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Foreword

Lectori Salutem.

This book deals with important problems and results on the interface between three
central areas of (applied) mathematics: linear algebra, numerical analysis, and system
theory. Whereas the first two of these fields have had a very fruitful symbiosis for a long
time in the form of numerical linear algebra, the third area has remained somewhat distant
from all this, until recently. The book in front of you is an example of this rapprochement.

At center stage in this book, we find the problem of model reduction. This problem can
be formulated as follows. Given a linear time-invariant input/output system defined by the
convolution integral, a transfer function, a state space representation, or their discrete-time
counterparts, approximate this system by a simpler system.

As all approximation questions, this problem can be viewed as a trade-off between
complexity and misfit. We are looking for a system of minimal complexity that approximates
the original one (optimally) with a maximal allowed misfit, or, conversely, we are looking
for a system that approximates the original one with minimal misfit within the class of
systems with maximal admissible complexity.

A number of key questions arise:

1. What is meant by the complexity of a linear time-invariant system?

2. How is the complexity computed from the impulse response matrix, the transfer
function, or from another system representation?

3. What is meant by the misfit between two systems?

4. How is this misfit computed?

5. What are the algorithms that compute optimal approximants?

The complexity issue leads to the theory of state space representations, commonly
called realization theory. This theory, originally championed in the work of Kalman, is one
of the most beautiