank is the same and less

than n + r. Hence, rank(Y − X−1) ≤ r holds. Further, it is easy to see that there is a matrix
F ∈ R

n×r satisfying FFT = Y − X−1 via the singular value decomposition of Y − X−1.
Moreover, it can be confirmed that the (1, 1) block is equal to X by calculating the inverse of
P given in the lemma. Finally, the positive definiteness of P can be verified easily by Schur’s
lemma.

Necessity: When such a positive definite matrix P exists, we know from the inversion for-
mula that

X−1 = Y − P12P
−1
22 PT

12.

So, both Y − X−1 = P12P
−1
22 PT

12 ≥ 0 and rank(Y − X−1) = rank(P12P
−1
22 PT

12) ≤ r hold.

Applying Schur’s lemma again, we obtain the conditions on [X I
I Y ]. In other words, the condi-

tions are necessary. •

Example 3.12 Let us take the system stabilization problem as an example to illustrate the
application of variable elimination method in the output feedback control. Suppose that the
plant is
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ẋP = AxP + Bu (3.39)

y = CxP + Du (3.40)

and the dynamic output feedback controller is

ẋK = AKxK + BKy (3.41)

u = CKxK + DKy. (3.42)

Computing the state equation of the closed-loop system, we get
[
ẋP

ẋK

]

= Ac

[
xP

xK

]

, Ac =
[
A + BDKC BCK

BKC AK

]

. (3.43)

The condition for the stability of closed-loop system is that there is a matrix P satisfying
inequalities

AT
c P + PAc < 0, P > 0. (3.44)

To apply the variable elimination method, we need to collect all controller coefficient matrices
into a single matrix. To this end, we note that the Ac can be written as

Ac =
[
A 0
0 0

]

+
[
B 0
0 I

] [
DK CK

BK AK

] [
C 0
0 I

]

= A + BKC

in which

K =
[
DK CK

BK AK

]

, A =
[
A 0
0 0

]

, B =
[
B 0
0 I

]

, C =
[
C 0
0 I

]

.

Hence, the stability condition can be rewritten as

PA + A
T

P + PBKC + (PBKC)T < 0.

It is easy to verify that

C⊥ =
[
C⊥
0

]

, (B
T

P)⊥ = P
−1

[
(BT )⊥

0

]

.

By Theorem 3.1, we see that an equivalent condition of AT
c P + PAc < 0 is

(C⊥)T (PA + A
T

P)C⊥ < 0, (B
T
)T
⊥(AP

−1 + P
−1A

T
)(B

T
)⊥ < 0.

As in Lemma 3.1, we set

P =
[
Y ∗
∗ ∗

]

, P
−1 =

[
X ∗
∗ ∗

]

.

Concrete calculation with these partitions substituted shows that the equivalent condition for
AT

c P + PAc < 0 is as follows: there exist symmetric matrices X,Y meeting LMIs

(BT )T
⊥(AX + XAT )(BT )⊥ < 0 (3.45)

(C⊥)T (YA + AT Y )C⊥ < 0. (3.46)
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Finally, according to Lemma 3.1 P > 0 iff matrices X,Y satisfy
[
X I
I Y

]

≥ 0, rank
[
X I
I Y

]

≤ n + r. (3.47)

3.2.4 From BMI to LMI: Variable Change

Consider again the state feedback stabilization problem of Example 3.10. The stability con-
dition for the closed-loop system ẋ = (A + BF )x is that there are matrices P > 0 and F
satisfying

(A + BF )P + P (A + BF )T < 0.

In dealing with product terms such as FP , another effective approach is to make variable
change in addition to the variable elimination method described in the previous subsection.
That is, we treat FP as a new variable M such that the stability condition turns into

AT P + PA + BM + MT BT < 0.

Due to the positive definiteness of matrix P , once we obtain (P,M), the unique solution of F
can be calculated from F = MP−1.

In the case of output feedback, the variable change method gets much more complicated.
The detail is described here. As shown in Example 3.12, the closed-loop system subject to
output feedback is

[
ẋP

ẋK

]

= Ac

[
xP

xK

]

, Ac =
[
A + BDKC BCK

BKC AK

]

. (3.48)

Its stability condition is described by

AT
c P + PAc < 0, P > 0. (3.49)

The current question is how to transform it to an LMI problem via a suitable variable change.
Let us take a look at the structure of P at first. For this purpose, we partition it as

P =
[

Y N
NT ∗

]

, P
−1 =

[
X M

MT ∗

]

. (3.50)

Since PP
−1 = I , obviously there hold

P

[
X

MT

]

=
[
I
0

]

, P

[
I
0

]

=
[

Y
NT

]

.

This implies that P satisfies

PΠ1 = Π2, Π1 =
[

X I
MT 0

]

, Π2 =
[
I Y
0 NT

]

(3.51)

and
P
−1Π2 = Π1. (3.52)
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In other words, both P and P
−1 can be described as the quotients of triangular matrices

using four matrices (X,Y,M,N). The advantage of this description is that we can obtain an
equivalent inequality ΠT

1 AT
c PΠ1 + ΠT

1 PAcΠ1 < 0 by multiplying (3.49) with ΠT
1 and Π1

from the left and right. A detailed calculation shows that one of the terms reduces to

ΠT
1 PAcΠ1 = ΠT

2 AcΠ1

=

[
I Y

0 NT

]T [
A + BDKC BCK

BKC AK

] [
X I

MT 0

]

=

[
AX + BC A + BDC

A YA + BC

]

(3.53)

in which the new unknown matrices A, B, C, D are defined as

A = NAKMT + NBKCX + YBCKMT + Y (A + BDKC)X

B = NBK + YBDK , C = CKMT + DKCX , D = DK . (3.54)

Therefore, the stability condition turns into an LMI about A, B, C, D:
[
AX + XAT + BC + C

T BT A + BDC + A
T

AT + CT
D

T BT + A YA + AT Y + BC + CT
B

T

]

< 0.

The remaining question is whether there is a one-to-one relationship between the new
unknown matrices and the controller coefficient matrices. The answer is that this correspon-
dence is true when M,N have full row ranks. In this case, the controller coefficient matrices
are

DK = D, CK = (C − DKCX )(M †)T , BK = N †(B − YBDK) (3.55)

AK = N †(A − NBKCX − YBCKMT − Y (A + BDKC)X)(M †)T .

Note that NN † = I,MM † = I .
Finally, according to Lemma 3.1 the condition for P > 0 is

[
X I
I Y

]

≥ 0, rank
[
X I
I Y

]

≤ n + r.

If we strengthen this condition to
[
X I
I Y

]

> 0 ⇒ X − Y −1 > 0, (3.56)

then I − XY is nonsingular (Exercises 3.14). Therefore, there are nonsingular matrices M,N
satisfying

MNT = I − XY . (3.57)

This equation comes from the (1,1) block of P
−1

P = I .
The variable change method can be applied to many of the problems concerning matrix

inequality in this book.
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3.3 Interior Point Method∗

In this section, we introduce the most efficient numerical method for LMI problems at present:
the interior point method. To this end, we need to know some basic concepts such as the
analytical center and the central path.

3.3.1 Analytical Center of LMI

The concept of analytical center plays a significant role in the interior point method. The idea
is to transform the feasibility of an LMI into the minimization of a scalar barrier function.
Consider the following LMI:

F (x) = F0 +
n∑

k=1

xiFi > 0, Fi = FT
i ∀ i.

Obviously, the function

φ(x) =
{

log detF−1(x), F (x) > 0
∞, other (3.58)

is bounded iff F (x) > 0. Further, φ(x) tends to infinity when the vector x approaches the
boundary of the feasible set {x | F (x) > 0}. In this sense, the function φ(x) can be regarded
as a wall separating the feasible set from other points. This is why it is called a barrier function.

We further consider the case where the feasible set is nonempty and bounded8. Since φ is a
strictly convex function (refer to Example 3.7), there is a solution

x� := arg min
x

φ(x) (3.59)

minimizing φ. This x� is called the analytic center of LMI F (x) > 0. It should be noted that
this optimization problem has no constraint, so it can be solved easily by using a variety of
methods.

For example, in applying Newton’s method, let the gradient and Hessian of φ be

g(x) = ∇φ(x) =
[
∂φ(x)

∂x

]T

, H(x) = ∇2φ(x) =
[
∂2φ(x)

∂x2

]T

, (3.60)

respectively. Then the analytical center x� can be computed iteratively based on the algorithm

x(k+1) = x(k) − α(k)H−1(x(k))g(x(k)). (3.61)

Here, α(k) is the step length of the kth iteration.

8 If F1, . . . , Fn is not linearly independent, there is a nonzero vector x◦ = [x1, . . . , xn]T satisfying α
∑

xiFi = 0 for
any scalar α. That is, the vector obtained by adding the straight line αx◦ to a feasible solution is always feasible. Then,
the solution set is unbounded. Therefore, F1, . . . , Fn must be linearly independent when the feasible set is bounded.
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3.3.2 Interior Point Method Based on Central Path

Now, how should we solve the following EVP?

minimize cT x
subject to F (x) > 0

The idea is as follows. Suppose that the optimum of the objective function is λopt. For λ > λopt,
the LMI

F (x) > 0, cT x < λ ⇔
[
F (x) 0

0 λ − cT x

]

> 0 (3.62)

is feasible. That is, a constrained optimization problem can be converted into an LMI feasibil-
ity problem. We can approach arbitrarily close to the optimum λopt by gradually reducing λ
until (3.62) gets unfeasible. As shown in the previous subsection, this problem can be further
converted to an optimization problem about a barrier function.

The analytical center of LMI (3.62) certainly depends on λ, so it is denoted by x�(λ). By

det
[
F (x)

λ − cT x

]−1

= detF−1(x) × 1
λ − cT x

,

we know that

x�(λ) = arg min
x

(

log detF−1(x) + log
1

λ − cT x

)

. (3.63)

Varying λ, then x�(λ) forms a trajectory called central path of the EVP. The central path is
analytic about λ, and the limit exists when λ → λopt. We denote this limit as xopt. Clearly,
xopt is the optimal solution for the EVP.

In computing the optimal solution xopt, we need to gradually reduce λ to λopt. λ > cT x
and λ(k+1) < λ(k) must be satisfied in building an update law for λ. Here, focusing on λ(k) >
cT x(k), we update λ using a convex combination of λ(k) and cT x(k):

λ(k+1) = (1 − θ)cT x(k) + θλ(k), 0 < θ < 1. (3.64)

This λ(k+1) satisfies

λ(k+1) − λ(k) = (1 − θ)(cT x(k) − λ(k)) < 0

λ(k+1) = cT x(k) + θ(λ(k) − cT x(k)) > cT x(k)

simultaneously. In addition, the update law for vector x is

x(k+1) = x�(λ(k+1)). (3.65)

Finally, we summarize the algorithm for the EVP:

1. Calculate a solution x(0) for LMI F (x) > 0 by the optimization of barrier function, and
then determine a real number λ(0) such that λ(0) > cT x(0).

2. Update λ(k+1) for each k = 1, 2, . . . according to (3.64).
3. Minimize the barrier function (3.63) to get x(k+1).
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4. Repeat this procedure until λ(k) − cT x(k) achieves the required accuracy.

Other constrained optimization problems can be solved in the same way.

Exercises

3.1 Suppose that C is an affine set and constant θi (i = 1, 2, 3) satisfies θ1 + θ2 + θ3 = 1.
Prove that

y = θ1x1 + θ2x2 + θ3x3 ∈ C ∀xi ∈ C.

3.2 Prove that the half-space {x|aT x ≤ b} is a convex set.

3.3 Prove that the volume of the following ellipsoid is proportional to λ1λ2λ3:

y2
1

λ1
+

y2
2

λ2
+

y2
3

λ3
≤ 1.

3.4 Prove that the following polyhedron is a convex set:

P = {x|aT
1 x ≤ b1, aT

2 x ≤ b2, cT x = d}.

3.5 The solvability condition for linear equation Ax = b is b ∈ Im A. Discuss the existence
condition for the positive solution x � 0.

3.6 Prove that the set of positive definite matrices below is convex

S+ = {X ∈ R
n×n | X = XT > 0}.

3.7 Given a real matrix M , prove that the following statements are equivalent by using the
separating hyperplane theorem:
(a) M + MT ≥ 0;
(b) Tr(MT X) ≤ 0 holds for all X < 0.

3.8 Given a square matrix A, derive a necessary and sufficient condition for the existence
of a positive definite matrix X satisfying LMI

XA + XT A < 0

by applying the separating hyperplane theorem. (Hint: Use the result of Exercise 3.8.)

3.9 Prove that the largest eigenvalue f(X) = λmax(X) of real symmetric matrix X is a
convex function.

3.10 Suppose the domain domf of scalar function f is a convex set and f is twice differ-
entiable in its domain. Prove that f is a convex function iff

∇2f(x) ≥ 0 ∀x ∈ domf.
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3.11 Let X be a complex Hermitian. Prove that X ≥ 0 iff
[
R(X) −�(X)
�(X) R(X)

]

≥ 0.

3.12 In the eigenvalue problem (3.27), augment the unknown vector x to

[
λ
x

]

. Find the con-

stant vector c and matrix F (x) in the equivalent problem (3.28).

3.13 Prove the following equivalent conditions:
[
X I
I Y

]

> 0 ⇔ X > 0, Y > 0, λmin(XY ) > 1.

Notes and References

Boyd and Vandenberghe [11] gives a complete and easy-to-read exposition on optimization
theory and is worth reading. Boyd et al. [10] describes LMI and its applications in depth.
Further, Refs [35, 42] are also useful references. The variable change method presented here
comes from Ref. [32] and the variable elimination method is from Ref. [33]. Readers who are
interested in the theory of interior-point method may consult [72].
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4
Fundamentals of Linear System

In this chapter, we make a concise review on the basic knowledge of linear systems such as
controllability, observability, pole and zero, stability, as well as associated balanced realization
and linear fractional transformation (LFT).

4.1 Structural Properties of Dynamic System

4.1.1 Description of Linear System

The motion of a linear system with state x(t) ∈ R
n, input u(t) ∈ R

m, and output y(t) ∈ R
p

is governed by the following state equation:

ẋ(t) = Ax (t) + Bu(t) (4.1)

y(t) = Cx (t) + Du(t). (4.2)

Here, (A,B,C,D) are the coefficient matrices. This state equation can further be described
compactly by the following equation:

[
ẋ
y

]

=
[
A B
C D

] [
x
u

]

. (4.3)

When we only consider the relationship between the input and output of linear system, we
may use the transfer matrix

ŷ(s) = G(s)û(s) = [C(sI − A)−1B + D]û(s) (4.4)

to describe the system. This transfer matrix is obtained by taking Laplace transform on the
state equation (4.1) subject to zero initial state x(0) = 0 and eliminating the state variables.
Each element of the transfer matrix is a transfer function between the corresponding input and
output, that is, its (i, j) element is a transfer function between the jth input and ith output. For
single-input single-output (SISO) system, the transfer matrix reduces to a transfer function.

Robust Control: Theory and Applications, First Edition. Kang-Zhi Liu and Yu Yao.
© 2016 John Wiley & Sons Singapore Pte. Ltd. Published 2016 by John Wiley & Sons, Singapore Pte. Ltd.
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Further, in order to facilitate the computation between transfer matrices, we often use the
notation [

A B

C D

]

:= C(sI − A)−1B + D (4.5)

to represent a transfer matrix. The following expression is also used frequently:

(A,B,C,D) := C(sI − A)−1B + D. (4.6)

Example 4.1 In the two-mass–spring system of Example 1.2, we have derived the state
equation

ẋ = Ax + B1d + B2u, y = Cx

about state vector x = [ωL φ ωM ]T in which the coefficient matrices are given by

A =

⎡

⎢
⎢
⎢
⎣

−DL

JL

k

JL

0

−1 0 1

0 − k

JM

−DM

JM

⎤

⎥
⎥
⎥
⎦

, B1 =

⎡

⎢
⎣

1
JL
0
0

⎤

⎥
⎦ , B2 =

⎡

⎢
⎣

0
0
1

JM

⎤

⎥
⎦

C = [0 0 1].

Therefore, the transfer function Pd(s) from the load torque disturbance d to the output y and
the transfer function Pu(s) from the input u to the output y are

Pd(s) = C(sI − A)−1B1

=
k

J2
L

s3 +
(

DL

JL
+ DM

JM

)
s2 +

(
DLDM

JLJM
+ k

JL
+ k

JM

)
s + k(DL+DM )

JLJM

Pu(s) = C(sI − A)−1B2

=
1

JM

(
s2 + DL

JL
s + k

JL

)

s3 +
(

DL

JL
+ DM

JM

)
s2 +

(
DLDM

JLJM
+ k

JL
+ k

JM

)
s + k(DL+DM )

JLJM

,

respectively. They are consistent with the results obtained by directly taking Laplace transform
on the motion equations:

JLω̇L + DLωL = kφ + d, φ̇ = ωM − ωL, JM ω̇M + DMωM + kφ = u.

Particularly, when friction is neglected, the transfer functions become

Pd(s) =
k

J2
L(

s2 + k
JL

+ k
JM

)
s
, Pu(s) =

1
JM

(
s2 + k

JL

)

(
s2 + k

JL
+ k

JM

)
s
.
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4.1.2 Dual System

By taking transpose on the transfer matrix G(s), we obtain a new transfer matrix known as
the dual system of G(s):

GT (s) = BT (sI − AT )−1CT + DT

=

[
AT CT

BT DT

]

. (4.7)

That is, the dual system of (A,B,C,D) is (AT , CT , BT ,DT ). In system properties to be
described later on, many have a duality relation. That is, when a system has two different
physical properties A and B, if property B is the same as property A of the dual system math-
ematically, we say that property A and property B are dual to each other. Such situation often
appears in the physical world. Therefore, by the notion of duality, the characteristics of prop-
erty B will be clear if we know the mathematical characteristics of property A. This is very
smart mathematically. A typical example is the duality between controllability and observabil-
ity to be introduced next.

4.1.3 Controllability and Observability

The purpose of control is to make the physical variables of plant move as desired. Before the
design of a control system, it is necessary to check in advance whether the system can meet
such a requirement. Whether a plant can be controlled is determined by the structural property
of the plant itself. Since all signals in the system are generated by the state, it is necessary to be
able to control the state arbitrarily. By abstraction, such engineering requirement is described
as the notion of controllability precisely.

Definition 4.1 Given arbitrary initial state x(0) = x0, terminal state xf , and finite time
instant tf > 0, if there is a bounded input u(t) such that the solution of (4.1) satisfies x(tf ) =
xf , then the dynamic system (4.1) or the pair (A,B) is called controllable. Otherwise, it is
called uncontrollable.

As shown in the phase plane1 of Figure 4.1, the controllability means that the state can be
moved from any initial state x0 to any assigned terminal state xf in finite time by using a
bounded input. However, the path from x0 to xf can be arbitrary.

The controllability of a system can be tested by the following algebraic criteria.

Theorem 4.1 The following statements are equivalent:

1. (A,B) is controllable;
2. The controllability matrix

C =
[
B AB · · · An−1B

]

has full row rank.

1 The Cartesian coordinate with states as axes is called a phase plane. The time sequence (trajectory) of state vector
can be drawn on the phase plane.
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x1

x2

0

x0

xf

Figure 4.1 State trajectory

3. For any λ ∈ C, the matrix [A − λI B] has full row rank.
4. For any λ ∈ σ(A), the matrix [A − λI B] has full column rank.
5. By choosing a suitable matrix F , the eigenvalue of A + BF can be placed arbitrarily (for

a complex eigenvalue, its conjugate must also be designated as an eigenvalue).

As seen from this theorem, the controllability only depends on the coefficient matrices
(A,B) of the state equation. This conclusion is a matter of course because the controllability
is related only to the input and state, which has nothing to do with the output.

Example 4.2 In the rigid body model of hard disk drive, when the states are chosen as the
rotational angle (x1) and angular velocity (x2), the coefficient matrices of state equation are
given by

A =
[
0 1
0 0

]

, B =
[
0
k

]

, C = [1, 0]

respectively. Via a simple calculation, we get

C =
[
0 k
k 0

]

, [A − λI B] =
[
−λ 1 0
0 −λ k

]

.

Both have full row rank, so this system is controllable. In physics, this corresponds to the fact
that the drive arm can be moved to any angle by supplying appropriate current to the motor.

Next, we check if there is a matrix F = [f1, f2] that places the eigenvalues of A + BF to
two arbitrary points (a, b). The identity

det(λI − (A + BF )) = (λ − a)(λ − b)

⇒ λ2 − kf2λ − kf1 = λ2 − (a + b)λ + ab

certainly holds. This is an identity about polynomials of variable λ, so the coefficients of terms
with the same degree on both sides must be equal. From it, we obtain simultaneous equations

−kf1 = ab, kf2 = a + b.

The unique solution is

F =
1
k

[−ab, a + b].
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As such, we have verified that as long as (A,B) is controllable, there exists a feedback gain
F that can place the eigenvalues (A + BF ) arbitrarily.

Basically, to control all states freely, information about the system state is indispensable.
However, in engineering practice the signals measured by sensors are not the states, but the
outputs of system only. In other words, we need to compute the state based on the input and
output information. The mathematical property on this possibility is clearly described by the
notion of observability in Definition 4.2.

Definition 4.2 For any finite time instant t1 > 0, if the initial state x(0) = x0 can be uniquely
determined via the input u(t) and output y(t) over the time interval [0, t1], we say that the
system (4.1) or (C,A) is observable. Otherwise, the system is unobservable.

Observability conditions are given by the following theorem.

Theorem 4.2 The following statements are equivalent:

1. (C,A) is observable.
2. The observability matrix

O =

⎡

⎢
⎢
⎢
⎣

C
CA
...
CAn−1

⎤

⎥
⎥
⎥
⎦

has full column rank.

3. For all λ ∈ C, the matrix [A−λI
C ] has full column rank.

4. For all λ ∈ σ(A), the matrix [A−λI
C ] has full column rank.

5. By choosing a suitable matrix L, the eigenvalues of A + LC can be placed freely (for a
complex eigenvalue, its conjugate must also be designated as an eigenvalue).

6. (AT , CT ) is controllable.

The last condition shows that the controllability and observability are in a dual relation.
In addition, from this theorem we see that the observability is only related to the coefficient
matrices (C,A).

Example 4.3 Let us examine the observability for the hard disk drive in Example 4.2. Since

O =
[
1 0
0 1

]

,

[
A − λI

C

]

=

⎡

⎣
−λ 1
0 −λ
1 0

⎤

⎦

have full column rank, this system is observable. Similarly, the matrix L placing the eigen-
values of A + LC to two points (c, d) can be computed by comparing the coefficients of the
following identity:

det(λI − (A + LC )) = (λ − c)(λ − d)

⇒ λ2 − l1λ − l2 = λ2 − (c + d)λ + cd .
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The solution obtained is L = [c + d,−cd ]T .

4.1.4 State Realization and Similarity Transformation

Definition 4.3 The state-space description (A,B,C,D) corresponding to transfer matrix
G(s) is called its realization. Particularly, when (A,B) is controllable and (C,A) is observ-
able, (A,B,C,D) is called a minimal realization of G(s).

The state-space realization used in the hard disk drive example described earlier is both
controllable and observable, so it is a minimal realization.

Note that realization of G(s) is not unique. For example, using a nonsingular matrix T to
transform the state x(t) into a new one

z(t) = T−1x(t), (4.8)

we get the state equation about z(t)

ż = T−1ATz + T−1Bu (4.9)

y = CTz + Du. (4.10)

From the equation

CT (sI − T−1AT )−1T−1B + D = C(sI − A)−1B + D = G(s), (4.11)

we see that (T−1AT , T−1B,CT ,D) is also a realization of G(s). The coordinate transforma-
tion of (4.8) is called similarity transformation, and T called the transformation matrix. Since
a state transformation does not change the input and output, it is natural that the transfer matrix
is the same.

4.1.5 Pole

For the transfer matrix G(s) = (A,B,C,D), its poles are defined as follows:

Definition 4.4 The eigenvalues of matrix A are called the poles of (A,B,C,D), the real-
ization of G(s). When this realization is minimal, the eigenvalues of A are called the poles of
transfer matrix G(s).

The denominator polynomial of C(sI − A)−1B + D is det(sI − A). It is clear that the
roots of this polynomial are the poles of its realization. However, we need to distinguish the
poles of a transfer matrix from those of its realization. The reason why the eigenvalues of
matrix A are called the poles of the realization is that the initial state response of x(0) is
equal to

x̂(s) = (sI − A)−1x(0) =
adj(sI − A)
det(sI − A)

x(0). (4.12)
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When the realization of a transfer matrix is not minimal, a part of eigenvalues of A are either
uncontrollable (called uncontrollable modes) or unobservable (called unobservable modes).
These uncontrollable or unobservable states will not appear in the transfer matrix. For example,
in the system

G(s) =

⎡

⎣
1 0 1
0 1 1
1 1 0

⎤

⎦ =
2

s − 1
,

an eigenvalue of matrix A does not appear in the transfer function. Therefore, the poles of a
state-space realization and those of the transfer matrix are not identical.

Poles determine the convergence of the system response. For example, in the linear
system

G(s) =

⎡

⎣
a b 1
−b a 0
1 0 0

⎤

⎦ =
s − a

(s − a)2 + b2 ,

the poles are a ± jb and its impulse response is eat cos bt . When the real part a of the poles
is negative, the impulse response converges; meanwhile, when a is positive, the response
diverges (refer to Figure 4.2(a)). Further, the convergence rate is determined by the mag-
nitude of real part. On the other hand, the imaginary part of poles determines the resonant
frequency of response. When the imaginary part increases, the oscillation gets intense (refer
to Figure 4.2(b)).

4.1.6 Zero

4.1.6.1 Zero of SISO System

For an SISO system, its transfer function is a rational function, and the numerator and denom-
inator are polynomials. The roots of numerator polynomial are called zeros. Physically, a zero
has the property of blocking some special signal. For example, in the preceding example,

0 0.5 1 1.5 2

0

1

2

3

t (s) t (s)

a=0.5

a=0

a=–1

–1

–2

–3
0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

b=π

b=4π

b=2π

–0.2

–0.4

–0.6

–0.8

Figure 4.2 Pole position and response (a) b = 2π, (b) a = −1
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s

−a

eat

aeat

−aeat

0

Figure 4.3 Mechanism of zero

when the initial state is x(0) = [0 − 1/b]T and input is u(t) = eat , the output becomes

ŷ(s) = C(sI − A)−1x(0) + C(sI − A)−1Bû(s)

= − 1
(s − a)2 + b2 +

1
(s − a)2 + b2

= 0.

So, the input u(t) = eat is completely blocked and cannot be transmitted to the output.
In this example, the mechanism of zero z = a is as illustrated in Figure 4.3. The numerator

polynomial s − a is a parallel connection of a differentiator s and a gain −a. When the input
eat is applied, the output sum of these two blocks is exactly zero. Therefore, the input eat is
blocked from the output. In addition, the input has a jump at t = 0, and an impulse signal
results in after differentiation. The nonzero initial state in this example is intentionally added
in order to offset the effect of this impulse response.

4.1.6.2 Origin of Zero

In general, a physical component seldom has zeros. But when they are interconnected, zeros
may appear. Some examples are as follows:

1. Zero resulted from parallel connection
When systems without any zeros are connected in parallel, zero will be produced. For
example,

G1(s) =
1

s + a
, G2(s) =

1
s + b

⇒ G1 + G2 =
2s + a + b

(s + a)(s + b)
,

a zero z = −(a + b)/2 appears in G1 + G2.
2. Zero resulted from feedback connection

In this case, the poles of feedback block become the zeros of closed-loop transfer function.
For example,

G1(s) =
1

s + a
, G2(s) =

1
s + b

⇒ G1

1 + G1G2
=

s + b

1 + (s + a)(s + b)
,

the pole −b of transfer function G2 in the feedback path becomes a zero of the closed-loop
transfer function.
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Example 4.4 In the two-mass–spring system of Example 4.1, when the frictions are ignored,
the transfer functions are, respectively,

Pd(s) =
k

J2
L(

s2 + k
JL

+ k
JM

)
s
, Pu(s) =

1
JM

(
s2 + k

JL

)

(
s2 + k

JL
+ k

JM

)
s
.

Clearly, the poles of Pd(s), Pu(s) are located at the origin and on the imaginary axis; Pd(s)
has no zeros, while Pu(s) has two zeros on the imaginary axis. It is more difficult to control
systems having zeros on the imaginary axis or the right half-plane (refer to Chapter 5 for the
specific reason). Particularly, when the load inertia JL is much smaller than the motor inertia
JM (i.e., the inertia ratio is far less than 1), the purely imaginary zeros and poles of Pu(s)
are very close to each other. In this case, the control of load is extremely difficult. From the
physical intuition, when the load is too light, its speed is not easy to detect from the motor
speed so that it is difficult to control.

4.1.6.3 Zero of MIMO System

For a multiple-input multiple-output (MIMO) system, its zero cannot be viewed from the zero
of each element of the transfer matrix. In extending the concept of zero to MIMO systems, it
is necessary to start from zero’s physical property, that is, input blocking. To this end, we need
a notion on the rank of function matrix.

Definition 4.5 Let Q(s) be a p × m rational function (or polynomial) matrix. The so-called
normal rank of Q(s) is the maximum possible rank of Q(s) for all s ∈ C, denoted by
normalrank (Q(s)).

Example 4.5 In the polynomial matrix,

Q(s) =
[
1 s + 1
s s(s + 1)

]

the second row is an s multiple of the first row, so they are linearly dependent. Therefore, the
normal rank of Q(s) is 1. In contrast, the polynomial matrix

Q(s) =
[
1 s + 1
s s + 1

]

has a normal rank 2.

The notion of normal rank is applied to define zeros for MIMO systems.

Definition 4.6 For a transfer matrix G(s), a complex number z0 satisfying

rank(G(z0)) < normalrank(G(s))

is called a transmission zero. If G(z0) = 0, then z0 is called a blocking zero.
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Obviously, a blocking zero is also a transmission zero. For the transfer function of an SISO
system, the blocking zeros and transmission zeros are the same. It is worth noting that trans-
mission zero can be defined for nonsquare transfer matrices. When the transfer matrix is square
and its normal rank equals its dimension, the transmission zeros are given by all z0 meeting
det(G(z0)) = 0 (see Exercise 4.3).

Example 4.6 In the following transfer matrix

G(s) =

⎡

⎢
⎢
⎣

s − 1
s + 1

1
s + 1

1
s − 1
s + 2

⎤

⎥
⎥
⎦ ,

elements (s − 1)/(s + 1) and (s − 1)/(s + 2) both have a zero z = 1. But at this point,

G(1) =
[
0 1/2
1 0

]

does not lose rank. So z = 1 is not a transmission zero.
On the other hand, a complex number that originally is not a zero of any element of the

transfer matrix may become a transmission zero of the transfer matrix. For example, in

G(s) =

⎡

⎢
⎣

1
s + 1

1
s + 3

1
s + 3

1
s + 1

⎤

⎥
⎦

no element has a finite zero. However, at s = −2 the rank of G drops from the normal rank 2
to 1, so it has a transmission zero −2.

In order to know the number of transmission zeros, we need the knowledge on the McMillan
canonical form of rational matrices. The details can be found in Refs [49, 100].

The following lemma shows that the transmission zero defined earlier does have the property
of input blocking.

Lemma 4.1 Assume that G(s) is a p × m transfer matrix and its minimal realization is
(A,B,C,D). If z0 ∈ C is a transmission zero of G(s), but not a pole of G(s), for the nonzero
vector u0 satisfying G(z0)u0 = 0, the output w.r.t. the initial state x(0) = (z0I − A)−1Bu0
and input u(t) = u0e

z0t is y(t) = 0.

Proof. When the input is u(t) = u0e
z0t (û(s) = u0/(s − z0)) and the initial state is x(0) =

(z0I − A)−1Bu0, Laplace transform of the corresponding output is

ŷ(s) = C(sI − A)−1x(0) + [C(sI − A)−1B + D]û(s)

= C(sI − A)−1x(0) + C(sI − A)−1Bu0(s − z0)
−1 + Du0(s − z0)

−1

= C(sI − A)−1x(0) + C[(sI − A)−1 − (z0I − A)−1]Bu0(s − z0)
−1

+ G(z0)u0(s − z0)
−1
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= C(sI − A)−1(x(0) − (z0I − A)−1Bu0) + G(z0)u0(s − z0)
−1

= G(z0)u0(s − z0)
−1

in which (sI − A)−1 − (z0I − A)−1 = −(s − z0)(sI − A)−1(z0I − A)−1 has been used.
Therefore, y(t) = G(z0)u0e

z0t = 0 holds. •

When the normal rank of G(s) is equal to the number of columns, the nonzero vector u0
meeting G(z0)u0 = 0 is called a zero vector. This lemma shows that a transmission zero z0
can block the exponential signal with z0 as the exponent and in the direction of zero vector u0.
Incidentally, in Example 4.6 the zero vector corresponding to zero z = −2 is [1 1]T .

To discuss zeros in the state space, we have the notion of invariant zero.

Definition 4.7 When a complex number z0 satisfies

rank
[
A − z0I B

C D

]

< normalrank
[
A − sI B

C D

]

,

it is called an invariant zero of system (A,B,C,D). Further, the matrix function [A−sI B
C D] is

called the system matrix of system (A,B,C,D).

In addition to the transmission zeros, the invariant zeros may also contain a part of uncon-
trollable poles (uncontrollable modes) and unobservable poles (unobservable modes). When
the realization of transfer matrix is minimal, the invariant zeros coincide with the transmission
zeros.

The reason why a zero defined like this is named as invariant zero is that it is invariant
w.r.t. state feedback u = Fx + v. After the state feedback, the closed-loop system becomes
(A + BF , B,C + DF ,D). Due to the relation

rank
[
A + BF − sI B

C + DF D

]

= rank
[
A − sI B

C D

]

,

both have the same zero.

Example 4.7 The normal rank of transfer matrix

⎡

⎢
⎢
⎣

1
s + 1

1
s + 3

1
s + 3

1
s + 1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0
−1 0 1

−3 1 0
−3 0 1

1 0 0 1 0 0
0 1 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

is 6. The rank of system matrix drops to 5 at z = −2, so z = −2 is an invariant zero. It has
been shown in the previous example that this point is also a transmission zero.
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4.1.7 Relative Degree and Infinity Zero

In the transfer function

G(s) =
bm+1s

m + · · · + b2s + b1

sn + ansn−1 + · · · + a2s + a1
, bm+1 �= 0, (4.13)

the difference between the degree n of denominator polynomial and the degree m of numerator
polynomial

r = n − m (4.14)

is called relative degree of the transfer function. For example, the relative degree of

G(s) =
5s + 2

s3 + 2s2 + 3s + 4

is r = 3 − 1 = 2.
When the relative degree is r ≥ 0, that is, the denominator degree is no less than the numer-

ator degree, the transfer function is said to be proper. When r > 0, that is, the denominator
degree is higher than the numerator degree, the transfer function is said to be strictly proper.

Multiplying this transfer function by s2, we get a new transfer function

s2G(s) = s2 5s + 2
s3 + 2s2 + 3s + 4

which contains a nonzero direct through term 5. Since s is a differentiator, this means that
when the output of system is differentiated twice, the input appears directly for the first time.
This point may be seen more clearly in the state space. The transfer function G(s) has the
following state-space realization:

ẋ = Ax + bu, y = cx (4.15)

A =

⎡

⎣
0 1 0
0 0 1
−4 −3 −2

⎤

⎦ , b =

⎡

⎣
0
0
1

⎤

⎦ , c = [2 5 0].

The first- and second-order derivatives of output are, respectively,

ẏ = cẋ = cAx + cbu (4.16)

ÿ = cAẋ + cbu̇ = cA2x + cAbu + cbu̇. (4.17)

As cb = 0, cAb = 5, it is only in the second-order derivative or higher that the input u appears
in the output y.

Therefore, for an SISO system given by the state-space realization

ẋ = Ax + bu, y = cx , (4.18)

its relative degree can be defined as the positive integer r satisfying

cb = cAb = · · · = cAr−2b = 0, cAr−1b �= 0. (4.19)
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Moreover, G(s) → 0 as s → ∞ in a transfer function with a relative degree r > 0. In this
sense, s = ∞ can be regarded as a zero of G(s) at the infinity. So, we say that a transfer
function of relative degree r(> 0) has r infinity zeros. Since the number of finite zeros is
n − r, the sum of both is exactly equal to the number of poles. In the preceding example, there
are a finite zero and two infinity zeros.

For MIMO systems, we may consider the relative degree in accordance with different out-
puts. That is, when the input appears for the first time in the rith order derivative of the ith
output yi, we say that the relative degree of this output is ri. Here, assume that the state
equations of MIMO system is

ẋ = Ax + Bu, y = Cx , (4.20)

and partition the output matrix C into row vectors:

C =

⎡

⎢
⎣

c1
...
cp

⎤

⎥
⎦ . (4.21)

Then, the relative degree of the ith output yi is the positive integer ri satisfying

ciB = ciAB = · · · = ciA
ri−2B = 0, ciA

ri−1B �= 0. (4.22)

Further, we say that the system as a whole has a (vector) relative degree of (r1, . . . , rp).

4.1.8 Inverse System

When an input u(t) is applied to system G(s), we get the output

ŷ(s) = G(s)û(s).

Conversely, in calculating the input u(t) from the output y(t), we may use

û(s) = G−1(s)ŷ(s).

G−1(s) is called the inverse system of G(s). It should be noticed that even if G(s) is proper,
G−1(s) is not necessarily proper in general, that is, its numerator degree may be higher than
the denominator degree. For a square matrix G(s) = (A,B,C,D), when D is nonsingular, its
inverse system G−1(s) can be calculated by

G−1(s) =
[
A − BD−1C BD−1

−D−1C D−1

]

. (4.23)

4.1.9 System Connections

Interconnections between systems have the following forms: cascade connection, parallel con-
nection, and feedback connection. Consider the case when two linear systems

G1 =
[
A1 B1
C1 D1

]

, G2 =
[
A2 B2
C2 D2

]
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G2G1

Figure 4.4 Cascade connection

are interconnected. Realization of the resulted system can be computed by transforming the
state equations and eliminating the intermediate variables (i.e., the input and output at the
connection point).

First, the cascade connection is shown in Figure 4.4, which corresponds to the multiplication
of transfer matrices. The computation formula is

G1(s)G2(s) =
[
A1 B1
C1 D1

] [
A2 B2
C2 D2

]

=

⎡

⎣
A1 B1C2 B1D2
0 A2 B2
C1 D1C2 D1D2

⎤

⎦ (4.24)

=

⎡

⎣
A2 0 B2

B1C2 A1 B1D2
D1C2 C1 D1D2

⎤

⎦ . (4.25)

On the other hand, the parallel connection (Figure 4.5) of systems corresponds to the sum-
mation of transfer matrices. The computation formula is

G1(s) + G2(s) =
[
A1 B1
C1 D1

]

+
[
A2 B2
C2 D2

]

=

⎡

⎣
A1 0 B1
0 A2 B2
C1 C2 D1 + D2

⎤

⎦ . (4.26)

Finally, the feedback connection is shown in Figure 4.6. Here, the transfer matrix between
the input and output is given by

Hyr (s) =

⎡

⎣
A1 − B1D2R

−1
12 C1 −B1R

−1
21 C2 B1R

−1
21

B2R
−1
12 C1 A2 − B2D1R

−1
21 C2 B2D1R

−1
21

R−1
12 C1 −R−1

12 D1C2 D1R
−1
21

⎤

⎦ (4.27)

in which R12 = I + D1D2, R21 = I + D2D1.

G1

G2

Figure 4.5 Parallel connection
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G1

G2

−
ry

Figure 4.6 Feedback connection

In the feedback connection, it is most often the case that G2(s) = D2 (i.e., a constant
matrix). In this case, the closed-loop transfer matrix reduces to

H =

[
A1 − B1D2R

−1
12 C1 B1R

−1
21

R−1
12 C1 D1R

−1
21

]

. (4.28)

It should be noted that even if the realizations of the original systems G1(s), G2(s) are
controllable and observable, the connected system may not be controllable or observable.
Depending on the type of connection, either uncontrollable or unobservable modes may result
in. For instance, pole–zero cancellation may occur in cascade connection; the states of two
identical systems cannot be controlled independently in parallel connection. Some examples
are illustrated in the following.

Example 4.8 Pole–zero cancellation in cascade connection:

G1(s) =
s − 1
s + 1

=
[
−1 −2
1 1

]

, G2(s) =
1

s − 1
=

[
1 1
1 0

]

⇒ G1(s)G2(s) =

⎡

⎣
−1 −2 0
0 1 1
1 1 0

⎤

⎦ .

Its controllability matrix and observability matrix are

C =
[
0 −2
1 1

]

, O =
[

1 1
−1 −1

]

.

Although the original systems are controllable and observable, after cascade connection, the
state is controllable but not observable. The reason is that cancellation between the pole 1 and
zero 1 happened.

Parallel connection of identical systems:

G1(s) = G2(s) =
1

s − 1
=

[
1 1
1 0

]

⇒ G1(s) + G2(s) =

⎡

⎣
1 1
1 1 1
1 1 0

⎤

⎦

⇒ C = O =
[
1 1
1 1

]

.
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After parallel connection, the state vector is neither controllable nor observable. The reason
is that in parallel connection the states of two systems with the same dynamics cannot be
controlled independently by the same input and the states of systems cannot be distinguished
from each other.

4.2 Stability

In this section, we first review the concept of bounded-input bounded-output (BIBO) stability
and then introduce a new concept of internal stability which is not treated in the classical
control theory.

4.2.1 Bounded-Input Bounded-Output Stability

The most basic requirement on control systems is that when a bounded input is applied to
a system, its output must not diverge. This property is called bounded-input bounded-output
stability, or BIBO stability in short. For example, in Figure 4.7 when a bounded input u(t) is
imposed under zero initial state, the output y(t) must be bounded. Mathematically, this can be
expressed as

|u(t)| ≤ c < ∞ ∀t ⇒ |y(t)| ≤ M < ∞ ∀t. (4.29)

For MIMO systems, we need to use a vector norm to replace the absolute value. That is, the
BIBO stability condition is replaced by

‖u(t)‖ ≤ c < ∞ ∀t ⇒ ‖y(t)‖ ≤ M < ∞ ∀t. (4.30)

Any vector norm may be used.
Testing BIBO stability according to the definition directly needs to consider all bounded

inputs, which is certainly impossible. So, let us seek a verifiable BIBO stability criterion. For
simplicity, we consider SISO systems. In Figure 4.7, x(0) is the initial state and u(t) is the
input; both are bounded. The output is y(t). Since we only consider the input and output, the
initial state can be set as x(0) = 0. Let the unit impulse response of G(s) be denoted by g(t);
then the output y(t) can be calculated by the convolution integral

y(t) =
∫ t

0
g(τ)u(t − τ)dτ. (4.31)

G

yu

x(0)

Figure 4.7 bounded-input bounded-output stability
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When the input satisfies |u(t)| ≤ c for all time t,

|y(t)| =
∣
∣
∣
∣

∫ t

0
g(τ)u(t − τ)dτ

∣
∣
∣
∣ ≤

∫ t

0
|g(τ)| · |u(t − τ)|dτ

≤ c

∫ t

0
|g(τ)|dτ ≤ c

∫ ∞

0
|g(τ)|dτ (4.32)

holds. So, whenever
∫ ∞

0 |g(t)|dt is bounded, y(t) is also bounded. Conversely, for the fol-
lowing special input

u(τ) =
g(t − τ)
|g(t − τ)| ⇒ |u(τ)| =

|g(t − τ)|
|g(t − τ)| = 1, (4.33)

its output response is

y(t) =
∫ t

0
g(τ)u(t − τ)dτ =

∫ t

0
g(τ)

g(τ)
|g(τ)|dτ =

∫ t

0
|g(τ)|dτ

⇒ |y(t)| =
∫ t

0
|g(τ)|dτ. (4.34)

|y(∞)| < ∞ holds when the system is stable. Therefore,
∫ ∞

0 |g(t)|dt < ∞ must be true.
These arguments lead to the following theorem.

Theorem 4.3 An SISO system G(s) is BIBO stable iff
∫ ∞

0
|g(t)|dt < ∞. (4.35)

For an MIMO system, let the unit impulse response matrix be g(t) = L−1[G(s)]. Then, the
system is BIBO stable iff ∫ ∞

0
‖g(t)‖dt < ∞ (4.36)

in which ‖g(t)‖ can be any induced norm.

However, this condition requires calculation of the absolute integral of impulse response,
which is not so easy. In the sequel, we derive some simpler criteria. To this end, we define the
stability of transfer matrix (function) first.

Definition 4.8 When all poles of the transfer matrix (function) G(s) have negative real parts,
G(s) is called stable. On the contrary, when all poles of G(s) have nonnegative real parts,
G(s) is called antistable. Further, when one or more poles of G(s) have nonnegative real
parts, it is called unstable.

Note that an antistable transfer function is unstable, but not all unstable transfer functions
are antistable.
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Example 4.9 The poles of transfer function

G1(s) =
1

(s + 1)(s + 2)

are p = −1,−2, and they are all negative. So, G1(s) is stable. In contrast, poles of the transfer
function

G2(s) =
1

(s − 1)(s − 2)

are p = 1, 2, and they are all positive. Thus, G2(s) is antistable. Meanwhile, poles of the trans-
fer function

G3(s) =
1

(s + 1)(s − 2)

are p = −1, 2, one positive and one negative. Hence, G3(s) is unstable, but not antistable.

The boundedness of
∫ ∞

0 |g(t)|dt (for MIMO systems,
∫ ∞

0 ‖g(t)‖dt) is ensured by the sta-
bility of transfer function G(s). That is, the stability of the transfer function ensures the BIBO
stability of a system.

Theorem 4.4 The BIBO stability of a linear system is equivalent to the stability of its transfer
matrix.

Proof. Only the proof for SISO systems is shown. First, consider the case where G(s) has
no multiple poles. A partial fraction expansion yields

G(s) =
∑ ci

s − pi

+ d ⇒ g(t) =
∑

cie
pit + dδ(t), t ≥ 0.

In general, poles are complex numbers and can be written as pi = ai + jbi. Since epit =
eaitejbit and |ejbit| ≡ 1, we have

∫ ∞

0
|g(t)|dt ≤

∫ ∞

0

[∑
|ci|eait + |d|δ(t)

]
dt .

Here, we have used the triangle inequality |a + b| ≤ |a| + |b|. When all ai are negative, the
right-hand side satisfies

|d| +
∑ |ci|

−ai

< ∞.

In contrast, when a1 ≥ 0, for example, ea1t either diverges or converges to a constant, its inte-
gral

∫ ∞
0 ea1tdt always diverges.

When there exist multiple poles, for example, when p = a + jb is a pole with a multiplicity
of 2, we have

G(s) =
c1

(s − p)2 +
c2

s − p
+ rest terms ⇒ g(t) = c1te

pt + c2e
pt + rest terms.

We need to just check the first integral term. Let a < 0; a simple calculation shows that
∫ ∞

0
|teat |dt =

∫ ∞

0
teatdt =

1
a2 < ∞.
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Therefore, even though multiple poles exist, the absolute integral of impulse response is still
bounded. So, the system is BIBO stable. •

Example 4.10 The unit impulse response of stable system G(s) = 1/(s + 1) is

g(t) = e−t, t ≥ 0.

Its absolute integral is ∫ ∞

0
|g(t)|dt =

∫ ∞

0
e−tdt = 1

and bounded. Conversely, the unit impulse response of unstable transfer function G(s) =
1/(s − 1) is

g(t) = et, t ≥ 0.

In this case, it is obvious that the integral

∫ T

0
|g(t)|dt = eT − 1

diverges as T → ∞.

4.2.2 Internal Stability

In classical control, the stability of a feedback system is treated from the angle of a single
closed-loop transfer function. For example, often considered is the stability of the closed-loop
transfer function

Hyr (s) =
P (s)K(s)

1 + P (s)K(s)

from reference input r to output y. However, this transfer function alone does not necessarily
guarantee the stability of the closed-loop system. Let us look at an example.

Example 4.11 In the feedback system of Figure 4.8, let the plant and controller be

P (s) =
1

s − 1
, K(s) =

s − 1
s

respectively. Since P (s)K(s) = 1/s, the transfer function Hyr (s) from reference input r to
output y becomes

Hyr (s) =
P (s)K(s)

1 + P (s)K(s)
=

1
s + 1

.

This transfer function is stable. However, when we check the transfer function Hyd (s) from
disturbance d to output y, we find that

Hyd (s) =
P (s)

1 + P (s)K(s)
=

1
s−1

1 + 1
s

=
s

(s − 1)(s + 1)
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PK
−

ue
y

d

r

Figure 4.8 Internal stability

which apparently is unstable. The secret lies in that cancellation between unstable pole p = 1
and unstable zero z = 1 happened between P (s) and K(s). It can also be verified indirectly
that pole–zero cancellation has occurred from the fact that the second-order transfer function
Hyr (s) reduces to first order.

Real-world systems are always subject to disturbance and noise from the surrounding envi-
ronment. When unstable zero–pole cancellation occurs, it will cause the divergence of system
and result in internal damage to the physical system. In order to avoid this from happening, it
is necessary to ensure the so-called internal stability below.

Definition 4.9 In the closed-loop system of Figure 4.8, when all four transfer matrices

[
PK (I + PK )−1 P (I + KP)−1

K(I + PK )−1 −KP(I + KP)−1

]

from external signals (r, d) to internal signals (y, u) of the system are stable, the closed-loop
system in Figure 4.8 is called internally stable.

The internal stability may be tested by the following two methods:

• Characteristic polynomial method (SISO system)
In this method, we first write the transfer function P (s),K(s) as the fraction of denominator
polynomials and numerator polynomials

P (s) =
NP (s)
MP (s)

, K(s) =
NK(s)
MK(s)

.

The numerator and denominator must be coprime, that is, they do not contain any com-
mon polynomial factor. Then, we compute the characteristic polynomial of the closed-loop
system

p(s) = NP NK + MP MK . (4.37)

The stability of characteristic roots can be judged either by solving for the roots of char-
acteristic polynomial directly or by application of Routh–Hurwitz stability criterion. The
internal stability is equivalent to that the real parts of all characteristic roots are negative.
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Proof. Since PK
1+PK + 1

1+PK = 1 holds, the stability of PK
1+PK is equivalent to that of 1

1+PK .
Therefore, the internal stability and the stability of transfer matrix

H(s) =

⎡

⎢
⎢
⎣

PK
1 + PK

P

1 + PK
K

1 + PK
1

1 + PK

⎤

⎥
⎥
⎦ (4.38)

are equivalent. After the substitution of the coprime factorization of P (s) and K(s), H(s)
becomes

H(s) =
1
p

[
NP NK NP MK

MP NK MP MK

]

=
1
p

[
NP

MP

]

[NK MK ].

Obviously, if all roots of the characteristic polynomial p(s) are stable, the closed-loop sys-
tem is internally stable. Conversely, when the closed-loop system is internally stable, if a
root of the characteristic polynomial is unstable, this root must be cancelled by the block-
ing zero of the numerator matrix of H(s). However, due to the assumption of coprimeness,
neither [NP MP ]T nor [NK MK ] has zeros, which leads to a contradiction. Therefore,
when the closed-loop system is internally stable, the characteristic polynomial cannot have
any unstable root. •

• State-space method (MIMO system)
In this method, we first calculate the state equation of the closed-loop transfer matrix based
on those of the subsystems and then determine the internal stability using the eigenvalues
of its coefficient matrix A. If the real parts of all eigenvalues are negative, then the system
is internally stable. However, it should be pointed out that we must use the state equation
of closed-loop system obtained from subsystems directly. If the eigenvalue analysis is done
after minimal realization of the state equation, poles cancelled by zeros do not appear in the
eigenvalues of matrix A, and we cannot find these unstable poles.

Example 4.12 For the feedback system of Example 4.11, apply the methods above to
validate the internal stability once again.

Solution
1. Characteristic polynomial method

Coprimely factorizing the plant and controller as

P (s) =
NP (s)
MP (s)

, NP (s) = 1, MP (s) = s − 1

K(s) =
NK(s)
MK(s)

, NK(s) = s − 1, MK(s) = s,

we obtain the characteristic polynomial

p(s) = (s − 1)s + s − 1 = (s − 1)(s + 1).

This characteristic polynomial has an unstable root 1, so the closed-loop system is not
internally stable.
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2. State-space method
A set of realizations of P (s) and K(s) is

P (s) =
[
1 1
1 0

]

, K(s) =
[
0 −1
1 1

]

.

By the formula (4.24) of cascade connection, the transfer function of the forward
channel is

G1(s) = P (s)K(s) =

⎡

⎣
1 1 1
0 0 −1
1 0 0

⎤

⎦ .

Further, noting that the transfer function of the feedback channel is G2(s) = 1, by the for-
mula (4.28) of feedback connection, matrix A of the closed-loop system and its eigenvalues
are computed as

A =
[
0 1
1 0

]

⇒ σ(A) = {1,−1}.

Thus, we get the same conclusion as the first method, that is, the closed-loop system has
an unstable pole 1.

However, if the controller is replaced by a PI compensator

K =
3s + 1

s
,

then the characteristic polynomial turns into

p(s) = 3s + 1 + (s − 1)s = (s + 1)2

whose roots are stable. So the closed-loop system is internally stable. �

4.2.3 Pole–Zero Cancellation

In the parallel connected system of Example 4.8, cancellation between pole and zero occurs
at the point s = 1, which thereby makes the whole system unobservable. This is because the
pole–zero cancellation deters the response of the pole of G2(s) from being transmitted to the
output, so the output does not contain the state information of this pole (refer to Figure 4.9).
In contrast, in the case of (Figure 4.9)

G1(s) =
1

s − 1
, G2(s) =

s − 1
s + 1

,

the overall state-space realization is

G1(s)G2(s) =

⎡

⎣
1 1 1
0 −1 −2
1 0 0

⎤

⎦ .

G1 G2
uy

Figure 4.9 Uncontrollable/unobservable mode stemmed from pole–zero cancellation
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Table 4.1 Relations between pole–zero cancellation and controllability/observability
(cascade system of Figure 4.9)

Cancellation between zero of G1 and pole of G2 Unobservable
Cancellation between pole of G1 and zero of G2 Uncontrollable

Its controllability matrix and observability matrix are

C =
[

1 −1
−2 2

]

, O =
[
1 0
1 1

]

.

Hence, the realization of the whole system is not controllable. This is because the input is not
transmitted to the pole of G1(s). Conclusions stated here hold true in the general case and are
summarized in Table 4.1.

Unstable pole–zero cancellation and pole–zero cancellation near the imaginary axis must be
avoided. For example, in the pole–zero cancellation of Example 4.11, since the input cannot
reach the cancelled unstable pole of P (s), the disturbance response of P (s) diverges, and the
system is not stable.

4.2.4 Stabilizability and Detectability

Even if the state-space realizations of subsystems are controllable and observable, pole–zero
cancellation may occur when they are connected, resulting in uncontrollable or unobservable
phenomenon. In such cases, even though the feedback control cannot guarantee that the state
of system converges at a specified rate, at least we hope to ensure its stability. This engineering
requirement is explicitly formulated as the notions of stabilizability and detectability.

Definition 4.10 If there exists a state feedback u = Fx rendering A + BF stable, the dynamic
system of (4.1) or (A,B) is called stabilizable. Similarly, when there exists L making A + LC
stable, (C,A) is called detectable.

Through generalizations of Theorems 4.1 and 4.2, we obtain the following two theorems.

Theorem 4.5 The following statements are equivalent:

1. (A,B) is stabilizable.
2. For all λ satisfying (λ) ≥ 0, the matrix [A − λI B] has full row rank.
3. There exists a matrix F such that A + BF is stable.

Theorem 4.6 The following statements are equivalent:

1. (C,A) is detectable.

2. For all λ satisfying (λ) ≥ 0, the matrix
[

A−λI
C

]
has full column rank.
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3. There exists a matrix L such that A + LC is stable.
4. (AT , CT ) is stabilizable.

Example 4.13 Test the stabilizability and detectability of system

[
A B

C 0

]

=

⎡

⎣
1 0 0
0 −1 1
1 0 0

⎤

⎦ .

Solution Since

rank[A − I B] = rank
[
0 0 0
0 −2 1

]

= 1 �= 2,

(A,B) is not stabilizable. In fact, the unstable pole p1 = 1 is uncontrollable. On the other
hand,

rank
[
A − λI

C

]

= rank

⎡

⎣
1 − λ 0

0 −1 − λ
1 0

⎤

⎦ = 2 ∀(λ) ≥ 0

holds, so it is detectable. In fact, the unobservable pole p2 = −1 is stable. �

4.3 Lyapunov Equation

In system theory, it is very important how to determine the stability, controllability, and observ-
ability accurately. In testing these properties, Lyapunov equation is extremely useful. The
so-called Lyapunov equation is a linear matrix equation in the form of

AT P + PA + Q = 0 (4.39)

in which A and Q = QT are given real matrices. The necessary and sufficient condition for
this equation to have a unique solution is λi(A) + λj(A) �= 0 (∀i, j). So, the equation has a
unique solution when A is stable.

Lemma 4.2 Lyapunov equation (4.39) has a unique solution iff

λi(A) + λj(A) �= 0 ∀i, j.

Proof. We rewrite the matrix equation (4.39) as a vector equation by using the properties
of Kronecker product. First of all,

vec(PA) = vec(I · P · A) = (AT ⊗ I)vec(P )

vec(AT P ) = vec(AT · P · I) = (I ⊗ A)vec(P )

holds. So (4.39) is transformed equivalently as

(AT ⊗ I + I ⊗ A)vec(P ) + vec(Q) = 0 ⇒ (AT ⊕ A)vec(P ) = −vec(Q).
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This linear equation has a unique solution iff the coefficient matrix is nonsingular, that is,
without any zero eigenvalues. This lemma is true since the eigenvalues of AT ⊕ A are given
by λi(A) + λj(A

T ) = λi(A) + λj(A), etc. •

The relationship between the stability of A and the solution P and relationship between
(Q,A) and P are shown in the following theorem.

Theorem 4.7 Let P be the solution of Lyapunov equation (4.39). Then, the following state-
ments hold:

1. When A is stable, the Lyapunov equation has a unique solution

P =
∫ ∞

0
eAT tQeAtdt . (4.40)

2. When Q ≥ 0 and (Q,A) is observable, P > 0 iff A is stable.
3. When Q > 0, then P > 0 iff A is stable.
4. When A is stable and Q ≥ 0, then P > 0 iff (Q,A) is observable.

Proof.
1. As A is stable, solution of the Lyapunov equation is unique. Substituting the given P into

the Lyapunov equation and using eA∞ = 0, it can be confirmed that the Lyapunov equation
is satisfied:

AT P + PA =
∫ ∞

0

deAT tQeAt

dt
dt = eAT tQeAt

∣
∣
∣
∞

0
= −Q.

2. Let λ be an eigenvalue of A, u �= 0 the corresponding eigenvector. Premultiplying u∗ and
postmultiplying u to (4.39), we get

2(λ)u∗Pu + u∗Qu = 0. (4.41)

When P > 0, since u∗Pu > 0 and u∗Qu ≥ 0, we have (λ) ≤ 0. If (λ) = 0, Qu = 0
follows from this equation. But

(A − λI)u = 0, Qu = 0 (4.42)

holds in this case, which contradicts the observability of (Q,A). Thus, (λ) = 0 is not true
and A must be stable.

Conversely, when A is stable, P is positive semidefinite according to (4.40). Noting that
the solution of ẋ = Ax is x(t) = eAtx(0), we multiply x(0) and its transpose to (4.40) and
get

xT (0)Px (0) =
∫ ∞

0
xT (t)Qx (t)dt .

Since the integral on the right is nonnegative, the quadratic term on the left is positive
semidefinite. If P is not positive definite, there exists x(0) �= 0 such that Px (0) = 0. Then,
the preceding equation shows that x(t) must satisfy

Qx (t) ≡ 0, ∀t ≥ 0.
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Repeated differentiation of this equation by the time t yields

QAix(t) = 0, i = 0, . . . , n − 1, ∀t ≥ 0 (4.43)

which contradicts the observability of (Q,A). So P > 0 is true.
3. Since Q > 0, if the solution of Lyapunov equation is positive definite, we see from (4.41)

that all eigenvalues λ of A satisfy (λ) < 0. Accordingly, A is stable. On the contrary,
when A is stable, P > 0 is obvious from (4.40).

4. In the statement (2), we have proved that P > 0 if (Q,A) is observable. Now we prove the
converse via reduction to absurdity. Assume that P > 0, but (Q,A) is not observable. Then,
there are a λ ∈ σ(A) and a vector u �= 0 satisfying (4.42). From (4.41) we get (λ) = 0,
which contradicts the stability of A. •

From this lemma, we see that Lyapunov equation not only plays an important role in test-
ing system’s stability but also is very effective in testing the controllability and observability
of systems. More importantly, this lemma can be applied to not only the stability test of a
given system but also the control design, especially the stability proof of closed-loop system
in optimal control theories.

However, it should be noticed that even if A is stable, it never means that Q = −(AT P +
PA) is positive definite for any matrix P > 0. For example, in

A =
[
−1

−2

]

, P =
[
1.1 1
1 1

]

> 0

⇒ Q = −(AT P + PA) =
[
2.2 3
3 4

]

,

as det(Q) = −0.2, Q is not positive definite.

Example 4.14 Let us use a two-dimensional system to verify statement (2) of the theorem.
Here, the coefficient matrix of the given system is

A =
[

0 1
−a1 −a2

]

⇒ |sI − A| = s2 + a2s + a1.

According to Routh–Hurwitz criterion, it is easy to know that a1, a2 > 0 is the stability con-
dition. Set the output matrix c as c = [1 0]; then (c,A) is observable. So (cT c,A) is also

observable. Let the unknown matrix be P =
[

p1 p2
p2 p3

]
in Lyapunov equation

PA + AT P + cT c = 0.

Expansion of this equation leads to

⎧
⎨

⎩

p1 − a2p2 − a1p3 = 0
p2 − a2p3 = 0

2a1p2 = 1
⇒

⎡

⎣
1 −a2 −a1
0 1 −a2
0 2a1 0

⎤

⎦

⎡

⎣
p1
p2
p3

⎤

⎦ =

⎡

⎣
0
0
1

⎤

⎦ . (4.44)
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This equation has a unique solution iff the coefficient matrix on the left-hand side is nonsin-
gular. Due to the block triangular structure of this matrix, it is nonsingular iff so is the 2 × 2
block in the lower right corner. That is,

∣
∣
∣
∣

1 −a2
2a1 0

∣
∣
∣
∣ �= 0 ⇐⇒ a1a2 �= 0 ⇐⇒ a1 �= 0, a2 �= 0 (4.45)

is the condition for the existence of unique solution.
Further, solving the expanded Lyapunov equation successively, we get

p2 =
1

2a1
, p3 =

1
a2

p2 =
1

2a1a2
, p1 = a2p2 + a1p3 =

a1 + a2
2

2a1a2
.

Therefore, the solution of Lyapunov equation is

P =
1

2a1a2

[
a1 + a2

2 a2
a2 1

]

=
1

2a1a2

[
1 a2
0 1

] [
a1 0
0 1

] [
1 0
a2 1

]

.

Moreover, the following conditions are equivalent:

P > 0 ⇐⇒ 2a1a2 > 0, a1 > 0 ⇐⇒ a1 > 0, a2 > 0. (4.46)

This condition coincides with the stability condition obtained from Routh–Hurwitz criterion.

4.3.1 Controllability Gramian and Observability Gramian

Solution Lo of a Lyapunov equation about (C,A)

AT Lo + LoA + CT C = 0 (4.47)

is called the observability Gramian. As CT C ≥ 0, according to Theorem 4.7(1), we have
Lo ≥ 0 when A is stable. Further, Lo > 0 iff (CT C,A) is observable. As the observability of
(CT C,A) is equivalent to that of (C,A)2, Lo > 0 is equivalent to the observability of (C,A).

Similarly, solution Lc of the Lyapunov equation

ALc + LcA
T + BBT = 0 (4.48)

is called the controllability Gramian. From the duality of Theorem 4.7, we know that
Lc ≥ 0 holds when A is stable. Further, the controllability of (A,B) is equivalent to the
positive definiteness of the controllability Gramian Lc. Furthermore, by the semipositive
definiteness of Lc and Lo, their eigenvalues are all nonnegative real numbers. From the
viewpoint of system engineering, eigenvalue magnitudes of the controllability Gramian and
observability Gramian indicate the degree of difficulty on the controllability and observability
of system states. The following example illustrates this.

2 Since Cu = 0 is equivalent to CT Cu = 0, (A − λI)u = 0 and Cu = 0 is equivalent to (A − λI)u = 0 and
CT Cu = 0. That is, when a pair of (CT C, A) and (C, A) is not observable, another pair is not observable too.
So the observability of both is equivalent.
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Example 4.15 Assume that λ1, λ2, ε > 0. Consider a stable system

ẋ =
[
−λ1

−λ2

]

x +
[
1

ε

]

u, y = [1 1]x.

Computing its controllability Gramian, we get

Lc =

⎡

⎢
⎣

1
2λ1 ε

2λ2

⎤

⎥
⎦ .

It is observed from ẋ2 = −λ2x2 + εu2 that the state x2 is not easy to control as ε → 0. The
eigenvalue of controllability Gramian corresponding to state x2 is ε

2λ2
, which gets very small

as ε → 0. That is, when an eigenvalue of the controllability Gramian gets smaller, the corre-
sponding state is more difficult to control. The same conclusion is true for the observability
Gramian. That is, when an eigenvalue of the observability Gramian gets smaller, the corre-
sponding state is more difficult to observe.

In this example, the transfer function is

G(s) =
1

s + λ1
+

ε

s + λ2
.

So when ε is small enough, even if we ignore the state x2 it has little impact on the input–output
relation. It seems that even if we ignore the states corresponding to small eigenvalues of con-
trollability Gramian or observability Gramian, the resulted discrepancy in transfer function
will be small too. However, this hypothesis is not correct. The following example given in Ref.
[100] clearly illustrates where the pitfall lies in. Here, we examine a stable transfer function

G(s) =
3s + 18

s2 + 3s + 18
.

This transfer function has the following special state-space realization:

G(s) =

⎡

⎣
−1 −4/α 1
4α −2 2α

−1 2/α 0

⎤

⎦

in which α �= 0 is an arbitrary real number. The controllability Gramian of this realization is

Lc = diag(0.5, α2).

When we select small α, the eigenvalue α2 of Lc gets so small that the controllability of its
corresponding state is weakened. Eliminating the state x2 corresponding to this eigenvalue,
we get a first-order transfer function

Ĝ(s) =
[
−1 1
−1 0

]

=
−1

s + 1
.
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Figure 4.10 Bode plots of G (solid line) and Ĝ (+)

However, from the Bode diagram of Figure 4.10, it is obvious that this transfer function is by
no means close to the original one. Analyzing the observability Gramian

Lo = diag
(

0.5,
1
α2

)

reveals where the problem is. When α is small, the eigenvalue 1/α2 of Lo gets large. There-
fore, the observability of the corresponding state x2 is very strong. In other words, although the
controllability of x2 is weak, its observability is so strong that the effect of x2 on the input trans-
mission cannot be ignored. In summary, we cannot correctly determine which state dominates
the input transmission by using only controllability Gramian or observability Gramian.

4.3.2 Balanced Realization

As shown in the previous subsection, controllability Gramian or observability Gramian alone
cannot correctly determine which state has little effect on the input–output relationship. To
resolve this problem, this subsection introduces a realization with special controllability and
observability Gramians.

Assume that G(s) = (A,B,C,D) is stable, that is, A is stable. Its controllability Gramian
Lc and observability Gramian Lo satisfy (4.48) and (4.47), respectively, and Lc ≥ 0, Lo ≥ 0.
Further, (A,B) is controllable iff Lc > 0; (C,A) is observable iff Lo > 0.

Doing a state transformation z = T−1x using a nonsingular matrix T , we get a new
realization

G(s) =

[
Â B̂

Ĉ D̂

]

=
[
T−1AT T−1B

CT D

]

.

Its controllability Gramian and observability Gramian are L̂c = T−1LcT
−T and

L̂o = TT LoT (Exercise 4.13). By L̂cL̂o = T−1LcLoT , it is seen that the eigenvalues
of the product of these two Gramians are invariant to state transformation. Thus, if we split
the eigenvalue of LcLo equally to Lc and Lo, we can clearly see the impact of each state on
the transfer function.
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In fact, such transformation always exists. Particularly, for a minimal realization, we have
that

L̂c = T−1LcT
−T = Σ, L̂o = TT LoT = Σ (4.49)

Σ = diag(σ1, σ2, . . . , σn). (4.50)

This new realization is called the balanced realization. σi aligned in the order of σ1 ≥ σ2 ≥
. . . ≥ σn ≥ 0 are known as Hankel singular values of the system.

More generally, for any nonminimal realization of system, there exists a state transforma-
tion such that the controllability Gramian and observability Gramian of the realization are
diagonal matrices after transformation. Moreover, the controllable and observable subsystem
is balanced. The specific conclusions are given by the following theorem.

Theorem 4.8 For a stable transfer matrix G(s) = (A,B,C,D), there exists a transforma-
tion matrix T such that G(s) = (T−1AT , T−1B,CT ,D) has the following controllability
Gramian Lc and observability Gramian Lo

Lc =

⎡

⎢
⎢
⎣

Σ1
Σ2

0
0

⎤

⎥
⎥
⎦ , Lo =

⎡

⎢
⎢
⎣

Σ1
0

Σ3
0

⎤

⎥
⎥
⎦

in which the matrix Σ1,Σ2,Σ3 are positive definite diagonal matrix.

The states corresponding to zero eigenvalues of Lc, Lo can be eliminated from the transfer
matrix. That is, when we decompose the new realization of G(s) as

G(s) =
[
T−1AT T−1B

CT D

]

=

⎡

⎢
⎢
⎢
⎣

A11 · · · A14 B1
...

...
...

A41 · · · A44 B4
C1 · · · C4 D

⎤

⎥
⎥
⎥
⎦

(4.51)

in accordance with the partition of Lc, Lo (Aii has the same dimension as Σi),

G(s) =
[
A11 B1
C1 D

]

(4.52)

holds. Of course, if there exist some very small eigenvalues in A11, the corresponding states can
also be approximately eliminated which is called truncation. In system theory, approximation
of a high-order transfer matrix by a low-order one is called model reduction. The truncation
of balanced realization is actually a model reduction method.

4.4 Linear Fractional Transformation

In mathematics, a function in the form of

cx + d

ax + b
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is called a linear fractional transformation of variable x. This equation can also be written as

cx + d

ax + b
=

d

b
+

d

b

x

1 + a
b x

( c

d
− a

b

)
.

Its extension to matrix is the linear fractional transformation, or LFT for short, to be touched
in this section.

Now, partition the matrix M as

M =
[
M11 M12
M21 M22

]

M11 ∈ F
p1×q1 , M12 ∈ F

p1×q2 , M21 ∈ F
p2×q1 , M22 ∈ F

p2×q2 .

Assume that X� ∈ F
q2×p2 , Xu ∈ F

q1×p1 . When (I − M22X�) is nonsingular, the lower LFT
about X� is defined as

F�(M,X�) := M11 + M12X�(I − M22X�)
−1M21. (4.53)

Similarly, when (I − M11Xu) is nonsingular, the upper LFT about Xu is defined as

Fu(M,Xu) = M22 + M21Xu(I − M11Xu)−1M12. (4.54)

They all are referred to as LFT.
The matrix M in LFT is called coefficient matrix. From a system viewpoint, these LFT

correspond to the feedback systems shown in the block diagrams of Figure 4.11, respectively.
In Figure 4.11, the left corresponds to equations

[
z1
y1

]

= M

[
w1
u1

]

=
[
M11 M12
M21 M22

] [
w1
u1

]

(4.55)

u1 = X� y1 (4.56)

while the right corresponds to equations
[
y2
z2

]

= M

[
u2
w2

]

=
[
M11 M12
M21 M22

] [
u2
w2

]

(4.57)

u2 = Xu y2. (4.58)

M

X

z1 w1

u1
y1

LFT

Xu

M
w2z2

y2 u2

LFT

Figure 4.11 Graphical representation of LFT
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It is easy to know that the transfer matrix of w1 �→ z1 in the left figure is F�(M,X�), that is,

z1 = F�(M,X�)w1. (4.59)

So, F�(M,X�) is obtained from closing the loop from below in the left of Figure 4.11. This is
why it is called the lower LFT. On the other hand, the transfer matrix of w2 �→ z2 in the right
figure is Fu(M,Xu), namely,

z2 = Fu(M,Xu)w2. (4.60)

Therefore, Fu(M,Xu) is obtained from closing the loop from above in the right of Figure 4.11
and called the upper LFT. The feedback, cascade, and parallel connections of transfer func-
tions are special cases of LFT. For example, when M22 = 0, F�(M, I) becomes the parallel
connection of M11 and M12M21, while when M11 = 0, F�(M, I) is the cascade connection of
M12 and M21.

Now we compute the state-space realization of closed-loop transfer matrix F�(P,K) when
transfer matrices

P (s) =

⎡

⎣
A B1 B2
C1 D11 D12
C2 D21 0

⎤

⎦ , K(s) =
[
AK BK

CK DK

]

(4.61)

are LFT connected. To this end, let the state of P (s) be x and the state of K(s) be xK . Further,
assume that their input–output relations are, respectively,

[
ẑ
ŷ

]

= P

[
ŵ
û

]

, û = Kŷ. (4.62)

We need just derive the relation between ŵ(s) and ẑ(s). First, substituting y = C2x + D21w
into u and ẋK , we get

u = CKxK + DK(C2x + D21w) = DKC2x + CKxK + DKD21w

ẋK = AKxK + BK(C2x + D21w) = BKC2x + AKxK + BKD21w.

Then, substitution of this u into ẋ and z yields

ẋ = Ax + B1w + B2(DKC2x + CKxK + DKD21w)

= (A + B2DKC2)x + B2CKxK + (B1 + B2DKD21)w

z = C1x + D11w + D12(DKC2x + CKxK + DKD21w)

= (C1 + D12DKC2)x + D12CKxK + (D11 + D12DKD21)w.

Arranging these equations in vector form, we get the desired result:

F�(P,K) =

⎡

⎣
A + B2DKC2 B2CK B1 + B2DKD21

BKC2 AK BKD21
C1 + D12DKC2 D12CK D11 + D12DKD21

⎤

⎦ . (4.63)
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Exercises

4.1 Test the controllability and observability of the state equation of two-mass–spring sys-
tem in Example 4.1.

4.2 Consider the linear system

ẋ =
[
1 0
0 1

]

x +
[
1
1

]

u, y = [1, 0]x.

(a) Show that this system is neither controllable nor observable.
(b) Use block diagram to explain the reason.

4.3 Prove that the transmission zeros of a square transfer matrix G(s) are given by the set
{z|det(G(z)) = 0} when its normal rank is equal to its dimension.

4.4 Use the result of the preceding exercise to calculate the transmission zeros of transfer
matrix

G(s) =

⎡

⎢
⎢
⎣

s − 1
s + 1

1
s + 1

1
s − 1
s + 2

⎤

⎥
⎥
⎦ .

4.5 For the two-mass–spring system shown in Example 4.1, analyze the pole and zero prop-
erties of transfer functions Pu(s), Pd(d) and their relations with the inertia ratio when
the output y is selected as the load speed ωL. To simplify the analysis, all damping
ratios may be set as zeros.

4.6 Prove the following equation:

rank
[
A + BF − sI B

C + DF D

]

= rank
[
A − sI B

C D

]

.

4.7 Prove the formula for the realization of inverse system by using state equation.

4.8 Prove the formulae for the realizations of cascade and feedback connections of systems.

4.9 Prove the stability condition for MIMO systems given in Theorem 4.3 following the
steps below and using the two-norms of vector and matrix.
(a) Starting from ‖g(τ)u(t − τ)‖2 ≤ ‖g(τ)‖2‖u(t − τ)‖2 and the integral inequality∥

∥
∫

g(τ)u(t − τ)dτ
∥
∥

2 ≤
∫

‖g(τ)u(t − τ)‖2dτ , prove the sufficiency.
(b) At any time t, ‖g(t)‖2 = σmax(g(t)) has a unit right singular vector v1(t) and a unit

left singular vector u1(t) satisfying g(t)v1(t) = ‖g(t)‖2u1(t). Use the special input
vector u(t − τ) = v1(τ) to prove the necessity.

4.10 Prove that all poles of the autonomous system ẋ = Ax satisfy (λi(A)) < −σ(< 0)
iff the LMI

PA + AT P + 2σP < 0

has a positive definite solution P .
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4.11 We want to use a state feedback u = Fx to place all closed-loop poles of the linear
system ẋ = Ax + Bu in the half-plane (s) < −σ(< 0). Derive the design condition
by using the methods of variable elimination and variable change, respectively, based
on the result of previous exercise.

4.12 Prove that the output two-norm of the stable autonomous system

ẋ = Ax , y = Cx , x(0) �= 0

can be calculated as follows:

‖y‖2
2 =

∫ ∞

0
y(t)T y(t)dt = x(0)T Px (0)

where P is the solution of Lyapunov equation.

PA + AT P + CT C = 0.

4.13 For a stable transfer matrix G = (A,B,C,D), let the controllability Gramian be Lc

and the observability Gramian be Lo. Prove that, after a similarity transformation,
the controllability Gramian and observability Gramian corresponding to the realization
G = (T−1AT , T−1B,CT ,D) are L̂c = T−1LcT

−T , L̂o = TT LoT .

Notes and References

Chen [12], Kailath [44] and Anderson and Moore [2] are popular textbooks on the funda-
mentals of linear systems. LFT transformation and related topics are discussed in References
[27, 100].
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System Performance

The ultimate goal of feedback control is to achieve reference tracking and disturbance rejec-
tion. These goals are usually referred to as performance. In order to evaluate the pros and
cons of system performance objectively, we need performance criteria. In control engineer-
ing, the performance of a system is judged from two angles: transient response and steady-state
response. This chapter provides a detailed analysis on these performance criteria.

The objective of control is to make the physical variables (i.e., output) of the physical system
vary as desired. If the desired dynamic response of output is specified using a signal called
reference input, then the goal is to keep the output consistent with the reference input. On the
other hand, any system works in the physical world and is always subject to the influence of
the environment. For example, an aircraft in flight is disturbed by turbulences, and a sailing
ship is affected by waves. The turbulence and wave are the influence from the environment
when the aircraft and ship are regarded as systems. In control engineering, such influence
coming from the environment is called disturbance1. We need to ensure that the system output
does not deviate from the reference input even under the influence of disturbance. Shown in
Figure 5.1 is a typical operation situation of system in which r represents the reference input
and d the disturbance. The control to make the output consistent with the reference input is
called reference tracking. Meanwhile, the control to suppress the influence of disturbance on
the system output is called disturbance suppression. Usually, we need to achieve these two
requirements simultaneously in practice.

For a designed system, we need to evaluate its performance by using time response. The
time response can be further divided into transient response and steady-state response. The
following sections describe the evaluation methods for these responses. This chapter mainly
treats single-input single-output (SISO) systems.

1 In mechanical systems, the disturbance affects a system always in the form of force or torque. It brings about an
adverse impact on the output such as position, velocity, and so on via the dynamics of the system. In this sense, the
disturbance does not directly affect the system output. Therefore, the notion of output disturbance which acts directly
on the output is not correct physically.

Robust Control: Theory and Applications, First Edition. Kang-Zhi Liu and Yu Yao.
© 2016 John Wiley & Sons Singapore Pte. Ltd. Published 2016 by John Wiley & Sons, Singapore Pte. Ltd.
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Figure 5.1 Reference tracking and disturbance control

5.1 Test Signal

5.1.1 Reference Input

Consider the tracking control of reference input r(t) in the system shown in Figure 5.1. In
practice, there are so many kinds of reference inputs to be tracked, so it is impractical to con-
sider all of them in the design of control systems. Therefore, some special signals called test
signals are usually used to judge the tracking performance of a system in system engineering.
Typical test signals include step signal, ramp signal, and sinusoidal signal. The background
behind dealing with signal tracking in this way is that the target trajectory is always a slowly
varying smooth signal of time in most cases. If we partition a smooth signal into many seg-
ments and treat it piecewise, we may approximate the target trajectory quite accurately by
using these test signals in each time segment. An example is given in Figure 5.2. It is obvious
that when a system is able to track the test signals fast enough, it certainly can track the actual
target trajectory with a high accuracy. Therefore, we need only to consider the tracking of test
signals, on the premise that the system response is sufficiently fast.

Typical test signals are shown in Figure 5.3. Their mathematical descriptions are as follows:

Step signal

r(t) =
{

k, t ≥ 0
0, t < 0

t

r(t)

Figure 5.2 Approximation of target trajectory

t t

t

r(t) r(t) r(t)

Figure 5.3 Typical test signals
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Ramp signal

r(t) =
{

kt , t ≥ 0
0, t < 0

Sinusoidal signal

r(t) =
{

k sin ωt, t ≥ 0
0, t < 0

Particularly, the step signal with an amplitude k = 1 is called the unit step signal and denoted
by 1(t). With the unit step signal, we can simply write a ramp signal as kt · 1(t) and sinusoidal
signal as k sin ωt · 1(t).

Physically, a step signal corresponds to the switching of the working states of system, and a
ramp signal corresponds to the acceleration and deceleration. For example, when a train brakes
suddenly, the target speed is a step signal, while in the normal departure and arrival the target
speed is a ramp signal. Typical target speed in the operation of trains is depicted in Figure 5.4.
Shown in the figure is the entire procedure of a train’s operation: the train leaves a station and
accelerates until reaching the prescribed speed, then drives at this constant speed, and slows
down when approaching the next stop. Compared with this, a sinusoidal signal appears in
cases such as a circular orbit in the two-dimensional space. In system design, it depends on the
practical problem which kind of test signal should be used. Usually, the step signal is selected.

5.1.2 Persistent Disturbance

Similarly, the suppression of persistent disturbance is also a major control problem. For
instance, the gravity disturbance acting on a climbing car may be regarded as a step signal
so long as the slope is roughly the same; meanwhile, the friction or air resistance resulting
from a motion with a constant acceleration may be treated as a ramp signal. Also, a signal
changing periodically with certain amplitude, such as the motion of a wave, can be regarded
as a sinusoidal signal. The common feature of these disturbances is that they do not decay
with time. So, they are called persistent disturbances.

5.1.3 Characteristic of Test Signal

The character of a test signal is that it never converges to zero. For this reason, it is called a
persistent signal. Moreover, focusing on their Laplace transforms

L[1(t)] =
1
s
, L[t · 1(t)] =

1
s2 , L[sin ωt · 1(t)] =

ω

s2 + ω2 , (5.1)

t

v(t)

o

Figure 5.4 Target speed
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we find that these functions have singularities on the imaginary axis. Any signal is the unit
impulse response of its Laplace transform, so we can regard the Laplace transform as its model.
In this sense, the transfer functions on the right-hand side of the equations in (5.1) are models
of test signals. These transfer functions have poles on the imaginary axis, so they are unstable
models.

5.2 Steady-State Response

The output response limt→∞y(t) of a system after a sufficiently long time is called the
steady-state response. This section discusses what is a good steady-state response and what
condition is needed to achieve a good steady-state response.

5.2.1 Analysis on Closed-Loop Transfer Function

First, we analyze the conditions required to achieve a good steady-state response for a given
transfer matrix G(s). Let the input of G(s) be u(t) and the output be y(t). Since the closed-loop
system must be stable, the stability of G(s) is assumed.

5.2.1.1 Relation between Steady-State Output and Frequency Response

The following theorem shows that if the input of a stable system is a step or sinusoid, the output
also has the same feature in the steady state.

Theorem 5.1 When the input of stable system G(s) is u(t) = cos ωt · 1(t), the steady-state
output y(t) is given by

lim
t→∞

y(t) = |G(jω)| cos(ωt + arg G(jω)). (5.2)

Proof. Since G(s) is stable, the Fourier transform of its impulse response g(t) equals
F [g(t)] =

∫ ∞
0 g(τ)e−jωτdτ = G(jω). In the polar coordinate, G(jω) can be written as

|G(jω)|ej arg G(jω). Then, applying cos ωt = R(ejωt) and limt→∞ejωt = ejωt, we see that

lim
t→∞

y(t) = lim
t→∞

∫ t

0
g(τ)u(t − τ)dτ = lim

t→∞

∫ t

0
g(τ)R

(
ejω(t−τ)

)
dτ

= R

(

ejωt lim
t→∞

∫ t

0
g(τ)e−jωτdτ

)

= R
(
ejωtG(jω)

)

= |G(jω)|R
(
ej(ωt+arg G(jω))

)
= |G(jω)| cos(ωt + arg G(jω))

holds. •

As 1 = cos(0 · t), the unit step signal can be regarded as a cosine function with a frequency
ω = 0. So, its steady-state response becomes

lim
t→∞

y(t) = |G(j0)| cos arg G(j0).
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G(s) is a rational function with real coefficients, hence so is G(j0). Its phase angle arg G(j0)
is either 0 rad or π rad. Therefore, we obtain the following relation from the previous equation:

lim
t→∞

|y(t)| = |G(j0)|. (5.3)

From this theorem, we see that in order to reduce the negative effect of persistent distur-
bance u(t) = cos(ωt)1(t) on the steady-state performance of system G(s), it is necessary and
sufficient to lower the gain |G(jω)| at the same frequency ω. For a step disturbance, this means
reducing the low-frequency gain |G(j0)|.

5.2.1.2 Condition for Asymptotic Convergence

The so-called asymptotic convergence of output means that

lim
t→∞

y(t) = 0. (5.4)

In the analysis of the required conditions, the following lemma is fundamental.

Lemma 5.1 Suppose that signal f(t) is defined over t ≥ 0 and its Laplace transform f̂(s) is
a rational function. Then, limt→∞f(t) = 0 iff f̂(s) is stable.

Proof. Sufficiency follows immediately from the final value theorem.
Necessity: f̂(s) is a rational function and can be expanded into partial fractions. If f̂(s)

contains a pole on the imaginary axis or in the right half-plane, inverse Laplace transform of
the corresponding partial fraction will be either an exponential function whose exponent has a
nonnegative real part or a polynomial of time t, or a sine wave. These functions never converge
to zero. Therefore, f̂(s) must be stable. •

Therefore, for a linear system G(s), its output y(t) converges asymptotically iff ŷ(s) is
stable. In the sequel, we analyze the required conditions from the angle of transfer function.

As a simple example, consider the step input. In this case, the model of input u(t) = 1(t) is
given by

û(s) =
1
s

which has a pole at the origin. For the stability of ŷ(s) = G(s)û(s), the unstable pole of û(s)
must be cancelled by the zero of G(s). So, G(s) must satisfy

G(j0) = 0. (5.5)

Similarly, for the sinusoidal input u(t) = sin ωt · 1(t), to make its steady-state output zero,
there must hold

G(jω) = 0. (5.6)

That is, in order to ensure that the steady-state output of a test signal is zero, the transfer
function G(s) must have zeros at the locations of the poles of test signal model.

In the following subsections, we will derive conditions on the open-loop system in order to
achieve reference tracking and suppression of persistent disturbance, based on the analysis in
this subsection.
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Figure 5.5 Reference tracking problem

5.2.2 Reference Tracking

Consider the reference tracking problem shown in Figure 5.5 in which r(t) is the reference
input. The control purpose is to let the plant output y(t) follow the reference input r(t). In
order to evaluate the reference tracking, we look at the tracking error

e(t) = r(t) − y(t). (5.7)

Let the transfer function from reference input to tracking error be Her (s) and the model of
reference input be R(s). Then, the tracking error becomes

ê(s) = Her (s)R(s). (5.8)

Since physical systems have inertia, their output can only vary smoothly. Therefore, the
output of a system cannot track the test signal instantaneously; only after the transient process
can it track the test signal. However, at least we hope to reduce the error limt→∞e(t) between
the output and the reference input after a sufficiently long time, that is, in the steady state
(t → ∞). Ideally, we hope that the output matches the reference input perfectly, that is,
e(∞) = 0. This is called asymptotic tracking.

5.2.2.1 Relation between Tracking Error and Loop Gain

In order to derive conditions on the open-loop transfer function, we define the loop gain as

L(s) = P (s)K(s) (5.9)

for simplicity. The closed-loop transfer function from reference input to tracking error is
given by

Her (s) =
1

1 + L(s)
. (5.10)

To reduce the steady-state tracking error w.r.t. the step reference input, we need

|Her (j0)| =
∣
∣
∣
∣

1
1 + L(j0)

∣
∣
∣
∣ � 1. (5.11)

So, there must be
|L(j0)| � 1, (5.12)

that is, the loop gain L(s) must have a sufficiently high gain at low frequency. Similarly, in
order to reduce the steady-state tracking error of the sinusoidal reference input with an angular
frequency ω0, there should be

|L(jω0)| � 1. (5.13)
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5.2.2.2 Asymptotic Tracking Conditions

To guarantee the asymptotic tracking of step signal, we need Her (j0) = 0. From it, we have

Her (j0) =
1

1 + L(j0)
= 0 ⇔ |L(j0)| = ∞

⇔ L(s) has a pole at s = 0. (5.14)

In other words, the loop gain L(s) should contain the model R(s) = 1/s of the reference
input. As shown in Figure 5.5, the output y(t) of plant P (s) is also the output of loop gain
of L(s). L(s) is driven by the tracking error e(t) which should converge to zero. In order to
ensure that the output y(t) is able to maintain a constant value, the loop gain L(s) must have
some component that can keep the past data (energy), that is, an integrator (see Figure 5.6).
However, the integrator is also the model of step signal. This indicates that the loop gain L(s)
should contain the model of step signal in order to guarantee the asymptotic tracking of step
signal.

Furthermore, when the plant P (s) has a zero at the origin, this unstable zero cannot be
cancelled by the pole of controller K(s) in order to ensure the internal stability. That is, there
cannot be any integrator in the loop gain of L(s) = P (s)K(s) so that the output is unable to
track the step signal.

The same conclusion applies to other test signals. Its generalization is the famous internal
model principle.

Theorem 5.2 (Internal model principle 1) Suppose that the SISO system in Figure 5.5 is
internally stable and the model of reference input is R(s) = NR(s)/MR(s) and antistable.
Then, the following statements are true:

1. To achieve asymptotic tracking, the zeros of plant P (s) cannot coincide with the poles of
R(s).

2. When condition (1) is true, the necessary and sufficient condition for the asymptotic track-
ing is that the loop gain L(s) contains 1/MR(s).

Proof. (1) Coprimely factorized the plant and controller as P = NP /MP and
K = NK/MK . Then, the numerator and denominator polynomials of the loop gain
L(s) = N(s)/M(s) become N = NP NK , M = MP MK , respectively. If NP and MR have
a common factor (s − λ)(R(λ) ≥ 0), this factor cannot be cancelled by the factor of MK(s)
(corresponding to controller poles) in order to ensure the internal stability. Therefore, the

1
s L(s)

yr −

Figure 5.6 Signals in reference tracking
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factor (s − λ) appears in N(s) such that L(λ) = 0. So, at s = λ, the transfer function Her (s)
from reference input to tracking error becomes

Her (λ) =
1

1 + L(λ)
= 1.

Hence, it has no zeros at s = λ. Therefore, ê(s) = Her (s)R(s) is unstable, and the tracking
error cannot converge to zero.

Further, the Laplace transform of tracking error can be written as

ê(s) =
1

1 + L(s)
R(s) =

M(s)
M(s) + N(s)

NR(s)
MR(s)

.

Since all roots of MR(s) are located in the right half-plane, we must cancel MR(s) using a
factor of M(s) in order to stabilize ê(s). So it is necessary and sufficient for M(s) to contain
MR(s). •

Since the loop gain L(s) contains the model of reference input, namely, there is a model
of reference input inside the closed loop, 1/MR(s) in L(s) is called the internal model. The
internal model principle is also true for multiple-input multiple-output (MIMO) systems. The
difference lies in that the internal model is no longer simply a copy of the model of reference
input. The internal model gets rather complicated due to the coupling between inputs and
outputs. An example is illustrated in the following .

Example 5.1 Consider the system shown in Figure 5.7. The control purpose is to ensure that
the output y1(t) tracks the sinusoidal signal r1(t) = sinωt · 1(t) and the output y2(t) tracks
the step signal r2(t) = 1(t). The transfer matrices of the two inputs, two outputs plant and
controller are

P (s) =
[

P1(s) 0
εP1(s) P2(s)

]

, K(s) =
[
K1(s) 0

0 K2(s)

]

,

respectively. Here, set the loop gain of these two subsystems as L1(s) = P1(s)K1(s) and
L2(s) = P2(s)K2(s), respectively. It follows from the block diagram that

ŷ1(s) =
L1

1 + L1
r̂1(s), ŷ2(s) =

L2

1 + L2
r̂2(s) +

ε

1 + L2
ŷ1(s).

K2 P2
y2r2δ

−
1
s

ω
s2+ω2 −

δ r1 y1P1K1
e1

e2

u1

u2

Figure 5.7 MIMO system with a coupling term
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This means that the output y1 acts as a disturbance for the output y2. Therefore, the tracking
errors become

ê1(s) =
1

1 + L1

ω

s2 + ω2 , ê2(s) =
1

1 + L2

1
s
− ε

1 + L2
ŷ1(s), (5.15)

respectively. Obviously, e1(∞) = 0 iff L1(s) contains 1/(s2 + ω2). Meanwhile, as ŷ1(s) has
1/(s2 + ω2), in order to ensure that e2(∞) = 0, L2(s) must contain 1/(s2 + ω2) in addition
to 1/s. Thus, the overall loop gain of the system

L(s) = P (s)K(s) =
[

L1 0
εL1 L2

]

should contain the following internal model:
⎡

⎢
⎣

1
(s2 + ω2)

0

0
1

s(s2 + ω2)

⎤

⎥
⎦ . (5.16)

Moreover, it is observed from the previous description that the asymptotic tracking of refer-
ence input is achieved by producing, at the output port of open-loop transfer function L(s), a
signal identical to the reference input by using the internal model. This does not depend on the
parameters of the system. It implies that the asymptotic tracking is guaranteed as long as the
closed-loop system is stable, even if the system parameters change. In this sense, the internal
model offers a guarantee for the robust asymptotic tracking.

5.2.3 Disturbance Suppression

Figure 5.8 shows a plant subject to the influence of a disturbance. In practical systems,
examples of disturbance include mechanical disturbance caused by turbulence, wave, and
so on; friction; gravity disturbance; as well as temperature variation caused by the ambient
air, and so on. The control objective is to minimize the negative effect on the system output
brought by persistent disturbances.

5.2.3.1 Conditions for Steady-State Disturbance Suppression

The transfer function between the disturbance d(t) and output y(t) in the system shown in
Figure 5.8 is

Hyd (s) =
P (s)

1 + P (s)K(s)
. (5.17)

d

u
K P y

−

Figure 5.8 Asymptotic rejection of persistent disturbance
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To suppress the step disturbance, |Hyd (j0)| � 1 is needed. There are two ways to accomplish
this:

(1)|P (j0)| � 1 or (2)|K(j0)| � 1.

Plant satisfying (1) seldom exists in reality. This is because the main objective of control system
is reference tracking. In order to track low-frequency sinusoidal signals well, it is necessary
to raise the loop gain |L| = |PK | sufficiently high in the same frequency band. So, plants are
usually designed as systems with high low-frequency gain.

On the other hand, (2) is a requirement on the controller and not contradictory with the
objective of raising the loop gain. So it can be realized. Similarly, in order to suppress a sinu-
soidal disturbance with an angular frequency ω, it is sufficient for the controller to satisfy
|K(jω)| � 1.

5.2.3.2 Asymptotic Rejection of Persistent Disturbance

The ideal case is to completely eliminate the influence of disturbance on the steady-state out-
put when the model of disturbance is known precisely. According to the system structure in
Figure 5.8, it can be envisioned that the disturbance can be rejected asymptotically only if the
controller K(s) can produce the same signal to cancel the disturbance (Figure 5.9). Therefore,
the controller should contain the model D(s) of disturbance (internal model).

For example, to eliminate a step disturbance asymptotically, the controller K(s) must have
the disturbance model D(s) = 1/s. Mathematically, this is proved as follows. Here, factorize
the plant and controller as

P (s) =
NP (s)
MP (s)

, K(s) =
NK(s)
MK(s)

(5.18)

by using coprime numerator and denominator polynomials. Then, the output can be written as

ŷ(s) =
P (s)

1 + P (s)K(s)
D(s) =

NP (s)MK(s)
MP (s)MK(s) + NP (s)NK(s)

× 1
s
. (5.19)

Since the asymptotic convergence of y(t) to zero is equivalent to the stability of ŷ(s), we must
cancel the unstable pole p = 0 by the zero of NP (s)MK(s). Therefore,

NP (0)MK(0) = 0 ⇔ NP (0) = 0 or MK(0) = 0 (5.20)

u d

y− K(s) P (s)

Figure 5.9 Signals in the control of persistent disturbance
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is necessary. That is, either P (s) has a zero z = 0 or K(s) has a pole p = 0. However, it
is very rare that the plant possesses a zero at the origin. So the controller should have an
integrator.

Generalizing the previous analysis, we obtain the following theorem.

Theorem 5.3 (Internal model principle 2) Suppose that the SISO system in Figure 5.8 is
internally stable and the disturbance model is D(s) = ND(s)/MD(s) and antistable. Fur-
thermore, assume that the zeros of plant P (s) are different from the poles of D(s). Then, the
necessary and sufficient condition for the asymptotic rejection of disturbance (y(t) → 0) is
that the controller K(s) contains 1/MD(s).

Proof. Coprimely factorizing the plant P (s) and controller K(s) as (5.18), Laplace trans-
form of the output can be written as

ŷ(s) =
P (s)

1 + P (s)K(s)
D(s) =

NP (s)MK(s)
MP (s)MK(s) + NP (s)NK(s)

ND(s)
MD(s)

.

Since all roots of MD(s) are unstable and NP , MD are coprime, to stabilize ŷ(s), we must
cancel MD(s) by a factor of MK(s). That is, it is necessary and sufficient for MK(s) to have
MD(s). •

Further, when the plant has zeros the same as some of the poles of disturbance model, it is
sufficient for the controller to contain the remaining poles of D(s). In this sense, the zeros of
plant are not a barrier for the asymptotical rejection of disturbance.

In the case of asymptotic tracking, it is not necessary for the controller to contain an inter-
nal model so long as the plant has an internal model. In contrast, the controller K(s) must
contain an internal model in the asymptotic rejection of disturbance. This distinction is worth
noting.

In the case where reference input and persistent disturbance exist simultaneously, the con-
dition for the asymptotic tracking of reference input is as follows.

Corollary 5.1 In the system of Figure 5.1, assume that the reference input model is
R(s) = NR(s)/MR(s) and disturbance model is D(s) = ND(s)/MD(s). Both are coprime
factorizations and antistable. The least common multiple of MR(s) and MD(s) is φ(s). When
the zeros of plant are different from those of φ(s), the output can track the reference input
r(t) asymptotically as long as the controller contains 1/φ(s).

Proof. As MK(s) contains φ(s), it also contains MD(s). According to Theorem 5.3, the
steady-state response of disturbance is zero. Moreover, the loop gain L(s) = P (s)K(s) con-
tains 1/MR(s) owing to the given condition. Therefore, the steady-state output is the same
as the reference input according to Theorem 5.2. The output of plant is the sum of these two
responses. So, the output asymptotically tracks the reference input. •

Further, when the poles of P (s) and R(s) are distinct from each other and the zeros of P (s)
are distinct from the roots of φ(s), this condition becomes necessary.
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5.3 Transient Response

The so-called transient response indicates the response before the system output converges
to the steady state. In reference tracking and disturbance suppression problems, the output is
required not only to converge quickly to the steady state but also have small overshoot.

5.3.1 Performance Criteria

In the evaluation of the transient response of a system, the most typical method is to use the step
response as an indicator to judge the quality of transient response. Typical transient response
of a stable system is shown in Figure 5.10, in which the output y(t) has been normalized by the
steady-state value y(∞). We use the following performance indicators to measure the quality
of response:

Rise time tr: The time needed for the output y(t) to rise from 10% to 90% of the steady-state
value

Settling time ts: The time needed for the output to converge to a prescribed range ε around its
steady-state value (usually ±1% or ±5%)

Overshoot Mp: The relative error (ymax − y(∞))/y(∞) between the maximum output ymax
and the steady-state value

These quantities are called specifications; their meanings are illustrated in Figure 5.10. The
tracking control aims at following the reference input as quickly as possible while suppressing
the overshoot as more as possible. Therefore, the smaller these specifications are, the bet-
ter the system performance is. The responses of stable linear systems all possess a form of
exponential function of time. Mathematically, it takes infinitely long time to converge to the

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
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t (s)
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/y
(∞

)

Mp

tr

5%
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Figure 5.10 Transient response
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steady state completely. In this sense, it may be said that the convergence time of response is
the same for any stable system. However, from our experience we know that the convergence
rates of systems are not the same. One of the indicators specifying this difference is the set-
tling time. That is to say, the settling time is regarded as the convergence time in engineering
practice.

5.3.2 Prototype Second-Order System

Let us look at the relation between these specifications and system parameters, particularly
the relation with pole position. For general systems, this relationship is too complicated to
provide a universal guide. However, in most cases, the poles of a system include a pairs of
complex poles relatively closed to the imaginary axis, and the other poles are far away from
the imaginary axis. From the partial fraction expansion of transfer function, it is seen that the
output response is composed of terms corresponding to all poles. Each term is called a mode.
The pair of complex poles that are the closest to imaginary axis are called the dominant poles.
Compared to the dominant poles, the other modes converge to zero much faster. That is, the
output response can be approximated by that of the dominant poles, excluding the initial period
of time. Therefore, as long as we know the relationship between the parameters of low-order
system and the response, it may also be instructive for high-order systems.

Example 5.2 Compare the step responses of the following two systems:

G1(s) =
8

s2 + 4s + 8
, G2(s) =

80
(s2 + 4s + 8)(s + 10)

.

From the responses in Figure 5.11, it is clear that there is no essential difference except the rise
times. In fact, although G2 has a pole −10, it is far away from the imaginary axis compared to
the dominant poles −2 ± j2 (which are also the poles of G1). The response of this pole con-
verges five times faster than that of the dominant poles and disappears soon. Mathematically,

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t (s)

Figure 5.11 Comparison of step responses (solid: G1, dotted: G2)
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G2 can be approximated by G1:

G2(s) =
8

s2 + 4s + 8
× 1

s/10 + 1
≈ 8

s2 + 4s + 8
= G1(s).

This approximation is precise enough in the low frequency. Since the low-frequency com-
ponents are the major part in a step signal, their transmission is mainly determined by the
low-frequency characteristics of transfer function. This is why the step responses between G2
and G1 make no big difference.

For this reason, we usually consider the following prototype second-order system

H(s) =
ω2

n

s2 + 2ζωns + ω2
n

. (5.21)

Here, ζ is the damping ratio and ωn the natural frequency. The poles of H(s) are

p1,2 = −ζωn ± jωn

√
1 − ζ2. (5.22)

The feature of this system is that it has no finite zeros and the low-frequency gain H(j0)
is equal to 1. By the final value theorem, when the step input is applied to the H(s), the
steady-state response is given by

y(∞) = lim
s→0

sŷ(s) = lim
s→0

s × H(s)
1
s

= H(0) = 1. (5.23)

So, the output can asymptotically track step reference input. Next, we discuss the relationship
between the specifications on the transient response and the parameters of H(s).

5.3.2.1 Specification and Parameter

It can be proved that when the damping ratio is in the range of 0 < ζ < 1, the following rela-
tions [30] hold between the parameters of prototype second-order system and the specifications
(refer to Exercise 5.6).

tr ≈ 1.8
ωn

(5.24)

Mp = e
− πζ√

1−ζ2 (5.25)

ts ≈ 4.6
ζωn

(ε = ±1%),
3

ζωn

(ε = ±5%). (5.26)

We look into the case of ε = ±5%. The following conclusions can be drawn from the previous
relations:

1. The overshoot Mp only depends on the damping ratio ζ. Mp drops when ζ increases (see
Figure 5.12).

2. The product of ζ and ωn equals the magnitude of the pole’s real part. The settling time ts
decreases when ζωn increases.
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Figure 5.12 Relation between overshoot Mp and damping ratio ζ

Hence, given the overshoot Mp and settling time ts, the parameter ranges satisfying the
specifications are as follows:

ζ ≥ ζ(Mp) =
| ln Mp|√

π2 + | ln Mp|2
(5.27)

ζωn ≥ 3
ts

. (5.28)

5.3.2.2 Specification and Pole Position

Now, we investigate the relation between the overshoot, settling time, and the poles of proto-
type second-order system. First, according to (5.28), the real parts of these two complex poles
must satisfy

R(p1,2) = −ζωn ≤ − 3
ts

. (5.29)

Second, the poles of prototype second-order system can be expressed as

p1,2 = −ζωn ± jωn

√
1 − ζ2 = ωnej(π±θ), θ = arccos ζ

in the polar coordinate, in which arccos ζ is a decreasing function of ζ. So, owing to (5.27),
the angle θ should meet

θ ≤ θp := arccos ζ(Mp). (5.30)

Drawing the allowable region of poles in the complex plane, we get the shaded part in
Figure 5.13. For example, the angle θp = 45o corresponds to ζ(Mp) = 0.707, that is,
Mp = 5%. This relationship will play an important role in the pole placement design in
Chapters 6 and 19.
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− 3
ts

θp

Im

Re
0

Figure 5.13 Allowable region of poles

Example 5.3 Determine the ranges of parameters (ζ, ωn) such that tr ≤ 0.6[s], Mp ≤ 10%,
and ts ≤ 3[s].

First, the damping ratio corresponding to Mp = 10% is

ζ(Mp) =
| ln 0.1|

√
π2 + | ln 0.1|2

≈ 0.59.

So, ζ ≥ 0.59 must hold. Second, from the specifications on the rise and settling times, we
obtain

ωn ≈ 1.8
tr

≥ 3, ζωn ≥ 3
ts

≥ 1.

When ζ ≥ 0.59, ωn ≥ 3, the condition ζωn ≥ 1 is satisfied automatically. So, finally the
ranges of allowable parameters become

ζ ≥ 0.59, ωn ≥ 3.

5.3.3 Impact of Additional Pole and Zero

5.3.3.1 Impact of Additional Zero

Let us analyze the change of response when a zero is added to the prototype second-order
system (5.21). The new transfer function is

H(s) =
ω2

n

(
1 + 1

aζωn
s
)

s2 + 2ζωns + ω2
n

, a ∈ R. (5.31)

Note that its low-frequency gain H(j0) has been adjusted to that of the prototype second-order
system. The additional zero is

z = −aζωn. (5.32)

Especially, this zero approaches the imaginary axis as a → 0. Calculating the step responses
for different a, we get the results of Figure 5.14. Compared to the prototype second-order
system, it has the following features:

• The settling times are almost the same.
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Figure 5.14 Step response with an additional zero

• When a > 0, the smaller a is, the bigger the overshoot is. Meanwhile, when a � 1, the
response approaches that of the prototype second-order system.

• When a < 0, undershoot (the response with a sign opposite to the input) appears at the
initial stage. The smaller |a| is, the bigger the undershoot is. Note that the zero is unstable
in this case.

That is to say, a zero close to the imaginary axis either increases the overshoot of the step
response or causes a big undershoot. This phenomenon is explained qualitatively as follows.
The transfer function (5.31) can be decomposed as

H(s) =
ω2

n

s2 + 2ζωns + ω2
n

+
1

aζωn

× s × ω2
n

s2 + 2ζωns + ω2
n

. (5.33)

Let the step response of prototype second-order system be y0(t). Then, since the variable s
represents a differentiator, the step response of transfer function H(s) becomes

y(t) = y0(t) +
1

aζωn

ẏ0(t). (5.34)

y0(t) rapidly rises at the initial stage, so the rate of change (value of derivative) is large. There-
fore, when the absolute value of a is small, positive a will cause a large overshoot, while
negative a will cause a large undershoot. Moreover, the smaller |a| is, the stronger the effect
of the second term is. When y0(t) gradually gets close to the steady state, its derivative also
gradually converges to zero such that its impact on the settling time diminishes. In contrast,
when |a| is big, the differentiation impact decreases greatly. Then, the response also gets close
to the prototype. In summary, the response of a system depends not only on the poles but also
on the zeros.
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Figure 5.15 Step response with additional pole

5.3.3.2 Influence of Additional Pole

Adding to the prototype second-order system of (5.21) a new pole which is less than the real
part of the dominant poles, the transfer function becomes

H(s) =
ω2

n(
1 + 1

aζωn
s
)

(s2 + 2ζωns + ω2
n)

, a ≥ 1. (5.35)

Here, we have adjusted the low-frequency gain of the first-order system 1/(1 + s/aζωn) such
that the low-frequency gain H(j0) is 1. The additional pole is

p = −aζωn < 0. (5.36)

When a → 1, this pole gets close to the real part of the poles of prototype system. Simulations
w.r.t. various values of a yield the step responses shown in Figure 5.15. In this figure, we see
that the rise time gets longer. This impact is very strong especially when a → 1. The reason is
that after adding a first-order system, output of the prototype system has to pass through this
first-order system before reaching the output port.

Here, we take the poles of prototype system as the dominant poles. So the case of a < 1 is
not investigated.

5.3.4 Overshoot and Undershoot

In reference tracking problems, the response of some system may take a sign opposite to the
final value in certain period of time. The part of response with a sign opposite to the final value
is called undershoot. Let us examine the following example.

Example 5.4 Calculating the step responses for two transfer functions

G1(s) =
8(1 − s)

s2 + 4s + 8
, G2(s) =

8(2 − s)(1 − s)
(s + 2)(s2 + 4s + 8)

,
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Figure 5.16 Various undershoot phenomena

we get the result shown in Figure 5.16. The step response y1(t) of G1(s) has a sign opposite
to the final value around t = 0 s, while the step response y2(t) of G2(s) has a opposite sign
around t = 1 s.

In order to distinguish the undershoot of y1(t) from that of y2(t), we call the undershoot
occurring around t = 0 like y1(t) as type A undershoot and call the undershoot occurring
around t > 0 like y2(t) as type B undershoot.

In engineering practice, overshoot or undershoot phenomenon is not allowed in most cases.
For example, in the gantry crane used for loading and unloading cargos in port, type A under-
shoot in cargo position response means that the cargo will collide with the crane at the starting,
and overshoot implies that the cargo will collide with the crane at the stopping. These two
cases are not allowed. Then, what is the cause for the occurrence of these phenomena? This
section will give a detailed discussion on this query and reveal the mechanism why they
happen [84].

Theorem 5.4 Assume that the transfer function H(s) satisfies H(0) �= 0. The step response
undershoots if H(s) has positive real zeros.

Proof. Let this zero be z > 0; then H(z) = 0. Noting that z is located in the convergence
domain of the Laplace transform ŷ(s) of step response y(t), we have

0 = H(z)
1
z

= ŷ(z) =
∫ ∞

0
y(t)e−zt dt .

Consider the case of H(0) > 0 first. Since y(∞) = H(0) > 0, y(t) > 0 ⇒ y(t)e−zt > 0 for
sufficiently large t. Thus, to satisfy the previous equation, there must be a time period in which
y(t) < 0. The conclusions for the H(0) < 0 case are proved similarly. •

The following theorem gives the condition for type A undershoot [69].
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Theorem 5.5 The step response of stable transfer function

H(s) = K
(s − z1)· · · (s − zm)
(s − p1)· · · (s − pn)

=
N(s)
M(s)

, K > 0, n ≥ m

has type A undershoot iff the number of positive real zeros is odd.

Proof. When type A undershoot occurs, the sign of initial output response is opposite to
the final value. For any complex pole pi, its conjugate pi is also a pole. Then, (−pi)(−pi) =
|pi|2 > 0 holds. For a real pole pj , we know that −pj > 0 from the stability of system. Hence,
M(0) = (−p1)· · · (−pn) > 0. On the other hand, when positive real zeros exist, N(0) =
(−z1)· · · (−zm) < 0 when its number is odd and N(0) > 0 when its number is even. Fur-
ther, N(0) > 0 in the absence of positive real zeros. From ŷ(s) = H(s)/s and the final value
theorem, we obtain

y(∞) = lim
s→0

s · H(s)
1
s

= H(0) =
N(0)
M(0)

. (5.37)

Therefore, y(∞) < 0 when the number of positive real zeros is odd and y(∞) > 0 otherwise.
Next, we note that the relative degree of H(s) is n − m and use it to examine the sign of

the initial response. Based on the Laplace transform of derivative, initial value theorem, and
relative degree, we see that

y(0+) = lim
s→∞

sŷ(s) = lim
s→∞

s · H(s)
1
s

= lim
s→∞

H(s) = 0

ẏ(0+) = lim
s→∞

s · (sŷ(s) − y(0)) = lim
s→∞

sH (s) = 0

...

y(n−m−1)(0+) = lim
s→∞

sn−m−1H(s) = 0

y(n−m)(0+) = lim
s→∞

sn−mH(s) = K > 0.

By the smoothness of response, y(n−m)(t) ≈ y(n−m)(0+) = K (0 < t ≤ ε) holds for a suffi-
ciently small ε > 0. So

y(ε) =

n−m
︷ ︸︸ ︷∫ ε

0
· · ·

∫ tn−m+1

0
y(n−m)(tn−m)dtn−m· · · dt1 ≈

K

(n − m)!
εn−m > 0

is proved, and the theorem is concluded. •

Moreover, the following result holds about the overshoot [84]. Its proof is similar to
Theorem 5.4 and can be accomplished by analyzing the tracking error ê(p) at the positive
real pole p of L(s) (Exercise 5.7).

Theorem 5.6 In the unity feedback system of Figure 5.5, assume that the loop gain L(s) =
P (s)K(s) contains positive real poles and more than one integrator. Then, the step response
undershoots.
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Figure 5.17 Frequency response and bandwidth of prototype second-order system

5.3.5 Bandwidth and Fast Response

Drawing the frequency response of closed-loop transfer function H(s) from reference input to
output, we get a shape as illustrated in Figure 5.17 in general. Its low-frequency gain is almost
1 and have a low-pass property. The input–output relationship of H(s) is

ŷ(jω) = H(jω)û(jω). (5.38)

The output and input are in good agreement in the frequency band where the gain is 1. Now,
we consider how to judge whether the output is consistent with the input. The commonly used
rule in control engineering is that as long as the output power |ŷ(jω)|2 is not lower than half
of the input power |û(jω)|2, both are regarded as consistent2. This means that in the band in
which

|H(jω)| ≥ 1√
2
, (5.39)

the reference tracking performance is good enough. Here, we call the smallest frequency ω
satisfying

|H(jω)| =
1√
2
≈ −3[dB] (5.40)

as the bandwidth3, denoted by ωB . Obviously, (5.39) holds as long as ω ≤ ωB . Therefore, the
bandwidth ωB represents the frequency range in which the output can track the input.

For the prototype second-order system, the rapidity of response (i.e., rise time) is roughly
inversely proportional to the bandwidth:

tr ∼ 1
ωB

. (5.41)

2 In fact, this is a concept borrowed from communication engineering.
3 The bandwidth is defined by |H(jωB)| = |H(j0)|/

√
2 for low-pass transfer functions. But for high-pass transfer

functions, the bandwidth should be defined by |H(jωB)| = |H(j∞)|/
√

2.

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

140 Robust Control

To understand this, it suffices to analyze the relationship between the bandwidth ωn and the
characteristic frequency ωn. For the prototype second-order system, we get by solving (5.40)
that

ωB = ωn

√

1 − 2ζ2 +
√

1 + (1 − 2ζ2)2. (5.42)

Obviously, ωB is proportional to ωn. Since the rise time is tr ≈ 1.8/ωn, tr is inversely pro-
portional to ωB . As for systems other than the prototype second-order system, so long as
their frequency responses have a shape similar to the prototype second-order system in the
low-frequency band and its gain rolls-off in other frequency bands, this relationship is approx-
imately true. So, the bandwidth is an important indicator of fast response for this type of
systems. It should be noted, however, that this relationship is only true for the prototype
second-order system and systems with a similar frequency characteristics. Hence, one should
be cautious not to stretch this interpretation.

5.4 Comparison of Open-Loop and Closed-Loop Controls

In this section, we compare the reference tracking and disturbance rejection performances for
the open-loop system of Figure 5.18 and the closed-loop system of Figure 5.19, and discuss
their advantages and disadvantages.

5.4.1 Reference Tracking

To track any reference input perfectly and instantaneously, the transfer function from reference
input r(t) to output y(t) must be 1. This may be said to be the ultimate goal of control system
design.

Consider the open-loop control system first, where the controller is denoted by Ko(s).
Assume that the plant P (s) is stable and its zeros are also stable. This kind of systems is
called minimum phase systems. Then, the inverse system P−1(s) is proper and stable if the

PKo
u

y

d

r

Figure 5.18 Open-loop control system

PKc
−

ue
y

d

r

n

Figure 5.19 Closed-loop control system

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

System Performance 141

relative degree of P (s) is zero. Therefore, from

Ko(s) = P−1(s) ⇒ L(s) = P (s)Ko(s) = 1 (5.43)

we see that the open-loop transfer function becomes 1. However, any physical system has
inertia so that its relative degree is greater than 1 (this can be understood by considering the
transfer function from force to speed/displacement in mechanical systems). For this reason,
the controller designed above is not proper and cannot be realized.

However, for a minimum phase plant with a relative order γ > 0, the controller

Ko(s) = P−1(s)
1

(εs + 1)γ
, ε > 0 (5.44)

is proper and can be realized. In this case, the open-loop transfer function becomes

L(s) = P (s)Ko(s) =
1

(εs + 1)γ
. (5.45)

Taking a small enough parameter ε, the system is able to track the reference input (Figure 5.20)
over a fairly wide band. However, such open-loop control cannot be realized if the plant is not
minimum phase.

On the other hand, the closed-loop transfer function in feedback control is

H(s) =
P (s)Kc(s)

1 + P (s)Kc(s)
(5.46)

in which the feedback controller is denoted by Kc(s). Under the same conditions of minimum
phase and the relative degree, to achieve the same transfer function as the open-loop control,
we may compute the controller from H(s) = 1/(εs + 1)γ . What we obtain is the following
proper transfer function:

Kc(s) = P−1(s)
1

(εs + 1)γ − 1
, 0 < ε � 1. (5.47)

Factorizing the plant coprimely as P (s) = N(s)/M(s) by numerator and denominator poly-
nomials, the characteristic polynomial of closed-loop system is obtained as

p(s) = M(s)N(s)(εs + 1)γ . (5.48)

From the minimum phase assumption on the plant, the roots of M(s) and N(s) are all stable.
Therefore, all characteristic roots are stable. But this feedback controller Kc(s) is sensitive

ω1

|L(jω)|

1

Figure 5.20 Gain plot of open-loop transfer function L(s)
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to sensor noise n(t). That is, when comparing the open-loop control input uo(t) with the
closed-loop control input uc(t), we can see clearly that the closed-loop control is affected
by noise from

ûo(s) = Ko(s)r̂(s) = P−1(s)
1

(εs + 1)γ
r̂(s) (5.49)

ûc(s) =
Kc(s)

1 + P (s)Kc(s)
[r̂(s) − n̂(s)] = P−1(s)

1
(εs + 1)γ

[r̂(s) − n̂(s)]. (5.50)

In addition, it is also seen from the equation

ŷc(s) = H(s)[r̂(s) − n̂(s)] (5.51)

about the output yc(t) of closed-loop control system that a good tracking performance can-
not be expected in the frequency band where the noise n̂(s) has a large amplitude. So, for a
minimum phase system, we conclude that open-loop control is superior to closed-loop control
when its model is accurately known.

5.4.2 Impact of Model Uncertainty

In the previous section, we have compared the open-loop control and closed-loop control under
the condition that the plant model P (s) is known precisely. However, it is unrealistic to obtain
an accurate system model in engineering practice. There is a variety of uncertainties in plant
model. As an example, we make a comparison using an operational amplifier with parameter
uncertainty.

Consider the operational amplifier shown in Figure 5.21(a). There is a strong nonlinearity
in the operational amplifier, that is, the gain varies with the input amplitude. Assume that the
gain of operational amplifier A is in the range of 103 ∼ 104. Then, the relative error of the
output is equal to

|ymax| − |ymin|
|ymin|

=
104u − 103u

103u
= 900%. (5.52)

This means that the maximum error of the output in the open-loop control is up to nine times.
Compared to this, when two resistors R and r are connected as in Figure 5.21(b), the cur-

rent flowing into the operational amplifier is almost zero since the input impedance of the

A

u
y−

+

(a)

R

r

e
Au

y

−

+

(b)

Figure 5.21 Operational amplifier (a) Single body (b) With feedback
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operational amplifier is very large. So, the same current flows through the resistances R and r
so that

u − e

r
=

e − y

R

holds. Solving from this equation for the input voltage e of the operational amplifier, we get

e =
rR

r + R

(u

r
+

y

R

)
. (5.53)

The relation between the input and output voltages of the operational amplifier is

y = −Ae. (5.54)

Plotting these equations in a block diagram, we obtain the feedback system of Figure 5.22.
From this figure, we see that the gain between the input and output is

y

u
= − R

r + r+R
A

. (5.55)

Setting R = 10r, then
y

u
= − 10

1 + 11
A

= −9.881 ∼ −9.989

and the relative error becomes

9.989 − 9.881
9.881

≈ 1.09%.

That is, the error is reduced drastically. To achieve a gain of 103, it suffices to simply connect
three operational amplifiers in series. In this case, the relative error

9.9893 − 9.8813

9.8813 ≈ 2.9% (5.56)

is still very small. Therefore, via feedback control we have obtained a stable gain. This
shows that feedback control has a strong resistance ability to model uncertainty, which
is known as robustness. However, the price paid is that three operational amplifiers have
to be used in the closed-loop control in order to achieve the same gain. Further, feedback
control requires sensors in general, which is a major cause for pushing up the product price.
Therefore, if more emphasis is placed on the product price rather than the control precision,
we should use the open-loop control. Typical examples are microwaves, washing machines,
and so on.

−A
rR

r+R+
yu

1/R

1/r
e

Figure 5.22 Equivalent block diagram for the operational amplifier with feedback
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Figure 5.23 The case where the disturbance is not measured
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r A
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Figure 5.24 The case where the disturbance is measured

5.4.3 Disturbance Suppression

Next, we consider the influence on the output by a disturbance d(t) entering the closed loop
from the input port. Here, we will investigate two cases: (1) the disturbance is not measured,
and (2) the disturbance is measured. The part excluding the dashed line in Figures 5.23 and
5.24 represent the open-loop system.

5.4.3.1 Case 1: Unmeasured Disturbance

In the open-loop system, we get from Figure 5.23 that

ŷo(s) = P (s)K(s)r̂(s) + P (s)d̂(s). (5.57)

The deviation of output caused by the disturbance is ŷod(s) = P (s)d̂(s). On the other hand,
the output of closed-loop system is

ŷc(s) =
P (s)K(s)

1 + P (s)K(s)
r̂(s) +

P (s)
1 + P (s)K(s)

d̂(s) (5.58)

in which the deviation of output caused by the disturbance is ŷcd(s) = P d̂/(1 + PK ). They
have the relationship

ŷcd(s) =
1

1 + P (s)K(s)
ŷod(s). (5.59)

Raising the gain of controller K(s) can reduce the gain of 1/(1 + PK ) so that |ŷcd(jω)| �
|ŷod(jω)|. Therefore, the closed-loop control is insensitive to disturbance.

Then, why there is such a huge difference between the open-loop and closed-loop controls?
From Figure 5.23, we see clearly that the input of controller does not contain any information
about the disturbance in the open-loop control, so the open-loop control is powerless to distur-
bance. Meanwhile, in closed-loop control the information of disturbance is reflected indirectly
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by its influence on the output. The key of closed-loop control is utilizing this information.
Therefore, it is possible to suppress the disturbance effectively if the controller is designed
appropriately.

5.4.3.2 Case 2: Measured Disturbance

When the disturbance is measured online, we can offset the disturbance directly as shown in
Figure 5.24, in which A(s) is the transfer function of the actuator. In the open-loop control,
the deviation of output caused by disturbance is

ŷod(s) = P (s)[1 − A(s)F (s)]d̂(s). (5.60)

When A(s) is minimum phase and the relative degree is γ, if we apply a prefilter

F (s) = A−1(s)
1

(εs + 1)γ
, (5.61)

then the output error caused by the disturbance becomes

ŷod(s) = P (s)
[

1 − 1
(εs + 1)γ

]

d̂(s). (5.62)

Letting ε → 0, it is possible to eliminate the influence of disturbance over a sufficiently wide
frequency band.

On the other hand, when we offset the disturbance in the same way in the closed-loop control
system, the deviation of output caused by the disturbance is

ŷcd(s) =
P (s)

1 + P (s)A(s)K(s)
[1 − A(s)F (s)]d̂(s)

=
1

1 + P (s)A(s)K(s)
ŷod (s). (5.63)

In this case, the closed-loop control is still superior to the open-loop control. However, if we
only suppress the disturbance with feedback, instead of direct cancellation, the output deviation
becomes

ŷcd(s) =
P (s)

1 + P (s)A(s)K(s)
d̂(s). (5.64)

Since we cannot lower the gain of closed-loop transfer function over a wide band, its distur-
bance suppression performance is degraded.

Summarizing these discussions, we have the following conclusions:

1. The cost of open-loop control is low, but the control accuracy is also low, and it is not
suitable for unstable systems as well as nonminimum phase systems.

2. The closed-loop control can achieve high-precision control, but the cost is high.
3. If we can obtain the information about disturbance, no matter directly or indirectly, it is

extremely effective to apply feedforward compensation of disturbance.
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Particularly, persistent disturbances can be computed via the so-called disturbance observer
[81]. Moreover, the advantages of feedback control can be summarized as follows:

1. It can suppress the influence of model uncertainty.
2. Its capability of disturbance suppression is superior.
3. It can precisely control unstable/nonminimum phase systems.

Exercises

5.1 In the closed-loop system of Figure 5.1, let the transfer functions be

P (s) =
1

s + 1
, K(s) =

k

s2 + 4
.

(a) Show that there is a k that can stabilize the closed-loop system and find its range.
(b) When r(t) = 0, d(t) = sin 2t (t ≥ 0), prove that y(∞) = 0 holds.
(c) When r(t) = sin 2t, d(t) = 0 (t ≥ 0), find the steady-state output limt→∞y(t) via

the computation of limt→∞(r(t) − y(t)).

5.2 In the closed-loop system of Figure 5.1, the transfer functions are as follows:

P (s) =
1

s(s + 1)
, K(s) = k.

Solve the following problems and discuss the results of (b) and (c).
(a) Find the range of gain k such that the closed-loop system is stable.
(b) Compute the steady-state tracking error e(∞) when d(t) = 0, r(t) = 1(t).
(c) Compute the steady-state tracking error y(∞) when r(t) = 0, d(t) = 1(t).

5.3 Replace the plant and controller in Exercise 5.2 with

P (s) =
1

s + 1
, K(s) =

k

s

and solve the same problem. Then, discuss the difference from the previous problem.

5.4 In Figure 5.1, the plant and the controller are

P (s) =
1

s − 1
, K(s) = 3 +

k

s
.

(a) Seek the range of k ensuring the stability of closed-loop system.
(b) For a ramp input r(t) = t (t ≥ 0), find the range of k such that the tracking error

e(t) = r(t) − y(t) satisfies |e(∞)| < 0.05.

5.5 For a stable plant G(s), propose a method for the identification of G(jω) via experi-
ments by using a sinusoidal signal generator and an oscilloscope, based on the result of
Theorem 5.1.

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

System Performance 147

5.6 Solve the following problems for the prototype second-order system (5.21).
(a) Compute its unit step response.
(b) Derive the formulae of overshoot and settling time.

5.7 Prove Theorem 5.6. (Hint: The tracking error e(t) is negative when the overshoot occurs.)

5.8 What kind of undershoot occurs when the number of positive real zeros is even in a
transfer function H(s)?

5.9 Follow the following steps to investigate numerically the relationship between the
response speed and bandwidth of the closed-loop system in Exercise 5.2.
(a) Calculate and plot the output y(t) for k = 0.25, 1, 5 when d(t) = 0, r(t) = 1(t).
(b) Draw the Bode plot for the closed-loop transfer function Hyr (s) from r to y for

k = 0.25, 1, 5, and measure the frequency bandwidth ωB .
(c) Analyze the relationship between the response speed and bandwidth based on these

results.

Notes and References

Frankline et al. [30] is a widely adopted textbook on the classical control and contains a
detailed description on system performance. Mita [69] exposed theoretically the influence of
system zeros on the response. A detailed description on the overshoot and undershoot can be
found in Ref. [84].
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6
Stabilization of Linear Systems

In the design of control systems, the stability of closed-loop system must be guaranteed first,
which is called the stabilization problem. In this chapter, we show the most basic methods of
system stabilization. Specifically, we will introduce the state feedback control method and the
dynamic output feedback control method based on state feedback and observer.

The stabilization of a general plant described by

ẋ(t) = Ax (t) + Bu(t) (6.1)

y(t) = Cx (t) (6.2)

is considered. In this state equation, x ∈ R
n, u ∈ R

m, y ∈ R
p.

6.1 State Feedback

We examine the case where all states are measured by sensors. Since all information of the
system are contained in the states, states multiplied by appropriate coefficients must be able
to stabilize the closed-loop system. That is, the input is constructed as

u = Fx , F =

⎡

⎢
⎣

f11 · · · f1n
...

. . .
...

fm1 · · · fmn

⎤

⎥
⎦ . (6.3)

This stabilization approach is called the state feedback, and the coefficient matrix F called the
state feedback gain . Substituting (6.3) into (6.1), we obtain a closed-loop system called state
feedback system whose state equation is

ẋ = (A + BF )x. (6.4)

Obviously, the stability of state feedback system depends on the stability of its coefficient
matrix A + BF . In this section, we investigate the condition required for the stabilization of
closed-loop system, as well as concrete design method for the feedback gain matrix F .

Robust Control: Theory and Applications, First Edition. Kang-Zhi Liu and Yu Yao.
© 2016 John Wiley & Sons Singapore Pte. Ltd. Published 2016 by John Wiley & Sons, Singapore Pte. Ltd.
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There have been numerous methods proposed for the design of state feedback. Among them,
the simplest one is the pole placement method. Its idea is to select the desired closed-loop poles
first and then determine an appropriate state feedback gain to ensure that the poles of the actual
closed-loop system are equal to these specified poles.

The poles are roots of the characteristic polynomial of system matrix A. Once the
closed-loop poles are specified, so is the characteristic polynomial. For example, if the poles
of an nth-order system are specified as {p1, . . . , pn}, then the corresponding characteristic
polynomial is (s − p1) · · · (s − pn). On the other hand, as the coefficient matrix of the
closed-loop system is A + BF , its characteristic polynomial is det (sI − (A + BF )). They
must be the same, that is, satisfy the following identity about variable s:

det (sI − (A + BF )) ≡ (s − p1) · · · (s − pn). (6.5)

Both sides of the equation are polynomials. For this identity to hold, the coefficients of the
terms having the same degree must be equal. So, by comparing the coefficients on both sides
of the equation, we get n simultaneous equations on the elements of matrix F . In a single-input
system, F is a 1 × n row vector, and the number of elements is n. So, the solution is unique if
it exists. For an m-input system, F is an m × n matrix, and the number of elements is m × n.
Then, even if the solution exists, it is not unique.

It should be noticed that the coefficients of this characteristic polynomial are real since
A + BF is a real matrix. Thus, when λ is a complex characteristic root, so will be its conjugate
λ. Further, λ and λ have the same multiplicity. So, the set of specified eigenvalues must be
symmetrical w.r.t. the real axis. In the sequel, we limit the specifiable eigenvalues to such
a set.

Next, let us see what condition is needed for pole placement through an example.

Example 6.1 Examine the pole placement of a system with coefficient matrices

A =
[
1 1
0 −2

]

, b =
[
1
0

]

.

Set the feedback gain as f = [f1 f2]. Then, the characteristic polynomial of A + bf becomes

det
[
s − (1 + f1) −(1 + f2)

0 s + 2

]

= (s − 1 − f1)(s + 2).

Its characteristic roots are (1 + f1,−2). That is, the open-loop pole−2 becomes a closed-loop
pole and cannot be changed by state feedback. So, for this system we cannot use state feedback
to achieve arbitrary pole placement of closed-loop poles. In fact, this system is not controllable.

From this example, we may speculate that in order to guarantee arbitrary pole placement
of the closed-loop system, the open-loop system must be controllable. The following theorem
confirms this speculation.

Theorem 6.1 In order to place the eigenvalues of A + BF arbitrarily, (A,B) must be
controllable.
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Proof. When (A,B) is not controllable, there is a similarity transformation such that (A,B)
is transformed into

A = T

[
A1 A12
0 A2

]

T−1, B = T

[
B1
0

]

(see Exercise 6.1). Then, for any F , by setting F = FT = [F 1 F 2], we have

A + BF = T

[
A1 + B1F 1 A12 + B1F 2

0 A2

]

T−1.

Since det(sI − A − BF ) = det(sI − A1 − B1F 1) det(sI − A2), clearly the eigenvalues of
block A2 cannot be moved. This means that no matter what state feedback gain F is used, it
is impossible to achieve arbitrary placement of the eigenvalues of A + BF . •

6.1.1 Canonical Forms

For the ease of finding a sufficient condition for pole placement, we will use special state real-
izations called canonical forms hereafter. Two canonical forms are presented. As a preparation,
we first show the following lemma.

Lemma 6.1 The following statements hold for an n × n matrix:

A =

⎡

⎢
⎢
⎢
⎢
⎣

0 1

0
. . .
. . . 1

−a1 −a2 · · · −an

⎤

⎥
⎥
⎥
⎥
⎦

. (6.6)

1. The characteristic polynomial of matrix A is p(s) = det (sI − A) = sn + ansn−1 + · · · +
a2s + a1.

2. Denote by ei an n-dimensional vector whose ith entry is 1 and the rest are all 0. Set a
function vector z(s) as z(s) = (sI − A)−1ei. Then, its elements are given as follows:
(a) When i = 1,

z1 =
sn−1 + ansn−2 + · · · + a2

p(s)

z2 = − a1

p(s)
, z3 = − a1s

p(s)
, . . . , zn = −a1s

n−2

p(s)
.

(b) When 2 ≤ i ≤ n − 1,

z1 =
sn−i + ansn−(i+1) + · · · + ai+1

p(s)

z2 = sz1, . . . , zi = si−1z1
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zi+1 = −ais
i−1 + · · · + a2s + a1

p(s)

zi+2 = szi+1, . . . , zn = sn−(i+1)zi+1.

(c) When i = n,

z =
1

p(s)
[1 s · · · sn−1]T .

Here, zj denotes the jth element of z(s).

Proof. Statement 1 can be proved by converting the determinant into that of a lower triangle
matrix via elementary transformations or by Laplace expansion. The detail is left to the readers.

For statement 2, we only give the proof for the case when 2 ≤ i ≤ n − 1. Other cases can be
proved similarly. z(s) = (sI − A)−1ei is equivalent to the following linear algebraic equation:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

s −1
s −1

. . .
. . .
s −1

a1 a2 · · · an−1 s + an

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

z1
...
zi
...

zn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
...
1
...
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Expanding this equation, we get the following simultaneous linear equations:

sz1 − z2 = 0, sz2 − z3 = 0, . . . , szi−1 − zi = 0

szi − zi+1 = 1

szi+1 − zi+2 = 0, . . . , szn−1 − zn = 0

a1z1 + a2z2 + · · · + an−1zn−1 + (s + an)zn = 0.

Solving the equations successively from the first one yields

z2 = sz1, . . . , zi = szi−1 = si−1z1

zi+1 = szi − 1 = siz1 − 1, zi+2 = szi+1 = si+1z1 − s, . . .

zn = szn−1 = sn−1z1 − sn−(i+1).

Substituting them into the last equation, we obtain

z1 =
sn−i + ansn−i−1 + · · · + ai+2s + ai+1

p(s)
.

Therefore,

zi+1 = siz1 − 1 = −ais
i−1 + · · · + a2s + a1

p(s)
.

•
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When the system (6.1) is controllable, we can transform it into a special realization called the
controllability canonical form by similarity transformation. Here, we consider a single-input
system.

Lemma 6.2 Let the realization of a system be (A, b, c, 0) and the characteristics polynomial
of matrix A be

det (sI − A) = sn + ansn−1 + · · · + a2s + a1. (6.7)

Further, assume that the transfer function corresponding to (A, b, c, 0) is

c(sI − A)−1b =
βnsn−1 + βn−1s

n−2 + · · · + β2s + β1

sn + ansn−1 + · · · + a2s + a1
. (6.8)

When (A, b) is controllable, there exists a similarity transformation matrix T satisfying the
following conditions:

A := T−1AT =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a1 −a2 −a3 · · · −an

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, b := T−1b =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
0
...
0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(6.9)

c := cT = [β1 β2 · · · βn−1 βn]. (6.10)

This new realization (A, b, c, 0) is called the controllability canonical form.

Proof. By the controllability assumption, the controllability matrix C = [b Ab · · · An−2b
An−1b] is nonsingular. Obviously, the matrix

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a2 a3 · · · an 1
a3 a4 · · · 1 0
...

...
...

...
...

an 1 · · · 0 0
1 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(6.11)

is also nonsingular. So, the matrix

T := CU = [t1 t2 · · · tn−1 tn] (6.12)

is invertible. Expanding T , its columns are

t1 = (An−1 + anAn−2 + · · · + a3A + a2I)b

t2 = (An−2 + anAn−3 + · · · + a3I)b

...

tn−1 = (A + anI)b

tn = b,
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respectively. Based on this and the fact that b = tn, we have

At2 = t1 − a2tn, . . . , Atn−1 = tn−2 − an−1tn, Atn = tn−1 − antn. (6.13)

Furthermore, An + anAn−1 + · · · + a2A + a1I = 0 is true according to Cayley–Hamilton
theorem. Multiplying this equation from the right by b = tn, we get

At1 = −a1tn. (6.14)

Summarizing these equations together, we obtain

AT = TA ⇒ A = T−1AT . (6.15)

In addition, it is easy to know that T b = b, so T−1b = b holds. Finally, since similarity trans-
formation does not change the transfer function, we can easily obtain the equation about c
using c(sI − A)−1b = c(sI − A)−1b and Lemma 6.1(2c). •

As a dual of this lemma, we have the following lemma.

Lemma 6.3 Let the realization of a system be (A, b, c, 0), the characteristic polynomial of
matrix A be

det(sI − A) = sn + ansn−1 + · · · + a2s + a1, (6.16)

and the transfer function of (A, b, c, 0) be

c(sI − A)−1b =
βnsn−1 + βn−1s

n−2 + · · · + β2s + β1

sn + ansn−1 + · · · + a2s + a1
. (6.17)

When (c,A) is observable, there exists a similarity transformation matrix S satisfying

SAS−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 −a1
1 0 · · · 0 −a2

0 1
. . .

... −an−1
...

. . .
. . . 0

...
0 · · · 0 1 −an

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Sb =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

β1
β2
...

βn−1
βn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(6.18)

cS−1 = [0 0 · · · 0 1]. (6.19)

This new realization is called the observability canonical form .

Proof. The conclusion is obtained by converting the dual system (AT , cT , bT , 0) into the
controllability canonical form and then calculating its dual system again. Note that the trans-
formation matrix is S = UO where U is the matrix defined by (6.11) andO is the observability
matrix. •

These canonical forms can be extended to multiple-input multiple-output (MIMO) systems,
but the descriptions get very complicated and not explored here. Interested readers may consult
Ref. [44].
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6.1.2 Pole Placement of Single-Input Systems

For a single-input dynamic system

ẋ = Ax + bu , (6.20)

the condition needed for achieving arbitrary pole placement via state feedback is given by the
following theorem.

Theorem 6.2 For the single-input system (6.20), the eigenvalues of A + bf can be arbitrarily
placed using state feedback u = fx (fT ∈ R

n) iff (A, b) is controllable.

Proof. The necessity has been proved in Theorem 6.1, so only the sufficiency is proved here.
First, we convert (A, b) into the controllability canonical form (A, b) using the transforma-

tion matrix T in (6.12). Setting fT = f = [f 1 · · · fn], its substitution leads to

T−1(A + bf )T = A + b f

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−(a1 − f 1) −(a2 − f 2) −(a3 − f 3) · · · −(an − fn)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Then, based on the equation det(sI − T−1XT ) = det(T−1(sI − X)T ) = det(T−1)
det(sI − X) det (T ) = det(sI − X) and Lemma 6.1(1), we obtain the following equation:

det(sI − (A + bf )) = det(sI − (A + bf))

= sn + (an − fn)sn−1 + · · · + (a1 − f 1). (6.21)

When the specified closed-loop characteristic polynomial is sn + γnsn−1 + · · · + γ2s + γ1,
we obtain f = [a1 − γ1 · · · an − γn] through the comparison of coefficients. Therefore,
the state feedback gain

f = fT−1 = [a1 − γ1 · · · an − γn]T−1 (6.22)

is able to place the poles to the assigned locations. •

In fact, the proof also provides a method for calculating the state feedback gain f .

Example 6.2 Consider the 1-DOF vibration system consisting of a spring and a mass as
shown in Figure 6.1, where M denotes the mass and K the spring constant and the damping
is zero. y is the displacement from the balanced position and u is the external force. If the state
variables are chosen as the displacement and speed of the mass, the coefficient matrices of
state equation become

A =

⎡

⎣
0 1

−K

M
0

⎤

⎦ , b =

⎡

⎣
0
1
M

⎤

⎦ ,
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y

u

M

K

Figure 6.1 1-DOF vibration system

respectively. For this 1-DOF vibration system, we design a state feedback gain f = [f1 f2] so
as to place the eigenvalue of A + bf to {p1, p2}. According to the definition of eigenvalue, we
have the following identity:

det(sI − (A + bf )) = (s − p1)(s − p2)

⇒ s2 − f2

M
s +

(
K

M
− f1

M

)

= s2 − (p1 + p2)s + p1p2.

Comparing the coefficients on both sides of the equation, we get the simultaneous equation

f2

M
= p1 + p2,

K

M
− f1

M
= p1p2.

Solving this equation, we obtain the unique solution

f = [K − Mp1p2, M(p1 + p2)].

For systems with a degree lower than 3, it is easy to solve directly the simultaneous linear
algebraic equation derived from the characteristic polynomial, as we just did in this example.
However, for systems of higher degree, it is more convenient to apply the formula (6.22).

Example 6.3 For a third-order system

ẋ =

⎡

⎣
1 1 −2
0 1 1
0 0 1

⎤

⎦x +

⎡

⎣
1
0
1

⎤

⎦ u,

design a state feedback gain such that the closed-loop poles are placed at −2,−1 ± j1.
Solution The controllability matrix is computed as

C = [b Ab A2b] =

⎡

⎣
1 −1 −2
0 1 2
1 1 1

⎤

⎦

whose rank is 3. So, the system is controllable, and we can use state feedback to place the
poles. From the characteristic polynomial of open-loop system

det(sI − A) = s3 − 3s2 + 3s − 1,
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we get the coefficients a1 = −1, a2 = 3, a3 = −3. Then, the transformation matrix for the
controllability canonical form becomes

T = C

⎡

⎣
a2 a3 1
a3 1 0
1 0 0

⎤

⎦ =

⎡

⎣
4 −4 1
−1 1 0
1 −2 1

⎤

⎦ .

Further, the characteristic polynomial corresponding to the specified close-loop poles is

(s + 2)(s + 1 − j)(s + 1 + j) = s3 + 4s2 + 6s + 4

whose coefficients are γ1 = 4, γ2 = 6, γ3 = 4. So, the state feedback gain is obtained via some
calculation as

f = [a1 − γ1 a2 − γ2 a3 − γ3]T
−1 = [−15 − 47 8].

�

6.1.3 Pole Placement of Multiple-Input Systems∗

Here, we examine that what is the condition for arbitrarily placing the eigenvalues of A + BF
for multiple-input systems. The conclusion is that the eigenvalues of A + BF can be arbitrarily
placed iff (A,B) is controllable. This conclusion is proved by converting the pole placement
of a multiple-input system equivalently into that of a single-input system.

Lemma 6.4 When an m-input system (A,B) is controllable, then there must be a matrix
K ∈ R

m×n such that (A + BK , b) is controllable for any nonzero vector b ∈ ImB.

Proof. Define b1 = b and a subspace U1 = span{b1, Ab1, . . . , A
n−1b1}. If dim (U1) = n,

then K = 0 meets the requirement. {b1, Ab1, . . . , A
n1−1b1} becomes a basis of U1

1 when
dim (U1) = n1 < n. Now, we construct a sequence of n1 vectors:

x1 = b1, xj = Axj−1 + b1, j = 2, . . . , n1. (6.23)

The vector sequence given by this recursive formula has the property of xj − xj−1 =
A(xj−1 − xj−2) (j ≥ 3). Starting from x2 − x1 = Ab1 and using this property successively,
we obtain the following relations:

b1 = x1, Ab1 = x2 − x1, . . . , An1−1b1 = xn1
− xn1−1.

Vector sequences {xi} and {Ai−1b1} are in a one-to-one relationship, so {x1, . . . , xn1
} is also

a basis of subspace U1.

1 Assume that the vectors {b1, Ab1, . . . , A
k−1b1} are linearly independent and Akb1 can be expressed as their linear

combination. Then all Ak+ib1(i ≥ 1) can also be expressed as linear combinations of {b1, Ab1, . . . , A
k−1b1}. k =

n1 follows from dim(U1) = n1.
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We know from the controllability that there must be a vector b2 ∈ ImB satisfying b2 /∈ U1
2.

Next, let n2 be the largest integer such that vectors

x1, . . . , xn1
, b2, Ab2, . . . , An2−1b2

are linearly independent. We construct a new vector sequence as follows:

xn1+i = Axn1+i−1 + b2, i = 1, . . . , n2. (6.24)

From xn1+1 − xn1
= (A − I)xn1

+ b2, we know that

xn1+i − xn1+i−1 = A(xn1+i−1 − xn1+i−2) = · · ·

= Ai−1(xn1+1 − xn1
) = Ai−1b2 + Ai−1(A − I)xn1

.

That is, a linearly independent column vector Ai−1b2 is added whenever we con-
struct a new vector. Since U1 is A-invariant, Ai−1(A − I)xn1

∈ U1 holds. Therefore,
x1, . . . , xn1

, . . . , xn1+n2
are linearly independent.

The rank of C is n. Continuing this process, we must be able to construct a linearly inde-
pendent vector sequence x1, . . . , xn in finite steps. And they satisfy the relation

xi+1 = Axi + bi, i = 1, . . . , n − 1. (6.25)

Here, for simplicity, we have changed b1, b2, and so on to new subscripts in correspondence
with xi, denoted by bi. Certainly, there holds bi ∈ ImB, and it can be expressed as bi =
Bgi(gi ∈ R

m). Set X = [x1 · · · xn]. Then X is nonsingular. Let

K = [g1 · · · gn]X−1 (6.26)

in which gn ∈ R
m is an arbitrary vector. It is easy to see that

BKxi = bi, i = 1, . . . , n − 1.

Substituting it into the recursive formula (6.25) about xi, we get

xi+1 = (A + BK )xi ⇒ xi = (A + BK )i−1x1 = (A + BK )i−1b. (6.27)

Therefore, the rank of [b (A + BK )b · · · (A + BK )n−1b] equals n and (A + BK , b) is
controllable. •

Even if we do not construct the feedback gain K like what we did in the proof, but choose
K at random, (A + BK ,Bg) is controllable in almost all cases [12]. Here, g is an arbitrary
nonzero vector.

Based on this lemma and Theorem 6.2, it is easy to deduce the following theorem on the
pole placement of multiple-input systems.

2 Noting that AU1 ⊂ U1, if there is not such a b2, then any b
′ ∈ ImB is contained in U1 so that Aib

′ ∈ U1 (∀i ≥ 0)
holds. That is, all columns of the controllability matrix C are contained in U1. Since n1 < n, this contradicts the
controllability of (A, B).
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Theorem 6.3 For an m- input system

ẋ = Ax + Bu ,

there exists a state feedback gain F ∈ R
m×n such that the eigenvalues of A + BF are placed

arbitrarily iff (A,B) is controllable.

Proof. Note that in the previous lemma, b can be written as Bg(g ∈ R
m). After the input

transformation u = Kx + gv , this system turns into a controllable single-input system ẋ =
(A + BK )x + bv . According to Theorem 6.2, the poles of this single-input system can be
arbitrarily placed with a state feedback v = fx . Therefore,

F = K + gf (6.28)

gives the feedback gain which we are searching for. •

Example 6.4 Design a state feedback gain F to place the poles of two-input system

ẋ = Ax + Bu =

⎡

⎢
⎢
⎣

1 0 0 0
0 0 1 0
1 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦x +

⎡

⎢
⎢
⎣

1 0
1 0
0 0
0 1

⎤

⎥
⎥
⎦u

to {−1,−1,−1 + j,−1 − j}.
First of all, set b = b1 = [0 0 0 1]T , b2 = [1 1 0 0]T (note that the subscript of

vector is different from the column number of matrix B). It may be verified that n1 = 1, n2 = 3.
Then, computing according to the algorithm given in Lemma 6.4, we get

X = [x1 x2 x3 x4] =

⎡

⎢
⎢
⎣

0 1 2 3
0 1 1 2
0 0 1 2
1 0 0 0

⎤

⎥
⎥
⎦

where x2, x3, x4 are obtained based on the calculation of x2 = Ax1 + b2 = Ax1 +
b1, . . . , x4 = Ax3 + b2 = Ax3 + b3, so b1 = b2 = b3 = b2 = B[1 0]T . Therefore,

g1 = g2 = g3 =
[
1
0

]

By setting g4 = [0 0]T , we get

K = [g1 g2 g3 g4]X
−1 =

[
2 −1 −2 1
0 0 0 0

]

Calculating the eigenvalues of A + BK , we obtain det (sI − (A + BK )) = s4 − 2s3 +
s2 + s. So a1 = 0, a2 = a3 = 1, a4 = −2. On the other hand, the specified characteristic
polynomial of closed-loop system is

(s + 1)(s + 1)(s + 1 − j)(s + 1 + j) = s4 + 4s3 + 7s2 + 6s + 2
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so that γ1 = 2, γ2 = 6, γ3 = 7, γ4 = 4. Next, the matrix that transforms (A + BK , b) into the
controllable canonical form is computed according to (6.12):

T =

⎡

⎢
⎢
⎣

0 0 1 0
1 −1 1 0
0 1 0 0
1 1 −2 1

⎤

⎥
⎥
⎦ , T−1 =

⎡

⎢
⎢
⎣

−1 1 1 0
0 0 1 0
1 0 0 0
3 −1 −2 1

⎤

⎥
⎥
⎦ .

In this way, the state feedback gain f is obtained according to (6.22):

f = [a1 − γ1 a2 − γ2 a3 − γ3 a4 − γ4]T
−1 = [−22 4 5 − 6].

Meanwhile, from b = B[0 1]T we have g = [0 1]T . In the end, the state feedback gain
becomes

F = K + gf =
[

2 −1 −2 1
−22 4 5 −6

]

.

6.1.4 Principle of Pole Selection

In using the pole placement method to design a state feedback, the key is how to set the
closed-loop poles. In selecting the closed-loop poles, we should not only consider the stability
of system but also pay attention to its performance (viz., transient response). This is because
the ultimate goal of control is to achieve performance improvement. In addition, practical
restriction also needs to be considered, which mainly stems from actuator constraint and is
reflected in the limitation of control input. Particularly, there is only a qualitative relationship
between the amplitude of control input and the location of poles. Therefore, trial and error is
inevitable in finding appropriate poles. The principle is summarized as follows:

1. To ensure the required convergence rate, the poles should keep a certain distance from the
imaginary axis. Namely, they need to satisfy

R(pi) ≤ −σ ∀ i.

Here, σ > 0 is the parameter specifying the response speed. Generally speaking, the ampli-
tude of transient response roughly depends on the exponential function e−σt. Since e−3 ≈
5%, the settling time ts can be estimated by σts ≈ 3. According to this relation, given the
settling time ts, the parameter σ can be determined based on σ ≈ 3/ts.

2. The imaginary parts of poles correspond to the resonant frequencies of the response. To
reduce the number of vibrations per second, we should reduce the imaginary parts. Usually
the imaginary part is taken to be less than the magnitude of real part. This is because the
period corresponding to the resonant frequency (p) is 2π/(p), when |R(p)| ≥ (p) the
amplitude of response reduces to e−|R(p)|·2π/(p) ≤ e−2π = 0.19% in a period. In addition,
for second-order systems, when the magnitude of real part is equal to the imaginary part,
the characteristic polynomial is

(

s +
ωn√

2

)2

+
(

ωn√
2

)2

= s2 + 2 · 1√
2
· ωns + ω2

n

whose damping ratio is 1/
√

2, which is usually regarded as the minimum of allowable
damping (according to Figure 5.12, when ζ = 1/

√
2 the overshoot is about 5%).
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0−r

σ

θ Re

Im

Figure 6.2 Allowable region of poles

3. Basically, the magnitude of input increases with the magnitudes of poles. In order to limit
the input, the poles cannot be too big. That is, they should satisfy

|pi| < r ∀ i

for certain specified value r > 0. Besides, when a pole approaches the negative infinity, the
maximum amplitude of response will diverge gradually, which brings a bad impact to the
response [69].

In summary, the poles should be selected in the shaded region shown in Figure 6.2.
However, it should be noted that the damping ratio will get too big if the ratio (p)/|R(p)|

of imaginary part to real part is too small, which will lower the bandwidth and consequently
prolong the rise time. Therefore, when a short rise time is desirable, this ratio should be in the
interval [1, 2].

A design example is illustrated in the following.

Example 6.5 Consider the two-mass–spring system in Example 1.2. The control purpose is to
suppress the variation of load speed ωL when the load rotating at a constant speed is affected
by a torque disturbance d. As a numerical example, we set JM = JL = 1, DM = DL = 0, and
k = 100 and place the closed-loop poles at {−4 ± j4,−8} by a state feedback. The feedback
gain obtained is

F = [13.4 104 − 16].

The responses of ωM , ωL to a unit impulse disturbance is shown in Figure 6.3.

6.2 Observer

In order to implement the state feedback, all states have to be measured by sensors, which
usually are rather expensive. Thus, state feedback is an extravagant control method. Moreover,
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Figure 6.3 Impulse response of state feedback system

in engineering practice there exist many cases in which not all states can be measured. For
example, in a flexible system such as the solar panel of space station, there are countless states
because of the flexibility. Therefore, we usually need to estimate the states using the measured
output and control input through software computing. The estimation algorithm of states is
called an observer.

6.2.1 Full-Order Observer

A typical observer is given by

ẋ = Ax + Bu + L(Cx − y). (6.29)

The order of this observer is equal to that of the plant, so it is called a full-order observer, also
known as Luenberger observer.

The mechanism of full-order observer is to calculate the state estimate x by using the plant
dynamics (the first two terms on the right) with software and then compensate the state estimate
x based on the difference between the output Cx of observer and the measured output y of
plant (the third term on the right). Matrix L is called the observer gain . Generally, the initial
value of observer state is chosen as x(0) = 0.

Now, we examine the condition needed for state estimation. Here, we set the estimation
error as

e = x − x. (6.30)

Since x → x is equivalent to e → 0, we only need consider the convergence of estimation
error. Therefore, let us look at the dynamics of e(t). Subtracting (6.1) from (6.29), we obtain
the model of estimate error:

ė = Ax + Bu + L(Cx − Cx ) − (Ax + Bu)

= (A + LC )e. (6.31)
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In order to ensure e(t) → 0 for any initial error e(0), (A + LC ) must be stable. Hereafter, we
call the eigenvalues of (A + LC ) as the observer poles .

Noting that the eigenvalues of (A + LC ) and (A + LC )T = AT + CT LT are the same and
the observability of (C,A) is equivalent to the controllability of (AT , CT ), it is easy to see
that the following theorem holds.

Theorem 6.4 For the full-order observer (6.29), there exists an observer gain L ∈ R
n×p such

that the eigenvalues of A + LC can be placed arbitrarily iff (C,A) is observable.

Similar to state feedback, the pole placement method is the simplest in the design of
observer. It is explained in the following. Let the assigned observer poles be {r1, . . . , rn}.
Then, the characteristic polynomial of observer is

det(sI − (A + LC )) ≡ (s − r1) · · · (s − rn). (6.32)

Comparing the coefficients on both sides, we obtain n simultaneous linear equations about
the elements of L. For single-output systems, the solution can be obtained by solving the
simultaneous equations. Meanwhile, the design of multiple-output systems is based on the
following procedure. Since

det(sI − (A + LC )) = det(sI − (AT + CT LT )), (6.33)

we first set A = AT , B = CT , F = LT and calculate F based on the algorithm for state feed-
back gain, then the observer gain is obtained as L = F

T
.

6.2.1.1 Selection of Observer Poles

The function of observer is to estimate the state of plant so as to realize the state feedback. To
achieve this goal, the state estimate must converge to the true state fast enough. This means
that the observer poles should be sufficiently far from the imaginary axis compared with the
poles of state feedback system. We usually choose the distance between observer poles and the
imaginary axis 2 ∼ 5 times greater than that of state feedback poles. This is a rule of thumb
for observer design.

Next, the two-mass–spring system is used as example to demonstrate the design.

Example 6.6 In the two-mass–spring system of Example 1.2, it is very difficult to mount
the rotational speed sensor on the load, so generally we only measure the motor speed ωM .
Here, we design an observer that can estimate the states based on this output. The designated
observer poles are {−12 ± j19,−24}. The observer gain designed is

L = [−73.2 8.8 − 48].

The response of estimation error w.r.t. initial condition x(0) = [1 0 0]T is shown in
Figure 6.4. Illustrated successively from top to bottom are the errors of ωL, φ, and ωM .
Obviously, all state estimates converge rapidly to the true states.

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

Stabilization of Linear Systems 163

−0.5

0

0.5

1

e 1

−0.04

−0.02

0
e 2

0 0.1 0.2 0.3 0.4 0.5
−0.05

0
0.05
0.1

t (s)

e 3

Figure 6.4 Estimation error responses of observer

6.2.2 Minimal Order Observer

Usually, the matrix C in the output equation y = Cx has full row rank because redundant
sensors exist if not. Since the measured output y = Cx itself already contains a part of states,
we do not need to estimate all states. What is needed is to estimate the unknown part. Therefore,
we consider how to use the output information to estimate a signal

z = Vx . (6.34)

The reason why we estimate z is that since
[
y
z

]

=
[
C
V

]

x, (6.35)

the state x can be calculated from (y, z) uniquely so long as [C
V
] is nonsingular. In this case,

z ∈ R
(n−p). Conversely, x cannot be computed uniquely when [C

V ] is a wide matrix; and there

will be redundant elements in z when [CV ] is a tall matrix. Therefore, in order to compute the
state x uniquely, the minimal dimension of signal z must be n − p. The corresponding observer
is called the minimal order observer, whose dimension is n − p.

Now, we consider the estimation of z. Let the estimate of z be z and the estimation error be

e := z − z. (6.36)

First of all, when the initial estimation error is e(0) = 0, the identity e(t) ≡ 0 must be true.
So, the estimation error needs having a dynamics of

ė = Te . (6.37)

Here, the sufficient and necessary condition for e(∞) = 0 is that T ∈ R
(n−p)×(n−p) is a stable

matrix. Only in this case it is possible to estimate the signal z. Next, we start from this condition
to investigate the structure necessary for the minimal order observer. ż = V ẋ = VAx + VBu
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combined with the previous two equations gives

ż = ė + ż = Tz − Tz + ż = Tz + VAx + VBu − Tz .

Setting

A

[
C
V

]−1

= [K M ] ⇒ A = KC + MV (6.38)

and using (y, z) to express x, we have

ż = Tz + VKy + VBu + (VM − T )z.

Since we can only use the known signals (y, u) in state estimation, there must be

VM − T = 0. (6.39)

Further, this condition is equivalent to

V (A − KC ) = TV . (6.40)

Why? According to A − KC = MV , when VM = T , we have V (A − KC ) =
VMV = TV . Conversely, when V (A − KC ) = TV , there holds VMV = TV , that
is, (VM − T )V = 0. Since V has full row rank, there must be VM − T = 0.

Finally, substitution of z into z in (6.35) yields the state estimate x. In summary, we have
the following theorem.

Theorem 6.5 Let T ∈ R
(n−p)×(n−p) be any given stable matrix. When there exist matrices

V ∈ R
(n−p)×n,K ∈ R

n×p satisfying

rank
[
C
V

]

= n, V (A − KC ) = TV ,

the state x can be estimated using the observer

ż = T z + VKy + VBu , (6.41)

and the estimate x is

x =
[
C
V

]−1 [
y
z

]

. (6.42)

Now, we prove that the observability of (C,A) is the condition for the existence of matrices
satisfying this theorem.

Theorem 6.6 For any given eigenvalue set Λ = {λ1, . . . , λn−p}, there are matrices
V ∈ R

(n−p)×n,K ∈ R
n×p, and T ∈ R

(n−p)×(n−p) satisfying

rank
[
C
V

]

= n, V (A − KC ) = TV , σ(T ) = Λ

iff (C,A) is observable.
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Proof. The sufficiency can be proved by concretely constructing such matrices based on the
Gopinath algorithm to be illustrated later. So, here we only prove its necessity.

When (C,A) is not observable, we prove that even if the first two conditions are true, the
third one is not satisfied. To this end, let λ be an unobservable eigenvalue of (C,A) and u �= 0
the corresponding eigenvector. Then

Au = λu, Cu = 0. (6.43)

Further, Vu �= 0 follows from the nonsingularity of [CV ]. Hence,

V (A − KC )u = TVu ⇒ λ · Vu = T · Vu (6.44)

holds, that is, λ ∈ σ(T ). This means that the eigenvalues of matrix T cannot be chosen
arbitrarily. •

6.2.2.1 Gopinath Algorithm

The algorithm introduced here was proposed by Gopinath specifically for the design of mini-
mal order observer:

1. Determine a matrix D ∈ R
(n−p)×n such that the following matrix is nonsingular:

S :=
[
C
D

]

.

2. Carry out the following similarity transformation:

SAS−1 =
[
A11 A12
A21 A22

]

.

3. Set T = A22 + LA12 and find a matrix L ∈ R
(n−p)×p such that σ(T ) = Λ.

4. Set V = D + LC ,K = −AS−1[−Ip
L ].

Now, we prove that the matrices (V,K, T ) determined by this algorithm satisfy the con-
ditions of Theorem 6.6. First of all, since C is a row full rank matrix, there is a matrix D
such that S is nonsingular. Since SS−1 = I , it is easy to know that CS−1 = [Ip 0]. From it,
we can prove that (A12, A22) is also observable based on the observability of (C,A) and its
invariance to similarity transformation (Exercise 6.10). Hence, by using the pole placement
method, we can obtain a gain matrix L ∈ R

(n−p)×p satisfying σ(A22 + LA12) = Λ. Accord-

ing to Gopinath algorithm, we have V = [L In−p]S and T = [L In−p]SAS−1[ 0
In−p

], so it can
be proved that

V (A − KC ) = [L In−p]SA + [L In−p]SAS−1
[
−Ip

L

]

C

= [L In−p]SAS−1
(

S +
[
−Ip

L

]

C

)
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= [L In−p]SAS−1
[

0
In−p

]

(D + LC )

= TV .

Finally [
C
V

]

=
[
Ip 0
L In−p

]

S ⇒ rank
[
C
V

]

= n

also holds. This proves the sufficiency of Theorem 6.6.

Example 6.7 Design a minimal order observer for system

ẋ =

⎡

⎣
1 1 −2
0 1 1
0 0 1

⎤

⎦ x +

⎡

⎣
1
0
1

⎤

⎦u, y = [1 0 0]x.

Solution First, calculating the observability matrix, we get

O =

⎡

⎣
1 0 0
1 1 −2
1 2 −3

⎤

⎦ .

Its rank is 3, so this system is observable. In addition, the dimension of minimal order observer
is n − p = 3 − 1 = 2. Here, we design an observer with poles {−4,−4}. Select the matrix
D as

D =
[
0 1 0
0 0 1

]

⇒ S =
[
C
D

]

= I3.

Then, SAS−1 can be partitioned as

SAS−1 =
A11 A12

A21 A22
=

⎡

⎣
1 1 −2
0 1 1
0 0 1

⎤

⎦ .

Let L = [l1 l2]
T . We have

det (sI − (A22 + LA12)) = s2 + (2l2 − l1 − 2)s − (3l2 − l1 − 1).

On the other hand, the characteristic polynomial of T is s2 + 8s + 16. Comparing the coeffi-
cients of both, we get

2l2 − l1 − 2 = 8, 3l2 − l1 − 1 = −16 ⇒ l1 = −60, l2 = −25.

Finally, computation following the Gopinath algorithm leads to

V = D + LC =
[
−60 1 0
−25 0 1

]

, T = A22 + LA12 =
[
−59 121
−25 51

]

VB = −
[
60
24

]

, VK = −
[
575
250

]

.
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Therefore, the minimal order observer is

ż =
[
−59 121
−25 51

]

z −
[
575
250

]

y −
[
60
24

]

u

and the estimate of state x is given by

x =
[
C
V

]−1 [
y
z

]

=
[
0
z

]

+

⎡

⎣
1
60
25

⎤

⎦ y.

(MATLAB drill: Do simulations with this minimal order observer.) �

6.3 Combined System and Separation Principle

When only the output y is measured, we consider how to realize the state feedback by using
the state estimate of observer. Concretely, the input is constructed by

u = Fx + v. (6.45)

Here, signal v denotes an external input (e.g., signals used for reference tracking). The
closed-loop system composed of a state feedback and an observer is called a combined system
(see Figure 6.5). In the sequel, we examine the property of closed-loop system for the cases
of full-order observer and minimal order observer separately.

6.3.1 Full-Order Observer Case

In this case, the estimation error is e = x − x. Select the state of closed-loop system as (x, e).
From the control input u given in (6.45) as well as (6.1), we get

ẋ = Ax + BFx + Bv = (A + BF )x + BFe + Bv .

Combining it together with (6.31), the state equation of closed-loop system is obtained as
[
ẋ
ė

]

=
[
A + BF BF

0 A + LC

] [
x
e

]

+
[
B
0

]

v. (6.46)

Figure 6.5 Structure of combined system
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168 Robust Control

From this equation, we see that the poles of closed-loop system are the roots of the following
characteristic polynomial:

det
[
sI − (A + BF ) −BF

0 sI − (A + LC )

]

= det(sI − (A + BF )) det(sI − (A + LC )). (6.47)

Obviously, they are in the union of pole sets of the state feedback system and the observer.
Therefore, as long as stable state feedback system and observer are designed, respectively,
the stability of the whole closed-loop system is automatically guaranteed. That is, from the
perspective of closed-loop poles, the designs of state feedback and observer are independent
of each other and can be designed separately. This property, called the separation principle, is
very important in system theory.

It should be remembered that the separation principle never means that good reference track-
ing and disturbance responses can be taken as granted so long as the responses of state feedback
and observer are sufficiently fast. This is because the transient response depends not only on
poles but also on zeros. For example, in the case of reference tracking, the transfer zeros of
plant are also the zeros of closed-loop system. When there are stable or unstable zeros near the
imaginary axis, if the closed-loop poles are too big, the output response will change sharply
in the initial stage, which brings about a very big overshoot or undershoot. One may consider
cancelling the zeros of plant with the poles of controller. But from the viewpoint of disturbance
response, pole–zero cancellation near the imaginary axis is not allowed.

Finally, substitution of u = F x into (6.29) yields

ẋ = (A + BF + LC )x − Ly .

So, the dynamic output feedback controller of y �→ u becomes

K(s) =
[
A + BF + LC −L

F 0

]

. (6.48)

This K(s) is the dynamic output controller formed by the combination of state feedback and
observer.

Example 6.8 In the two-mass–spring system, we combine the state feedback and the observer
designed in Examples 6.5 and 6.6 to form the closed-loop system. Imposing a unit impulse
torque disturbance on the load, the responses of motor angular velocity ωM and load angular
velocity ωL obtained via simulation are shown in Figure 6.6.

6.3.2 Minimal Order Observer Case

In this case, from the estimation error e = z − z, we see that the estimated signal z is z =
z + e. For simplicity, let

[
C
V

]−1

= [G H]. (6.49)
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Figure 6.6 Impulse response of combined system

Then, according to (6.42), (6.35), the state estimate x can be written as

x =
[
C
V

]−1 [
y
z

]

=
[
C
V

]−1 [
y

z + e

]

= x + He . (6.50)

Therefore, after the substitution of input u = Fx + v, the state equation of x becomes

ẋ = Ax + BFx + Bv = (A + BF )x + BFHe + Bv .

Combined with the state equation ė = Te of estimation error, state equation of the closed-loop
system is obtained as

[
ẋ
ė

]

=
[
A + BF BFH

0 T

] [
x
e

]

+
[
B
0

]

v. (6.51)

Therefore, even in the case of minimal order observer, poles of the closed-loop system are still
equal to the union of the sets of state feedback system poles and observer poles. That is, the
separation principle is still true.

Further, from x = Gy + Hz, we know that the input u can be expressed as

u = Fx = FH z + FGy . (6.52)

Substituting this equation into the minimal order observer (6.41), its state equation turns
into

ż = Tz + VKy + VBu = (T + VBFH )z + V (K + BFG)y.

As such, we have obtained the dynamic output controller consisting of state feedback and
minimal order observer:

K(s) =
[
T + VBFH V (K + BFG)

FH FG

]

(6.53)

whose order is (n − p).
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Exercises

6.1 Following the procedure below to prove that, when (A,B) is uncontrollable, there must
be a similarity transformation converting (A,B) into

A = T

[
A1 A12
0 A2

]

T−1, B = T

[
B1
0

]

.

(a) Assume that q1, . . . , qk are the linearly independent columns of the controllability
matrix C. Use Cayley–Hamilton theorem to prove that Im C is A-invariant.

(b) Prove that there is a matrix A1 satisfying A[q1 · · · qk] = [q1 · · · qk]A1 based on
the property of A-invariant space.

(c) Choose real vectors qk+1, . . . , qn as such that matrix T = [q1 · · · qk qk+1 · · · qn]
is nonsingular. Prove that T is the transformation matrix satisfying the property
above.

6.2 For the plant

ẋ =
[
0 1
3 −2

]

x +
[
0
1

]

u, y = [1, 0]x,

we hope to design a state feedback u = fx to place the closed-loop system poles at
{−2,−3}. Compute the state feedback gain f .

6.3 Answer the following questions about linear system

ẋ =
[

0 1
−2 0

]

x +
[
0
1

]

u, y = [0 1]x.

(a) Design a state feedback u(t) = fx (t) such that the closed-loop poles are {−1,−2}.
(b) Discuss whether this pole placement problem can be realized by a static output

feedback u(t) = ky(t).

6.4 Consider the following linear system

ẋ =

⎡

⎣
2 1 0
0 2 0
0 0 −1

⎤

⎦x +

⎡

⎣
0
1
0

⎤

⎦ u.

(a) Can you place the closed-loop poles at {−2,−1 ± j1} by a state feedback u = fx?
Explain the reason briefly.

(b) Can you place the closed-loop poles at {−1,−1 ± j1} by a state feedback u = fx?
If you can, compute the state feedback gain f .

(c) When the input vector is changed to b = [0 1 1]T , find the state feedback gain f
that places the closed-loop poles at {−2,−1 ± j1}.

6.5 Given a linear system

ẋ(t) =
[
2 −1
1 2

]

x(t) +
[
0
1

]

u(t), y(t) = [1 0]x(t).
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(a) Compute the poles of system and check its stability.
(b) Check the controllability and observability.
(c) Find a state feedback u(t) = fx (t) such that the closed-loop poles are placed at

{−1,−2}.
(d) Design a full-order observer with poles {−3,−4}.
(e) Design a minimal order observer with a pole −3.

6.6 Discuss whether the system

ẋ =
[
0 1
1 0

]

x +
[
0
1

]

u, y = [1 1]x

can be stabilized by a static output feedback u = ky .

6.7 Given a linear system

ẋ =
[
0 1
0 0

]

x +
[
0
1

]

u, y = [1 0]x.

(a) When all states are measured, we hope to use state feedback u = fx to place the
poles of closed-loop system at {−1,−2}. Compute the feedback gain f .

(b) When only the output is measured, we want to use a full-order observer to estimate
the state x(t). Design an observer with poles of {−4,−5}.

6.8 In order to realize the state feedback control in Exercise 6.4(c), we want to design an
observer.
(a) When the output equation is y = [0 0 1]x, use block diagram to explain whether a

full-order observer can be designed.
(b) When the output equation is y = [1 0 1]x, design a full-order observer with poles

−4,−2 ± j2.
(c) When the output equation is y = [1 0 1]x, design a minimal order observer with

poles −2 ± j2.

6.9 Applying the state feedback u = Fx to an MIMO system ẋ = Ax + Bu + Dw ,
y = Cx , the closed-loop system becomes

ẋ(t) = (A + BF )x(t) + Dw(t), y(t) = Cx (t).

In this closed-loop system, prove first that for any disturbance w(t) the output response
is identically zero iff

C(sI − A − BF )−1D ≡ 0.

Then, prove that this condition is equivalent to

CD = C(A + BF )D = · · · = C(A + BF )n−1D = 0.

Finally, consider an SISO system. When the relative degree of the transfer function of
u �→ y is r, prove that there is a state feedback gain f satisfying the condition iff

cd = cAd = cA2d = · · · = cAr−1d = 0.
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172 Robust Control

(This implies that the transfer function of d �→ y has a relative degree higher than the
transfer function of u �→ y. That is, the input u reaches the output y faster than the
disturbance d, which explains why the disturbance can be perfectly cancelled.)

6.10 In Gopinath algorithm, prove that (A12, A22) is also observable when (C,A) is observ-
able.

Notes and References

For more details on the design methods of state feedback and observer, refer to Refs [12, 44]
and [2].
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7
Parametrization of Stabilizing
Controllers

In the design of control systems, a prerequisite is to ensure the stability of closed-loop system.
In traditional control theories, no matter the classical control theory or the modern control the-
ory, the central issue is to design a single controller capable of controlling the plant. However,
in control system design we often hope to optimize the control performance in certain sense.
This optimization problem basically boils down to shaping the closed-loop transfer matrix. At
the same time, the stability of closed-loop system has to be ensured. However, in performance
optimization it becomes an obstacle to ensure the stability of system. Therefore, a question
arises naturally: is it possible to describe all controllers that stabilize the plant by a formula
with a free parameter? If possible, the problem of performance optimization reduces to the
optimization of the free parameter, and it may be expected that the optimization problem is
greatly simplified.

This chapter proves that this expectation is possible. Parametrization of stabilizing con-
trollers is a great progress in control theory. Here, we first introduce the notion of generalized
closed-loop control system and several applications. Then, we show a formula for all con-
trollers that can stabilize a fixed plant. This formula contains a free parameter, so it is called the
parametrization of the controllers. After that, we will analyze the structures of the closed-loop
transfer matrix and state-space realization in detail. At last, features of 2-degree-of-freedom
systems are enclosed.

Robust Control: Theory and Applications, First Edition. Kang-Zhi Liu and Yu Yao.
© 2016 John Wiley & Sons Singapore Pte. Ltd. Published 2016 by John Wiley & Sons, Singapore Pte. Ltd.

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

174 Robust Control

7.1 Generalized Feedback Control System

7.1.1 Concept

Recall the two-mass–spring system in Example 1.2, where the state vector is x = [ωL φ ωM ]T

and the state equation is

ẋ =

⎡

⎢
⎢
⎢
⎣

−DL

JL

k

JL

0

−1 0 1

0 − k

JM

−DM

JM

⎤

⎥
⎥
⎥
⎦

x +

⎡

⎢
⎣

1
JL
0
0

⎤

⎥
⎦ d +

⎡

⎢
⎣

0
0
1

JM

⎤

⎥
⎦u

yP = [0 0 1]x. (7.1)

The performance specification is to suppress the influence of load torque disturbance d and
ensure that ωL tracks the reference input r. In this problem, the output that needs to be con-
trolled is the speed error r − ωL of load which is different from the measured signal ωM ; also,
the torque disturbance d is different from the control input u in their properties and locations
where they enter the system. For such control problems, in order to optimize the disturbance
(or reference tracking) response directly in control design, new input/output description is
needed. The new description introduced for this purpose is shown in Figure 7.1. In this figure,
G(s) contains the plant, signals for performance optimization and weighting functions, and is
called the generalized plant. K is the controller. Further, we will use the following terms:

• z is the output vector used for specifying the control performance and model uncertainty1,
called the performance output.

• y is the input vector of the controller (e.g., outputs of sensors and tracking errors), called
the measured output.

• w is the external input vector used for specifying the control performance and model uncer-
tainty, called the disturbance.

• u is the command vector of actuators, called the control input.

The input/output relationships of the generalized plant and controller are, respectively,
[
ẑ(s)
ŷ(s)

]

= G(s)
[
ŵ(s)
û(s)

]

(7.2)

û(s) = K(s)ŷ(s). (7.3)

G

K

z

y

w

u

Figure 7.1 Generalized feedback system

1 Refer to Chapter 11 for model uncertainty.
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It should be noted that, the so-called measured output in the generalized feedback system is
the input of controller K(s), not necessarily the output of sensor. For example, in the refer-
ence tracking problem of one-degree-of-freedom (1-DOF in short) systems, the tracking error
r − yP is the input of controller (yP denotes the output of plant) which is the so-called mea-
sured output y; meanwhile, in the two-degree-of-freedom (2-DOF in short) system to be intro-

duced next, the measured output y is the signal vector
[

r
yP

]
.

Let the state equation of generalized plant G(s) be
⎡

⎣
ẋ
z
y

⎤

⎦ =

⎡

⎣
A B1 B2
C1 D11 D12
C2 D21 0

⎤

⎦

⎡

⎣
x
w
u

⎤

⎦ (7.4)

and partition the transfer matrix of generalized plant as

G(s) =
[
G11 G12
G21 G22

]

=

⎡

⎣
A B1 B2
C1 D11 D12
C2 D21 0

⎤

⎦ (7.5)

corresponding to the dimensions of input
[

w
u

]
and output

[
z
y

]
. Then, the closed-loop transfer

matrix of w �→ z equals

Hzw (s) = G11 + G12K(I − G22K)−1G21. (7.6)

In fact, not only the design of feedback control systems but also the design of feedforward
systems like filters as well as the design of 2-DOF control systems can be handled in this
framework. In the sequel, we will introduce a few examples: one is to derive the generalized
plant based on transfer function; the rest are based on state space.

7.1.2 Application Examples

Example 7.1 (2-DOF control system) In reference tracking problems, signals that can be
used in control are the plant output yP and the reference input r. However, in the tradi-
tional control structure shown in Figure 5.1 feedbacked is the difference r − yP of signals.
This kind of control structure is called 1-DOF control system . 1-DOF control system does
not make full use of the available information, so it is difficult to improve the tracking per-
formance. On the contrary, control structure with not only the feedback of yP but also the
feedforward of r is called 2-DOF control system . Its general structure is shown in Figure 7.2

WR

−

yP

z

w
r

u

K

G

w

uryP

z

PK

Figure 7.2 Reduction of 2-DOF system to generalized feedback system
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where K(s) = [KF KB ] contains two blocks KF (s) and KB(s), which correspond to the
feedforward signal r and the feedback signal yP , respectively.

Let the model of reference input be WR(s). Since the control purpose is to reduce the
tracking error as small as possible, we choose the performance output as the tracking error
z = r − yP . Besides, noting that the disturbance is the impulse input w of WR(s) and the

measured output is
[

r
yP

]
, we get the input/output relation:

⎡

⎣
ẑ
r̂
ŷP

⎤

⎦ = G(s)
ŵ
û

=

⎡

⎣
WR −P
WR 0
0 P

⎤

⎦ ŵ
û

û = K(s)
r̂
ŷP

= KF r̂ + KB ŷP

(7.7)

(7.8)

in which the dashed line is used to distinguish input/output signals with different properties as
well as the corresponding matrix blocks.

Example 7.2 Consider specifically the generalized plant in the load torque disturbance con-
trol problem of two-mass–spring system. For convenience, denote the coefficient matrices of
the state-space model in Section 7.1.1 with A, b1, b2, c2, respectively. Then

ẋ = Ax + b1d + b2u (7.9)

yP = c2x.

According to the specification, we select the tracking error of load speed as the performance
output:

z = r − x1 = [−1 0 0]x + r = c1x + r.

Since the reference input r and motor speed yP are known, the measured output is (2-DOF
control)

y =
[

r
yP

]

.

In this problem, the disturbance2 is w = [r d]T . Denote by P (s) the generalized plant from
[wT u]T to [z yT ]T . Reorganizing the preceding state equations according to the input and
output of P (s), we obtain the state-space model of P (s):

⎡

⎢
⎢
⎣

ẋ
z
r
yP

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

A 0 b1 b2

c1 1 0 0
0 1 0 0
c2 0 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x
r
d
u

⎤

⎥
⎥
⎦ . (7.10)

2 From the angle of tracking error z, the reference input r is equivalent to a disturbance.
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Further, in order to take the dynamics of reference input into account, we denote its model by
WR(s), while the disturbance model is set as WD(s). Substituting their input/output relation-
ships

r̂(s) = WR(s)ŵ1(s), d̂(s) = WD(s)ŵ2(s), (7.11)

we eventually get the generalized plant of [w1 w2 u]T �→ [z yT ]T as

G(s) = P (s) × diag(WR(s) WD(s) 1). (7.12)

Example 7.3 (Filter design) Let us consider the problem of estimating a signal q consisting
of some states (Figure 7.3) from the plant input and output. Assume that noise n exists in the
plant and the state equation of plant is

ẋ = Ax + B1n + B2u

yP = Cx + D1n + D2u

q = Hx .

Here, we hope to process the known input/output signals (u, yP ) appropriately with a filter
F (s) so as to obtain an estimate q of signal q. As a rule of filter design, the estimation error
z = q − q should be as small as possible. In terms of generalized feedback system, (n, u) is
the disturbance, estimation error z is the performance output, (u, yP ) is the measured output,
and q is the control input. The input/output relationship of the generalized feedback system is

⎡

⎣
ẑ
ŷP

û

⎤

⎦ =

⎡

⎢
⎢
⎣

A B1 B2 0
H 0 0 −I
C D1 D2 0
0 0 I 0

⎤

⎥
⎥
⎦

⎡

⎣
n̂
û

q̂

⎤

⎦ = P (s)

⎡

⎣
n̂
û

q̂

⎤

⎦

q̂ = F (s)
ŷP

û
.

(7.13)

(7.14)

Furthermore, when the noise n is a colored one with dynamics Wn(s), then n̂(s) =
Wn(s)ŵ(s) in which w is a white noise. Substitution of this relation yields the generalized
plant with weighting function for the filter problem:

q

⎡

⎣
ẑ
ŷP

û

⎤

⎦ = G

⎡

⎣
ŵ
û
ˆ

⎤

⎦ , G = P

⎡

⎣
Wn

I
I

⎤

⎦ . (7.15)

Wn
q

u

nw

z

yP

−

P
F

q

Figure 7.3 Filtering problem
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From these examples, we conclude that any control problem can be converted to a control
problem of the generalized feedback system in Figure 7.1. Therefore, we only analyze the
system in Figure 7.1 hereafter.

7.2 Parametrization of Controllers

In Chapter 6, we discussed the issue of stabilizing a plant by using state feedback and observer
and obtained a dynamic output feedback controller given by (6.48). However, in addition to
this specific controller, there exist a lot of stabilizing controllers. The goal of this section is to
derive a formula for all stabilizing controllers. It is called the parametrization of controllers
because this formula contains a free parameter.

First of all, we show a basic property of the generalized feedback system.

Lemma 7.1 K(s) stabilizes G(s) iff K(s) stabilizes G22(s) = (A,B2, C2, 0).

Proof. It suffices to prove that these two closed-loop systems have the same A matrix. Con-
sider the closed-loop system (G22,K) first. The state of G22 is x and the corresponding state
equation is

ẋ = Ax + B2u, y = C2x. (7.16)

Further, the state equation of controller K(s) is given by

ẋK = AKxK + BKy, u = CKxK + DKy. (7.17)

Substituting y = C2x into this equation, we get

ẋK = BKC2x + AKxK , u = DKC2x + CKxK .

Then, substitution of this u into the equation of ẋ gives

ẋ = (A + B2DKC2)x + B2CKxK .

Therefore, the state equation of closed-loop system (G22,K) becomes
[

ẋ
ẋK

]

=
[
A + B2DKC2 B2CK

BKC2 AK

] [
x

xK

]

. (7.18)

The difference between G(s) and G22(s) is that a term B1w about the disturbance is added to
the equation of ẋ. But the disturbance term does not affect the A matrix of closed-loop system.
So they are the same. •

Note that even if the state-space realization (7.4) of G(s) is a minimal realization, the
state-space realization (A,B2, C2, 0) of G22(s) is not necessarily minimal.

7.2.1 Stable Plant Case

Let us consider stable G(s) first. In this case, the formula of stabilizing controllers is
particularly concise.
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Theorem 7.1 Assume that G(s) is stable. Then, all stabilizing controllers are parameterized
by

K(s) = Q(I + G22Q)−1 (7.19)

in which Q(s) is an arbitrary stable matrix with suitable dimension.

Proof. According to Lemma 7.1, we need only prove that K(s) stabilizes G22(s). From the
stability of G(s), we see that G22(s) is also stable. By the definition of internal stability, if all
the following four transfer matrices

(I − G22K)−1, K(I − G22K)−1, G22K(I − G22K)−1, (I − G22K)−1G22

are stable, the closed-loop system (G22,K) is internally stable. With the controller substituted,
we have that these four transfer matrices are equal to

I + G22Q, Q, G22Q, (I + G22Q)G22,

respectively. They are certainly stable. Conversely, when K(s) is a stabilizing controller,
K(I − G22K)−1 := Q(s) must be stable. Solving for K(s), we see that it is described by
K(s) = Q(I + G22Q)−1. •

Further, the next corollary follows immediately from this theorem. It corresponds to the case
of G22(s) = −P (s).

Corollary 7.1 Assume that the plant P (s) in Figure 7.4 is stable. Then all controllers that
stabilize the closed-loop system are parameterized by

K(s) = Q(I − PQ)−1

in which Q(s) is any stable matrix with appropriate dimension.

Example 7.4 Consider the single-input single-output (SISO) feedback system in Figure 7.4
where P (s) is stable. Find all controllers that enable the asymptotic tracking of step reference
input r.

Solution Laplace transform of the tracking error is

ê(s) = r̂(s) − ŷ(s) =
1

1 + PK
r̂(s) =

1
1 + PK

1
s
.

−
r yP

e u
K

Figure 7.4 1-DOF feedback system
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Substitution of the parametrization K(s) = Q/(1 − PQ) leads to ê(s) = (1 − PQ) 1
s . It fol-

lows from the final value theorem of Laplace transform that

e(∞) = lim
s→0

sê(s) = 1 − P (0)Q(0).

For e(∞) = 0 to hold, there must be

P (0) �= 0, Q(0) =
1

P (0)
.

So, all controllers that can ensure the asymptotic tracking are given by the set
{

K(s) =
Q

1 − PQ

∣
∣
∣
∣ Q is stable and Q(0) =

1
P (0)

}

.

In addition,

K(0) = lim
s→0

Q

1 − PQ
→ ∞

holds. So, K(s) contains at least one integrator 1/s, which agrees with the internal model
principle.

For instance, for the plant

P (s) =
1

(s + 1)(s + 2)
,

one of the controllers that ensures the asymptotic tracking of step reference input is obtained
as

K(s) =
2(s + 1)(s + 2)

s(s + 3)

when the free parameter is selected as Q = 1/P (0) = 2. �

Remark 7.1 When we treat this example in the framework of generalized feedback system, the
generalized plant with weighting function cannot be stabilized because the weighting function
1/s is not stable. So the result of this chapter cannot be applied directly. But a careful observa-
tion shows that there is no need to stabilize the state of weighting function; what is needed is to
stabilize the real feedback system (P,K) and to ensure the stability of the closed-loop transfer
function 1

1+PK
1
s weighted by unstable function. This stability property is named as the compre-

hensive stability . The condition needed for comprehensive stability and the parametrization
of its solutions are discussed in Refs [60, 61].

Example 7.5 Consider the SISO feedback system in Figure 7.5. Assume that P (s) is stable
and P (0) �= 0. Find all controllers that are capable of asymptotic rejection of step disturbance
d. Further, for P (s) = 1/(s + 1), select the free parameter as Q(s) = P−1(s) k

1+εs (ε > 0)
and design a controller satisfying ‖y‖2 ≤ 0.1.

Solution Laplace transform of the disturbance response is

ŷ(s) =
P

1 + PK
d̂(s) =

P

1 + PK
1
s

.
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d

uK P y
−

Figure 7.5 Disturbance control

Substitution of stabilizing controller K = Q/(1 − PQ) yields

ŷ(s) = P (1 − PQ)
1
s

. (7.20)

Similar to Example 7.4, from the final value theorem, it can be derived that all controllers
guaranteeing zero steady-state output w.r.t. step disturbance d are given by

{

K =
Q

1 − PQ
: Q(s) is stable and Q(0) =

1
P (0)

}

. (7.21)

Each controller K(s) contains at least one integrator 1/s.
To ensure that the output norm ‖y‖2 of P (s) = 1/(s + 1) is bounded, y(∞) = 0 must be

satisfied. So, k = Q(0) = 1/P (0) = 1. Then, we obtain

ŷ(s) =
ε

(s + 1)(εs + 1)
=

ε

1 − ε

(
1

s + 1
− 1

s + 1/ε

)

⇒ y(t) =
ε

1 − ε
(e−t − e−t/ε), t ≥ 0

via substitution of the given P (s), Q(s) into (7.20). So,

‖y‖2
2 =

∫ ∞

0
y2(t)dt =

ε2

2(1 + ε)
≤ 0.12 ⇒ ε2 − 0.02ε − 0.02 ≤ 0.

The solution of this inequality is −0.131 ≤ ε ≤ 0.151. Considering the stability condition
ε > 0 on the free parameter Q, the range of solution finally obtained is 0 < ε ≤ 0.151. Com-
puting the corresponding controller, we get the following PI compensator:

K(s) =
s + 1
εs

=
1
ε

+
1
εs

. �

7.2.2 General Case

When G is not stable, the formula of its stabilizing controllers gets rather complicated. There
are two kinds of methods on the parametrization: one using coprime factorization [90] over
the ring of stable rational matrices and another using the state-space method directly. Here, we
illustrate the latter.

Theorem 7.2 Suppose that (A,B2) is stabilizable and (C2, A) is detectable. Let matrices
F and L be such that stabilize A + B2F and A + LC2, respectively. Then, all controllers
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M

Q

u y

Figure 7.6 Parametrization of stabilizing controllers

stabilizing the generalized plant G(s) of (7.4) are given by the transfer matrix F�(M,Q) from
y to u in Figure 7.6, where Q(s) is any stable matrix with an appropriate dimension, and the
coefficient matrix M(s) is

M(s) =

⎡

⎣
A + B2F + LC2 −L B2

F 0 I
−C2 I 0

⎤

⎦ .

Proof. The sufficiency can be proved through substitution of the stable transfer matrix
Q(s) = (AQ, BQ, CQ,DQ) and calculation of the closed-loop system A matrix. First of all,
according to the linear fractional transformation (LFT) interconnection formula (4.63), the
state-space realization of K(s) = F�(M,Q) is obtained as

F�(M,Q) = (AK , BK , CK , DK)

=

⎡

⎣
A + B2F + LC2 − B2DQC2 B2CQ B2DQCQ − L

−BQC2 AQ BQ

F − DQC2 CQ DQ

⎤

⎦ . (7.22)

Substituting it into the transfer matrix of closed-loop system Hzw = F�(G,K), and applying
the LFT interconnection formula once again, we obtain the A matrix of closed-loop system as

Ac =

⎡

⎣
A + B2DQC2 B2F − B2DQC2 B2CQ

B2DQC2 − LC2 A + B2F + LC2 − B2DQC2 B2CQ

BQC2 −BQC2 AQ

⎤

⎦ . (7.23)

To examine its stability, we try to convert Ac into a block triangular matrix via similarity
transformation. The following similarity transformation is performed: add the second column
to the first, subtract the first row from the second, and then exchange the second and third
columns as well as the second and third rows3. Finally, we have that Ac is similar to the block
triangular matrix: ⎡

⎣
A + B2F B2CQ B2F − B2DQC2

0 AQ −BQC2
0 0 A + LC2

⎤

⎦ . (7.24)

This matrix obviously is stable.

3 T1 =

[
I 0 0
I I 0
0 0 I

]
, T2 =

[
I 0 0
0 0 I
0 I 0

]
are the transformation matrices of these two similarity transformations.
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M

Q0

y

ηξ

u
M̂

K

ξ

uy

η

Figure 7.7 Input/output relations of K = F�(M, Q0) and Q0 = F�(M̂, K)

To prove the necessity, we need just prove that any stabilizing controller K(s) can be
described as K(s) = F�(M,Q0) with a stable Q0(s). Hence, we consider calculating Q0(s)
from this formula and then verify its stability. According to the input/output relation in
Figure 7.7, there hold

[
û

ξ̂

]

= M(s)
[
ŷ
η̂

]

, û = K(s)ŷ;
[
η̂
ŷ

]

= M̂(s)
[
ξ̂
û

]

, η̂ = Q0(s)ξ̂.

From these equations, we get that the relationship between M̂ and M is

M̂(s) =
[

I
I

]

M−1
[

I
I

]

.

Calculation based on the formula of inverse system in Section 4.1.8 gives the state realization
of M̂(s):

M̂(s) =

⎡

⎣
A −L B2
−F 0 I
C2 I 0

⎤

⎦ .

M̂(s) and G(s) share the same (2, 2) block, namely, M̂22(s) = G22(s) = C2(sI − A)−1B2.
So they both are stabilized by K(s) (Lemma 7.1). Therefore, Q0(s) := F�(M̂,K) is
stable. •

Example 7.6 Consider the stabilization of integrator P (s) = 1/s := G22. One of its state
realizations is (0, 1, 1, 0). When F = L = −1 are chosen, A + B2F = A + LC2 = −1 are
stable. From the coefficient matrix

M(s) =

⎡

⎣
−2 1 1
−1 0 1
−1 1 0

⎤

⎦ =
1

s + 2

[
−1 s + 1

s + 1 −1

]

,

we get the parametrization of stabilizing controllers:

K(s) = − 1
s + 2

+
(

s + 1
s + 2

)2

Q(s)
(

1 +
1

s + 2
Q(s)

)−1

.

When Q(s) = 0, the controller is K(s) = −1/(s + 2). The characteristic polynomial of the
closed-loop system is equal to the numerator polynomial s(s + 2) + 1 = (s + 1)2 of 1 − PK ,
so the closed-loop system is stable.
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7.3 Youla Parametrization

Parametrization of stabilizing controllers stemmed from Youla’s study on the strong stabiliza-
tion problem [97, 90], which has a form different from the LFT given in the previous section.
For some problems, Youla parametrization is more convenient. So, this section introduces this
method.

We start from the input/output relation of M(s):
[
û

ξ̂

]

= M(s)
[
ŷ
η̂

]

(7.25)

(see Figure 7.7), arranging it as [
û
ŷ

]

= Φ(s)
[
η̂

ξ̂

]

(7.26)

and [
η̂

ξ̂

]

= Φ−1(s)
[
û
ŷ

]

:= Θ(s)
[
û
ŷ

]

. (7.27)

To find the transfer matrix Φ(s), we transform the state equation of M(s) so as to derive the
state equation of Φ(s). The key is to focus on the input/output relation of Φ(s). Denoting the
state of M(s) by xM , its state equation can be written as

ẋM = (A + B2F + LC2)xM − Ly + B2η

u = FxM + η

ξ = −C2xM + y. (7.28)

From ξ = −C2xM + y, we get y = C2xM + ξ. Substituting it back into ẋM , we obtain the
state equation of Φ(s):

ẋM = (A + B2F )xM + B2η − Lξ

u = FxM + η

y = C2xM + ξ. (7.29)

Hence, the transfer matrix Φ(s) is

Φ(s) =

⎡

⎣
A + B2F B2 −L

F I 0
C2 0 I

⎤

⎦ :=
[
D(s) −Y (s)
N(s) −X(s)

]

. (7.30)

Further, calculating Φ−1(s) = Θ(s) based on the formula in Section 4.1.8, it is easy to get

Θ(s) =

⎡

⎣
A + LC2 −B2 L

F I 0
C2 0 I

⎤

⎦ :=
[
−X̃(s) Ỹ (s)
−Ñ(s) D̃(s)

]

. (7.31)

Obviously, [
−X̃(s) Ỹ (s)
−Ñ(s) D̃(s)

] [
D(s) −Y (s)
N(s) −X(s)

]

= I (7.32)

holds. After these preparations, we derive the Youla parametrization.
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Theorem 7.3 Suppose that (A,B2) is stabilizable and (C2, A) is detectable. F and L are
matrices that stabilize A + B2F and A + LC2, respectively. Then, the following statements
hold:

1. G22(s) = N(s)D−1(s) = D̃−1(s)Ñ(s).
2. All controllers stabilizing the generalized plant G(s) of (7.5) are parameterized by

K(s) = (X̃ − QÑ)−1(Ỹ − QD̃) = (Y − DQ)(X − NQ)−1 (7.33)

where Q(s) is any stable transfer matrix with appropriate dimension.

Proof. Statement 1 can be proved by calculating the product of transfer matrices using
the realizations of N(s),D(s), Ñ(s), D̃(s) and then conducting a similarity transformation
(Exercise 7.8). Statement 2 is proved here.

Noting that η̂ = Qξ̂ (Figure 7.7), (7.26) can be written as

û = (DQ − Y )ξ̂, ŷ = (NQ − X)ξ̂. (7.34)

Removing ξ̂, we get
û = (Y − DQ)(X − NQ)−1ŷ = K(s)ŷ. (7.35)

On the other hand,

η̂ = Ỹ ŷ − X̃û = Qξ̂, ξ̂ = D̃ŷ − Ñ û (7.36)

follows from (7.27). Substituting the second equation into the first and removing ξ̂ and η̂, after
some rearrangement we obtain the relationship between û and ŷ:

û = (X̃ − QÑ)−1(Ỹ − QD̃)ŷ = K(s)ŷ. (7.37)
•

Statement (1) of this theorem shows that transfer matrix G22(s), either stable or unstable,
can be described as a fraction of two stable transfer matrices N(s) and D(s). Moreover, from
the (1, 1) block of Eq. (7.32), we have

Ỹ (s)N(s) − X̃(s)D(s) = I . (7.38)

This equation implies that N(s) and D(s) do not have any common zero and right zero
vector4. Therefore, this kind of factorization is called coprime factorization [90] based on
stable transfer matrices.

It is easy to verify the following conclusions (Exercise 7.8):

• Zeros of N(s) and Ñ(s) are the same as those of G22(s).
• Zeros of D(s) and D̃(s) are the same as the poles of G22(s).

4 Suppose that z is a common zero with right zero vector u �= 0, then D(z)u = 0, N(z)u = 0. Hence, postmultiplying
(7.38) by u and substituting s = z into it leads to a contradiction 0 = u.
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7.4 Structure of Closed-Loop System

In this section, we analyze the structure of the stabilized closed-loop system. Illustrated are
two types of structures: one is the parametric structure of closed-loop system with controller
parameter as the variable, and another is the structure of closed-loop transfer matrix with the
free parameter of stabilizing controller as the variable.

7.4.1 Affine Structure in Controller Parameter

A controller

K(s) =
[
AK BK

CK DK

]

is used to control the generalized plant (7.4), as shown in Figure 7.1. We investigate the
relationship between the coefficient matrix of generalized feedback system and that of the
controller. Suppose that the state equation of controller K(s) is

[
ẋK

u

]

=
[
AK BK

CK DK

] [
xK

y

]

. (7.39)

The state vector of closed-loop system is selected as

[
x

xK

]

. Substituting y into (7.39) and then

substituting u back into (7.4), we obtain the state equation of closed-loop system as
⎡

⎣
ẋ

ẋK
-----
z

⎤

⎦ =

[
Ac Bc

Cc Dc

] ⎡

⎣
x

xK
-----
w

⎤

⎦ (7.40)

where

Ac Bc

Cc Dc
=

⎡

⎣
A + B2DKC2 B2CK B1 + B2DKD21

BKC2 AK BKD21

C1 + D12DKC2 D12CK D11 + D12DKD21

⎤

⎦ . (7.41)

Now, we examine the relationship between the coefficient matrices of closed-loop system
and controller. Firstly, it is noted that Ac can be written as

Ac =
[
A 0
0 0

]

+
[
B2DKC2 B2CK

BKC2 AK

]

=
[
A 0
0 0

]

+
[
B2 0
0 I

] [
DK CK

BK AK

] [
C2 0
0 I

]

.

That is, Ac is an affine function of the coefficient matrix of controller:

K =
[
DK CK

BK AK

]

. (7.42)
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Rewriting other coefficient matrices analogously, the coefficient matrices of closed-loop
system can be written as

[
Ac Bc

Cc Dc

]

=
[

A B1
C1 D11

]

+
[

B2
D12

]

K[C2,D21]. (7.43)

Obviously, they are affine functions of K. The coefficient matrices are given by

⎡

⎣
A B1 B2

C1 D11 D12

C2 D21

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

A 0 B1 B2 0
0 0 0 0 I
C1 0 D11 D12 0
C2 0 D21

0 I 0

⎤

⎥
⎥
⎥
⎥
⎦

. (7.44)

The closed-loop transfer matrix is a linear fractional function of the controller which is
nonlinear. Meanwhile, in state space their coefficient matrices have an affine relation which is
much simpler. This affine feature about the controller parameter is a very important character
of linear closed-loop systems. It is because of this character that the state-space method is
effective in various kinds of optimal control designs. For example, in the H∞ control and
multiobjective control to be introduced later on, this affine relationship plays a fundamental
role in deriving the LMI solutions.

7.4.2 Affine Structure in Free Parameter

First, for simplicity define the following notations:

AF := A + B2F, CF := C1 + D12F

AL := A + LC2, BL := B1 + LD21 (7.45)

Â := A + B2F + LC2.

Applying the stabilizing controller of Theorem 7.2, we get the closed-loop transfer matrix
from w to z (Figure 7.8) as

Hzw (s) = F�(G,K) = F�(G,F�(M,Q)) = F�(N,Q).

Its coefficient matrix N(s) can be obtained based on the state equations of G(s)(with state x)

and M(s)(with state xM ) as follows: select the state vector of closed-loop system as
[

x
x−xM

]

and then eliminate the intermediate variables (y, u). The specific result is as follows (refer to
Exercise 7.11):

N(s) =
[
N11 N12
N21 N22

]

=

⎡

⎢
⎢
⎣

AF −B2F B1 B2
0 AL BL 0

CF −D12F D11 D12
0 C2 D21 0

⎤

⎥
⎥
⎦ . (7.46)
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N

Q

ξ η

wz

ηξ

uy

w

Q

M

G
z

Figure 7.8 Closed-loop system

Expanding the transfer matrices in Eq. (7.46), we get

N12(s) =
[
AF B2
CF D12

]

, N21(s) =
[
AL BL

C2 D21

]

, N22(s) = 0.

Eventually, the closed-loop transfer matrix becomes

Hzw (s) = N11(s) + N12(s)Q(s)N21(s). (7.47)

Namely, Hzw (s) is an affine function of Q(s). This affine structure will be used in solving the
H2 optimal control problem. Historically, the H∞ control problem was also treated based on
this formula at the beginning.

7.5 2-Degree-of-Freedom System

In this section, the 2-DOF system in Figure 7.9 is considered. We will analyze the structural
property of the stabilized 2-DOF system in detail and discuss the implementation of 2-DOF
control.

7.5.1 Structure of 2-Degree-of-Freedom Systems

The control objective of 2-DOF system shown in Figure 7.9 is to let the plant output y(t) track
the reference input r(t) while suppressing the influence of disturbance d(t) simultaneously.
Here, take the tracking error

e(t) = r(t) − yP (t) (7.48)

as the performance output and assume that the state equation

ẋ = Ax + Hd + Bu (7.49)

yP = Cx (7.50)

of the plant is stabilizable and detectable. Note that in practice the disturbance d may
enter the closed-loop system at a location different from the control input u (for instance,
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Kr yP
u

e−d

P

Figure 7.9 2-DOF control system

two-mass–spring system), so their coefficient matrices are set differently. Then, transfer
matrix Pu(s) of u �→ yP and transfer matrix Pd(s) of d �→ yP are

Pu(s) = C(sI − A)−1B, Pd(s) = C(sI − A)−1H , (7.51)

respectively. In order to analyze the closed-loop structure of 2-DOF system based on the result
of the last section, we regard the 2-DOF system as a generalized feedback system where the

disturbance is w =
[

r
d

]
and the measured output is y =

[
r

yP

]
. Consequently, the state equation

of generalized plant becomes

⎡

⎣
ẋ
e
y

⎤

⎦ =

⎡

⎢
⎢
⎣

A 0 H B
−C I 0 0
0 I 0 0
C 0 0 0

⎤

⎥
⎥
⎦

⎡

⎣
x
w
u

⎤

⎦ =

⎡

⎣
A B1 B2

C1 D11 D12

C2 D21 0

⎤

⎦

⎡

⎣
x
w
u

⎤

⎦ .

Here, let matrix F be a gain that stabilizes AF := A + B2F = A + BF . Noting that

C2 =
[

0
C

]
, the observer gain in Theorem 7.2 can be chosen as [0 L] where the matrix L

stabilizes AL := A + [0 L]C2 = A + LC . So the closed-loop transfer matrix from
[

r
d

]
to

e is
[Ter (s) Ted (s)] = N11(s) + N12(s)Q(s)N21(s). (7.52)

Computing the matrices defined by (7.45), we obtain BL = [0 H], CF = −C. So, according
to (7.46) the following coefficient matrices are obtained:

N12(s) = −C(sI − AF )−1B, N21(s) =
[
I 0
0 C(sI − AL)−1H

]

N11(s) =
[
I − N12(s)F (sI − AL)−1H − C(sI − AF )−1H

]
.

Finally, partition the free parameter Q(s) into

Q(s) = [QF (s) QB(s)] (7.53)

according to the dimensions of y =
[

r
yP

]
. Then, the reference tracking transfer matrix Ter and

disturbance suppression transfer matrix Ted become

Ter (s) = I + N12(s)QF (s) (7.54)

Ted (s) = N12(s)QB(s)C(sI − AL)−1H

− N12(s)F (sI − AL)−1H − C(sI − AF )−1H, (7.55)
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respectively. Obviously, Ter (s) is only related with QF (s), while Ted (s) only depends on
QB(s). This means that Ter (s) and Ted (s) can be designed independently.

Further, since the zeros of N12(s) are identical to those of Pu(s), there exists a vector u �= 0
satisfying u∗N12(z) = 0 corresponding to an unstable zero z of Pu(s). Then, u∗Ter (z) = u∗

always holds no matter what QF (s) is. That is, the reference tracking transfer matrix Ter (s)
is constrained by the unstable zeros of Pu(s)5. Compared with this, the disturbance attenu-
ation transfer matrix Ted (s) is constrained not only by the unstable zeros of plant Pu(s) but
also by the unstable zeros of the disturbance transfer matrix Pd(s) (zeros of transfer matrix
C(sI − AL)−1H are identical to those of Pd(s)).

In particular, when the plant is stable, the feedback gains can be set as F = 0, L = 0. Then,
the description of closed-loop transfer matrices simplifies to

Ter (s) = I − Pu(s)QF (s) (7.56)

Ted (s) = −Pu(s)QB(s)Pd(s) − Pd(s) (7.57)

and the constraints on each transfer matrix as well as their design independence can be seen
more clearly.

Example 7.7 Consider the following first-order system:

ẋ = −2x + u + d, yP = 2x.

Let the reference input r and the disturbance d be unit step signal 1(t). We design a 2-DOF
control system to reduce the reference tracking error e(t).

Here, the plant is stable and

Pu(s) = Pd(s) =
2

s + 2
.

So, we choose the free parameters as follows:

QF (s) = P−1
u (s)

1
εs + 1

, QB(s) = −P−1
u (s)

1
τs + 1

, ε, τ > 0.

A simple calculation gives

Ter (s) = 1 − PuQF =
s

s + 1/ε

Ted (s) = −(PuQB + 1)Pd = − 2s

(s + 2)(s + 1/τ)
.

So the tracking error equals

ê(s) = Ter r̂ + Ted d̂ =
1

s + 1/ε
− 2

(s + 2)(s + 1/τ)

⇒ e(t) = e−t/ε − 2τ

1 − 2τ
(e−2t − e−t/τ ). (7.58)

5 Refer to Section 10.2 and Section 10.4 for details about such constraints.
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The tracking error can be reduced by lowering ε, τ . The corresponding controller is computed
based on the state-space realization of 2-DOF system and (7.19):

G22 =
[

0
C

]

(sI − A)−1B =
[
0
2

]

(s + 2)−1 · 1 =
[

0
Pu

]

⇒

K(s) = Q
1+QG22

= [QF QB ]
1+QBPu

= τs+1
τs

[
s+2

2(εs+1) − s+2
2(τs+1)

]
.

Obviously, the low-frequency gain of K(s) increases when τ is reduced, while ε does not affect
the low-frequency gain of K(s). High gain of controller leads to an increase of control input.
Note that the second term of (7.58) is the disturbance response. In order to realize signal
tracking using an input as small as possible, we should better mainly use feedforward control
(i.e., lowering ε only). The feedback should be strengthened only when the disturbance is strong
(lowering both ε and τ ).

7.5.2 Implementation of 2-Degree-of-Freedom Control

Here, we only discuss the implementation of 2-DOF control for stable SISO systems. Since
G22 = [0 P ]T , P (s) := C(sI − A)−1B, the controller becomes

K := [KF − KB ] =
[QF − QB ]

1 + [QF − QB ]G22
=

[QF − QB ]
1 − PQB

. (7.59)

Drawing the block diagram, we get the general form of 2-DOF system as shown in Figure 7.10
(P0 stands for the plant model contained in the controller).

The feature of this system is that the input signal of QB(s) becomes zero when P = P0 and
d(t) = 0. So the feedback controller KB(s) is not activated. In this case, the transfer function
of r �→ yP becomes

HyP r(s) = P (s)QF (s).

To guarantee a good time response, a method is to make the closed-loop transfer function match
or close to a reference model M(s) with good performance. This is called model-matching .
It is very easy to derive the feedforward compensator QF according to the model-matching
condition:

PQF = M ⇒ QF (s) =
M(s)
P (s)

. (7.60)

QF

QB P0

P
yPu

d

r

−

Figure 7.10 General form of 2-DOF systems
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M
P

M KB

P
yPu

d

r

−

Figure 7.11 Another form of 2-DOF systems

Since the free parameter QF must be stable, this equation implies that when the plant P (s) have
unstable zeros, the model M(s) must also contain the same zeros. That is, for a nonminimum
phase plant, the output response cannot be improved arbitrarily.

Another implementation form of 2-DOF systems is shown in Figure 7.11, which can be
verified as follows. Calculating the transfer function of r �→ u, we have

Hur (s) =
M

P
+ MKB =

M

P
+ M

QB

1 − PQB

=
M

P

1 − PQB + PQB

1 − PQB

=
QF

1 − PQB

= KF .

The physical implication of this implementation is that, when the output of actual plant is
different from that of the reference model M(s), the feedback controller is activated; when
they are the same, the feedback controller stops working.

Example 7.8 Consider the following plant with low damping:

P (s) =
4

s2 + s + 4

(
ζ =

1
4
, ωn = 2

)
.

We hope that the closed-loop transfer function matches a reference model with a strengthened
damping:

M(s) =
4

s2 + 3s + 4
(ζ∗ = 0.75, ω∗

n = 2).

Following the design method stated in the preceding text, we get the feedforward compensator

QF (s) =
M

P
=

s2 + s + 4
s2 + 3s + 4

.

The feedback controller is designed as

QB(s) = P−1 1
(εs + 1)2 ⇒ KB(s) =

s2 + s + 4
2ε2s(s + 2/ε)

.
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Then, the sensitivity function becomes

S(s) =
1

1 + PKB

= 1 − PQB = 1 − 1
(εs + 1)2 =

εs(εs + 2)
(εs + 1)2

(MATLAB drill: set ε = 0.3, do simulations to compare the step responses of open-loop control
and closed-loop control).

Exercises

7.1 Given a stable plant P = 1/(s + 2), a controller is desired that can track the step refer-
ence input r(t) = 1 (t ≥ 0) asymptotically. Design such a first-order controller K(s)
using the formula of stabilizing controllers.

7.2 In Exercise 7.1, besides the asymptotic tracking of step reference input, the tracking
error w.r.t. the ramp reference input r(t) = t (t ≥ 0) has to satisfy |e(∞)| ≤ 0.05. Let
the free parameter be Q(s) = P−1/(εs + 1), find an ε > 0 such that these two condi-
tions are satisfied, and compute the corresponding controller K(s).

7.3 Set the free parameter as Q = (as + b)/(s + 1). Design a controller such that the out-
put y(t) of plant P (s) = 1/(s + 2) tracks the ramp reference input r(t) = t (t ≥ 0)
asymptotically.

7.4 The input of plant P (s) = 5/(s + 5) is u(t) and its output is y(t). We want to ensure
that output y(t) asymptotically tracks unit step reference input r(t) = 1(t) by using a
stabilizing controller:

K(s) =
Q

1 − PQ
, Q(s) =

s + 5
5(as + b)

, a, b > 0.

The tracking error is e = r − y. Let the interconnection relation of the system be
û(s) = K(s)ê(s).
(a) Draw the block diagram of the closed-loop system.
(b) Describe the Laplace transform ê(s) of tracking error using the free parameter

Q(s).
(c) To achieve the asymptotic tracking e(∞) = 0, derive the conditions on the param-

eters (a, b).
(d) Further, derive the conditions on (a, b) for ‖e‖2 ≤ 0.1.
(e) Select a set of (a, b) satisfying conditions (c) and (d) and calculate the correspond-

ing controller K(s).

7.5 The SISO closed-loop system in Figure 7.12 is called IMC (internal model control) ,
which is widely used in process control. Here, P (s) stands for the actual system, P0(s)
stands for its model, and both are strictly proper. Q(s) is a parameter used for control
and is a stable transfer function. Let the tracking error be e = r − y.
(a) When P (s) = P0(s) holds and both are stable, prove that the closed-loop system

is stable for any Q(s).
(b) When P (s) = P0(s) holds and both are minimum phase, propose a strategy that

can improve the tracking performance for any reference input r.
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PQ

P0

yr −

−

u

Figure 7.12 Structure of IMC

(c) When P (s) and P0(s) contain a common unstable pole p, discuss the possibility of
stabilization of the closed-loop system.

7.6 In the control system of Figure 7.5, the plant P and disturbance d are

P (s) =
1

s + 1
, d̂(s) =

1
s
ŵ(s), ||w||2 ≤ 1.

To reduce the effect of disturbance, we hope that the closed-loop transfer function from
w to y satisfies ||Hyw ||∞ < 1. Examine whether this specification can be achieved by
the following controller:

K(s) =
Q

1 − PQ
, Q(s) =

s + 1
as + b

, a > 0, b > 0.

If possible, give the conditions on (a, b).

7.7 Following Examples 7.5 and 7.6, design a controller such that the response y w.r.t. the
unit step disturbance acting on the input of plant P (s) = 1/s satisfies ‖y‖2 ≤ 0.1.

7.8 Prove statement 1 of Theorem 7.3 first. Then, prove that zeros of N(s), Ñ(s) are iden-
tical to those of G22(s) and zeros of D(s), D̃(s) are identical to the poles of G22(s).

7.9 In the unity feedback system of Figure 7.4, find a controller such that the output of
stable plant

P (s) =
2

(s + 1)(s + 2)

can asymptotically track ramp reference input (Hint: set the free parameter as
Q = (as + b)/(s + 1)).

7.10 In the unity feedback system of Figure 7.5, the stable plant P satisfies P (0) �= 0.
Suppose that the input disturbance of P is a unit step signal d(t) = 1(t):
(a) Use the formula of stabilizing controllers to design a controller K(s) satisfying

y(∞) = 0. Here, fix the free parameter Q(s) as a constant q.
(b) When P (s) = 1/(s + 2), concretely calculate the controller K(s) satisfying the

specification.

7.11 Derive the formula of coefficient matrix N(s) given in Section 7.4.2 as follows: start-
ing from the state equations of G(s) and M(s) and then eliminating the intermediate
variables (y, u).
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7.12 When D22 �= 0, the parameter of closed-loop transfer matrix is no longer an affine func-

tion of the controller parameter
[

DK CK
BK AK

]
. Find a way to transform the controller so that

the parameter of the closed-loop transfer matrix is affine about the controller parameter
after transformation (Hint: refer to Figure 7.13. Insert D22 into the controller and then
consider the new controller K̂ = K(I − D22K)−1).

w

uy

z

K

Ĝ
ŷ

K̂

G

D22

Figure 7.13 Treatment of nonzero D22

7.13 In the unity feedback system of Figure 7.4, P (s) = 1/(s − 1). If we use controller
K = Q/(1 − PQ) to stabilize this unstable plant, what condition should Q(s) satisfy?

7.14 Prove that for stable plant P (s) = (s − 1)/(s + 1)(s + 2), no matter what the con-
troller K is, the sensitivity function S = 1/(1 + PK ) always satisfies

S(1) = S(∞) = 1.

Then, prove min
K

‖S‖∞ = 1 based on this fact and find a stabilizing controller that real-

izes the minimal sensitivity(Hint: since S is stable, the maximum of |S(s)| in the closed
right half-plane is equal to ‖S‖∞. Use the formula of stabilizing controllers).

7.15 In the 2-DOF system in Figure 7.10, assume that the disturbance d is imposed at the
same location as the control input u, namely, yP = P (u + d). Further, the plant is the
same as its model:

P (s) = P0(s) =
1

s + 1
.

Design a controller satisfying the following specifications:
1. Design the free parameter QF (s) such that transfer function of r �→ yP equals

M(s) =
25

s2 + 5s + 25
.

2. When r(t) = 0, d(t) = 1(t), design QB(s) = P0(s)
−1/(εs + 1) such that the

output yP satisfies ‖yP ‖2 ≤ 0.1.

7.16 In Example 7.5, when the output response specification is changed to

(1) ‖y‖1 ≤ 0.1, (2) ‖y‖∞ ≤ 0.1,

find the allowable range of ε.
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Notes and References

The parameterization of stabilizing controllers rooted in the study of strong stabilization [97].
More details can be found in books on robust control such as Refs [29, 25] and [100]. Liu and
Mita [60, 61] extended it to optimal control problems with unstable weighting functions and
can be applied to servo mechanism design problems [65, 70, 41].
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8
Relation between Time Domain
and Frequency Domain Properties

In the analysis and design of linear systems, the relationship between the time domain and
frequency domain characteristics plays an especially important role. In system analysis, con-
ditions for the robust stability and robust performance are described as specifications on the
frequency response in most cases. However, in system design the state space in the time domain
is more convenient. Therefore, it is indispensable to transform frequency domain conditions
into equivalent time domain conditions in order to establish an effective and beautiful design
theory. In this chapter, two important results are introduced on such relationships.

8.1 Parseval’s Theorem

As the first classical principle, the famous Parseval’s theorem reveals a very important rela-
tionship between the time domain and frequency domain characteristics of signals. Concretely
speaking, Parseval’s theorem gives the relationship between the squared integral of a time func-
tion and that of its Fourier transform, namely, the energy in the time domain is equal to the
energy in the frequency domain.

In this chapter, all signals are defined in the time domain t ≥ 0, that is, signals are zero when
t < 0.

8.1.1 Fourier Transform and Inverse Fourier Transform

Before stating Parseval’s theorem, let us recall the properties of Fourier transform. First of all,
a scalar signal f(t) is a real function. Its Fourier transform F [f(t)] is defined by

f̂(jω) = F [f(t)] =
∫ ∞

0
f(t)e−jωtdt . (8.1)

Robust Control: Theory and Applications, First Edition. Kang-Zhi Liu and Yu Yao.
© 2016 John Wiley & Sons Singapore Pte. Ltd. Published 2016 by John Wiley & Sons, Singapore Pte. Ltd.
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Therefore, its conjugate f̂ ∗(jω) has the property

f̂ ∗(jω) =
(∫ ∞

0
f(t)e−jωtdt

)∗
=

∫ ∞

0
f(t)ejωtdt = f̂(−jω). (8.2)

On the other hand, to recover a signal f(t) from f̂(jω), the inverse Fourier transform
F−1[f̂(jω)] is used, that is,

f(t) = F−1[f̂(jω)] =
1
2π

∫ ∞

−∞
f̂(jω)ejωtdω. (8.3)

8.1.2 Convolution

The convolution of f1(t) and f2(t) is defined as

f1(t) ∗ f2(t) =
∫ ∞

0
f1(t − τ)f(τ)dτ . (8.4)

Convolution is also called convolution integral. Similarly, the convolution between functions
f̂1(jω), f̂2(jω) in the frequency domain is defined as

f̂1(jω) ∗ f̂2(jω) =
1
2π

∫ ∞

−∞
f̂1(jω − jν)f̂2(jν)dν. (8.5)

In the properties about the convolution of time function, the following is well known:

F [f1(t) ∗ f2(t)] = f̂1(jω)f̂2(jω). (8.6)

Similarly, the following property holds for the convolution of frequency domain functions:

F [f1(t)f2(t)] =
1
2π

f̂1(jω) ∗ f̂2(jω)

⇐⇒ f1(t)f2(t) =
1
2π

F−1[f̂1(jω) ∗ f̂2(jω)]. (8.7)

This equation is proved as follows. First, due to (8.3) we have

F−1[f̂1(jω) ∗ f̂2(jω)] =
1
2π

∫ ∞

−∞

[∫ ∞

−∞
f̂1(jω − jν)f̂2(jν)dν

]

ejωtdω.

Then, by an exchange of the integration order and a change of variable ω = ν + μ, we get

F−1[f̂1(jω) ∗ f̂2(jω)] =
1
2π

∫ ∞

−∞

[∫ ∞

−∞
f̂1(jω − jν)ejωtdω

]

f̂2(jν)dν

=
1
2π

∫ ∞

−∞

[∫ ∞

−∞
f̂1(jμ)ejμtdμ

]

f̂2(jν)ejνtdν

= 2π

[
1
2π

∫ ∞

−∞
f̂1(jμ)ejμtdμ

] [
1
2π

∫ ∞

−∞
f̂2(jν)ejνtdν

]

= 2πf1(t)f2(t).

Hence, (8.7) is proved.
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8.1.3 Parseval’s Theorem

Theorem 8.1 (Parseval’s theorem) Assume that signal vectors f(t), f1(t), f2(t) ∈ R
n have

Fourier transforms f̂(jω), f̂1(jω), f̂2(jω), respectively. Then, there hold the following integral
relationships:

1. The inner product in the time domain is equal to that in the frequency domain, that is,
∫ ∞

0
fT

1 (t)f2(t)dt =
1
2π

∫ ∞

−∞
f̂ ∗

1 (jω)f̂2(jω)dω. (8.8)

2. The two-norm in the time domain is equal to that in the frequency domain:
∫ ∞

0
‖f(t)‖2dt =

1
2π

∫ ∞

−∞
‖f̂(jω)‖2dω. (8.9)

∫ ∞
0 ‖f(t)‖2dt on the left-hand side of (8.9) represents the energy of signal f(t). In this

sense, ‖f̂(jω)‖2 on the right-hand side can be regarded as the energy density at the frequency
ω. Therefore, ‖f̂(jω)‖2 is also called the energy spectrum.

Example 8.1 An exponentially convergent signal

f(t) = e−t ∀t ≥ 0 ⇔ f̂(jω) =
1

jω + 1

is used to illustrate Parseval’s theorem.
The left-hand side of (8.9) is

∫ ∞

0
(e−t)2dt =

∫ ∞

0
e−2tdt =

1
2

.

Meanwhile, its right-hand side is

1
2π

∫ ∞

−∞
|f̂(jω)|2dω =

1
2π

∫ ∞

−∞

1
ω2 + 1

dω =
1
2π

arctan ω
∣
∣
∣
∞

−∞
=

1
2

.

Obviously, both sides are equal. In this example, the energy spectrum is |f̂(jω)|2 = 1/
(ω2 + 1). From Figure 8.1, it can be seen clearly that the energy mainly concentrates in the
low frequency.

In control design, it is very important to fully grasp the energy spectrum of a signal. When the
signal in the previous example is a disturbance, the closed-loop system gain needs to be rolled
off in the frequency band where the energy spectrum of disturbance is big in order to attenuate
its influence on the system output. In this example, this band is roughly 0 ≤ ω ≤ 6(rad/s).
Note also that an energy spectrum is an even function of frequency, so we do not need to
consider the negative frequency. Finally, an energy spectrum is the square of the gain of a
signal’s frequency response. So we can also acquire the characteristic of a signal from its gain
of frequency response.
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Figure 8.1 Energy spectrum

8.1.4 Proof of Parseval’s Theorem

Expanding (8.7), we get
∫ ∞

0
f1(t)f2(t)e

−jωtdt =
1
2π

∫ ∞

−∞
f̂1(jω − jν)f̂2(jν)dν.

When ω = 0, the equation becomes
∫ ∞

0
f1(t)f2(t)dt =

1
2π

∫ ∞

−∞
f̂1(−jν)f̂2(jν)dν.

Further, we obtain, by a substitution of the property f̂(−jν) = f̂ ∗(jν) and a replacement of
the integral variable ν by ω, that

∫ ∞

0
f1(t)f2(t)dt =

1
2π

∫ ∞

−∞
f̂ ∗

1 (jω)f̂2(jω)dω. (8.10)

For vectors f1(t), f2(t) ∈ R
n, f1i(t), f2i(t) are used to represent their ith elements. Then,

their inner product can be written as

fT
1 f2 = f11f21 + · · · + f1nf2n.

So, application of (8.10) to the scalar elements leads to statement (1). As for statement (2), it
is obviously the result for f(t) = f1(t) = f2(t). Thus, we have proved Parseval’s theorem.

8.2 KYP Lemma

As a relationship bridging the time domain and frequency domain characteristics of a system,
the so-called KYP lemma1 is as famous as Parseval’s theorem. This lemma stemmed from
the Popov criterion [78] discovered by Popov in his study on Lur’e system. Later on, Kalman

1 KYP is taken from the initials of Kalman, Yakubovich, and Popov, three masters in the control field.
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[45] and Yakubovich [95] disclosed the positive real lemma, which reveals the relationship
between the Popov criterion in the frequency domain and a Lyapunov function in the time
domain. After numerous extensions, it eventually evolves into the present KYP lemma. As a
powerful tool bridging the time domain and frequency domain properties of systems, KYP
lemma plays a fundamental role in robust control.

Theorem 8.2 (KYP lemma) Given matrices A ∈ R
n×n, B ∈ R

n×m,M = MT ∈
R

(n+m)×(n+m). Assume that A has no eigenvalues on the imaginary axis and (A,B) is
controllable. Then the following statements are equivalent:

1. For all ω including the infinity, there holds the inequality:
[
(jωI − A)−1B

I

]∗
M

[
(jωI − A)−1B

I

]

≤ 0. (8.11)

2. There exists a symmetrical matrix P = PT ∈ R
n×n satisfying the following inequality:

M +
[
AT P + PA PB

BT P 0

]

≤ 0. (8.12)

Moreover, when both are strict inequalities, the equivalence is still true and (A,B) needs not
be controllable.

“Elegant” is the best word for this equivalence. In the following subsections, we show sev-
eral applications of KYP lemma.

8.2.1 Application in Bounded Real Lemma

Let us consider a gain property about a stable transfer matrix G(s) (Figure 8.2):

G∗(jω)G(jω) < γ2I ∀ω ∈ [0, ∞]. (8.13)

Im

Re0 1−1

Figure 8.2 Nyquist diagram of a bounded real function (γ = 1)
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This frequency property is equivalent to the H∞ norm condition ‖G‖∞ < γ. Let

G(s) = C(sI − A)−1B + D = [C D]
[
(sI − A)−1B

I

]

.

Then, this inequality can be written as
[
(jωI − A)−1B

I

]∗ [
CT C CT D
DT C DT D

] [
(jωI − A)−1B

I

]

< γ2I ⇔
[
(jωI − A)−1B

I

]∗ [
CT C CT D
DT C DT D − γ2I

] [
(jωI − A)−1B

I

]

< 0. (8.14)

Noting that the inequality is strict, application of KYP lemma yields the following equivalent
condition, that is, there exists a symmetrical matrix P satisfying inequality:

[
CT C CT D
DT C DT D − γ2I

]

+
[
AT P + PA PB

BT P 0

]

< 0. (8.15)

This equivalence is called the bounded real lemma. In system design, it is not convenient to
deal with products like CT C. So, we further transform this inequality and obtain the following
lemma.

Lemma 8.1 (Bounded real lemma) Given G(s) = (A,B,C,D), the following statements
are equivalent:

1. A is stable and ||G||∞ < γ.
2. There exists a positive definite matrix P satisfying

⎡

⎣
AT P + PA PB CT

BT P −γI DT

C D −γI

⎤

⎦ < 0. (8.16)

Proof. Dividing both sides of inequality (8.15) with γ and renaming P/γ as P , (8.15) can
be written as [

AT P + PA PB
BT P −γI

]

−
[
CT

DT

]

· (−γI)−1 ·
[
C D

]
< 0.

It follows from Schur’s lemma that (8.16) is equivalent to (8.15). Finally, we need only prove
that the stability of A is equivalent to P > 0. Since the (1, 1) block of (8.16) is

PA + AT P < 0,

the equivalence is immediate by Lyapunov’s stability theory (see Section 4.3). •

Example 8.2 According to the Bode plot of transfer function

G(s) =
a

s2 + 2s + 2
=

⎡

⎣
0 1 0
−2 −2 1
a 0 0

⎤

⎦ , a > 0

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

Relation between Time Domain and Frequency Domain Properties 203

its largest gain is a/2. Thus, in order to ensure that the H∞ norm of G(s) is less than 1 (i.e.,
γ = 1), a must be less than 2. Meanwhile, by using the LMI (8.16), we get a positive definite
solution

P =
[
3.8024 1.5253
1.5253 1.8265

]

when a = 1.9. However, when a ≥ 2, no positive definite solution exists for (8.16). This implies
that we can use the bounded real lemma to calculate the H∞ norm of transfer matrices.
Generally speaking, in the calculation of the H∞ norm of a stable transfer matrix G(s) =
(A,B,C,D), we need just to reduce γ in (8.16) gradually until there is no positive definite
solution for (8.16). The last γ is the H∞ norm of G(s).

8.2.1.1 Time Domain Interpretation of Bounded Real Lemma

Let x, u, y be the state, input, and output of a stable transfer matrix G(s) = (A,B,C,D),
respectively. Then

ẋ = Ax + Bu, y = Cx + Du .

Next, consider a quadratic and positive definite function

V (x) = xT Px . (8.17)

Multiplying the inequality (8.15) by a nonzero vector [xu] and its transpose from left and right,
respectively, we get

0 > xT (AT P + PA)x + xT PBu + uT BT Px + xT CT Cx

+ xT CT Du + uT DT Cx + uT (DT D − I)u

= xT P (Ax + Bu) + (Ax + Bu)T Px + (Cx + Du)T (Cx + Du) − uT u

= xT P ẋ + ẋT Px + yT y − uT u.

Since V̇ = xT P ẋ + ẋT Px , inequality

V̇ (x) < uT u − yT y (8.18)

holds. After integration, we have

V (x(t)) < V (x(0)) +
∫ t

0
[uT (τ)u(τ) − yT (τ)y(τ)]dτ . (8.19)

uT u, yT y are the input and output powers, respectively; their difference is the power supplied
to the system. After integration it becomes the energy supplied to the system. Meanwhile, V (x)
can be regarded as a storage function of the system energy. Hence, this inequality implies that
the variation of the energy stored in a system is less than the energy supplied by the input. That
is, a bounded real system consumes a part of the energy supplied by the input. So, it is called
a dissipative system.
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8.2.2 Application in Positive Real Lemma

Stable transfer function satisfying the following inequality is called a positive real matrix:

G∗(jω) + G(jω) ≥ 0 ∀ω ∈ [0, ∞]. (8.20)

The numbers of input and output of a positive real matrix are equal. For a scalar transfer
function, the left-hand side of the inequality is equal to twice of the real part of G(jω). So this
inequality means that the real part of G(jω) is nonnegative, as illustrated in Figure 8.3. This
is why G(s) is called a positive real function. From the viewpoint of system, the phase angle
of a positive real function is limited in [−90◦, 90◦]. For this reason, its relative degree does not
exceed 1.

For example, it can be judged from the Nyquist diagram that transfer function G(s) =
1/(s + 1) is positive real. Furthermore, it is worth noting that some unstable systems may
also have a frequency property like (8.20). For example,

G(s) =
s − 1
s − 2

⇒ R[G(jω)] = R

[
jω − 1
jω − 2

]

=
2 + ω2

4 + ω2 > 0;

thus it satisfies the condition (8.20).
Next, let us derive the condition for G(s) = (A,B,C,D) to be positive real. To this end,

we rewrite the inequality (8.20) as
[
(jωI − A)−1B

I

]∗ [
CT

DT

]

+ [C D]
[
(jωI − A)−1B

I

]

≥ 0.

To convert it into a form compatible with KYP lemma, we use the identity I =

[((jωI − A)−1B)∗ I]
[

0

I

]

. Multiplying I∗ and I to the left-hand side of the first term and the

right-hand side of the second term in the inequality, the positive real condition turns into

−
[
(jωI − A)−1B

I

]∗ [
0 CT

C D + DT

] [
(jωI − A)−1B

I

]

≤ 0

Im

Re0

Figure 8.3 Nyquist diagram of a positive real function
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after some rearrangement. When (A,B) is controllable, the following equivalent condition is
obtained. That is, there is a symmetrical matrix P satisfying the matrix inequality:

[
AT P + PA PB

BT P 0

]

−
[

0 CT

C D + DT

]

≤ 0. (8.21)

Further, the positive real function here is stable and the stability of the matrix A will impose
some constraint on the matrix P . With this condition added, we obtain a result called positive
real lemma.

Lemma 8.2 (Positive real lemma) Let (A,B,C,D) be a minimal realization of G(s) and
matrix A be stable. Then the following statements are equivalent:

1. G(s) satisfies the positive real condition (8.20).
2. There is a positive definite matrix P satisfying inequality (8.21).
3. There is a positive definite matrix P and a full row rank matrix [L W ] satisfying

[
AT P + PA PB

BT P 0

]

−
[

0 CT

C D + DT

]

= −
[

LT

WT

]

[L W ]. (8.22)

Proof. From the discussion in the preceding text, the positive real condition (8.20) is equiva-
lent to that the inequality (8.21) has a symmetrical solution P . Since the matrix on the left-hand
side of (8.21) is negative semidefinite, it can be factorized as the product of a full row rank
matrix and its transpose. Then, the inequality (8.21) is equivalent to the Eq. (8.22). We prove
that the stability of A requires P > 0.

From the stability of A, it is known that AT P + PA ≤ 0 requires P ≥ 0 (Lemma 4.7).
Therefore, we need just prove that P is nonsingular. Suppose that x ∈ Ker P . Multiplying
the equation AT P + PA = −LT L by xT , x from the left and right, respectively, we get
Lx = 0. Then, multiplying the equation PB − CT = −LT W by xT from the left, we obtain
Cx = 0. Multiplying the equation AT P + PA = −LT L again by x from the right, we have
PAx = 0. This shows that the kernel space Ker P is A-invariant. Therefore, there is a vector
x ∈ Ker P that is an eigenvector of matrix A. Let the corresponding eigenvalue be λ:

Ax = λx, Cx = 0

hold simultaneously. This contradicts the observability of (C,A). Hence, P must be nonsin-
gular. •

Example 8.3 Consider a transfer function:

G(s) =
s + a

s2 + 2s + 2
=

⎡

⎣
0 1 0
−2 −2 1
a 1 0

⎤

⎦ .

A simple calculation shows that the real part of its frequency response is

R[G(jω)] = R

[
a + jω

2 − ω2 + j2ω

]

=
2a + (2 − a)ω2

(2 − ω2)2 + 4ω2 .
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For all ω, the condition for it to be positive is

2a > 0, 2 − a ≥ 0 ⇒ 0 < a ≤ 2.

On the other hand, solving the LMI (8.21) w.r.t. a = 1 and a = 3, we get a positive definite
solution

P =
[
4.0 1.0
1.0 1.0

]

for a = 1, but no positive definite solution exists for a = 3. This shows that this transfer func-
tion is not positive real when a = 3.

Further, when the strict inequality

G∗(jω) + G(jω) > 0 ∀ω ∈ [0, ∞] (8.23)

holds, G(s) is called a strongly positive real matrix. Obviously, the strongly positive real con-
dition requires that G∗(j∞) + G(j∞) = DT + D > 0. That is, the relative degree of G(s)
must be zero. The transfer function in Example 8.3 does not satisfy the strongly positive real
condition. But for transfer function G(s) = (s + a)/(s + 1),

G(jω) =
jω + a

jω + 1
=

a + ω2 + j(1 − a)ω
ω2 + 1

holds. So, it is strongly positive real as long as a > 0. Another feature of a strongly positive
real matrix is that its normal rank must be full. That is, for almost all complex numbers s, the
matrix G(s) should have full rank.

From KYP lemma, it is easy to derive the following strongly positive real lemma. Detailed
proof is left for the reader to complete.

Lemma 8.3 (Strongly positive real lemma) For transfer matrix G(s) = (A,B,C,D), the
following statements are equivalent:

1. Matrix A is stable and G(s) is strongly positive real.
2. There is a positive definite matrix P satisfying the strict inequality

[
AT P + PA PB

BT P 0

]

−
[

0 CT

C D + DT

]

< 0. (8.24)

Note that (A,B,C,D) does not need to be a minimal realization here.
Since a strictly proper transfer function G(s) has the property G(j∞) = D = 0 at s =

∞, it is not a strongly positive real function. But there are many transfer matrices satisfying
G∗(jω) + G(jω) > 0 at all finite frequencies except the infinity, that is,

G∗(jω) + G(jω) > 0 ∀ω ∈ [0, ∞). (8.25)

Such a stable transfer matrix is called a strictly positive real matrix. For example, the transfer
function in Example 8.3 is strictly positive real when 0 < a ≤ 2.
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What is the state-space condition for a transfer function to be strictly positive real? Unfor-
tunately, this is still an open problem for the strictly positive real matrix defined in (8.25).
In view of this fact, Narendra–Taylor [71] proposed to use the following frequency domain
characteristics to replace (8.25).

Definition 8.1 (Modified strictly positive realness) G(s) is said to be strictly positive real
if there exists a constant ε > 0 such that G(s − ε) is stable and satisfies the positive real
condition:

G∗(jω − ε) + G(jω − ε) ≥ 0 ∀ω ∈ [0, ∞]. (8.26)

The following lemma gives the relationship between the frequency characteristics of
G(s − ε) and G(s). Refer to Ref. [18] for a detailed proof.

Lemma 8.4 (Strictly positive real lemma) Suppose that a square transfer matrix
G(s) = (A,B,C,D) is stable and has full normal rank. Then the following two statements are
equivalent:

1. There exists a constant ε > 0 such that G(s − ε) is positive real.
2. G∗(jω) + G(jω) > 0 holds for any finite frequency ω and

lim
ω→∞

ω2ρ det[G∗(jω) + G(jω)] > 0

where ρ is the dimension of the kernel space of constant matrix D + DT , namely,
ρ = dim (Ker (D + DT )).

That is, the positive realness of G(s − ε) guarantees that G(s) is strictly positive real.
We examine the transfer function of Example 8.3 once again. From the preceding discussion,

we have known that it is strictly positive real when 0 < a ≤ 2.

Example 8.4 Consider the transfer function

G(s) =
s + a

s2 + 2s + 2
.

For sufficiently small ε > 0, G(s − ε) is still stable. Substituting s = jω − ε into G(s), some
simple calculation shows that its real part is

R[G(jω − ε)] = R

[
a − ε + jω

1 + (1 − ε)2 − ω2 + j2(1 − ε)ω

]

=
(a − ε)[1 + (1 − ε)2] + (2 − a − ε)ω2

[1 + (1 − ε)2 − ω2]2 + 4(1 − ε)2ω2 .

For all ω including the infinity, R[G(jω − ε)] ≥ 0 if

a − ε ≥ 0, 2 − a − ε ≥ 0 ⇒ ε ≤ a ≤ 2 − ε.

There is obviously a small gap between this bound and the strictly positive real condition
0 < a ≤ 2. This gap shrinks as ε → 0.
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8.2.2.1 Time Domain Interpretation of Positive Real Lemma

Suppose that the state equation of stable transfer matrix G(s) is

ẋ = Ax + Bu, y = Cx + Du

and the storage function of this system is

V (x) = xT Px . (8.27)

Multiplying to the left and right of the inequality (8.21) with a nonzero vector [xT uT ] and its
transpose, we have

0 ≤ xT (AT P + PA)x + xT PBu + uT BT Px − xT CT u − uT Cx

− uT (DT + D)u

= xT P (Ax + Bu) + (Ax + Bu)T Px − (Cx + Du)T u − uT (Cx + Du)

= xT P ẋ + ẋT Px − yT u − uT y.

Since yT u, uT y are scalars, they are equal. So there holds

V̇ (x) ≤ 2yT u. (8.28)

An integration leads to

V (x(t)) ≤ V (x(0)) + 2
∫ t

0
yT (τ)u(τ)dτ . (8.29)

If yT u is treated as the supply rate of the energy injected into the system, then this inequality
shows that the energy stored in the system is less than the energy supplied by the input. Such
a system is called a passive system.

Finally, to see why yT u is regarded as the supply rate of the energy injected into the system,
let us examine the circuit consisting of an ideal voltage source and a load shown in Figure 8.4
in which u is the voltage of power source and y is the current of load impedance Z. Their
product is apparently the power which the power source supplies to the load impedance Z.

The concepts of passivity and dissipativity are the time domain characterizations of positive
realness and bounded realness (frequency domain) of linear systems. They can be extended to
nonlinear systems. Interested readers may consult Refs [47, 68, 93].

Z

y

u

Figure 8.4 Energy supply rate for load impedance
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8.2.3 Proof of KYP Lemma∗

In this subsection, we present an elementary proof by Rantzer [80]. To understand this proof,
one only needs some knowledge of linear algebra and the separating hyperplane. The idea of
proof is briefly outlined here: firstly, transform the frequency domain property in statement
(1) of KYP lemma equivalently to that certain two sets are disjoint; secondly, prove that the
separation property still holds even if one of the two sets is extended to its convex hull; and
finally, use the separating hyperplane theorem to prove its equivalence to the time domain
property in statement (2) of KYP lemma.

Some preliminaries are introduced in the following which are necessary for the second step
of the proof.

Lemma 8.5 Suppose that F,G are complex matrices with the same dimension. The following
statements are true:

1. FF ∗ = GG∗ iff there exists a unitary matrix U such that F = GU .
2. FF ∗ ≤ GG∗ iff there exists a matrix U satisfying UU ∗ ≤ I such that F = UG .
3. FG∗ + GF ∗ = 0 iff there exists a unitary matrix U such that F (I + U) = G(I − U).
4. FG∗ + GF ∗ ≥ 0 iff there exists a matrix U satisfying UU ∗ ≤ I such that F (I + U) =

G(I − U).

Proof.
1. FF ∗ = GG∗ implies that Ker F ∗ = Ker G∗. So we can use a row transformation matrix T

to convert them into TF = [F1
0 ], TG = [G1

0 ] where both matrices F1 and G1 have full row

rank. If we can use a matrix U to express F1 as F1 = G1U , then

TF =
[
F1
0

]

=
[
G1U

0

]

=
[
G1
0

]

U = TGU ⇒ F = GU .

Therefore, we need only prove the full row rank case. Since FF ∗ = GG∗ := H is a positive
definite, this Hermitian matrix H can be decomposed into the product of its square root,
that is, H = H1/2H1/2. Set UF 1 = H−1/2F , UG1 = H−1/2G (both are wide matrices),
and then by FF ∗ = H1/2H1/2 = GG∗, it is obvious that UF 1U

∗
F 1 = I = UG1U

∗
G1. Thus,

F = H1/2UF 1, G = H1/2UG1 hold. Moreover, using a matrix UF 2 to make UF =
[

UF 1

UF 2

]

unitary (such matrix always exists), we can write F as

F =
[
H1/2

0

]

UF , UF =
[
UF 1
UF 2

]

.

Similarly, G also can be written as

G =
[
H1/2

0

]

UG, UG =
[
UG1
UG2

]

.

Finally, F = GU follows by setting U = U ∗
GUF , where U is unitary.
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2. When FF ∗ ≤ GG∗, the positive semidefinite matrix GG∗ − FF ∗ ≥ 0 can be decomposed
into GG∗ − FF ∗ = HH∗. So we get

FF ∗ + HH∗ = GG∗ ⇒
[
F H

] [
F H

]∗ =
[
G 0

] [
G 0

]∗
.

Here, the dimensions of [F H] and [G 0] are equal. Then, according to statement 1 we
know that

[
F H

]
=

[
G 0

]
[

U V
V ∗ W

]

,

[
U V
V ∗ W

] [
U V
V ∗ W

]∗
= I

holds for some unitary matrix. Then

F = GU , UU ∗ = I − V V ∗ ≤ I .

Statements (3) and (4) are derived by replacing F,G with G − F,G + F , respectively. •

Lemma 8.6 Suppose that f, g ∈ C
n and g �= 0. The following statements hold:

1. fg∗ + gf ∗ = 0 is equivalent to f = jωg for some ω ∈ R.
2. fg∗ + gf ∗ ≥ 0 is equivalent to f = sg for some s ∈ C with positive real part.

Proof. We use the following transformation:

U =
1 − s

1 + s
⇔ s =

1 − U

1 + U
.

When s = jω, the amplitude of U is 1. When the real part of s is positive, |U | ≤ 1 holds.
Subject to the given conditions,

f =
1 − U

1 + U
g

holds owing to Lemma 8.5 (3,4). |U | = 1 in case (1) and |U | ≤ 1 in case (2). Therefore, the
conclusion follows immediately. •

Lemma 8.7 Suppose that M,N are n × r complex matrices. If a matrix W ≥ 0 satisfies

NW M ∗ + MW N ∗ = 0,

then W can be written as W =
∑r

k=1 wkw∗
k with complex vectors wk ∈ C

r (k = 1, . . . , r)
satisfying

Nwkw∗
kM ∗ + Mwkw∗

kN ∗ = 0. (8.30)

Proof. Factorize W as W 1/2W 1/2 and absorb them into M,N , respectively. Then, there
exists a unitary matrix U satisfying

MW 1/2(I + U) = NW 1/2(I − U)
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according to Lemma 8.5 (3). Using an orthonormal complex basis {uk ∈ C
r|k = 1, . . . , r} to

form a basis {uku∗
k | k = 1, . . . , r} of dimension r × r for unitary matrices, U can be written

as

U =
r∑

k−1

αkuku∗
k, αk ∈ C.

To solve for the coefficients αk, we multiply this equation with uk. From the orthonormal
property u∗

iuj = δij , we know that Uuk = αkuk. That is, αk, uk are, respectively, eigenvalue
and eigenvector of U . Further, we know that |αk| = 1 since U ∗U = I . So, αk can be described
by some phase angle θk as αk = ejθk . Now, define a vector wk as wk = W 1/2uk. Then,

r∑

k−1

wkw∗
k =

r∑

k−1

W 1/2uku∗
kW 1/2 = W 1/2

(
r∑

k−1

uku∗
k

)

W 1/2 = W 1/2 · I · W 1/2

= W

holds in which we have used the property
∑r

k−1 uku∗
k = I of orthonormal basis {uk}. More-

over, for k = 1, . . . , r, there also holds

Mwk(1 + ejθk) = MW 1/2(I + U)uk

= NW 1/2(I − U)uk

= Nwk(1 − ejθk).

Applying Lemma 8.5 (3), it follows that wk satisfies (8.30). •

8.2.3.1 Proof of Theorem 8.2

As stated at the beginning of this section, the proof consists of three parts. We will use a set
(a,A) that is composed of a scalar a and a symmetrical matrix A. In this space, the inner
product is defined as

〈(a,A), (b,B)〉 = ab + Tr(AB).

Step 1 Transform statement (1) equivalently into the separation condition of two sets.
According to the definition of positive semidefinite matrix, statement (1) is equiva-

lent to that the inequality [
x(ω)

u

]∗
M

[
x(ω)

u

]

≤ 0

holds for any vector u ∈ C
m and frequency ω where the vector x(ω) =

(jωI − A)−1Bu ∈ C
n depends on the frequency ω and input u. Next, introduce the

following two sets:

P = {(r, 0) | r > 0},

Θ(ω) =
{([

x(ω)
u

]∗
M

[
x(ω)

u

]

, x(ω)(Ax (ω) + Bu)∗ + (Ax (ω) + Bu)x∗(ω)
)}

.
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Here u is arbitrary and x(ω) is the signal given in the preceding text. Since
x(ω) satisfies jωx(ω) = Ax (ω) + Bu , we have (Ax (ω) + Bu)x∗(ω) +
x(ω)(Ax (ω) + Bu)∗ = 0. Obviously, these two sets do not intersect iff the
previous inequality holds.

Step 2 Change x(ω) to a new x independent of ω and u and extend the set Θ(ω) to

Θ =
{([

x
u

]∗
M

[
x
u

]

, x(Ax + Bu)∗ + (Ax + Bu)x∗
) ∣

∣
∣

[
x
u

]

∈ C
n+m

}

.

Then since (x, u) is arbitrary, x(Ax + Bu)∗ + (Ax + Bu)x∗ = 0 is no longer guar-
anteed. That is, the inclusion relation Θ(ω) ⊂ Θ is true. The equivalence between
Θ(ω) ∩ P = ∅ and Θ ∩ P = ∅ is proved below.

When Θ is separated from P , due to Θ(ω) ⊂ Θ, obviously Θ(ω) is also separated
from P . Therefore, we prove that Θ ∩ P = ∅ holds if Θ(ω) ∩ P = ∅. To this end,
we consider the convex hull convΘ of Θ and prove that when convΘ ∩ P �= ∅, a
contradiction occurs. Since Θ is a cone2, its convex hull is a convex cone. Therefore,
for any natural number N

N∑

k=1

([
xk

uk

]∗
M

[
xk

uk

]

, xk(Axk + Buk)∗ + (Axk + Buk)x∗
k

)

(8.31)

belongs to convΘ. Noting the relation
[
xk

uk

]∗
M

[
xk

uk

]

= Tr
([

xk

uk

] [
xk

uk

]∗
M

)

(Axk + Buk)x∗
k = [A B]

[
xk

uk

] [
xk

uk

]∗ [
I
0

]

,

(8.31) can be summarized as
(

Tr(WM ), [I 0]W
[
AT

BT

]

+ [A B]W
[
I
0

])

where

W =
N∑

k=1

[
xk

uk

] [
xk

uk

]∗
≥ 0

and its dimension is (n + m) × (n + m). If the convex hull convΘ intersects with P ,
there exists a vector sequence (x1, u1), . . . , (xN , uN ) satisfying

Tr(WM ) > 0, [I 0]W
[
AT

BT

]

+ [A B]W
[
I
0

]

= 0.

Applying Lemma 8.7 to the second equation, we can decompose W into

W =
∑n+m

k=1 [xk
uk

][xk
uk

]∗ by using suitably rearranged vector sequence (x1, u1), . . . ,
(xn+m, un+m) such that xk(Axk + Buk)∗ + (Axk + Buk)x∗

k = 0. Therefore,

2 Multiplying θ ∈ Θ by t ≥ 0 and setting x1 =
√

tx, u1 =
√

tu, we have tθ ∈ Θ. So, the set Θ is a cone.
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xk = (jωI − A)−1Buk holds for some ω according to Lemma 8.6. That is, these
(xk, uk) are vectors belonging to Θ ∩ Θ(ω). Moreover, from the first inequality

we have [xk
uk

]∗M [xk
uk

] > 0 for at least one k. Thus we have Θ(ω) ∩ P �= ∅ which
contradicts the given condition.

Step 3 Prove the equivalence between Θ ∩ P = ∅ and statement 2.
When Θ ∩ P = ∅, there exists a hyperplane separating them. Let the normal of the

separating hyperplane be (p, P ) in which p is a scalar and P is a symmetrical matrix.
Θ is contained in the half-space defined by the following inequality:

0 ≥ p

[
x
u

]∗
M

[
x
u

]

+ Tr(P [x(Ax + Bu)∗ + (Ax + Bu)x∗])

=
[
x
u

]∗ {

pM +
[
AT P + PA PB

BT P 0

]} [
x
u

]

.

Since (x, u) is arbitrary, this inequality is equivalent to

pM +
[
AT P + PA PB

BT P 0

]

≤ 0. (8.32)

Next we need to only prove that we can set p = 1. Due to the fact that the set P is
contained in the opposite side of the half-space, we have p · r + Tr(P · 0) = pr ≥ 0.
So, p ≥ 0.

Without the loss of generality, we can set P = diag(P1, 0),det(P1) �= 0. If p = 0,
partition (A,B) as

A =
[
A11 A12
A21 A2

]

, B =
[
B1
B2

]

in accordance with the partition of P . Then from matrix inequality (8.32), we get
⎡

⎣
AT

11P1 + P1A11 P1A12 P1B1
AT

12P1 0 0
BT

1 P1 0 0

⎤

⎦ ≤ 0

⇒ P1B1 = 0, P1A12 = 0 ⇒ A12 = 0, B1 = 0.

In this case, A11 becomes uncontrollable which contradicts to the controllability of
(A,B). Hence p > 0 is proved. Finally, statement 2 is derived by dividing (8.32) with
p and renaming P/p as P .

Further, the hyperplane with normal (1, P ) separates the set Θ(ω) from the open set
P when statement 2 is true. So, they cannot intersect because P is open by the inverse
theorem of separating hyperplane.

Finally, the proof is similar for the strict inequality case. The difference lies in that
the convex set P is replaced by

P = {(r, 0)|r ≥ 0}

and Θ needs to be compact in order to guarantee strict separation. Therefore, a new
restriction

‖x‖2 + ‖u‖2 ≤ 1
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is imposed on the vector (x, u). Then, the strict inequality is obtained in (8.32). Further,
if p = 0 the block in the lower right corner of (8.32) is 0 and the strict inequality is not
satisfied. So, p �= 0 is obtained without the controllability condition.

Exercises

8.1 Calculate the inner products and the 2-norms for the following functions in the time
domain and frequency domain, respectively, so as to validate Parseval’s theorem:

x(t) = e−t sin t, y(t) = e−2t.

8.2 Constant-scaled bounded real lemma [3]: Given G(s) = (A,B,C,D) prove that the fol-
lowing conditions are equivalent:
1. A is stable and ||L1/2GL−1/2||∞ < γ for a matrix L > 0 with compatible dimension.
2. There exist positive definite matrices P > 0, L > 0 satisfying the inequality:

⎡

⎣
AT P + PA PB CT

BT P −γL DT

C D −γL−1

⎤

⎦ < 0.

8.3 Prove the strongly positive real lemma.

8.4 Suppose that (A,B,C,D) is a minimal realization of G(s) and the matrix A is stable.
Prove that (A + εI,B,C,D) is a minimal realization of G(s − ε) and A + εI is stable
for sufficiently small ε > 0. Then prove that when G(s − ε) is positive real, G∗(jω) +
G(jω) > 0 holds for any finite frequency ω.

8.5 Discuss the positive realness and strictly positive realness of transfer matrix

G(s) =

⎡

⎢
⎢
⎣

1
1

s + 1

− 1
s + 1

1
s + 1

⎤

⎥
⎥
⎦

through concrete calculation of its frequency response. Then verify the positive real-
ness and strictly positive realness of this transfer matrix again by using the state-space
characterizations.

8.6 Discuss the time domain property of strictly positive real systems from the viewpoint of
energy dissipation, based on the strictly positive real lemma.

Notes and References

KYP lemma originated in the study of absolute stability [78] and the positive real lemma
[45, 95]. The notion of strictly positive realness was from Refs [71, 86, 91], and [18] gave some
slightly different strictly positive real conditions. This book adopts the proof of Ref. [80].
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9
Algebraic Riccati Equation

The algebraic Riccati equation (ARE) plays an extremely important role in control system
design theory. This chapter provides a concise treatment on it. Here, we focus on explaining the
properties of ARE and its computing algorithm as well as some basic engineering applications.

Let A,Q = QT , R = RT be real-valued n × n matrices. The following matrix equation is
called an algebraic Riccati equation, or simply ARE:

AT X + XA + XRX + Q = 0. (9.1)

This is a nonlinear algebraic matrix equation whose solution is not unique and difficult to solve
directly. Even for the simplest 2 × 2 Riccati equation, it is not an easy job to solve the equation
directly. For example, for a second-order case

A =
[

0 1
−a1 −a2

]

, R = rI2, Q = qI2, X =
[
x1 x2
x2 x3

]

,

expansion of the Riccati equation yields the following second-order simultaneous polynomial
equations:

x2
1 + x2

2 − 2a1x2 + q = 0

x2
2 + x2

3 + 2x2 − 2a2x3 + q = 0

x1x2 + x2x3 + x1 − a2x2 − a1x3 = 0.

So, new perspective is necessary in order to solve Riccati equation, especially to get solutions
with certain specific property.

9.1 Algorithm for Riccati Equation

Riccati equation is deeply tied to a 2n × 2n matrix:

H :=
[

A R
−Q −AT

]

. (9.2)

Robust Control: Theory and Applications, First Edition. Kang-Zhi Liu and Yu Yao.
© 2016 John Wiley & Sons Singapore Pte. Ltd. Published 2016 by John Wiley & Sons, Singapore Pte. Ltd.
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216 Robust Control

Matrix in this form is called a Hamiltonian matrix, which is used to solve the ARE (9.1).
To understand why the Hamiltonian matrix is related with Riccati equation, we note that the

Riccati equation can be rewritten as

0 = AT X + XA + XRX + Q

= [X − I]
[

A R
−Q −AT

] [
I
X

]

.

This means that

Im
(

H

[
I
X

])

⊂ Ker[X − I].

It is easy to see that Ker[X − I] = Im[ I
X

]. So

Im
(

H

[
I
X

])

⊂ Im
[

I
X

]

(9.3)

holds. This shows that Im[ I
X

] is an H-invariant subspace (see Section 2.8). So there exists a

matrix Λ ∈ R
n×n satisfying

H

[
I
X

]

=
[

I
X

]

Λ. (9.4)

In fact, Λ = A + RX . Therefore, X certainly can be obtained by solving the eigenvalue prob-
lem of H .

Next we analyze the eigenvalue property of H . Note that a symmetric matrix is obtained by
multiplying the first column of H by −I and then exchanging the first and the second column,
that is, [

A R
−Q −AT

] [
0 −I
I 0

]

=
[

R −A
−AT Q

]

.

Denote this transformation matrix by

J :=
[
0 −I
I 0

]

.

Then, we have HJ = (HJ )T = −JHT . Hence, the equation

J−1HJ = −HT

follows immediately, and H and −HT are similar. So, if λ is an eigenvalue of H , due to the
identity

|λI − H| = |J−1(λI − H)J | = |λI − J−1HJ |

= |λI + HT | = (−1)2n|((−λ)I − H)∗|

= |(−λ)I − H|∗,
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××

× ×

o Re

Im

Figure 9.1 Eigenvalue location of Hamiltonian matrix

we see that −λ is also an eigenvalue of H . Further, since H is real valued, coefficients of its
characteristic polynomial must be real. Therefore (λ,−λ), the conjugates of (λ,−λ), are also
eigenvalues of H . That is, the eigenvalue set σ(H) of H is symmetrically placed not only
about the real axis but also about the imaginary axis (see Figure 9.1).

The second property of Hamiltonian matrix H is σ(Λ) ⊂ σ(H). This is easily proved as fol-
lows. Set Λu = λu, u �= 0. Then, λ is an eigenvalue of Λ and u the corresponding eigenvector.
There holds

H

[
I
X

]

u =
[

I
X

]

Λu = λ

[
I
X

]

u. (9.5)

Since [ I
X]u �= 0, λ becomes an eigenvalue of H too.

As aforementioned, the solution of Riccati equation is not unique. What the following
theorem states is how to use the basis of H’s invariant subspace to construct the solutions
of ARE (9.1). Here, we use σ(H|S) to denote the eigenvalue set of map H restricted in the
invariant subspace S of H . Namely,

σ(H|S) := {λ | Hu = λu, 0 �= u ∈ S}. (9.6)

So, the eigenvector u corresponding to any eigenvalue λ ∈ σ(H|S) belongs to S.

Theorem 9.1 Suppose that S ⊂ C
2n is an n-dimensional H-invariant subspace and X1,X2 ∈

C
n×n are complex matrices satisfying

S = Im
[
X1
X2

]

.

If X1 is invertible, X := X2X
−1
1 is a solution of ARE (9.1) and σ(A + RX ) = σ(H|S) holds.

Moreover, X is independent of the selection of the basis of S.
Conversely, if X ∈ C

n×n is a solution of ARE (9.1), then there exist X1,X2 ∈ C
n×n with X1

invertible such that X = X2X
−1
1 . Further, S = Im[X1

X2
] is an n-dimensional invariant subspace

of H and satisfies σ(A + RX ) = σ(H|S) .

Proof. Since S is an invariant subspace of H , there exists a matrix Λ ∈ C
n×n satisfying

[
A R
−Q −AT

] [
X1
X2

]

=
[
X1
X2

]

Λ.
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218 Robust Control

Postmultiplying this equation by X−1
1 , we get

[
A R
−Q −AT

] [
I
X

]

=
[

I
X

]

X1ΛX−1
1 . (9.7)

Then, premultiplying Eq. (9.7) by
[
X −I

]
, we obtain

0 =
[
X −I

]
[

A R
−Q −AT

] [
I
X

]

= XA + AT X + XRX + Q,

that is, X is a solution of (9.1). Further, we have from (9.7) that

A + RX = X1ΛX−1
1 ,

that is, σ(A + RX ) = σ(Λ). According to its definition, Λ is the matrix description of the map
H|S. So, σ(A + RX ) = σ(H|S) holds. Finally, any basis of S can be described as

[
X1
X2

]

P =
[
X1P
X2P

]

by a nonsingular matrix P . Since (X2P )(X1P )−1 = X2X
−1
1 = X , X is independent of the

selection of basis.
Conversely, if X is a solution of (9.1), then it satisfies (9.4) where Λ := A + RX . So,

columns of [ I
X

] span an n-dimensional invariant subspace S of H , and σ(A + RX ) = σ(H|S)
holds. The proof is completed by setting X1 = I , X2 = X . •

In this theorem, no restriction is placed on the property of σ(H|S), not even the symmetry
about the real axis. This is why we regard the invariant subspace S and X as complex so
far. If more properties are imposed on σ(H|S), then the solution X of Riccati equation will
possess the corresponding properties. In the next section, we discuss Riccati equation with all
eigenvalues of σ(H|S) being located in the left half-plane.

9.2 Stabilizing Solution

When all eigenvalues of σ(A + RX ) are in the open left plane, X is called the stabilizing
solution of Riccati equation. Often used in the control theory is the stabilizing solution. In this
section, the existence condition for this solution and its property will be discussed.

According to the distribution of σ(H), apparently the existence of stabilizing solution
requires that no eigenvalue of H is on the imaginary axis. In this case, there are n eigenvalues
of H in R(s) < 0 and R(s) > 0, respectively. Denote the invariant subspaces corresponding
to the eigenvalues of H in the open left plane by X−(H). After obtaining the base vectors of
X−(H), aligning them into a matrix, and decomposing the matrix, we get

X−(H) = Im

[
X1
X2

]

.
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The eigenvalues of H in the open left plane are symmetrical about the real axis. Hence, if λ is
an eigenvalue, so is its conjugate λ. According to Section 2.8, the invariant subspace X−(H)
can be selected as real valued so that X1,X2 are real-valued matrices.

If X1 is nonsingular, then the following two subspaces

X−(H), Im
[
0
I

]

(9.8)

are complementary subspaces. So, X := X2X
−1
1 can be defined. From the fact that X is inde-

pendent of the choice of bases, X is determined solely by H . That is, the mapping H �→ X
can be regarded as a function. Denoting this function by Ric, then X can be written as X =
Ric(H). Further, the domain of function Ric is denoted by dom(Ric). This domain consists
of all Hamilton matrices H having the following two properties:

1. H has no eigenvalues on the imaginary axis.
2. The two subspaces in (9.8) are complementary.

Apparently, the stabilizing solution X = Ric(H) of Riccati equation is real valued. More-
over, as shown in Theorem 9.1 in the previous section, this solution is independent of the
selection of bases of X−(H). So, it is unique.

The following theorem proves that H belongs to dom(Ric) if and only if Riccati equation
has a real symmetric stabilizing solution.

Theorem 9.2 H ∈ dom(Ric) iff there exists a matrix X satisfying the following conditions:

1. X is real symmetric.
2. X satisfies the algebraic Riccati equation

AT X + XA + XRX + Q = 0.

3. A + RX is stable.

Further, X = Ric(H) holds.

Proof. (Sufficiency) Obviously, when there exists X satisfying conditions 1–3,
[

A R
−Q −AT

] [
I
X

]

=
[

I
X

]

(A + RX )

holds. According to the symmetric property of H’s eigenvalues about the imaginary axis, there
are no eigenvalues of H on the imaginary axis since A + RX is stable. So

X−(H) = Im

[
I
X

]

Holds, and H ∈ dom(Ric).
(Necessity) Let X = Ric(H). As the proof of conditions 2 and 3 are exactly the same as

that of Theorem 9.1, we only prove condition 1.
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220 Robust Control

Suppose that X1,X2 ∈ R
n×n satisfies X−(H) = Im[X1

X2
]. We first prove that XT

1 X2 is sym-

metrical. Because X−(H) is the invariant subspace corresponding to the eigenvalues of H in
the open left plane, there exists a stable matrix H− ∈ R

n×n satisfying

H

[
X1
X2

]

=
[
X1
X2

]

H−.

Here, H− is the matrix description of the mapping H|X−(H). Premultiplying this equation

with [X1
X2

]J , we get
[
X1
X2

]T

JH
[
X1
X2

]

=
[
X1
X2

]T

J

[
X1
X2

]

H−. (9.9)

Since JH is symmetrical, the left and right sides of (9.9) are also symmetrical. So

(−XT
1 X2 + XT

2 X1)H− = HT
− (−XT

1 X2 + XT
2 X1)

T = −HT
− (−XT

1 X2 + XT
2 X1)

⇒ (−XT
1 X2 + XT

2 X1)H− + HT
− (−XT

1 X2 + XT
2 X1) = 0

holds. This equation is a Lyapunov equation. Its unique solution is

−XT
1 X2 + XT

2 X1 = 0

since H− is stable. That is, XT
1 X2 is symmetrical. Next, owing to the nonsingularity of X1

and X = X2X
−1
1 , premultiplying the previous equation by (X−1

1 )T and postmultiplying it by
X−1

1 , we have X = (X−1
1 )T (XT

2 X1)X
−1
1 . So X is also symmetrical. •

This theorem shows that, by the introduction of function Ric, Riccati equation has a real
symmetric stabilizing solution iff Hamiltonian matrix H belongs to dom(Ric). Compared
with proving the existence of its stabilizing solution and describing the results directly with
Riccati equation, analyzing the eigenvalues of H is much more concise. Therefore, this book
adopts this description.

The theorem that follows gives the necessary and sufficient condition for the existence of
the unique solution of (9.1) in the case where R is definite. The proof is left as an exercise.

Theorem 9.3 Suppose that H has no pure imaginary eigenvalues and R is either positive
semidefinite or negative semidefinite. Then, H ∈ dom(Ric) iff (A,R) is stabilizable.

Furthermore, when the matrix Q has certain special structure, we have the following
conclusion.

Theorem 9.4 Suppose that H is of the following form:

H =
[

A −BBT

−CT C −AT

]

.

Then, H ∈ dom(Ric) iff (A,B) is stabilizable, and (C,A) has no unobservable eigenvalues
on the imaginary axis. Further, if H ∈ dom(Ric), then X = Ric(H) ≥ 0. In addition, X > 0
iff (C,A) has no stable unobservable eigenvalues.
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Algebraic Riccati Equation 221

Proof. From Theorem 9.3 we know that the stabilizability of (A,B) is necessary for H ∈
dom(Ric), and it becomes the sufficient condition if H has no poles on the imaginary axis.
Therefore, we need just to prove that, when (A,R) is stabilizable, H has no eigenvalue on
imaginary axis iff (C,A) has no unobservable eigenvalues on imaginary axis.

Suppose instead that jω is an eigenvalue of H and the corresponding eigenvector is [xz] �= 0.
Then

Ax − BBT z = jωx, −CT Cx − AT z = jωz (9.10)

hold. Premultiplying these two equations by z∗, x∗, respectively, we get

z∗(A − jωI)x = z∗BBT z (9.11)

−x∗(A − jωI)∗z = x∗CT Cx (9.12)

after rearrangement. Due to the conjugate symmetry of the right side of (9.12), we have
z∗(A − jωI)x = −x∗CT Cx . Combined with (9.11), we get

−||Cx ||2 = ||BT z||2.

This means that BT z = 0, Cx = 0. Substituting them into the two equations of (9.10), respec-
tively, we have

(A − jωI)x = 0, (A − jωI)∗z = 0.

Combining these four equations, we obtain

z∗[A − jωI B] = 0,
[
A − jωI

C

]

x = 0.

z = 0 follows from the stabilizability of (A,B). So there must be x �= 0, namely, jω is an
unobservable eigenvalue of (C,A) on the imaginary axis. Therefore, jω is an eigenvalue of H
iff it is an unobservable eigenvalue of (C,A).

Next, we prove that X ≥ 0 when X := Ric(H). Riccati equation

AT X + XA − XBBT X + CT C = 0

can be written as

(A − BBT X)T X + X(A − BBT X) + XBBT X + CT C = 0. (9.13)

Noting that A − BBT X is stable (Theorem 9.2), we regard this equation as a Lyapunov
equation and obtain an explicit expression of the solution

X =
∫ ∞

0
e(A−BBT X)T t(XBBT X + CT C)e(A−BBT X)tdt . (9.14)

Because the integral function on the right is positive semidefinite, so is X .
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Finally, we prove that det(X) = 0, that is, Ker(X) is not empty iff (C,A) has a stable
unobservable eigenvalue. When x ∈ Ker(X), there holds Xx = 0. Premultiplying (9.13) by
x∗ and postmultiplying it by x, we get

‖Cx‖2 = 0 ⇒ Cx = 0.

Postmultiplying (9.13) by x again, we get

XAx = 0.

That is, Ker(X) is A-invariant. When Ker(X) �= {0}, there exists 0 �= x ∈ Ker(X) and λ
satisfying λx = Ax = (A − BBT X)x1 and Cx = 0. R(λ) < 0 is true since (A − BBT X)
is stable, that is, λ is a stable unobservable eigenvalue.

Conversely, when (C,A) has a stable unobservable eigenvalue λ, there exists a vector x �= 0
satisfying Ax = λx,Cx = 0. Premultiplying the Riccati equation by x∗ and postmultiplying
it by x, we have

2R(λ)x∗Xx − x∗XBBT Xx = 0.

x∗Xx = 0 must hold since R(λ) < 0, that is, X is not positive definite. •

The following corollary is very helpful in solving H2 control problems.

Corollary 9.1 Suppose that matrix D has full column rank. Then R = DT D > 0. Given a
Hamiltonian matrix

H =

[
A 0

−CT C −AT

]

−
[

B

−CT D

]

R−1
[
DT C BT

]

=

[
A − BR−1DT C −BR−1BT

−CT (I − DR−1DT )C −(A − BR−1DT C)T

]

,

H ∈ dom(Ric) iff (A,B) is stabilizable and [A−jωI B

C D
] has full column rank for all ω. Further,

when H ∈ dom(Ric), there holds X = Ric(H) ≥ 0. Moreover, X > 0 iff [A−sI B

C D
] has full

column rank for all R(s) ≤ 0.

Proof. Firstly, the stabilizability of (A,B) is equivalent to that of (A − BR−1DT C,BR−1/2)
(refer to Exercise 9.4). Next, [A−sI B

C D] has full column rank iff ((I − DR−1DT )C,A −
BR−1DT C) has no unobservable eigenvalues at s (Exercise 9.4). Since I − DR−1DT ≥ 0,
this condition is equivalent to that ((I − DR−1DT )1/2C, A − BR−1DT C) has no
unobservable eigenvalues at s. So, the conclusion follows from Theorem 9.4. •

1 Refer to Exercise 2.14 of Chapter 2.
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9.3 Inner Function

When a stable transfer function N(s) with full row rank satisfies

N∼(s)N(s) = I ∀ s, (9.15)

it is called an inner function. Since N ∗(jω)N(jω) = I is true for all ω, ||N(jω)q|| = ||q||(∀ω)
and ||Nv ||2 = ||v||2 hold for any constant vector q with suitable dimension and any two-norm
bounded vector function v(s). That is, the norms of vector function and constant vector do not
change after being mapped by an inner function. Such norm-preserving property is the essence
of inner function. From the viewpoint of system engineering, the so-called inner function is
actually an all-pass transfer function whose gain is 1 over the whole frequency domain. Refer
to Section 10.1.2 for more discussions and examples about the scalar case.

The characterization of inner function is given by the following theorem.

Theorem 9.5 Suppose that N(s) = (A,B,C,D) is stable and (A,B) is controllable. Fur-
ther, assume that X is the observability Gramian satisfying

AT X + XA + CT C = 0.

Then, N(s) is an inner function iff the following two conditions are satisfied:

1. DT C + BT X = 0
2. DT D = I .

Proof. According to N(−j∞)T N(j∞) = DT D = I , condition 2 must be true. Next, a

similarity transformation with transformation matrix T = [ I 0
−X I] on

N(−s)T N(s) =

⎡

⎣
A 0 B

−CT C −AT −CT D
DT C BT DT D

⎤

⎦

and a substitution of the Lyapunov equation lead to

N(−s)T N(s) =

⎡

⎣
A 0 B

−(AT X + XA + CT C) −AT −(XB + CT D)
BT X + DT C BT DT D

⎤

⎦

=

⎡

⎣
A 0 B
0 −AT −(XB + CT D)

BT X + DT C BT I

⎤

⎦ .

To enforce N∼(s)N(s) = I , all poles must be cancelled. That is, N∼(s)N(s) has to be
both uncontrollable and unobservable. So, from the controllability of (A,B) we see that
the statement 1 must be true. Apparently, if conditions 1 and 2 are both satisfied, then
N∼(s)N(s) = I . •
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Exercises

9.1 Following the procedure that follows to prove Theorem 9.3. Here, assume that R ≥ 0
(the case of R ≤ 0 can be proved similarly).
1. To show the sufficiency, we need just to prove that the spaces X−(H) and Im[0I] are

complementary. That is, to prove that Ker(X1) = {0} when

X−(H) = Im

[
X1
X2

]

, H

[
X1
X2

]

=
[
X1
X2

]

H−.

To this end, (i) prove that Ker(X1) is H−-invariant using XT
2 X1 = XT

1 X2 and (ii)
prove that X1 is nonsingular by reduction to contradiction. That is, assume that
Ker(X1) �= {0}, and then derive a contradiction.

2. Prove the necessity based on the fact that X is a stabilizing solution when H ∈
dom(Ric).

9.2 Following the subsequent procedure to prove the following statement: When (A,B) is
stabilizable and (C,A) is detectable, Riccati equation

AT X + XA − XBBT X + CT C = 0

has a unique positive semidefinite solution. Moreover, this solution is the stabilizing
solution.
(a) By Theorem 9.4, Riccati equation has a unique and positive semidefinite solution

under the given condition. So, if we can prove that any positive semidefinite solu-
tion X ≥ 0 is the stabilizing solution, then the uniqueness of positive semidefinite
solution follows from that of the stabilizing solution.

(b) Use reduction to contradiction. That is, assume that although X ≥ 0 satisfies Riccati
equation, it is not the stabilizing solution. So, A − BBT X has an unstable eigen-
value λ with eigenvector x. Then prove that Ax = λx,Cx = 0 based on Riccati
equation, that is, to derive a result contradictory to the detectability of (C,A).

9.3 When (A,B) is stabilizable, prove that (A − BR−1DT C,BR−1BT ) is also stabilizable
where R > 0.

9.4 When D has full column rank, prove that [A−sI B

C D
] has full column rank at a point s iff

((I − DR−1DT )C,A − BR−1DT C) has no unobservable eigenvalues at this point.

Notes and References

Among the references on Riccati equation, the most complete one is Ref. [51]. Zhou et al.
[100] also contains a selection of important topics and is easy to read.co
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10
Performance Limitation
of Feedback Control

The fundamental mechanism of control is feedback. It is only with feedback that we can atten-
uate disturbance and realize precise reference tracking. However, feedback is not omnipotent.
The performance of transient response cannot be enhanced unlimitedly by feedback control.
In fact, due to the special structure of feedback control, feedback systems embody an unsur-
passable limit. For linear systems, this limit is closely related to the unstable poles and zeros
of the plant and controller. The purpose of this chapter is to reveal such limit via quantitative
analysis so as to provide a guidance for setting reasonable performance specifications in the
design of plant structure and the design of feedback controller.

In order to understand qualitatively how the performance limitation of feedback control
results in, let us look at an example. Consider the reference tracking of single-input
single-output (SISO) systems. Coprimely factorize plant P and controller K with their
numerator and denominator polynomials, respectively:

P (s) =
NP

MP

, K(s) =
NK

MK

. (10.1)

Then, the transfer function from reference input r(t) to output yP (t) equals

T (s) =
PK

1 + PK
=

NP NK

MP MK + NP NK

. (10.2)

This transfer function is called the complementary sensitivity . To guarantee the stability of
the system, there cannot be unstable pole-zero cancelation between P (s) and K(s). So the
unstable zeros of P (s) and K(s) are kept in T (s) as its zeros. Recalling Chapter 5, in the
tracking of step reference input, zeros of T (s) either amplify overshoot or cause undershoot,
thus limiting the performance of system. Moreover, since the unstable poles of P (s) cannot
be canceled by the zeros of K(s), it limits the range of allowable controllers. This certainly
will have a bad impact on the transient response. This example reveals that the most significant
character of feedback control is that although poles can be moved arbitrarily, unstable zeros
cannot be moved (stable zeros can be canceled by the poles of closed-loop system).

Robust Control: Theory and Applications, First Edition. Kang-Zhi Liu and Yu Yao.
© 2016 John Wiley & Sons Singapore Pte. Ltd. Published 2016 by John Wiley & Sons, Singapore Pte. Ltd.
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226 Robust Control

In the subsequent sections, we analyze the performance limitation of feedback system quan-
titatively. For simplicity, we only introduce the results on SISO systems. In fact, the limitation
of feedback control is the most prominent in SISO systems. For multiple-input multiple-output
(MIMO) systems, the limitation of control performance also involves the zero vectors of plant
and the input vectors of reference signal. For details, refer to Refs [15, 14, 69, 84].

10.1 Preliminaries

This section introduces some mathematical knowledge necessary for the analysis of system
performance limitation.

10.1.1 Poisson Integral Formula

In complex analysis, a function F (s) differentiable in a simply connected region is called an
analytic function in this region. For a function F (s) analytic on a closed curve ∂Ω and its
interior Ω in the complex plane, there holds the following Cauchy theorem [1]:

1
2πj

∮

∂Ω
F (s)ds = 0. (10.3)

Further, the following Cauchy integral formula

F (s0) =
1

2πj

∮

∂Ω

F (s)
s − s0

ds, s0 ∈ Ω (10.4)

is also true where the positive direction of integral path ∂Ω is counterclockwise. Next, we prove
Poisson integral formula using it.

Lemma 10.1 (Poisson integral formula) Suppose that the rational function F (s) is
analytic in the open right half plane and |F (s)| bounded in this region. Then, at any point
s0 = x0 + jy0 (x0 > 0) in the open right half plane, the following equation holds

F (s0) =
1
π

∫ ∞

−∞
F (jω)

x0

x2
0 + (ω − y0)2 dω. (10.5)

Proof. From the assumption we know that F (s)(s0 + s0)/(s + s0) is also analytic in the
open right half plane. Let ∂Ω be composed of a line R(s) = ε (> 0) and an arc in the right
half plane with infinite radius. From Cauchy integral formula, we have

F (s0) = F (s0)
s0 + s0

s0 + s0
=

1
2πj

∮

∂Ω
F (s)

s0 + s0

(s − s0)(s + s0)
ds = I1 + I2

in which I1 is the integral along the line R(s) = ε:

I1 =
1

2πj

∫ −∞

∞
F (ε + jω)

s0 + s0

(ε + jω − s0)(ε + jω + s0)
d(jω)

→ 1
π

∫ ∞

−∞
F (jω)

x0

x2
0 + (ω − y0)2 dω (as ε → 0).
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Further, I2 is the integral along the arc s = Rejθ with radius R(→ ∞) in the right half plane:

I2 =
1
π

lim
R→∞

∫ arccos(ε/R)

− arccos(ε/R)
F (Rejθ)

x0

(Rejθ − s0)(Rejθ + s0)
Rejθdθ.

Since |F (Rejθ)| is bounded, the integral kernel of I2 converges to zero as R → ∞. As the
integral interval (−π/2, π/2) is bounded, we have I2 = 0. Thus, the conclusion is proved. •

This lemma implies that the value of a stable transfer function at a point s0 in the right half
plane is determined uniquely by its frequency response and the point s0.

10.1.2 All-Pass and Minimum-Phase Transfer Functions

Stable transfer function A(s) satisfying

|A(jω)| = 1 ∀ω (10.6)

is called an all-pass transfer function . For instance, transfer functions

1,
1 − s

1 + s
,

λ − s

λ + s
(R(λ) > 0),

s2 − 2s + 5
s2 + 2s + 5

=
(1 − j2 − s)(1 + j2 − s)
(1 + j2 + s)(1 − j2 + s)

are all-pass. By definition, the physical implication of an all-pass transfer function is that its
gain is 1 over the whole frequency domain. So, it does not change the gain of input but delays
the phase of input. From the previous examples, it is clear that the poles and zeros of all-pass
transfer function are symmetrical about the imaginary axis, as illustrated in Figure 10.1.

For an arbitrary stable transfer function H(s), owing to the property (10.6) of all-pass trans-
fer function A(s), the following relations

‖AH ‖∞ = ‖H‖∞, ‖AH ‖2 = ‖H‖2 (10.7)

apparently hold. That is, an all-pass transfer function has the property of preserving H∞,H2
norms.

Re

Im

p1

p2 = p1 z2 = −p̄2

z1 = −p̄1

× ◦

◦×

0
× ◦

z3 = −p3
p3

¯

Figure 10.1 Location of poles and zeros of all-pass transfer function
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On the other hand, stable transfer function without any zeros in the right half plane is called
a minimum-phase transfer function. Some examples are

1
s + 1

,
s

s + 1
,

s + 1
s2 + 2s + 6

,
s2 + 2s + 6

(s + 2)2 .

The reason why such a transfer function is called minimum phase is that its phase lag is
minimal compared with other stable transfer functions with the same gain. For example, com-
paring the phases of transfer functions s/(s + 2) and s(1 − s)/(s + 2)(s + 1), the former is
π/2 − arctan(ω/2) while the latter is π/2 − arctan(ω/2) − 2 arctan ω.

On the contrary, transfer function with zeros in the right half plane is called a
nonminimum-phase transfer function , such as

1 − s

1 + s
,

1 − s + s2

(s + 5)(1 + s + s2)
.

In fact, all-pass transfer functions are nonminimum phase.
Obviously, any stable rational function P (s) can be factorized as the product of an all-pass

transfer function A(s) and a minimum-phase transfer function Pm(s). For example, transfer
function P (s) = (s2 − 2s + 5)/(s + 1)(s2 + 4s + 6) with zeros on 1 ± j2 can be factorized
as

P (s) =
1 − j2 − s

1 + j2 + s
× 1 + j2 − s

1 − j2 + s
× s2 + 2s + 5

(s + 1)(s2 + 4s + 6)
.

10.2 Limitation on Achievable Closed-loop Transfer Function

As stated in Chapter 5, control performance can be quantified by the norm of closed-loop
transfer function. From the control objective, the norm of closed-loop transfer function should
be reduced as much as possible, or the closed-loop transfer function should get close to desired
transfer function as much as possible. However, achievable closed-loop transfer functions are
limited. This will be revealed by using the parametrization of stabilizing controllers in this
section.

10.2.1 Interpolation Condition

In general, after the substitution of stabilizing controller, the closed-loop transfer function can
be described as (see Subsection 7.4.2)

H(s) = N11(s) + N12(s)Q(s)N21(s). (10.8)

Here, we examine the case where N12(s) and N21(s) have unstable zeros. Make the following
assumptions:

Assumption 1 z (R(z) ≥ 0) is a zero of N12(s) with a multiplicity l.
Assumption 2 p (R(p) ≥ 0) is a zero of N21(s) with a multiplicity r.
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These conditions imply that N12(s) contains a factor (s − z)l and N21(s) contains a factor
(s − p)r. Mathematically, they are equivalent to

N
(i)
12 (z) = 0, i = 0, . . . , l − 1 (10.9)

N
(j)
21 (p) = 0, j = 0, . . . , r − 1 (10.10)

where X(i)(z) stands for the derivative diX(s)/dsi|s=z , and X(0)(s) = X(s).
Moving the term N11 in (10.8) to the left side, we get

H(s) − N11(s) = N12(s)Q(s)N21(s).

Since Q(s) is stable, unstable zeros of N12(s) and N21(s) will not be canceled by the poles of
Q(s). So H(s) − N11(s) has the same zeros. Thus, H(s) must satisfy

(H − N11)
(i)(z) = 0, i = 0, . . . , l − 1 (10.11)

(H − N11)
(j)(p) = 0, j = 0, . . . , r − 1. (10.12)

Such constraint is called interpolation condition, which is independent of controller. The
physical impact of such constraint will be illustrated in the example of sensitivity.

10.2.2 Analysis of Sensitivity Function

Assume that the plant P (s) satisfies the following assumptions:

Assumption 1 z (R(z) ≥ 0) is a zero of P (s) with a multiplicity l.
Assumption 2 p (R(p) ≥ 0) is a pole of P (s) with a multiplicity r.

The sensitivity function S(s) is defined as

S(s) =
1

1 + P (s)K(s)
. (10.13)

From Figure 10.2, we see that S(s) is the transfer function from reference input r to tracking
error e = r − yP in the closed-loop system. In the sequel, we use Youla parametrization to
expand the sensitivity. In the present case, G22 = −P in the generalized plant and can be
coprimely factorized as

G22(s) = −P (s) = N(s)D−1(s) = D̃−1(s)Ñ(s). (10.14)

K P
r yPu

e

y−

Figure 10.2 Sensitivity and reference tracking
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Substituting Youla parametrization given in Theorem 7.3 into S(s), we have

S(s) =[1 − D̃−1(s)Ñ(s)(Y − DQ)(X − NQ)−1]−1

=(X − NQ)[D̃X − ÑY − (D̃N − ÑD)Q]−1D̃.

D̃N = ÑD follows from (10.14). Further, from the (2, 2) block of (7.32), we have
D̃X − ÑY = −1. Eventually, the sensitivity S(s) becomes

S(s) = −(X − NQ)D̃. (10.15)

Moreover, changing the order of the two matrices on the left side of (7.32), their product is
still an identity. From its (2, 2) block, we obtain NỸ − XD̃ = 1. So, substituting −XD̃ =
1 − NỸ into the sensitivity S in (10.15), we obtain another expression:

S(s) = 1 − NỸ + NQD̃ = 1 + N(−Ỹ + QD̃). (10.16)

Zeros of N(s) are the zeros of P (s), and zeros of D̃(s) are the poles of P (s) (refer to
Exercise 7.8 in Chapter 7). Thus, the sensitivity S(s) must satisfy the following interpolation
conditions:

S(z) = 1, S(i)(z) = 0, i = 1, . . . , l − 1 (10.17)

S(j)(p) = 0, j = 0, . . . , r − 1. (10.18)

That is, when there exist unstable zeros or poles in the plant, feedback control cannot achieve
arbitrary shaping of sensitivity. Next, we illustrate the impact it brings to system performance
by examples.

Example 10.1 Let z be an unstable zero of P (s). Substituting the coprime factorization
N(s)/M(s) of open-loop system L(s) = P (s)K(s) into the sensitivity, we get

S(s) =
1

1 + L(s)
=

M(s)
M(s) + N(s)

. (10.19)

Thus, we see that the unstable poles pi(i = 1, . . . , k) of L(s) are the zeros of sensitivity. So,
S(s) can be factorized as the product of a minimum-phase transfer function Sm(s) and an
all-pass transfer function A(s):

S(s) = Sm(s)A(s), A(s) =
k∏

i=1

pi − s

pi + s
. (10.20)

In the minimization of sensitivity weighted by W (s), ‖SW ‖∞ represents the tracking error
corresponding to a reference input modeled by W (s). So, the smaller it is the better. However,
due to S(z) = 1, the invariance of H∞ norm w.r.t. all-pass transfer function and the maximum
modulus theorem1 , it can be proved that

‖WS‖∞ =‖WSm‖∞ ≥ |W (z)Sm(z)|

1 A function analytical in the closed right half plane must take its maximum absolute value on the imaginary axis (see
reference [1]).
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=|W (z)S(z)A−1(z)| = |W (z)A−1(z)| (10.21)

=|W (z)|
k∏

i=1

∣
∣
∣
∣
pi + z

pi − z

∣
∣
∣
∣ . (10.22)

When there is a pole pi close to z, the second factor will be very big, thus enlarging the track-
ing error. Similarly, when z comes close to a pole of W (s), this norm cannot be reduced. For
example, in the tracking of step signal W (s) = 1/s, if |z| < 1 then ‖SW ‖∞ > 1/|z| 	 1.
Thus, good tracking performance cannot be achieved. This in fact corresponds to the
well-known fact that the plant cannot have zeros at the origin in tracking step signals.

Deeper quantitative analyses on the tracking error will be elaborated in the following
sections.

10.3 Integral Relation

The famous Bode integral relation on the sensitivity and Bode phase formula are presented in
this section.

10.3.1 Bode Integral Relation on Sensitivity

Let the open-loop transfer function be L(s) = P (s)K(s) and make the following assumption:

Assumption 3 The closed-loop system (P,K) is stable and L(s) contains poles
pi(i = 1, . . . , k) in the open right half plane.

As stated before, all poles of the open-loop transfer function L(s) in the closed right half
plane become the zeros of sensitivity function S(s). Thus, by Assumption 3, S(s) contains
zeros pi(i = 1, . . . , k) in the open right half plane. Therefore, the sensitivity function S(s) can
be factorized as (10.20). Note that, since the relative degree of sensitivity S(s) is zero, Sm(s)
does not have zeros in the closed right half plane including infinity except those coming from
the poles of L(s) on the imaginary axis. So, function F (s) := ln Sm(s) is analytical and
bounded in the closed right half plane except the imaginary axis poles of L(s). The reason
is as follows: d ln Sm(s)/ds = S−1

m (s)dSm/ds in form, but S−1
m (s) is bounded in the closed

right half plane except the imaginary axis poles of L(s); further, dSm/ds is also bounded in
the closed right half plane due to the stability of Sm(s).

Then according to Lemma 10.1, at an arbitrary point s0 = x0 + jy0 in the closed right half
plane,

ln Sm(s0) =
1
π

∫ ∞

−∞
ln Sm(jω)

x0

x2
0 + (ω − y0)2 dω (10.23)

holds. Write Sm(s) as |Sm(s)|ej arg Sm(s), we have ln Sm(s) = ln |Sm(s)| + j arg Sm(s).
Since |A(jω)| = 1, ln |S(jω)| = ln |Sm(jω)| = R(ln Sm(jω)) holds. Taking the real parts
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on both sides of (10.23), we have2

ln |Sm(s0)| =
1
π

∫ ∞

−∞
ln |S(jω)| x0

x2
0 + (ω − y0)2 dω. (10.24)

Based on this, we can derive the relation between the unstable poles of open-loop system
and sensitivity.

Theorem 10.1 Suppose that the relative degree γ of L(s) is no less than 2. Subject to Assump-
tion 3, the following Bode sensitivity integral relation holds:

∫ ∞

0
ln |S(jω)|dω = π

k∑

i=1

R(pi) > 0. (10.25)

Moreover, this integral is zero when L(s) is stable.

Proof. Let y0 = 0 in (10.24). Multiplying both sides with x0 and taking limit, we obtain

lim
x0→∞

x0 ln |Sm(x0)| =
1
π

∫ ∞

−∞
ln |S(jω)|dω =

2
π

∫ ∞

0
ln |S(jω)|dω. (10.26)

Next, we prove
lim

x0→∞
x0 ln S(x0) = 0. (10.27)

First, as x0 → ∞, by the assumption on relative degree, L(x0) → c/xγ
0 , S(x0) → 1

where c is a constant, γ ≥ 2. So x2
0dL(x0)/dx0 → −γc/xγ−1

0 → 0. Then, since
dS (x0)/dx0 = −S2(x0)dL(x0)/dx0, by De Lôpital’s Theorem, it can be derived
that

lim
x0→∞

x0 ln S(x0) = lim
x0→∞

ln S(x0)
1/x0

= lim
x0→∞

1
S(x0)

dS (x0)
dx0

−1/x2
0

= lim
x0→∞

S(x0)x
2
0
dL(x0)

dx0
= lim

x0→∞
S(x0) lim

x0→∞
x2

0
dL(x0)

dx0

= 0.

Therefore, taking the real part of (10.27) we get lim
x0→∞

x0 ln |S(x0)| = 0. Since ln |S(x0)| =

ln |Sm(x0)| + ln |A(x0)|, there holds

lim
x0→∞

x0 ln |Sm(x0)| = − lim
x0→∞

x0 ln |A(x0)|

= −
k∑

i=1

lim
x0→∞

x0 ln
∣
∣
∣
∣
pi − x0

pi + x0

∣
∣
∣
∣ .

Finally, we need only prove that lim
x0→∞

x0 ln
∣
∣
∣
∣
pi − x0

pi + x0

∣
∣
∣
∣ = −2R(pi). This is accomplished by

applying De Lôpital theorem once again.

2 Note that |A(s0)| 
= 1. So the left is no equal to ln |S(s0)|.
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Finally, when L(s) is stable and S(s) has no unstable zeros, S(s) = Sm(s). Therefore, the
integral is zero in this case. •

Note that ln |S(jω)| < 0 as long as |S(jω)| < 1. Similarly, ln |S(jω)| > 0 as long as
|S(jω)| > 1. Theorem 10.1 indicates that, if the sensitivity is less than 1 in some frequency
band, there is another frequency band in which the sensitivity is greater than 1. Further, when
there are unstable zeros in the open-loop transfer function, the area in the frequency band
where the sensitivity amplitude is greater than 1 is bigger than the area in the frequency band
where the sensitivity amplitude is less than 1. This is known as the water bed effect. That is,
when one place is pushed down, other places come up. This means that it is impossible to roll
off the sensitivity uniformly over the whole frequency domain.

Example 10.2 As an example, Figure 10.3 depicts the gain of sensitivity for the open-loop
transfer function:

L(s) =
4(2 − s)

s(s + 2)(s + 10)
.

The water bed effect appears clearly in the figure.

Fortunately, in practice, the sensitivity represents the transfer function about reference track-
ing, and most reference inputs, such as step signal, have less high-frequency components. So,
as long as the gain of sensitivity is low enough in the low-frequency band, tracking error is
reduced substantially. A slightly higher sensitivity gain in other frequency bands will not result
in much bad influence.

Furthermore, when the relative degree of open-loop transfer function is 1, it is known that
the integral relation

∫ ∞

0
ln |S(jω)|dω = π

k∑

i=1

R(pi) −
π

2
lim
s→∞

sL(s) (10.28)

holds between the sensitivity and the open-loop transfer function [94].
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Figure 10.3 Water bed effect
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10.3.2 Bode Phase Formula

In the loop shaping method of classic control, Bode phase formula on minimum-phase
open-loop systems plays a very important role. The theorem described in the following is a
slightly extended version of Bode phase formula.

Theorem 10.2 Assume that the open-loop transfer function L(s) has no poles and zeros in
the open right half plane and L(j0) > 0. Then, at any point jω0 (ω0 > 0) different from poles
and zeros of L(s) on the imaginary axis, the following relation holds

arg L(jω0) =
1
π

∫ ∞

−∞

d ln |L(jω0e
ν)|

dν
ln coth

|ν|
2

dν (10.29)

where ν := ln(ω/ω0).

Note that this theorem is true even for improper transfer function L(s).
The curve of function ln coth |ν|

2 is shown in Figure 10.4. Clearly, this function begins
rolling off sharply roughly from ν = 1 ⇔ ω = ω0. Its area can be approximated by the
area in ν ∈ (−2.5, 2.5) ⇔ ω ∈ (0.1ω0, 10ω0). It can be proved that the area of function
ln coth |ν|

2 is π2/2. Next, we consider the case where ω0 is the crossover frequency ωc

(satisfying |L(jωc)| = 1). If the slope of open-loop gain is constant in a frequency band of 1
dec around ωc, that is, d ln |L|/dν = d ln |L(jω)|/d ln ω = −k (equivalent to −20k dB/dec)
for ω ∈ (0.1ωc, 10ωc), according to theorem 10.2 we have

arg L(jωc) ≈ −π

2
k. (10.30)

Note that PM := π + arg L(jωc) is the phase margin of the closed-loop feedback system.
Since the phase angle in ωc equals

arg L(jωc) ≈
{
−90◦, k = 1
−180◦, k = 2,

(10.31)
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Figure 10.4 Curve of function ln coth |ν|
2
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to guarantee a sufficient phase margin (40◦ ≤ PM ≤ 60◦), the slope of logarithmic gain needs
be kept as −1 within a frequency band of 1 dec around the crossover frequency. This has been
an important rule in classic control design.

10.3.2.1 Proof of Theorem 10.2

First of all, we compute the integral along a path consisting of the right part Cr of a circle
centered at (0, jω) (ω 
= ω0) with a radius r (refer to C1, C2 in Figure 10.5). s − jω = rejθ

on Cr, so we have

∫

Cr

ln (s − jω)
s2 + ω2

0
ds =

∫ π/2

−π/2

jr(ln r + jθ)ejθ

(jω + rejθ)2 + ω2
0
dθ.

Note that r ln r → 0 as r → 0. So

lim
r→0

∫

Cr

ln (s − jω)
s2 + ω2

0
ds = 0.

Although the poles and zeros of L(s) on the imaginary axis are the singularities of ln L(s),
it follows from the previous equation that these singularities does not affect the integral of
ln L(s)/(s2 + ω2

0) along the imaginary axis. Besides, by assumption we see that ln L(s) is
analytic in the open right half plane.

Then, setting ∂Ω as the curve shown in Figure 10.5, we get
∮

∂Ω

ln L(s)
s2 + ω2

0
ds = 0 (10.32)

from Cauchy integral formula. In this integral, the integral along the semicircle with infinite
radius is zero because the integrand is zero. So,

0 =
∫ −j(ω0+r)

−j∞
+

∫

C1

+
∫ j(ω0−r)

−j(ω0−r)
+

∫

C2

+
∫ j∞

j(ω0+r)

r

r C2

C1
−jω0

jω0

0

Im

Re

∞

Figure 10.5 Integration path

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

236 Robust Control

holds. s = −jω0 + rejθ (θ ∈ [−π/2, π/2]) on the semicircle C1. Substituting it and taking
limit r → 0, we get

∫

C1

ln L(s)
s2 + ω2

0
ds =

∫ π/2

−π/2

ln L(−jω0 + rejθ)
rejθ − j2ω0

jdθ → − π

2ω0
ln L(−jω0).

Similarly, when r → 0, we have

∫

C2

ln L(s)
s2 + ω2

0
ds → π

2ω0
ln L(jω0).

So, by taking the limit r → 0, we obtain

0 = j

∫ ∞

−∞

ln L(jω)
ω2

0 − ω2 dω +
π

2ω0
ln

L(jω0)
L(−jω0)

. (10.33)

Since L(s) is a real rational function and L(j0) > 0, there holds |L(jω0)| = |L(−jω0)|
and arg L(−jω0) = − arg L(jω0). Therefore, the second term on the right side becomes
j π

ω0
arg L(jω0). Comparing the imaginary parts of both sides, we obtain

arg L(jω0) =
ω0

π

∫ ∞

−∞

ln |L(jω)|
ω2 − ω2

0
dω =

2ω0

π

∫ ∞

0

ln |L(jω)|
ω2 − ω2

0
dω. (10.34)

(Although the integrand on the right is divergent at ω0, the integral itself is bounded.)
Next, we convert the right side into the desired form. First, direct calculation shows that

d

dν

(

ln coth
|ν|
2

)

= − 1
sinh ν

. (10.35)

Then, by a variable change ν = ln(ω/ω0), the integral interval [0,∞) turns into (−∞,∞).
Further, via substitution of ω/ω0 = eν and dν = dω/ω, the right side of (10.34) reduces to

2
π

∫ ∞

0

ln |L(jω)|
ω/ω0 − ω0/ω

dω

ω
=

2
π

∫ ∞

−∞

ln |L(jω0e
ν)|

eν − e−ν
dν

=
1
π

∫ ∞

−∞

ln |L(jω0e
ν)|

sinh ν
dν

= − 1
π

[

ln |L(jω0e
ν)| ln coth

|ν|
2

]∞

−∞
+

1
π

∫ ∞

−∞

d ln |L(jω0e
ν)|

dν
ln coth

|ν|
2

dν

(10.36)

Since |L(jω0e
ν)| is not an even function of ν, it is not straightforward to prove that the first

term on the right side is zero. But the proof is accomplished through the following steps:

1. It can be proved that coth |ν|
2 =

∣
∣
∣ω+ω0
ω−ω0

∣
∣
∣. So the first term on the right side of the equation

can be written as − 1
π

[
ln |L(jω)| ln

∣
∣
∣ω+ω0
ω−ω0

∣
∣
∣
]∞

0
.
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2. When ω → ∞ or 0, we always have ln
∣
∣
∣ω+ω0
ω−ω0

∣
∣
∣ → 0. So, as long as ln |L(j∞)| or ln |L(j0)|

is bounded, the term corresponding to it is zero.
3. Note that d ln |L(jω)|

d ln ω is the slope of Bode gain and is bounded when ω → 0 or ∞. If
ln |L(jω)| diverges as ω → 0 or ∞, it can be proved that its limit is zero by applying De

Lôpital theorem to ln |L(jω)| ln
∣
∣
∣ω+ω0
ω−ω0

∣
∣
∣ = ln |L(jω)|/(1/ ln

∣
∣
∣ω+ω0
ω−ω0

∣
∣
∣).

As such, we have obtained the conclusion. •
Further, when the open-loop transfer function L(s) has poles and zeros in the right half

plane, we may do factorization L(s) = Lm(s)A(s)B(s)−1 to factorize the open-loop trans-
fer function into the product of a minimum-phase transfer function Lm(s) satisfying condi-
tions in Theorem 10.2 and all-pass transfer functions A(s) =

∏k
i=1(zi − s)/(zi + s), B(s) =

∏l
j=1(pj − s)/(pj + s). Here, zi, pj are, respectively, the zero and pole of L(s) in the open

right half plane. So, |L| = |Lm| and arg L = arg Lm + arg A − arg B hold. Applying the
Bode integral relation given by the theorem above to Lm and substituting it into the integral,
Bode integral condition can be extended to general open-loop system as follows.

Corollary 10.1 Suppose that the open-loop transfer function L(s) satisfies L(j0) > 0, and
its poles and zeros in the open right half plane are zi(i = 1, . . . , k) and pj(j = 1, . . . , l),
respectively. Then,

arg L(jω0) =
1
π

∫ ∞

−∞

d ln |L|
dν

ln coth
|ν|
2

dν +
k∑

i=1

arg
zi − jω0

zi + jω0

−
l∑

j=1

arg
pj − jω0

pj + jω0
(10.37)

and the phase angle of the second term on the right side is always negative.

10.4 Limitation of Reference Tracking

In this section, we prove that the infimum of tracking error area w.r.t. step reference signal is
constrained by unstable poles and zeros of the plant. These results reveal quantitatively the
limitation of feedback control.

In this section, the following basic assumption is made.

Assumption 4 P (s) has no zeros on the imaginary axis and its zeros in the open right half
plane are zi (i = 1, . . . , k) (multiplicity counted).

10.4.1 1-Degree-of-Freedom System

The structure of 1-DOF system is shown in Figure 10.2. The closed-loop transfer function of
r �→ e is the sensitivity S(s), and the tracking error is ê(s) = S(s)r̂(s).
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10.4.1.1 Stable Plant Case

In this case, all stabilizing controllers are given by K(s) = Q/(1 − PQ). Substituting it into
the sensitivity S(s), we get

S(s) = 1 − P (s)Q(s). (10.38)

Further, the plant P (s) can be factored as

P (s) = L(s)Pm(s), L(s) =
k∏

i=1

Li(s), Li(s) =
zi

zi

zi − s

zi + s
(10.39)

where Li(s) is an all-pass transfer function, and Pm(s) is a minimum-phase transfer function
without imaginary zeros. Note that Li(s) has been normalized as such that Li(0) = 1.

The following theorem gives the infimum on the tracking error achievable by feedback con-
trol.

Theorem 10.3 Suppose that P (s) is stable and satisfies Assumption 4. Then, the infimum of
tracking error w.r.t. unit step reference input is

inf‖e‖2
2 =

k∑

i=1

2R(zi)
|zi|2

. (10.40)

Further, inf‖e‖2
2 = 0 when P has no unstable zeros.

Proof. Laplace transform of the tracking error is

ê(s) = (1 − PQ)r̂(s) = (1 − PQ)
1
s

. (10.41)

For the two-norm of e(t) to be bounded, ê(s) must be stable. So, the free param-
eter Q(s) must satisfy 1 − P (0)Q(0) = 0. By this and Li(0) = 1, we see that
1 − Pm(0)Q(0)

∏k
i=j≥1 Li(0) = 0 holds for all 1 ≤ j ≤ k. So, by the norm-preserving

property of all-pass transfer function, it can be proved that

‖e‖2
2 =

∥
∥
∥
∥
∥

(

1 − PmQ

k∏

i=1

Li

)
1
s

∥
∥
∥
∥
∥

2

2

=

∥
∥
∥
∥
∥

(

L−1
1 − PmQ

k∏

i=2

Li

)
1
s

∥
∥
∥
∥
∥

2

2

=

∥
∥
∥
∥
∥

(
L−1

1 − 1
) 1

s
+

(

1 − PmQ

k∏

i=2

Li

)
1
s

∥
∥
∥
∥
∥

2

2

. (10.42)

(L−1
1 − 1)/s = 2R(z1)/z1(z1 − s) is antistable, meanwhile the second term is stable due to

1 − Pm(0)Q(0)
∏k

i=2 Li(0) = 0. So, the first term is orthogonal to the second. Hence, from
Lemma 2.6 we get

‖e‖2
2 =

∥
∥
∥
∥
(
L−1

1 − 1
) 1

s

∥
∥
∥
∥

2

2
+

∥
∥
∥
∥
∥

(

1 − PmQ

k∏

i=2

Li

)
1
s

∥
∥
∥
∥
∥

2

2

=
4(R(z1))

2

|z1|2

∥
∥
∥
∥

1
z1 − s

∥
∥
∥
∥

2

2
+

∥
∥
∥
∥
∥

(

1 − PmQ
k∏

i=2

LiPmQ

)
1
s

∥
∥
∥
∥
∥

2

2

. (10.43)
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Further, application of Lemma 2.7 leads to

‖e‖2
2 =

2R(z1)
|z1|2

+

∥
∥
∥
∥
∥

(

1 − PmQ
k∏

i=2

Li

)
1
s

∥
∥
∥
∥
∥

2

2

. (10.44)

Repeating this procedure, we get eventually

‖e‖2
2 =

k∑

i=1

2R(zi)
|zi|2

+
∥
∥
∥
∥(1 − PmQ)

1
s

∥
∥
∥
∥

2

2
. (10.45)

Although P−1
m (s) is improper, Q(s, ε) := P−1

m (s)/(εs + 1)r is stable and proper in which
ε > 0 and r is the relative degree of P (s). Further, Q(s, ε) → P−1

m (s) when ε → 0. That is,
we can make 1 − PmQ approach arbitrarily close to zero with a stable and proper Q. So, the
infimum of the second term in the previous equation is zero. Therefore, we obtain

inf‖e‖2
2 =

k∑

i=1

2R(zi)
|zi|2

.

P = Pm when P has no unstable zeros. From the last part of the proof, infimum of the
two-norm of tracking error is zero. •

This theorem reveals that the precision of reference tracking for a stable plant is limited by
its unstable zeros. Obviously, when there exists unstable zeros close to the origin, the tracking
performance will be worsened inevitably.

Example 10.3 Design a controller for stable plant P (s) = (s − 2)/(s + 1)(s + 3) such
that the tracking error is as close to the infimum as possible.
Solution Firstly, factorize P (s) as the product of Pm(s) = −(s + 2)/(s + 1)(s + 3) and
L(s) = (2 − s)/(2 + s). Since there is an unstable zero z = 2, the infimum of tracking
error is

inf‖e‖2
2 =

2z

z2 = 1.

As seen from the proof of the theorem, we need just to design a controller such that
‖(1 − PmQ)/s‖2 approaches zero. Here, we choose Q(s) as

Q(s, ε) =
P−1

m (s)
εs + 1

= − (s + 1)(s + 3)
(s + 2)(εs + 1)

. (10.46)

By a simple calculation, we get
∥
∥
∥
∥(1 − PmQ)

1
s

∥
∥
∥
∥

2

2
=

∥
∥
∥
∥

1
s + ε−1

∥
∥
∥
∥

2

2
=

1
2ε−1 =

ε

2

which approaches zero as ε → 0. The corresponding controller is

K(s, ε) = − 1
2(1 + ε)

× (s + 1)(s + 3)
s( ε

2(1+ε)s + 1)
. (10.47)
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When ε → 0, the controller approaches the improper optimal controller Kopt(s) = −(s +
1)(s + 3)/(2s). That is, although the infimum can be approached arbitrarily, there does not
exist a proper controller achieving this infimum.

In addition, characteristic polynomial of the closed-loop system is

p(s) =MP MK + NP NK

=(s + 1)(s + 3)
[
εs2 + (1 + 2ε)s + 2

]

=ε(s + 1)(s + 3)(s + 2)
(

s +
1
ε

)

. (10.48)

Its roots are −1,−3,−2, and − 1/ε in which −1 and −3 stem from the cancelation of stable

poles of plant and zeros of controller; another root −2 is the mirror image about imaginary
axis of right half plane zero z = 2. The last root −1/ε approaches infinity as ε → 0. That is,
the character of the suboptimal controller is that canceling all stable poles and zeros of the
plant, placing poles of closed-loop system at the locations of unstable zero’s mirror image,
and finally moving all other poles to the negative infinity.

Moreover, observing the improper optimal controller Kopt(s) carefully, we find that it takes
the stable poles p = −1,−3 of the plant as its zeros and includes the infinite zeros of plant as
its poles. This is why the optimal controller is improper.

Furthermore, calculating the optimal open-loop transfer function and sensitivity, we find
that they are

Lopt(s) = −s − 2
2s

, Sopt(s) =
2s

s + 2

respectively. The open-loop gain is 1/2 at frequency ω > 2 rad/s and does not rolls off enough.
So, although this optimal controller can minimize the tracking error, it is very sensitive to
sensor noise. This means that in control design it is rather dangerous to pay too much attention
to some specific specification and ignore the others. �

10.4.1.2 Unstable Plant Case

For such plants, the following assumption is needed besides Assumption 4.

Assumption 5 P (s) has no poles on the imaginary axis and has distinct poles pj (j = 1, . . . , h)
in the open right half plane.

Owing to the analysis in Section 10.2.2, S(s) can be written as S = −(X − NQ)D̃ = 1 +
N(−Ỹ + QD̃). Under Assumptions 4 and 5, the following properties hold:

1. The only unstable zeros of N(s) are zi (i = 1, . . . , k).
2. The only unstable zeros of D̃(s) are pj (j = 1, . . . , h).
3. S(zi) = 1(∀i) and S(pj) = 0(∀j).
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First, factorize N(s), D̃(s) as products of all-pass transfer function and minimum-phase
transfer function:

N(s) =LM , L(s) =
k∏

i=1

zi

zi

zi − s

zi + s
(10.49)

D̃(s) =gb, b(s) =
h∏

j=1

pj

pj

pj − s

pj + s
(10.50)

where M(s) and g(s) are minimum-phase transfer functions. Thus, the sensitivity can further
be written as

S(s) = 1 + LM (−Ỹ + QD̃) = −(X − NQ)gb. (10.51)

To ensure the boundedness of ‖e‖2, there must be S(0) = 0. This is equivalent to

1 − M(0)Ỹ (0) + M(0)Q(0)D̃(0) = 0. (10.52)

Further, L(0) = b(0) = 1 .
It is proved in the following theorem that for unstable plant, the tracking precision is con-

strained not only by unstable zeros but also by unstable poles.

Theorem 10.4 Suppose that P (s) satisfies Assumptions 4 and 5. The infimum of tracking error
w.r.t. unit step reference is

inf‖e‖2
2 =

k∑

i=1

2R(zi)
|zi|2

+
h∑

i=1

h∑

j=1

4R(pi)R(pj)

(pi + pj)pipjbibj

(1 − L−1(pi))
∗(1 − L−1(pj))

(10.53)

where the constant bi is given by

bi =
h∏

j 
=i
j=1

pj

pj

pj − pi

pj + pi

.

Further, inf‖e‖2
2 = 0 when P (s) has no unstable zeros.

The first term in the infimum is the constraint brought by unstable zeros. It is not so severe so
long as the zeros are not too close to the origin. On the other hand, the second term indicates that
unstable poles amplify the constraint of unstable zeros. Particularly, when there are unstable
zeros and poles close to each other in P (s), L−1 gets very big. Similarly, when there exist
unstable poles close to each other, b−1

i increases greatly. The previous theorem shows that the
tracking error worsens whichever the case is.

However, when the plant has no unstable zeros, L(s) = 1 so that the second term of inf‖e‖2
2,

namely, the term representing the influence of unstable poles, disappears. This means that the
constraint on reference tracking is essentially caused by unstable zeros. Unstable poles only
amplify this effect.
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10.4.1.3 Proof of Theorem 10.4

By L(0) = 1, all poles of (L−1 − 1)/s are in the open right half plane. In addition, owing to the
boundedness condition (10.52) for ‖e‖2, (1 − MỸ + MQD̃)/s must be stable. So, applying
Lemmas 2.5(4) and 2.6, we obtain

‖e‖2
2 =

∥
∥
∥
∥

(
1 − LM Ỹ + LMQD̃

) 1
s

∥
∥
∥
∥

2

2
=

∥
∥
∥
∥

(
L−1 − MỸ + MQD̃

) 1
s

∥
∥
∥
∥

2

2

=
∥
∥
∥
∥
(
L−1 − 1

) 1
s

+ (1 − MỸ + MQD̃)
1
s

∥
∥
∥
∥

2

2

=
∥
∥
∥
∥
(
L−1 − 1

) 1
s

∥
∥
∥
∥

2

2
+

∥
∥
∥
∥

(
1 − MỸ + MQD̃

) 1
s

∥
∥
∥
∥

2

2
. (10.54)

Calculating the first term with a method similar to Theorem 10.3, we get

‖e‖2
2 =

k∑

i=1

2R(zi)
|zi|2

+
∥
∥
∥
∥

(
1 − MỸ + MQgb

) 1
s

∥
∥
∥
∥

2

2
. (10.55)

Therefore, we need to just consider the second term. For simplicity, define

J =
∥
∥
∥
∥

(
1 − MỸ + MQgb

) 1
s

∥
∥
∥
∥

2

2
=

∥
∥
∥
∥
∥

(
1 − MỸ

b
+ MQg

)
1
s

∥
∥
∥
∥
∥

2

2

. (10.56)

Before calculating J , some preparation is done. Firstly, from S(pj) = 0 and (10.51) we know
that 1 − L(pj)M(pj)Y (pj) = 0. So, 1 − M(pj)Y (pj) = 1 − L−1(pj) holds. Based on this,
we expand (1 − MỸ )/b into partial fraction

1 − MỸ

b
=

h∑

j=1

aj

pj

pj

pj + s

pj − s
+ R(s) (10.57)

in which R(s) is a stable transfer function, and the coefficient aj satisfies

aj =
pj

pj(pj + pj)
lim

s→pj

(pj − s)
1 − MỸ

b
=

1 − L−1(pj)
bj

. (10.58)

Substituting this partial fraction expansion into J , we get

J =

∥
∥
∥
∥
∥
∥

⎛

⎝
h∑

j=1

aj

pj

pj

pj + s

pj − s
+ R + MQg

⎞

⎠ 1
s

∥
∥
∥
∥
∥
∥

2

2

=

∥
∥
∥
∥
∥
∥

⎛

⎝
h∑

j=1

aj

(
pj

pj

pj + s

pj − s
− 1

)

+
h∑

j=1

aj + R + MQg

⎞

⎠ 1
s

∥
∥
∥
∥
∥
∥

2

2

=

∥
∥
∥
∥
∥
∥

h∑

j=1

aj

2R(pj)
pj

1
pj − s

+

⎛

⎝
h∑

j=1

aj + R + MQg

⎞

⎠ 1
s

∥
∥
∥
∥
∥
∥

2

2

.
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By (10.57), it is easy to know that
∑

aj + R(0) = 1 − M(0)Ỹ (0). Then,
∑

aj + (R +
MQg)(0) = 0 follows from (10.52) so that (

∑
aj + R + MQg)/s is stable. Hence,

J =

∥
∥
∥
∥
∥
∥

h∑

j=1

aj

2R(pj)
pj

1
pj − s

∥
∥
∥
∥
∥
∥

2

2

+

∥
∥
∥
∥
∥
∥

⎛

⎝
h∑

j=1

aj + R + MQg

⎞

⎠ 1
s

∥
∥
∥
∥
∥
∥

2

2

. (10.59)

Since the inverses of M(s), g(s) are stable. The infimum of the second term becomes zero.
So,

inf J =

∥
∥
∥
∥
∥
∥

h∑

j=1

aj

2R(pj)
pj

1
pj − s

∥
∥
∥
∥
∥
∥

2

2

. (10.60)

On the other hand, by the properties of inner product (Lemmas 2.5 and 2.7), we have

inf J =
h∑

i=1

h∑

j=1

〈

ai

2R(pi)
pi

1
pi − s

, aj

2R(pj)
pj

1
pj − s

〉

=
h∑

i=1

h∑

j=1

āi

2R(pi)
pi

aj

2R(pj)
pj

〈
1

pi − s
,

1
pj − s

〉

=
h∑

i=1

h∑

j=1

āiaj

4R(pi)R(pj)
pipj

1
pi + pj

. (10.61)

This proves the first half of the theorem.
When P (s) has no unstable zeros, N(s) becomes a minimum-phase system. So,

‖e‖2
2 =

∥
∥
∥
∥(−X + NQ) gb

1
s

∥
∥
∥
∥

2

2
=

∥
∥
∥
∥(−X + NQ) g

1
s

∥
∥
∥
∥

2

2
. (10.62)

N(s) has a stable inverse. When the free parameter is selected as Q(s, ε) = N−1X/(εs + 1)r

(r is the relative degree of N(s), namely, the relative degree of P (s)),

− X(s) + N(s)Q(s, ε) = −X(s)
(εs + 1)r − 1

(εs + 1)r
(10.63)

holds and possesses the following asymptotic properties:

−X(0) + N(0)Q(0, ε) = 0, lim
ε→0

(−X(s) + N(s)Q(s, ε)) = 0. (10.64)

Therefore, inf‖e‖2
2 = 0 is true.

10.4.2 2-Degree-of-Freedom System

In this case, according to Section 7.5, the closed-loop transfer function of r �→ e = r − yP is

Ter (s) = 1 + N12(s)QF (s), N12(s) = −C(sI − AF )−1B (10.65)
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in which QF (s) is an arbitrary stable transfer function. Since the zeros of N12(s) coincide
with those of P (s), its result is of course the same as that of stable plant in 1-DOF systems.
So, there holds the following theorem:

Theorem 10.5 Suppose that Assumption 4 holds. In a 2-DOF system, the infimum of tracking
error w.r.t. unit step reference input is

inf‖e‖2
2 =

k∑

i=1

2R(zi)
|zi|2

. (10.66)

Further, inf‖e‖2
2 = 0 when P (s) has no unstable zeros.

That is, in 2-DOF systems, unstable poles of the plant are not an obstacle for reference
tracking. This is a big advantage of 2-DOF systems. Moreover, the infimum of tracking error
is the same as that of 1-DOF systems when the plant is stable. Paradoxically, for stable plants,
the infimum cannot be reduced even if 2-DOF control is introduced, that is, it makes no con-
tribution to the ultimate improvement of the limitation on reference response.

Exercises

10.1 Factorize transfer function G(s) = s(s2 − 5s + 6)/(s + 5)2(s2 + 2s + 5) as the prod-
uct of an all-pass transfer function and a minimum-phase transfer function.

10.2 Prove that the zeros and relative degree of C(sI − A − BF )−1B and C(sI − A)−1B
are the same.

10.3 When the plant P (s) has an unstable zero z and two unstable poles p1 and p2, investigate
the influence of their relative positions on the tracking performance.

10.4 For unstable plant P (s) = 1/(s − 1), mimic the proof of Theorem 10.4 to compute the
infimum of tracking error inf ‖e‖2 w.r.t. unit step reference input and design a subopti-
mal controller.

Notes and References

Many contributions to the performance limitation study are owing to J. Chen [15, 14]. Some
extensions are in Ref. [94]. For more details on the performance limitation, refer to Refs [84]
and [31].
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11
Model Uncertainty

In model-based control design, the mathematical model plays an extremely important role.
However, the dynamics of a physical system cannot be described completely by a mathe-
matical model obtained from physical laws or system identification. Only a part of it can be
characterized by the model. In addition, a physical system is basically nonlinear and linear
approximation is valid only around the operating point. When the range gets large or the
operating point changes, the effect of nonlinearity appears. Therefore, in control design it
is impossible to design a high-quality control system without considering the discrepancy
between the model and the true system.

In this chapter, we focus on the model uncertainty and illustrate in detail the types of model
uncertainty, its description, and the modeling method of its bound. Specifically, to be exposed
are the uncertainty of dynamics, the variation of parameter, the uncertainty caused by linear
approximation of nonlinear element, and the impact of model uncertainty on the control design.
Finally, we will illustrate briefly the notions of robust stability and robust performance.

11.1 Model Uncertainty: Examples

In this section, we explore what kinds of uncertainty exist in real systems by examining some
simple real system models.

Example 11.1 A simplified speed control model for a car is given by

P (s) =
1

Ms + μ
(11.1)

in which M is the mass of the car and μ is the coefficient of road friction. The mass changes
with load and the friction coefficient changes with the road condition. In system design, we
only know the ranges of these parameters. For example,

M1 ≤ M ≤ M2, μ1 ≤ μ ≤ μ2.

Robust Control: Theory and Applications, First Edition. Kang-Zhi Liu and Yu Yao.
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246 Robust Control

Example 11.2 (IEEJ benchmark [87]) In Chapter 1 we have touched on the uncertain res-
onant modes in the high-frequency band in hard disk drives (HDD). In general, the physical
model is obtained as

P̃ (s) =
Kp

s2 +
A1

s2 + 2ζ1ω1s + ω2
1

+
A2

s2 + 2ζ2ω2s + ω2
2

+ · · · (11.2)

via finite element method and modal analysis. The problem lies in that the parameters of
high-order resonant modes vary with manufacturing error, and hundreds of thousands of
HDDs have to be controlled by the same controller in order to lower the price of products.
So, the control design is carried out based on the rigid body model P (s) = Kp/s2.

In the IEEJ (Institute of Electrical Engineers of Japan) benchmark, the parameters are as
listed in Table 11.1. In this table, the numbers within the parentheses indicate the relative
variation, and the angular frequency is ωi = 2πfi. The typical frequency response of HDD
and that of the nominal model are illustrated in Figure 11.1(b).

As shown by these examples, the mathematical model of a plant inevitably contains some
uncertain parts. Even so, we still hope to design a control system, which can operate normally

Table 11.1 Parameters of HDD benchmark

i fi (Hz) ζi Ai

1 4 100 (±15%) 0.02 −1.0

2 8 200 (±15%) 0.02 1.0

3 12 300 (±10%) 0.02 −1.0

4 16 400 (±10%) 0.02 1.0

5 3 000 (±5%) 0.005 0.01 (−200% ∼ 0%)

6 5 000 (±5%) 0.001 0.03 (−200% ∼ 0%)

Kp 3.744 × 109
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Figure 11.1 Hard disk drive and its frequency response (a) Photo, (b) Bode plot
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Model Uncertainty 247

and has a high performance, based on a model with uncertainty. The mission of robust control
theory is to develop such an effective control design method for systems with uncertainty.

11.1.1 Principle of Robust Control

Since a real physical system cannot be modeled accurately, it is impossible to describe a real
system using a single transfer function. Instead, we can determine a model which is used
for design and then evaluate the difference between the real system and the model, that is, the
uncertainty range. In this way, we can obtain a set of systems that includes the real system. The
model selected for design is called the nominal plant. If the stability and control performance
are guaranteed for the plant set in the control design, these properties carry over to the real
system. This is the basic philosophy of robust control.

In other words, the achievable performance will be significantly limited by the worst-case
uncertainty because we need to maintain the same level of performance for all plants in the
set. Here, important are the description method of plant set and the modeling of uncertainty
bounds. These two issues will be discussed, respectively, in the succeeding sections.

11.1.2 Category of Model Uncertainty

The model uncertainty can be roughly classified into parameter uncertainty and dynamic uncer-
tainty.

11.1.2.1 Parameter Uncertainty

As shown in Examples 1.2 and 11.1, in this kind of uncertain systems, the model structure is
known but the parameters are uncertain. The influence of parameter uncertainty on the trans-
mission of signals mainly appears in the low- and middle-frequency bands.

11.1.2.2 Dynamic Uncertainty

This kind of model uncertainty can further be classified as

• Unmodeled high-frequency resonant modes, as shown in Figure 11.2
• Dynamics ignored deliberately for the simplification of system analysis and design, partic-

ularly the high-frequency dynamics

Remark 11.1 Let us examine carefully the model uncertainty brought by system identification.
A typical identification method for linear systems is to apply sinusoidal input to the system and
then measure the steady-state response of the output. For unit sinusoidal input with a frequency
ω, the steady-state response is still a sinusoid with the same frequency. Its amplitude K(ω)
and phase angle φ(ω) are

K(ω) = |G(jω)|, φ(ω) = arg G(jω). (11.3)
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248 Robust Control

That is, they are closely related with the frequency response of the transfer function. Changing
the input frequency, the frequency response at a different frequency can be measured. Repeat-
ing this process, a set of gain–phase data can be obtained (Figure 11.2). Then, a transfer
function is identified by finding a rational function whose frequency response matches the mea-
sured data. However, in reality vibration causes mechanical attrition, so the input frequency
cannot be too high. That is, it is impossible to get the frequency response in the high-frequency
band. Hence, model uncertainty in the high-frequency band is inevitable.

11.2 Plant Set with Dynamic Uncertainty

The uncertainties of plants may take various forms. But in order to establish an effective the-
ory for analysis and design, the form of plant set description must be limited. It is especially
important to ensure that the uncertainty description can be widely applied.

Dynamic uncertainty stands for the model uncertainty where the degrees of the real system
and the nominal model are different. Its influence mainly appears in the high-frequency band.
There are three major methods to characterize a dynamic uncertainty: using the range of its gain
variation, using the range of its phase variation, and using both. The first method is introduced
in this section, while the rest will be introduced in other chapters.

11.2.1 Concrete Descriptions

Historically, dynamic uncertainty is the first one studied and there are many ways to describe
a plant set with dynamic uncertainty. Among them, the simplest way is to take the difference
between the nominal plant P and the real system P̃ as uncertainty Δ, namely,

Δ(s) = P̃ (s) − P (s). (11.4)

To achieve a high performance, the key in feedback control design is how to make use of
information about the uncertainty as more as possible. This information can only be described
as the boundary of the uncertainty set. So, the next question is how to set up a bounding model
for the uncertainty Δ. Obviously, the gain of Δ is a useful information. Let us look at the Bode

(ω)

Κ(ω)

ω

x

x
x

x x x x
x

x
x

x

Figure 11.2 Identified frequency response with uncertainty in high frequency
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plot of hard disk drive (Figure 11.1(b)) in Example 11.2. There is a significant discrepancy
between the nominal plant and real system only in the frequency band of 104–105 rad/s. If
this property is not reflected and the size of uncertainty is expressed simply as a constant,
then the range of uncertainty is enlarged because this is equal to assuming that gain change
of the uncertainty is the same over the whole frequency domain. The consequence is that the
controller gain in low frequency has to be lowered so that high-performance control cannot be
expected. Therefore, for dynamic uncertainty its gain bound must be described by a function
of frequency.

Concretely, we carry out identification experiments under different conditions to get a num-
ber of models Pi(jω) (i = 1, 2, · · · ). Then, by calculating the gains of all Pi(jω) − P (jω)
and drawing curves, we can find a bounding function W (s) satisfying

|Δi(jω)| = |Pi(jω) − P (jω)| ≤ |W (jω)| ∀ω, i. (11.5)

This function is called the weighting function. For the sake of design, W (s) is usually chosen
as a low-order stable rational function. Further, assuming that the set with bound W (s) is filled
with uncertainty Δ (note that this assumption is conservative), the uncertainty can be expressed
as

Δ(s) = W (s)δ(s), |δ(jω)| ≤ 1 ∀ω (11.6)

in which δ(s) is the normalized uncertainty. As such, we have obtained a plant set:

{P̃ (s) | P̃ = P + Wδ, ‖δ‖∞ ≤ 1}. (11.7)

It is natural to assume that the real plant is contained in this set.
In the sequel, we summarize the commonly used descriptions of plant set.

11.2.1.1 Plant Set with Multiplicative Uncertainty

P̃ (s) = (1 + ΔW )P, ‖Δ‖∞ ≤ 1 (11.8)

Here, P (s) is the nominal plant, Δ(s) is the normalized uncertainty, and W (s) is the
weighting function that bounds the uncertainty set. The block diagram of this set is shown in
Figure 11.3.

P

Δ

+

+

W

Figure 11.3 Plant set with multiplicative uncertainty
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ΔW

+

+
P

Figure 11.4 Plant set with additive uncertainty

11.2.1.2 Plant Set with Additive Uncertainty

P̃ (s) = P + ΔW, ‖Δ‖∞ ≤ 1. (11.9)

Figure 11.4 gives its block diagram.

11.2.1.3 Plant Set with Feedback Uncertainty

There are two forms of feedback uncertainty: type I and type II, which are described,
respectively, as

P̃ (s) =
P

1 + ΔWP
, ‖Δ‖∞ ≤ 1, (11.10)

P̃ (s) =
P

1 + ΔW
, ‖Δ‖∞ ≤ 1. (11.11)

Their block diagrams are shown in Figures 11.5 and 11.6.
In these plant sets, the size of uncertainty is measured by the H∞ norm. So it is called as

norm-bounded uncertainty. In applications, we should select a plant set description that best
incorporates all known information about the real plant.

Example 11.3 As an example, we model the high-frequency resonant modes of the hard disk
drive in Example 11.2 as a multiplicative uncertainty. The modeling process is as follows:

P
−

+

Δ W

Figure 11.5 Plant set with type I feedback uncertainty

P
−

+

Δ W

Figure 11.6 Plant set with type II feedback uncertainty
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Figure 11.7 Uncertainty modeling of a hard disk drive

1. Firstly, draw the relative error |1 − P̃ (jω)
P (jω) | between the real plant P̃ (s) and the nominal

plant P (s) in a Bode plot (Figure 11.7).
2. Apparently, the amplitude of relative error varies a lot at different frequencies. In

this example, the model uncertainty mainly exists at high frequency. This property
must be described by a frequency-dependent weighting function. That is, determine a
minimum-phase weighting function such that the gain of its frequency response covers the
relative errors. An example is the high-pass transfer function shown by the solid line in
Figure 11.7.

3. In the end, the real plant P̃ (s) is contained in the plant set:

P̃ (s) = P (1 + ΔW ), P (s) =
Kp

s2 , ‖Δ‖∞ ≤ 1.

Here, for the sake of design and implementation, low-order weighting function should be
adopted. Further, to determine a weighting function W (s), we may use an asymptote to deter-
mine roughly a transfer function. Then, the weighting function is obtained through a fine tuning
of its coefficients.

In the case where no information is known on the structure of uncertainty, it is reasonable
to use the description of additive or multiplicative uncertainty.

As seen from Figure 11.7, although the region below W (s) (solid line) is treated as the
uncertainty region, the real uncertainty comprises only a small part of it. In this sense, the
foregoing plant set contains a lot of uncertainties that do not exist in reality. This inevitably
enlarges the plant set and brings conservatism into robustness condition. The payoff is that the
description of uncertainty is quite simple and suitable for analysis and design.

In a word, the range of true uncertainty will be enlarged more or less whatever description
of plant set is used. To restrain the expansion of uncertainty range, the key is to use a weighting
function that is as close to the true uncertainty as possible.

11.2.2 Modeling of Uncertainty Bound

In the frequency band where the uncertainty gain is big, precise control cannot be expected
in principle. Therefore, in the modeling of uncertainty bound (weighting function), we should
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keep the gain of weighting function not far away from the upper bound of the uncertainty,
at least in the low- and middle-frequency bands which have a strong impact on the control
performance. This is because if the system model is more accurate in the control bandwidth,
a better control performance may be achieved in the design.

In the sequel, we discuss the modeling method for the uncertainty bound according to the
type of uncertainty.

11.2.2.1 System Identification Case

Calculate the difference between the frequency responses of true plant P̃ (jω) and the nominal
model P (jω) on a Bode plot and then find a weighting function W (s) which covers |P̃ (jω) −
P (jω)|. An example is shown in Figure 11.8 where the solid line is |P̃ (jω) − P (jω)| and the
dashed line is |W (jω)|.

11.2.2.2 Model Reduction Case

This is the case where a high-order plant P̃ (s) (including time delay) is approximated by a
low-order model P (s). A weighting function W (s) is determined on a Bode plot that satisfies

|P̃ (jω) − P (jω)| < |W (jω)| (additive uncertainty)

or
∣
∣
∣
∣
∣
1 − P̃ (jω)

P (jω)

∣
∣
∣
∣
∣
< |W (jω)| ( multiplicative uncertainty).

Concretely speaking, we draw the curve of the left-hand side of the inequality and then find a
rational transfer function W (s) that covers this curve. This is how we determined the bound
of multiplicative uncertainty in Example 11.3.

10–2 10–1 100 101 102 103 104
–200

–150

–100

–50

0

50

Frequency (rad/s)

G
ai

n 
(d

B
)

Figure 11.8 Weighting function of uncertainty
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Figure 11.9 Dynamic uncertainty versus parameter uncertainty

11.3 Parametric System

The frequency response of a dynamic uncertainty forms a disk in the complex plane, as shown
in Figure 11.9. Meanwhile, a parameter uncertainty is real, and its range is far less than the
disk since it is simply the thick line segment contained in the disk. Therefore, for parameter
uncertainty if a norm-bounded model is used, the range of plant set will be enlarged greatly
and no meaningful result can be expected. So, in this section we discuss how to reasonably
describe a plant set with parameter uncertainty. Such a plant set is named as a parametric
system.

Example 11.4 Consider the mass-spring-damper system shown in Figure 11.10(a). One end
of the spring and damper is fixed on the wall. m is the mass, b the viscous friction coefficient of
the damper, and k the spring constant. y(t) is the displacement of mass m and u(t) the external
force. The state equation of this system is shown in Eq. (11.12) where the performance output
is the displacement y:

ẋ =

[
0 1

− k

m
− b

m

]

x +

[
0
1
m

]

u, x =
[
y
ẏ

]

. (11.12)

u

b

k

y

m

(a) m

b

k

0

(b)

Figure 11.10 mass-spring-damper system (a) System configuration, (b) Parameter space
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The uncertain parameters (m, b, k) take their values in the following ranges:

m1 ≤ m ≤ m2, b1 ≤ b ≤ b2, k1 ≤ k ≤ k2. (11.13)

Putting these parameters into a vector, [m b k] forms a hexahedron with eight vertices in
the three-dimensional space (Figure 11.10(b)).

In this system, if each uncertain parameter is treated as a norm-bounded uncertainty,
the uncertainty range would be enlarged significantly. Such a model is too conservative
and impractical. So, we need to develop a new and more reasonable model for parameter
uncertainty.

Example 11.5 Linear motor is a motor which uses Lorentz force to offer a straight drive.
Its principle is as follows: place many pairs of magnets with the same polarity in the order
of S,N , respectively, on two parallel rails, and then change the polarity of electromagnetic
windings installed in the bottom of the stage in an order of S → N → S → N periodically so
as to generate a Lorentz force to drive the stage straightforward. The change of polarity of the
electromagnetic windings is done by a servo amplifier. The input is the speed command and
the performance output is the displacement of the stage. Usually, the dynamics of this system
is designed as

P (s) =
K

s(Ts + 1)
=

K/T

s(s + 1/T )
. (11.14)

When the displacement and speed of the stage are taken as the states, the state equation
becomes

ẋ =

[
0 1

0 − 1
T

]

x +

[
0
K

T

]

u. (11.15)

However, the linear motor has nonlinearities such as magnetic flux leakage, magnet satura-
tion, and nonlinear friction with rails. So it cannot be described accurately by a linear model.
Here, we regard the effect of these nonlinearities as the uncertainties of time constant T and
gain K. For example, by doing numerous experiments w.r.t. different speed commands, we can
obtain many pairs of time constant and gain. An example is shown in Figure 11.11.

Since the relationship between the time constant and the gain is not clear, a smart way
is to enclose the experimental data using a minimum rectangle. That is, assuming that the
parameters vary at random in the range of

T1 ≤ T ≤ T2, K1 ≤ K ≤ K2.

(Refer to Figure 11.11(a)) However, a closer observation reveals that the measured data may
be enclosed tightly with a polygon as shown in Figure 11.11(b). This polygon is just a portion
of the rectangle in Figure 11.11(a).
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Figure 11.11 Measured parameters of linear motor (a) Rectangle approximation, (b) Tighter polytopic
approximation

11.3.1 Polytopic Set of Parameter Vectors

How should we describe the uncertain parameter vector [m b k] inside the cubic in
Example 11.4? In order to search for a suitable method, let us examine the one parameter case.

Consider the case where the mass m takes values in an interval [m1,m2]. Note that m1 and
m2, the two ends of the interval, are known. The question is how to use these vertices to express
an arbitrary point in the interval. The simplest way is to take a vertex as a starting point and
then add the variation relative to this starting point. This variation can be expressed as product
of the interval length and a new variable λ ∈ [0, 1] which represents the variation rate. So, any
m ∈ [m1,m2] can be written as

m = m2 − λ(m2 − m1) = λm1 + (1 − λ)m2.

The sum of the two coefficients in this equation is 1. Setting α1 = λ, α2 = 1 − λ, this equation
can be written in a more compact form:

m = α1m1 + α2m2, α1 + α2 = 1, αi ≥ 0. (11.16)

In fact, this equation expresses a convex combination of the vertices m1,m2.
Next, when two parameters (m, b) change simultaneously, both m ∈ [m1,m2] and

b ∈ [b1, b2] can be expressed as

m = α1m1 + α2m2, α1 + α2 = 1, αi ≥ 0

b = β1b1 + β2b2, β1 + β2 = 1, βi ≥ 0,

respectively. As shown in Figure 11.12(a), the range of the vector [m b]T is a rectangle with
four vertices. Each vertex is named, respectively, as

θ1 =
[
m1
b1

]

, θ2 =
[
m1
b2

]

, θ3 =
[
m2
b1

]

, θ4 =
[
m2
b2

]

. (11.17)
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Figure 11.12 Polytope of parameter uncertainty (a) Two uncertain parameters, (b) Three uncertain
parameters

Then we try to use these vertices to describe an arbitrary point θ = [m b] in the rectangle.
Simple calculation shows that θ can be written as

θ =
[
m
b

]

=
[
(β1 + β2)(α1m1 + α2m2)
(α1 + α2)(β1b1 + β2b2)

]

= α1β1

[
m1
b1

]

+ α1β2

[
m1
b2

]

+ α2β1

[
m2
b1

]

+ α2β2

[
m2
b2

]

.

Renaming the coefficient of each vertex, we get the relation that

λ1 = α1β1, λ2 = α1β2, λ3 = α2β1, λ4 = α2β2 ⇒ λi ≥ 0

λ1 + λ2 + λ3 + λ4 = α1(β1 + β2) + α2(β1 + β2) = α1 + α2 = 1.

That is, a vector θ in a rectangle can always be described as a convex combination of the four
vertices:

θ = λ1θ1 + λ2θ2 + λ3θ3 + λ4θ4. (11.18)

Finally, let us look at the case of three uncertain parameters. In this case, the parameter
vector set forms a hexahedron with eight vertices (refer to Figure 11.12(b)). Similar to the two
parameters case, after appropriate transformation the parameter vector can be expressed as a
convex combination of all vertices:

⎡

⎣
m
b
k

⎤

⎦ = λ1

⎡

⎣
m1
b1
k1

⎤

⎦ + λ2

⎡

⎣
m1
b1
k2

⎤

⎦ + λ3

⎡

⎣
m1
b2
k1

⎤

⎦ + λ4

⎡

⎣
m1
b2
k2

⎤

⎦

+ λ5

⎡

⎣
m2
b1
k1

⎤

⎦ + λ6

⎡

⎣
m2
b1
k2

⎤

⎦ + λ7

⎡

⎣
m2
b2
k1

⎤

⎦ + λ8

⎡

⎣
m2
b2
k2

⎤

⎦ (11.19)

where λi ≥ 0 for all i and
∑8

i=1 λi = 1. Through these examinations, we conclude that a point
in a polytope can always be expressed as a convex combination of all vertices. This conclusion
applies to parameter vectors with any dimension.

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

Model Uncertainty 257

11.3.2 Matrix Polytope and Polytopic System

In practical system models, it is rare that all the parameters appear completely in linear form.
For example, in the mass–spring–damper system

ẋ =

[
0 1

− k

m
− b

m

]

x +

[
0
1
m

]

u, (11.20)

parameters appear in forms of product, ratio, and reciprocal. The question now is whether
the coefficient matrix can be expressed as a convex combination of the matrices obtained via
substitution of vector vertices into the matrix1?

Note that the mass m in the coefficient matrices appears only as a reciprocal 1/m, which
can be expressed as a convex combination of vertices as shown in the equation:

1
m

= α1
1

m1
+ α2

1
m2

, α1 + α2 = 1, αi ≥ 0.

Substitution of this equation yields

[
0 1

− k

m
− b

m

]

= α1

⎡

⎣
0 1

− k

m1
− b

m1

⎤

⎦ + α2

⎡

⎣
0 1

− k

m2
− b

m2

⎤

⎦

[
0
1
m

]

= α1

⎡

⎣
0
1

m1

⎤

⎦ + α2

⎡

⎣
0
1

m2

⎤

⎦

since α1 + α2 = 1. A matrix set formed in this way is called a matrix polytope.
Another question is if the parameter product b × 1

m still can be expressed as a convex com-
bination of vertices when m, b both are uncertain. From the following transformation, we know
that a parameter product can still be expressed as a convex combination of products of vertices

b

m
= (α1

1
m1

+ α2
1

m2
)(β1b1 + β2b2)

= α1β1
b1

m1
+ α1β2

b2

m1
+ α2β1

b1

m2
+ α2β2

b2

m2

= λ1
b1

m1
+ λ2

b2

m1
+ λ3

b1

m2
+ λ4

b2

m2

in which λ1 + λ2 + λ3 + λ4 = 1, λi ≥ 0. So, the matrices can be described as matrix poly-
topes:

A(m, b) = λ1A(b1,m1) + λ2A(b2,m1) + λ3A(b1,m2) + λ4A(b2,m2)

B(m) = λ1B(m1) + λ2B(m1) + λ3B(m2) + λ4B(m2).

The same is true for the parameter product k × 1
m .

1 Such a matrix will be called a vertex matrix.
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From these discussions we conclude that a product of different parameters can always be
expressed as a convex combination of products of vertices. Now, can a power of a parameter,
such as the square, still be expressed as a convex combination of its vertices? Let us look at
the square of the mass:

m2 = (α1m1 + α2m2)
2 = α2

1m
2
1 + 2α1α2m1m2 + α2

2m
2
2.

The cross product m1m2 appears in this square expansion. Apparently, m2 cannot be described
only by m2

1 and m2
2. This shows that a power of parameter over two is not equal to the convex

combination of the vertices’ power. Fortunately, the situation of parameter power is rare in
real systems. This can be confirmed by the forgoing examples. However, in the design of
robust control systems, this power problem will be a bottleneck. Details will be given in the
forthcoming chapters.

In summary, if θ belongs to a polytope and its power higher than 2 does not exist in the
system realization, then a system with uncertain parameter vector θ can be described by the
model

ẋ = A(θ)x + B(θ)u (11.21)

y = C(θ)x (11.22)

in which each coefficient matrix is a matrix polytope:

A(θ) =
N∑

i=1

λiA(θi), B(θ) =
N∑

i=1

λiB(θi), C(θ) =
N∑

i=1

λiC(θi) (11.23)

λi ≥ 0,

N∑

i=1

λi = 1.

Here, θi is a known vertex of parameter vector. This sort of uncertain systems is called poly-
topic systems.

11.3.3 Norm-Bounded Parametric System

For the analysis of parametric systems, the polytopic model is a very useful model. Unfortu-
nately, no satisfactory method has been found for the control design of polytopic systems up
to now. Basically we do not know how to do the design except for some special problems such
as the gain-scheduled control of Chapter 20. Therefore, in this section we will discuss other
parametric models that are suitable for control design.

Recall the mass–spring–damper system:

ẋ =

[
0 1

− k

m
− b

m

]

x +

[
0
1
m

]

u.

Note that a feature of the coefficient matrices is that all uncertain parameters are in the second
row. This makes it possible for us to put the uncertain parameters into a matrix and treat them as
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a matrix uncertainty. Set the nominal parameters as (m0, k0, b0); the parameters can be written
as

k

m
=

k0

m0
(1 + w1δ1),

b

m
=

b0

m0
(1 + w2δ2),

1
m

=
1

m0
(1 + w3δ3), |δi| ≤ 1.

Due to

[
0 1

− k

m
− b

m

]

=

⎡

⎣
0 1

− k0

m0
− b0

m0

⎤

⎦ +

⎡

⎣
0 0

− k0

m0
w1δ1 − b0

m0
w2δ2

⎤

⎦

=

⎡

⎣
0 1

− k0

m0
− b0

m0

⎤

⎦ +
[

0
−1

]

[δ1 δ2 δ3]

⎡

⎢
⎢
⎢
⎣

k0

m0
w1 0

0
b0

m0
w2

0 0

⎤

⎥
⎥
⎥
⎦

[
0
1
m

]

=

⎡

⎣
0
1

m0

⎤

⎦ +
[
0
1

]

[δ1 δ2 δ3]

⎡

⎢
⎣

0
0

1
m0

w3

⎤

⎥
⎦ ,

the state equation can be rewritten as

ẋ = (A + B1ΔC1)x + (B2 + B1ΔD12)u

where Δ = [δ1 δ2 δ3] and

A =

⎡

⎣
0 1

− k0

m0
− b0

m0

⎤

⎦ , B1 =
[
0
1

]

, B2 =

⎡

⎣
0
1

m0

⎤

⎦

C1 = −

⎡

⎢
⎢
⎢
⎣

k0

m0
w1 0

0
b0

m0
w2

0 0

⎤

⎥
⎥
⎥
⎦

, D12 =

⎡

⎢
⎣

0
0

1
m0

w3

⎤

⎥
⎦ .

Naturally, the size of uncertainty vector Δ should be measured by vector norm. So, this system
is called a norm-bounded parametric system.

However, a deeper thinking reveals that the present model has a defect. This defect lies
in that, since there are products of parameters in the state equation, there exists a danger of
enlarging the uncertainty range when these products are treated as independent parameters.
For simplicity, let us look at the coefficients k

m and 1
m related to parameters (m, k). Suppose

that (m, k) take values in the following ranges, respectively:

km ≤ k ≤ kM, mm ≤ m ≤ mM. (11.24)

The range of parameters is illustrated by the shaded square in Figure 11.13. But in state
equation it is necessary to treat α = k

m and 1
m as uncertain parameters. Then, apparently the
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kkMkm

m

mM

mm

kM

mm

km

mM

Figure 11.13 Parameter space of k and m

range of α is

km

mM
≤ α ≤ kM

mm
. (11.25)

When this range is converted back into the parameter space (k,m), from kmm/kM ≤ m =
k/α ≤ kmM/km it is known that the corresponding range is the area surrounded by the four
thick lines in Figure 11.13, which is obviously bigger than the real range of physical parame-
ters. This happens because the physical parameters are not treated independently.

However, when we multiply the second row of the state equation by m, the equation becomes
[
1 0
0 m

]

ẋ =
[

0 1
−k −b

]

x +
[
0
1

]

u

in which each parameter appears independently. This model is called a descriptor form. Let
each parameter take value in

m = m0(1 + w1δ1), k = k0(1 + w2δ2), b = b0(1 + w3δ3), |δi| ≤ 1.

Dividing the second row of the state equation by m0, we get

(I + B1ΔC1)ẋ = (A + B1ΔC2)x + B2u

⇔ ẋ = (I + B1ΔC1)
−1(A + B1ΔC2)x + (I + B1ΔC1)

−1B2u

where Δ = [δ1 δ2 δ3] and the constant matrices are

A =

⎡

⎣
0 1

− k0

m0
− b0

m0

⎤

⎦ , B1 =
[
0
1

]

, B2 =

⎡

⎣
0
1

m0

⎤

⎦

C1 =

⎡

⎣
0 w1
0 0
0 0

⎤

⎦ , C2 = −

⎡

⎢
⎢
⎢
⎣

0 0
k0

m0
w2 0

0
b0

m0
w3

⎤

⎥
⎥
⎥
⎦

.
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Each coefficient matrix of this state equation is obviously a linear fractional transformation
(LFT) of the uncertainty matrix Δ. In order to find the coefficient matrices of this LFT, we set
v = C1ẋ, z = −v + C2x, and w = Δz. Then,

ẋ = Ax + B1w + B2u

holds so that v = C1Ax + C1B1w + C1B2u. Substitution of this v into z leads to

z = (C2 − C1A)x − C1B1w − C1B2u.

Finally, we discuss the norm of matrix uncertainty Δ and its relationship with the parameter
uncertainty range. For simplicity, let us just consider the case of two-parameter uncertain-
ties (δ1, δ2). This uncertainty vector forms a square with the origin as the center. Meanwhile,
two-dimensional vectors with a bounded two-norm form a disk. So, when a parameter uncer-
tainty vector is treated as a norm-bounded uncertainty, in order not to enlarge the uncertainty
range too much, the minimum disk containing the square shown in Figure 11.14 should be
selected, whose radius is obviously

√
12 + 12 =

√
2.

In this example, the uncertainty matrix is a three-dimensional vector, so its norm bound
equals

√
3. In system analysis and design, uncertainty norm is usually normalized to 1. This

is done by absorbing
√

3 into the signal z.
In summary, a general model for norm-bounded parametric systems is

G

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = Ax + B1w + B2d + B3u
z = C1x + D11w + D12d + D13u
e = C2x + D21w + D22d + D23u
y = C3x + D31w + D32d

(11.26)

w = Δz, ‖Δ‖2 ≤ 1. (11.27)

Here, newly included are a disturbance d and a performance output e used for control per-
formance optimization, as well as a measured output y. The block diagram of this uncertain
system is Figure 11.15.

The parameter uncertainty in this model can even be extended to a time-varying parameter
matrix, namely,

Δ(t) ∈ R
p×q, ‖Δ(t)‖2 ≤ 1 ∀t ≥ 0. (11.28)

δ2

δ1

Figure 11.14 Range of parameter uncertainty: square vs disk
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Δ

G(s)

wz

d

u

e

y

Figure 11.15 General form of norm-bounded parametric system

It should be noted that not all uncertain parameters in a parametric system can be collected
into a vector like this example. For instance, in the two-mass–spring system in Example 1.2,
when the load inertia moment JL and the spring constant k are uncertain, we can only put
them into a diagonal matrix:

Δ =
[
δ1

δ2

]

.

The detail is given in the next section.

11.3.4 Separation of Parameter Uncertainties

Let us reexamine the two-mass–spring system in Example 1.2. For simplicity, assume that
the motor’s inertia moment is 1 and all damping coefficients are 0. Then, its descriptor form
becomes

⎡

⎣
JL

1
1

⎤

⎦ ẋ =

⎡

⎣
0 k 0

−1 0 1
0 −k 0

⎤

⎦ x +

⎡

⎣
1
0
0

⎤

⎦ d +

⎡

⎣
0
0
1

⎤

⎦u (11.29)

and each parameter appears independently. As is clear from the coefficient matrices, the uncer-
tain parameters are no longer in the same row or column, and they cannot be put into a vector.

The situation shown in this example applies to almost all mechanical systems. Therefore,
next we consider an uncertain system with r uncertain parameters δ1, · · · , δr:

(

E +
r∑

i=1

δiEi

)

ẋ =

(

A +
r∑

i=1

δiAi

)

x +

(

B +
r∑

i=1

δiBi

)

u + Hd

e = Mx + Nd + Vu (11.30)

y = Cx + Qd .

Here, x ∈ R
n is the state, u ∈ R

nu the input, y ∈ R
ny the performance output, e ∈ R

ne the
performance output, and d ∈ R

nd the disturbance. nu denotes the dimension of input u; the
rest of the subscripts have similar meanings. Each coefficient matrix is a constant matrix with
appropriate dimension. Finally, E is assumed nonsingular, that is, the degree of system is
not affected by the change of parameters. Let us figure out how to pull out all parameters
independently.

First, carry out a matrix factorization:

E−1[Ei Ai Bi] = Li[Ri Wi Zi], i = 1, · · · , r. (11.31)
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Let the rank of the matrix on the left be qi. In the factorization, we should ensure that the
matrix Li has full column rank and [Ri Wi Zi] has full row rank. That is, to factorize a
non-full rank matrix into the product of two full rank matrices. Such factorization is called the
maximum rank factorization and its solution is not unique.

Next, we define the following matrices:

L = [L1, · · · , Lr], R =

⎡

⎢
⎣

R1
...

Rr

⎤

⎥
⎦ , W =

⎡

⎢
⎣

W1
...

Wr

⎤

⎥
⎦ , Z =

⎡

⎢
⎣

Z1
...

Zr

⎤

⎥
⎦ . (11.32)

Then, the uncertain parameters can be separated independently as shown in the following
lemma. Refer to Ref. [40] for the proof.

Lemma 11.1 The uncertain system in (11.30) can be transformed into the system in
Figure 11.15 [

e
y

]

= Fu(G,Δ)
[
d
u

]

in which Δ is a diagonal matrix Δ = diag(δ1Iq1
, · · · , δrIqr

) and

G =

⎡

⎢
⎢
⎢
⎣

Â L Ĥ B̂

W − RÂ −RL −RĤ Z − RB̂
M 0 N V
C 0 Q 0

⎤

⎥
⎥
⎥
⎦

Â = E−1A, B̂ = E−1B, Ĥ = E−1H.

Example 11.6 In the two-mass–spring example, assume that JL = J0 + δ1ΔJ , k = k0 +
δ2Δk. Then

E = diag(J0, 1, 1), E1 = diag(ΔJ , 0, 0), E2 = 0

A =

⎡

⎣
0 k0 0
−1 0 1
0 −k0 0

⎤

⎦ , A1 = 0, A2 =

⎡

⎣
0 Δk 0
0 0 0
0 −Δk 0

⎤

⎦

B = [0 0 1]T , B1 = 0, B2 = 0.

It is easy to see that the matrix ranks in (11.31) are q1 = q2 = 1 so that the parameter uncer-
tainties are collected into a diagonal matrix Δ = diag(δ1, δ2). An example of maximum rank
factorization is given by

L =

⎡

⎢
⎣

√
ΔJ

J0

√
Δk

J0

0 0
0 −

√
Δk

⎤

⎥
⎦ , R =

[√
ΔJ

J0
0 0

0 0 0

]

W =
[
0 0 0
0

√
Δk 0

]

, Z =
[
0
0

]

.
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11.4 Plant Set with Phase Information of Uncertainty

In practical systems static nonlinearity such as friction, dead zone, and saturation of actuator
may be found everywhere, which usually cannot be modeled accurately. In dealing with such
uncertainty, it is possible to achieve a high-performance robust control design if we can find
some way to abstract its characteristics. Further, in flexible structures with high-order resonant
modes, the resonant modes contain not only gain information but also phase information. In
the sequel, we study the properties of such uncertainties through examples and discuss what
kind of model can describe their properties.

The first example is the saturation function φ(·) shown in Figure 11.16(a). φ(·) can be
enclosed by two lines with slopes of k and 0 as shown in the figure and can be described
by a piecewise inequality as

0 ≤ φ(u) ≤ ku ∀u ≥ 0; −ku ≤ φ(u) ≤ 0 ∀u < 0. (11.33)

This piecewise inequality can be summarized simply as

0 ≤ uφ(u) ≤ ku2 ∀u. (11.34)

The relationship between the magnetic flux and current in an electromagnet is exactly such a
saturation. A more important character is that φ(·) is located in the first and the third quadrants,
namely, its slope changes between 0 and k. This shows that the phase angle of φ(·) is zero,
while its gain changes in the interval [0, k]. Particularly useful is the information on the phase
angle.

If we need only consider inputs in a finite range, then the two lines surrounding the saturation
φ(·) can be ku and hu as shown in the figure. In this way, the range of saturation can be
described more tightly. Then, the bound of saturation turns into

hu2 ≤ uφ(u) ≤ ku2 ∀u. (11.35)

In addition, the so-called Stribeck friction shown in Figure 11.16(b) also has a similar char-
acter, only the range of gain changes to [k,∞].

u

φ(u)
ku

hu

0

(a)

u

fr(u)

0

ku

(b)

Figure 11.16 Examples of passive nonlinearity (a) Saturation, (b) Stribeck friction
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Next, we discuss the character of a flexible space structure2: high-order resonant modes.
The model of high-rise buildings also has the same property. When the input is a torque and
the output is an angular velocity, the model is

P (s) =
k0s

s2 + 2ζ0ω0s + ω2
0

+
k1s

s2 + 2ζ1ω1s + ω2
1

+ · · · +
kns

s2 + 2ζnωns + ω2
n

(11.36)

in which all gains ki are positive (this kind of transfer function is called in-phase). The
first-order resonant mode k0s

s2+2ζ0ω0s+ω2
0

can be identified accurately, but the second- and
higher order resonant modes can hardly be identified correctly. Here, we treat the sum of
these high-order resonant modes as a dynamic uncertainty. Although this uncertainty can
be characterized by its gain information, we hope to find a model that is more suitable in
describing its characteristic. To this end, let us analyze one of the resonant modes:

s

s2 + 2ζiωis + ω2
i

.

Its frequency response is

jω

ω2
i − ω2 + j2ζiωiω

=
2ζiωiω

2 + jω(ω2
i − ω2)

(ω2
i − ω2)2 + (2ζiωiω)2 .

The real part is nonnegative when ζi > 0 and 0 when ζi = 0. This implies that the phase angle
takes its value between −π/2 rad and π/2 rad (the Nyquist diagram of such a transfer func-
tion is shown in Figure 11.17), which is exactly the characteristic of positive-real function.
Therefore, the sum of high-order resonant modes

k1s

s2 + 2ζ1ω1s + ω2
1

+ · · · +
kns

s2 + 2ζnωns + ω2
n

also has the same property. That is, the sum of high-order resonant modes is still positive-real
which is an important character of flexible structures.

−1 0 1 2 3 4 5

−2

−1

0

1

2

Figure 11.17 Nyquist diagram of a positive-real transfer function

2 The most typical example is the solar battery panel used to supply power for satellite or space stations.
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mg

f

Figure 11.18 Lunar module

11.5 LPV Model and Nonlinear Systems

11.5.1 LPV Model

Consider a lunar module shown in Figure 11.18 which is used in the soft landing on the moon.
m is the mass of the module including the fuel, and the thrust is f = kṁ. Set the control input
as u = ṁ and the height of the module as y, and let g be the gravity constant on the moon
surface. The state equation about state vector x = [y ẏ m]T is given by

ẋ1 = x2, ẋ2 = −g +
k − x2

x3
u, ẋ3 = u. (11.37)

This model is derived according to Newton’s second law F = d(mẏ)/dt . Although the state
variable x3 = m decreases with the combustion of fuel, its range is less than the initial mass of
fuel and is known. Secondly, the range of speed x2 = ẏ may be estimated in advance. There-
fore, we can regard p(t) = k−x2

x3
as a time-varying parameter. Then, the nonlinear model can

be written as

ẋ =

⎡

⎣
0 1 0
0 0 0
0 0 0

⎤

⎦ x +

⎡

⎣
0
p
1

⎤

⎦ u +

⎡

⎣
0
−g
0

⎤

⎦ .

Though not a linear model, it is an affine model with a time-varying coefficient.
In general, when a nonlinear system works in a narrow range, a linear approximation is

good enough for the control design. But in global control, or when the operating range is
large, a linear approximation can no longer be trusted. Meanwhile, the need is very strong to
use techniques similar to linear control in the control of nonlinear systems. So there arises a
new challenge how to transform a nonlinear system to a quasilinear (viz., in a linear form)
system. One way is to treat nonlinear functions as time-varying coefficients like the previous
example. The LPV (linear parameter-varying) model to be illustrated below is the general form

ẋ = A(p(t))x + B(p(t))u (11.38)

y = C(p(t))x. (11.39)

Here, p(t) is a time-varying parameter vector and each matrix is an affine function of p(t).
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For example, in the case of two time-varying parameters p(t) = [p1(t) p2(t)], each coef-
ficient matrix can be written as

A(p(t)) = A0 + p1(t)A1 + p2(t)A2, B(p(t)) = B0 + p1(t)B1 + p2(t)B2

C(p(t)) = C0 + p1(t)C1 + p2(t)C2

where all matrices are known except the time-varying parameter vector p(t).

11.5.2 From Nonlinear System to LPV Model

Many nonlinear systems can be converted into LPV models by fully utilizing its dynamics.
Here, we use a single-machine infinite-bus power system, shown in Figure 11.19, as an example
to illustrate how to convert a nonlinear system into an LPV model. Infinite bus is a term in
power systems which means that the entire power system connected with the generator is
regarded as an ideal voltage source.

The nonlinear model of this power system is given by the following differential
equation [50, 66]:

δ̇ = ω − ω0 (11.40)

ω̇ =
ω0

M
PM − ω0

M
Pe −

D

M
(ω − ω0) (11.41)

Ė ′
q = − 1

T
′
d

E
′

q +
xd − x

′
d

Td0x
′
dΣ

Vs cos δ +
1

Td0
Vf . (11.42)

In this model, δ is the rotor angle, ω is the angular velocity of rotor, E
′
q is the q-axis transient

voltage, Vs is the bus voltage, and PM stands for the mechanical power from the turbine.
Further, the active power of generator equals the following nonlinear function of states:

Pe =
E

′
qVs

x
′
dΣ

sin δ − V 2
s

2
xd − x

′
d

x
′
dΣxdΣ

sin 2δ. (11.43)

The rest are known parameters. The control input is the excitation voltage Vf . Here, we
consider the transient stability problem related to short-circuit fault of the transmission line.
Short-circuit fault, especially a short-circuit fault occurring near the terminal of generator,

Generator
Transformer

Infinite
bus

Vs
Vt

LT
HT

Transmission line I

Transmission line II

F

Figure 11.19 Single-machine infinite-bus power system
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will make the active power drop instantly, thus causing a steep acceleration of the rotor
(see Eq.(11.41)). If no excitation control is activated quickly right after clearing the fault by
opening the short-circuit transmission line, the generator will lose synchronism. In the fault
phase, all states deviate from the equilibrium significantly so that the linear approximation
fails.

The equilibrium of power system is the state at which the mechanical power is equal to the
active power, which is set as (δ0, ω0, E

′
q0, Vf0). The goal of control is to restore the deviated

states to the equilibrium. So it is equivalent to the stabilization of error states given by

x1 = δ − δ0, x2 = ω − ω0, x3 = E
′

q − E
′

q0, u = Vf − Vf0.

The state equation about the error state x is given by

ẋ1 = x2

ẋ2 = d1 sin δ · x3 + d1E
′

q0(sin δ − sin δ0) + d2x2

ẋ3 = d3x3 + d4(cos δ − cos δ0) + d5x4. (11.44)

Next, we convert it into an LPV model. Focusing on the boundedness of (sin δ − sin δ0)/(δ −
δ0) and (cos δ − cos δ0)/(δ − δ0), we can transform the nonlinear functions in the state
equation into quasilinear functions with time-varying coefficients:

sin δ − sin δ0 =
sin δ − sin δ0

δ − δ0
x1, cos δ − cos δ0 =

cos δ − cos δ0

δ − δ0
x1. (11.45)

The following parameters are functions of the rotor angle δ:

p1(δ) =
sin δ − sin δ0

δ − δ0
, p2(δ) = sin δ, p3(δ) =

cos δ − cos δ0

δ − δ0
. (11.46)

In this way, the state equation has been converted into the LPV model of Eq. (11.47):

ẋ1 = x2

ẋ2 = d1p2(δ)x3 + d1E
′

q0p1(δ)x1 + d2x2

ẋ3 = d3x3 + d4p3(δ)x1 + d5x4. (11.47)

Note that as long as the rotor angle δ(t) is measured, the time-varying parameter vector p(t) =
[p1 p2 p3]

T can always be calculated online. Putting the LPV model (11.39) into a vector
form, we get

ẋ = A(p)x + Bu (11.48)

A(p) =

⎡

⎣
0 1 0

d1E
′
q0p1(δ) d2 d1p2(δ)

d4p3(δ) 0 d3

⎤

⎦ , B =

⎡

⎣
0
0
d5

⎤

⎦ .
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Moreover, the matrix A(p) can be written as the following affine form:

A(p) = A0 + p1A1 + p2A2 + p3A3 (11.49)

A1 =

⎡

⎣
0 0 0

d1E
′
q0 0 0
0 0 0

⎤

⎦ , A2 =

⎡

⎣
0 0 0
0 0 d1
0 0 0

⎤

⎦ , A3 =

⎡

⎣
d4 0 0
0 0 0
0 0 0

⎤

⎦ .

In converting a nonlinear system into an LPV model, we need to ensure that the
state-dependent time-varying parameters are bounded. Why? This is because robust control
design can only treat bounded parameters with sufficiently small uncertainty range. In this
sense, not all nonlinear systems can be converted into LPV models.

Another example is about the saturation φ(u) of an actuator (refer to Figure 11.16(a)). When
φ(u) is a smooth function, then it can be written as a linear function with time-varying coeffi-
cients. For example, in

φ(u) = arctan u =
arctan u

u
u = g(u)u,

the time-varying parameter g(u) = arctan u/u is bounded.

11.6 Robust Stability and Robust Performance

As aforementioned, the nominal plant P0 is just an approximation of the actual system P and
model uncertainty always exists in reality. However, mathematical models have to be used in
the design of control systems. In order to ensure that the designed controllers can achieve the
expected performance when implemented to the true system, we should guarantee the same
level of stability and control performance for all plants in a plant set which contains the true
system. See Figure 11.20 for an illustration.

In this book, we use the following terminologies.

Definition 11.1 Given a plant set P and a corresponding performance specification, let P ∈ P

be the nominal plant and K the controller. Then we say that

1. the closed-loop system is nominally stable if the controller K stabilizes the nominal
plant P ,

2. the closed-loop system is robustly stable if the controller K stabilizes all plants in the
set P,

Figure 11.20 Plant set P
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3. the closed-loop system achieves the nominal performance if the controller K satisfies the
performance specification for the nominal plant P ,

4. the closed-loop system achieves the robust performance if the controller K satisfies the
performance specification for all plants in the set P.

The ultimate goal of robust control is to realize high-quality robust performance!

Exercises

11.1 Consider the following flexible system3

P (s) = K

(
1
s2 +

A

s2 + 2ζ1ω1s + ω2
1

)

(11.50)

in which, K = 3.74 × 109, A = 0.4 ∼ 1.0, ζ1 = 0.02 ∼ 0.6, ω1 = 4000 ∼ 4200[Hz].
Set the rigid body model

P0(s) =
K

s2

as the nominal plant and treat the resonant mode

Δ(s) =
KA

s2 + 2ζ1ω1s + ω2
1

as a multiplicative uncertainty. Find an upper bound (weighting function) W (s) for the
uncertainty gain and establish the corresponding plant set.

11.2 Consider a plant with parameter uncertainty:

P (s) =
k

τs + 1
, 0.8 ≤ k ≤ 1.2, 0.7 ≤ τ ≤ 1.3. (11.51)

Here, the nominal plant is set as

P0(s) =
k0

τ0s + 1
. (11.52)

The model uncertainty is regarded as a multiplicative one P (s)/P0(s) = 1 + Δ(s).
The smaller the uncertainty is, the more possible it is for us to design a control system
with a better performance. In order to minimize the gain of the frequency response of
uncertainty Δ(s), how should we determine the nominal parameters (k0, τ0)? Compare
with the case where the nominal values are set as the mean values.

11.3 For the two approximations of parameter range shown in Figure 11.11(a,b) in Example
11.5, calculate the corresponding matrix polytopes.

3 In engineering practice, for a vibration system we can only obtain the range of frequency response of the system
through system identification, not the range of parameters as shown in this exercise. It is solely for the convenience
of presentation to assign ranges of parameters in this exercise.
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11.4 The state-space model of the two-mass–spring system (Example 1.2 with friction
ignored) is given by

ẋ =

⎡

⎣
0 k

JL
0

−1 0 1
0 − k

JM
0

⎤

⎦x +

⎡

⎣

1
JL

0
0

⎤

⎦ d +

⎡

⎣
0
0
1

JM

⎤

⎦u

y = [0 0 1]x

in which JM , JL, k are, respectively, the inertial moments of the motor and load and
the spring constant of the shaft. Suppose that JL, k take value in the following ranges:

J1 ≤ JL ≤ J2, k1 ≤ k ≤ k2.

Compute the polytopic description for this system.

11.5 Assume that m ∈ [1, 2]. Firstly, draw the area of vector [m m2]T . Then, use the fol-
lowing two methods to approximate the area of this parameter vector and compute the
corresponding polytopic descriptions:

(1) rectangle, (2) triangle.

Can you find a minimal trapezoid which covers the area of this uncertain vector?

11.6 In the two-mass–spring system in Exercise 11.4, let the uncertainty ranges of the load
inertia moment JL and the spring constant k be

JL = JL0(1 + w1δ1), k = k0(1 + w2δ2), |δi| ≤ 1.

Transform the state equation into the form of (11.26) with norm-bounded parameter
uncertainty where

Δ = diag(δ1 δ2).

11.7 In the single-machine infinite-bus power system of Subsection 11.5.2, the nonlinear

term in Eq.(11.42) can be cancelled by the input Vf = −xd−x
′
d

x
′
dΣ

Vs cos δ + u. Derive a
two-parameter LPV model w.r.t. the new input u.

Notes and References

Zhou et al. [100] provides a detailed treatment on the norm-bounded model uncertainty and
Ref. [37] contains some discussion on the positive real uncertainty. Tits et al. [88] and Liu
[53, 63, 56, 57] respectively proposed uncertainty models with both gain bound and phase
bound. The corresponding robustness conditions were also derived. For more details on the
power system involved in the LPV example, refer to Refs [50, 66] and [38].co
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Robustness Analysis 1:
Small-Gain Principle

In this chapter, we analyze the robustness of system with dynamic uncertainty and try to find
the conditions needed for ensuring robust stability and robust performance. This chapter treats
dynamic uncertainties characterized by the range of gain variation, that is, only the information
of uncertainty gain is used. The base of robustness analysis for such dynamic uncertainty is the
small-gain theorem. After illustrating this theorem in detail, we will derive the robust stability
criteria for various kinds of system sets and some sufficient conditions for robust performance.
These conditions are all given in terms of H∞ norm inequality about the closed-loop transfer
matrix with weighting function.

12.1 Small-Gain Theorem

In the system shown in Figure 12.1, M is a given system and Δ is an uncertainty. Both are
matrices of stable rational functions. We first consider the robust stability condition for this
simplified closed-loop system. Then, we will give some examples to illustrate that, for all
norm-bounded plant sets handled in Chapter 11, their robust stability criteria boil down to that
of the system in Figure 12.1 through equivalent block diagram transformation.

Theorem 12.1 (Small-Gain Theorem) Assume that M(s),Δ(s) are stable. The closed-loop
system of Figure 12.1 is robustly stable iff one of the following conditions is true:

1. When ‖Δ‖∞ ≤ 1, there holds ‖M‖∞ < 1.
2. When ‖Δ‖∞ < 1, there holds ‖M‖∞ ≤ 1.

Proof. Here, we give a detailed proof for single-input single-output (SISO) systems. As
for multiple-input multiple-output (MIMO) systems, only an outline is provided at the end of

Robust Control: Theory and Applications, First Edition. Kang-Zhi Liu and Yu Yao.
© 2016 John Wiley & Sons Singapore Pte. Ltd. Published 2016 by John Wiley & Sons, Singapore Pte. Ltd.
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++

+

+

e2

e1
w2

w1
Δ

M

Figure 12.1 Small-gain theorem

proof. Refer to Ref. [100] for further details. Further, statement 2 can be proved by properly
modifying the proof. So, we only prove statement 1.

The return difference of this feedback system is

R(s) = 1 − M(s)Δ(s).

The denominator of all closed-loop transfer functions is R(s). Since both M and Δ are stable,
unstable pole–zero cancellation does not occur in their cascade connection. So, for the stability
of closed-loop system, it suffices to ensure that R(s) has no zero in the closed right half-plane.
However,

|R(s)| = |1 − M(s)Δ(s)|
≥ 1 − |M(s)||Δ(s)|
≥ 1 − ‖M‖∞‖Δ‖∞
> 0

holds at any point s in the closed right half-plane, in which the second inequality follows
from the maximum modulus theorem [1] in complex analysis, while the last inequality is from
the given condition ‖M‖∞‖Δ‖∞ < 1. Therefore, the closed-loop system has no poles in the
closed right half-plane and is stable.

The idea for the proof of necessity is to prove that we can find an uncertainty in the given
uncertainty set Δ which destabilizes the closed-loop system if ‖M‖∞ ≥ 1. Due to ‖M‖∞ ≥ 1
and the continuity of frequency response, there must be a frequency ω0 ∈ [0,∞] at which
|M(jω0)| = 1 holds. Then, M(jω0) can be written as

M(jω0) = ejθ or − ejθ, θ ∈ [0, π).

In the sequel, Δ is constructed only for the case of positive sign. In the case of negative sign,
we just need reversing the sign of Δ shown in the succeeding text.

If we can find an uncertainty Δ(s) satisfying

Δ(jω0) = e−jθ, ‖Δ‖∞ ≤ 1,

then
R(jω0) = 1 − M(jω0)Δ(jω0) = 0

holds. Since zeros of R(s) are the poles of the closed-loop system, the closed-loop system
has an unstable pole jω0. Next, we will construct stable rational uncertainties satisfying this
condition case by case.
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M(jω0) is 1 when θ = 0. The corresponding uncertainty is taken as Δ = 1. On the other
hand, when θ ∈ (0, π),

Δ(s) =
a − s

a + s
, a =

ω0

tan θ/2
> 0

satisfies Δ(jω0) = e−jθ and ‖Δ‖∞ = 1 simultaneously. The uncertainties constructed here
are all stable and rational, and they belong to the given uncertainty set since their H∞ norms
are 1.

For MIMO systems, ‖M‖∞ ≥ 1 implies that σ1 := σmax(M(jω0)) = 1 holds at certain fre-
quency ω0. Let the singular value decomposition of M(jω0) be

M(jω0) = UΣV ∗ = [u1 · · · up]

⎡

⎢
⎣

σ1
σ2

. . .

⎤

⎥
⎦

⎡

⎢
⎣

v∗
1
...

v∗
q

⎤

⎥
⎦ .

If there exists an uncertainty satisfying

Δ(jω0) =
1
σ1

v1u
∗
1 ⇒ σmax(Δ(jω0)) = 1,

then

det(I − M(jω0)Δ(jω0)) = det
(

I − UΣV ∗ × 1
σ1

v1u
∗
1

)

= 1 − 1
σ1

u∗
1UΣV ∗v1 = 0

holds. So, the closed-loop system has an unstable pole jω0.
Set

u1 = [u11e
jθ1 · · · ]∗, v1 = [v11e

jφ1 · · · ]∗.

As the SISO case, we can find a stable rational matrix

Δ(s) =
1
σ1

⎡

⎢
⎣

v11
α1 − s

α1 + s
...

⎤

⎥
⎦

[

u11
β1 − s

β1 + s
· · ·

]

which satisfies the earlier condition at ω0, thus destroying the stability of the closed-loop sys-
tem. Further, this uncertainty satisfies ‖Δ‖∞ = 1, hence belonging to the given uncertainty
set. •

The small-gain theorem can also be interpreted as follows. At any point s in the right
half-plane,

‖M(s)Δ(s)‖2 ≤ ‖M(s)‖2‖Δ(s)‖2 ≤ ‖M‖∞‖Δ‖∞ < 1

holds so that the infinite sum

I + MΔ + (MΔ)2 + · · ·

converges to (I − MΔ)−1 in the closed right half-plane. This implies that (I − MΔ)−1 is
stable. Moreover, since there is no pole–zero cancellation between M and Δ, the closed-loop
system is also stable.
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Physically, small-gain theorem corresponds to the fact that the external input is attenuated
every time it circulates in the closed loop. More importantly, small-gain theorem is not only
sufficient but also necessary. That is, for the norm-bounded uncertainty set under considera-
tion, small-gain theorem is not conservative. However, we should understand this necessity
correctly. It is true only when the phase of uncertainty can change freely, which seldom hap-
pens in practice. That is, for real-world systems small-gain theorem is simply sufficient, not
necessary.

We will illustrate later on that, for any plant set containing norm-bounded uncertainty, its
robust stability criterion can be derived from small-gain theorem. That is, small-gain theorem
forms one of the foundations of robust control. It is also worth mentioning that, although
small-gain theorem is illustrated only for linear systems here, it is also true for nonlinear
time-varying systems [22, 47, 90, 98].

Example 12.1 Let us test the validity of small-gain theorem on the system shown in
Figure 12.2(a). Here, for the uncertainty δ, we consider two cases, respectively: gain
uncertainty and phase uncertainty. The block diagram can be equivalently transformed into
Figure 12.2(b). So, when δ is a gain uncertainty, the characteristic polynomial of closed-loop
system is p(s) = s + 1 + δ, and the closed-loop pole is s = −(1 + δ) < 0 (∀δ > −1). So,
for −1 < δ < 1, the closed-loop system is stable.

Further, the Nyquist diagram of 1
s+1 is shown in Figure 12.2(c). From this figure we see that,

even if the system contains a dynamic uncertainty δ, as long as |δ| < 1, the Nyquist diagram

δ

−
+

wz

(a)

wz

1
s+1

−

(b)

Real axis

Im
ag

in
ar

y 
ax

is

Nyquist diagrams

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(c)

δ

Figure 12.2 Stability margin problem (a) Original system (b) Transformed system (c) Nyquist diagram
of nominal open-loop system
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of the open-loop system δ 1
s+1 will not encircle the critical point (−1, j0). So the closed-loop

system is still stable. Here,
∥
∥ 1

s+1

∥
∥
∞ = 1 holds. So the result we get here coincides with that

of small-gain theorem.
Next, let us examine what change occurs to the stability of closed-loop system in the case

of |δ| ≥ 1. Set the uncertainty as δ = −1. Then the closed-loop pole becomes s = 0, which is
unstable. So, it has been verified that small-gain theorem is also necessary in this example.

12.2 Robust Stability Criteria

The robust stability conditions for uncertain systems with various sorts of descriptions are
summarized in Table 12.1, where K is the controller and the sensitivity S and complementary
sensitivity T are defined, respectively, as

S(s) = (I + PK )−1, T (s) = (I + PK )−1PK . (12.1)

Example 12.2 As an example, let us derive the result for the closed-loop system with a feed-
back uncertainty shown in Figure 12.3(a). In this proof, we only need to conduct an equivalent
transformation on the block diagram of closed-loop system with uncertainty so as to separate
the uncertainty from others and then apply the small-gain theorem.

Step 1 When Δ(s) = 0, the system must be nominally stable.
Step 2 In Figure 12.3(a), denote the input and output of uncertainty Δ as z, w, respectively.

Table 12.1 Robust stability criteria

W (s) and Δ(s) are stable, ‖Δ‖∞ ≤ 1

Plant set P Robust stability criterion
(I + ΔW )P Nominal stability and ‖WT‖∞ < 1
(I + ΔW )−1P Nominal stability and ‖WS‖∞ < 1
P + ΔW Nominal stability and ‖WKS‖∞ < 1
P (I + ΔWP)−1 Nominal stability and ‖WSP‖∞ < 1

K
−

+

Δ W

P
−

z

w

(a)

Δ

M

zw

(b)

Figure 12.3 Equivalent transformation of block diagrams (a) Closed-loop system with feedback uncer-
tainty (b) Transformed closed-loop system
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Step 3 Compute the transfer matrix from w to z:

z = Mw , M = −WSP .

Then, transform the closed-loop system to the system of Figure 12.3(b).
Step 4 In the end, by small-gain theorem it is clear that the robust stability condition is that

the nominal closed-loop system (P,K) is stable and satisfies

1 > ‖M‖∞ = ‖−WSP‖∞ = ‖WSP‖∞.

12.3 Equivalence between H∞ Performance and Robust Stability

When dealing with robust control problems, there are two different kinds of specifications:
robust stability and robust performance. In control design, it is very important to convert dif-
ferent specifications into the same type mathematically. Otherwise, it is very difficult to carry
out effective control design. Fortunately, when the performance is measured in terms of H∞
norm of transfer function, it is equivalent to a certain robust stability problem. This conclusion
is illustrated by two examples in the succeeding text.

Example 12.3 Consider the robust stability problem about additive uncertainty first
(Figure 12.4(a), ‖Δ‖∞ ≤ 1).

Robust stability ⇔ (P,K) is internal stable and ‖WKS‖∞ < 1

(according to Table 12.1)

⇔Suppress the effect of virtual disturbance w

to plant input u (Figure 12.4(b))

That is, mathematically the robust stability problem is equivalent to a performance problem of
suppressing the input signal z of uncertainty Δ when the output w of uncertainty Δ is regarded
as a virtual disturbance (Figure 12.4(b)).

K−

wz

ΔW
+

+u P

(a)

K−

wz

W

+

+u
P

(b)

Figure 12.4 Equivalence between robust stability and disturbance attenuation (a) Robust stability prob-
lem (b) Equivalent disturbance attenuation problem
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−

w z

−
u

PK

Δ

W

+

Figure 12.5 Equivalence between sensitivity reduction and robust stability

Example 12.4 Sensitivity reduction (Figure 12.5)

(P,K) is stable and ‖WS‖∞ < 1 ⇔

Robustly stabilize plant set
{

P̃ =
P

1 + ΔW
, ‖Δ‖∞ ≤ 1

}

(Table 12.1)

That is, the problem of nominalH∞ performance is equivalent to the robust stability problem
of the closed-loop system formed by inserting a virtual uncertainty Δ between the input and
output of the closed-loop transfer function, as shown in Figure 12.5.

This equivalence is true when the uncertainty is norm bounded, and the performance is
measured by the H∞ norm of closed-loop transfer function. As for other performance indices,
it is not yet clear whether there exists such equivalence. These examples can be extended to
the general case.

Theorem 12.2 In the closed-loop system of Figure 12.6, the following statements hold:

1. The closed-loop system containing stable uncertainty ‖Δ‖∞ ≤ 1 is stable iff the nomi-
nal closed-loop system is stable and the H∞ norm of transfer matrix F�(G,K) is less
than 1.

2. The nominal closed-loop system is stable and the H∞ norm of transfer matrix F�(G,K)
is less than 1 iff the closed-loop system formed by inserting an arbitrary virtual stable
uncertainty ‖Δ‖∞ ≤ 1 between its input w and output w is stable.

G

K

Δ
w

u

z

y

Figure 12.6 Equivalence between nominal performance and robust stability
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12.4 Analysis of Robust Performance

The ultimate objective of control is to achieve required performance specifications (signal
tracking, disturbance suppression, rapid response, etc.). Stability is simply the premise. Usu-
ally, before a control system turns unstable, its performance has significantly degraded. There-
fore, the performance of uncertain plant should also be ensured, that is, it is necessary to
guarantee the robust performance.

Then, what condition does the robust performance require? Let us illustrate it by examples.

Example 12.5 Consider the tracking of a reference input with a model WS(s)
(Figure 12.7(a)). The plant is an SISO system with additive uncertainty:

P̃ = P + ΔW, ‖Δ‖∞ ≤ 1.

The control purpose is to reduce the tracking error as much as possible, that is, to realize
∥
∥
∥
∥WS

1
1 + (P + ΔW )K

∥
∥
∥
∥
∞

< 1. (12.2)

Firstly, the nominal system must satisfy this condition, namely,

‖WSS‖∞ < 1.

−

w2z2

+
+

W

Δ

WS

r

e

y
PK u

w1

(a)

−

w2z2

+
+

ΔS

W

Δ

WS

w1

z1

y
P

uK

(b)

−
+

+
K

WWS

z2

z1

w2

w1

u

M

ΔS

Δ

P

(c)

−

w2z2

+
+

PK

WS

w1

z1

W

u

(d)

Figure 12.7 Robust tracking problem (a) Original problem (b) Equivalent robust stability problem (c)
Separation of uncertainty (d) Conversion to disturbance control problem

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

280 Robust Control

Secondly, in order to ensure robust stability, there must be (Table 12.1)

‖WKS‖∞ < 1.

Next, let us examine whether the nominal performance and robust stability can guarantee the
robust performance. For this, we note that WS

1
1+(P+ΔW )K can be rewritten as

WS

1
1 + PK

× 1
1 + ΔWKS

= WSS(1 + ΔWKS )−1.

Δ(‖Δ‖∞ ≤ 1) can take any complex value. So even if ‖WKS‖∞ < 1, that is, when the system
is robustly stable, such a frequency still can be found at which |1 + ΔWKS | � 1 holds1.
From the preceding equation, for this uncertainty Δ, the tracking performance deteriorates
significantly. Therefore, no matter how good the nominal performance (‖WSS‖∞) and robust
stability are, the robust performance cannot be ensured.

12.4.1 Sufficient Condition for Robust Performance

In the previous example, the condition for robust performance

‖WSS(1 + ΔWKS )−1‖∞ < 1

contains an uncertainty. In order to carry out control design, it is necessary to turn it into some
conditions without uncertainty. However, new concept is needed in order to derive the sufficient
and necessary condition for robust performance (refer to Chapter 17). Here, we temporarily
derive some simple sufficient conditions and look into its principle.

Example 12.6 A condition for the preceding robust tracking problem can be derived via the
following steps:

Step 1 According to Theorem 12.2, the robust performance problem of (12.2) is equivalent to
the robust stability problem when a virtual uncertainty ΔS(‖ΔS‖∞ ≤ 1) is inserted
as in Figure 12.7(b)2.

Step 2 After transforming Figure 12.7(b) into Figure 12.7(c), the problem is reduced to the
robust stability problem of a closed-loop system containing an uncertainty with diag-
onal structure: [

w1
w2

]

=
[
ΔS

Δ

] [
z1
z2

]

.

1 For example, consider the case of 1 − ‖WKS‖∞ = ε � 1. At the frequency ω0 satisfying WKS (jω0) =
‖WKS‖∞ejφ, an uncertainty satisfying Δ(jω0) = −e−jφ/(1 + ε) makes |1 + ΔWKS (jω0)| = 1 − ‖WKS‖∞/
(1 + ε) = 2ε/(1 + ε) � 1.
2 We have already shifted the weighting function WS to the tracking error port. Shifting WS like this does not change
the problem. But in the sufficient condition obtained without such shifting, matrix M contains SWS and WKSWS .
When WS is an unstable weighting function like 1/s, they cannot be stable simultaneously except the special case
where P has 1/s. This is the reason why we shift WS . For MIMO systems, the weighting matrix WS usually cannot
be shifted simply like this example and detailed analysis is needed. Refer to Ref. [59] for the specific conditions.
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Step 3 Since
∥
∥
∥
[

ΔS
Δ

]∥
∥
∥
∞

≤ 1, according to small-gain theorem a sufficient condition for

the robust stability about uncertainty [ΔS
Δ] is that the closed-loop transfer matrix

M(s) from the disturbance input [w1 w2]
T to output [z1 z2]

T shown in Figure 12.7(d)
satisfies the H∞ norm condition:

‖M‖∞ < 1

where [
z1
z2

]

= M

[
w1
w2

]

, M(s) =
[
WSS −WSS
WKS −WKS

]

.

It should be noted that, although for an uncertainty matrix whose elements can change
freely3, small-gain theorem is necessary and sufficient for the robust stability, but for
an uncertainty with a diagonal structure4, small-gain theorem is only a sufficient con-
dition, not necessary. To understand this point, the reader may refer to the uncertainty
structure we constructed in the proof of the necessity of small-gain theorem.

12.4.2 Introduction of Scaling

In the robust tracking problem of Example 12.6, the uncertainty in the equivalent robust sta-
bility problem is a diagonal matrix, so the condition obtained from small-gain theorem is only
sufficient and is very conservative usually. In order to reduce this conservatism, we may bring
in a scaling matrix before applying the small-gain theorem, in view of the diagonal structure
of uncertainty.

Example 12.7 Continued from Example 12.6.

Step 4 Since the poles and zeros of a minimum-phase transfer function are stable, as shown in
Figure 12.8(a), the stability of closed-loop system does not change even though stable
minimum-phase scaling functions are inserted in the closed-loop system consisting of
M and diag(Δs,Δ)5. Then, we conduct the block diagram transformations shown in
Figures 12.8(b) and 12.8(c). From Figure 12.8(c), it is seen that the following scaled
norm condition can guarantee the robust performance:

‖D−1MD‖∞ < 1, D(s) =
[
D1(s)

D2(s)

]

. (12.3)

By selecting the scaling matrix D properly, it is possible to make ‖D−1MD‖∞ less than
‖M‖∞. That is, the robust performance condition given by the former is less conservative
than the latter.

For example, when the performance specification gets stricter (i.e., raising the gain of perfor-
mance weighting function WS), there will not be any controller satisfying ‖M‖∞ < 1. But the

3 It is called unstructured uncertainty.
4 It is called structured uncertainty.
5 If D(s) is nonminimum phase, then D−1(s) is unstable, and there is unstable pole-zero cancellation between
D, D−1 so that the stability of closed-loop system fails.
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Δ

ΔS

D2 D−1
2

D−1
1

M

D1

(a)

ΔD2 D−1
2

D1 D−1
1

ΔS

M

(b)

Δ

D1 D−1
1

D2 D−1
2

ΔS

M

(c)

Figure 12.8 Introduction of scaling (a) Phase one (b) Phase two (c) Phase three

condition ‖M‖∞ < 1 is just a sufficient condition, not necessary. Its failure does not mean that
there is no controller ensuring the robust performance. For the performance weighting func-
tion WS , there may be a scaling function D and a controller K satisfying ‖D−1MD‖∞ ≤ 1.
Therefore, systems with better performance may be designed by bringing scaling matrix into
the control design.

This sort of problem is called the scaled H∞ problem.

12.5 Stability Radius of Norm-Bounded Parametric Systems

Look at the following uncertain system

ẋ = (A + BΔ(I − DΔ)−1C)x (12.4)

where Δ ∈ R
p×q is a norm-bounded uncertain parameter matrix (see Subsection 11.3.3). Set

z = Cx + Dw , w = Δz.

Then, the state equation can be rewritten as

ẋ = Ax + Bw .

That is, system (12.4) is equivalent to the closed-loop system consisting of a nominal system

M(s) = (A,B,C,D) (12.5)

and a parameter uncertainty Δ, as shown in Figure 12.9.
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Δ

M

zw

Figure 12.9 Stability radius problem of parametric systems

The question now is how to calculate the stability margin of this system. Since this margin is
measured by norm, it is called stability radius. Small-gain theorem is necessary and sufficient
only for norm-bounded dynamic uncertainty (complex). It is very conservative for parameter
uncertainty (real), hence unable to answer the question now. This problem is resolved by Qiu
et al. completely and beautifully [79]. The conclusion is as follows.

Theorem 12.3 (Qiu’s Theorem) The uncertain system (12.4) is robustly stable iff the param-
eter uncertainty matrix Δ satisfies

1
‖Δ‖2

> sup
ω

inf
γ∈(0,1]

σ2

⎛

⎝

⎡

⎣
R(M(jω)) −γ�(M(jω))
1
γ
�(M(jω)) R(M(jω))

⎤

⎦

⎞

⎠ . (12.6)

Here, σ2(X) denotes the second largest singular value of matrix X .

For the analysis of system stability, Qiu’s theorem is a very effective tool. However, it is not
clear at present how to apply it to robust control design.

Exercises

12.1 In the transfer function

P̃ (s) =
1

Ms + μ

of a car, let the mass M be a constant, while the friction coefficient varies in the range
of

μ = μ0 + cΔ, |Δ| ≤ 1.

We hope to describe P̃ in a form of

P̃ =
P

1 + ΔW
, P =

1
Ms + μ0

.

Find the weighting function W (s).

12.2 Prove Table 12.1 based on the small-gain theorem and block diagram transformation.

12.3 In the plant set
P̃ = (1 + ΔW )−1P,
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suppose that the uncertainty Δ(s) is stable and satisfies ‖Δ‖∞ ≤ 1, the nominal model
and weighting function are

P (s) =
1

s + 1
, W = 2.

Discuss whether this plant set can be robustly stabilized. (Hint: note that P (j∞) = 0.)

12.4 We use controller K(s) = 4 to stabilize a plant set P̃ (s) = 1/(s + a):
(a) Find the range of a such that the closed-loop system is stable.
(b) Choose P (s) = 1

s+10 as the nominal plant which corresponds to a = 10 and regard
a as an uncertain parameter. Firstly, find a weighting function W (s) such that

P̃ (s) =
1

s + a
=

P

1 + ΔWP

holds for Δ(s) = 1. Then, compute the range of a which ensures the robust sta-
bility for all ||Δ||∞ ≤ 1, based on the robust stability condition. Further, compare
it with the range of a obtained in (a).

12.5 Let the plant P (s) and controller K(s) be, respectively,

P (s) =
1

s − 1
, K(s) =

1
s

+ k.

1. Find the allowable range of k for K(s) to stabilize P (s).
2. Prove that the output of plant can track step reference input asymptotically.
3. When the plant changes from P (s) to a set

P̃ (s) =
1

s − 1 + α
, |α| < 1,

find the constraint on the gain k such that the controller can robustly stabilize P̃ (s).

12.6 In Example 11.1, consider the case that the car is subject to a disturbance d(t) such as
wind resistance. Suppose that the disturbance d̂(s) satisfies

|d̂(jω)| < |Wd(jω)| ∀ω.

The control purpose is to suppress the disturbance and achieve the tracking of speed
reference (Figure 12.10). Let the model of car speed reference r(t) be Wr(s). Find a
sufficient condition for this robust performance.

K
−

r

d

y

u P̃

Figure 12.10 Speed tracking control of a car
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PQ

P0

yr −

−

u

Figure 12.11 Structure of IMC

12.7 In the IMC control system shown in Figure 12.11, P (s) is the actual system and P0(s)
is the model, both being stable. The stable transfer function Q(s) in the figure is the
control parameter; the tracking error of reference input is e = r − y. Suppose that

∣
∣
∣
∣
P (jω) − P0(jω)

P0(jω)

∣
∣
∣
∣ ≤ |W (jω)|

for all frequencies.
1. Derive the robust stability condition for the closed-loop system.
2. Let the model of r(t) be WR(s). Derive a condition that ensures the robust tracking

performance ||ê||∞ < ε.

12.8 Consider the following typical process control system:

P (s) =
1

s + 1
e−θs, 0 ≤ θ ≤ 0.1.

When the nominal model is chosen as P0(s) = 1/(s + 1), the uncertainty weighting
function is given by

W (s) =
0.2s

0.1s + 1
.

Design a control parameter Q(s) satisfying the following specifications based on
Exercise 12.7:
1. Robust stability of closed-loop system.
2. The output y robustly and asymptotically tracks the unit step reference input r(t) =

1.
3. For the nominal plant P0(s), guarantees the tracking performance ||e||2 < 0.5.

12.9 Let a transfer function P0(s) be factorized as P0(s) = n0(s)/m0(s) by using stable
rational functions n0(s),m0(s) that have no common unstable zeros. Suppose that the
plant perturbs to

P (s) =
n0(s) + Δn(s)
m0(s) + Δm(s)

, Δ = [Δn Δm] = W (s)ΔI(s)

in which both W (s) and ΔI(s) are stable transfer functions, and ‖ΔI‖∞ ≤ 1. Let
the controller be K(s). The block diagram of the perturbed system is illustrated in
Figure 12.12:
1. Derive the condition for robust stabilization of the uncertain system based on

small-gain theorem.
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Δn Δm

n0 m−1
0K

w

u
y

−

−

Figure 12.12 System with coprime uncertainty

2. When the nominal plant P0(s) is stable, express the derived condition as a function
of free parameter Q(s) by using the parameterization of stabilizing controllers.

3. Suppose that P0(s) is stable. Derive the condition on Q(s) such that the output y
robustly and asymptotically tracks unit step reference input.

4. Design a controller satisfying all these conditions. In numerical design, use

n0(s) =
1

s + 1
, m0(s) = 1, W (s) = 0.2.

12.10 Control a plant set containing multiplicative uncertainty

P (s) = P0(s)[1 + W2(s)Δ(s)], ‖Δ‖∞ ≤ 1 (12.7)

with controller K(s). Prove that to ensure robust sensitivity performance

‖W1S‖∞ < 1, S(s) =
1

1 + P (s)K(s)
, (12.8)

the necessary and sufficient condition is

|W1(jω)S0(jω)| + |W2(jω)P0(jω)| < 1 ∀ω (12.9)

where S0 = 1
1+P0K

, T0 = P0K
1+P0K

. (Hint: Note that the phase angle of uncertainty
Δ(jω) is arbitrary. Do analysis at each frequency.)

12.11 In the 2-DOF system shown in Figure 12.13, d is an input disturbance and the plant
set is given by

P (s) = P0(s) + W (s)Δ(s), ‖Δ‖∞ ≤ 1.

QF

QB P0

P
yPu

d

r

Figure 12.13 Two-degree-of-freedom system
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1. Derive the robust stability condition.
2. Let the disturbance model be WD(s). For all uncertain plants, find a condition to

ensure that the transfer function HyP d(s) from disturbance d to output yP satisfies
‖HyP d‖∞ < 1.

3. Let the reference input model be WR(s). For all uncertain plants, find a condition
to ensure that the transfer function Her (s) from reference input r to tracking error
e = r − yP satisfies ‖Her‖∞ < 1.

Notes and References

The small gain principle rooted in the study of nonlinear and time-varying systems by Zames
[98]. Zames [99] argued in favor of the use of H∞ norm in robust control. Doyle and Stein [28]
proposed the small gain condition for linear systems having multiplicative uncertainty while
[13] gave a rigorous proof. More materials about the small gain principle may be found in Refs
[100, 20, 25] and [68]. Tits et al. [88] and Liu [53, 63, 56, 57] studied the robust control prob-
lem of uncertain systems with known gain and phase bounds and derived the corresponding
conditions. The robust steady-state performance was studied in Ref. [59].
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Robustness Analysis 2:
Lyapunov Method

In essence, the small-gain approach is tailored for dynamic uncertainty in which both gain and
phase are uncertain. On the other hand, for a static uncertainty such as parameter variation,
its phase angle is fixed. Disregarding this feature, the derived robustness conditions will be
too conservative to be useful in the applications. In this chapter, we introduce the Lyapunov
method which is able to make use of the feature that a parameter uncertainty is a real number
in the robustness analysis of parametric systems.

This method, rooted in the study of Barmish [6], extends the Lyapunov method which was
originally used for the stability analysis of nonlinear systems to uncertain linear systems. In
this chapter, after a brief review of Lyapunov theory, we will describe in detail how to use this
method to analyze robust stability, with a focus on the quadratic stability.

13.1 Overview of Lyapunov Stability Theory

Lyapunov stability theory was put forward by Lyapunov, an outstanding Russian mathemati-
cian in the late nineteenth century. This is a stability analysis method for nonlinear systems.
This method not only has laid the foundation for the control of nonlinear systems but also has
become one of the basic principles of robust control.

Consider a nonlinear system with state vector x ∈ R
n:

ẋ = f(x), x(0) �= 0. (13.1)

f(x) is a nonlinear vector function satisfying f(0) = 0. Clearly, the origin x = 0 is an equi-
librium. If the trajectory starting from an arbitrary point near the origin can always converge to
the origin, the origin is said to be asymptotically stable w.r.t. the nonlinear system. The issue
now is how to find a condition to ensure the asymptotic stability.

For this stability analysis problem, Lyapunov’s idea is not to directly investigate the state
trajectory, but to examine the variation of energy in the system instead. This idea can be under-
stood as follows: since there is no external supply of energy in the autonomous system (13.1),

Robust Control: Theory and Applications, First Edition. Kang-Zhi Liu and Yu Yao.
© 2016 John Wiley & Sons Singapore Pte. Ltd. Published 2016 by John Wiley & Sons, Singapore Pte. Ltd.
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the motion must stop when the internal energy becomes zero. On the contrary, the state does
not stop moving as long as the internal energy is not zero. This means that so long as we know
whether the internal energy converges to zero, we are definitely able to judge whether the state
converges to the origin or not.

Concretely speaking, as a quantity representing energy, we use the so-called Lyapunov func-
tion V (x), a positive definite function:

V (x) > 0 ∀ x �= 0. (13.2)

If its time derivative satisfies
V̇ (x) < 0 ∀x �= 0, (13.3)

then it is guaranteed that
lim
t→∞

x(t) = 0.

Since this book focuses on linear systems, rigorous statement for nonlinear systems is omitted
and only the brief description above is provided. The interested reader may refer to literatures
such as Ref. [47].

For linear systems, the asymptotic stability condition can be proved as follows. Consider
the linear system below:

ẋ = Ax , x(0) �= 0. (13.4)

Set a Lyapunov function V (x) as the following positive definite quadratic function:

V (x) = xT Px > 0 ∀x �= 0. (13.5)

Obviously V (0) = 0. The positive definiteness of xT Px is equivalent to that of the sym-
metric matrix P . If the trajectory of state x(t) satisfies

V̇ (x) < 0 ∀x(t) �= 0, (13.6)

then V (x(t)) decreases strictly monotonically w.r.t. the time t. V (x) is bounded from below
since V (x) ≥ 0, so it has a limit. It can be seen from Eq. (13.6) that V (x) continue decreasing
as long as x(t) �= 0. Therefore, x(∞) = 0 must be true.

13.1.1 Asymptotic Stability Condition

Here we derive a stability condition for the linear system (13.4). The quadratic Lyapunov func-
tion in (13.5) is used for this purpose. Differentiation of V (x) = xT Px along the trajectory of
ẋ = Ax yields

V̇ (x) = ẋT Px + xT P ẋ

= (Ax )T Px + xT P (Ax )

= xT (AT P + PA)x. (13.7)

For all nonzero state x, the condition for V̇ (x) < 0 is

AT P + PA < 0. (13.8)
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So, when this LMI (linear matrix inequality) has a positive definite solution P , asymptotic
stability of the system is ensured. From this discussion, we obtain the following theorem:

Theorem 13.1 The linear system (13.4) is asymptotically stable iff there exists a positive
definite matrix P satisfying (13.8).

Proof. The preceding discussion shows the sufficiency. For the proof of necessity, refer to
Theorem 4.7(3) in Section 4.3. •

13.1.2 Condition for State Convergence Rate

Although the LMI (13.8) guarantees the stability of system, no guarantee on the convergence
rate of state is provided. In order to ensure a convergence rate, we may use the following LMI
condition:

AT P + PA + 2σP < 0, σ > 0. (13.9)

When this LMI has a positive definite solution P , there holds

V̇ (x) = xT (AT P + PA)x < xT (−2σP )x = −2σV (x).

Noting that the solution of differential equation ẏ = −2σy is y(t) = e−2σty(0), according to
the comparison principle [47], we know that V (x) satisfies the inequality:

V (x(t)) < e−2σtV (x(0)).

Further, by using λmin(P )‖x‖2 ≤ xT Px ≤ λmax(P )‖x‖2, we get

λmin(P )‖x(t)‖2 ≤ xT (x)Px (t) < e−2σtxT (0)Px (0) ≤ e−2σtλmax(P )‖x(0)‖2.

Therefore,

‖x(t)‖ <

√
λmax(P )
λmin(P )

‖x(0)‖e−σt, (13.10)

that is, the state vector x(t) converges to zero at a rate higher than σ.

13.2 Quadratic Stability

In the previous section, we have discussed the stability of linear nominal systems in the frame-
work of Lyapunov theory. In this section, we consider the stability of a plant set with parameter
uncertainty. The system under consideration is

ẋ = A(θ)x, x(0) �= 0 (13.11)

in which θ ∈ R
p is a bounded vector of uncertain parameters.
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For example, when the input u = 0 and no external force is imposed, the dynamics of the
mass–spring–damper system is

ẋ =

[
0 1

− k

m
− b

m

]

x = A(m, b, k)x

where the parameter vector is θ = [m b k]T .
When the parameters change, by nature the Lyapunov function should also change accord-

ingly. However, we do not know in general the relation between Lyapunov function and the
parameter vector θ. Based on this fact, Barmish suggested to use a fixed quadratic function
V = xT Px to investigate the stability for the entire system set (13.11). That is, checking the
stability of the uncertain system via a quadratic function V (x) satisfying

V (x) = xT Px > 0 ∀x �= 0; V̇ (x, θ) < 0 ∀x �= 0, θ. (13.12)

When this is possible, the system set is said to be quadratically stable. Since a common
Lyapunov function is used for all systems in the set, it may be easier to find a stability condition.

Certainly, the quadratic stability is a very strong specification for stability. However, numer-
ous applications indicate that it is quite effective in engineering applications.

13.2.1 Condition for Quadratic Stability

From V̇ (x, θ) = xT (AT (θ)P + PA(θ))x, we know that the condition for the quadratic sta-
bility is that there is a positive definite matrix P satisfying the inequality:

AT (θ)P + PA(θ) < 0 ∀θ. (13.13)

Example 13.1 Consider the following first-order system:

ẋ = −(2 + θ)x, θ > −2.

Since AT (θ)P + PA(θ) = −(2 + θ)P − P (2 + θ) = −2(2 + θ)P ,

AT (θ)P + PA(θ) = −2(2 + θ) < 0 ∀θ ∈ (−2,∞)

always holds w.r.t. P = 1. Therefore, the stability is guaranteed. This conclusion is consistent
with that obtained from the pole analysis.

The next question is how to calculate a solution P for the matrix inequality (13.13). No
general solution exists because A(θ) depends on the uncertain parameter vector θ. However,
when the matrix A(θ) has some specific structures about the parameter vector θ, it is possible
to solve the inequality. We will discuss this issue in detail in the next subsection.
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13.2.2 Quadratic Stability Conditions for Polytopic Systems

Consider a system set whose coefficient matrix is a matrix polytope:

ẋ =

(
N∑

i=1

λiAi

)

x, x(0) �= 0 (13.14)

in which λi (i = 1, . . . , N) is an uncertain parameter and satisfies λi ≥ 0,∑N
i=1 λi = 1.
For this system, the quadratic stability condition (13.13) can be rewritten as

(
N∑

i=1

λiAi

)T

P + P

(
N∑

i=1

λiAi

)

< 0 ∀λi

⇔
N∑

i=1

λi(A
T
i P + PAi) < 0 ∀λi. (13.15)

First of all, this inequality must hold at all vertices of the polytope. Hence,

AT
i P + PAi < 0 ∀i = 1, . . . , N (13.16)

must be true. Here, AT
i P + PAi < 0 is the condition for λi = 1, λj = 0 (j �= i), that is, at the

ith vertex. As all λi are nonnegative and their sum is 1, at least one of them must be positive.
So when (13.16) holds, the inequality

N∑

i=1

λi(A
T
i P + PAi) < 0

is always true. This shows that the LMI conditions (13.16) at all vertices are equivalent to the
quadratic stability condition (13.13).

Example 13.2 Let us examine the mass–spring–damper system with zero input, whose
dynamics is

ẋ =

⎡

⎣
0 1

− k

m
− b

m

⎤

⎦ x.

Suppose that each parameter takes value in

1 ≤ m ≤ 2, 10 ≤ k ≤ 20, 5 ≤ b ≤ 10.

The parameter vector θ = [m b k]T forms a cube with eight vertices. Solving the quadratic
stability condition (13.16), we get a solution

P =
[

1.9791 −2.8455
−2.8455 14.2391

]

.

Its eigenvalues are 1.35,14.86, so P is positive definite. This means that the system is quadrat-
ically stable. This conclusion is very natural in view of the fact that the damping ratio b is
positive.
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On the other hand, when the damping ratio ranges over 0 ≤ b ≤ 5, the solution of (13.16)
becomes

P =
[
0.85 0.9
0.9 10.26

]

× 10−11 ≈ 0

which is not positive definite. So we cannot draw the conclusion that this system is quadrati-
cally stable. In fact, this system set includes a case of zero damping. So the system set is not
quadratically stable.

Generally speaking, the quadratic stability is conservative since it uses a common Lyapunov
function to test the stability of all uncertain systems. Now, let us try to search for a less conser-
vative stability condition by changing the Lyapunov function with the uncertain parameters.
Look at a simple example:

ẋ = A(θ)x = (A0 + θA1)x, θ ∈ [θm, θM ].

Focusing on the affine structure of the matrix A(θ), we attempt to impose the same structure
on the matrix P (θ):

P (θ) = P0 + θP1.

This may lead to a less conservative condition. However, in this case, squared term θ2 of the
uncertain parameter appears in the stability condition. This can be seen clearly from

P (θ)A(θ) = (P0 + θP1)(A0 + θA1) = P0A0 + θ2P1A1 + θ(P1A0 + P0A1).

Due to θ2, the affine structure, that is, the polytopic structure, is destroyed so that the stability
condition cannot be reduced to the vertex conditions. In LMI approach, so far there is no good
solution for problems like this.

The following outlines a method from [34]. The idea is to use the property of convex func-
tions. Consider a quadratic Lyapunov function:

V (x, θ) = xT P (θ)x, P (θ) > 0.

Its derivative

V̇ (x, θ) = xT (A(θ)T P (θ) + P (θ)A(θ))x

= xT [(AT
0 P0 + P0A0) + θ2(AT

1 P1 + P1A1)

+ θ(P1A0 + P0A1 + AT
0 P1 + AT

1 P0)]x

is a quadratic function of parameter θ. As long as V̇ (x, θ) is a convex function of θ, the vertex
conditions

A(θm)T P (θm) + P (θm)A(θm) < 0, A(θM )T P (θM ) + P (θM )A(θM ) < 0

ensure that V̇ (x, θ) is negative definite (see Subsection 3.1.5). Meanwhile, a condition for
convexity is

d2

dθ2 V̇ (x, θ) = 2xT (AT
1 P1 + P1A1)x ≥ 0 ⇒ AT

1 P1 + P1A1 ≥ 0.
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Finally, the positive definiteness of P (θ) is guaranteed by the vertex conditions

P (θm) > 0, P (θM ) > 0.

13.2.3 Quadratic Stability Condition for Norm-Bounded Parametric
Systems

As seen above, the polytopic model of uncertain systems is very effective in robustness anal-
ysis. Unfortunately, control design of polytopic systems is very difficult. So in this section,
we discuss the quadratic stability of norm-bonded parametric systems. A general model for
norm-bounded parametric systems is given in Subsection 11.3.3. In the inspection of system
stability, the input u, disturbance d, measured output y, and performance output e may be
ignored. Therefore, we analyze the following simplified parametric system:

M

{
ẋ = Ax + Bw
z = Cx + Dw (13.17)

w = Δz, ‖Δ(t)‖2 ≤ 1. (13.18)

In this case, this time-varying system is as shown in Figure 13.1. State equation of the
closed-loop system formed by nominal system M(s) and parameter uncertainty Δ(t) is

ẋ = (A + BΔ(I − DΔ)−1C)x, ‖Δ(t)‖2 ≤ 1. (13.19)

It is easy to see that when Δ(t) varies freely in the range of ‖Δ(t)‖2 ≤ 1, the invertibility
condition for the matrix I − DΔ is ‖D‖2 < 1 (Exercise 13.2).

Applying the time-varying version of the small-gain theorem (refer to Exercise 13.3), we
see that if there is a positive definite matrix P satisfying

⎡

⎣
AT P + PA PB CT

BT P −I DT

C D −I

⎤

⎦ < 0, (13.20)

the system (M,Δ) is quadratically stable w.r.t. Lyapunov function V (x) = xT Px .
It can be proven that this condition is necessary and sufficient for the quadratic stability of

system (13.19).

Theorem 13.2 The time-varying system (13.19) is quadratically stable iff there exists a pos-
itive definite matrix P satisfying (13.20).

Δ

M

zw

Figure 13.1 Parametric system
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Proof. We use the so-called S-procedure[9]. By definition, quadratic stability implies the
existence of P > 0 such that the Lyapunov function V (x) = xT Px satisfies V̇ (x) < 0 (∀x �=
0). Differentiation of V (x) along the trajectory of system M(s) gives

V̇ (x) = ẋT Px + xT P ẋ = (Ax + Bw)T Px + xT P (Ax + Bw)

=
[
x
w

]T [
AT P + PA PB

BT P 0

] [
x
w

]

. (13.21)

Meanwhile, ‖Δ(t)‖2 ≤ 1 implies that its input and output (z, w) satisfy wT w = zT ΔT Δz ≤
zT z. Substituting z = Cx + Dw , we get a condition

U(x,w) =
[
x
w

]T {[
0 0
0 I

]

−
[
CT

DT

]

[C D]
} [

x
w

]

≤ 0 ∀
[
x
w

]

�= 0 (13.22)

which is equivalent to ‖Δ(t)‖2 ≤ 1.
As the invertibility of I − DΔ requires ‖D‖2 < 1, if x = 0 and w �= 0, then U(x,w) =

wT (I − DT D)w > 0. This is a contradiction. So, in any nonzero vector [xw] satisfying the

condition U(x,w) ≤ 0, there must be x �= 0. Invoking Schur’s lemma, we see that (13.20) is
equivalent to

0 >

[
AT P + PA PB

BT P −I

]

+
[
CT

DT

]

[C D]

=
[
AT P + PA PB

BT P 0

]

−
{[

0 0
0 I

]

−
[
CT

DT

]

[C D]
}

.

Multiplying this inequality by a nonzero vector [xw] and its transpose, we have

V̇ (x) < U(x,w) ≤ 0.

From the discussion above, we know that x �= 0 in this case, so the quadratic stability is proved.
Conversely, when the system is quadratically stable, the two inequalities

V̇ (x) < 0, U(x,w) ≤ 0

hold simultaneously for nonzero state x. Consider a bounded [xw]. Then V̇ (x) and U(x,w) are

also bounded. Enlarging V̇ (x) suitably by a factor ρ > 0, we have

ρV̇ (x) < U(x,w) ∀x �= 0.

Finally, absorbing ρ into the positive definite matrix P and renaming ρP as P , we obtain

V̇ (x) − U(x,w) < 0 ∀
[
x
w

]

�= 0.

This inequality is equivalent to (13.20). •
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Example 13.3 We revisit the mass–spring–damper system in Example 13.2 starting from a
norm-bounded model. Assume that the uncertain parameters are

m = m0(1 + w1δ1), k = k0(1 + w2δ2), b = b0(1 + w3δ3), |δi| ≤ 1

in which the nominal parameters (m0, k0, b0) are the average of each uncertain parameter.
The weights are

w1 =
mmax

m0
− 1, w2 =

kmax

k0
− 1, w3 =

bmax

b0
− 1.

According to Section 11.3.3, after normalizing the uncertainty matrix Δ = [δ1 δ2 δ3] in the
norm-bounded parametric system (13.19), the coefficient matrices become

A =

⎡

⎢
⎣

0 1

− k0

m0
− b0

m0

⎤

⎥
⎦ , B =

[
0

1

]

C = −
√

3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k0

m0
w1

b0

m0
w1

k0

m0
w2 0

0
b0

m0
w3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, D = −
√

3

⎡

⎢
⎣

w1

0

0

⎤

⎥
⎦ .

When the parameters take value in

1 ≤ m ≤ 2, 10 ≤ k ≤ 20, 5 ≤ b ≤ 10,

the solution to the quadratic stability condition (13.20) and P > 0 is

P =
[

1.9791 −2.8455
−2.8455 14.2391

]

.

This shows that the system is quadratically stable.
On the other hand, when the damping ratio ranges over 0 ≤ b ≤ 5, no solution exists for

(13.20) and P > 0.

13.3 Lur’e System

The feedback system shown in Figure 13.2 consists of a linear system G(s) and a static non-
linearity Φ. Let the realization of G(s) be

ẋ = Ax + Bu, y = Cx

x ∈ R
n, u ∈ R

m, y ∈ R
m. (13.23)

Its input u is supplied by
u = −Φ(y) (13.24)
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G

Φ

−
u

yΦ(y)

Figure 13.2 Lur’e system

0

αy

βy

y

φ(y)

Figure 13.3 Static nonlinearity in a cone

in which the nonlinearity Φ satisfies

[Φ(y) − Kminy]T [Φ(y) − Kmaxy] ≤ 0. (13.25)

Here, it is assumed that the coefficient matrices satisfy Kmax − Kmin > 0. For single-input
single-output (SISO) systems, the nonlinearity is written as φ which satisfies

(φ(y) − αy)(φ(y) − βy) ≤ 0, 0 ≤ α < β

⇒ αy ≤ φ(y) ≤ βy, y ≥ 0; βy ≤ φ(y) ≤ αy, y < 0.

As shown in Figure 13.3, φ is located in a sector bounded by straight lines with slopes of α, β.
For simplicity, we call such region as a sector [α, β]. Popov named the property wherein the
asymptotic stability of closed-loop system is maintained for all static nonlinearities in a sector
as absolute stability. In a modern viewpoint, g(y) = φ(y)/y can be regarded as a time-varying
gain corresponding to the nonlinearity φ. This gain takes value in

α ≤ g(y) =
φ(y)

y
≤ β. (13.26)

So, Lur’e system can also be treated as a system with uncertain time-varying gain. Its absolute
stability is exactly the robust stability w.r.t. the uncertain gain g(y).

Now, what is the stability condition for Lur’e system? As mentioned in Chapter 11, a pos-
itive gain uncertainty always has zero phase angle. Keeping this feature in mind, we may
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guess intuitively the stability condition of Lur’e system based on Nyquist stability criterion.
To illustrate it, let us look at the case where the nonlinear gain of a SISO system takes value in

0 ≤ g(y) ≤ K.

When the linear system G(s) is stable, Nyquist stability criterion says that the closed-loop
system is stable iff the return difference

1 + G(jω)g(y)

does not encircle the origin. As a closed curve encircling the origin must cross the imaginary
axis, stability condition of the closed-loop system is equivalent to that R[1 + G(jω)g(y)] �= 0
holds for all frequencies ω and all gains g(y). Note that R[1 + G(jω)g(y)] = 1 > 0 when
g(y) = 0. So long as

R[1 + G(jω)g(y)] = R[1 + G(jω)K] > 0 ∀ω

holds true for g(y) = K, then R[1 + G(jω)g(y)] > 0 is also true for any g(y) ∈ [0,K] since
this function g(y) is affine. This condition implies the strongly positive realness of 1 + KG(s).

This condition can also be derived from another point of view. Note that the essence of this
condition is to use the phase angle to ensure that Nyquist stability criterion is satisfied. Here,
the key is that as long as the phase angle of the loop gain G(s)g(y) is not ±180◦, Nyquist
stability criterion is met regardless of the gain. The gain g(y) = φ(y)/y of nonlinearity φ is
finite. So, we try extending the nonlinear gain to the infinity. When g(y) varies in the interval
[0,K], this is accomplished by the following transformation:

0 ≤ gN =
g

1 − g/K
< ∞.

Further, gN → ∞ as g → K. Based on this fact, we make a transformation of block diagram
as shown in Figure 13.4. After the transformation, the gain of the new nonlinearity φN (yN )
becomes gN while the phase angle keeps zero. On the other hand, the new linear system turns
into

GN (s) = G(s) +
1
K

=
1
K

(1 + KG(s)).

− G

K−1

K−1

Φ

GN

ΦN

u y

yN

Figure 13.4 Equivalent transformation of Lur’e system
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Then, the phase angle of the new loop gain GN (s)gN (y) will never be ±180◦ so long as
1 + KG(s) is positive-real. As such, stability of the closed-loop system is guaranteed.

Of course, the system under consideration is nonlinear, so the preceding discussion is not
rigorous. A rigorous proof is done by using Lyapunov stability theory. In fact, the following
conclusion holds:

Lemma 13.1 Assume that A is stable in the realization (13.23) of m input m output linear
system G(s) and the nonlinearity Φ satisfies

ΦT (Φ − Ky) ≤ 0.

Then, the closed-loop system is asymptotically stable if the transfer matrix

Z(s) = I + KG(s)

is strongly positive-real.

Proof. Z∗(jω) + Z(jω) can be written as

Z∗(jω) + Z(jω) =
[
(jωI − A)−1B

I

]∗ [
0 (KC )T

KC 2I

] [
(jωI − A)−1B

I

]

.

According to KYP lemma, when Z(s) is strongly positive-real, there is a symmetric matrix P
satisfying

−
[

0 (KC )T

KC 2I

]

+
[
AT P + PA PB

BT P 0

]

< 0. (13.27)

Further, P > 0 follows from the (1, 1) block AT P + PA < 0 and the stability of A. We con-
struct a Lyapunov function

V (x) = xT Px

using this positive definite matrix P and use it to prove the lemma. This V (x) is radially
unbounded. Differentiating V (x) along the trajectory of system (13.23), we obtain that

V̇ (x) = xT (AT P + PA)x + xT PBu + uT BT Px

=

[
x

u

]T [
AT P + PA PB

BT P 0

][
x

u

]

<

[
x

u

]T [
0 (KC )T

KC 2I

][
x

u

]

= 2[uT (KCx ) + uT u]

= 2[uT Ky + uT u]

as long as x �= 0. Further substitution of u = −Φ(y) yields

V̇ (x) < 2ΦT [Φ − Ky ] ≤ 0, x �= 0.
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This implies the asymptotic stability of the closed-loop system according to Lyapunov stability
theorem. •

Example 13.4 Consider a linear system

G(s) =
6

(s + 1)(s + 2)(s + 3)
.

The nonlinearity φ is the ideal saturation function below:

φ(y) = y, |y| < 1; φ(y) =
y

|y| , |y| ≥ 1.

We examine the stability of this closed-loop system. The saturation is contained in the sector
[0, 1], that is, K = 1. Since this system is SISO, the strongly positive-real condition of Z(s) =
1 + G(s) becomes

R[G(jω)] > −1.

The Nyquist plot of G(jω) is shown in Figure 13.5. Clearly, this Nyquist plot is located
on the right-hand side of the straight line R[s] = −1 and satisfies the stability condition of
Lemma 13.1.

13.3.1 Circle Criterion

For a general sector [Kmin,Kmax], we need to just transform the sector equivalently into
[0,Kmax − Kmin], as shown in Figure 13.6. Then, the stability condition can be derived
similarly. In this case, the linear system turns into G(I + KminG)−1.

Real axis

Im
ag

in
ar

y 
ax

is

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

Figure 13.5 Nyquist plot
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−
G

Kmin

Kmin

Φ

GN

ΦN

u y

yN

−

−

Figure 13.6 Equivalent transformation of Lur’e system: Circle criterion

Theorem 13.3 In the closed-loop system composed of the linear system G(s) of (13.23) and
nonlinearity Φ of (13.25), if

GN (s) = G(s)[I + KminG(s)]−1

is stable and
ZN (s) = [I + KmaxG(s)][I + KminG(s)]−1

is strongly positive-real, then the closed-loop system is asymptotically stable.

Proof. After block diagram transformation, the nonlinearity is in the sector [0,Kmax −
Kmin]. So we can apply Lemma 13.1. Here, G becomes GN and the Z(s) turns into

I + (Kmax − Kmin)G(s)[I + KminG(s)]−1 = [I + KmaxG(s)][I + KminG(s)]−1,

that is, ZN (s). So the conclusion follows immediately from Lemma 13.1. •

The SISO version of this theorem is the famous circle criterion below.

Theorem 13.4 (Circle criterion) Consider an SISO Lur’e system. Assume that the nonlin-
earity φ is in the sector [α, β]. Also define a disk:

D(α, β) =
{

z ∈ C |
∣
∣
∣
∣z +

α + β

2αβ

∣
∣
∣
∣ ≤

∣
∣
∣
∣
β − α

2αβ

∣
∣
∣
∣

}

.

Then, the closed-loop system is asymptotically stable if one of the following statements holds.

1. If 0 < α < β, the Nyquist plot of G(jω) does not enter the disk D(α, β) and encircle it p
times counterclockwise, where p is the number of unstable poles of G(s).
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2. If 0 = α < β, G(s) is stable and the Nyquist plot of G(jω) satisfies

R[G(jω)] > − 1
β

.

3. If α < 0 < β, G(s) is stable and the Nyquist plot of G(jω) lies in the interior of the disk
D(α, β).

Proof. First, when G/(1 + αG) is stable, 1 + αG(jω) �= 0 for all the frequencies ω. Now,
ZN (s) is

ZN (s) =
1 + βG(s)
1 + αG(s)

.

It is strongly positive-real if Z∗
N (jω) + ZN (jω) > 0 for all frequency ω. When αβ �= 0, this

is equivalent to

0 < (1 + βG∗(jω))(1 + αG(jω)) + (1 + αG∗(jω))(1 + βG(jω))

= 2 + (α + β)(G∗(jω) + G(jω)) + 2αβG∗(jω)G(jω)

= 2αβ

{

G∗(jω)G(jω) +
α + β

2αβ
(G∗(jω) + G(jω)) +

1
αβ

}

= 2αβ

{∣
∣
∣
∣G(jω) +

α + β

2αβ

∣
∣
∣
∣

2

−
(

β − α

2αβ

)2
}

.

In the case of statement 1, strongly positive-real condition becomes
∣
∣
∣
∣G(jω) +

α + β

2αβ

∣
∣
∣
∣ >

∣
∣
∣
∣
β − α

2αβ

∣
∣
∣
∣ .

It requires that the Nyquist plot of G(jω) does not enter the disk D(α, β). On the other hand,
the stability condition of G/(1 + αG) is that the Nyquist plot of G(jω) must encircle the point
(−1/α, j0) p times counterclockwise according to Nyquist criterion. Since this point is on the
boundary of the disk D(α, β), the contour must encircle the disk p times counterclockwise.

In the case of statement 3, the aforementioned strongly positive-real condition becomes
∣
∣
∣
∣G(jω) +

α + β

2αβ

∣
∣
∣
∣ <

∣
∣
∣
∣
β − α

2αβ

∣
∣
∣
∣ .

That is, the Nyquist plot of G(jω) must lie in the interior of the disk D(α, β). So, the Nyquist
plot of G(jω) does not encircle the point (−1/α, j0). Therefore, G(s) must be stable in order
to guarantee the stability of G/(1 + αG).

Finally, in the case of statement 2, each part after transformation becomes

GN =
G

1 + αG
= G, ZN = 1 + βG.

Therefore, the stability of G(s) is needed. Further, ZN (s) = 1 + βG(s) is strongly
positive-real iff R[G(jω)] > − 1

β . •
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Im

Re0
− 1

α
−1

β

(a)

Im

Re
0

−1
β

(b)

Im

Re
0

− 1
β −1

α

(c)

Figure 13.7 Circle criterion (a) Case 1: 0 < α < β (b) Case 2: 0 = α < β (c) Case 3: α < 0 < β

The circle criterion for each case is illustrated in Figure 13.7(a)–(c).

Example 13.5 Let the linear system be

G(s) =
6

(s + 1)(s + 2)(s + 3)

and the nonlinearity φ be one of the following sectors:

(1) [1, 3], (2) [0, 2], (3) [−1, 1]

We examine the stability of the closed-loop system.
The circle criterion for each sector is given by

(1) |G(jω) +
2
3
| ≥ 1

3
, (2) R[G(jω)] ≥ −1

2
, (3) |G(jω)| ≤ 1.

From the Nyquist plot of G(s) shown in Figure 13.5, it is clear that all these conditions are
met. Therefore, the closed-loop system is stable for static nonlinearity in any of these sectors.
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13.3.2 Popov Criterion

In practical applications, basically the gain of static nonlinearity Φ does not change sign.
Therefore, such a nonlinearity may be regarded as an uncertainty with zero phase angle; only
its gain varies. Lemma 13.1 provides a stability condition which makes use of this feature.
From the discussion before Lemma 13.1, we know that the essence of this lemma is to guar-
antee the stability of the closed-loop system only using the phase condition. However, in the
block diagram transformation of Figure 13.4, although the transformed nonlinearity has a pos-
itive gain which takes value over a wide range, the phase angle of the linear part is still limited
to [−90◦, 90◦] . Looking from the viewpoint that the phase angle of the open-loop system can
get arbitrarily close to ±180◦, there is still a large room for improvement. So here we dig
deeply into this idea.

There are many approaches to expand the range of phase angle of the open-loop system.
However, from the viewpoint of theoretical simplicity, it is better to choose such a characteristic
of phase angle that can be easily combined with KYP lemma. To this end, let us consider
an open-loop transformation which makes the nonlinear part positive-real and the linear part
strongly positive-real.

Assume that the nonlinearity satisfies

Φ(y)T [Φ(y) − Ky ] ≤ 0, K > 0. (13.28)

We want to find a transformation so that the phase angle of the nonlinearity is in the range of
±90◦ and its gain may vary from zero to infinity, while the linear part is strongly positive-real.
One transformation is shown in Figure 13.8 which meets these requirements. The gain of the
transformed nonlinearity is

gN =
g

1
1 + ηs

1 − K−1g
1

1 + ηs

=
g

1 − K−1g + ηs
(13.29)

− G

K−1

K−1

Φ

GN

ΦN

u y

yN

1 + ηs

1
1+ηs

Figure 13.8 Equivalent transformation of Lur’e system: Popov criterion
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in which η > 0. When ω ≥ 0, its phase angle changes from 0◦ to −90◦. When g → K and
ω → 0, the gain approaches +∞. Meanwhile, when ω → ∞ or g → 0, the gain converges to
0. Namely, gN has the property of positive-real function. Therefore, intuitively the closed-loop
system is stable as long as GN = (1 + ηs)G + K−1 is strongly positive-real.

More precisely, the so-called Popov criterion below holds.

Theorem 13.5 (Popov Criterion) In the realization (13.23) of m-input m-output linear sys-
tem G(s), assume that A is stable. Then, the closed-loop system is asymptotically stable if there
is a positive-real number η such that the transfer matrix

Z(s) = I + (1 + ηs)KG(s)

is strongly positive-real.

Proof. Expanding Z(s) using s(sI − A)−1 = I + A(sI − A)−1, we have

Z(s) = I + ηKCB + KC (I + ηA)(sI − A)−1B

=
[
KC (I + ηA) I + ηKCB

]
[
(sI − A)−1B

I

]

.

So, Z∗(jω) + Z(jω) can be written as
[
(jωI − A)−1B

I

]∗ [
0 (KC (I + ηA))T

KC (I + ηA) 2(I + ηKCB)

][
(jωI − A)−1B

I

]

.

According to KYP Lemma, there is a symmetric matrix P satisfying the inequality

−
[

0 (KC (I + ηA))T

KC (I + ηA) 2(I + ηKCB)

]

+

[
AT P + PA PB

BT P 0

]

< 0 (13.30)

since Z(s) is strongly positive-real. Further, we get P > 0 from the (1, 1) block
AT P + PA < 0 and the stability of A. In the sequel, we use a Lur’e–Postnikov-type Lyapunov
function1

V (x) = xT Px + 2η
∫ y

0
Φ(v)T Kdv (13.31)

to prove the theorem. Obviously, this V (x) is positive definite and radially unbounded. Dif-
ferentiating V (x) along trajectory of Eq. (13.23), we obtain

V̇ (x) = xT (AT P + PA)x + xT PBu + uT BT Px + 2ηΦ(y)T Kẏ

= xT (AT P + PA)x + xT PBu + uT BT Px − 2ηuT KC (Ax + Bu)

=
[
x
u

]T ([
AT P + PA PB

BT P 0

]

−
[

0 (ηKCA)T

ηKCA 2ηKCB

])[
x
u

]

1 Due to the property Φ(y)T Ky ≥ Φ(y)T Φ(y) ≥ 0, the second term is nonnegative. Regarding Φ(y) as a force and
y as a displacement, then the integral represents a work.
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<

[
x
u

]T [
0 (KC )T

KC 2I

] [
x
u

]

= 2[uT (KCx ) + uT u]

= 2[uT Ky + uT u]

as long as x �= 0. Further, substituting u = −Φ(y) and invoking the property of nonlinearity
Φ, we have

V̇ (x) < 2ΦT [Φ − Ky ] ≤ 0 ∀x �= 0.

Therefore, the closed-loop system is asymptotically stable according to Lyapunov stability
criterion. •

For a SISO system, Popov criterion can be checked graphically, as shown below. The
strongly positive-real condition

R[1 + (1 + jηω)KG(jω)] > 0 ∀ω

of Z(s) is equivalent to

1
K

+ R[G(jω)] − ηω�[G(jω)] > 0 ∀ω.

In the Cartesian coordinate (x, y) = (R[G(jω)], ω�[G(jω)]), this condition becomes

1
K

+ x(ω) > ηy(ω) ∀ω.

This means that the trajectory (x(ω), y(ω)) is located below a line passing through (−1/K, 0)
and with a slope 1/η, as shown in Figure 13.9. This figure is called Popov plot.

Example 13.6 We revisit the example in the previous subsection. The linear system is

G(s) =
6

(s + 1)(s + 2)(s + 3)
.

ω (G)

(G)
0

− 1
K

1
η

Figure 13.9 Popov criterion
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−0.5

0

0.5

1

1.5

ℜ(G)

ω
ℑ

(G
)

Figure 13.10 Popov plot of Example 13.6: K = 5, η = 1

When the sector where the nonlinearity φ lies is expanded to [0, 5], the vertical line −1/β =
−0.2 intersects the Nyquist plot of Figure 13.5 so that the circle criterion is not satisfied.
However, when we draw the Popov plot, it is clear that Popov criterion is met (Figure 13.10).
Therefore, the closed-loop system remains stable even in this case.

From this example, it is verified that Popov criterion is weaker than circle criterion. So, it
has a wider field of applications.

13.4 Passive Systems

A system is called a passive system if its transfer function is either positive-real, or strongly
positive-real, or strictly positive-real. In this section, we analyze the stability when a
positive-real system is negatively feedback connected with a strongly positive-real or strictly
positive-real system. It will be revealed that such closed-loop system is always stable. The
closed-loop system under consideration is shown in Figure 13.11, in which the uncertainty
Δ(s) is a positive-real transfer matrix, while the nominal closed-loop system M(s) is either
strongly positive-real or strictly positive-real. Intuitively, the phase angle of a positive-real
system is limited to [−90◦, 90◦] and that of a strongly positive-real system is restricted to
(−90◦, 90◦) (the infinite frequency is excluded for a strictly positive-real system). So the

Δ

M

y u

−

Figure 13.11 Closed-loop system with a positive-real uncertainty
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phase angle of the open-loop system is always not ±180◦. In other words, the phase condition
of Nyquist stability criterion is satisfied. So, the stability of closed-loop system may be
expected.

Below, we give a rigorous description and proof for this inference. The following two con-
clusions are true:

Theorem 13.6 In the closed-loop system of Figure 13.11, assume that the uncertainty Δ(s)
is stable and positive-real. Then, the closed-loop system is asymptotically stable if the nominal
system M(s) is stable and strongly positive-real.

Proof. From the stability assumption on M and Δ, we need to only discuss the case of
minimal realization. So, the minimal state-space realizations of them are set as

Δ(s) = (A1, B1, C1,D1), M(s) = (A2, B2, C2,D2),

respectively. The corresponding state vectors are x1, x2. Noting the input–output relation, we
have

ẋ1 = A1x1 + B1(−y), u = C1x1 + D1(−y)

ẋ2 = A2x2 + B2u, y = C2x2 + D2u.

According to positive-real lemma and strongly positive-real lemma, there exist positive definite
matrices P,Q satisfying

[
AT

1 P + PA1 PB1

BT
1 P 0

]

−
[

0 CT
1

C1 D1 + DT
1

]

≤ 0 (13.32)

[
AT

2 Q + QA2 QB2
BT

2 Q 0

]

−
[

0 CT
2

C2 D2 + DT
2

]

< 0 (13.33)

under the given condition. Further, we define two Lyapunov functions:

V1(x1) = xT
1 Px1, V2(x2) = xT

2 Qx2. (13.34)

Both are positive definite. Multiplying a vector [xT
1 − yT ] �= 0 and its transpose to (13.32),

we get

0 ≥xT
1 (AT

1 P + PA1)x1 − xT
1 PB1y − yT BT

1 Px1 + xT
1 CT

1 y + yT C1x1

− yT (D1 + DT
1 )y

=xT
1 P (A1x1 − B1y) + (A1x1 − B1y)T Px1 + yT (C1x1 − D1y)

+ (C1x1 − D1y)T y

=xT
1 P ẋ1 + ẋT

1 Px1 + uT y + yT u

⇒ V̇1(x1) ≤ −uT y − yT u.
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Firstly, from (13.33) we have similarly that the inequality

V̇2(x2) < uT y + yT u

holds for any nonzero vector [xT
2 uT ]. Secondly, [xT

1 − yT ] �= 0, [xT
2 uT ] �= 0 implies

[xT
1 xT

2 ] �= 0. Take the quadratic positive definite function V (x1, x2) = V1(x1) + V2(x2) as a
Lyapunov candidate of the closed-loop system. Then

V̇ (x1, x2) = V̇1(x1) + V̇2(x2) < 0

holds for any nonzero vector [xT
1 xT

2 ]. Therefore, the closed-loop system is asymptotically
stable. •

Another conclusion is as follows:

Theorem 13.7 Assume that the uncertainty Δ(s) is stable and positive-real in the closed-loop
system of Figure 13.11. The closed-loop system is asymptotically stable if the nominal system
M(s) is stable, having full normal rank, and there is a constant ε > 0 such that M(s − ε) is
positive-real.

Proof. Let the state vectors be x1, x2 and minimal realizations be Δ(s) = (A1, B1, C1,D1),
M(s) = (A2, B2, C2, 0), respectively. From the input–output relation, we have

ẋ1 = A1x1 + B1(−y), u = C1x1 + D1(−y)

ẋ2 = A2x2 + B2u, y = C2x2.

Due to positive-real lemma, strictly positive-real lemma, and M(s − ε) = (A2 +
εI,B2, C2, 0), there exist positive definite matrices P,Q satisfying

[
AT

1 P + PA1 PB1
BT

1 P 0

]

−
[

0 CT
1

C1 D1 + DT
1

]

≤ 0 (13.35)

[
(A2 + εI)T Q + Q(A2 + εI) QB2

BT
2 Q 0

]

−
[

0 CT
2

C2 0

]

≤ 0. (13.36)

Define two Lyapunov functions as follows:

V1(x1) = xT
1 Px1, V2(x2) = xT

2 Qx2. (13.37)

Multiplying (13.35) with nonzero vector [xT
1 − yT ] and its transpose, we have

V̇1(x1) ≤ −uT y − yT u.

Similarly, multiplying (13.36) by nonzero vector [xT
2 uT ] and its transpose, one gets that

0 ≥xT
2 (AT

2 Q + QA2 + 2εQ)x2 + xT
2 QB2u + uT BT

2 Qx2

− xT
2 CT

2 u − uT C2x2

=xT
2 Qẋ2 + ẋT

2 Qx2 + 2εxT
2 Qx2 − yT u − uT y

⇒ V̇2(x2) ≤ uT y + yT u − 2εxT
2 Qx2
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holds for any nonzero vector [xT
2 uT ]. [xT

1 xT
2 ] �= 0 follows from [xT

1 yT ] �= 0 and
[xT

2 uT ] �= 0. Take the quadratic function V (x1, x2) = V1(x1) + V2(x2) as a Lyapunov
candidate for the closed-loop system, which is obviously positive definite. From the preceding
inequalities, we get that

V̇ (x1, x2) = V̇1(x1) + V̇2(x2) ≤ −2εxT
2 Qx2

holds for any nonzero vector [xT
1 xT

2 ]. When x2 is not identically zero, V (x1, x2) strictly
decreases. When x2(t) ≡ 0, its derivative is also zero. So

0 = B2u, y = 0.

Since M(s) has full normal rank, B2 must have full column rank. Therefore, u(t) ≡ 0. Sub-
stituting u = 0, y = 0 into the state equation of x1, we have

ẋ1 = A1x1, 0 = C1x1.

x1(t) = 0 is obtained because A1 is stable and (C1, A1) is controllable. Therefore, the
closed-loop system is asymptotically stable. •

Exercises

13.1 Consider a plant with uncertain parameters:

P (s) =
k

τs + 1
, 0.8 ≤ k ≤ 1.2, 0.7 ≤ τ ≤ 1.3. (13.38)

Its state equation is given by

ẋ = Ax + Bu = −1
τ

x +
k

τ
u, y = x. (13.39)

For the state feedback u = fx , express the quadratic stability condition as the vertex
conditions about the parameter vector [k τ ]. Then find a specific solution.

13.2 Assume that the matrix Δ varies in ‖Δ‖2 ≤ 1. Prove that the matrix I − DΔ is invert-
ible iff ‖D‖2 < 1 by using the singular value decomposition of Δ.

13.3 Assume that the uncertainty Δ(t) in Figure 13.1 is a time-varying matrix and satisfies
‖Δ(t)‖2 ≤ 1. Further, let transfer matrix M(s) = (A,B,C,D) be stable and satisfy
‖M‖∞ < 1. Denote the state of M(s) by x. Starting from the time-domain interpreta-
tion of bounded-real lemma given in Subsection 8.2.1, prove that the closed-loop system
is asymptotically stable by using the Lyapunov function V (x) = xT Px .

13.4 Prove that the output of stable system ẋ = Ax , y = Cx satisfies
∫ ∞

0
yT (t)y(t)dt = xT (0)Xx (0)

in which the matrix X is the solution to the Lyapunov equation below:

AT X + XA + CT C = 0.
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13.5 Prove Theorem 13.6 for SISO systems based on Nyquist stability criterion. (Hint:
Consider the phase angle range of M(jω)Δ(jω).)

13.6 Design a state feedback u = Fx such that the uncertain system

ẋ = (A + ΔA)x + (B + ΔB)u

[ΔA ΔB] = EΔ[C D], ‖Δ(t)‖2 ≤ 1 ∀t

is quadratically stabilized by following the procedure below:
Step 1 Transform the state feedback system into that of Figure 13.1 in which the state

equation of the nominal system M(s) is given by

ẋ = (A + BF )x + Ew

z = (C + DF )x.

Step 2 Apply Theorem 13.2 to derive the condition on F .
Step 3 Apply either the variable elimination or the variable change method.

13.7 Repeat the design problem of Exercise 13.6 w.r.t. the output feedback case. The
plant is

ẋ = (A + B2ΔC1)x + (B1 + B2ΔD12)u, y = C2x

‖Δ(t)‖2 ≤ 1 ∀t

and the controller is K(s) = (AK , BK , CK ,DK).

13.8 Repeat the quadratic stabilization problem w.r.t. a parametric system:

ẋ = (λ1A1 + λ2A2)x + (λ1B1 + λ2B2)u, y = Cx

λ1, λ1 ≥ 0, λ1 + λ2 = 1.

Consider both the state feedback and the output feedback cases.

Notes and References

Refer to Refs [47, 90, 22, 45, 78, 93] for more details about Lyapunov theory, Lur’e sys-
tems, and passive systems. Particularly, [47] is a widely read classic book on this topic. The
quadratic stability notion was proposed in Ref. [6]. Gahinet et al. [34] discussed how to deal
with parametric systems by using a Lyapunov function with uncertain parameters.
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Robustness Analysis 3: IQC
Approach

Integral quadratic constraint (IQC) theory is a robustness analysis method proposed by
Megretski–Rantzer [67]. The idea is to describe an uncertainty using an integral quadratic
constraint (IQC) on its input and output. Based on this, one can find the robust stability
condition for the closed-loop systems. In this chapter, we consider the system shown in
Figure 14.1. G(s) is a known linear system, and Δ is an uncertainty that includes static
nonlinearity. Let the input of uncertainty Δ be z and the output be w. Here, we focus on the
BIBO stability of the closed-loop system.

In this chapter, the same notation is used to denote both a time signal and its Fourier trans-
form for convenience.

14.1 Concept of IQC

To illustrate the meaning and motivation of IQC, let us look at the characterizations of several
kinds of uncertainty:

(1) For a norm-bounded uncertainty Δ(s) (‖Δ‖∞ ≤ 1), inequality Δ∗(jω)Δ(jω) ≤ I holds
for any frequency ω. Hence, multiplying both sides of the inequality by z∗ and z, respectively,
we obtain that

w∗(jω)w(jω) = z∗(jω)Δ∗(jω)Δ(jω)z(jω) ≤ z∗(jω)z(jω)

⇒ 0 ≤ z∗(jω)z(jω) − w∗(jω)w(jω) =
[

z(jω)
w(jω)

]∗ [
I 0
0 −I

] [
z(jω)
w(jω)

]

holds for arbitrary ω. Of course, we have

∫ ∞

−∞

[
z(jω)
w(jω)

]∗ [
I 0
0 −I

] [
z(jω)
w(jω)

]

dω ≥ 0.

Robust Control: Theory and Applications, First Edition. Kang-Zhi Liu and Yu Yao.
© 2016 John Wiley & Sons Singapore Pte. Ltd. Published 2016 by John Wiley & Sons, Singapore Pte. Ltd.
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Δ

G

z wu1

u2

Figure 14.1 Closed-loop system

(2) For any frequency ω, a positive real uncertainty Δ(s) satisfies the inequality Δ∗(jω) +
Δ(jω) ≥ 0. Therefore, multiplication of both sides by z∗ and z, respectively, yields

0 ≤z∗(jω)Δ∗(jω)z(jω) + z∗(jω)Δ(jω)z(jω)

=w∗(jω)z(jω) + z∗(jω)w(jω)

⇒ 0 ≤
[

z(jω)
w(jω)

]∗ [
0 I
I 0

] [
z(jω)
w(jω)

]

⇒
∫ ∞

−∞

[
z(jω)
w(jω)

]∗ [
0 I
I 0

] [
z(jω)
w(jω)

]

dω ≥ 0.

(3) The input and output of a real parameter uncertainty block Δ = δI (|δ| ≤ 1) meet the
relationship w = δz. Therefore, for a skew-symmetric matrix Y = −Y T , the identity

[
z(jω)
w(jω)

]∗ [
0 Y

Y T 0

] [
z(jω)
w(jω)

]

= z∗(jω)Yw(jω) + w∗(jω)Y T z(jω)

= δz∗(jω)(Y + Y T )z(jω)

= 0

holds. So, for any matrix X = XT ≥ 0, we have
[

z(jω)
w(jω)

]∗ [
X Y
Y T −X

] [
z(jω)
w(jω)

]

=
[

z(jω)
w(jω)

]∗ [
X 0
0 −X

] [
z(jω)
w(jω)

]

= (1 − δ2)z∗(jω)Xz (jω) ≥ 0

⇒
∫ ∞

−∞

[
z(jω)
w(jω)

]∗ [
X Y
Y T −X

] [
z(jω)
w(jω)

]

dω ≥ 0.

In fact, even if X,Y are extended to functions of frequency, the aforementioned inequality
still holds.

As shown previously, many uncertainties can be described by the following integral inequal-
ity about the input z and output w of the uncertainty: 1

∫ ∞

−∞

[
z(jω)
w(jω)

]∗
Π(jω)

[
z(jω)
w(jω)

]

dω ≥ 0, Π(jω) = Π∗(jω). (14.1)

1 In fact, a quadratic inequality is satisfied at each frequency ω in the foregoing examples. The integral quadratic
inequality about uncertainty is used simply because it is more convenient for the stability discussion of the closed-loop
system.
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314 Robust Control

This condition is called an IQC conditions specified by the matrix Π. However, since the uncer-
tainty Δ under consideration contains static nonlinearity, we regard Δ as an operator.

14.2 IQC Theorem

Consider the closed-loop system shown in Figure 14.1 which is composed of negatively feed-
back connected transfer matrix G(s) and uncertainty Δ. A sufficient condition for the robust
stability of this system is given by the IQC theorem in the following text.

Theorem 14.1 ((IQC theorem)) Let G(s) be an l × m stable matrix and Δ be an m ×
l bounded causal operator. The closed-loop system (G,Δ) is BIBO stable when all of the
following conditions are satisfied:

1. For any τ ∈ [0, 1], (I − τGΔ) has a causal inverse.
2. For any τ ∈ [0, 1], τΔ satisfies the IQC condition about Π.
3. There is an ε(> 0) satisfying

[
G(jω)

I

]∗
Π(jω)

[
G(jω)

I

]

≤ −εI ∀ω. (14.2)

Let us explain the meaning of causality first. An operation is called a truncation that chops
off the part of signal u(t) after the time instant T (refer to Figure 14.2). It is denoted by an
operator P T . That is,

P T u(t) =
{

u(t), t ∈ [0, T ]
0, t > T

(14.3)

When a system G (may contain nonlinearity) has the property of

P T Gu(t) = P T GP T u(t) (14.4)

for any signal u(t), it is called a causal system. This equation means that the output of the
system does not depend on future values of the input. When a system G has a causal inverse
G−1, it is called causally invertible.

The conditions (2) and (3) in IQC Theorem are only related with one of Δ and G(s),
while the condition (1) is related to both. Therefore, before checking condition 1, the other

tT

u

0 tT

PT u

0

PT

Figure 14.2 Truncation of a signal
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two conditions should be satisfied. When G(s) is strictly proper, condition 1 is automatically
satisfied.

Next, we use this theorem to derive the robust stability conditions for several kinds of uncer-
tainty.

Example 14.1 As mentioned earlier, the IQC for a norm-bounded uncertainty (‖Δ‖∞ ≤ 1)
is specified by

Π =
[
I 0
0 −I

]

.

Therefore, condition 3 of Theorem 14.1 becomes
[
G(jω)

I

]∗ [
I 0
0 −I

] [
G(jω)

I

]

= G∗(jω)G(jω) − I ≤ −εI ⇐⇒ ‖G‖∞ < 1.

Then, for any τ ∈ [0, 1], obviously det(I − τG(j∞)Δ(j∞)) �= 0 holds true due to the norm
conditions of G,Δ. Therefore, condition 1 is satisfied. Next, w = τΔz obviously satisfies
z∗z − w∗w ≥ 0 since ‖τΔ‖∞ = τ‖Δ‖∞ ≤ τ ≤ 1. So condition 2 is also satisfied. Hence, the
small-gain condition ‖G‖∞ < 1 ensures the robust stability. In fact, this proves the sufficiency
of the small-gain theorem.

Example 14.2 The IQC about a positive real uncertainty (Δ(jω) + Δ∗(jω) ≥ 0) is specified
by

Π =
[
0 I
I 0

]

.

So, condition 3 of Theorem 14.1 becomes
[
G(jω)

I

]∗ [
0 I
I 0

] [
G(jω)

I

]

= G∗(jω) + G(jω) ≤ −εI < 0.

That is, −G(s) must be strongly positive real. To verify the condition 1, we need only prove
that det(I − τG(j∞)Δ(j∞)) �= 0 holds for any τ ∈ [0, 1].

Assume that [I − τG(j∞)Δ(j∞)]z = 0 holds for a vector z �= 0 when τ �= 0. Setting
w = τΔ(j∞)z, then z = G(j∞)w and w �= 0 hold by assumption. Based on these relations
and the features of G and Δ, a contradiction

0 ≤ z∗(τΔ(j∞) + τΔ∗(j∞))z = z∗w + w∗z

= w∗(G(j∞) + G∗(j∞))w ≤ −εw∗w

< 0

occurs so long as τ �= 0. In addition, it is clear that I − τG(j∞)Δ(j∞) = I when τ = 0.
Next, the condition 2 follows from

w∗z + z∗w = τz∗(Δ + Δ∗)z ≥ 0

in which w = τΔz. From the IQC theorem, strongly positive realness of−G(s) guarantees the
robust stability of this system. As such, we have derived the positive real theorem of Chapter 13.
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14.3 Applications of IQC

In the previous section, we have shown the applications of IQC theory to systems with
norm-bounded or positive real uncertainty. In this section, more examples are illustrated. It
should be noted that different from Chapter 13, in the IQC framework, we consider systems
with positive feedback rather than negative feedback. For the relation to the results in Chapter
13, we need just replace G by−G in following examples:

Example 14.3 Nonlinear time-varying block δ(t)I (|δ(t)| ≤ 1):
As described in the constant scalar block, the IQC is specified by matrix

Π =
[

X Y
Y T −X

]

, X = XT ≥ 0, Y + Y T = 0.

So, as long as G(s) satisfies
[
G(jω)

I

]∗ [
X Y
Y T −X

] [
G(jω)

I

]

< 0 ∀ω,

the closed-loop system is stable.

Example 14.4 Static nonlinearity in a sector [α, β] (Figure 14.3):
This static nonlinearity locates in a sector bounded by two straight lines whose slopes are

α and β. Here, w = Δz = φ(z) satisfies

(φ(z) − αz)(βz − φ(z)) ≥ 0

for arbitrary z. The inequality can be rewritten as

0 ≤
[
z φ(z)

]
[
−α

1

]
[
β −1

]
[

z
φ(z)

]

=
[
z φ(z)

]
[

β
−1

]
[
−α 1

]
[

z
φ(z)

]

.

Finally, in order to express it as an IQC about an Hermitian matrix Π, we add up both sides
in the previous equation. Then, we get the following matrix Π that specifies the IQC:

Π =
[
−2αβ α + β
α + β −2

]

.

Expansion of condition 3 of IQC theorem shows that the inequality

0 >

[
G(jω)

I

]∗ [
−2αβ α + β
α + β −2

] [
G(jω)

I

]

= −2αβG∗G + (α + β)(G∗ + G) − 2

holds for any frequency ω. When αβ �= 0, this means that

0 > −αβ

∣
∣
∣
∣G − α + β

2αβ

∣
∣
∣
∣

2

+ αβ

∣
∣
∣
∣
α − β

2αβ

∣
∣
∣
∣

2

.
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0

αz

βz

z

φ(z)

Figure 14.3 Static nonlinearity in a sector

If β > α > 0, then ∣
∣
∣
∣G(jω) − α + β

2αβ

∣
∣
∣
∣ <

∣
∣
∣
∣
α − β

2αβ

∣
∣
∣
∣ ∀ω.

On the other hand, if α < 0 < β, then
∣
∣
∣
∣G(jω) − α + β

2αβ

∣
∣
∣
∣ >

∣
∣
∣
∣
α − β

2αβ

∣
∣
∣
∣ ∀ω.

Finally, in the case of β > α = 0, the inequality becomes

0 > β(G∗ + G) − 2 ⇒ R[G(jω)] <
β

2
∀ω.

These conditions are exactly the same as the circle criterion.

Example 14.5 Popov-type IQC: An essential feature of skew-symmetric matrix is that its
quadratic form is zero. Noting this, we can always add an Hermitian matrix composed of a
skew-symmetric matrix to the Hermitian matrix Π that specifies the IQC:

Πasym =
[

0 H∗(jω)
H(jω) 0

]

,H(jω) + H∗(jω) = 0.

For example, for the conic nonlinearity discussed in Example 14.4, the Popov criterion may be
derived as follows by setting α = 0 in the Hermitian matrix Π and adding ηβΠasym (η > 0)
with H(jω) = jω.

Expansion of condition 3 of IQC theorem yields

0 > βG∗ + βG − 2 + ηβ(HG + G∗H∗)

= β(G + G∗) − 2 + ηβ[jωG + (jωG)∗]

= 2β R[(1 + jηω)G] − 2.
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From it, the following Popov criterion is obtained:

R[(1 + jηω)G] <
1
β

.

Example 14.6 Quadratic stability for polytopic uncertainty: Assume that the uncertainty set
D is a polytope whose vertices are Δ1, . . . ,ΔN ∈ R

m×l and the origin. We try to derive the
stability conditions for the time-varying system:

ẋ = (A + BΔ(t)C)x, Δ(t) ∈ D. (14.5)

According to Chapter 13, the result obtained from a common Lyapunov function V (x) =
xT Px is that the system is quadratically stable if there is a positive definite matrix P satisfying
the following condition:

P (A + BΔiC) + (A + BΔiC)T P < 0 ∀i = 1, . . . , N (14.6)

at all vertices Δi. In this condition, the number of variables is n(n + 1)/2 and the dimension
of LMI is equal to Nn .

Meanwhile, different sufficient conditions may be derived via application of IQC theory.
The basic idea is containing the matrix polytope with an ellipsoid first and then deriving the
robust stability condition for all uncertainties inside the ellipsoid. Note that an open ellipsoid
of matrices can be described by the following inequality:

Q + SΔ + ΔT ST + ΔT RΔ > 0 ∀Δ ∈ D. (14.7)

To ensure that it corresponds to an ellipsoid, there must be R < 0. Then, the foregoing inequal-
ity is equivalently transformed to

[
Q + SΔ + ΔT ST ΔT

Δ −R−1

]

> 0. (14.8)

Since this inequality is affine in Δ, it is satisfied for all Δ ∈ D iff inequality

Q + SΔi + ΔT
i ST + ΔT

i RΔi > 0 ∀i = 1, . . . , N (14.9)

is true at all vertices of D. Obviously, uncertainty Δ that satisfies the matrix inequality (14.7)
also satisfies an IQC specified by

Π =
[

Q S
ST R

]

.

Further, the current system is equivalent to the closed-loop system consisting of positively
feedback connected linear system G(s) = (A,B,C, 0) and uncertainty Δ. It is clear that
condition 1 of IQC theorem is satisfied due to G(j∞) = 0. Secondly, condition 2 can be proved
by multiplying (14.8) with τ ∈ [0, 1]. Therefore, by Theorem 14.1 we know that the condition

[
G(jω)

I

]∗
Π

[
G(jω)

I

]

=
[
(jωI − A)−1B

I

]∗ [
C T 0

0 I

]

Π
[
C 0
0 I

] [
(jωI − A)−1B

I

]

< 0 ∀ω (14.10)
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guarantees the robust stability. Finally, applying KYP lemma, we obtain a new robust stability
condition: [

CT QC CT S
ST C R

]

+
[
AT P + PA PB

BT P 0

]

< 0. (14.11)

In this condition, the variables are matrices (P,Q, S,R) which have n(n + 1)/2 + (n +
m)(n + m + 1)/2 elements. In this sense, it is unfavorable compared with the condition
(14.6). However, the dimension of this LMI is n + m + Nl , so it is more beneficial than (14.6)
when the number N of vertices is very large.

By the way, it is proved in Ref. [67] that these two quadratic stability conditions are equiv-
alent in theory.

14.4 Proof of IQC Theorem∗

We prove the IQC theorem in this section. Here, signal norm used is only 2-norm and system
norm is the norm ‖G‖ = sup

u
‖y‖2/‖u‖2 (u and y are, respectively, the input and output of

system G) induced by signal 2-norm. For convenience, we omit the subscript of norm. In
addition, the set of n-dimensional signals having bounded 2-norm is denoted by L

n
2 .

By assumptions, G(s) and Δ are both bounded. So we need only prove that (I − GΔ)−1 is
bounded. The proof is divided into three steps:

Step 1: Prove that for any z ∈ L
l
2 and τ ∈ [0, 1], there is a finite constant c0 > 0 satisfying

‖z‖ ≤ c0‖z − τGΔ(z)‖.

Here, for simplicity we use the notation

σ(z, w) =
∫ ∞

−∞

[
z(jω)
w(jω)

]∗
Π(jω)

[
z(jω)
w(jω)

]

dω

and decompose the Hermitian matrix Π(jω) into

Π(jω) =
[
Π11(jω) Π12(jω)
Π∗

12(jω) Π22(jω)

]

.

The norm ‖Πij ‖ of each block is denoted as mij .
The following equation can be confirmed via direct expansion:

[
z + δ

w

]∗
Π

[
z + δ

w

]

−
[

z
w

]∗
Π

[
z
w

]

= δ∗Π11δ + 2R(z∗Π11δ + w∗Π12δ).

So, for all quadratically integrable signals z, δ, w, inequality

|σ(z + δ, w) − σ(z, w)| =
∣
∣
∣
∣

∫ ∞

−∞
{δ∗Π11δ + 2R(z∗Π11δ + w∗Π12δ)} dω

∣
∣
∣
∣

≤
∫ ∞

−∞
{|δ∗Π11δ| + 2|R(z∗Π11δ)| + 2|R(w∗Π12δ)|}dω

≤ m11‖δ‖2 + 2‖δ‖m11‖z‖ + 2‖δ‖m12‖w‖
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holds. Further, applying the inequality 2ab = 2( a√
ε
)(
√

εb) ≤ a2/ε + εb2 to product terms
2m11‖δ‖ · ‖z‖ and 2m12‖δ‖ · ‖w‖, we get

|σ(z + δ, w) − σ(z, w)| ≤ c(ε)‖δ‖2 + ε(‖z‖2 + ‖w‖2)

in which c(ε) = m11 + m2
11/ε + m2

12/ε. Then, multiplying both sides of (14.2) by
w∗(jω), w(jω) and integrating, we have

σ(Gw , w) ≤ −ε‖w‖2 ∀w ∈ L
m
2 .

Let τ ∈ [0, 1] and w = τΔ(z), z ∈ L
l
2, ε1 = ε

2+4‖G‖2 . As τΔ satisfies the IQC about Π and
σ(z, w) − σ(Gw , w) ≤ |σ(z, w) − σ(Gw , w)|, the following inequality holds:

0 ≤ σ(z, w) = σ(Gw , w) + σ(z, w) − σ(Gw , w)

≤ −ε‖w‖2 + c(ε1)‖z − Gw‖2 + ε1(‖z‖2 + ‖w‖2).

Moreover, since ‖z‖2 = ‖Gw + (z − Gw)‖2 ≤ 2‖z − Gw‖2 + 2‖Gw‖2 (parallelogram law)
and ‖Gw‖ ≤ ‖G‖‖w‖, we have

0 ≤ −ε‖w‖2 + (c(ε1) + 2ε1)‖z − Gw‖2 + ε1(2‖Gw‖2 + ‖w‖2)

≤ −ε‖w‖2 + (c(ε1) + 2ε1)‖z − Gw‖2 + ε1(2‖G‖2‖w‖2 + ‖w‖2)

≤ − ε

2
‖w‖2 + (c(ε1) + 2ε1)‖z − Gw‖2.

So ‖w‖ ≤ c‖z − Gw‖. Thus, there holds

‖z‖ ≤ ‖Gw‖ + ‖z − Gw‖ ≤ ‖G‖‖w‖ + ‖z − Gw‖ ≤ c0‖z − Gw‖.

Step 2: Prove that if (I − τGΔ)−1 is bounded for a τ ∈ [0, 1], then (I − νGΔ)−1 remains
bounded for all ν ∈ [0, 1] satisfying |ν − τ | < 1/(c0‖G‖‖Δ‖).

(I − τGΔ)−1 is causal due to condition 2. Define a truncated signal as

zT = (I − τGΔ)−1P T (z − τGΔ(z)).

From causality we have P T z = P T zT . Applying the result of Step 1 to zT , we get

‖P T z‖ = ‖P T zT ‖ ≤ ‖zT ‖
≤ c0‖zT − τGΔ(zT )‖ = c0‖P T (z − τGΔ(z))‖
= c0‖P T (z − νGΔ(z)) + (ν − τ)P T GΔ(z)‖
≤ c0‖P T (z − νGΔ(z))‖ + c0‖GΔ‖|ν − τ | · ‖P T z‖,

in which the triangle inequality and the submultiplicativity of norm have been used. Since
|ν − τ | < 1/(c0‖G‖‖Δ‖) ≤ 1/(c0‖GΔ‖), we have

‖P T (z − νGΔ(z))‖ ≥ (1 − c0‖GΔ‖|ν − τ |)
c0

‖P T z‖

⇒ ‖z − νGΔ(z)‖ ≥ (1 − c0‖GΔ‖|ν − τ |)
c0

‖z‖.
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Let a signal be u = (I − νGΔ)z. Then z = (I − νGΔ)−1u. This implies that u, z are the
input and output of (I − νGΔ)−1. As 1 − c0‖GΔ‖|ν − τ | > 0, the aforementioned inequality
implies that z must be bounded as long as u is bounded. Namely, the system (I − νGΔ)−1 is
bounded.

Step 3: Cover the interval [0, 1] by a finite number of intervals.
Let the length of each interval be less than1/(c0‖G‖‖Δ‖). When τ = 0, (I − τGΔ)−1 = I

is obviously bounded. Thus, (I − τGΔ)−1 is still bounded in the first closed interval. Since
the left vertex of the second closed interval is contained in the first one, the boundedness is true
at this point. Next, repeat the same argument for every interval behind the second. Eventually,
we get that (I − τGΔ)−1 is bounded for all τ ∈ [0, 1]. So the boundedness of (I − GΔ)−1 at
the point τ = 1 is proved.

Notes and References

The materials of this chapter are taken from Ref. [67].
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15
H2 Control

In control systems, the transient response is an extremely important specification. The H2
norm of a signal is its squared area. So the response of a signal is faster when its H2 norm is
smaller. Namely, H2 norm is a very suitable indicator for judging the pros and cons of transient
responses. Further, a disturbance or reference input can be regarded as the impulse response
of their dynamics. So if this dynamics is connected to the closed-loop transfer function as
a weighting function, the response of disturbance or reference input can be regarded as the
impulse response of the weighted closed-loop transfer function. In the following section we
will prove that the 2-norm of the impulse response of a transfer function is equal to the H2
norm of the transfer function itself. Therefore, in order to improve the quality of response
to disturbance and reference input, we should make the H2 norm of the closed-loop transfer
function as small as possible in design. This chapter discusses how to carry out such control
design systematically. A case study is provided to illustrate the H2 control design and the
importance of actuator/sensor location.

15.1 H2 Norm of Transfer Function

Firstly, we consider how to calculate the H2 norm of a stable transfer matrix, as well as the
relation between theH2 norm of a transfer matrix and its input–output. Assume that the transfer
matrix is given by

G(s) = (A, B, C, D). (15.1)

Its H2 norm is defined as

||G||2 :=

√
1
2π

∫ ∞

−∞
Tr[G∗(jω)G(jω)]dω. (15.2)

Denote the inverse Laplace transform of G(s) (viz., its impulse response) by g(t)1. Since the
impulse input is nonzero only at t = 0, the impulse response g(t) of a stable transfer function

1 Note that in general this is not a scalar, but a matrix.

Robust Control: Theory and Applications, First Edition. Kang-Zhi Liu and Yu Yao.
© 2016 John Wiley & Sons Singapore Pte. Ltd. Published 2016 by John Wiley & Sons, Singapore Pte. Ltd.
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satisfies g(t) = 0 (∀t < 0). Thus, according to Parseval’s theorem, the H2 norm of transfer
matrix G(s) can be calculated by

||G||2 = ‖g‖2 =

√∫ ∞

0
Tr[gT (t)g(t)] dt . (15.3)

15.1.1 Relation with Input and Output

Consider the scalar case first. In this case, the output signal to the unit impulse input is y(t) =
g(t). From (15.3), we know that the H2 norm of the transfer function is equal to the 2-norm
of its impulse response.

Now, what about the multiple-input multiple-output case? To analyze it in detail, we con-
sider a transfer matrix with m inputs and assume that {ui} (i = 1, . . . ,m) is an orthonormal
set of vectors in the real space R

m, namely,

UT U = UUT = I, U = [u1, . . . , um].

Obviously, the response to the unit impulse input wi(t) = uiδ(t) is yi(t) = g(t)ui. Then, there
holds

m∑

i=1

‖yi‖2
2 =

m∑

i=1

∫ ∞

0
yT

i (t)yi(t)dt =
m∑

i=1

∫ ∞

0
uT

i gT (t)g(t)uidt

=
∫ ∞

0

m∑

i=1

Tr (gT (t)g(t)uiu
T
i )dt =

∫ ∞

0
Tr (gT (t)g(t)UUT )dt

=
∫ ∞

0
Tr (gT (t)g(t))dt

= ‖G‖2
2.

The properties of matrix trace, Tr (AB) = Tr (BA) and
∑

Tr (Ai) = Tr (
∑

Ai), have been
used. This equation shows that the square of H2 norm of a transfer matrix is equal to the sum of
the squared areas of all the responses corresponding to input in the orthonormal set of impulse
vectors. Secondly, it is clear that

‖G‖2
2 =

∫ ∞

0
Tr (g(t)gT (t))dt

also holds.
As another interpretation, we may prove that the square of H2 norm of a transfer matrix is

equal to the variance of its steady-state response to a unit white noise vector2. That is, when
the expectation and covariance of an input u(t) are

E[u(t)] = 0 ∀t (15.4)

2 The signal u(t) satisfying (15.4) and (15.5) is called a unit white noise vector.

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

324 Robust Control

and
E[u(t)uT (τ)] = δ(t − τ)I , (15.5)

respectively, the expectation E[y(t)] of its output y is also zero. The variance of y at t is3

E[yT (t)y(t)] = E
[∫ t

0

∫ t

0
(g(t − α)uT (α))g(t − β)u(β)dαdβ

]

= E
[∫ t

0

∫ t

0
Tr

[
gT (t − α)g(t − β)u(β)uT (α)

)
dαdβ

]

=
∫ t

0

∫ t

0
Tr (gT (t − α)g(t − β)E(u(β)uT (α)))dαdβ

=
∫ t

0

∫ t

0
Tr (gT (t − α)g(t − β)δ(β − α)I)dαdβ

=
∫ t

0
Tr (gT (t − β)g(t − β))dβ

=
∫ t

0
Tr (gT (τ)g(τ))dτ (τ = t − β).

So, there holds the following equation:

lim
t→∞

E[yT (t)y(t)] = ‖G‖2
2. (15.6)

This shows that the variance of the steady-state output is equal to the square of the H2 norm
of the system.

For this reason, in filter design where the purpose is to remove noise from the measured
data, the H2 method is a very effective tool. For related details, refer to Ref. [2].

15.1.2 Relation between Weighting Function and Dynamics
of Disturbance/Noise

In general, a disturbance is not an impulse and a noise is not white. They all have certain
dynamics, that is, possessing a certain frequency characteristic. Now assume that the frequency
characteristic of disturbance d is W (s). From Figure 15.1 we know that the output y(t) is
the impulse response of weighted transfer function G(s)W (s). To attenuate the disturbance
response, we should minimize

‖y‖2 = ‖GW ‖2. (15.7)

G

yd

W

δ

Figure 15.1 Response of disturbance with a frequency characteristic W (s)

3 In the deduction, the property of impulse function,
∫ t

0 f(τ)δ(τ − α)dτ = f(α) (α ∈ [0, t]), is used.
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Wd
∧

ω

Figure 15.2 Frequency characteristics of weighting function and disturbance

Such a problem is called a control problem with weighting function, and W (s) is called a
weighting function. Further, even if the frequency characteristic of a disturbance is not known
accurately, its upper bound can be used as the weighting function. In fact, when the amplitude
of frequency response of a disturbance d(t) is less than |W (jω)| (refer to Figure 15.2), that is,

|d̂(jω)| ≤ |W (jω)| ∀ ω,

then since
‖Gd̂‖2 ≤ ‖GW ‖2,

the disturbance response is suppressed if ‖GW ‖2 is minimized.
In dealing with practical problems, disturbance of the system must have certain dynamics

(frequency response). In the design of feedback systems, a better result can be obtained when
this disturbance characteristic is taken into account. So, control designs using weighting func-
tion are better consistent with the engineering practice. In a word, the disturbance model must
be used as a weighting function in practical designs.

15.1.3 Computing Methods

In this section, we consider how to calculate the H2 norm of a transfer matrix. Two more
methods are introduced besides (15.3), the impulse response-based method.

First, for the existence of H2 norm of transfer matrix G(s) = (A,B,C,D), the DC term D
must be zero. If not, the impulse response of G(s) contains an impulse term. But the squared
area of an impulse signal is not bounded. So the squared area of the output of G(s) also
diverges. Mathematically, this can be understood as follows. In a sufficiently high-frequency
band, since (jω − A)−1 ≈ 0,

G(jω) ≈ D, ωN ≤ ω < ∞

holds. However, integrating Tr(DT D) 
= 0 in the band [ωN ,∞), the integral diverges. So, we
need only consider strictly proper, stable transfer matrix.

As G(s) is strictly proper, limR→∞R · G∼(Rejθ)G(Rejθ) = 0 holds. Therefore, the inte-
gral limR→∞

∫ 3π/2
π/2 Tr(G∼(Rejθ)G(Rejθ))d(Rejθ) along the semicircle with infinite radius

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

326 Robust Control

Im

Reo

C

Figure 15.3 Integration path

is also zero. So we have

||G||22 =
1
2π

∫ ∞

−∞
Tr(G∗(jω)G(jω))dω

=
1

2πj

∮

C

Tr(G∼(s)G(s))ds .

As shown in Figure 15.3, the last line integral is along the imaginary axis and the semicircle
on the left half-plane whose radius is infinite. According to the residue theorem, ||G||22 is equal
to the sum of residues of Tr(G∼(s)G(s)) at all of its poles in the left half-plane. Hence, in
principle the calculation of H2 norm reduces to that of residue. This method is suitable for
manual calculation, but not good for computer calculation.

Example 15.1 Let the input of stable transfer function P (s) = 1/(s + 10) be u(t) and the
output be y(t).

1. Calculate the norm ‖P‖2 of the transfer function.
2. When the input is u(t) = 0.1e−t, compute the norm ‖y‖2 of output.

Solution (1) First, the rational function P (−s)P (s) = 1/(10 − s)(10 + s) has a pole p =
−10 in the closed left half-plane. The residue at this pole is

lim
s→−10

(s + 10)P (−s)P (s) =
1
20

.

So ‖P‖2 =
√

5/10.
(2) As u(t) is the unit impulse response of transfer function W (s) = 0.1/(s + 1), y(t)

can be viewed as the unit impulse response of G = WP = 0.1/(s + 1)(s + 10). Thus, we
have ‖y‖2 = ‖WP‖2. G(−s)G(s) = 0.01/(1 − s)(10 − s)(1 + s)(10 + s) has two poles
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p = −1,−10 in the closed left half-plane. Its residues at these two poles are

lim
s→−1

(s + 1)G(−s)G(s) =
10−2

2 × 11 × 9

lim
s→−10

(s + 10)G(−s)G(s) = − 10−3

2 × 11 × 9
.

So ‖y‖2 =
√

5/11 × 10−2 (compare with the impulse response-based calculation in Example
2.20). 

To find an algorithm suitable for computer, we consider how to make full use of the
state-space description of G(s). The following lemma gives such a computation method.

Lemma 15.1 Assume that A is stable in the transfer matrix G(s) = (A,B,C, 0). Then

||G||22 = Tr(BT LoB) = Tr(CLcC
T ) (15.8)

holds. Here, Lc and Lo are, respectively, the controllability Gramian and the observability
Gramian which satisfy the following Lyapunov equations:

ALc + LcA
T + BBT = 0, AT Lo + LoA + CT C = 0. (15.9)

Proof. The inverse Laplace transform of G(s) is

g(t) = L−1(G) =
{

CeAtB, t ≥ 0
0, t < 0.

Based on it, we have

||G||22 =
∫ ∞

0
Tr (g(t)gT (t)) dt =

∫ ∞

0
Tr (CeAtBBT eAT tCT ) dt .

Set

Lc =
∫ ∞

0
eAtBBT eAT t dt .

From the dual of Theorem 4.7, we see that this matrix is the controllability Gramian of (A,B)
and satisfies ALc + LcA

T + BBT = 0. As such, we have proved the first statement.
Finally, the second statement can be proved based on ||G||22 =

∫ ∞
0 Tr(gT g)dt (refer to

Exercise 15.3). •

15.1.4 Condition for ‖G‖2 < γ

The next lemma follows immediately from the calculation method of H2 norm. This lemma
can be used to solve the singular H2 control problem.
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Lemma 15.2 The following statements are equivalent:

1. A is stable and ‖C(sI − A)−1B‖2 < γ.
2. There is a matrix X = XT > 0 satisfying

XA + AT X + CT C < 0 (15.10)

Tr(BT XB) < γ2. (15.11)

3. There exist matrices X = XT and W = WT satisfying
[
XA + AT X CT

C −I

]

< 0 (15.12)

[
W BT X
XB X

]

> 0 (15.13)

Tr(W ) < γ2. (15.14)

Proof. (1) ⇒ (2) If (1) is true, there must be a sufficiently small ε > 0 such that
∥
∥
∥
∥

[
C√
εI

]

(sI − A)−1B

∥
∥
∥
∥

2
< γ

still holds even if C is augmented to [ C√
εI]. Applying Lemma 15.1 to this new system, we have

that there is an X = XT ≥ 0 meeting

XA + AT X + CT C = −εI < 0 (15.15)

and

Tr(BT XB) < γ2.

If matrix X is singular, there must be a nonzero vector v satisfying Xv = 0. Multiplying both
sides of (15.15) by vT and v, respectively, we get vT CT Cv < 0. This is a contradiction. There-
fore, X > 0 must be true.

(2) ⇒ (1) According to Theorem 4.7, A is stable when (15.10) has a solution X > 0. Here,
set Ĉ as the matrix defined as follows:

0 > XA + AT X + CT C = −ĈT Ĉ.

From Lemma 15.1, we have
∥
∥
∥
∥

[
C

Ĉ

]

(sI − A)−1B

∥
∥
∥
∥

2
< γ.

So, ‖C(sI − A)−1B‖2 < γ holds.
(2) ⇔ (3) According to Schur’s lemma, (15.10) and (15.12) are equivalent. Further, we can

prove that (15.11) is equivalent to (15.14) and W − BT XB > 04. Finally, W − BT XB > 0
and X > 0 are equivalent to (15.13). •
4 When (15.14) and W − BT XB > 0 hold, (15.11) is obviously true. On the contrary, when (15.11) is
true, we have δ = γ2 − Tr(BT XB) > 0. Consider ε < δ/n (n is the dimension of matrix X) and matrix
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15.2 H2 Control Problem

This section describes the H2 control problem and related assumptions. Let us look at an
example first.

Example 15.2 2-DOF system
The main purpose of the 2-degree-of-freedom system is to improve the performance of sig-

nal tracking. So we hope to be able to exploit some norm to evaluate the transient response
properly. H2 norm is ideally suited for this purpose.

In addition, in order to limit the control input, we also want to take the input as a perfor-
mance output. However, in reference tracking, the reference input is a persistent signal such as
step signal. In order to maintain such an output, the input is generally a persistent signal in the
steady state. This means that its H2 norm is not finite. However, the steady-state value of the
input is necessary for achieving reference tracking and should not be restricted. What should be
limited is its rate of change in the transient state. In order to remove the steady-state value of the
input, we may use W−1

r , the inverse of reference model, to filter the input. For example, for the
step signal r(t) = 1(t), its model is Wr(s) = 1/s. Since its inverse W−1

r (s) = s is a differen-
tiator, when the input is filtered by W−1

r (s) = s, the obtained signal is the first derivative u̇(t)
of the input, that is, the rate of change. In this case, the steady-state value of the input is a con-
stant and its derivative is zero. Thus, we achieve the purpose of eliminating steady-state input.

Such treatment is equivalent to Figure 15.4. This figure is the block diagram where Wr is
moved behind the tracking error, and Wu is a stable weighting function used to penalize the
transient of input. The input–output relationship of the system can be written as

⎡

⎢
⎢
⎣

z1

z2

w
y

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

Wr −WrP
0 Wu

I 0
0 P

⎤

⎥
⎥
⎦

w
u

= G
w
u

u = K
w
y

.

Wr
−

yw

z1

u
PK

Wu z2

Figure 15.4 H2 tracking control problem of 2-DOF system

W = εI + BT XB . First, W − BT XB = εI > 0. Second, Tr(W ) = nε + Tr(BT XB) = nε + γ2 − δ = γ2 −
n(δ/n − ε) < γ2 holds. This indicates that they are equivalent.
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G

K

y u

z w

Figure 15.5 Generalized feedback system

Note also that the external input w has been converted to a unit impulse. Hence, by the rela-
tionship between the H2 norm of a transfer matrix and its input–output, we need only minimize

the H2 norm of the closed-loop transfer function from w to [z1
z2

] in order to achieve the goals.

This problem is called an H2 control problem.

In the following sections, we consider the system shown in Figure 15.5.

Definition 15.1 The so-called H2 optimal control problem is to seek a proper controller K(s)
such that the closed-loop system is stable and the H2 norm of the transfer matrix Hzw (s)
from w to z is minimized. A controller meeting this specification is called an H2 optimal con-
troller. In addition, for any given γ > 0, designing a controller satisfying ‖Hzw‖2 < γ is called
γ-optimal H2 control problem. Such controller is called a γ-optimal H2 controller.

Assume that a state-space realization of the generalized plant G is

G(s) =

⎡

⎣
A B1 B2
C1 0 D12
C2 D21 0

⎤

⎦ . (15.16)

Note that both D11 and D22 are assumed to be zero. For the D11 
= 0 case, refer to Exercise
15.7 or Ref. [100].

Further, we make the following assumptions:

(A1) (A,B2) is stabilizable and (C2, A) is detectable.
(A2) D12 has full column rank and DT

12D12 = I; D21 has full row rank and D21D
T
21 = I .

(A3) For all ω,

[
A − jωI B2

C1 D12

]

has full column rank.

(A4) For all ω,

[
A − jωI B1

C2 D21

]

has full row rank.

Assumption (A1) is for the stabilization of G(s) by output feedback. Assumptions (A2), (A3),
and (A4) are called the nonsingularity condition and are assumed in order to solve the H2
control problem by using the Riccati equation. Note that the condition DT

12D12 = I in (A2) is
assumed to simplify the description of solution; it is not a hard constraint5.

5 Refer to Exercise 15.6 for the technique on how to convert a general problem equivalently to a problem satisfying
this condition.
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A problem meeting these assumptions is called a nonsingular problem. Its solution is very
simple. In contrast, a problem not satisfying the condition (A2)–(A4) is called a singular prob-
lem. For the γ-optimal problem ‖Hzw‖2 < γ in singular problems, we will introduce a method
based on linear matrix inequality (LMI) in Section 15.5. However, there is still no good method
until now for the optimal problem minK‖Hzw‖2 in the singular case.

15.3 Solution to Nonsingular H2 Control Problem

This section explains how to solve aH2 control problem based on the nonsingularity conditions
(A1)–(A4). First, according to Corollary 9.1, the following two Hamiltonians

H :=
[

A 0
−CT

1 C1 −AT

]

−
[

B2
−CT

1 D12

]
[
DT

12C1 BT
2

]
(15.17)

J :=
[

AT 0
−B1B

T
1 −A

]

−
[

CT
2

−B1D
T
21

]
[
D21B

T
1 C2

]
(15.18)

belong to dom(Ric). Further, X := Ric(H) ≥ 0 and Y := Ric(J) ≥ 0 hold. For simplicity
of presentation, we define matrices

F2 := −(BT
2 X + DT

12C1), L2 := −(Y CT
2 + B1D

T
21)

and

AF2
:= A + B2F2, CF2

:= C1 + D12F2

AL2
:= A + L2C2, BL2

:= B1 + L2D21.

AF2
and AL2

are stable according to Theorem 9.2.
The solution of H2 control problem is given by the following theorem.

Theorem 15.1 Assume (A1)–(A4). Then, the H2 optimal controller is unique and given by

Kopt(s) :=
[
A + B2F2 + L2C2 −L2

F2 0

]

. (15.19)

Moreover, the minimal H2 norm of the closed-loop transfer matrix is given by

min ||Hzw ||22 = Tr(BT
1 XB1) + Tr(F2Y FT

2 ). (15.20)

In addition, the following theorem gives the solution to the γ-optimal control problem.

Theorem 15.2 Assume (A1)–(A4). Then, for any γ(> min ||Hzw ||2), all γ-optimal H2
controllers satisfying ||Hzw ||2 < γ are characterized by the transfer matrix from y to u in
Figure 15.6. Here, the coefficient matrix is

M(s) =

⎡

⎣
A + B2F2 + L2C2 −L2 B2

F2 0 I
−C2 I 0

⎤

⎦ . (15.21)
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M

Q

u y

Figure 15.6 Parameterization of γ-optimal H2 controller

Q is any strictly proper, stable transfer matrix with a compatible dimension and satisfies
||Q||22 < γ2 − min ||Hzw ||22.

γ-Optimal controller is given in the form of linear fractional transformation about the
free parameter Q. When Q = 0, we get the optimal controller Kopt. The proofs of these two
theorems are provided in the following section.

15.4 Proof of Nonsingular Solution

15.4.1 Preliminaries

As a preparation, we first state two lemmas about the properties of Riccati equation.

Lemma 15.3 For X = Ric(H) and Y = Ric(J), the following equations hold:

1. AT
F2

X + XAF2
+ CT

F2
CF2

= 0, XB2 + CT
F2

D12 = 0.

2. AL2
Y + Y AT

L2
+ BL2

BT
L2

= 0, C2Y + D21B
T
L2

= 0.

Proof. Only part 1 is proved. Part 2 can be proved in the same manner (refer to Exercise
15.4).

First, the Riccati equation about X is

(A − B2D
T
12C1)

T X + X(A − B2D
T
12C1) − XB2B

T
2 X + CT

1 (I − D12D
T
12)C1 = 0.

It can be arranged into

(A + B2F2)
T X + X(A + B2F2) + XB2B

T
2 X + CT

1 (I − D12D
T
12)C1 = 0.

Substituting BT
2 X = −(F2 + DT

12C1) into this equation and completing square by using
DT

12D12 = I , we have

XB2B
T
2 X + CT

1 (I − D12D
T
12)C1 = FT

2 F2 + FT
2 DT

12C1 + CT
1 D12F2 + CT

1 C1

= (C1 + D12F2)
T (C1 + D12F2).

So AT
F2

X + XAF2
+ CT

F2
CF2

= 0 is true. Finally, it can be easily verified that
XB2 + CT

F2
D12 = 0 via the substitution of CF2

and F2. •
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Lemma 15.4 Define the following stable transfer matrices:

U :=
[
AF2

B2
CF2

D12

]

, V :=
[
AL2

BL2

C2 D21

]

Gc(s) :=
[
AF2

I

CF2
0

]

, Gf (s) :=
[
AL2

BL2

I 0

]

.

Then, the following statements hold:

1. U∼U = I and U∼Gc is antistable.
2. V V ∼ = I and GfV ∼ is antistable.

Proof. (1) First of all, according to Lemma 15.3 U satisfies the condition of Theorem 9.5,
so U is an inner. Further,

UT (−s) =

[
−AT

F2
−CT

F2

BT
2 DT

12

]

.

Application of the formula of cascade connection yields

U∼(s)Gc(s) =

⎡

⎣
−AT

F2
−CT

F2
CF2

0
0 AF2

I

BT
2 DT

12CF2
0

⎤

⎦ .

Performing a similarity transformation on this transfer matrix with the transformation matrix

T = [I X
0 I ] and then substituting the equations

AT
F2

X + XAF2
+ CT

F2
CF2

= 0, BT
2 X + DT

12CF2
= 0

into the transformed transfer matrix, we obtain

U∼(s)Gc(s) =

⎡

⎣
−AT

F2
0 −X

0 AF2
I

BT
2 0 0

⎤

⎦ =

[
−AT

F2
−X

BT
2 0

]

.

Here, since the eigenvalues of AF2
are not observable, we have removed it from the transfer

matrix. Obviously, the transfer matrix is antistable.
Finally, statement 2 can be proved based on duality (Exercise 15.5). •

Remark 15.1 The transformation matrix used in the proof of Lemma 15.4 is in fact obtained
from an elementary transformation of matrix. Specifically, to know which pole can be elimi-
nated, it is better to transform the A matrix into a triangular or diagonal matrix. Therefore,
we focus on the equation AT

F2
X + XAF2

+ CT
F2

CF2
= 0 and consider how to eliminate the

nondiagonal block −CT
F2

CF2
. To this end, it is necessary to postmultiply the first column by

X and add it into the second column. The matrix description of this column transformation
is exactly the matrix T . The corresponding row transformation has a matrix description T−1,
that is, premultiplying the second row with −X and adding it to the first row. Through this
similarity transformation, we succeed in eliminating the nondiagonal block.
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15.4.2 Proof of Theorems 15.1 and 15.2

Set a transfer matrix as

M(s) =

⎡

⎣
A + B2F2 + L2C2 −L2 B2

F2 0 I
−C2 I 0

⎤

⎦ .

Then any stabilizing controller can be expressed as K(s) = F�(M,Q) with a stable Q(s) (see
Theorem 7.2). Thus, the block diagram of the closed-loop system is as shown in Figure 15.7.

Moreover, Hzw (s) can be written as Hzw (s) = F�(G,F�(M,Q)) = F�(N,Q) according to
Section 7.4.2 in which

N(s) =

⎡

⎢
⎢
⎣

AF2
−B2F2 B1 B2

0 AL2
BL2

0
CF2

−D12F2 0 D12
0 C2 D21 0

⎤

⎥
⎥
⎦ .

It is easy to see that N11 = GcB1 − UF2Gf , N12 = U , N21 = V , and N22 = 0. Expanding
Hzw and then substituting into it the transfer matrices U , V , Gc, and Gf defined in Lemma
15.4, we get

Hzw (s) = GcB1 − UF2Gf + UQV .

So,

‖Hzw‖2
2 =〈GcB1 − U(F2Gf − QV ), GcB1 − U(F2Gf − QV )〉

=‖GcB1‖2
2 − 2R[〈GcB1, U(F2Gf − QV )〉]

+ 〈U(F2Gf − QV ), U(F2Gf − QV )〉

=‖GcB1‖2
2 − 2R[〈U∼GcB1, F2Gf − QV 〉]

+ 〈U∼U(F2Gf − QV ), F2Gf − QV 〉

=‖GcB1‖2
2 + 〈F2Gf − QV , F2Gf − QV 〉

u1y1

y u

wz

Q

M

G

Figure 15.7 Block diagram of the closed-loop system
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=‖GcB1‖2
2 + ‖F2Gf‖2

2 − 2R[〈F2Gf ,QV 〉] + 〈QV ,QV 〉

=‖GcB1‖2
2 + ‖F2Gf‖2

2 − 2R[〈F2GfV ∼, Q〉] + 〈QV V ∼, Q〉

=‖GcB1‖2
2 + ‖F2Gf‖2

2 + ‖Q‖2
2

holds. In the derivation, we have used the fact that stable transfer matrix is orthogonal to anti-
stable transfer matrix (i.e., their inner product is zero; see Lemma 2.6), Lemma 15.4, and
the properties 〈X,Y 〉 = 〈Y,X〉, 〈Z∼X,Y 〉 = 〈Y,ZX 〉 of inner product. Obviously, ‖Hzw‖2
is minimum when Q = 0. According to Lemma 15.1, we have ‖GcB1‖2

2 = Tr(BT
1 XB1),

‖F2Gf‖2
2 = Tr(F2Y FT

2 ). So the minimum of ‖Hzw‖2 is Tr(BT
1 XB1) + Tr(F2Y FT

2 ). More-
over, the unique solution for the H2 optimal controller is Kopt = F�(M, 0) = M11.

In addition, it is easy to know from the preceding equation that the necessary and suffi-
cient condition for ‖Hzw‖2 < γ is ‖Q‖2

2 < γ2 − min‖Hzw‖2
2. This completes the proof for

Theorems 15.1 and 15.2.

15.5 Singular H2 Control

In this section, we consider the H2 control problems in which the nonsingularity condition is
not satisfied. In this case, it becomes extremely difficult to solve the optimization problem.
So we only discuss the γ-optimal H2 control problem. This problem can be solved by linear
matrix inequality (LMI) approach. The LMI solution is given by the following theorem.

Theorem 15.3 Assume that (A1) holds. Then, the following statements are true:

1. The γ-optimal H2 control problem is solvable iff there exist matrices X = XT , Y = Y T ,
A, B, C, and W = W T satisfying the following LMIs:

He

⎡

⎢
⎢
⎢
⎣

AX + B2C A 0

A YA + BC2 0

C1X + D12C C1 −1
2
I

⎤

⎥
⎥
⎥
⎦

< 0 (15.22)

⎡

⎢
⎣

W BT
1 BT

1 Y

B1 X I

Y B1 I Y

⎤

⎥
⎦ > 0 (15.23)

Tr(W ) < γ2. (15.24)

2. When the LMIs (15.22)–(15.24) hold, a γ-optimal H2 controller

K(s) = (AK , BK , CK , 0) (15.25)

is given by

AK = N−1(A − NBKC2X − Y B2CKMT − YAX )(M−1)T (15.26)

CK = C(M−1)T , BK = N−1
B. (15.27)
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M,N are nonsingular matrices satisfying

MNT = I − XY . (15.28)

Proof. Note that when D11 = 0, Dc = D11 + D12DKD21 = 0 requires DK = 0. Then, the
realization of the closed-loop system given in Section 7.4.1 becomes

⎡

⎣
ẋ

ẋK

z

⎤

⎦ =
Ac Bc

Cc Dc

⎡

⎣
x

xK

w

⎤

⎦ ,
Ac Bc

Cc Dc
=

⎡

⎣
A B2CK B1

BKC2 AK BKD21

C1 D12CK 0

⎤

⎦ .

According to Lemma 15.2, the γ-optimal H2 control problem has a solution if there exist
matrices P = PT and W = WT satisfying

[
PAc + AT

c P CT
c

Cc −I

]

< 0,

[
W BT

c P
PBc P

]

> 0, Tr(W ) < γ2.

According to the variable change method of Subsection 3.2.4, the matrix P can be factorized
as

PΠ1 = Π2, Π1 =
[

X I
MT 0

]

, Π2 =
[
I Y
0 NT

]

.

Performing congruent transformations on the first two matrix inequalities using diag(Π1, I)
and diag(I,Π1), respectively, we obtain the following equivalent inequalities:

[
ΠT

2 AcΠ1 + (ΠT
2 AcΠ1)

T (CcΠ1)
T

CcΠ1 −I

]

< 0,

[
W (ΠT

2 Bc)
T

ΠT
2 Bc ΠT

2 Π1

]

> 0.

After the substitution of coefficient matrices of the closed-loop system, we get

ΠT
2 AcΠ1 =

[
AX + BC A + BDC

A YA + BC

]

, ΠT
2 Bc =

[
B1

Y B1 + BD21

]

CcΠ1 = [C1X + D12C C1], ΠT
2 Π1 =

[
X I
I Y

]

via detailed computation. Here, the new variables A, B, C are defined by

A = NAKMT + NBKC2X + Y B2CKMT + YAX , B = NBK , C = CKMT .

All inequalities in the theorem are derived via the substitution of these equations. Further,

[X I
I Y ] > 0 follows from the inequality (15.23), which in turn is equivalent to XY − I > 0.

Therefore, the matrices M,N are nonsingular. •

In addition, Ref. [83] provides another form of LMI solution.
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15.6 Case Study: H2 Control of an RTP System

Rapid thermal processing (RTP) system is used for the thermal processing of semiconductor
wafers. It is capable of shortening the thermal processing period and has a small size. However,
the temperature control is very difficult due to the stringent requirement on temperature unifor-
mity and response speed, the nonlinearity of radiation heat, and the strong coupling between
lamps.

Traditional proportional–integral–derivative (PID) compensators cannot achieve such a high
performance. For this reason, model-based control designs have been studied since the 1990s.
In this section, we introduce the method of Takagi and Liu [85]. Through the case study, we
hope that the reader realizes that besides the control design, the locations of the actuator and
sensor are also vital in achieving high performance.

The RTP device is illustrated in Figure 15.8(a). The wafer and halogen lamps are placed
axisymmetrically like doughnuts. There are three circular lamp zones on top of the wafer
and one circumvallating the wafer. Lamps 1–3 are for the thermal processing of wafer sur-
face, while Lamp 4 is used to compensate for the heat leaking from the side of the wafer.
Figure 15.8(b) illustrates the cross section of RTP. Further, pyrometers are installed below the
bottom of the wafer to measure the temperature. The parameters of RTP are listed in Table 15.1.

15.6.1 Model of RTP

The heat conduction equation of wafer is given by

k∇2T = ρC
∂T

∂t
(15.29)

r

Lamp 1
Lamp 2

Lamp 3

Lamp 4

z

Wafer h

L Wafer

C
en

te
rli

ne

r

Lamp 2
Lamp 3

lamp 4

Lamp 1

Node i
θ

(a) (b)

Figure 15.8 RTP system (a) 3D illustration (b) Cross section

Table 15.1 Parameters of RTP

Chamber Height 100 mm
Radius 200 mm

Wafer Radius, R 100 mm
Thickness, Z 1.0 mm
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in which T is the surface temperature of wafer, k the thermal conductivity, ρ the density, and
C the specific heat. In the polar coordinate, (15.29) becomes

∂

r∂r

(

kr
∂T

∂r

)

+
∂

r2∂θ

(

k
∂T

∂θ

)

+
∂

∂z

(

k
∂T

∂z

)

= ρC
∂T

∂t
. (15.30)

Here, θ is the angle, r the radius, and z the thickness (Figure 15.8(a)). Since both the wafer
and RTP are axisymmetric and the wafer is very thin, we may ignore the thermal gradients in
the θ direction and z direction. Then, we divide the wafer as n concentric annular zones (finite
elements) with equal areas so as to build a finite dimensional model. When the division is fine
enough, it can be assumed that each annular zone has a uniform temperature. Then, the partial
differential equation (15.30) reduces to a set of ordinary differential equations:

miCi

dTi

dt
= qab

i + qem
i + qconv

i + qcond
i , i = 1, . . . , n (15.31)

in which Ti and mi are the temperature and mass of the ith annular zone. Moreover, the spe-
cific heat Ci (J/kg/K) is a function of temperature and described by Ci = 748.249 + 0.168Ti.

15.6.1.1 Emission Heat qem
i

According to the Stefan–Boltzmann rule, the heat emitted from the ith annular zone is

qem
i = −εiσAiT

4
i , εi =

0.7128

1 + exp
(

Ti − 666.15
−64.70

) (15.32)

in which σ = 5.67 × 10−8 W/m2K4 is the Stefan–Boltzmann constant, Ai the surface area,
and εi the emissivity of the ith annular zone.

15.6.1.2 Convection Heat qconv
i

The heat convected from the ambient gas to the ith annular zone is

qconv
i = −hiAi(Ti − Tgas), hi = 14.2 + 8.6

(ri

R

)
(15.33)

in which Tgas is the gas temperature and hi (W/m2/K) the convective heat transfer coeffi-
cient.

15.6.1.3 Conduction Heat qcond
i

The heat conducted between adjacent annular zones is described by

qcond
i = −2πkiZ

(
Ti − Ti−1

rcen
i − rcen

i−1
rin
i +

Ti − Ti+1

rcen
i − rcen

i+1
rout
i

)

(15.34)

in which rin
i , rcen

i , rout
i are, respectively, the inner radius, central radius, and outer radius of the

ith annular zone. The thermal conductivity ki (W/m/K) is a function of temperature:

ki = 0.575872 − 7.84727 × 108

T 3
i

+
4.78671 × 106

T 2
i

+
3.10482 × 104

Ti

. (15.35)
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15.6.1.4 Radiation Heat qab
i of Lamp

qab
i denotes the heat irradiated from the lamps to the ith annular zone. Let the number of lamps

be J and the heat of lamp j be Pj , then the heat absorbed by the ith annular zone is

qab
i = αi

J∑

j=1

Li,jPj . (15.36)

αi is the radiant energy absorptivity of the wafer and equal to the emissivity when the wafer
surface is gray. Li,j is the radiation view factor from the ith annular zone to the jth circular
lamp zone.

In this study, the wafer is divided into 20 annular zones.

15.6.2 Optimal Configuration of Lamps

In order to realize a high uniformity in the surface temperature of wafer, the heat irradiated
from the lamps to the wafer surface must be uniform. So, the configuration of lamps needs to be
optimized. The configuration designed according to the method of Yaw and Lin [96] is shown
in Table 15.2. The view factor relation between the annular zones and lamps is illustrated in
Figure 15.9(a). Figure 15.9(b) shows the heat absorbed by the wafer surface. Obviously, the
heat fluxes are almost uniform except the outmost annular zone (Figure 15.10).

Table 15.2 Optimal configuration of lamps

Lamp no. Inner radius (mm) Height (mm) Width (mm)

Lamp 1 0 100 25
Lamp 2 84.2 87.9 10
Lamp 3 100 26 10
Lamp 4 181 0 10

0 2 4 6 8 10 12 14 16 18 20
0
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100
150
200
250
300
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V
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w
 fa
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Lamp 1
Lamp 2
Lamp 3
Lamp 4

(a) (b)

Figure 15.9 View factors and radiation heat on wafer surface (a) View factors between annular zones
and lamps (b) Radiation heat on wafer surface
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Figure 15.10 Steady-state temperature distribution of wafer surface

15.6.3 Location of Sensors

In feedback control, what is important is not only the location of the actuator but also that of the
sensor. The temperature information on the whole wafer surface is not accessible. We can only
measure finite points. Therefore, it is important to determine the number of sensors and locate
them suitably. In correspondence with the number of circular lamp zones, four pyrometers are
used. Then, we investigate the (radial) temperature distribution when the steady-state input u0
is applied. The sensors are located at the annular zones numbered 3, 11, 18, and 20, where the
peaks of temperature fluctuation occur.

15.6.4 H2 Control Design

15.6.4.1 Specification on RTP Temperature Control

As shown in Figure 15.11, the process is to start from the initial temperature 873 K and raise
the temperature to 1373 K at a rate of 100 K/s and then keep the state for 5 seconds and carry
out the thermal processing. After that, lower the temperature at a rate of −40 K/s from 10 s to
17.5 s. In the whole process, the maximal temperature fluctuation must be less than ±1 K.

Time (s)

T
em

pe
ra

tu
re

 (
K

)

50 10 15 20

5 s 10 s

17.5 s

0 s

1373

1273

1173

973

1073

873

Figure 15.11 Reference trajectory of the thermal processing
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Let T = [T1, . . . , T20]
T denote the temperature vector of wafer surface and u = [u1, . . . , u4]

T

denote the lamp power vector. Linear approximation about the target temperature 1373 K is
obtained as

ΔṪ = AΔT + BΔu, y = CΔT (15.37)

in which (ΔT,Δu) are the error vectors w.r.t. the equilibrium (T0, u0):

ΔT = T − T0, Δu = u − u0. (15.38)

Further, the coefficient matrices A,B are as follows, in which Bij denotes the (i, j) element
of matrix B:

A =
(

∂qem

∂T
+

∂qconv

∂T
+

∂qcond

∂T

)∣
∣
∣
∣
T=T0

Bij = αiLi,j , j = 1, . . . , 4, i = 1, . . . , 20.

In the RTP system, the coupling between the radiation heat of lamps is so strong that
multiple-input multiple-output (MIMO) control has to be adopted. H2 control is applied
since it is capable of optimizing the time response directly. The generalized plant is given in
Figure 15.12. The performance outputs are the tracking error z1 and the control input z2. The
disturbance is the impulse input of the reference model. Note that the performance output
includes only the errors between the measured outputs and the reference, not the tracking
errors of all annular zones. This is because the number of weighting functions increases
with that of performance outputs, which results in a high controller degree. Further, it will
be shown later that with a suitable location of sensors, this design can control indirectly the
temperature of the whole wafer surface.

In this figure, WR(s) is the reference model and Wu(s) is used to tune the input. For sim-
plicity of tuning, they are all set as diagonal. WR(s) is chosen as an integrator in order to
track step reference. Wu(s) is chosen as a high-pass filter so as to suppress the amplitude and
the high-frequency components of the input. The rule of tuning is to raise the gain of WR(s)
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Figure 15.12 Generalized plant and weighting functions (a) Generalized plant (b) Frequency response
of weighting functions WR,Wu
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first and then tune the gain of Wu(s) so as to avoid saturation of lamp power. Moreover, the
high-frequency gain of controller can be limited by lowering the first corner frequency of
Wu(s). Via trial and error, the weighting functions are determined as shown in Figure 15.12(b).

15.6.5 Simulation Results

H2 controller is designed based on the preceding discussions. Simulations are done w.r.t. the
nonlinear model (15.31). Shown in Figure 15.13 are the lamp power u and the maximal abso-
lute error max1≤i≤20|Ti(t) − Tref (t)| among all annular zones. Further, to check the effect of
sensor location, the system is redesigned w.r.t. traditional equal distance location. The result
is illustrated in Figure 15.14. Apparently, the error is much smaller in the case of optimized
sensor location.
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Figure 15.13 Result of optimal sensor location (a) Lamp powers (b) Nonuniformity of temperature
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Figure 15.14 Result of equal distance sensor location (a) Lamp powers (b) Nonuniformity of
temperature
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Figure 15.15 RTP with lamps located at the same height and equal distance (a) Lamp configuration
(b) Nonuniformity of temperature

Finally, to validate the effect of lamp configuration, a state feedback H2 design is carried
out w.r.t. the traditional configuration which places the lamps at the same height and equal
distance (Figure 15.15(a)). A very large error is observed in the simulation (Figure 15.15(b)),
which indicates the effectivity and importance of lamp configuration.

Exercises

15.1 For a stable transfer function

G(s) =
s + 5

(s + 1)(s + 10)
,

calculate its H2 norm by using the methods of residue, impulse response, and Lyapunov
equation. Further, solve the following problems:
(a) When the input is u(t) = 2δ(t), compute the H2 norm of the output.
(b) Let wn(t) be a unit white noise. When the input is u(t) = 3wn(t), compute the

steady-state variance E[y(∞)yT (∞)] of output.

15.2 In the closed-loop system of Figure 15.16, the plant is P (s) = 1/s and controller is
K(s) = k. When r(t) = 1 (t ≥ 0), find a gain k such that the tracking error e(t) sat-
isfies the specification ‖e‖2 ≤ 0.1.

K P
r e y

−

Figure 15.16 Response improvement
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15.3 Prove that the H2 norm of a stable matrix G(s) = (A,B,C, 0) can be computed as
follows:

||G||22 = Tr(BT LoB)

in which Lo is the observability Gramian satisfying AT Lo + LoA + CT C = 0.

15.4 Prove statement 2 of Lemma 15.3.

15.5 Prove statement 2 of Lemma 15.4.

15.6 When both D12 and D21 satisfy the full rank condition in (A2), but not normalized, find
a transformation on the input and output signals such that the new generalized plant
satisfies (A2). (Hint: use the singular value decomposition.)

15.7 Assume (A2). When D11 
= 0, a necessary condition for the existence of the H2 norm
of the closed-loop system is

Dc = D11 + D12DKD21 = 0.

Answer the question that under what condition this equation has a solution DK and
solve for it.

Next, we transform the system as shown in Figure 15.17. Prove that D̂11 = 0 in the
new generalized plant Ĝ. This means that we can solve the H2 control problem w.r.t. Ĝ
first and obtain the corresponding optimal H2 controller K̂. After that, we may reverse
K̂ back to K. Derive the corresponding formula.

G

DK

−DK

K

Ĝ

w

K̂

z

u1y

Figure 15.17 Eliminating the D11 term

15.8 In the case of state feedback y = x, prove that the H2 optimal controller is u = F2x.
Further, prove that the minimum norm is min ‖Hzw‖2 = Tr(BT

1 XB1).

15.9 Derive a state feedback solution for the γ-optimal H2 control by using the LMI
approach.
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Notes and References

H2 control was also known as LQ control (in state feedback) or LQG control (in output feed-
back) in the past [2, 92]. Safanov and Athans [82] showed that the LQ control has a certain
degree of stability margin. Sato and Liu [83] gave an LMI solution to the H2 control prob-
lem and Ref. [65] solved the H2 control problem with unstable weighting functions. Takagi
and Liu [85] applied H2 control to the temperature processing of semiconductor wafers and
validated the importance of actuator/sensor locations.
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H∞ Control

As learnt in Chapter 11, many robustness conditions are given as inequalities about the H∞
norms of transfer functions. So it is necessary to establish a method for designing controllers
satisfying such H∞ norm inequality. The main objective of this chapter is to introduce such
design approaches. Moreover, details will be provided on how to design a generalized plant
and how to determine weighting functions. These knowledge are very important in practical
application of H∞ control. Finally, a case study will be described in some detail.

16.1 Control Problem and H∞ Norm

16.1.1 Input–Output Relation of Transfer Matrix’s H∞ Norm

Let u(t) be the input of stable system G(s) and y(t) the output. Then, the following relationship
holds:

‖G‖∞ = sup
‖u‖2 �=0

‖y‖2

‖u‖2
. (16.1)

Since ‖y‖2/‖u‖2 is the ratio of the square roots of input energy and output energy, this equation
shows that the supremum of the ratios for all energy-bounded input u(t) is equal to the H∞
norm ‖G‖∞ of the transfer function. Therefore, if we want to lower the output response y(t)
to an energy-bounded disturbance u(t) (i.e., ‖u‖2 < ∞), we need only ensure that

‖G‖∞ → 0.

Further, to make the input–output ratio less than a given value γ > 0, it is sufficient to guarantee
that

‖G‖∞ < γ.

However, this relationship is purely mathematical and having no engineering meaning. Why?
This is because a disturbance in practice is not bounded in energy. Instead, it is a persistent
signal like the step signal whose energy is unbounded. In addition, the essence of weighting
function cannot be explained from this angle of viewpoint.

Robust Control: Theory and Applications, First Edition. Kang-Zhi Liu and Yu Yao.
© 2016 John Wiley & Sons Singapore Pte. Ltd. Published 2016 by John Wiley & Sons, Singapore Pte. Ltd.
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16.1.2 Disturbance Control and Weighting Function

Now, we investigate the relationship between the H∞ norm of a transfer matrix and its
input–output from another angle. For single-input single-output (SISO) system, the H∞ norm

‖G‖∞ = sup
ω

|G(jω)|

can be interpreted as the maximum amplitude of the frequency response of the system to a unit
impulse input. In addition, for multiple-input multiple-output (MIMO) systems, there holds the
following relationship [62]:

‖G‖∞ = sup
u∈C

m

‖u‖≤1

‖Gu‖∞, ‖Gu‖∞ = sup
ω

‖G(jω)u‖2. (16.2)

Here the complex space C
m can be regarded as a space of impulse vector signals containing

time delay. So, equation (16.2) implies that the H∞ norm ‖G‖∞ is the maximum amplitude of
all the frequency responses w.r.t. unit impulse vectors whose elements are imposed at arbitrary
instants.

Hence, if the frequency characteristic of disturbance d(t) is W (s), y(t) can be regarded as
the impulse response of the transfer function GW with weighting function by Figure 16.1. In
order to suppress the output response to this disturbance, we need only guarantee that

‖ŷ‖∞ ≤ ‖GW ‖∞ < γ (16.3)

for a specified value γ > 0.
Such problem is known as a problem with weighting function, and W (s) is called the

weighting function. Even if we cannot know exactly the frequency characteristics of a distur-
bance, its upper bound can be used as a weighting function if the upper bound can be estimated.
In fact, for any frequency ω, when the amplitude of the frequency characteristic of disturbance
d(t) is less than |W (jω)|, that is,

|d̂(jω)| ≤ |W (jω)| ∀ω, (16.4)

(refer to Figure 16.2), then the maximum amplitude of the frequency response ŷ(jω) is sup-
pressed below γ if (16.3) holds.

Example 16.1 In the closed-loop system of Exercise 15.2, assume that the plant is P (s) =
1/s and the controller is K(s) = k. When the reference input is r(t) = 1(t), seek a gain k
such that the tracking error e(t) satisfies the performance specification supω|ê(jω)| ≤ 0.1.

G

yd

W

δ

Figure 16.1 Response to disturbance with frequency characteristic W (s)
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Wd
∧

ω

Figure 16.2 Weighting function and frequency characteristic of disturbance

Solution Reference input r(t) is the unit impulse response of W (s) = 1/s. Hence, e(t) can
be regarded as the unit impulse response of the weighted transfer function WS . Therefore, we
have supω|ê(jω)| = ‖WS‖∞ in which

S(s) =
1

1 + PK
=

s

s + k

is the sensitivity function. To ensure the internal stability, k > 0 is necessary. Then, from the
tracking performance specification, we finally obtain

‖WS‖∞ =
∥
∥
∥
∥

1
s + k

∥
∥
∥
∥
∞

=
1
k
≤ 0.1 ⇒ k ≥ 10. �

This control problem is called an H∞ control problem. The general H∞ control problem
will be elaborated in the next section.

16.2 H∞ Control Problem

For simplicity of description, the state-space realization of the generalized plant G(s) in
Figure 16.3 is decomposed as

G(s) =
[
A B

C D

]

=

⎡

⎣
A B1 B2
C1 D11 D12
C2 D21 0

⎤

⎦ (16.5)

in accordance with the dimensions of input and output. Here, the realization should be minimal.
The so-called H∞ control problem is to design a controller such that the generalized feed-

back system in Figure 16.3 is stable and the H∞ norm of the closed-loop transfer matrix from
disturbance w to performance output z is less than a given positive number γ. The H∞ control
problem has two kinds of solutions: one is based on the algebraic Riccati equation (ARE) and
the other based on the linear matrix inequality (LMI).

Historically, ARE solution was proposed by Doyle, Glover, Khargonekar, and Francis in
the late 1980s which has had a profound impact on the research of robust control since then.
However, this approach requires a so-called nonsingularity condition on the generalized plant
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G

K

z

y

w

u

Figure 16.3 Generalized feedback system

which is not always satisfied in practical applications. Moreover, this approach can handle
only a single objective, that is, H∞ norm minimization. So in this book, we focus on the LMI
solution. As for the ARE solution, interested readers may consult [100, 26, 36].

Obviously, the H∞ norm specification can be characterized by bounded-real lemma. So,
the central idea of LMI approach is to transform the H∞ norm specification into a matrix
inequality by using bounded-real lemma and derive the existence condition and the solution
based on LMI techniques.

The following assumption is made, which is necessary for the stabilization of the feedback
system. It basically requires that all the weighting functions are stable.

(A1) (A,B2) is stabilizable and (C2, A) is detectable.

16.3 LMI Solution 1: Variable Elimination

First, we define the following two matrices:

NY = [C2 D21]⊥, NX = [BT
2 DT

12]⊥.

For the generalized plant G(s) given in (16.5), the solvability condition for the H∞ control
problem is given by the following theorem.

Theorem 16.1 Suppose that (A1) is satisfied. There is a controller K(s) such that the
closed-loop system in Figure 16.3 is stable and satisfies ||Hzw ||∞ < γ iff the following LMIs
have positive definite solutions X,Y :

[
NT

X 0
0 Inw

]
⎡

⎣
AX + XAT XCT

1 B1
C1X −γI D11
BT

1 DT
11 −γI

⎤

⎦
[
NX 0
0 Inw

]

< 0 (16.6)

[
NT

Y 0
0 Inz

]
⎡

⎣
YA + AT Y Y B1 CT

1
BT

1 Y −γI DT
11

C1 D11 −γI

⎤

⎦
[
NY 0
0 Inz

]

< 0 (16.7)

[
X I
I Y

]

≥ 0, rank
[
X I
I Y

]

≤ n + nK . (16.8)

Here, n, nK are the degrees of G(s),K(s), respectively.
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16.3.1 Proof of Theorem 16.1

The proof is quite elementary and only requires some knowledge of algebra.
Let a realization of the closed-loop transfer matrix Hzw (s) be Hzw (s) = (Ac, Bc, Cc,Dc).

According to the bounded-real lemma, the H∞ control problem is solvable iff there exists a
positive definite matrix P satisfying

⎡

⎣
AT

c P + PAc PBc CT
c

BT
c P −γI DT

c

Cc Dc −γI

⎤

⎦ < 0. (16.9)

Further, set the controller as K(s) = (AK , BK , CK ,DK). According to Section 7.4.1
(Ac, Bc, Cc,Dc) is given by (7.43). Substitution of these matrices shows that (16.9) is
equivalent to

Q + ETKF + FTKT E < 0 (16.10)

in which

Q ET

F
=

⎡

⎢
⎢
⎢
⎣

A
T
P + PA PB1 C

T
1 PB2

B
T
1 P −γI D

T
11 0

C1 D11 −γI D12

C2 D21 0

⎤

⎥
⎥
⎥
⎦

, K =
DK CK

BK AK
.

Here, all matrices marked by bar are defined in (7.44). Owing to Lemma 3.1, (16.10) is equiv-
alent to the following inequalities:

ET
⊥QE⊥ < 0, FT

⊥ QF⊥ < 0. (16.11)

By direct calculation, the orthogonal matrices of E,F are obtained as

E⊥ =

⎡

⎣
P−1

I 0
0 I

⎤

⎦

⎡

⎢
⎢
⎣

I
0 0 I
0 I 0
I 0 0

⎤

⎥
⎥
⎦

⎡

⎣
NX 0

0 I
0 0

⎤

⎦

F⊥ =

⎡

⎢
⎢
⎣

I
0 I 0
I 0 0
0 0 I

⎤

⎥
⎥
⎦

⎡

⎣
NY 0

0 0
0 I

⎤

⎦ .

Further, we decompose the positive definite matrix P as

P =
[
Y ∗
∗ ∗

]

, P−1 =
[
X ∗
∗ ∗

]

.

Then, conditions (16.6) and (16.7) are derived via detailed calculation based on the substitution
of E⊥, F⊥ and the decomposed matrices P, P−1 into (16.11). Finally, the condition (16.8) is
obtained from the positive definiteness of matrix P (refer to Lemma 3.1).
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16.3.2 Computation of Controller

When the H∞ control problem is solvable, we obtain positive definite solutions X,Y of the
LMIs. In calculating the corresponding controller, we first compute a matrix M satisfying

MMT = Y − X−1. (16.12)

After that, we set

P =
[

Y M
MT I

]

(16.13)

and substitute it back into (16.10); then we get the coefficient matrixK of the controller directly
by numerical calculation.

In addition, we can also use the solutions of X,Y to calculate K directly. Refer to references
[43, 32] for the formula.

16.4 LMI Solution 2: Variable Change

The variable change method can also be used to solve the H∞ control problem. We have shown
that the H∞ control problem is solvable iff there exists a positive definite matrix P satisfying
the inequality (16.9). Now, we substitute the realization (7.41) of the closed-loop system into
this inequality and note that matrix P has the following structure:

PΠ1 = Π2, Π1 =
[

X I
MT 0

]

, Π2 =
[
I Y
0 NT

]

.

Similar to Subsection 3.2.4, after the following variable change

A = NAKMT + NBKCX + YBCKMT + Y (A + BDKC)X

B = NBK + YBDK , C = CKMT + DKCX , D = DK , (16.14)

we obtain the solvability conditions that follow:

He

⎡

⎢
⎢
⎣

AX + B2C A + B2DC2 B1 + B2DD21 0
A YA + BC2 Y B1 + BD21 0
0 0 −γ

2 I 0
C1X + D12C C1 + D12DC2 D11 + D12DD21 −γ

2 I

⎤

⎥
⎥
⎦ < 0 (16.15)

[
X I
I Y

]

> 0. (16.16)

Here, to simplify the description of large matrix, we have used the notation He(A) = A + AT .
Finally, coefficient matrices of the controller K(s) = (AK , BK , CK ,DK) are given by

DK = D, CK = (C − DKCX )(M−1)T , BK = N−1(B − YBDK)

AK = N−1(A − NBKCX − YBCKMT − Y (A + BDKC)X)(M−1)T . (16.17)

The detailed derivation is left for the reader to complete (Exercise 16.5).
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16.5 Design of Generalized Plant and Weighting Function

In the application of control theory such as H∞, H2 to real systems, the most important is how
to determine the generalized plant and the weighting functions. This is because all the required
performance specifications have to be reflected on the generalized plant and the weighting
functions. In principle, selection of the generalized plant and weighting functions must be the
symptomatic treatment, that is, they should be determined in accordance with the feature of
the problem. In general, trial and error is needed in order to achieve the best performance. It
may be said that the selection of generalized plant and weighting function reflects the ability
of an engineer and tests the strength of his/her engineering sense.

16.5.1 Principle for Selection of Generalized Plant

16.5.1.1 Consideration of Disturbance Control

H∞ control is mainly useful in disturbance attenuation and robustness to model uncertainty.
Therefore, before the design we need to find out all possible disturbances and single out the
major one. Then, we put the response to this disturbance into the performance output. Further-
more, we need to examine the frequency characteristics of the disturbance and use its estimate
as the weighting function. In the case of reference tracking, if the tracking error is treated as a
performance output, then the reference input can be regarded as a disturbance.

16.5.1.2 Consideration of Model Uncertainty

First of all, we need to estimate the scope of the uncertain parameters and the unmodeled
high-frequency dynamics. In order to ensure the robustness to uncertainty, we may apply the
small-gain theorem introduced in Chapter 11. Namely, remove the uncertainty Δ from the
loop, and penalize the H∞ norm of the transfer function from its output to its input.

Particularly, in the case of multiple uncertain parameters, in order to figure out which should
be considered in the design, we may change the parameters one by one and analyze the corre-
sponding Bode plots of the plant. Since the key factors affecting the performance of a control
system are the low-frequency gain of the plant, the resonance frequency, and the resonance
peak, we must ensure the robustness to those uncertain parameters that have big impact on
these factors. There are two ways: one is to transform the uncertain parameters into additive or
multiplicative dynamic uncertainty, and another is to use the polytopic model of Section 18.3
and the common Lyapunov function method. As small-gain theorem is very conservative for
parameter uncertainty, the latter is recommended.

16.5.1.3 Consideration of Input Constraint

In order to avoid input command that causes saturation of the actuator or impulsive input which
has an adverse effect on the system, we must put the input into the performance output.
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16.5.2 Selection of Weighting Function

The weighting functions should be determined based on the following principles.

16.5.2.1 Weighting Function of Dynamic Uncertainty

Draw the estimated frequency responses of uncertainty on the Bode plot, and then find a
low-order transfer function whose Bode plot covers these frequency responses. In determining
a weighting function, we should better use a line segment approximation to determine a transfer
function roughly and then draw the Bode gain plots of the weighting function and uncertainty
on the same plot using MATLAB so that we can make sure that the gain of weighting func-
tion is higher than that of uncertainty. If necessary, we make a fine-tuning on the weighting
function. Further, since control is not required in the high-frequency band beyond the control
bandwidth, the gain of the uncertainty weighting function should be lifted high enough in this
band in order to suppress the high-frequency oscillatory part of the control input.

16.5.2.2 Weighting Function of Input

The input weighting function is mainly used to reduce the high-frequency components of the
input. So it should be selected as a high-pass transfer function. The control bandwidth can
be determined based on the fast response specification. The gain of input weighting function
should be sufficiently low within the control bandwidth, but it should have a high gain beyond
the control bandwidth.

16.5.2.3 Weighting Function of Performance

Usually, a disturbance contains a lot of low-frequency components, which is characterized
by its high low-frequency gain. In order to suppress the influence of disturbance effectively,
we should set its weighting function as a low-pass transfer function. If we have some a pri-
ori information on the disturbance, we can estimate its frequency response based on it. For
example, a disturbance taking roughly a constant value over a long time can be treated as a
step signal and described by an integrator. The gain of weighting function can be tuned via
repeated design and simulation. The higher the gain of performance weighting function is, the
better the performance will be. In addition, an effective way for the adjustment of weighting
functions is to place the dynamics of a weighting function at the performance output port and
place a tuning gain at the disturbance input port.

Among these three kinds of weighting functions, the uncertainty weighting function is the
most easy to determine and should be determined first. Then, in choosing the weighting func-
tions for performance and input, we should try to achieve the best control performance by
tuning them through repeated design and simulation. In general, a high gain of performance
weighting function in the Low- and middle-frequency domain leads to a better disturbance
attenuation performance and a faster response. Meanwhile, lifting the high-frequency gain of
input weighting function yields an efficient suppression of the high-frequency oscillation of
input. The most difficult part is how to ensure that these two kinds of weighting functions do
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not conflict in the middle-frequency band. Otherwise, no solution can be obtained. So trial and
error is inevitable.

In the tuning of weighting function, the following transfer function may be used:

W (s) = k
s + a

s + b
, k =

√
ω2

c + b2

ω2
c + a2 (16.18)

if we simply want to tune the high-frequency gain and low-frequency gain without changing
the crossover frequency ωc.

16.6 Case Study

The procedure of H∞ control design is illustrated in this section through a case study.
In the head positioning control of hard disk drive (HDD) of Example 11.3, the plant has

a multiplicative uncertainty, and the head is subject to a wind disturbance brought by the
high-speed rotation of the disk. We hope to suppress the wind disturbance so that the head
can be accurately positioned on the designated track. In order to achieve this goal, we choose
the generalized plant shown in Figure 16.4.

This generalized plant is determined based on the following considerations. Firstly, the HDD
is sealed and the disk rotates at a constant speed, so the wind can be regarded as a constant
torque disturbance (i.e., a step signal) which is applied at the input port. Since the objective is
positioning the head, the head position should be chosen as a performance output. As for the
multiplicative uncertainty, it can be treated by the small-gain theorem. In Figure 16.4, w2 and
z2 are the input and output used to ensure robustness to the multiplicative uncertainty (between
them is the uncertainty); z3 is a performance output used to penalize the control input u; w1 and
z1 are the input and output used to penalize the disturbance response. W2 expresses the gain
of the multiplicative uncertainty, and W1 represents the dynamics of the disturbance. W3 is a
parameter mainly used to tune the response speed. W4 is a weighting function used to adjust
the control input. If the H∞ norm of the closed-loop transfer matrix about the generalized
plant is less than 1, the robust disturbance attenuation performance is guaranteed.

As shown in Figure 16.5(a), the gain of uncertainty weighting function W2 starts rising
sharply around ω = 2 × 104 rad/s. So it is impossible to achieve effective control in the fre-
quency domain above it. Therefore, the disturbance weighting function W1 and the input
weighting function W4 should intersect in the vicinity of this frequency. The wind disturbance
is set as a step signal whose transfer function is W1. The gain of W1 should be chosen as high

u

W4

w1z3 w2 z1z2

W1

yP (s)

W2W3

Figure 16.4 Generalized plant for HDD
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Figure 16.5 Weighting functions and H∞ controller (a) Weighting functions (b) H∞ controller

as possible. Through trial and error, the following weighting functions are determined finally:

W1(s) =
s + 8.1 × 102

s + 1.0 × 10−6 × 4.1 × 10−4

W2(s) =
(

s2 + 1.4 × 104s + 1.1 × 108

s2 + 1.9 × 104s + 7.6 × 108

)2

× 33

W3 = 1.0 × 10−3,W4(s) =
s + 2.0 × 103

s + 4.0 × 105 × 1.4 × 102.

Figure 16.5(a) shows, respectively, the weighting function W2(s) of the multiplicative
uncertainty (dashed line, high pass), the disturbance weighting function W1(s) (solid line,
low pass), and the input weighting function W4(s) (solid line, high pass). The Bode plot
of the designed H∞ controller is shown in Figure 16.5(b) whose upper side is the gain and
lower side is the phase. It has an integrator characteristic in the low frequency, contains a
notch and a phase lead compensation in the middle-frequency band, and rolls off in the high
frequency. An effective and frequently used method in vibration control is to insert a notch
filter in the band of resonant modes so as to lower the open-loop gain in this band. In robust
control design, such notch characteristic of controller is automatically obtained by penalizing
the uncertainty.

The output response to a step disturbance at the input port is shown in Figure 16.6. Mean-
while, the input response is shown in Figure 16.7. There is no noticeable difference in the
outputs, which shows that almost the same output response has been achieved. Meanwhile,
input of the actual system is much more oscillatory.

16.7 Scaled H∞ Control

In the robust performance design to be illustrated in the subsequent chapters, we will often
encounter H∞ control problems with a constant scaling matrix L, that is,

||L1/2HzwL−1/2||∞ < γ. (16.19)

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

356 Robust Control

0 0.005 0.01 0.015 0.02

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time (s)

H
ea

d 
po

si
tio

n 
(t

ra
ck

)

(a)

0 0.005 0.01 0.015 0.02

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time (s)

H
ea

d 
po

si
tio

n 
(t

ra
ck

)

(b)

Figure 16.6 Step disturbance response (output) (a) Nominal (b) Actual
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Figure 16.7 Step disturbance response (input) (a) Nominal (b) Actual

Therefore, this section describes the solution for such problems.
Without loss of generality, we may limit the scaling matrix L to positive definite matrix.

According to Exercise 8.2, for a matrix L > 0 with a suitable dimension, the closed-loop
system Hzw (s) = (Ac, Bc, Cc,Dc) satisfies the H∞ norm specification (16.19) iff there exist
positive definite matrices P,L satisfying

⎡

⎢
⎣

AT
c P + PAc PBc CT

c

BT
c P −γL DT

c

Cc Dc −γL−1

⎤

⎥
⎦ < 0. (16.20)

Starting from this inequality, it is easy to derive the solvability condition for this scaled H∞
control problem by following the variable elimination method of Section 16.3.

Theorem 16.2 Assume that G(s) satisfies the condition (A1). There are a controller K(s) and
a scaling matrix L > 0 such that the closed-loop system is stable and ||L1/2HzwL−1/2||∞ < γ
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iff there exist matrices X > 0, Y > 0 and L, J satisfying the following conditions:

[
NT

X 0
0 Inw

]
⎡

⎢
⎣

AX + XAT XCT
1 B1

C1X −γJ D11

BT
1 DT

11 −γL

⎤

⎥
⎦

[
NX 0
0 Inw

]

< 0 (16.21)

[
NT

Y 0
0 Inz

]
⎡

⎢
⎣

YA + AT Y Y B1 CT
1

BT
1 Y −γL DT

11

C1 D11 −γJ

⎤

⎥
⎦

[
NY 0
0 Inz

]

< 0 (16.22)

[
X I
I Y

]

≥ 0 (16.23)

LJ = I. (16.24)

Here, all notations are as defined as Section 16.3.

Unfortunately, the condition LJ = I in this theorem is not convex. So the solvability con-
dition cannot be solved by using LMI approach directly. We need to use the K–L iteration
method that follows:

Step 1 Let L = I .
Step 2 Compute a controller K(s) such that ||L1/2HzwL−1/2||∞ is minimized, and denote the

minimal norm by γK .
Step 3 Fixing the controller K(s), find scaling matrix L > 0 such that ||L1/2HzwL−1/2||∞ is

minimized and denote the minimal norm by γL.
Step 4 If γK − γL is less than a specified value, end the design and output the controller K(s)

obtained in Step 2; otherwise, return to Step 2.

L is known in Step 2, so we can compute γK and P > 0 by solving a GEVP based on
solvability condition of Theorem 16.2, that is,

min γ subject to (16.21), (16.22), (16.23)

Then, the controller K(s) is obtained by solving the following LMI:

Q + ETKF + F TKT E < (16.25)0

Q ET

F
=

⎡

⎢
⎢
⎢
⎣

A
T
P + PA PB1 C

T
1 PB2

B
T
1 P −γKL D

T
11 0

C1 D11 −γKJ D12

C2 D21 0

⎤

⎥
⎥
⎥
⎦

. (16.26)co
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Meanwhile, the optimization problem in Step 3 can be solved by solving the GEVP:

min γ subject to
⎡

⎢
⎣

AT
c P + PAc PBc CT

c L

BT
c P −γL DT

c L

LCc LDc −γL

⎤

⎥
⎦ < 0, P > 0, L > 0. (16.27)

.

Exercise

16.1 Let the input and output of stable transfer function P (s) = s+1
s+10 be u(t) and y(t),

respectively.
(a) Draw the asymptotes of gain and phase of P (s) in the Bode plot.
(b) Calculate ‖P‖∞.
(c) Compute the maximal output energy sup ‖y‖2 w.r.t. all inputs u(t) satisfying

‖u‖2 ≤ 1/2.

16.2 Let us revisit the cruise control problem discussed in Exercise 12.6. Assume that M ∈
[M1,M2], μ ∈ [μ1, μ2]. Starting from the state equation of P̃ (s)

ẋ = − μ

M
x +

1
M

F, v = x,

solve the same problem again by the polytopic method.

16.3 In Figure 16.8, P (s), W (s) are, respectively,

P (s) =
1

s + 1
, W (s) =

1
s
, w(t) = δ(t).

In order to suppress the disturbance d, we hope to ensure ||Hyw ||∞ < 1, in which Hyw (s)
is the closed-loop transfer function from w to y. Examine whether this goal can be
achieved by the following controller:

K =
Q

1 − PQ
, Q =

s + 1
as + b

, a > 0, b > 0.

If possible, find the condition on parameters (a, b). Further, discuss the strategy of dis-
turbance attenuation, i.e., how to tune these two parameters.

W

yd

w

K P
−

Figure 16.8 Disturbance attenuation

16.4 Derive the LMI solvability condition for state feedback H∞ control with u = Fx using
the methods of variable elimination and variable change.
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16.5 Multiply the first row block and the first column block of (16.9) by ΠT
1 and Π1, respec-

tively; then derive the LMI solutions of Section 16.4 by using the variable change
method.

16.6 Follow the variable elimination method of Section 16.3 to derive the solution for the
scaled H∞ control problem in Section 16.7, based on Exercise 8.2.

16.7 Try to use the variable change method and K–L iteration to solve the scaled H∞ control
problem in Section 16.7.

Notes and References

Among the approaches to H∞ control problem, the interpolation method of the early stage can
be found in Refs [48, 25, 29]; ARE solution is in Refs [36, 26, 100]; refer to Refs [33, 42, 32]
for the LMI solution. A simple proof for the ARE solution is given in Ref. [54]. Liu and Mita
[58, 55] discussed the discrete H∞ control problem and the parametrization of state feedback
H∞ controllers. Some industrial applications of H∞ control may be found in Refs [41, 39]
(hard disk drive), [74] (mine train), [73] (engine clutch), [70] (multi-area power system), and
[75] (paper machine). For the benchmark on HDD head positioning, refer to Ref. [87].
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μ Synthesis

This chapter discusses the robust stability and robust performance for plants having multiple
uncertainties. Based on the small-gain principle, we have succeeded in deriving conditions that
can guarantee the robust stability or robust performance for plants with a single norm-bounded
uncertainty in Chapter 11. However, for the problems considered in this chapter, it will be very
conservative to apply the small-gain principle directly. New concepts and mathematical tools
are needed. Here, the key is that we can always aggregate the multiple uncertainties into a
block diagonal matrix by appropriate transformation of the block diagram. So, we can focus
on the uncertainty in a form of block diagonal matrix. Such uncertainty is called structured
uncertainty.

Just as the robust stability conditions for uncertainties in the form of single matrix are
described by the largest singular value, the robust stability conditions for uncertainties in the
form of block diagonal matrix can be expressed by the so-called structured singular value,
with an alias μ.

More importantly, by using μ, we are able to derive the necessary and sufficient conditions
for a class of robust performance, which cannot be obtained from the small-gain theorem. This
has a very important practical significance. By using the tool of μ synthesis, it is possible to
maximize the potential of feedback control in control design.

This chapter gives a brief description on the concept of μ, the necessary and sufficient con-
dition for robust performance, and the μ synthesis. A design example will also be illustrated
in some detail.

17.1 Introduction to μ

17.1.1 Robust Problems with Multiple Uncertainties

In Chapter 11, we have discussed the robust control problem for plant sets with uncertainty.
The problem handled that there are about systems containing a single uncertainty. However,
it is rare that all uncertainties of the plant gather in the same place; they are usually dispersed

Robust Control: Theory and Applications, First Edition. Kang-Zhi Liu and Yu Yao.
© 2016 John Wiley & Sons Singapore Pte. Ltd. Published 2016 by John Wiley & Sons, Singapore Pte. Ltd.

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

μ Synthesis 361

Δ1

P1 P2

Δ2

K

P2PP1

K

P

Δ

yu

yu

Figure 17.1 Merging two uncertainties into one

in different parts of the system. If these uncertainties are compulsorily put into an uncertainty
and handled with the techniques of Chapter 11, usually the result will be very conservative.
This is observed in the following example.

Example 17.1 The plant shown in Figure 17.1 has two uncertainties. When they are put
together as in Figure 17.1, by the input–output relation

ŷ = (Δ2 + P2)P (Δ1 + P1)û = P2PP1û + Δû, (17.1)

we get
Δ = Δ2PΔ1 + Δ2PP1 + P2PΔ1. (17.2)

In treating this Δ as a norm-bounded uncertainty, we need to estimate an upper bound based
on the upper bounds of Δ1,Δ2. This estimation cannot be done accurately, and the bound is
often enlarged. Further, in the estimated scope of Δ, there are many other uncertainties which
are not in the class of (17.2). Thereby, the scope of plant set is expanded. As a consequence, the
plant set under consideration is far greater than the actual plant set. Then, the constraint on
the controller gets more stringent so that the obtained result is often very conservative. Most
typically, the controller gain has to be lowered in the low-frequency band which is crucial for
system performance, thus making it impossible to realize good disturbance attenuation and
fast response.

However, the scattered uncertainties can always be collected into a block diagonal matrix.
In the present case, via the transformation of block diagram shown in Figure 17.2, these two

uncertainties can be rewritten as a diagonal matrix

[
Δ1 0
0 Δ2

]

where
[
ẑ1
ẑ2

]

= M

[
ŵ1
ŵ2

]

, (17.3)

M =
[
KP2(I − PP1KP2)

−1P (I − KP2PP1)
−1K

(I − PP1KP2)
−1P PP1(I − KP2PP1)

−1K

]

. (17.4)
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Figure 17.2 Collecting two uncertainties as a diagonal matrix

z2

z1

w2

w1

M

Δ1

P1 P P2

Δ2

K

w1

z1 z2

w2

P1 P

K

w1 z1 z2 w2

Δ1

Δ2

P2

Figure 17.3 How to calculate the M matrix

This transformation does not change the uncertainties. Therefore, it is possible to achieve a
less conservative control design.

Example 17.2 The system shown in Figure 17.3, which contains an additive uncertainty and
a feedback uncertainty, can also be transformed into a system with a diagonal uncertainty.
Here [

ẑ1
ẑ2

]

= M

[
ŵ1
ŵ2

]

, (17.5)
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M =
[

(I − P1KP2P )−1P1 (I − P1KP2P )−1P1K
P (I − P1KP2P )−1P1 P (I − P1KP2P )−1P1K

]

. (17.6)

In such transformations, the calculation of M matrix is in fact very easy. As shown in
Figure 17.3, the method is to name the inputs and outputs of uncertainties first and then
remove the uncertainties. After that, the matrix M is obtained by computing the transfer
matrix from the output vector of uncertainties to their input vector.

In general, when there are r uncertainties Δi (i = 1, . . . , r), the closed-loop system can
always be rewritten as the one in Figure 17.4. The block diagonal uncertainty Δ is called
structured uncertainty. Here, both M and Δi are transfer matrices. Such transformation does
not change the stability of system.

Next, we discuss the condition for the robust stability of closed-loop system. For simplic-
ity, it is assumed that the uncertainty Δ = diag(Δ1 · · · ,Δr) is stable. Note that the roots of
det[I − M(s)Δ(s)] = 0 are the poles of closed-loop system. The closed-loop system must be
stable even when Δ = 0. In this case, only M(s) is left in the loop. This implies that M(s) must
be stable, which corresponds to the nominal stability. Moreover, det[I − M(s)Δ] = 1 �= 0
holds in the closed right half-plane. Next, we fix the dynamics of uncertainty Δ and increase
its gain gradually until the closed-loop system becomes unstable. Since the closed-loop poles
vary continuously with the uncertainty, they must cross the imaginary axis before getting unsta-
ble (see Figure 17.5). Therefore, the uncertainty that destabilizes the closed-loop system for
the first time must be the one with the smallest norm in all Δ’s satisfying

det(I − M(jω)Δ(jω)) = 0, ∃ω ∈ [0,∞). (17.7)

Its norm becomes the supremum of the norms of all uncertainties that guarantee the stability
of closed-loop system and is called stability margin. It is easy to see that the stability margin
depends on the diagonal structure of the uncertainty Δ and the matrix M . The reciprocal of
the stability margin is exactly the structured singular value μΔ(M(jω)) to be touched in the
next section.

17.1.2 Robust Performance Problem

Theorem 12.2 of Section 12.4 shows that, via the introduction of a virtual uncertainty repre-
senting the performance, a problem of robust H∞ performance can be equivalently converted

Δ1

Δr

. . .

M

Figure 17.4 System with structured uncertainty
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x
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Figure 17.5 Continuity of poles

into a robust stabilization problem of systems with structured uncertainty. This is an even
more important motivation for considering the robust stabilization of systems with structured
uncertainty in this chapter.

17.2 Definition of μ and Its Implication

When considering a transfer matrix at a frequency, it becomes a complex matrix. Therefore,
we will fix the frequency and only consider the set of block diagonal matrices Δ ⊂ C

m×n and
matrix M ∈ C

n×m. Assume that the set Δ has the following structure:

Δ = {Δ |Δ = diag(δ1Ir1
, . . . , δSIrS

,Δ1, . . . ,ΔF )}, δi ∈ C, Δj ∈ C
mj×nj (17.8)

in which
S∑

i=1

ri +
F∑

j=1

mj = m,

S∑

i=1

ri +
F∑

j=1

nj = n. (17.9)

δi is called a scalar uncertainty, while Δj is called a full-block uncertainty. Note that a
full-block uncertainty is a matrix uncertainty and all of its elements are uncertain.

Definition 17.1 For any given matrix M ∈ C
n×n, the structured singular value μΔ(M) is

defined as

μΔ(M) =
1

min{σmax(Δ) |Δ ∈ Δ, det(I − MΔ) = 0} . (17.10)

μΔ(M) = 0 when there is no Δ ∈ Δ satisfying det(I − MΔ) = 0.

According to this definition, μΔ(M) is the reciprocal of the gain of the smallest uncertainty
among all Δ ∈ Δ satisfying det(I − MΔ) = 0. Therefore, det(I − MΔ) �= 0 holds for all
Δ ∈ Δ satisfying σmax(Δ) < 1/μΔ(M). Conversely, as long as there is one Δ1 ∈ Δ such
that σmax(Δ1) ≥ 1/μΔ(M), there must be a Δ ∈ Δ satisfying det(I − MΔ) = 0.

Remark 17.1 μΔ(M) may be interpreted as the reciprocal of the supremum of stability mar-
gin for the feedback system in Figure 17.4 when the frequency is fixed. In this regard, we will
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make a more detailed analysis. Here, assume that M(s) and Δ(s) are stable systems and Δ(s)
belongs to a set of stable uncertainties with the block diagonal structure of Δ.

According to the discussion in the previous section, the closed-loop system is robustly stable
iff

det[I − M(jω)Δ(jω)] �= 0 ∀ω

holds for all Δ(s) ∈ Δ. Therefore, as long as

σmax(Δ(jω)) <
1

μΔ(M(jω))

on the entire imaginary axis, the stability is guaranteed. Otherwise, there must be an uncer-
tainty destabilizing the closed-loop system (see Exercise 17.2). Roughly speaking, the smaller
μΔ(M) is, the bigger the permissible uncertainty will be. That is, the problem of maximizing
the range of uncertainty while guaranteeing the stability of control system has been converted
into the problem of minimizing μΔ(M).

Summarizing these discussions, we obtain the robust stability condition for systems with
structured uncertainty.

Theorem 17.1 In Figure 17.4, assume that the nominal system M(s) and the structured
uncertainty Δ(s) ∈ Δ are stable and ‖Δ‖∞ < γ. Then, the closed-loop system is robustly
stable iff

sup
ω

μΔ(M(jω)) ≤ 1
γ

. (17.11)

17.3 Properties of μ

It is worth noting that the value of μΔ(M) depends on the structure of Δ, that is, the number
of blocks in the block diagonal matrix and the property and dimension of each diagonal block,
as well as the nominal system M . It is not determined solely by the matrix M . This makes the
calculation of μΔ(M) very hard. However, when Δ has some special structures, we are able
to calculate μΔ(M) purely based on M . The following presents these special cases.

For simplicity, only square uncertainty Δ is treated hereafter.

17.3.1 Special Cases

17.3.1.1 Single Scalar Block Uncertainty Δ = {δI |δ ∈ CC}
In this case, μΔ(M) = ρ(M) holds. Here, ρ(M) denotes the spectral radius of matrix M , that
is, the maximum absolute value of all eigenvalues of M .

Proof. First, det(I − Mδ) = det(δ−1I − M) det(δI) = 0 holds. So any nonzero δ−1 sat-
isfying this equation is an eigenvalue of M . Then, it is easy to see that the reciprocal of the
minimum size of uncertainty δ satisfying this equation is the spectral radius ρ(M) of matrix
M , that is,

μΔ(M) =
1

min(|δ| : det(I − Mδ) = 0)
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= max(|δ−1| : det(δ−1I − M) = 0)

= ρ(M). •

17.3.1.2 Full-Block Uncertainty Δ = CC
n×n

In this case, all elements are uncertain and μΔ(M) = σmax(M) holds.

Proof. det(I − MΔ) �= 0 holds when 1/σmax(Δ) > σmax(M). Therefore, there must be
μΔ(M) ≤ σmax(M).

On the other hand, by singular value decomposition, we know that

M = V diag(σ1, . . . , σn)U, UU ∗ = I, V V ∗ = I

hold in which σmax(M) = σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. Since

u = U ∗[1, 0, . . . , 0]T ⇒ Mu = σ1V [1, 0, . . . , 0]T = σ1v

where v = V [1, 0, . . . , 0]T . Set Δ = σ−1
1 uv∗. This Δ satisfies σmax(Δ) = σ−1

1 and

(I − MΔ)v = v − σ−1Muv∗v = 0.

So, μΔ(M) ≥ σmax(M) holds. Therefore, μΔ(M) = σmax(M). •

17.3.2 Bounds of μΔ(M)
The following inclusion relation of sets is true for any set of square uncertainties:

{δIn | δ ∈ C} ⊂ Δ ⊂ C
n×n. (17.12)

When the uncertainty is restricted to its subset, a greater uncertainty magnitude is allowed so
that the corresponding μ gets smaller. Therefore, from the aforementioned special cases, we
have the following inequalities:

ρ(M) ≤ μΔ(M) ≤ σmax(M). (17.13)

Therefore, σmax(M), ρ(M) are, respectively, upper and lower bounds of μΔ(M). Since the
structure of Δ is not taken into account, in general the discrepancy between the upper and
lower bounds may be very big. In order to obtain a tighter estimate of μΔ(M), we should
make full use of the structure of Δ.

Next, we try to use the diagonal structure of Δ to calculate upper and lower bounds that are
closer to each other. Considered here is the case where each diagonal block of Δ is a square
matrix, that is, mi = ni. The following set of scaling matrices is introduced:

D = {D | D = diag(D1, . . . , DS , d1Im1
, . . . , dF−1ImF−1

ImF
)} (17.14)

in which
Di ∈ C

ri×ri , Di = D∗
i > 0, dj ∈ R, dj > 0
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Figure 17.6 Introduction of scaling and calculation of μ

and
Q = {Q ∈ Δ |Q∗Q = In}. (17.15)

Note that dF = 1. This is because D and D−1 will appear always in pairs, and
μΔ(αDM (αD)−1) = μΔ(DMD−1) apparently holds. Therefore, for simplicity, we
have normalized D in advance. It is easy to verify the following relations (see Figure 17.6):

Q∗ ∈ Q, QΔ ∈ Δ, ΔQ ∈ Δ

σmax(QΔ) = σmax(ΔQ) = σmax(Δ) (17.16)

DΔ = ΔD. (17.17)

Then, the following theorem holds.

Theorem 17.2 For any Q ∈ Q and D ∈ D, there hold

μΔ(M) = μΔ(DMD−1) = μΔ(QM ) = μΔ(MQ). (17.18)

Proof. First of all, we obtain μΔ(M) = μΔ(DMD−1) from det(I − MΔ) =
det(I − MD−1DΔ) = det(I − MD−1ΔD) = det(I − DMD−1Δ).

Secondly, μΔ(M) = μΔ(MQ) holds because det(I − MΔ) = 0 ⇔ det(I −
MQQ∗Δ) = 0, Q∗Δ ∈ Δ and σmax(Q

∗Δ) = σmax(Δ). Similarly, we can prove that μΔ(M)
= μΔ(QM ). •

From this theorem, we get the following new bounds for μΔ(M):

max
Q∈Q

ρ(QM ) ≤ μΔ(M) ≤ inf
D∈D

σmax(DMD−1). (17.19)

This indicates that we may approach μΔ(M) by solving optimization problems about the
spectral radius and the largest singular value. When the difference between the upper and
lower bounds is small enough, any of them can be used to approximate μΔ(M).
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17.4 Condition for Robust H∞ Performance

Recall the robust tracking problem in Section 12.4. For stable uncertainty Δ satisfying
‖Δ‖∞ < 1, the robust tracking condition is given by

‖WKS‖∞ ≤ 1, ‖WSS(1 + ΔWKS )−1‖∞ ≤ 1. (17.20)

Further, based on the matrix inversion formula and the definition of linear fractional transfor-
mation (LFT), we can conduct the following transformation:

WSS(1 + ΔWKS )−1 = WSS − WSS(1 + ΔWKS )−1ΔWKS

= Fu

([
−WKS WKS
−WSS WSS

]

, Δ
)

= Fu(M,Δ).

Here

M(s) =
[
−WKS WKS
−WSS WSS

]

.

Then, the robust tracking condition becomes

‖WKS‖∞ ≤ 1, ‖Fu(M,Δ)‖∞ ≤ 1.

Block diagram of the corresponding closed-loop system is shown in Figure 17.7(a). The first
norm condition ensures the robust stability and the second ensures the robust reference track-
ing. According to Theorem 12.2, the performance condition ‖Fu(M,Δ)‖∞ ≤ 1 is equivalent
to the robust stability of the closed-loop system after inserting a virtual uncertainty Δf with
H∞ norm less than 1 between the disturbance w and the performance output z, as shown in
Figure 17.7(b). As a result, the necessary and sufficient condition for the robust tracking is
given by

μΔP

([
−WKS WKS
−WSS WSS

]

(jω)
)

≤ 1 ∀ω (17.21)

in which ΔP is a dilated structured uncertainty:

ΔP :=
{[

Δ 0
0 Δf

]

|Δ ∈ Δ,Δf ∈ C
q×p

}

. (17.22)

The H∞ norm condition with scaling obtained in Section 12.4 happens to be an upper bound
of the μ condition.

This example can be extended to the general case. Specifically, Theorem 17.3 holds.

Theorem 17.3 Consider the closed-loop system shown in Figure 17.7(a), where M is a
stable transfer matrix and the uncertainty Δ(s) ∈ Δ is stable and satisfies ‖Δ‖∞ < 1. The
closed-loop system satisfies ‖Fu(M,Δ)‖∞ ≤ 1 for all uncertainties iff

sup
ω∈R

μΔP
(M(jω)) ≤ 1. (17.23)
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wz M(s)

Δ

Δf

(a) Robust performance problem

Δ

M(s)

(b) Equivalent robust stability
problem

Figure 17.7 Robust performance problem and equivalent robust stability problem (a) Robust perfor-
mance problem, (b) Equivalent robust stability problem

Proof. Firstly, we fix Δ(s). According to Theorem 12.2, the performance condition
‖Fu(M,Δ)‖∞ ≤ 1 is equivalent to the robust stability condition with an uncertainty Δf (s)
whose H∞ norm is less than 1 being inserted between the input and output of the closed-loop
system, as shown in Figure 17.7(b). The equivalence holds for all the uncertainties satisfying
‖Δ‖∞ < 1. So, we get the conclusion. •

Remark 17.2 In the previous theorem, Δ(s) is the real uncertainty. However, another uncer-
tainty Δf (s) is not a true uncertainty but a virtual uncertainty introduced to represent the
control performance. The property of Δf (s) depends on the control performance specifica-
tion. Here, the reason for assuming that the virtual uncertainty is a full-block uncertainty
Δf (s) ∈ C

p×q is that the H∞ norm is used to specify the performance.

17.5 D–K Iteration Design

So far, we have shown that a robust performance condition can be converted equivalently into a
μ condition. In this section, we consider how to design a controller to meet this condition, that
is, the μ synthesis problem. Conceptually, μ is a powerful tool for explaining succinctly the
robust performance problem as well as the robust stability problem with multiple uncertainties.
However, from the point of practical applications, it is already very difficult to compute the
value of μ for a given system, not to mention the μ synthesis problem. Therefore, a reasonable
approach is to find an approximate solution based on the upper and lower bounds of μ. So, we
consider making full use of the relationships

max
Q∈Q

ρ(QM ) ≤ μΔ(M) ≤ inf
D∈D

σmax(DMD−1). (17.24)

This lower bound can be proved to be exactly equal to μ[24]. Unfortunately, the maximization
problem of spectral radius is not convex and contains more than one local maxima. So, it is
difficult to calculate μ using the lower bound. On the contrary, the upper bound is the largest
singular value, and we can prove that its minimization problem is convex. It is relatively easy
to calculate the global minimum. For this reason, the μ synthesis basically uses this upper
bound to find an approximate solution.
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17.5.1 Convexity of the Minimization of the Largest Singular Value

As D(s) and M(s) in (17.24) are both transfer matrices, the minimization of σmax(DMD−1)
should be done pointwise in the frequency domain. So, we fix the frequency ω in the analysis.
In this case, D and M can be treated as complex matrices.

According to the property of the largest singular value, minimizing σmax(DMD−1) is equiv-
alent to minimizing γ > 0 satisfying

(DMD−1)∗(DMD−1) ≤ γ2I.

Set an Hermitian matrix X = D∗D. When M is known, the aforementioned inequality can be
rewritten as

M ∗XM ≤ γ2X. (17.25)

This inequality is an LMI about the variable matrix X . Minimizing γ subject to this inequal-
ity is a GEVP and convex. So, its solution converges globally. Therefore, we can solve the
optimization problem

min γ

subject to (17.25)

to obtain the optimal X . Then, D is computed by using the singular value decomposition
method.

17.5.2 Procedure of D–K Iteration Design

In general, any closed-loop transfer matrix M can be expressed as an LFT about the controller
K(s):

M(s) = F�(G,K). (17.26)

So, the upper bound given in (17.24) is the minimum about the controller K(s) and scal-
ing matrix D(s). When we take the maximum of σmax(DMD−1) w.r.t. all frequencies, the
maximum singular value σmax becomes the H∞ norm. Then, we obtain

sup
ω

μΔ(M) ≤ inf
D∈D

‖DMD−1‖∞ (17.27)

in which D denotes the set

D := {D(s) | D(s), D−1(s) stable and D(jω) ∈ D}.

In designing the controller, there is no way to solve for the scaling matrix D and controller
K(s) simultaneously. The so-called D–K iteration method is usually used. The idea is that
when the controller K(s) is known, the closed-loop transfer matrix M(s) is also fixed. So, the
scaling matrix D(s) can be calculated pointwise. Meanwhile, when the scaling matrix D(s)
is given, the controller K(s) can be obtained by solving an H∞ control problem.

Specifically, the D–K iteration uses successively these two parameters to do the minimiza-
tion. That is, fix D(s) first and use K(s) to do the optimization. Next, fix the obtained K(s)
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G

K

D−1D

Figure 17.8 μ synthesis using scaling

and use D(s) to do the optimization. Then, repeat this process. In the case without any scalar
block uncertainty, the detail is as follows:

1. Determine an initial scaling matrix Dω = diag(dω
1 I, . . . , dω

F−1I, I) in the whole frequency
domain pointwise. Usually, the initial value is taken as the identity matrix.

2. For i = 1, 2, . . . , (F − 1), find a stable minimum-phase transfer function di(s) satisfying
|di(jω)| ≈ dω

i .
3. Set D(s) = diag(d1(s)I, . . . , dF−1(s)I, I) and calculate the generalized plant shown in

Figure 17.8:

Ĝ(s) =
[
D(s)

I

]

G(s)
[
D−1(s)

I

]

.

4. Solve the H∞ control problem to minimize the norm ‖F�(Ĝ,K)‖∞. Denote the optimal
controller as K̂. Note that the generalized plant Ĝ contains the scaling matrix.

5. Seek a Dω that minimizes σmax(DωF�(G, K̂)D−1
ω ) at each frequency over the whole

domain and denote this new function as D̂ω . Note that in this optimization, the optimal K̂
obtained from previous step is used.

6. Compare this D̂ω with the last Dω . If they are close enough, end the calculation. Otherwise,
replace G and Dω by Ĝ and D̂ω , respectively; then return to Step 2.

As long as any of K and D is fixed, the optimal problem has a global optimum w.r.t. the
remaining variable. The optimal solution can be obtained either by optimization methods or
by H∞ control. What needs to be emphasized is that the original problem is a simultaneous
optimization problem about two variables K and D, which is not convex. So, D–K iteration
cannot guarantee the global convergence of the solution. However, numerous applications have
proven that the D–K iteration method is quite effective.

Moreover, the D iteration part in D–K iteration may be viewed as an automatic tuning of
weighting functions in H∞ design. Another feature of μ synthesis is that, after each iteration,
the scaling function is added to the generalized plant. So the order of generalized plant gets
higher and higher, which leads to a very high order of the final controller. Usually, model
reduction is necessary before the controller is implemented.

17.6 Case Study

In Section 16.6, we designed an H∞ controller for the head positioning control of a hard disk
drive. The design is based on a sufficient condition and may not bring the potential of feedback
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Table 17.1 Transitions of μ and H∞ norm

Number of D-K iterations 1 2

μ 1.378 0.998
H∞ norm 1.432 0.999

control into full play. So here we try to use the D–K iteration to conduct the μ synthesis, aiming
at further improving the performance of the control system. The generalized plant is identical
to Figure 16.4. But the disturbance specification is more stringent than that in Example 16.6
(the gain of weighting function W1(s) is 60% higher).

The weighting functions are as follows:

W1(s) = 1.6 × s + 1.1 × 8.1 × 102

s + 1.0 × 10−6 × 4.1 × 10−4

W2(s) =
(

s2 + 1.4 × 104s + 1.1 × 108

s2 + 1.9 × 104s + 7.6 × 108

)2

× 33

W3 = 1.0 × 10−3, W4(s) =
s + 2.0 × 103

s + 4.0 × 105 × 1.4 × 102.

The transitions of μ and H∞ norms are shown as in Table 17.1. A value of μ less than 1 is
obtained in the second D–K iteration. The corresponding μ controller is shown in Figure 17.9
(solid line). Compared with the H∞ controller (dashed line), its low-frequency gain is higher.
The disturbance response and control input are shown in Figure 17.10 and Figure 17.11,
respectively, where the solid line is for μ and the dashed line for H∞. First of all, as in the H∞
control case, there is almost no difference in the output response. Secondly, compared withH∞
control although the magnitudes of the two inputs are roughly the same, there is a significant
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Figure 17.9 Comparison of μ and H∞ controllers (solid: μ, dashed: H∞) (a) Weighting functions
(b) Controllers
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Figure 17.10 Step disturbance response (output; solid: μ, dashed: H∞) (a) Norminal output response
(b) Actual output response
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Figure 17.11 Step disturbance response (input; solid: μ, dashed: H∞) (a) Nominal response (b) Actual
response

gap in the disturbance responses. The μ controller has greatly improved the response. Looking
at the input, the μ controller acts slightly faster.

Exercises

17.1 In the system with structured uncertainty shown in Figure 17.4, assume that the nominal
system M(s) and uncertainty Δ(s) are stable. Prove that the closed-loop system is
robustly stable iff

det[I − M(jω)Δ(jω)] �= 0 ∀ω

holds for all Δ(s), based on Nyquist stability criterion.
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17.2 Prove the necessity of Theorem 17.1 following the steps below:
(a) When there is a frequency ω0 at which

μΔ(M(jω0)) >
1
γ

holds, there must be a γ0 < γ and an uncertainty

Δ0 = diag(δ0
1Ir1

, . . . , δ0
SIrS

, Δ0
1, . . . ,Δ

0
F ), ‖Δ0‖ = γ0

as well as a nonzero complex vector u such that [I − M(jω0)Δ0]u = 0.
(b) Define v = Δ0u and partition (u, v) in accordance with the structure of Δ0 so

that vi = δ0
i ui, vk = Δ0

kuk (the subscripts i, k indicate scalar block and full-block
uncertainties, respectively).

(c) Following the proof of small-gain theorem to construct a stable transfer function
δi(s) and a stable transfer matrix Δk(s) such that

δi(jω0) = δ0
i , ‖δi‖∞ = |δ0

i | ≤ γ0

Δk(jω0) = vk

u∗
k

‖uk‖2 , ‖Δi‖∞ = ‖Δ0
i‖ ≤ γ0.

(d) Construct Δ(s) ∈ Δ using δi(s) and Δk(s) then prove that it satisfies Δ(jω0)u =
v and ‖Δ‖∞ < γ.

(e) Prove that jω0 becomes a pole of the closed-loop system for this uncertainty Δ(s).

Notes and References

μ theory was proposed by Doyle [24]. Refer to Refs [77, 100, 5, 27] for more details as well
as tutorials. Hirata et al. [40] gave a method to transform parametric systems so that they can
be solved by μ.
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Robust Control of Parametric
Systems

In Chapter 13, we analyzed the quadratic stability of parametric systems. Based on these analy-
ses, this chapter deals with the robust stabilization of parametric systems. Further, we illustrate
in detail the H∞ control design methods for this class of systems. This chapter focuses on
polytopic systems and systems with norm-bounded parameter uncertainty.

18.1 Quadratic Stabilization of Polytopic Systems

18.1.1 State Feedback

To quadratically stabilize the polytopic system

ẋ =

(
N∑

i=1

λiAi

)

x +

(
N∑

i=1

λiBi

)

u, λi ≥ 0,
N∑

i=1

λi = 1, (18.1)

how should we design the feedback control?
Consider the state feedback first

u = Fx . (18.2)

Here, the closed-loop system is

ẋ =

(
N∑

i=1

λiAi +
N∑

i=1

λiBiF

)

x =
N∑

i=1

λi (Ai + BiF ) x (18.3)

λi ≥ 0,

N∑

i=1

λi = 1.

From Chapter 13, we know that the condition for the quadratic stabilization of a polytopic
system boils down to the existence of a gain matrix F and a positive definite matrix P satisfying

Robust Control: Theory and Applications, First Edition. Kang-Zhi Liu and Yu Yao.
© 2016 John Wiley & Sons Singapore Pte. Ltd. Published 2016 by John Wiley & Sons, Singapore Pte. Ltd.

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

376 Robust Control

the inequality
(Ai + BiF )T P + P (Ai + BiF ) < 0 ∀i.

That is,
AT

i P + PAi + (BiF )T P + PBiF < 0 ∀i. (18.4)

However, the product terms (BiF )T P, PBiF of unknown matrices appear in the inequality.
So this inequality is a BMI rather than an LMI, which makes numerical computation very
difficult.

To get over this difficulty, variable change is effective. In particular, we focus on the
positive definiteness of matrix P . Here, let us try setting M = PBiF . The idea is to calculate
(P,M) first and then reverse to F . Unfortunately, Bi is singular in general. So F cannot be
calculated from M . Hence, it is necessary to change the matrix product into a direct product
of P and F first. This is done by premultiplying and postmultiplying (18.4) by Q = P−1.
Then, (18.4) turns into

QAT
i + AiQ + (FQ)T BT

i + BiFQ < 0.

So, a change of variable

Q = P−1, X = FQ ⇐⇒ F = XQ−1 (18.5)

transforms the condition (18.4) for quadratic stability into

QAT
i + AiQ + XT BT

i + BiX < 0 ∀i. (18.6)

(18.6) is an LMI about the new variable matrices (Q,X) and can be solved numerically.

18.1.2 Output Feedback

In the variable change method introduced in Section 3.2.4, the new variables contain the coef-
ficient matrices of the plant. For this reason, in general the variable change method cannot be
applied to solve the robust control problem for systems with uncertain parameters. But we may
try the variable elimination method.

18.1.2.1 Quadratic Stabilization of Nominal System

Consider the quadratic stabilization of the nominal system first. Let the realizations of the plant
and the (full-order) controller be

P (s) = (A, B, C, 0), K(s) = (AK , BK , CK , DK), (18.7)

respectively. The A matrix of the closed-loop system formed by a positive feedback intercon-
nection of them is

Ac = A + BKC

K =
[
DK CK

BK AK

]

, A =
[
A 0
0 0

]

, B =
[
B 0
0 I

]

, C =
[
C 0
0 I

]

. (18.8)
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Therefore, the quadratic stability condition reduces to the existence of a positive definite matrix
P satisfying

AT
c P + PAc = A

T
P + PA + C

TKT B
T
P + PBKC < 0. (18.9)

According to Lemma 3.1, this inequality is solvable iff

C
T
⊥(A

T
P + PA)C⊥ < 0, B

T
⊥P−1(A

T
P + PA)P−1B

T
⊥ < 0

holds simultaneously. It is easy to know that

C⊥ =
[
C⊥
0

]

, B⊥ = [B⊥ 0].

Next, we decompose the positive definite matrix P as

P =
[
Y ∗
∗ ∗

]

, P−1 =
[
X ∗
∗ ∗

]

.

Substituting this decomposition into the previous conditions, we arrive at the solvable condi-
tion

CT
⊥ (AT Y + YA)C⊥ < 0

B⊥(AT X + XA)BT
⊥ < 0

[
X I
I Y

]

> 0 (18.10)

for the output feedback quadratic stabilization problem after some simple calculation.

18.1.2.2 Quadratic Stabilization of Parametric Systems

From the proof of the sufficiency of Theorem 3.1, we see that the constructed solution depends
on all matrices in the inequality. When some matrix has uncertainty, the obtained solution is
not realizable. Therefore, for parametric systems, (18.10) is only a necessary condition, not
sufficient. In addition, it is seen from the foregoing results that this method needs the orthog-
onal matrices of B and C. For an uncertain matrix, the relationship between its orthogonal
matrix and the uncertain parameters is very complicated. Hence, it is very difficult to reduce
the preceding solvability condition to finite number of LMIs about the vertices of the parameter
polytope. So the following assumptions are made.

Assumption Matrices B and C are independent of the uncertain parameters, while A is a
matrix polytope of the uncertain parameter vector λ, that is,

A =
N∑

i=1

λiAi, λi ≥ 0,

N∑

i=1

λi = 1. (18.11)

Under this assumption, the necessary condition (18.10) for the solvability of the output
feedback quadratic stabilization problem can be reduced to the vertex conditions about the
parameter vector polytope. Specifically, the solvability of the following LMIs is necessary
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for the existence of a fixed controller such that the feedback system consisting of the plant of
(18.1) and the controller is quadratic stable (i = 1, . . . , N ):

B⊥(AT
i X + XAi)B

T
⊥ < 0

CT
⊥ (AT

i Y + Y Ai)C⊥ < 0
[
X I
I Y

]

> 0. (18.12)

Calculating P using (X,Y ) according to Lemma 3.1 and then substituting it back into LMIs

AT
i P + PAi + C

TKT B
T
P + PBKC < 0, i = 1, . . . , N, (18.13)

we may get a controller. Here, Ai is a matrix obtained by replacing the matrix A in A by Ai.
The output feedback quadratic stabilization can be realized if these LMIs have a solution K.

The next question is how to design a quadratically stable feedback system when B or C
contains parameter uncertainty. Let us seek the answer from engineering practice. In actual
systems, in order to avoid being sensitive to sensor noise, the controller often needs to be
rolled off in the high-frequency domain. That is, only a strictly proper controller is practical.
If we hope to roll off the controller in the frequency band higher than ωc, we can insert the
following low-pass filter to the controller in advance:

F (s) =
ωc

s + ωc

I =
[
−ωcI ωcI

I 0

]

. (18.14)

That is, to use the following controller in the feedback control

C(s) = F (s)K(s). (18.15)

In the design, we may absorb the filter F (s) into the plant and design a controller K(s) for
the augmented plant:

G(s) = P (s)F (s) =

⎡

⎣
A B 0
0 −ωcI ωcI

C 0 0

⎤

⎦ . (18.16)

Thus, even if the matrix B contains uncertain parameters, after augmentation the new B does
not depend on the uncertain parameters. If the matrix C is also independent of parameter
uncertainty, then in the augmented plant, only the matrix A contains uncertain parameters.
Hence we can apply the previous results. For example, for the mass–spring–damper system

ẋ =

[
0 1

− k

m
− b

m

]

x +

[
0
1
m

]

u, y = [1 0]x,

this method is applicable. Moreover, if integral control is desired, the filter can be set as an
integrator F (s) = 1/s.

As for the case where the matrix C contains uncertain parameters, the output can be filtered
by a low-pass filter before being applied to the controller. Then, the new plant becomes

G(s) = F (s)P (s) =

⎡

⎣
A 0 B

ωcC −ωcI 0
0 I 0

⎤

⎦ . (18.17)
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The new C matrix is independent of the uncertain parameters. It is a rare case that both B and C
contain uncertain parameters. In fact, when the states are all selected as physical variables, the
matrix C will not contain any physical parameter since the measured output must be physical
variables.

18.2 Quadratic Stabilization of Norm-Bounded Parametric Systems

The discussion in the previous section shows that the output feedback design of polytopic
systems is very difficult. So, we discuss the output feedback control problem of norm-bounded
parametric systems in this section. Based on Section 11.3.3, we know that a general model for
stabilization is given by

G

⎧
⎪⎨

⎪⎩

ẋ = Ax + B1w + B2u

z = C1x + D11w + D12u

y = C2x + D21w

(18.18)

w = Δz, ‖Δ‖2 ≤ 1. (18.19)

We design a dynamic output feedback controller K

ẋK = AKxK + BKy

u = CKxK + DKy (18.20)

to quadratically stabilize the closed-loop system. The part beside Δ is an LFT interconnection
between the generalized plant G and the controller K:

M(s) = F�(G,K). (18.21)

According to the analysis in Section 13.2.3, the quadratic stability condition is that the nominal
closed-loop system M(s) is stable and satisfies the H∞ norm condition:

‖M‖∞ < 1. (18.22)

This is an H∞ control problem whose solution is known. Refer to Chapter 16 for the details.
Compared with the polytopic model, the matching of norm-bounded parametric model and

the physical system is not good enough. Strong conservatism may be introduced in such mod-
eling. However, its advantage lies in the simplicity of controller design.

18.3 Robust H∞ Control Design of Polytopic Systems

This section discusses the robust H∞ control design problem for the polytopic system

G(s, θ) =

⎡

⎣
A(θ) B1(θ) B2
C1(θ) D11(θ) D12
C2 D21 0

⎤

⎦ . (18.23)
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Here

A(θ) =
N∑

i=1

λiA(θi), B1(θ) =
N∑

i=1

λiB(θi),

C1(θ) =
N∑

i=1

λiC(θi), D11(θ) =
N∑

i=1

λiD11(θi)

and λi ≥ 0,
∑N

i=1 λi = 1. θ is an uncertain parameter vector belonging to a polytope with N
vertices θi. For all uncertain parameters θ, it is assumed that (A(θ), B2) is controllable and
(C2, A(θ)) is detectable.

When the uncertain generalized plant is controlled by a fixed controller K(s) =
(AK , BK , CK ,DK), the closed-loop system in Figure 16.3 becomes

Hzw (s, θ) = (Ac(θ), Bc(θ), Cc(θ), Dc(θ)) (18.24)

in which

Ac(θ) Bc(θ)
Cc(θ) Dc(θ)

=
A(θ) B1(θ)
C1(θ) D11(θ)

+
B2

D12
K[C2, D21] (18.25)

⎡

⎣
A(θ) B1(θ) B2

C1(θ) D11(θ) D12

C2 D21

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

A(θ) 0 B1(θ) B2 0
0 0 0 0 I

C1(θ) 0 D11(θ) D12 0
C2 0 D21

0 I 0

⎤

⎥
⎥
⎥
⎥
⎦

. (18.26)

According to the bounded-real lemma, the closed-loop system is robustly stable and the norm
condition ‖Hzw‖∞ < γ holds iff there is a positive definite matrix P satisfying the following
inequality ⎡

⎣
Ac(θ)

T P + PAc(θ) PBc(θ) Cc(θ)
T

Bc(θ)
T P −γI Dc(θ)

T

Cc(θ) Dc(θ) −γI

⎤

⎦ < 0. (18.27)

Since the system contains an uncertain parameter vector θ, as a necessary and sufficient condi-
tion, the matrix P should be a function of θ. However, in order to simplify the design, a constant
P is used. In this case, the condition (18.27) is just sufficient, not necessary. This is equivalent
to using a common Lyapunov function to ensure that the H∞ norm of the closed-loop system
is less than γ. By Theorem 16.1, the robust H∞ control problem has a solution only if the
following LMIs

[
NT

X 0
0 Inw

]
⎡

⎣
A(θ)X + XA(θ)T XC1(θ)

T B1(θ)
C1(θ)X −γI D11(θ)
B1(θ)

T D11(θ)
T −γI

⎤

⎦
[
NX 0

0 Inw

]

< 0

[
NT

Y 0
0 Inz

]
⎡

⎣
YA(θ) + A(θ)T Y Y B1(θ) C1(θ)

T

B1(θ)
T Y −γI D11(θ)

T

C1(θ) D11(θ) −γI

⎤

⎦
[
NY 0

0 Inz

]

< 0
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[
X I
I Y

]

≥ 0, rank

[
X I
I Y

]

≤ n + nK

have positive definite solution X,Y .
These conditions rely on the uncertain parameter θ, so the number of LMIs is not finite. In

order to find a finite number LMI condition, we note the assumption that (B2, C2,D12,D21)
is independent of the uncertain parameter θ. Then, the matrix NX , NY are also constant. So,
the aforementioned LMIs become affine functions of the uncertain parameter vector θ and can
be reduced to the finite vertex conditions (i = 1, . . . , N) that follow:

[
N T

X 0
0 Inw

]
⎡

⎣
A(θi)X + XA(θi)

T XC1(θi)
T B1(θi)

C1(θi)X −γI D11(θi)
B1(θi)

T D11(θi)
T −γI

⎤

⎦
[
NX 0
0 Inw

]

< 0

(18.28)

[
N T

Y 0
0 Inz

]
⎡

⎣
YA(θi) + A(θi)

T Y Y B1(θi) C1(θi)
T

B1(θi)
T Y −γI D11(θi)

T

C1(θi) D11(θi) −γI

⎤

⎦
[
NY 0
0 Inz

]

< 0

(18.29)
[
X I
I Y

]

> 0. (18.30)

Here, we have strengthened the third inequality to a strict one. The designed controller has full
order, that is, its order is the same as that of the generalized plant.

To compute the controller, after expanding the bounded-real condition (18.27), we rearrange
it with respect to K as

Q(θ) + ETKF + F TKT E < 0

Q(θ) ET

F
=

⎡

⎢
⎢
⎣

A(θ)T P + PA(θ) PB1(θ) C1(θ)T PB2

B1(θ)T P −γI D11(θ)T 0
C1(θ) D11(θ) −γI D12

C2 D21 0

⎤

⎥
⎥
⎦ .

The matrix P can be calculated by the method of Section 16.3.2. Further, only Q(θ) is an
affine function of the uncertain parameter θ in the previous LMI. So it can be reduced to the
following vertex conditions:

Q(θi) + ETKF + FTKT E < 0 ∀ i = 1, . . . , N. (18.31)

Solving these coupled LMIs leads to the coefficient matrix K of the controller. It is noted that
in general the feasibility of this LMI is not guaranteed.
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Δ

G (s)

wz

d

u

e

y

Figure 18.1 Norm-bounded parametric system

18.4 Robust H∞ Control Design of Norm-Bounded Parametric
Systems

The general model of norm-bounded parametric systems is shown in Figure 18.1 in which

G(s) =

⎡

⎢
⎢
⎣

A B1 B2 B3

C1 D11 D12 D13

C2 D21 D22 D23

C3 D31 D32 0

⎤

⎥
⎥
⎦ , Δ 2 ≤ 1. (18.32)

d is the disturbance signal and e is the performance output, while (z, w) are the input and
output of the uncertain parameter matrix Δ.

Now, we discuss the H∞ robust disturbance control problem

‖Hed‖∞ < 1 ∀‖Δ‖2 ≤ 1. (18.33)

According to the equivalence between the H∞ norm performance and the robust stability
(Section 12.3), this performance specification is equivalent to the robust stability condition of
the closed-loop system with a virtual norm-bounded uncertainty ΔP (s) (‖ΔP ‖∞ ≤ 1) being
inserted between the signals d and e. Then, the overall uncertainty becomes diag(Δ,ΔP ). In
order to reduce the conservatism of the small-gain method, we introduce a constant scaling
matrix following the method of Section 12.4.2. Since these two uncertainties are full-block
matrices, the scaling matrix permutable with diag(Δ,ΔP ) is

L = diag(I,
√

�I).

This robust H∞ control problem can be solved by the scaled robust H∞ control method of
Section 16.7.

Exercises

18.1 Suppose that (B2,D12, C2,D21) are also affine functions of the uncertain parameter
vector θ in the polytopic system discussed in Section 18.3. Try to propose a method to
solve the robust H∞ control design problem.

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

Robust Control of Parametric Systems 383

18.2 Consider an uncertain system with a norm-bounded time-varying uncertainty:

ẋ(t) = (A + BΔ(t)C)x(t), ‖Δ(t)‖2 ≤ 1 ∀t ≥ 0. (18.34)

Use the following two methods to prove that this system is quadratically stable if there
is a matrix P > 0 satisfying

⎡

⎣
PA + AT P PB CT

BT P −I 0
C 0 −I

⎤

⎦ < 0. (18.35)

(a) Show that the system is equivalent to a positively feedback-connected system of
Δ(t) and M(s) = (A,B,C, 0); then apply the bounded-real lemma.

(b) Start from the definition of quadratic stability, that is, there is a matrix P > 0 such
that

(A + BΔC)T P + P (A + BΔC) < 0 ∀‖Δ(t)‖2 ≤ 1.

Show via the completion of square w.r.t. Δ(t) that this inequality holds subject to
the given LMI (18.35).
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Regional Pole Placement

In conventional modern control theory, as the model uncertainty is not taken into consideration,
the so-called pole placement is to place the poles to fixed points in the complex plane. However,
it is impossible to fix the closed-loop poles to specific points when the system has uncertainty.
This is because the closed-loop poles move with the variation of plant. Nevertheless, it is still
possible to place the closed-loop poles in a region. In addition, from the viewpoint of robust
performance, the response quality of the closed-loop system is guaranteed if the closed-loop
poles can be locked in a prescribed region. This is what we are yearning for. For this reason,
we will first discuss this issue for the nominal system and then extend to the regional pole
placement of uncertain systems in this chapter.

19.1 Convex Region and Its Characterization

19.1.1 Relationship between Control Performance and Pole Location

First of all, we consider how to place the system poles so as to achieve a satisfactory transient
response. We look at the prototype second-order system

G(s) =
ω2

n

s2 + 2ζωns + ω2
n

, 0 < ζ < 1 (19.1)

first. The poles of G(s) are p = −ζωn ± jωn

√
1 − ζ 2. Since the rise time is inversely pro-

portional to the natural frequency ωn, ωn must be greater than a certain number r > 0 in order
to guarantee a short rise time. Meanwhile, to avoid a too large control input, it is necessary to
let ωn be smaller than a certain value R > 0. Namely, the size of pole |p| = ωn should be in
the following range:

r ≤ |p| = ωn ≤ R.

Moreover, if the damping ratio corresponding to the greatest allowable overshoot is ζp, the
damping ratio must satisfy

ζ ≥ ζp.

Robust Control: Theory and Applications, First Edition. Kang-Zhi Liu and Yu Yao.
© 2016 John Wiley & Sons Singapore Pte. Ltd. Published 2016 by John Wiley & Sons, Singapore Pte. Ltd.
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Hence, the angle between the poles and the real axis must satisfy

tan θ =

√
1 − ζ 2

ζ
=

√
1
ζ 2 − 1 ≤

√
1
ζ 2
p

− 1

⇒ θ ≤ θp := arctan

√
1
ζ 2
p

− 1.

Further, the real parts of the poles are −ζωn. So, to shorten the settling time,

−ζωn ≤ −σ

should be satisfied w.r.t. the required convergence rate σ. Basically this can be ensured by
adjusting r.

Drawing the region satisfying these conditions, we obtain the shaded part in Figure 19.1.
Obviously, this region is not convex. Generally speaking, the region of desirable poles is not
necessarily convex. However, it is extremely difficult to design a feedback system to place the
poles in a nonconvex region. For simplicity of design, the convex region has more advantage.
In the prototype second-order system, we can get a convex region by adding to the shaded
portion in Figure 19.1 an area surrounded by the dashed vertical line R[z] = −ζωn and the
arc with radius r.

19.1.2 LMI Region and Its Characterization

Among convex regions, the LMI region described by LMI is particularly important. Figure 19.2
presents four typical LMI regions. We investigate the characterizations of these regions in this
subsection.

The point z = x + jy located in the left of straight line x = −σ in Figure 19.2(a) can be
expressed as

x < −σ ⇔ z + z < −2σ. (19.2)

0−r−R

ζωn

θp
Re

Im

Figure 19.1 Desirable pole region for second-order systems
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Im

Re

−σ 0

(a)

Im

Re

0− c

r

(b)

Im

Re

0
θ

(c)

Im

Re

− h1
0− h2

(d)

Figure 19.2 Typical examples of LMI region (a) σ region (b) Disk (c) Sector (d) Strip

Secondly, the point z = x + jy located in the disk centered at (−c, 0) and with a radius r in
Figure 19.2(b) can be expressed as follows using z and z:

(z + c)(z + c) < r2 ⇔ −r − (z + c) · 1
−r

· (z + c) < 0 ⇔
[
−r z + c

z + c −r

]

< 0.

Here, we have applied Schur’s lemma. Splitting the inequality further into terms about z and
z, it can be rewritten as

[
−r c
c −r

]

+ z

[
0 1
0 0

]

+ z

[
0 0
1 0

]

< 0. (19.3)

As for the point z = x + jy in the sector | arg z − π| < θ of the left half-plane in
Figure 19.2(c), it satisfies

|y|
−x

< tan θ ⇔ x sin θ < −|y| cos θ < 0

⇔ (x sin θ)2 > (y cos θ)2, x sin θ < 0.

Since x sin θ < 0, we get

x sin θ <
(y cos θ)2

x sin θ
⇔

[
x sin θ jy cos θ

−jy cos θ x sin θ

]

< 0.

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

Regional Pole Placement 387

Substituting x = (z + z)/2, jy = (z − z)/2, and then eliminating 1/2, we finally obtain
[

(z + z) sin θ (z − z) cos θ
−(z − z) cos θ (z + z) sin θ

]

< 0 ⇔

z

[
sin θ cos θ

− cos θ sin θ

]

+ z

[
sin θ − cos θ
cos θ sin θ

]

< 0. (19.4)

Note that these characterizations of regions are described by linear matrix inequalities about
variables z and z.

Generalizing these examples, we call the region D of complex number z characterized by

D = {z ∈ C | fD(z) < 0} (19.5)

an LMI region, in which
fD(z) = L + zM + zMT . (19.6)

Matrix fD(z) is called the characteristic function. Here, L and M are both square matrices.

19.2 Condition for Regional Pole Placement

Consider the following system:
ẋ = Ax . (19.7)

Let us analyze the required condition for its eigenvalues being located in an LMI region. As
an example, we first consider a second-order system with distinct eigenvalues. In this case, we
may use a (complex in general) matrix T to transform the matrix A into a diagonal one:

T −1AT =
[
z1

z2

]

. (19.8)

For all eigenvalues of A to be located in the LMI region D of Eq. (19.5),

fD(z1) = L + z1M + z1M
T < 0, fD(z2) = L + z2M + z2M

T < 0

must be satisfied. These two inequalities can be summarized as a matrix inequality:
[
fD(z1)

fD(z2)

]

=
[
L

L

]

+
[
z1M

z2M

]

+
[
z1M

T

z2M
T

]

< 0.

Set nf = dim(fD). The (i, j) and (nf + i, nf + j) elements of the matrix in the left-hand
side are, respectively,

lij + z1mij + z1mji , lij + z2mij + z2mji

in which lij ,mij denote the (i, j) elements of L,M . They can be collected into a block ((i, j)
block):

lij

[
1

1

]

+ mij

[
z1

z2

]

+ mji

[
z1

z2

]

= lij I2 + mij (T
−1AT ) + mji (T

−1AT )∗
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via exchange of row and column. The matrix obtained after performing this transformation on
all elements can be written compactly as

L ⊗ I2 + M ⊗ (T −1AT ) + M T ⊗ (T −1AT )∗

by using the Kronecker product. Since the transformation is congruent, it does not alter the
negative definiteness of the matrix. So we have

L ⊗ I2 + M ⊗ (T −1AT ) + M T ⊗ (T −1AT )∗ < 0. (19.9)

Moreover, to describe this inequality using A directly, we apply the property of the Kronecker
product

(AC ) ⊗ (BD) = (A ⊗ B)(C ⊗ D)

to M ⊗ (T −1AT ):

M ⊗ (T −1AT ) = (I2 · M ) ⊗ (T −1 · AT )

= (I2 ⊗ T −1)[M ⊗ (AT )]

= (I2 ⊗ T −1)[(M · I2) ⊗ (ATT ∗ · T −∗)]

= (I2 ⊗ T −1)[M ⊗ (ATT ∗)](I ⊗ T −∗).

Similarly, the following equations are also true:

M T ⊗ (T −1AT )∗ = M T ⊗ (T ∗AT T −∗) = (I2 ⊗ T −1)[M T ⊗ (AT T ∗)∗](I2 ⊗ T −∗),

L ⊗ I2 = L ⊗ (T ∗T −∗) = (I2 ⊗ T −1)[L ⊗ (T T ∗)](I2 ⊗ T −∗).

Note that

I2 ⊗ T −1 =
[
T −1

T −1

]

, I2 ⊗ T =
[
T

T

]

.

Multiplying (19.9) by I2 ⊗ T and I2 ⊗ T ∗, respectively, from the left and right, we obtain

L ⊗ (T T ∗) + M ⊗ (ATT ∗) + M T ⊗ (ATT ∗)∗ < 0. (19.10)

This is a necessary condition for all eigenvalues of A being located in the LMI region. For
convenience, set X = T T ∗. Then, the inequality (19.10) can be further rewritten as

L ⊗ X + M ⊗ (AX ) + M T ⊗ (AX )∗ < 0. (19.11)

Obviously, the matrix X is Hermitian and positive definite. But in general, X is complex.
The condition (19.11) is an LMI about a complex matrix X . But the calculation of complex

matrix is not easy. So we study whether we can replace the complex matrix X by a real one. For
this purpose, we consider an arbitrary Hermitian matrix Z first. Denote the real and imaginary
parts of Z by Zre and Zim. Due to the property of Hermitian,

Zre + jZim = (Zre + jZim)∗ = ZT
re − jZT

im

holds. The real parts and imaginary parts of both sides are equal, respectively. So, we have

Zre = ZT
re , Zim + ZT

im = 0.
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Then, owing to the skew symmetry of the imaginary part Zim and the property (vT Zimv)T =
vT ZT

imv of scalar vT Zimv, we see that for any compatible real vector v,

vT Zv = vT Zrev + jvT Zimv = vT Zrev +
j

2
vT (Zim + ZT

im)v = v∗Zrev

holds. That is, Z < 0 and Zre < 0 are equivalent.
Let us look back at the condition of (19.11), noting that all matrices are real except the

Hermitian matrix X . Splitting X as X = Xre + jXim, the real part of the left-hand side of
(19.11) is equal to the matrix obtained with X replaced by Xre. Then, as X∗

re = XT
re , a condi-

tion equivalent to (19.11) is obtained via the preceding discussion:

L ⊗ Xre + M ⊗ (AXre) + M T ⊗ (AXre)
T < 0.

Finally, we still use X to denote Xre for simplicity. Then, for all eigenvalues of A to be located
in LMI region D, there must be a real symmetrical positive definite matrix X satisfying

L ⊗ X + M ⊗ (AX ) + M T ⊗ (AX )T < 0. (19.12)

Then, what about the case of multiple poles? When the geometric multiplicity is 2, the
condition is the same. In the other case, we can convert A into the Jordan canonical form via
similarity transformation:

T −1AT =
[
z 1

z

]

.

Multiplying both sides by

T−1
k =

[1
k

1

]

, Tk =
[
k

1

]

from left and right and then taking the limit k → ∞, we have

T−1
k T −1ATTk =

[1
k

1

] [
z 1

z

] [
k

1

]

=

[
z

1
k
z

]

→
[
z

z

]

.

Now, set S = TTk. We have from (19.9) that for sufficiently large k,

L ⊗ I2 + M ⊗ (S−1AS ) + M T ⊗ (S∗AT S−∗) < 0 (19.13)

holds. Therefore, like the case of distinct poles, Eq. (19.12) holds for X = (SS∗)re > 0.
Hereafter, we set the matrix in the inequality (19.12) as

MD(A,X) = L ⊗ X + M ⊗ (AX ) + M T ⊗ (AX )T . (19.14)

This discussion applies to matrix A with any dimension. So we get the following theorem.
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Theorem 19.1 All eigenvalues of matrix A are located in an LMI region D iff there exists a
real symmetrical positive definite matrix X such that

MD(A,X) < 0. (19.15)

Proof. We have shown that when the eigenvalues of A are all located in an LMI region D,
such matrix X > 0 exists.

Now, we prove its converse, that is, when a real symmetrical matrix X > 0 satisfying the
inequality (19.15) exists, the eigenvalues of the matrix A are all located in the LMI region D.
To this end, suppose that z is an eigenvalue of A and v �= 0 is the corresponding eigenvector
satisfying v∗A = zv∗. For the (i, j) block of MD(A,X), there holds

v∗(lij X + mij AX + mjiXAT )v = lij v
∗Xv + mij v

∗AXv + mjiv
∗XAT v

= lij v
∗Xv + mij zv∗Xv + mjizv∗Xv

= v∗Xv(lij + mij z + mjiz)

= v∗Xv · (fD(z))ij

in which (fD(z))ij denotes the (i, j) element of the characteristic function fD(z). So we have

(I ⊗ v∗)MD(A,X)(I ⊗ v) = (v∗Xv) · fD(z).

Owing to the condition MD(A,X) < 0 and v∗Xv > 0, we see that fD(z) < 0 and
z ∈ D. •

Next, we consider the examples of LMI region examined in Section 19.1.2.

Example 19.1 Let us write down the detailed condition for the eigenvalues of A to be located
in a disk centered at (−c, 0) and with radius r. The characteristic function of this LMI region
is

fD(z) =
[
−r c
c −r

]

+ z

[
0 1
0 0

]

+ z

[
0 0
1 0

]

,

that is,

L =
[
−r c
c −r

]

, M =
[
0 1
0 0

]

.

According to Theorem 19.1, the required condition is

MD(A,X) = L ⊗ X + M ⊗ (AX ) + MT ⊗ (AX )T

=
[
−rX cX
cX −rX

]

+
[
0 AX
0 0

]

+
[

0 0
(AX )T 0

]

=
[

−rX cX + AX
cX + (AX )T −rX

]

< 0. (19.16)
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Observing MD(A,X) and fD(z) in this example carefully, we notice that the constant 1
in fD(z) corresponds to the matrix X in MD(A,X); variables z, z correspond to matrices
AX , (AX )T , respectively. That is,

(1, z, z) ⇔ (X, AX , (AX )T ). (19.17)

This correspondence is true for all cases.
Look at another example. The characteristic function for the sector in the left half-plane and

with an angle θ is

fD(z) = z

[
sin θ cos θ

− cos θ x sin θ

]

+ z

[
sin θ − cos θ
cos θ sin θ

]

.

That is,

L = 0, M =
[

sin θ cos θ
− cos θ sin θ

]

.

Substitution of the correspondence relationship in (19.17), we obtain the condition

MD(A,X) =

[
(AX + XAT ) sin θ (AX − XAT ) cos θ

−(AX − XAT ) cos θ (AX + XAT ) sin θ

]

< 0. (19.18)

On the other hand, we can get the same result by calculating MD(A,X) according to its
definition:

MD(A,X) =
[

sin θ cos θ

− cos θ sin θ

]

⊗ (AX ) +
[

sin θ cos θ

− cos θ sin θ

]T

⊗ (AX )T

=
[

(AX + XAT ) sin θ (AX − XAT ) cos θ

−(AX − XAT ) cos θ (AX + XAT ) sin θ

]

.

Moreover, the characteristic function for the half-plane D in the left of straight line R[z] =
−σ is fD(z) = z + z + 2σ. So, the eigenvalues of matrix A are all located in this region iff

MD(A,X) = AX + (AX )T + 2σX < 0, X > 0. (19.19)

This is identical to the condition for the state to exponentially converge at a rate of σ, which
was shown in Section 13.1.2.

Example 19.2 Let the system matrix A be

A =
[

0 1
−10 −6

]

.

It is easy to know that the eigenvalues of A are p = −3 ± j. Set the parameters of the afore-
mentioned regions as

(1) disk : c = 0, r = 5; (2) half -plane : σ = 2; (3)sector : θ = π/4.
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Obviously, the eigenvalues of matrix A are contained in all of these LMI regions. Denote
the solutions of (19.16), (19.19), and (19.18), respectively, by X1, X2, and X3. Numerical
computation gives

X1 =
[

0.1643 −0.2756
−0.2756 0.8687

]

, X2 =
[

0.1567 −0.3532
−0.3532 1.0106

]

X3 =
[

0.1335 −0.2187
−0.2187 0.4799

]

.

They are all positive definite matrices. So, according to Theorem 19.1, it is confirmed that the
eigenvalues of matrix A are located in these three regions.

But, when σ increases to σ = 4, the system poles move to the right of half-plane R[z] < −4.
In this case, computation of (19.19) shows that it has no positive definite solution.

19.3 Composite LMI Region

Now, what condition is required for the eigenvalues of matrix A to be located in the intersection
of several LMI regions? Some good examples are the intersection of a disk and a half-plane
or the intersection of a sector and a half-plane.

To find this condition, we study the case of two regions first. Let the characteristic functions
of LMI regions D1 and D2 be

fD1
(z) = L1 + zM1 + zM T

1 , fD2
(z) = L2 + zM2 + zM T

2 , (19.20)

respectively. Then, the condition for the eigenvalues of A to be located in LMI region D1 is
that there is a positive definite matrix X1 such that

MD1
(A,X1) = L1 ⊗ X1 + M1 ⊗ (AX1) + M T

1 ⊗ (AX1)
T < 0 (19.21)

holds. Meanwhile, the condition for the eigenvalues of A to be located in LMI region D2 is
that there is a positive definite matrix X2 satisfying

MD2
(A,X2) = L2 ⊗ X2 + M2 ⊗ (AX2) + M T

2 ⊗ (AX2)
T < 0. (19.22)

So, if these two matrix inequalities have solutions X1,X2 simultaneously, the eigenvalues of
A are located in the intersection D1 ∩ D2 of LMI regions D1,D2.

However, in control design it is rather inconvenient to use different matrices X1,X2 to
describe this property. So, let us investigate whether we can make X1 = X2. To find a clue,
we go back to (19.11) first. The unknown matrix X and the matrix T used in the diagonal
transformation of A has a relationship of X = T T ∗. The transforming matrix T has nothing
to do with the LMI region. So, X should be independent of the LMI region. That is to say,
when considering the intersection D1 ∩ D2 of LMI regions, these two matrices should have a
common solution.

The detailed proof is as follows. First of all, the characteristic function fD1∩D2
for the com-

plex region D1 ∩ D2 is obviously

fD1∩D2
(z) =

[
fD1

(z) 0
0 fD2

(z)

]

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

Regional Pole Placement 393

=
[
L1 + zM1 + zM T

1 0
0 L2 + zM2 + zM T

2

]

=
[
L1 0
0 L2

]

+ z

[
M1 0
0 M2

]

+ z

[
M1 0
0 M2

]T

. (19.23)

From it, we see that D1 ∩ D2 is also an LMI region. So, we can use Theorem 19.1 to prove
the following corollary.

Corollary 19.1 Given two LMI regions D1 and D2, all eigenvalues of matrix A are in the
composite region D1 ∩ D2 iff there exists a positive definite matrix X satisfying MD1

(A,X) <
0 and MD2

(A,X) < 0.

Proof. According to Theorem 19.1, the condition for the pole placement in composite
region D1 ∩ D2 is that there is a matrix X > 0 satisfying the following inequality:

MD1∩D2
(A,X)

=
[
L1 0
0 L2

]

⊗ X +
[
M1 0
0 M2

]

⊗ (AX ) +
[
M T

1 0
0 M T

2

]

⊗ (AX )T

=
[
L1 ⊗ X 0

0 L2 ⊗ X

]

+
[
M1 ⊗ (AX ) 0

0 M2 ⊗ (AX )

]

+
[
M T

1 ⊗ (AX )T 0
0 M T

2 ⊗ (AX )T

]

=
[
MD1

(A,X) 0
0 MD2

(A,X)

]

< 0. (19.24)

Obviously, this condition is equivalent to MD1
(A,X) < 0 and MD2

(A,X) < 0. •

This conclusion applies to the case of more than two regions. What we need to do is to use
a common solution X .

Let us look at an example: find a condition such that all eigenvalues of A are located in the
composite region shown in Figure 19.3. This region is the intersection of a disk, a sector, and a
half-plane. So the condition is that there is a common solution X > 0 for the conditions about
all the regions. That is, there is an X > 0 satisfying all of the following matrix inequalities:

[
−rX cX + AX

cX + (AX )T −rX

]

< 0

[
(AX + XAT ) sin θ (AX − XAT ) cos θ
−(AX − XAT ) cos θ (AX + XAT ) sin θ

]

< 0

AX + (AX )T + 2σX < 0.

Example 19.3 In Example 19.2, we verified that the eigenvalues of system matrix

A =
[

0 1
−10 −6

]
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0−r

σ

θ
Re

Im

Figure 19.3 Composite region of disk, half-plane, and sector

are located in the following regions, respectively:

(1) disk : c = 0, r = 5; (2) half -plane : σ = 2; (3) sector : θ = π/4.

The intersection of these three regions is the shaded part of Figure 19.3. Here, let us confirm
that all eigenvalues of A are located in this composite region by using Corollary 19.1. Solving
for the common solution of those three LMIs preceding the example, we obtain

X =
[

18.357 −38.4586
−38.4586 120.2923

]

.

This matrix is positive definite. Hence, the same conclusion is obtained.

19.4 Feedback Controller Design

In this section, we discuss how to design a feedback controller to place the poles of closed-loop
system in a specified LMI region and provide a design example.

19.4.1 Design Method

Let the plant be
ẋ = Ax + Bu, y = Cx (19.25)

and assume that the state equation of controller is

ẋK = AKxK + BKy, u = CKxK + DKy. (19.26)

Then, the state equation of the closed-loop system is given by (refer to Subsection 7.4.1)
⎡

⎣
ẋ

ẋK

z

⎤

⎦ =
[
Ac Bc

Cc Dc

]
⎡

⎣
x

xK

w

⎤

⎦ (19.27)
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in which

Ac =
[
A + B2DKC2 B2CK

BKC2 AK

]

.

Although Ac is an affine function of the coefficient matrix K =[DK CK
BK AK

] of the controller, in
the regional pole placement condition

MD(Ac, P ) = L ⊗ P + M ⊗ (AcP ) + M T ⊗ (AcP )T < 0, (19.28)

Ac appears in almost all the blocks, so MD(Ac, P ) cannot be described in the form of
Q + ETKF + FTKT E by using a single K. This means that the variable elimination
method does not apply. In the sequel, we use the variable change method of Section 3.2.4.
Note that the matrix P can be factorized as P = Π2Π

−1
1 . Multiplying ΠT

1 ,Π1 to all blocks
of the matrices in the left of this inequality from both sides, we obtain an equivalent
condition:

L ⊗ (ΠT
1 P Π1) + M ⊗ (ΠT

1 AcP Π1) + M T ⊗ (ΠT
1 AcP Π1)

T < 0. (19.29)

Next, we need only to calculate ΠT
1 P Π1, ΠT

1 AcP Π1 and substitute them into this inequality.
In Section 3.2.4, we have shown that

ΠT
1 P Π1 = ΠT

1 Π2 =
[
X I
I Y

]

, ΠT
1 AcP Π1 =

[
AX + BC A + BDC

A YA + BC

]

in which the new unknown matrices A, B, C, D are

A = NAKM T + NBKCX + YBCKM T + Y (A + BDKC)X

B = NBK + YBDK , C = CKM T + DKCX , D = DK , (19.30)

respectively. Substituting them into Eq. (19.29), we get the design condition:

L ⊗
[
X I
I Y

]

+ M ⊗
[
AX + BC A + BDC

A YA + BC

]

+M T ⊗
[
AX + BC A + BDC

A YA + BC

]T

< 0. (19.31)

In addition, when we use a full-order controller, by the positive definiteness of matrix P , we
have [

X I
I Y

]

> 0. (19.32)

In this case, coefficient matrices of the controller can be computed from the matrices A, B, C, D
uniquely. Refer to Section 3.2.4 for the details.

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

396 Robust Control

19.4.2 Design Example: Mass–Spring–Damper System

In the mass–spring–damper system, assume that m = 1 kg, the damping ratio b = 0, and the
spring constant k = 100 N/m. Then, the state equation becomes

ẋ =
[

0 1
−100 0

]

x +
[
0
1

]

u.

Now, we design an output feedback controller to place the poles of closed-loop system in the
following composite region:

(1) disk : c = 0, r = 5; (2) half-plane : σ = 2; (3) sector : θ = π/4.

Substitution of the coefficient matrices (L,M ) of these three LMI regions into Eq. (19.31),
respectively, we get three LMIs. With (19.32) added, it is required to solve four simultaneous
LMIs in total. The obtained matrices are

X =
[

85.6357 −189.7711
−189.7711 629.9055

]

, Y =
[

629.9055 −189.7711
−189.7711 85.6357,

]

respectively. And the controller is

K(s) =
90s2 + 1087s + 13023

s2 + 12.2859s − 128.9044
.

Simple calculation shows that poles of the closed-loop system are

−2.8568 ± j1.1716, −3.2861 ± j1.7570

and they are located in the three specified LMI regions.

19.5 Analysis of Robust Pole Placement

In this section, we analyze the condition for all poles of a parametric system being placed in a
designated LMI region. Two cases are discussed.

19.5.1 Polytopic System

First of all, we inspect the example of mass–spring–damper system

ẋ =

[
0 1

− k

m
− b

m

]

x +

[
0
1
m

]

u.

Let p1 = k/m, p2 = b/m. When the input of this system is u = 0, the state equation can be
written as

ẋ =
{[

0 1
0 0

]

+ p1

[
0 0
−1 0

]

+ p2

[
0 0
0 −1

]}

x.

That is, the system matrix A is an affine function of the parameter vector p = [p1 p2]
T . Of

course, the eigenvalues of A change with p.
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Generally, when the vector of uncertain parameter is p ∈ R
N , the state equation of a system

is described by
ẋ = A(p)x, x(0) �= 0. (19.33)

The relationship between system matrix A(p) and parameter vector p may take many forms
such as polytope, LFT, and so on, besides the affine form shown in the preceding example.

So far, we have derived the condition for the poles of a system being located in an LMI region
when p is given. This condition requires that there is a positive definite matrix X satisfying the
matrix inequality MD(A,X) < 0. It should be noted that the matrix X depends on the system
matrix A. Reasoning from this fact, X should change when A changes with p. That is, X is a
function of the parameter vector p, denoted as X(p). Hence, we immediately get the following
corollary from Theorem 19.1.

Corollary 19.2 All eigenvalues of matrix A(p) are located in LMI region D iff there is a real
positive definite matrix X(p) satisfying

MD(A(p),X(p)) < 0. (19.34)

However, it is very difficult to figure out the relationship between X(p) and p, and it remains
an open problem so far. Here, although just a sufficient condition, we follow the philosophy of
quadratic stability and fix X(p) as a constant matrix so as to simplify the problem. Then, obvi-
ously the eigenvalues of matrix A(p) are all located in LMI region D so long as the following
matrix inequality

MD(A(p),X) < 0 (19.35)

has a real positive definite solution.
But, this condition still depends on the uncertain parameter vector p. So it cannot be checked.

In the sequel, we will derive a condition independent of the parameter vector p. For this, con-
sider the polytopic system:

A(p) =
N∑

i=1

piAi,

N∑

i=1

pi = 1, pi ≥ 0. (19.36)

This matrix polytope has N vertices. To ensure the condition (19.35),

MD(Ai,X) < 0 ∀i = 1, . . . , N (19.37)

must be true at each vertex Ai. Conversely, any constant matrix L can be described as L =∑N
i=1 piL since

∑N
i=1 pi = 1. Further, noting that MD(A(p),X) is an affine function of A(p)

and pi ≥ 0, when the inequality (19.37) holds, there also holds

MD(A(p),X) =
N∑

i=1

piMD(Ai,X) < 0,

that is, (19.37) is equivalent to (19.35). So we obtain the following result.
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Corollary 19.3 For a matrix polytope A(p), if there is a real positive definite matrix X satis-
fying the matrix inequality

MD(Ai,X) < 0 ∀i = 1, . . . , N, (19.38)

then the eigenvalues of A(p) are all located in the LMI region D.

Example 19.4 Consider the system matrix:

A =
[

0 1
−3 −b

]

, b > 0.

It corresponds to the case where the mass is 1, spring constant is 3, and frictional coefficient
is b in the mass–spring–damper system. Let the LMI region be a disk centered at (−c, 0) =
(−2.5, 0) and with a radius r = 2. The eigenvalues of matrix A are −b±

√
b2−12

2 . In the case of
complex roots (b <

√
12), the condition for the eigenvalues being located inside the disk is

r2 >

(

c − b

2

)2

+

(√
12 − b2

2

)2

⇒ b >
c2 − r2 + 3

c
.

Meanwhile, in the case of real roots, the condition becomes

c + r >
d +

√
b2 − 12
2

⇒ b < c + r +
3

c + r
.

After the substitution of −c = −2.5 and r = 2, we see that the condition for all eigenvalues
being located in the given disk is

2.1 < b < 5.167.

For this range of b, applying the condition of Corollary 19.3, we fail to obtain a positive definite
solution. The condition of Corollary 19.3 is not satisfied until the range of friction coefficient
is reduced to the interval [2.3, 4].

From this example, we realize that it is rather conservative using a common solution to
guarantee the robust pole placement.

19.5.2 Norm-Bounded Parametric System

Consider the following parametric system:

ẋ = AΔx = (A + BΔ(I − DΔ)−1C)x, ‖Δ(t)‖2 ≤ 1. (19.39)

As shown in Figure 19.4, the system is equivalent to the closed-loop system made up by the
nominal system M (s)

M
{

ẋ = Ax + Bw
z = Cx + Dw (19.40)
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Δ

M

zw

Figure 19.4 Parametric system

and the norm-bounded parameter uncertainty Δ(t)

w = Δz, ‖Δ(t)‖2 ≤ 1.

In addition, as Δ(t) varies arbitrarily in the range of ‖Δ(t)‖2 ≤ 1, the matrix I − DΔ is
invertible iff ‖D‖2 < 1.

In system (19.39), denote the signals corresponding to the initial state xi(0) by
xi(t), wi(t), zi(t). That is,

ẋi = Axi + Bwi, zi = Cxi + Dwi

wi = Δzi. (19.41)

To search for the condition of robust pole placement, first we look at the example of a disk
region centered at (−c, 0) and with a radius r. According to Example 19.1, the characteristic
function of the disk is

fD(z) =
[
−r c
c −r

]

+ z

[
0 1
0 0

]

+ z

[
0 0
1 0

]

.

If there is a positive definite matrix X satisfying the LMI
[

−rX cX + AΔX
cX + (AΔX)T −rX

]

< 0,

then the poles of system (19.39) are located in the disk. To eliminate the uncertainty Δ
in this inequality, we make use of the magnitude relation between input and output of the
norm-bounded Δ. For this purpose, it is required to place AΔ in the right side of the product.
So we set P = X−1 and multiply diag(P, P ) = I2 ⊗ P to both sides of the inequality. Then,
we obtain equivalently

ND(AΔ, P ) :=
[

−rP cP + PAΔ
cP + AT

ΔP −rP

]

< 0. (19.42)

Furthermore, the condition is equivalent to

[
x1
x2

]T [
−rP cP + PAΔ

cP + AT
ΔP −rP

] [
x1
x2

]

< 0 ∀
[
x1
x2

]

�= 0.

As
AΔx2 = ẋ2 = Ax2 + Bw2,
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the preceding inequality can be written as
[
x1
x2

]T [
−rP cP + PA

cP + AT P −rP

] [
x1
x2

]

+ xT
1 PBw2 + wT

2 BT Px1 < 0

⇒

⎡

⎣
x1
x2
w2

⎤

⎦

T ⎡

⎣
−rP cP + PA PB

cP + AT P −rP 0
BT P 0 0

⎤

⎦

⎡

⎣
x1
x2
w2

⎤

⎦ < 0.

On the other hand, the norm condition of Δ implies that zT
2 z2 = (Cx2 + Dw2)

T (Cx2 +
Dw2) ≥ wT

2 w2, that is,
⎡

⎣
x1
x2
w2

⎤

⎦

T ⎧
⎨

⎩

⎡

⎣
0

CT

DT

⎤

⎦ [0 C D] −

⎡

⎣
0
0
I

⎤

⎦ [0 0 I]

⎫
⎬

⎭

⎡

⎣
x1
x2
w2

⎤

⎦ ≥ 0

is always true. Like the proof of Theorem 13.2, an equivalent condition
⎡

⎣
−rP cP + PA PB

cP + AT P −rP 0
BT P 0 −I

⎤

⎦ +

⎡

⎣
0

CT

DT

⎤

⎦ [0 C D] < 0

is obtained by applying the S-procedure. This condition is independent of Δ. Applying Schur’s
lemma, we finally obtain a sufficient condition for robust pole placement in the disk region:

⎡

⎢
⎢
⎣

−rP cP + PA PB 0
cP + AT P −rP 0 CT

BT P 0 −I DT

0 C D −I

⎤

⎥
⎥
⎦ < 0. (19.43)

Next, we generalize this result. An equivalent condition for MD(A,X) < 0 is derived first.
Set P = X−1 and define a matrix

ND(A,P ) = L ⊗ P + M ⊗ (PA) + M T ⊗ (PA)T . (19.44)

By using relations such as M ⊗ (AX ) = (I ⊗ X)(M ⊗ (PA))(I ⊗ X), it is easy to know
that

MD(A,X) = (I ⊗ X)ND(A,P )(I ⊗ X)

holds. So, X > 0 satisfying MD(A,X) < 0 implies P > 0 satisfying ND(A,P ) < 0.
From the discussion in the preceding text, we see that a sufficient condition for robust pole

placement is that there is a matrix P > 0 satisfying

ND(A,P ) = L ⊗ P + M ⊗ (PAΔ) + M T ⊗ (AT
ΔP ) < 0 ∀‖Δ(t)‖2 ≤ 1. (19.45)

The question now is how to find a condition independent of the uncertainty Δ. Again, the key
is to utilize the relation between the norm of Δ and its input–output norms. Set three vectors
made up of (xi, wi, zi), respectively, as

X =

⎡

⎢
⎣

x1
...

xnf

⎤

⎥
⎦ , W =

⎡

⎢
⎣

w1
...

wnf

⎤

⎥
⎦ , Z =

⎡

⎢
⎣

z1
...

znf

⎤

⎥
⎦ ; nf = dim (fD).
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By the signal relationship (19.41), we have AΔxj = ẋj = Axj + Bwj . So there is

xi(mij PAΔ)xj = xi[mij P (Axj + Bwj)] = xi(mij PA)xj + xi(mij PB)wj .

According to this equation, we surely have

X T ND(AΔ, P )X = X T ND(A,P )X + X T [M ⊗ (PB)]W + WT [M T ⊗ (BT P )]X .

When M does not have full rank, some signal wi will be cancelled (e.g., w1 in the disk region).
In order to take out such signals from this equation, we perform a full-rank decomposition on
matrix M

M = M1M
T
2 (19.46)

in which M1,M2 have full column rank. So, we obtain M ⊗ (PB) = (M1M
T
2 ) ⊗ (PB) =

(M1 ⊗ (PB))(M T
2 ⊗ I). Define new signal vectors:

V = (M T
2 ⊗ I)W, Y = (M T

2 ⊗ I)Z.

Then a sufficient condition for the robust pole placement is given by

X T ND(A,P )X + X T [M1 ⊗ (PB)]V + VT [M T
1 ⊗ (BT P )]X

=
[
X
V

]T [
ND(A,P ) M1 ⊗ (PB)

M T
1 ⊗ (BT P ) 0

] [
X
V

]

< 0 ∀X �= 0. (19.47)

Since zi = Cxi + Dwi, obviously there hold

Z = (I ⊗ C)X + (I ⊗ D)W

and

Y = (M T
2 ⊗ I)[(I ⊗ C)X + (I ⊗ D)W] = (M T

2 ⊗ C)X + (M T
2 ⊗ D)W

= (M T
2 ⊗ C)X + (I ⊗ D)(M T

2 ⊗ I)W = (M T
2 ⊗ C)X + (I ⊗ D)V.

The remaining question is how to find the relationship between the magnitudes of signals
V and Z and apply the S-procedure. For this purpose, we inspect the ith block vi of the vector
V:

vi = m2,1iw1 + · · · + m2,nf iwnf
= Δ(m2,1iz1 + · · · + m2,nf iznf

) = Δyi.

From it we have
V = (Ik ⊗ Δ)Y, k = dim (M ).

Hence, for any k-dimensional positive definite matrix Q, the inequality

VT (Q ⊗ I)V = YT (I ⊗ ΔT )(Q ⊗ I)(I ⊗ Δ)Y = YT (Q ⊗ ΔT Δ)Y

≤ YT (Q ⊗ I)Y
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always holds (refer to Exercise 19.3 for the last inequality). So, expansion of this inequality
leads to

[
X
V

]T {[
M2 ⊗ CT

I ⊗ DT

]

(Q ⊗ I)[M T
2 ⊗ C I ⊗ D] −

[
0 0
0 −Q ⊗ I

]}[
X
V

]

≤ 0 ∀X �= 0. (19.48)

Application of the S-procedure to (19.47) and (19.48) yields
[

ND(A,P ) M1 ⊗ (PB)
M T

1 ⊗ (BT P ) 0

]

+
[
M2 ⊗ CT

I ⊗ DT

]

(Q ⊗ I)[M T
2 ⊗ C I ⊗ D]

−
[
0 0
0 −Q ⊗ I

]

< 0.

Finally, applying Schur’s lemma and using Q ⊗ I = (Q ⊗ I)(Q ⊗ I)−1(Q ⊗ I), we can
derive the following robust pole placement theorem.

Theorem 19.2 If there exist matrices P > 0, Q > 0 satisfying LMI
⎡

⎢
⎣

ND(A,P ) M1 ⊗ (PB) (M2Q) ⊗ CT

M T
1 ⊗ (BT P ) −Q ⊗ I Q ⊗ DT

(QM T
2 ) ⊗ C Q ⊗ D −Q ⊗ I

⎤

⎥
⎦ < 0, (19.49)

then poles of the uncertain system (19.39) are all located inside the region D.

19.6 Robust Design of Regional Pole Placement

19.6.1 On Polytopic Systems

Let us inspect whether we can do robust design of regional pole placement based on Corollary
19.3 of Section 19.5. For simplicity, consider a system with only one uncertain parameter:

ẋ = (θ1A1 + θ2A2)x + Bu, y = Cx ; θ1, θ2 ≥ 0, θ1 + θ2 = 1. (19.50)

For the controller
ẋK = AKxK + BKy, u = CKxK + DKy, (19.51)

application of the result of Section 19.4 shows that the condition to place the poles of
closed-loop system in an LMI region D is that the matrix inequalities

L ⊗
[
X I
I Y

]

+ M ⊗
[
AX + BC A + BDC

A YA + BC

]

+ M T ⊗
[
AX + BC A + BDC

A YA + BC

]T

< 0

[
X I
I Y

]

> 0
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have a solution. Here,

A = NAKM T + NBKCX + YBCKM T + Y (θ1A1 + θ2A2 + BDKC)X

B = NBK + YBDK , C = CKM T + DKCX , D = DK .

Although the matrix A can be expressed as the convex combination A = θ1A1 + θ2A2 of the
vertex matrices in which

A1 = NAKM T + NBKCX + YBCKM T + Y (A1 + BDKC)X

A2 = NAKM T + NBKCX + YBCKM T + Y (A2 + BDKC)X,

it is not guaranteed that they have a common solution when calculating AK from (A1, A2)
inversely. This means that the present variable change technique cannot solve this design prob-
lem.

However, when θ1, θ2 are known time-varying parameters, we may use a controller in a
form of

AK = θ1AK1 + θ2AK2.

In this case,

A1 = NAK1M
T + NBKCX + YBCKM T + Y (A1 + BDKC)X

A2 = NAK2M
T + NBKCX + YBCKM T + Y (A2 + BDKC)X

and (AK1, AK2) can be inversely calculated from (A1, A2). This is the so-called
gain-scheduling method to be introduced in the next chapter.

19.6.2 Design for Norm-Bounded Parametric System

According to the discussion in Section 11.3.3, the general model of norm-bounded parametric
system is

G

⎧
⎪⎨

⎪⎩

ẋ = Ax + B1w + B2u

z = C1x + D11w + D12u

y = C2x + D21w

(19.52)

w = Δz, Δ2 ≤ 1. (19.53)

We hope to design a dynamic output feedback controller K

ẋK = AKxK + BKy

u = CKxK + DKy (19.54)

to robustly place the closed-loop poles inside an LMI region D. In this closed-loop system, the
part except Δ is an LFT interconnection between the generalized plant G and the controller
K

M (s) = F�(G,K) = (Ac, Bc, Cc,Dc) (19.55)
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in which the coefficient matrix is (refer to Section 7.4.1)

⎡

⎣
Ac Bc

Cc Dc

⎤

⎦ =

⎡

⎢
⎢
⎢
⎣

A + B2DKC2 B2CK B1 + B2DKD21

BKC2 AK BKD21

C1 + D12DKC2 D12CK D11 + D12DKD21

⎤

⎥
⎥
⎥
⎦

. (19.56)

According to Theorem 19.2 in Section 19.5.2, a sufficient condition for the closed-loop
poles being placed in the region D is that there exist matrices P > 0, Q > 0 satisfying LMI

⎡

⎢
⎣

ND(Ac, P ) M1 ⊗ (PBc) (M2Q) ⊗ CT
c

M T
1 ⊗ (BT

c P ) −Q ⊗ I Q ⊗ DT
c

(QM T
2 ) ⊗ Cc Q ⊗ Dc −Q ⊗ I

⎤

⎥
⎦ < 0. (19.57)

In order to apply the variable change method of Section 3.2.4 to solve this problem, we need
to fix the matrix Q. Here, we set Q = I . The corresponding condition of robust pole placement
becomes ⎡

⎢
⎣

ND(Ac, P ) M1 ⊗ (PBc) M2 ⊗ CT
c

M T
1 ⊗ (BT

c P ) −I I ⊗ DT
c

M T
2 ⊗ Cc I ⊗ Dc −I

⎤

⎥
⎦ < 0. (19.58)

Factorize the positive definite matrix P as

P = Π2Π
−1
1 = Π−T

1 ΠT
2 , Π1 =

[
X I

M T 0

]

, Π2 =
[
I Y
0 NT

]

.

Multiplying this inequality from the left and right, respectively, with diag(I ⊗ Π1, I, I) and
its transpose, we obtain equivalently

⎡

⎢
⎣

L ⊗ (ΠT
1 Π2) + He{M ⊗ (ΠT

2 AcΠ1)} M1 ⊗ (ΠT
2 Bc) M2 ⊗ (ΠT

1 CT
c )

M T
1 ⊗ (BT

c Π2) −I I ⊗ DT
c

M T
2 ⊗ (CcΠ1) I ⊗ Dc −I

⎤

⎥
⎦ < 0. (19.59)

Define new variable matrices A, B, C, D as

A = NAKM T + NBKC2X + Y B2CKM T + Y (A + B2DKC2)X

B = NBK + Y B2DK , C = CKM T + DKC2X, D = DK , (19.60)

respectively. Then, substitution of

ΠT
1 Π2 =

[
X I
I Y

]

, ΠT
2 AcΠ1 =

[
AX + B2C A + B2DC2

A YA + BC2

]

ΠT
2 Bc =

[
B1 + B2DD21
Y B1 + BD21

]

, CcΠ1 = [C1X + D12C C1 + D12DC2]

into (19.59) yields the design condition for the robust controller. Further, when using full-order
controller, by the positive definiteness of P , there must be

[
X I
I Y

]

> 0. (19.61)
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In this case, coefficient matrices of the controller can be computed inversely from
A, B, C, D.

19.6.3 Robust Design Example: Mass–Spring–Damper System

In the mass–spring–damper system, set the mass m as 1 kg, damping ratio as b ∈ [0, 2] Ns/m,
and spring constant as k ∈ [80,120] N/m. Then, the state equation becomes

ẋ =
[

0 1
−k −b

]

x +
[
0
1

]

u, y = [1 0]x.

Describe each uncertainty parameter by

k = k0(1 + w1δ1), b = b0(1 + w2δ2), |δi| ≤ 1.

As Example 13.3, we take the nominal parameters as k0 = 100, b0 = 1 which are the averaged
parameters. Then, the weights become

w1 =
kmax

k0
− 1 = 0.2, w2 =

bmax

b0
− 1 = 1.

Normalizing the uncertain matrix Δ = [δ1 δ2] in the norm-bounded parametric system, each
coefficient matrix becomes

A =
[

0 1
−k0 −b0

]

, B1 = B2 =
[
0
1

]

, C1 = −
√

2
[
k0w1 0

0 b0w2

]

C2 = [1 0], D11 = D12 =
[
0
0

]

, D21 = 0,

respectively. Now, we design an output feedback controller to place the poles of closed-loop
system inside the intersection of a disk (c = 0, r = 15) and a half-plane (σ = 1). Substituting
into (19.59) the coefficient matrices (L,M ) corresponding to this LMI region, we obtain a
controller

K(s) =
−66s2 − 405s + 13315
s2 + 30.415s + 277.62

.

At the nominal value and four vertices of the parameter vector (k, b), poles of the closed-loop
system are

Nominal : (−6.0189 ± j8.717, −9.6886 ± j5.9056)

(−9.3103 ± j7.3826, −5.8972 ± j5.3125)

(−9.2397 ± j9.562, −6.9678 ± j1.3258)

(−3.9167 ± j10.3592, −11.2458 ± j6.0098)

(−5.8157 ± j10.5058, −10.3918 ± j5.5414),

respectively. They all are located in the given region.
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It is remarked that this design is not so good because K(∞) = −66 so that K(s) is very
sensitive to noise. Specification on noise reduction should better be supplemented, which leads
to a multiobjective design. This topic will be touched on in the next chapter.

Exercises

19.1 Derive the description for the strip region in Figure 19.2 and the necessary and suffi-
cient condition for the poles of system ẋ = Ax being located inside this region. Finally,
check whether poles of the system in Example 19.2 are all located in the strip region of
(h1, h2) = (2, 4) numerically.

19.2 In the LMI region of Figure 19.2, move the vertex of the sector region in Figure (c) to
(a, j0) and find the corresponding characteristic function fD(z).

19.3 Given ‖Δ‖2 ≤ 1, Q > 0, prove that inequality YT (Q ⊗ ΔT Δ)Y ≤ YT (Q ⊗ I)Y
holds for arbitrary vector Y .

19.4 Suppose that LMI region D is in the left half-plane and its characteristic function is
fD(z) = L + zM + zM T . Prove that if the time-varying system

ẋ = A(t)x

satisfies

ND(A(t), P ) = L ⊗ P + M ⊗ (PA(t)) + M T ⊗ (PA(t))T < 0 ∀t,

then the quadratic function V (x) = xT Px satisfies

1
2

V̇ (x)
V (x)

∈ D ∩ R = [−a,−b]

in which a > b > 0 ((−a, j0), (−b, j0) are the two points of intersection of LMI region
D and the real axis) [17]. Based on this, prove that the state x(t) satisfies

c1e
−at ≤ ‖x(t)‖2 ≤ c2e

−bt , c1, c2 > 0

and try to interpret the engineering meaning of this conclusion.

19.5 For the following LMI regions, concretely expand the condition (19.59) of robust pole
placement:
1. disk: center (−c, 0), radius r;
2. half-plane: R(s) < −σ;
3. sector: the vertex is the origin and the interior angle is 2θ.

Notes and References

Chilali and Gahinet [16] solved the regional pole placement problem and Ref. [17] treated the
robust regional pole placement problem.
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Gain-Scheduled Control

In Chapter 11, we have seen that in some occasions a nonlinear system can be described as an
linear parameter-varying (LPV) model. Since the time-varying coefficients of an LPV model
are functions of some states, they can be calculated so long as these states are measured online.
Therefore, it is possible to change the controller gain according to the variation of coefficients
in the LPV model so as to control the LPV system more effectively than controllers with fixed
gains. This method is called the gain-scheduled control.

This chapter illustrates in detail the design methods of gain-scheduled control as well as two
design examples.

20.1 General Structure

Here, let the LPV model be

ẋ = A(p(t))x + B(p(t))u (20.1)

y = C(p(t))x. (20.2)

The corresponding gain-scheduled controller is also set as the following LPV form

ẋK = AK(p(t))xK + BK(p(t))y (20.3)

u = CK(p(t))xK + DK(p(t))y. (20.4)

That is, the parameters of controller are changed together with that of the time-varying param-
eter vector p(t) so as to realize high-performance control.

However, without specifying the relationship between the coefficient matrices and the
parameter vector p(t), concrete design method cannot be established. In addition, to determine
the relationship between the controller and the parameter vector, we need to consider the
relationship between the LPV model and the parameter vector. Due to such consideration, we
will focus on two most typical LPV models.

Robust Control: Theory and Applications, First Edition. Kang-Zhi Liu and Yu Yao.
© 2016 John Wiley & Sons Singapore Pte. Ltd. Published 2016 by John Wiley & Sons, Singapore Pte. Ltd.
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Δ(t)

Δ(t)

K(s)

d

uy

wPzP

wK

y

zK

u

G(s)e

(a)

Ggs(s)

K(s)

Δgs(t)

de

zP wP

zK

u

wK

y

wK zK

(b)

Figure 20.1 LFT-type gain-scheduled control system

20.2 LFT-Type Parametric Model

The system shown in Figure 20.1(a) is called the LFT model, in which the plant has a
time-varying parameter uncertainty with a linear fractional transformation structure. Further,
the uncertainty Δ(t) has the following diagonal scalar block structure:

Δ(t) = diag(δ1(t)Ir1
, δ2(t)Ir2

, . . . , δq(t)Irq
), |δi(t)| ≤ 1. (20.5)

Its input–output relationship is described by

wP = Δ(t)zP . (20.6)

On the other hand, the state equation of the nominal transfer matrix G(s) is given by

ẋ = Ax + B1wP + B2d + B3u (20.7)

zP = C1x + D11wP + D12d + D13u (20.8)

e = C2x + D21wP + D22d + D23u (20.9)

y = C3x + D31wP + D32d (20.10)

in which d is the disturbance, e the performance output, y the measured output, and u the
control input. Substitution of the equation of zP into (20.6) yields

wP = (I − ΔD11)
−1Δ(C1x + D12d + D13u)

= Δ(I − D11Δ)−1(C1x + D12d + D13u).

Then substituting this equation back into the preceding state equation and eliminating wP and
zP , we finally obtain the following state equation:

ẋ = [A + B1Δ(I − D11Δ)−1C1]x + [B2 + B1Δ(I − D11Δ)−1D12]d

+ [B3 + B1Δ(I − D11Δ)−1D13]u (20.11)
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e = [C2 + D21Δ(I − D11Δ)−1C1]x + [D22 + D21Δ(I − D11Δ)−1D12]d

+ [D23 + D21Δ(I − D11Δ)−1D13]u (20.12)

y = [C3 + D31Δ(I − D11Δ)−1C1]x + [D32 + D31Δ(I − D11Δ)−1D12]d

+ D31Δ(I − D11Δ)−1D13u. (20.13)

In this state equation, all coefficient matrices are LFT functions about the time-varying coef-
ficient matrix Δ(t).

Introducing the same LFT structure about Δ(t) into the gain-scheduled controller accord-
ingly, Figure 20.1(a) is obtained. Concretely, the state equation of the coefficient matrix K(s)
is set as

ẋK = AK xK + BK1 wK + BK2 y (20.14)

zK = CK1 xK + DK11 wK + DK12 y (20.15)

u = CK2 xK + DK21 wK + DK22 y. (20.16)

Here, the gain-scheduling signal wK is

wK = Δ(t)zK . (20.17)

Since the signal wK relies on the time-varying parameter Δ(t), it changes the gain of the
controller online. This relationship can be read more clearly from the equation about the control
input and the measured output:

û(s) = Fu(K(s), Δ(t))ŷ(s) = [K22 + K21Δ(I − ΔK11)
−1K12]ŷ(s). (20.18)

Here, Kij (s) denotes a block of the 2 × 2 block partition of the coefficient matrix K(s).
In system design, these two time-varying parameter blocks can be merged into an augmented

uncertainty block via block diagram transformation and written equivalently as Figure 20.1(b).
Then, we may conduct the robust control design w.r.t. this closed-loop system. The design
methods can be small-gain-based H∞ control, μ synthesis, scaled H∞ control, and so on.
Here,

Δgs(t) =
[
Δ(t)

Δ(t)

]

. (20.19)

Comparing the new generalized plant Ggs(s) with G(s), newly added are inputs (wK , zK) and
outputs (wK , zK). So, putting these new input–output relations

zK = zK , wK = wK

into the state equation of G(s) leads to the state equation of Ggs(s) (Figure 20.1(b)):
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẋ
zK

zP

e
wK

y

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A 0 B1 B2 0 B3

0 0 0 0 I 0
C1 0 D11 D12 0 D13

C2 0 D21 D22 0 D23

0 I 0 0 0 0
C3 0 D31 D32 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x
wK

wP

d
zK

u

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (20.20)co
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20.2.1 Gain-Scheduled H∞ Control Design with Scaling

In the control design, it is necessary to treat the time-varying parameter matrix Δgs(t) as an
uncertainty and apply methods such as the small-gain approach. But the small-gain approach
is already conservative for real uncertainty, the diagonal structure of Δgs(t) further strengthens
such conservatism. So, good performance cannot be expected from the small-gain condition
only. More idea is needed. One is the introduction of scaling, another is the μ synthesis.

Next, a constant scaling method is introduced which is suitable for numerical computation.
Assume that the control specification is to reduce the H∞ norm of the closed-loop transfer
matrix from the disturbance d to the performance output e:

sup
‖d‖2 �=0

‖e‖2

‖d‖2
= ‖Hed‖∞ < 1. (20.21)

According to the equivalence between the H∞ norm performance and the robust stability
(Section 12.3), the aforementioned performance specification is equivalent to the robust sta-
bility condition of the closed-loop system when a virtual norm-bounded uncertainty ΔP (s)
(‖ΔP ‖∞ ≤ 1) is inserted between the signals d and e. Then, the overall uncertainty becomes

diag(Δgs , ΔP ) = diag(Δ, Δ, ΔP ).

To obtain a less conservative robust performance condition from the small-gain theorem, we
shall look for a scaled small-gain condition according to the scaling method of Section 12.4.2.
First of all, let us see what structure the scaling matrix should have. Due to the scalar block
structure of Δ(s) in (20.5), any real matrix permutable with Δ(s) has the form of

L = diag(L
′

1, L
′

2, . . . , L
′

q), L
′

i ∈ R
ri×ri .

As a scaling matrix, L must be invertible. So we may confine the scaling matrix in the set

L = {L > 0|L = diag(L
′

1, L
′

2, . . . , L
′

q), L
′

i ∈ R
ri×ri}. (20.22)

Obviously, a scaling matrix that is both positive definite and permutable with Δgs(s) has the
following form:

Lgs =
[
L1 L2

LT
2 L3

]

, L1, L3 ∈ L, L2Δ = ΔL2. (20.23)

Secondly, since the virtual uncertainty ΔP (s) is a full-block uncertainty, only a scalar block
�I is permutable with it. So, the whole scaling matrix becomes

La =

⎡

⎣
L1 L2
LT

2 L3
�I

⎤

⎦ = �

⎡

⎣
L1/� L2/�
LT

2 /� L3/�
I

⎤

⎦ .

Since in the scaled small-gain condition both the scaling matrix La and its inverse matrix
appear, we need only consider the case of � = 1. As such, we have shown that the scaled
small-gain condition

∥
∥
∥
∥

[
L

1/2
gs

I

]

F�(Ggs ,K)
[
L
−1/2
gs

I

]∥
∥
∥
∥
∞

< 1 (20.24)

guarantees the H∞ performance of the gain-scheduled control system.

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

Gain-Scheduled Control 411

According to Exercise 16.6, the H∞ norm specification with scaling matrix L > 0, that is,

||L1/2HzwL−1/2||∞ < 1

is achieved iff there exist matrices X > 0, Y > 0 and L, J satisfying

[
NT

X 0
0 Inw

]
⎡

⎢
⎣

AX + XAT XCT
1 B1

C1X −J D11

BT
1 DT

11 −L

⎤

⎥
⎦

[
NX 0
0 Inw

]

< 0 (20.25)

[
NT

Y 0
0 Inz

]
⎡

⎢
⎣

YA + AT Y Y B1 CT
1

BT
1 Y −L DT

11

C1 D11 −J

⎤

⎥
⎦

[
NY 0
0 Inz

]

< 0 (20.26)

[
X I

I Y

]

≥ 0 (20.27)

LJ = I. (20.28)

The difficulty in applying this result is that the equation LJ = I does not have convexity so
that numerical computation is rather hard. What we should consider is if it is possible to avoid
this nonconvexity by fully using the structure of the scheduling matrix (Δ appears twice).
Here, we denote the inverse of Lgs by

Jgs =

[
L1 L2

LT
2 L3

]−1

=

[
J1 J2

JT
2 J3

]

. (20.29)

To apply the solvability condition of scaled H∞ problem to the state space realization
(20.20) of the generalized plant, we should make the following matrix replacements:

B1 → [0 B1 B2], B2 → [0 B3]

C1 →

⎡

⎣
0
C1
C2

⎤

⎦ , D11 →

⎡

⎣
0 0 0
0 D11 D12
0 D21 D22

⎤

⎦ , D12 →

⎡

⎣
I 0
0 D13
0 D23

⎤

⎦

C2 →
[

0
C3

]

, D21 →
[
I 0 0
0 D31 D32

]

So, the matrix corresponding to orthogonal matrix NY is

[
0 I 0 0
C3 0 D31 D32

]

=
[
I 0 0 0
0 C3 D31 D32

]
⎡

⎢
⎢
⎣

0 I 0 0
I 0 0 0
0 0 I 0
0 0 0 I

⎤

⎥
⎥
⎦

Therefore,

NY =

⎡

⎢
⎢
⎣

0 I 0 0
I 0 0 0
0 0 I 0
0 0 0 I

⎤

⎥
⎥
⎦

[
0

[C3 D31 D32]⊥

]

.
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Substituting it into the second LMI of the solvability condition (20.26) and removing the parts
multiplied by zero blocks in NY , we obtain

[
NT

Y 0
0 I

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

YA + AT Y Y B1 Y B2 0 CT
1 CT

2

BT
1 Y −L3 0 0 DT

11 DT
21

BT
2 Y 0 −I 0 DT

12 DT
22

0 0 0 −J1 −J2 0
C1 D11 D12 −JT

2 −J3 0
C2 D21 D22 0 0 −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
NY 0
0 I

]

< 0 (20.30)

in which NY has been redefined as

NY = [C3 D31 D32]⊥ (20.31)

for convenience. However, this inequality still does not get rid of the nonconvexity of LJ = I .
We note that in the (20.30) the elements of both rows and columns related with (J1, J2) are all
zero. So, next we try to eliminate (J1, J2) using this property. If possible, then only (L3, J3)
are left in the condition and they do not necessarily need to be the inverse of each other. So
this removes the nonconvexity constraint.

It is easy to verify that
⎡

⎢
⎣

0 CT
1 CT

2

0 DT
11 DT

21

0 DT
12 DT

22

⎤

⎥
⎦

⎡

⎢
⎣

−J1 −J2 0
−JT

2 −J3 0
0 0 −I

⎤

⎥
⎦

−1 ⎡

⎢
⎣

0 0 0
C1 D11 D12

C2 D21 D22

⎤

⎥
⎦

= −

⎡

⎢
⎣

CT
1 CT

2

DT
11 DT

21

DT
12 DT

22

⎤

⎥
⎦

[
L3 0
0 I

] [
C1 D11 D12

C2 D21 D22

]

.

Applying this equation and Schur’s lemma to Eq. (20.30), we obtain an LMI

NT
Y

{
⎡

⎢
⎣

YA + AT Y Y B1 Y B2

BT
1 Y −L3 0

BT
2 Y 0 −I

⎤

⎥
⎦+

⎡

⎢
⎣

CT
1 CT

2

DT
11 DT

21

DT
12 DT

22

⎤

⎥
⎦

[
L3 0
0 I

] [
C1 D11 D12

C2 D21 D22

]}

NY < 0.

Similarly, the inequality about X is obtained as

NT
X

{⎡

⎣
AX + XAT XCT

1 XCT
2

C1X −J3 0
C2X 0 −I

⎤

⎦ +

⎡

⎣
B1 B2
D11 D12
D21 D22

⎤

⎦
[
J3 0
0 I

] [
BT

1 DT
11 DT

21
BT

2 DT
12 DT

22

]}

NX < 0
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in which NX = [BT
3 DT

13 DT
23]⊥. Finally, (L3, J3) should satisfy the following relationship

[
L3 I
I J3

]

≥ 0, L3 > 0, J3 > 0 (20.32)

according to Lemma 3.1. These five LMIs, together with the relation between (X,Y )
[
X I
I Y

]

≥ 0 (20.33)

become the solvability condition for the gain-scheduled problem with constant scaling matrix.
So, we have succeeded in converting the original nonconvex condition to a convex condition
by making full use of the structural properties of gain-scheduled problem.

Remark 20.1 Note that the solvability condition

[
NT

Y 0

0 I

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

YA + AT Y Y B1 Y B2 CT
1 CT

2

BT
1 Y −L3 0 DT

11 DT
21

BT
2 Y 0 −I DT

12 DT
22

C1 D11 D12 −J3 0

C2 D21 D22 0 −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
NY 0

0 I

]

< 0

given in Ref. [3] is not correct. Unless J2 = 0, this inequality cannot guarantee (20.30). But
when J2 = 0, (L3, J3) must satisfy the nonconvex relation L3J3 = I .

20.2.2 Computation of Controller

After obtaining matrices (X,Y, L3, J3), the coefficient matrices of controller

K =

⎡

⎣
DK11 DK12 CK1
DK21 DK22 CK2
BK1 BK2 AK

⎤

⎦ (20.34)

can be computed as follows:

1. Matrix factorization:

MMT = Y − X−1, NT N = L3 − J−1
3 . (20.35)

2. Calculate the Lyapunov matrix P and scaling matrix L:

P =
[

Y M
MT I

]

, L =
[

I N
NT L3

]

,

La = diag(L, Ine
), Ja = L−1

a . (20.36)
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3. Solve the LMI:
Q + ETKF + FTKT E < 0 (20.37)

to get the coefficient matrix K of the controller. Here,

Q ET

F
=

⎡

⎢
⎢
⎢
⎣

A
T
P + PA PB1 C

T
1 PB2

B
T
1 P −La D

T
11 0

C1 D11 −Ja D12

C2 D21 0

⎤

⎥
⎥
⎥
⎦

(20.38)

⎡

⎣
A B1 B2

C1 D11 D12

C2 D21

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A 0 0 B1 B2 0 B3 0
0 0 0 0 0 0 0 I
0 0 0 0 0 I 0 0
C1 0 0 D11 D12 0 D13 0
C2 0 0 D21 D22 0 D23 0
0 0 I 0 0
C3 0 0 D31 D32

0 I 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (20.39)

20.3 Case Study: Stabilization of a Unicycle Robot

In this section, we will use the LFT model-based gain-scheduled method to design a pos-
ture stabilization and longitudinal motion controller for the unicycle robot [21] shown in
Figure 20.2. This unicycle robot has two gyroscopes acting as an actuator for the lateral stabi-
lization and a wheel as an actuator for the longitudinal motion.

20.3.1 Structure and Model

The definitions of physical variables are shown in Figure 20.3. The measured outputs are the
rotational angles of the wheel (φ) and two gyroscopes (θ3, θ5), longitudinal and lateral angular
rates of the body (θ̇1, θ̇2). Five sensors are used to measure these signals: one rotary encoder
(φ), two potential meters (θ3, θ5), and two angular velocity sensors (θ̇1, θ̇2). The control inputs
are the torques of the wheel motor (τ1) and the outer motors of gyroscopes (τ2, τ2). Two inner
motors are used to rotate the two gyroscopes at a fixed angular velocity of 8000 rpm.

20.3.1.1 Gyro Actuator

The mechanism of torque generation by gyroscope is as follows: when a flywheel rotating
along z axis at speed ωz is rotated along y axis at speed ωy , a torque

τ = −Izωzωy (20.40)
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Figure 20.2 Unicycle robot in motion

r x

z
y

z

Front view Side view

Potentiometer 1

Potentiometer 2

Motor 1

Motor 2Motor 3

Gyro 1

Gyro 2

Wheel

Angular velocity 
Sensor

ϕ θ2

θ3

θ5

θ4

θ6

θ1

Figure 20.3 Front and side views of unicycle robot

is generated along x axis, as shown in Figure 20.4 (left-hand side). This torque τ is the so-called
gyro-moment which contributes to the lateral stabilization. When the pitch angle along x axis
is θ, the torque τroll in the lateral direction about x axis is given by

τroll = −Izωz cos θωy = −R(θ)ωy (20.41)

in which R(θ) = Izωz cos θ is called the coefficient of gyro-moment.
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–Iz ωz ωy

ωz

ωy

z

x

y
ωz2

ωy2

ωy1

ωz1

τ2

τ1

τyaw2

τyaw1

τroll1

τroll2

Figure 20.4 Generation of gyro-moment and cancellation of yawing torque

A large torque can be produced by raising the angular velocity ωz of the flywheel. ωy is used
to control the torque τ . However, when the flywheel is at a tilted posture, the torque τ has an
undesired yawing component. In order to cancel this yawing torque, two identical flywheels are
used. The angular velocities ωz and ωy of each flywheel have the same amplitudes but opposite
directions, respectively. When the initial angles are the same, the yawing components cancel
each other and a purely lateral torque is obtained, as shown in Figure 20.4 (right-hand side).

20.3.1.2 Linearized Model

The nonlinear motion equation is derived based on Lagrangian dynamics [21]. Since the pur-
pose is to achieve posture stabilization, the motion equation is linearized in the control design.
Let the state vector be

x = [φ, θ1, θ2, θ3, θ5, φ̇, θ̇1, θ̇2, θ̇3, θ̇5]
T .

The linearized motion equation in the neighborhood of the equilibrium x = 0 is given by the
following descriptor form

Eẋ = Ax + Bu (20.42)

y = Cx (20.43)

where

E =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

I5×5 O5×5

O5×5

J0 0 J02 0 0
0 J1 0 0 0

J02 0 J2 Iy34 Iy56
0 0 Iy34 Iy34 0
0 0 Iy56 0 Iy56

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
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A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

O5×5 I5×2 I5×3
0 0 0 0 0 −D1 0 D1 0 0
0 G1 0 0 0 0 0 −(R1 + R2) −R1 −R2
0 0 G2 0 0 D1 R1 + R2 −D1 0 0
0 0 0 0 0 0 R1 0 −D2 0
0 0 0 0 0 0 R2 0 0 −D3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

B =

⎡

⎣O3×5

1 0 −1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎦

T

C =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 −1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎦

The parameters are obtained through a series of identification experiments [21].

20.3.1.3 LPV Model

In the posture stabilization and the longitudinal running control, posture angles θ1, θ2 are oper-
ated in the neighborhood of 0. Only θ3 and θ5, the rotation angles of gyroscopes are operated
in a wide range (±π/4 rad). Since the coefficients of the gyro moments are given by

R1(θ2, θ3) = R1 cos(θ2 + θ3), R2(θ2, θ5) = R2 cos(θ2 + θ5), (20.44)

these two parameters change significantly during the motion, particularly when a lateral force
disturbance is applied at the robot. Therefore, this parameter variation must be taken into con-
sideration in the control design.

Noting that θ2 ≈ 0, these two parameters can be written as

R1(θ2, θ3) = R1 + ΔR1
δ1(t), R2(θ2, θ5) = R2 + ΔR2

δ2(t) (20.45)

in which

δ1(t) ≈
R1

ΔR1

(cos(θ3(t)) − 1), δ2(t) ≈
R2

ΔR2

(cos(θ5(t)) − 1) (20.46)

and ΔR1
and ΔR2 denote the sizes of parameter uncertainties which can be determined once

the ranges of θ3, θ5 are prescribed. Thus, δ1(t), δ2(t) can be obtained online.
Replacing the constant parameters R1, R2 in the linearized model by R1(θ2, θ3), R2(θ2, θ3)

yields an LPV model as follows:

Eẋ =

(

A +
2∑

i=1

δi(t)Ai

)

x + Bu (20.47)
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20.3.2 Control Design

The following disturbances exist in this unicycle robot: external force disturbance, persistent
force disturbance due to the power cable, unbalance due to assembly error, and so on. These
disturbances are modeled as two forces acting at φ̈ (longitudinal) and θ̈1 (lateral), respectively.
So a disturbance term Hd (d ∈ R

2) is added to Eẋ:

Eẋ =

(

A +
2∑

i=1

δi(t)Ai

)

x + Hd + Bu (20.48)

in which

H =
[

O2×5
1 0 0 0 0
0 1 0 0 0

]T

.

The performance output is determined as follows. The tracking error φ − r is penalized so
as to achieve the tracking of reference r(t) by φ(t). To keep the balance of the unicycle robot,
θ1, θ2 → 0 needs to be guaranteed in principle. However, only the angular velocities θ̇1, θ̇2
are measured and the equilibrium state may not be θ1, θ2 = 0 due to manufacturing error.
Therefore, the performance specification is set as that the body stands still at the equilibrium,
that is, θ̇1, θ̇2 → 0.

It follows from (20.40) and (20.44) that the rolling components of gyro-moments are
−R1 cos(θ3)θ̇3 and −R2 cos(θ5)θ̇5 when θ2 and its speed are small. So, large angular speeds
θ̇3, θ̇5 are required which implies that the gyroscopes have to rotate over a quite wide range.
Meanwhile, the gyro-moments decrease as the angles θ3, θ5 increase. For this reason, θ3, θ5
must be kept at zeros in the steady state.

Further, the angular velocity sensors used are piezoelectric vibrator type which have
high-frequency noise due to the vibration of gyroscopes, so the controller gain must roll-off
at high frequency. Also, the controller gain in the control band cannot be too high because of
the limit of current. Based on these considerations, the performance output ē ∈ R

5 is selected
as

ē = [φ, θ3, θ5, φ̇, θ̇1, θ̇2]
T = Mx

and the generalized plant Gp(s) set as Figure 20.5, in which wp, zp ∈ R
4 denote the output and

input of the time-varying parameter block. All control inputs eu ∈ R
3 have also been put into

the performance output, and the effect of sensor noise on θ̇1 is taken into account. r ∈ R
1 is the

reference for the rotational angle φ of the wheel. According to Section 11.3.4, the generalized
plant is given by

G(s) =

⎡

⎢
⎢
⎣

E−1A E−1L E−1H E−1B
W 0 0 0
M 0 0 0
C 0 0 D

⎤

⎥
⎥
⎦ . (20.49)

Further, the weighting functions have the following structures:

We = diag(Wφ,Wθ3
,Wθ5

,Wθ̇1
,Wθ̇2

)

Wu = diag(Wτ1
,Wτ2

,Wτ3
)
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ē
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Wu

W
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uy
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e

Gp(s)

W
refr

Figure 20.5 Block diagram of generalized plant

Wd = diag(Wd1
,Wd2

)

Wref =
[
−Wr 0 0 0 0

]T

WN =
[
0 0 0 Wn4

0
]T

in which the subscript of a weight denotes the corresponding signal.
The overall plant can be expressed as

[
ep

y

]

= Fu(G(s),Δ)
[
dp

u

]

, ep =
[

e
eu

]

, dp =

⎡

⎣
d
r
n

⎤

⎦ (20.50)

where Δ denotes the diagonal matrix of time-varying parameters:

Δ = diag(δ1I2, δ2I2), ||Δ|| ≤ 1,Δ ∈ R
4×4. (20.51)

The performance is measured by the induced two-norm, that is,

sup
dp

||ep||2
||dp||2

< γ (20.52)

for all Δ(t) in the prescribed domain. This performance is guaranteed by the following
constant-scaled small-gain condition:

||S−1Fl(Ggs ,K)SJγ ||∞ < 1 (20.53)

in which Jγ ≡ diag(I, I/γ) and S is a constant scaling matrix which is permutable with
diag(Δ,Δ,Δp). Δp is a performance block representing the disturbance attenuation perfor-
mance (20.52).

The tracking of step reference is presumed, so Wφ (model of the reference signal) is selected
as an approximated integrator. In order to attenuate step disturbances, Wθ3

,Wθ5
(models of

mechanical disturbances) are also selected as approximated integrators. The input weight-
ing functions are high-pass filters used to lower the high-frequency gain of controller. Other
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weights are chosen as constants and used as tuning gains in design. Concretely, the weighting
functions are determined as

Wφ =
0.2s + 4

s + 0.0001
, Wθ3

= Wθ5
=

0.3s + 3
s + 0.0001

, Wθ̇1
= Wθ̇2

= 0.01

Wτ1
=

0.5s + 1
s + 1000

× 103, Wτ2
= Wτ3

=
4s + 40
s + 2000

× 103

Wd1
= 0.02, Wd2

= 0.03, Wr = 0.1, Wn = 0.001

by trial and error.
The working ranges of gyroscopes are presumed as |θ3|, |θ5| ≤ π

4 , so the corresponding
perturbation ranges are computed as

ΔRi
= |Ri × (cos

π

4
− 1)| ≈ Ri × 0.3, i = 1, 2

A performance level of γ = 0.961 is achieved in the design. The order of the controller is 16.
The Bode plots of the gain-scheduled controller Fu(K,Δ) for θ3 = θ5 = 0 (solid line), θ3 =
θ5 = π

6 (dashed line), θ3 = θ5 = π
4 (·−), and θ3 = θ5 = π

3 (+) are investigated. Significant
variation of gain is observed in the controllers between signals: θ̇1 → τ1, (φ, θ3, θ5, θ̇2) →
τ2, (φ, θ3, θ5, θ̇2) → τ3. As an example, the controller from θ̇1 to τ1 is shown in Figure 20.6.

20.3.3 Experiment Results

In the experiments, the LTI coefficient matrix is discretized by using Tustin method with a sam-
pling period of 6 ms. The gain-scheduled controller is implemented using C program running
on RTLinux. Three kinds of experiments are done.
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Figure 20.6 Bode plot of gain-scheduled controller
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Figure 20.7 Posture stabilization (a) θ̇1 (b) θ̇2
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Figure 20.8 Responses to longitudinal force disturbance (a) φ (b) θ̇2

20.3.3.1 Posture Stabilization

The responses of angular velocities are shown in Figure 20.7. As they are roughly symmetric
to zero, the pitch angle θ2 and roll angle θ1 are nearly zero.

20.3.3.2 Disturbance Attenuation

Secondly, an external pulse force is applied by hand to test the disturbance attenuation perfor-
mance. The force is applied in the longitudinal and lateral directions at 17 and 21 s, respec-
tively. The results are shown separately in Figures 20.8 and 20.9. It is remarked that the two
gyroscopes rotate in opposite directions when the lateral force is applied.
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Figure 20.9 Responses to lateral force disturbance (a) θ3 (b) θ5 (c) φ (d) θ̇1

20.3.3.3 Running Experiment

A reference r(t) is applied to the rotational angle of the wheel, which corresponds to a distance
of 40 cm. The response of wheel angle φ is shown in Figure 20.10.

These experiments indicate that the gain-scheduled control works well.

20.4 Affine LPV Model

From the LPV models of nonlinear systems1 which we have encountered up to now, we see
that compared with the LFT form it is more practical to describe the coefficient matrices of
the state equation of plant as affine functions of time-varying parameters. So, we consider the
following affine LPV model:

ẋ = A(p(t))x + B1(p(t))d + B2(p(t))u (20.54)

1 For example, the single-machine infinite-bus power system.
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Figure 20.10 Longitudinal running

z = C1(p(t))x + D11d + D12u (20.55)

y = C2(p(t))x + D21d (20.56)

in which (d, z, y) denote the disturbance, performance output, and measured output, respec-
tively. Each coefficient has an affine structure about the time-varying parameter vector:

A(p) = A0 +
q∑

i=1

pi(t)Ai

B1(p) = B10 +
q∑

i=1

pi(t)B1i, B2(p) = B20 +
q∑

i=1

pi(t)B2i (20.57)

C1(p) = C10 +
q∑

i=1

pi(t)C1i, C2(p) = C20 +
q∑

i=1

pi(t)C2i.

Here, all coefficient matrices are fixed except the time-varying parameter p(t). Moreover, we
assume that each time-varying parameter can be measured online and its range

pi(δ) ∈ [pim , piM ], i = 1, . . . , q (20.58)

can be estimated a priori. In this LPV model, all the DC terms are assumed to be constant.
This is because the time-varying parameters are function of some states which usually do not
appear in the DC terms in practice.

20.4.1 Easy-to-Design Structure of Gain-Scheduled Controller

We impose a similar affine structure on the gain-scheduled controller, that is, let the coefficient
matrices of the controller

ẋK = AK(p(t))xK + BK(p(t))y
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u = CK(p(t))xK + DK(p(t))y (20.59)

be

AK(p) = AK0 +
q∑

i=1

pi(t)AKi , BK(p) = BK0 +
q∑

i=1

pi(t)BKi (20.60)

CK(p) = CK0 +
q∑

i=1

pi(t)CKi , DK(p) = DK0 +
q∑

i=1

pi(t)DKi .

Each coefficient matrix is a constant matrix except p(t). Let the state vector of the closed-loop
system be

ξ =
[

x
xK

]

.

Then, the corresponding state equation becomes

ξ̇ = Ac(p)ξ + Bc(p)d (20.61)

z = Cc(p)ξ + Dc(p)d

where

Ac(p) =

⎡

⎣
A(p) + B2(p)DK(p)C2(p) B2(p)CK(p)

BK(p)C2(p) AK(p)

⎤

⎦

Bc(p) =
[
B1(p) + B2(p)DK(p)D21

BK(p)D21

]

Cc(p) =
[
C1(p) + D12DK(p)C2(p) D12CK(p)

]

Dc(p) = D11 + D12DK(p)D21. (20.62)

It is clear from this equation that Ac(p) ∼ Dc(p) in general are not necessarily affine func-
tions of the time-varying parameter vector p(t). However, in order to facilitate the design, it is
necessary to ensure that these coefficient matrices of closed-loop system are affine functions.
In this way, we can reduce the design of gain-scheduled controller to vertex conditions. Basi-
cally, this is achieved by limiting the coefficient matrix form of the controller according to the
structure of plant about p(t).

Corresponding to the structure of LPV plant, the easy-to-design structures for
gain-scheduled controller are summarized in the following:

• When matrices (B2(p), C2(p)) both depend on p(t), (BK , CK) must be constant matrices
besides DK = 0.

• When (B2, C2) are both constant matrices, all coefficient matrices of the controller can be
affine functions of the scheduling parameter.

• When only B2 is a constant matrix, (BK ,DK) must be constant matrices.
• When only C2 is a constant matrix, (CK ,DK) must be constant matrices.
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It is easy to verify that under these conditions, all coefficient matrices of the closed-loop system
are affine functions of the scheduling parameter vector p(t).

In gain-scheduled control design, the affine model has the following merits:

1. It has a very good compatibility with practical systems. Since it is equivalent to the poly-
topic model, control specifications need to be satisfied only at all vertices, which greatly
simplifies the numerical design.

2. Lyapunov method can be applied and the conservatism is weaker than the small-gain
method for parametric uncertainty.

3. By the use of common Lyapunov function, it is easy to carry out multiobjective control
design.

Its shortcoming is that all the time-varying parameters must be known, otherwise the design
would be rather difficult.

20.4.2 Robust Multiobjective Control of Affine Systems

In the robust control design of affine systems, there are two methods: variable elimination and
variable change. But the variable elimination method can only handle single objective. So,
in this section we focus on the variable change method and study the multiobjective control
problem of affine systems utilizing the feature of variable change. To this end, we need to first
investigate what difficulty may occur and how to resolve it when applying this method to affine
systems. Recall that in the variable change method, the new variables are

A = NAKMT + NBKC2X + Y B2CKMT + Y (A + B2DKC2)X

B = NBK + Y B2DK , C = CKMT + DKC2X, D = DK .

When the coefficient matrices of the closed-loop system given in (20.62) are all affine functions
of the scheduling parameter p(t), these new variables automatically become affine functions
of p(t) and can be written as

A(p) = A0 +
q∑

i=1

pi(t)Ai, B(p) = B0 +
q∑

i=1

pi(t)Bi

C(p) = C0 +
q∑

i=1

pi(t)Ci, D(p) = D0 +
q∑

i=1

pi(t)Di. (20.63)

Design based on the vertex conditions yields the constant matrices (Ai, Bi, Ci, Di)
(i = 0, 1, . . . , q) in (A(p), B(p), C(p), D(p)). From these matrices we can compute the
coefficient matrices of controller. For example, when (B2, C2) are both constant matrices, we
have

DKi = Di, CKi = (Ci − DKiC2X)(M †)T , BKi = N †(Bi − Y B2DKi )

AKi = N †(Ai − NBKiC2X − Y B2CKiM
T − Y (Ai + B2DKiC2)X)(M †)T . (20.64)

(As for the other cases, refer to Exercise 20.2.)
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Next, we concretely summarize the design conditions for various control specifications. The
basic idea is to guarantee all performance specifications of the gain-scheduled control system
with a common Lyapunov function (which corresponds to constant positive definite matrix P ).
That is to say, we apply the LMI performance conditions derived in the previous chapters to the
gain-scheduled control system, then reduce the solvability condition to finite vertex conditions
based on its polytopic structure. Assume that the vertices of the scheduling parameter vector
polytope are θj (j = 1, . . . , N) hereafter.

20.4.2.1 H∞ Norm Specification

For a given system, the necessary and sufficient condition for the H∞ control problem
‖Hzw‖∞ < 1 is provided in Section 16.4. From this condition, we conclude that if there exist
constant matrices X = XT , Y = Y T , and LPV matrices A(p), B(p), C(p), D(p) satisfying

He

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A(p)X + (B2C)(p) A(p) + (B2DC2)(p) B1(p) + (B2D)(p)D21 0

A(p) YA(p) + (BC2)(p) Y B1(p) + B(p)D21 0

0 0 −1
2
I 0

C1(p)X + D12C(p) C1(p) + D12(DC2)(p) D11 + D12DD21 −1
2
I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0

[
X I

I Y

]

> 0,

then the robust H∞ control specification is achieved even when the system parameters change.
These conditions can be further reduced to the following vertex conditions (j = 1, . . . , N ):

He

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A(θj)X + (B2C)(θj) A(θj) + (B2DC2)(θj) B1(θj) + (B2D)(θj)D21 0

A(θj) YA(θj) + (BC2)(θj) Y B1(θj) + B(θj)D21 0

0 0 −1
2
I 0

C1(θj)X + D12C(θj) C1(θj) + D12(DC2)(θj) D11 + D12DD21 −1
2
I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (20.65)

[
X I

I Y

]

> 0. (20.66)

20.4.2.2 H2 Norm Specification

Here, we need to assume that D11 = 0 and DK = 0. For a given system, the necessary and
sufficient condition for the γ-optimal H2 control problem is given by Theorem 15.3. If there
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exist constant matrices X = XT , Y = Y T ,W = WT and LPV matrices A(p), B(p), C(p)
satisfying

He

⎡

⎢
⎢
⎣

A(p)X + (B2C)(p) A(p) 0

A(p) YA(p) + (BC2)(p) 0

C1(p)X + D12C(p) C1(p) −1
2
I

⎤

⎥
⎥
⎦ < 0

⎡

⎢
⎣

W B1(p)T B1(p)T Y

B1(p) X I

Y B1(p) I Y

⎤

⎥
⎦ > 0

Tr(W ) < γ2,

then the robust γ-optimal H2 control objective is guaranteed even when the system parameters
change. This condition is equivalent to the following vertex conditions (j = 1, . . . , N ):

He

⎡

⎢
⎢
⎣

A(θj)X + (B2C)(θj) A(θj) 0

A(θj) YA(θj) + (BC2)(θj) 0

C1(θj)X + D12C(θj) C1(θj) −1
2
I

⎤

⎥
⎥
⎦ < 0 (20.67)

⎡

⎢
⎣

W B1(θj)
T B1(θj)

T Y

B1(θj) X I

Y B1(θj) I Y

⎤

⎥
⎦ > 0 (20.68)

Tr(W ) < γ2. (20.69)

20.4.2.3 Regional Pole Placement

According to the result in Section 19.1.2, one of the sufficient conditions for placing the poles
of LPV system to the LMI region

D = {z ∈ C : L + zM + zMT < 0}

is that there are constant matrices X = XT , Y = Y T , and LPV matrices A(p), B(p), C(p),
D(p) satisfying

L ⊗
[
X I
I Y

]

+ He
(

M ⊗
[
A(p)X + (B2C)(p) A(p) + (B2DC2)(p)

A(p) YA(p) + (BC2)(p)

])

< 0

[
X I
I Y

]

> 0.

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

428 Robust Control

This condition is equivalent to the following vertex conditions (j = 1, . . . , N ):

L ⊗
[
X I
I Y

]

+ He
(

M ⊗
[
A(θj)X + (B2C)(θj) A(θj) + (B2DC2)(θj)

A(θj) YA(θj) + (BC2)(θj)

])

< 0

(20.70)
[
X I
I Y

]

> 0. (20.71)

Moreover, concrete substitution of matrices L,M in the characteristic function of typical
LMI regions leads to the following conditions:

Disk Centered at (−c, 0) and with a Radius r

He
([

0 1
0 0

]

⊗
[
A(θj)X + (B2C)(θj) A(θj) + (B2DC2)(θj)

A(θj) YA(θj) + (BC2)(θj)

])

+
[
−r c
c −r

]

⊗
[
X I
I Y

]

< 0 (20.72)

[
X I
I Y

]

> 0. (20.73)

Half-Plane R(z) < −σ

2σ

[
X I
I Y

]

+ He
[
A(θj)X + (B2C)(θj) A(θj) + (B2DC2)(θj)

A(θj) YA(θj) + (BC2)(θj)

]

< 0 (20.74)

[
X I
I Y

]

> 0. (20.75)

Sector | arg z − π| < θ

He
([

sin θ cos θ
− cos θ x sin θ

]

⊗
[
A(θj)X + (B2C)(θj) A(θj) + (B2DC2)(θj)

A(θj) YA(θj) + (BC2)(θj)

])

< 0

(20.76)
[
X I
I Y

]

> 0. (20.77)

Refer to Ref. [46] for the application of this gain-scheduled method in the steering stabi-
lization control of cars.

20.5 Case Study: Transient Stabilization of a Power System

As shown in Section 11.5.2, the nonlinear power system in Figure 20.11 can be equivalently
converted into an LPV model with three time-varying parameters. However, in control design,
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Generator
Transformer

Infinite 
bus

Vs
Vt

LT
HT

Transmission line I

Transmission line II

F

Figure 20.11 Single-machine infinite-bus power system

the time-varying parameters are treated as uncertainties, and the performance gets conservative
as the number of uncertainties increases. For this reason, we derive an equivalent LPV model
with only two time-varying parameters first, and then the gain-scheduled control design is
carried out based on it.

20.5.1 LPV Model

The idea for the construction of two-parameter LPV model is to introduce a nonlinear feedback
term in the field voltage:

Vf = V f − xd − x
′
d

x
′
dΣ

Vs cos δ (20.78)

so that the nonlinear term in the dynamics of internal transient voltage E
′
q is cancelled:

Ė ′
q =

1
Td0

{

−xdΣ

x
′
dΣ

E
′

q +
xd − x

′
d

x
′
dΣ

Vs cos δ + Vf

}

=
1

Td0

{

−xdΣ

x
′
dΣ

E
′

q + V f

}

(20.79)

Next, the deviation of the new voltage input V f is defined as

u = V f − V f0.

As a result, the number of scheduling parameters is reduced to 2 in the new model. This
two-parameter LPV model has an identical form as (11.48):

{
ẋ = A(p)x + B1d + B2u
y = C2x.

(20.80)

The only difference is that it has only two time-varying parameters:

p1(δ) =
k1(sin δ − sin δ0) − k2(sin 2δ − sin 2δ0)

δ − δ0
, p2(δ) = sin δ

and A(p) turns into

A(p) =

⎡

⎣
0 1 0

c1p1(δ) c2 c3p2(δ)
0 0 c5

⎤

⎦ = A0 + p1A1 + p2A2. (20.81)
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It is assumed that the rotor angle δ is measured. So p(δ) can be computed online and used
as scheduling parameters. Once the range of variation of δ is prescribed, the corresponding
ranges [pim , piM ] (i = 1, 2) of p1, p2 can be computed offline.

20.5.2 Multiobjective Design

The goal of design is to ensure a good stability and to realize a satisfactory transient perfor-
mance when large disturbance or fault occurs in the power system. Moreover, it should be kept
in mind that the working range of the excitation voltage is rather narrow.

Since only the matrix A(p) depends on p(t), the parameter vector p(t) may be put into all
coefficient matrices of the controller (20.60).

In the swing equation (11.41) of synchronous generator, the damping is rather weak. To
add damping to the power system, a good tool is to place the eigenvalues of the LPV system
in some suitable region. Several kinds of region are tried, and it is found that the disk region
yields the best response for the power system. So it is adopted here.

However, it is found via simulations that the swing of active power and rotor speed does
not fade out fast enough. This is because the damping assigned by pole placement cannot be
achieved due to the saturation of field voltage. In fact, the power system gets vulnerable to
fault if the poles are placed too far away from the imaginary axis.

Further, it is observed that the rotor angle δ diverges first which causes the divergence of
other variables. So, in addition to pole placement, the amplitude of δ should also be minimized.
For this reason, we minimize the L2 gain from the active power disturbance d to the rotor angle
deviation

z = x1 = C1x, C1 = [1 0 0] (20.82)

in the design. That is, for a given γ > 0, ensure that

sup
||d||2 �=0

||z||2
||d||2

≤ γ. (20.83)

For the multiobjective control under consideration, the generalized plant is given by

G(s) =

⎡

⎣
A(p) B1 B2
C1 0 0
C2 0 0

⎤

⎦ . (20.84)

In summary, the multiobjective optimization problem to be solved is to minimize the norm
bound γ subject to the LMI constraints for pole placement in a disk and H∞ norm as given in
Section 20.4.2.

20.5.3 Simulation Results

In the simulations, the dynamics of the exciter is modeled as a first-order transfer function

KA

1 + sTA

with a limiter. All simulations are conducted w.r.t. the nonlinear model as illustrated in
Figure 20.12.
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Nonlinear modelExciter

Vfmax

Vfmin

Gain-scheduled
controller

δ

ω

δ0 
ω0−+

ΔVf*

+

Δδ 
Δω

Vf0 +

δ

Figure 20.12 Block diagram of gain-scheduled control of power system

As a test of transient stability, a three-phase short circuit fault is applied behind the trans-
former as shown in Figure 20.11. To account for the influence of time delay in the measurement
of rotor angle δ, a 2 ms pure time delay is set in the measurement of δ in all simulations. It
is noted that the output voltage of the transformer is zero during the fault so that no power is
transmitted to the infinite bus.

20.5.3.1 Fault Sequence (Permanent Fault)

• Step 1: A fault occurs at t = 0.0 s, that is, the system is in a prefault steady state before
t = 0.0 s.

• Step 2: The fault is removed by opening the breakers of the faulted line at tF s.
• Step 3: The system operates in a post-fault state.

Parameters of the nonlinear power system are as follows (p. 864, Example 13.2 of [50]):

D = 0.15, M = 7.00, Td0 = 8.00, Vs = 0.995

xd = 1.81, x
′

d = 0.30, xl1 = 0.5, xl2 = 0.93, xT = 0.15.

The operating point is

δ0 = 0.8807(≈ 50.5◦), ω0 = 314, E
′

q0 = 1.3228, Vf0 = 2.6657.

Meanwhile, the parameters of the exciter are

TA = 0.05,KA = 50

and the limit on the field voltage is

0.0 [pu] ≤ Vf (t) ≤ 5.0[pu].

Further, the range of δ is assumed to be [40◦, 90◦] in the design. In all simulations, tF =
0.168 [s] is used. Via some tuning, it is found that the best performance is achieved when the
region of poles is placed in a disk centered at (−8, j0) and with a radius r = 6.

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

432 Robust Control

0 1 2 3 4 5 6 7 8 9 10
0

1

2

P
e 

(p
.u

.) Uncertainty case
Nominal case

0 1 2 3 4 5 6 7 8 9 10
0

100

200

δ 
(d

eg
re

es
)

0 1 2 3 4 5 6 7 8 9 10
300

320

340

ω
 (

ra
d/

s)

0 1 2 3 4 5 6 7 8 9 10
0

5

Time (s)

V
f (

p.
u.

)

Figure 20.13 Robustness test (ΔVs = 0.1Vs, ΔxL = 0.1xL, ΔxT = 0.1xT )

20.5.4 Robustness

When a large fault occurs suddenly, both Vs and xL change a lot, which have not been consid-
ered in the design for simplicity. So here to evaluate the robustness to these parameter changes,
simulations about the changes of Vs, xL, and xT are performed, and the results are shown in
Figures 20.13 and 20.14. A maximum variation of ±10% is considered here. ΔVs, ΔxL, and
ΔxT denote the uncertainties in Vs, xL, and xT . Although the quality of response worsens
due to the change of parameters, the settling time remains roughly unchanged.

One may wonder why not to take these parameter uncertainties into account directly in the
design. The answer is that the result would have been too conservative if these uncertainties
had been considered.

20.5.5 Comparison with PSS

For comparison, we will first design a PSS (power system stabilizer) at the same operating
point.

The philosophy of PSS is to add a damping signal (in phase with the oscillation) to the
AVR (automatic voltage regulator) reference input through a phase-lead compensator so that
the component of the electrical torque generated by this signal could enhance the damping of
oscillation.

The PSS is designed following the design procedure described in Ref. [52]. Figure 20.15
depicts the configuration of the PSS with AVR and exciter. The terminal voltage Vt in the AVR
is

Vt =
1

xdΣ

√
E2

qx
2
s + V 2

s x2
d + 2xsxdEqVs cos δ
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Figure 20.14 Robustness test (ΔVs = 0.1Vs, ΔxL = −0.1xL, ΔxT = −0.1xT )
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-
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+
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fmin

V

V

Figure 20.15 Block diagram of PSS

in which the internal voltage Eq is given by

Eq =
xdΣ

x
′
dΣ

E
′

q −
xd − x

′
d

x
′
dΣ

Vs cos δ.

The transfer function of PSS controller has the following form:

KPSS(s) = Kg

(
sTw

1 + sTw

)(
1 + sT1

1 + sT2

)2

(20.85)

and the parameters are tuned as

Kg = 0.3, Tw = 0.1, T1 = 0.1, T2 = 0.05.
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Figure 20.16 Comparisons of gain-scheduled control and PSS

Figure 20.16 shows the results of comparison between the gain-scheduled control (abbre-
viated as 2p-LPV GSC in the figure) and the PSS under the permanent fault. It is observed
from the responses of active power Pe, rotor angle δ, and rotor speed ω that the GSC damps
the oscillation faster than the PSS and the oscillation amplitude is smaller.

Exercise

20.1 Derive the algorithm of gain-scheduled control design given in Section 20.2.2.

20.2 Prove the easy-to-design controller structures summarized in Section 20.4:

• When matrices (B2(p), C2(p)) both depend on p(t), (BK , CK) must be constant
matrices besides DK = 0.

• When (B2, C2) are both constant matrices, all coefficient matrices of the controller
can be affine functions of the scheduling parameter.

• When only B2 is constant matrix, (BK ,DK) must be constant matrices.
• When only C2 is constant matrix, (CK ,DK) must be constant matrices.

And derive the formulas for controller coefficient matrices (AKi , BKi , CKi ,DKi ) cor-
responding to (Ai, Bi, Ci, Di)(i = 0, 1, . . . , q) given in Section 20.4.

Description of Variables and Parameters
δ rotor angle, in rad
ω rotor speed, in rad/s
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Pe active electrical power, in p.u.
PM mechanical power, in p.u.
Eq internal voltage, in p.u.
Vt terminal voltage of generator, in p.u.
Vs infinite bus voltage, in p.u.
E

′
q internal transient voltage, in p.u.

Vf field voltage of generator, in p.u.
VR output voltage of exciter, in p.u.
Vref reference terminal voltage, in p.u.
D damping constant, in p.u.
M inertia coefficient of generator, in seconds
Td0 field circuit time constant, in seconds
KA gain of the excitation system
TA time constant of the excitation system, in seconds
xd d-axis reactance, in p.u.
x

′
d d-axis transient reactance, in p.u.

xT reactance of transformer, in p.u.
xl1 reactance of transmission line I, in p.u.
xl2 reactance of transmission line II, in p.u.
xL reactance of transmission line, in p.u.
xdΣ xdΣ = xd + xT + xL, in p.u.
x

′
dΣ x

′
dΣ = x

′
d + xT + xL, in p.u.

Notes and References

For the LFT-type parametric systems, [76] gave a gain-scheduling method based on μ synthe-
sis; and Refs [3, 42] provided a gain-scheduling method based on constant scaled H∞ control.
The former was applied to a unicycle robot [21] and the latter was applied to a missile [4].
The gain-scheduling method for affine systems was applied to automobiles [46] and power
systems [38].

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

21
Positive Real Method

When the uncertainty of a system has the positive real property, a simple method to guarantee
the stability of closed-loop system is to use the passivity method introduced in Chapter 13,
that is, to design the nominal closed-loop system as a strongly positive real or strictly positive
real transfer function. Its essence is to make use of the phase condition in the Nyquist stability
criterion to guarantee the stability of closed-loop system. This chapter illustrates the positive
real design method with an emphasis placed on the robust performance design, as well as its
limit in some detail.

21.1 Structure of Uncertain Closed-Loop System

First, to figure out what structure the closed-loop system should have when dealing with a
positive real uncertainty, let us look back at the flexible system discussed in Chapter 11:

P̃ (s) =
k0s

s2 + 2ζ0ω0s + ω2
0

+
k1s

s2 + 2ζ1ω1s + ω2
1

+ · · · +
kns

s2 + 2ζnωns + ω2
n

where all gains ki are positive. Take the first-order resonant mode

P (s) =
k0s

s2 + 2ζ0ω0s + ω2
0

= (A,B,C, 0)

as the nominal model, and treat the sum of high-order resonant modes which are difficult to
identify as a dynamic uncertainty:

Δ(s) =
k1s

s2 + 2ζ1ω1s + ω2
1

+ · · · +
kns

s2 + 2ζnωns + ω2
n

.

Then, the uncertainty Δ(s) is positive real. The nominal closed-loop system, which is nega-
tively feedback connected with the uncertainty, becomes

M(s) =
K

1 + PK
.

To make M(s) strongly positive real, the relative degree of controller K(s) must be zero.
Obviously, such controller is sensitive to sensor noise. Hence, a better way is to make M(s)

Robust Control: Theory and Applications, First Edition. Kang-Zhi Liu and Yu Yao.
© 2016 John Wiley & Sons Singapore Pte. Ltd. Published 2016 by John Wiley & Sons, Singapore Pte. Ltd.
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strictly positive real. Describing M(s) as a generalized system about K(s), the corresponding
generalized plant becomes

[
z
y

]

=
[

0 1
−1 −P

] [
w
u

]

=

⎡

⎣
A 0 B

0 0 1
−C −1 0

⎤

⎦
[
w
u

]

.

The second example is from Ref. [37]. In the vibration control of flexible systems, when the
measured output is not velocity but displacement, the system model becomes

P̃ (s) =
k0

s2 + 2ζ0ω0s + ω2
0

+
k1

s2 + 2ζ1ω1s + ω2
1

+ · · · +
kn

s2 + 2ζnωns + ω2
n

.

In this case, the high-order resonant modes are no longer positive real. However, if we can
identify the parameters (ζi, ωi) of the high-order resonant modes to some extent, it is possi-
ble for us to extend the control bandwidth of closed-loop system. But due to manufacturing
error the resonant frequencies usually vary in some ranges. The uncertainty of these resonant
frequencies can be treated as a positive real function. The detail is as follows. The state-space
realization of P̃ (s) is given by

P̃ (s) = (A, B, C, 0)

where matrix A has the following block diagonal structure:

A = diag
([

−ζ1 ω1
−ω1 −ζ1

]

, . . . ,

[
−ζn ωn

−ωn −ζn

])

.

In vibration control this model is known as the modal dynamics. The uncertainty caused by
the variation of resonant frequencies can be written as

ΔA =
n∑

i=1

δiAi

where parameter δi corresponds to the uncertainty of resonant frequency ωi, which changes
in a certain range. The matrix Ai is given by

Ai = diag
(

0, . . . , 0,

[
0 1

−1 0

]

, 0, . . . , 0
)

= [0, . . . , I2, . . . , 0]T
[

0 1
−1 0

]

[0, . . . , I2, . . . , 0].

Apparently, ΔA + ΔAT = 0. So ΔA can be treated as a positive real uncertainty.
In general, this kind of matrix uncertainty can be modeled as

ΔA = −B0FC0

where F is a positive real uncertainty satisfying F + FT ≥ 0. The corresponding state-space
model for the uncertain system P̃ (s) is given by

ẋ = (A + ΔA)x + Bu, y = Cx . (21.1)
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Δ

G

K

uy

wz
−

Figure 21.1 Closed-loop system with positive real uncertainty

Setting (z, w) as the input and output of uncertainty −F , we finally obtain the generalized
plant as

G

⎧
⎨

⎩

ẋ = Ax + B0w + Bu
z = C0x
y = Cx .

It is negatively feedback connected with uncertainty F , that is,

w = −Fz .

Note that in these examples, the DC term from w to z is D11 = 0.
Summarizing these examples, in general a closed-loop system with positive real uncertainty

can be expressed as the system shown in Figure 21.1. The generalized plant is given by
⎡

⎣
ẋ
z
y

⎤

⎦ =

⎡

⎣
A B1 B2
C1 D11 D12
C2 D21 0

⎤

⎦

⎡

⎣
x
w
u

⎤

⎦ . (21.2)

Note that to match the positive real theorem, Δ connects with the rest part in a negative feed-
back manner.

Setting K(s) = (AK , BK , CK ,DK), then the nominal closed-loop system M(s) from w
to z becomes

M(s) =
[
Ac Bc

Cc Dc

]

=

⎡

⎣
A + B2DKC2 B2CK B1 + B2DKD21

BKC2 AK BKD21
C1 + D12DKC2 D12CK D11 + D12DKD21

⎤

⎦ . (21.3)

21.2 Robust Stabilization Based on Strongly Positive Realness

According to the discussion in Section 13.4, as long as the nominal closed-loop system is
strongly positive real, the closed-loop system in Figure 21.1 is asymptotically stable. There-
fore, in this section we will discuss that under what condition M(s) can be made strongly
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positive real by feedback control, as well as the concrete control design method. First of all,
the strongly positive realness of M(s) requires

Dc + DT
c = D11 + DT

11 + D12DKD21 + (D12DKD21)
T > 0. (21.4)

When D11 + DT
11 > 0, even if D12 = 0 or D21 = 0 this condition can be achieved. However,

when D11 = 0, both D12 and D21 must be nonsingular in order to satisfy this condition. Hence,
the strongly positive realness of M(s) is a very strong condition.

According to the positive real lemma, M(s) is strongly positive real iff there exists a positive
definite matrix P > 0 satisfying

[
AT

c P + PAc PBc

BT
c P 0

]

−
[

0 CT
c

Cc Dc + DT
c

]

< 0. (21.5)

In the sequel, we design the controller using the methods of variable elimination and variable
change, respectively.

21.2.1 Variable Change

Recalling the variable change method in Section 3.2.4, the positive definite matrix P in (21.5)
can be factorized as

P = Π2Π
−1
1 , Π1 =

[
X I

MT 0

]

, Π2 =
[
I Y
0 NT

]

. (21.6)

We set the new variable matrices as

A = NAKMT + NBKC2X + Y B2CKMT + Y (A + B2DKC2)X

B = NBK + Y B2DK , C = CKMT + DKC2X, D = DK . (21.7)

The condition that ensures the positive realness of P and the one-to-one correspondence
between the new variables and the controller parameters is

[
X I
I Y

]

> 0. (21.8)

Multiplying (21.5) from both sides using a block diagonal matrix diag(Π1, I) and its transpose,
we obtain the following equivalent condition:

He

⎡

⎢
⎣

AX + B2C A + B2DC2 B1 + B2DD21

A YA + BC2 Y B1 + BD21

−(C1X + D12C) −(C1 + D12DC2) −(D11 + D12DD21)

⎤

⎥
⎦ < 0 (21.9)

after the substitution of the new variables.
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21.2.2 Variable Elimination

Here, we introduce the solution given in [89]. Arrange the coefficient matrices of controller as
a variable matrix

K =
[
DK CK

BK AK

]

. (21.10)

According to Section 7.4.1, the coefficient matrices in (21.3) can be written as an affine func-
tion of K: [

Ac Bc

Cc Dc

]

=
[

A B1
C1 D11

]

+
[

B2
D12

]

K[C2,D21] (21.11)

where the coefficient matrices are given in (7.44). Substituting them into the strongly positive
real condition (21.5), we obtain

Q + ETKF + FTKT E < 0 (21.12)

in which the coefficient matrices are

Q ET

F
=

⎡

⎢
⎣

A
T
P + PA PB1 − C

T
1 PB2

B
T
1 P − C1 −(DT

11 + D11) −D12

C2 D21

⎤

⎥
⎦ .

By Theorem 3.1 about variable elimination, this inequality has a solution iff the following two
inequalities

ET
⊥QE⊥ < 0, FT

⊥ QF⊥ < 0 (21.13)

hold simultaneously. Substitution of the coefficient matrices given by (7.44) and a direct cal-
culation lead to the orthogonal matrices of E,F

E⊥ =
[
P−1 0

0 −Inz

]
⎡

⎣
In 0
0 0
0 Inz

⎤

⎦NX , F⊥ =

⎡

⎣
In 0
0 0
0 Inw

⎤

⎦NY

where
NX = [BT

2 DT
12]⊥, NY = [C2 D21]⊥. (21.14)

Partition the positive definite matrix P as

P =
[
Y ∗
∗ ∗

]

, P−1 =
[
X ∗
∗ ∗

]

.

Substituting P−1 into the inequality ET
⊥QE⊥ < 0, after some calculation, we obtain

NT
X

{[
AX + XAT XCT

1
C1X 0

]

−
[

0 B1
BT

1 D11 + DT
11

]}

NX < 0. (21.15)

Similarly, substitution of P into the inequality FT
⊥ QF⊥ < 0 yields

NT
Y

{[
YA + AT Y Y B1

BT
1 Y 0

]

−
[

0 CT
1

C1 D11 + DT
11

]}

NY < 0. (21.16)
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Finally, according to Lemma 3.1,the condition for the existence of such a positive definite
matrix P is [

X I
I Y

]

> 0. (21.17)

These three simultaneous LMIs provide the necessary and sufficient condition for M(s) to
be strongly positive real. When they have a solution, we compute a nonsingular matrix M
satisfying

MMT = Y − X−1 > 0

first, then set P as

P =
[

Y M
MT I

]

, (21.18)

and substitute it into (21.12). In this way, we can solve for the parameter matrix K of controller
numerically.

21.3 Robust Stabilization Based on Strictly Positive Realness

Strongly positive real method requires the DC term of the nominal closed-loop transfer matrix
to be nonsingular, which is an extremely strong requirement and difficult to satisfy in practical
system designs. For instance, in the first example of Section 21.1, since D11 = 0, it requires
the DC term of the controller to be nonzero which means that the high-frequency gain of
controller cannot be rolled off. Therefore, it is sensitive to sensor noise. In the second example,
as D11 = D12 = D21 = 0, it is impossible to satisfy M(∞) �= 0 at all. However, the essence
of positive real method is to guarantee that the open-loop system satisfies the phase condition
of stability theory, that is, the phase of M(jω)Δ(jω) is not 180 degree at any finite frequency.
As for the infinite frequency, even if the phase condition fails, the closed-loop system will be
stable so long as the open-loop gain is zero. This observation motivates us to make the nominal
closed-loop system strictly positive real instead of strongly positive real.

Since Theorem 13.7 provides a method to ensure the asymptotic stability of closed-loop
system by making the nominal closed-loop system M(s) strictly positive real, we start from
it. In this section, it is further assumed that

D11 = 0. (21.19)

Then, DK = 0 guarantees Dc = 0.
Next, we design a strictly proper controller K(s) = (AK , BK , CK , 0) such that the nominal

closed-loop transfer matrix M(s) is strictly positive real. Suppose that (A,B2, C2) in the real-
ization of generalized plant G(s) is both controllable and observable. As long as no zero–pole
cancellation occurs between the controller and the generalized plant, which can be ensured
by the controller design, the realization of nominal closed-loop transfer matrix M(s) is both
controllable and observable. Thus, the condition for the positive realness of M(s − ε) is that
there exist an ε > 0 and a positive definite matrix P > 0 satisfying

[
(Ac + εI)T P + P (Ac + εI) PBc

BT
c P 0

]

−
[

0 CT
c

Cc 0

]

≤ 0. (21.20)
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As our objective is to design a strictly proper controller, we should use the variable change
method instead of the variable elimination method. The only difference between the current
case and that in Section 21.2.1 is that there is one more term 2εP , as well as DK = D = 0.
Noting that

ΠT
1 PΠ1 = ΠT

1 Π2 =
[
X I
I Y

]

,

via a similar calculation as Subsection 21.2.1, we get the design condition

He

⎡

⎣
AX + B2C A B1

A YA + BC2 Y B1 + BD21
−(C1X + D12C) −C1 0

⎤

⎦ + 2ε

⎡

⎣
X I 0
I Y 0
0 0 0

⎤

⎦ ≤ 0 (21.21)

and [
X I
I Y

]

> 0. (21.22)

Here, the new variables are

A = NAKMT + NBKC2X + Y B2CKMT + YAX

B = NBK , C = CKMT . (21.23)

The minimization of ε, that is,
min ε (21.24)

subject to these conditions is a GEV problem and can be numerically solved. The coefficient
matrices of the actual controller are given by

CK = C(M−1)T , BK = N−1
B

AK = N−1(A − NBKCX − YBCKMT − YAX )(M−1)T . (21.25)

21.4 Robust Performance Design for Systems with Positive Real
Uncertainty

In this section, we discuss how to carry out robust performance design for systems with positive
real uncertainty. For example, in the first example of Section 21.1, the system P̃ = P + Δ is
affected by the input disturbance d(t). Suppose that the dynamics of d(t) is WD(s), that is,
d̂(s) = WD(s)ŵ(s). Then, in order to suppress the influence of disturbance on system output,
we need to design a controller K(s) such that the closed-loop transfer function WD

P̃
1+P̃K

from disturbance w to output yP satisfies
∥
∥
∥
∥
∥
WD

P̃

1 + P̃K

∥
∥
∥
∥
∥
∞

< 1.

According to the discussion in Section 12.3, this robust disturbance attenuation condition is
equivalent to the robust stability when a virtual uncertainty Δg(s) (‖Δg‖∞ ≤ 1) is added
between disturbance w and system output yP . To carry out the design in the framework of
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positive realness, we need to convert the norm-bounded virtual uncertainty into a positive real
uncertainty. The essence of this transformation is to map the unit disk on the complex plane
into the right half-plane, which can be achieved by a conformal mapping. Transforming a point
g inside the unit disk |g| ≤ 1 on the complex plane by

p =
1 + g

1 − g
,

then all new variables p form the whole right half-plane of the complex plane as illustrated in
Figure 21.2(a). This transformation is one to one. Thus, it is easy to know that the transforma-
tion converting a matrix Δg(s) in the unit ball to a positive real Δp(s) is

Δp(s) = (I − Δg(s))
−1(I + Δg(s))

⇐⇒Δg(s) = (Δp(s) − I)(I + Δp(s))
−1. (21.26)

Note that the bounded real matrix Δg(s) can be written as

Δg(s) = I − 2(I + Δp(s))
−1. (21.27)

Its relation with the positive real matrix Δp(s) is shown in Figure 21.2(b). From it we see that
the relationship between the input–output (zg, wg) of Δg(s) and the input–output (zp, wp) of
−Δp(s) is

zp = zg + wp, wg = zg − 2zp = −2wp − zg. (21.28)

Next, we consider the general case in Figure 21.3(a). Let the state realization of generalized
plant Gg(s) be ⎡

⎢
⎢
⎣

ẋ
z
zg

y

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

A B1 B2 B3
C1 D11 D12 D13
C2 D21 0 D23
C3 D31 D32 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x
w
wg

u

⎤

⎥
⎥
⎦ . (21.29)

Here, for simplicity we have assumed that the DC term from wg to zg is zero. This condition
holds in almost all practical applications. For example, this condition is satisfied in the track-
ing problem of Figure 21.4(a) as long as the weighting function WR(s), which is the model
of the reference input, is strictly proper. Further, in the input disturbance control problem of
Figure 21.4(b), this condition holds naturally since the plant P (s) is always strictly proper.

(a)

−Δp

2

zpwp

zg wg

(b)

Re

Im Im

Re

g p

Figure 21.2 Relation between bounded real and positive real matrices

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

444 Robust Control

Δg

−Δ

Gg

K

uy

wgzg

wz

(a)

−Δp

−Δ

Gp

K

uy

wpzp

wz

(b)

Figure 21.3 Robust performance problem in system with bounded real/positive real uncertainty

wg

zg

y
−
yP

WR

(a)

wg
zg

yP

WD

u P

(b)

Figure 21.4 Examples about the relation between wg and zg

To do the robust performance design, we transform this closed-loop system into a
generalized feedback system about positive real uncertainty diag(Δ,Δp) shown in
Figure 21.3(b). Now, we seek the corresponding generalized plant Gp(s). First, sub-
stitution of zg = C2x + D21w + D23u into zp = zg + wp and wg = −2wp − zg yields
zp = C2x + D21w + wp + D23u and wg = −C2x − D21w − 2wp − D23u. Further, sub-
stituting this expression of wg into the state equation (21.29), we get the state equation of
Gp(s):

⎡

⎢
⎢
⎣

ẋ
z
zp

y

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

A − B2C2 B1 − B2D21 −2B2 B3 − B2D23

C1 − D12C2 D11 − D12D21 −2D12 D13 − D12D23

C2 D21 I D23

C3 − D32C2 D31 − D32D21 −2D32 −D32D23

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x
w
wp

u

⎤

⎥
⎥
⎦ .

(21.30)
The DC term between u and y can be removed by the method of Exercise 7.12. Hence, the

controller can be designed using the methods given in the previous two sections. The detail is
left to the reader.
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21.5 Case Study

Consider a flexible system

P̃ (s) = Kp

(
1
s

+
As

s2 + 2ζ1ω1s + ω2
1

)

(21.31)

where Kp = 3.74 × 109, A = 0.4 ∼ 1.0, ζ1 = 0.02 ∼ 0.6, ω1 = 4000 ∼ 4200 Hz. Set the
nominal model as

P (s) =
Kp

s

and the resonant mode as a dynamic uncertainty:

Δ(s) =
KpAs

s2 + 2ζ1ω1s + ω2
1

.

This uncertainty is positive real.
Let the controller be K(s). Then, the nominal closed-loop system, which is negatively feed-

back connected with the positive real uncertainty Δ, becomes (refer to Figure 21.5)

M(s) =
K(s)

1 + P (s)K(s)
=

sK (s)
s + KpK(s)

.

M(j0) = 0 when ω = 0. So, M(s) is neither strongly positive real nor strictly positive real.
However, the gain of M(s) is zero at ω = 0. So, M(s)Δ(s) satisfies the gain condition of
the Nyquist stability criterion at this point. This implies that there is no need of satisfying the
phase condition at this point.

First, we consider the PI controller

K(s) =
c1s + c2

s
, c1 > 0, c2 > 0.

In this case, the frequency response of nominal closed-loop system

M(s) =
s(c1s + c2)

s2 + c1Kps + c2Kp

− K P

−Δ

u
yP

−1

z w

Figure 21.5 Robust stabilization design
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is

M(jω) =
jω(c2 + jc1ω)

c2Kp − ω2 + jc1Kpω

=
c1ω

4

(c2Kp − ω2)2 + (c1Kpω)2 + j
ω[c2(c2Kp − ω2) + c2

1Kpω
2]

(c2Kp − ω2)2 + (c1Kpω)2 .

Obviously, the real part is positive at all frequencies except ω = 0, thus satisfying the phase
condition of the Nyquist stability criterion. Hence, the closed-loop system is robustly stable.
In the determination of parameters (c1, c2), we should consider the response quality of nom-
inal system. Let the damping ratio of the nominal closed-loop system be 3/4 and the natural
frequency be

√
40Kp (which is set as such to obtain a response speed similar to the second

controller). We obtain the following PI controller:

K1(s) =

3

√
10
Kp

s + 40

s
. (21.32)

Simulations w.r.t. the 8 vertices of the uncertain parameter vector (A, ζ1, ω1) are carried out.
The obtained step responses are shown in Figure 21.6.

Next, we do the robust disturbance control design. Noting that the pole of plant at the origin
will be a zero of the nominal closed-loop transfer function, to carry out the robust performance
design, we add a small perturbation to the pole of nominal plant at the origin so as to shift it
to −ε(< 0). The perturbed nominal plant becomes

P (s) =
Kp

s + ε
, 1 � ε > 0.

Choose the cost function as the closed-loop system shown in Figure 21.7. The purpose is to
make the H∞ norm of the transfer function from disturbance wg to performance output zg less

0.5 1 1.5 2 2.5 3 3.5
× 10−5

−500

0

500
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2500
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4500
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y

(a)

0.5 1 1.5 2 2.5 3 3.5

−1

−0.8

−0.6

−0.4

−0.2

0

t (s)

u

(b)

× 10−5

Figure 21.6 Responses of robust stabilizer (a) Output response (b) Input response
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− K P

−Δ

u

yP

k −1
1
kWD

wg z w

zg

Figure 21.7 Robust performance design

than 1. The weighting function WG(s) representing the disturbance model is set as

WD(s) =
g

s + ε
, g > 0. (21.33)

The weighting gain k(> 0) functions as a scaling constant used for tuning the control perfor-
mance. Since the gain Kp is extremely large and ε extremely small, the numerical error will be
too big to yield the expected controller if we use directly the LMI method established earlier.
To avoid this difficulty, we first change the time scale to millisecond which is equivalent to the
following change of Laplace operator:

p =
s

103 . (21.34)

Further, 102, a part of the gain Kp, is absorbed into the controller K(s). Then, the transfer
functions used in the design become

P (p) =
3.47 × 104

p + ε
, WD(s) =

g

p + ε
.

After getting the controller K(p), the true controller K(s) is obtained by the substitution of
p = s/103 and the multiplication of a gain 10−2.

Via some gain tuning, we obtain a second-order controller

K(p) =
0.04p2 + 12.0p + 4.47

p(p + 2.02)

⇒ K2(s) =
4.0 × 10−4s2 + 1.2 × 102s + 4.47 × 104

s(s + 2.02 × 103)
(21.35)

w.r.t g = 1.0, k = 0.2, ε = 1.0 × 10−5.
The step response of the corresponding closed-loop system is shown in Figure 21.8. Appar-

ently, although the settling time and the magnitude of input of K1(s) and K2(s) are roughly the
same, the disturbance suppression of the robust performance controller K2(s) is much better.

In the robust performance design based on the positive real method, dimensions of the dis-
turbance and the performance output must be the same. This is a significant drawback of the
positive real method. For instance, in the case study, as the input cannot be penalized together
with the output, it causes trouble in tuning the response speed of control input. This goal can
only be achieved by adjusting other weighting functions. Meanwhile, in the small-gain design,
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Figure 21.8 Responses of robust performance controller

the response speed of input can be easily changed by adjusting the crossover frequency of its
weighting function.

Exercise

21.1 In industrial applications, even when the main characteristic of the uncertainty is rep-
resented by its phase, its gain cannot be arbitrarily large. Suppose that an uncertainty
Δ is positive real and its largest gain over the whole frequency domain is less than a
constant ρ (> 0). Prove that the mapping

Δp =
ρ2 + Δ2

ρ2 − Δ2

maps Δ into the whole right half-plane. Can we use this transformation to reduce the
conservatism of the positive real design? Give the reason.

21.2 In the vibration control of flexible systems, when the measured output is the displace-
ment, the transfer function becomes

P̃ (s) =
k0

s2 +
k1

s2 + 2ζ1ω1s + ω2
1

+ · · · +
kn

s2 + 2ζnωns + ω2
n

.

Then, since the high-order resonant modes (uncertainty) are not positive real, the pos-
itive real method cannot be applied directly. In order to apply the positive real method
to robust control design, a feasible approach is to absorb an integrator of the plant into
the controller K(s) first

P̃ (s) =
k0

s
+

k1s

s2 + 2ζ1ω1s + ω2
1

+ · · · +
kns

s2 + 2ζnωns + ω2
n

, C(s) =
1
s
K(s),

then apply the positive real method. Prove that the coefficient matrices corresponding
to the nominal closed-loop system in Section 21.2.2 are, respectively (nK is the degree
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of K(s)),

⎡

⎣
A B1 B2

C1 D11 D12

C2 D21

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A B2 0 B1 0 0
0 0 0 0 1 0
0 0 0 0 0 InK

C1 D12 0 D11 0 0
C2 0 0 D21

0 0 InK 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

21.3 Repeat the design in Section 21.5 using the method of the preceding exercise. Here,
suppose that the plant model is

P̃ (s) = Kp

(
1
s2 +

A

s2 + 2ζ1ω1s + ω2
1

)

.

The rest conditions are the same.

Notes and References

The contents of this chapter are taken from Refs [37, 89] and [64].
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actuator, 414
additive uncertainty, 250, 252
affine combination, 57
affine function, 68
affine LPV model, 422
affine set, 57
affine structure, 186, 187
affine system, 425
A-invariant, 30, 31
algebraic Riccati equation (ARE), 215
all-pass filter, 56
all-pass transfer function, 48, 223, 227, 228
analytical center, 81
analytic function, 226
antistability, 101, 125, 129, 335
antistable function, 50
ARE see algebraic Riccati equation
ARE solution, 348
asymptotic convergence, 123
asymptotic rejection, 128, 129
asymptotic tracking, 124, 125, 129
automatic voltage regulator (AVR), 432

balanced realization, 114
bandwidth, 139
barrier function, 71, 81
base matrix, 73
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basis, 17, 22
BIBO stability see bounded-input

bounded-output stability
bilinear matrix inequality (BMI), 75
blocking zero, 93
block triangular matrix, 10, 11, 31, 33, 183
BMI see bilinear matrix inequality
Bode phase formula, 234
Bode sensitivity integral relation, 232
boundary of the uncertainty, 5 (see also

uncertainty bound)
bounded-input bounded-output (BIBO)

stability, 100–103
bounded real lemma, 202, 203

cascade connection, 97, 98
Cauchy integral formula, 226
Cauchy theorem, 226
causality, 314
causal system, 314
Cayley–Hamilton theorem, 30
central path, 82
characteristic function, 387, 390–392, 399
characteristic polynomial, 28, 150
characteristic root, 28
circle criterion, 301, 303, 317
closed-loop control, 140, 142–145, 173
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common Lyapunov function, 291, 318, 380,
426

complementary sensitivity, 225, 276
composite LMI region, 392
comprehensive stability, 180
concave function, 69, 71, 72
cone, 60
conformal mapping, 443
constant-scaled bounded real lemma, 214
constant-scaled small-gain condition, 419
controllability, 87

canonical form, 152
Gramian, 111–113, 327
matrix, 87

controllable, 149, 156, 158
convex combination, 59
convex cone, 60
convex function, 68
convex hull, 59
convex set, 59
coordinate transformation, 18
coprime factorization, 185
coprime uncertainty, 286
critical point, 5

damping ratio, 132
descriptor form, 260
design of generalized plant, 352
detectability, 107
determinant, 10
diagonalization, 33, 34
dimension, 22
disk region, 386
dissipative system, 203
disturbance, 119

observer, 146
suppression, 119, 127, 144

D–K iteration, 369–371
domain, 23
dominant pole, 131
dual relation, 89
dynamic uncertainty, 247–249, 253, 265,

272, 353

eigenvalue, 28
eigenvalue problem (EVP), 74

eigenvector, 28
ellipsoid, 42, 62
energy, 36, 197, 199, 208, 288, 289, 346

function, 35
spectrum, 200

Euclidean distance, 19
EVP see eigenvalue problem
exciter, 430
expectation, 324

feasibility, 66, 73, 81
feedback connection, 97–99
feedback uncertainty, 250
first-order condition, 69
flexible space structure, 265
flexible system, 270, 436, 445
flywheel, 414
Fourier transform, 197
free parameter, 178, 180, 187, 332
full block uncertainty, 364, 366
full column rank, 26
full-order observer, 161, 167
full row rank, 26

gain-scheduled control, 407
system, 426

gain-scheduled H∞ control design, 410
gain-scheduled method, 414
gain scheduling, 7, 409
γ-optimal H2 control, 330
generalized eigenvalue problem (GEVP), 74
generalized eigenvector, 29
generalized feedback system, 174, 175
generalized plant, 174–177, 341, 352, 354,

372, 419
GEVP see generalized eigenvalue problem
Gopinath algorithm, 165
gyro-moment, 415
gyroscope, 414

H∞ control, 348
H∞ norm, 51, 52, 346

specification, 426
H∞ performance, 277
H2 control, 322
H2 norm, 51, 52, 322–328

specification, 426
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H2 optimal control, 330
half-space, 61, 62
Hamiltonian matrix, 216
hard disk drive (HDD), 1, 246, 354, 371
Hermitian matrix, 33, 55
high-order resonant mode, 246, 265, 437
hyperplane, 60

identification, 247
IEEJ benchmark, 246
image (range), 23
IMC see internal model control
implementation of 2-DOF, 191, 192
induced norm, 37
inertia ratio, 93
infinity-norm, 46
infinity zero, 97
inner function, 223
inner product, 20–22, 49

matrices, 39, 40
signals, 47–49, 199
systems, 53

in-phase, 265
input blocking, 94
integral quadratic constraint (IQC), 312

IQC theorem, 314
interior point method, 9, 81
internal model control (IMC), 193, 285
internal model principle, 125, 129
internal stability, 104
interpolation condition, 229
invariance, 56, 165, 230
invariant subspace, 30–32, 216–220
invariant zero, 95
IQC see integral quadratic constraint

kernel space (null space), 23
K–L iteration, 357
Kronecker product, 44, 108, 388
Kronecker sum, 44
KYP lemma, 201, 319

largest singular value, 40, 42
least quadratic Gaussian (LQG), 8
left eigenvector, 55
left singular vector, 41

LFT see linear fractional transformation
LFT-type gain-scheduled control, 408
limitation of reference tracking, 237
linear algebraic equation, 27
linear combination,15
linear dependence, 15
linear fractional transformation (LFT), 115,

116
model, 408, 414

linear independence, 15
linear mapping, 23
linear matrix equation, 35
linear matrix inequality (LMI), 9, 72

region, 385, 387, 390, 398, 406
solution, 349

linear parameter-varying (LPV), 7, 266
model, 266–269, 417, 429
system, 7, 407

linear subspace, 22
linear transformation, 12
linear vector space, 14
LMI see linear matrix inequality
location of actuator, 337, 339
location of sensor, 337, 340
logarithmic function, 71
lower LFT, 116
LPV see linear parameter-varying
LQG see least quadratic Gaussian
Luenberger observer, 161
Lur’e system, 297, 298, 304
Lyapunov equation, 108, 327
Lyapunov function, 6, 289, 299
Lyapunov stability theory, 288

mapping restricted in invariant subspace, 32
mass–spring–damper system, 253, 258,

296, 396, 405
matrix decomposition, 11
matrix description, 12
matrix inverse, 12
matrix norm, 37, 38
matrix polytope, 257, 398
maximum modulus theorem, 230
measured disturbance, 145
measured output, 174
MIMO see multiple-input multiple-output
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minimal order observer, 163, 168
minimal realization, 90
minimum phase, 140–142

system, 234
transfer function, 228, 251, 281, 371

modal dynamics, 437
model matching, 191
model reduction, 114
model uncertainty, 1, 142, 247
motor drive, 2
μ, 360
multiobjective control, 425, 430
multiple-input multiple-output (MIMO), 93
multiple-input system, 156
multiple uncertainty 360
multiplicative uncertainty, 249, 252

natural frequency, 132
nominal plant, 247
nonlinear time-varying block, 316
nonminimum-phase system, 145, 192
nonminimum-phase transfer function, 228
nonsingular H2 control, 331
nonsingularity condition, 330
nonsingular matrix, 26
normal rank, 93
norm-bounded parametric system, 259, 261,

282, 294, 379, 382, 398, 403
notch, 355
Nyquist plot, 201, 204, 265, 300–303
Nyquist stability criterion, 298, 373

observability, 89
canonical form, 153
Gramian, 111–113, 223, 327
matrix, 89

observable, 162, 164
observer, 161

gain, 161
pole, 162

1-degree-of-freedom (1-DOF), 175
system, 237

1-norm, 19, 38, 46
open-loop control, 140
orthogonal, 21, 50, 335

matrix, 350

orthonormal matrix, 34
overshoot, 130, 135

parallel connection, 97, 98
parameter space, 253, 260
parameter uncertainty, 247, 261, 262
parameter vector, 255, 256
parametric system, 253, 258, 282, 375
parametrization, 178, 181
Parseval’s theorem, 199
passive nonlinearity, 264
passive system, 208, 307
performance, 119

criterion, 130
limitation, 226
output, 174

persistent disturbance, 121, 128
phase angle, 47, 48
phase information, 264
phase lead compensation, 355
plant set, 248
Poisson integral formula, 226
pole, 90

location, 384
placement, 149, 154, 156

pole–zero cancellation, 99, 106, 107
polygon, 254
polyhedron, 64
polytope, 64

parameter uncertainty, 256
polytopic structure, 426
polytopic system, 258, 292, 318, 375, 396
Popov criterion, 304, 305
Popov plot, 306, 307
Popov-type IQC, 317
positive definite, 6

function, 36
matrix, 36

positive real, 6
condition, 6
function, 6, 204, 265
uncertainty, 442

positive real lemma, 205, 208
positive semidefinite function, 36
positive semidefinite matrix, 36
positive-real function, 265

co
nt

ro
len

gin
ee

rs
.ir



�

� �

�

Index 459

power system, 428
power system stabilizer (PSS), 432, 433
process control system, 285
proper, 96
prototype second-order system, 131, 132
pseudo-inverse, 34
PSS see power system stabilizer

Qiu’s theorem, 283
quadratic form, 35
quadratic Lyapunov function, 6
quadratic stability, 291, 292, 294, 318
quadratic stabilization, 376, 377, 379

ramp signal, 121
rank, 26
rapid thermal processing (RTP), 337
realization, 90
reference input, 119
reference tracking, 119, 124
σ region, 386
regional pole placement, 387, 427
relative degree, 96
resonant mode, 3
right eigenvector, 55
right singular vector, 41
rigid body model, 3, 246
rise time, 130
robust control, 1
robust design of regional pole placement,

402
robust H∞ control design, 382
robust H∞ performance, 368
robust multiobjective control, 425
robust performance, 270, 279, 363

design, 442
robust pole placement, 396
robust stability, 269

condition, 276
robust stabilization, 438, 441
RTP see rapid thermal processing

scalar uncertainty, 364
scaled H∞ control, 282, 355–357
scaled H∞ problem, 282
scaling, 281

scheduling parameter, 424–426
Schur’s lemma, 37
second-order condition,70
sector, 386
selection of weighting function, 353
sensitivity, 8, 229, 276
separating hyperplane, 64–66
separation principle, 168
settling time, 130
σ region, 386
signal norm, 45
similarity transformation, 25, 90
single-input single-output (SISO), 85
single-input system, 154
single-machine infinite-bus power system,

267, 429
singular H2 control, 335
singular value, 40
singular value decomposition (SVD), 34, 41
singular vector, 40
sinusoidal signal, 121
SISO see single-input single-output
smallest singular values, 40
small-gain approach, 5
small-gain condition, 5
small-gain theorem, 272, 315
specification, 130
spillover, 4
S-procedure, 295
stability radius, 283
stabilizability, 107
stabilization, 148
stabilizing controller, 179, 182, 184
stabilizing solution, 218
stable function, 50
state equation, 85
state feedback, 148

gain, 148
system, 148

static nonlinearity, 297
in a sector, 316

steady-state response, 122
step signal, 120
storage function, 203
strictly concave function, 71
strictly convex function, 68
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strictly positive real, 441
strictly positive real lemma, 207
strictly proper, 96
strongly positive real, 301, 438
strongly positive real lemma, 206
structured singular value, 360
structured uncertainty, 360
submultiplicative property, 39
subspace, 22–24, 30
supply rate, 208
SVD see singular value decomposition
symmetric matrix, 33
system matrix, 95
system norm, 50

terminal voltage, 432
test signal, 120
three-phase short circuit fault, 431
time delay, 56
time-varying parameter, 7, 269, 407
trace, 10
transfer function, 85
transfer matrix, 85
transient response, 130, 322
transient stabilization, 428
transmission zero, 93
truncation, 114, 314
2-degree-of-freedom (2-DOF), 175, 188,

191
system, 244, 329

two-mass–spring system, 2, 86, 93, 271
2-norm, 19, 38, 46, 48, 49
type A undershoot, 137, 138
type B undershoot, 137

uncertain part, 246
uncertainty, 3, 245

bound, 251, 252
modeling, 251

uncontrollable mode, 91, 95
undershoot, 135
unicycle robot, 414, 415
unitary matrix, 34, 41
unmeasured disturbance, 144
unobservable mode, 91, 95
unstable zero, 238, 241, 244
upper LFT, 116

variable change, 79, 80, 351, 439
variable elimination, 74, 349, 440
variance, 324
vector norm, 19
vector space, 14
vertex, 254

condition, 294, 426
polytope, 292

water bed effect, 233
weighted closed-loop transfer function,

322
weighting function, 249, 251, 325, 347

Youla parametrization, 184, 229, 230

zero, 91–97, 185
vector, 95, 185
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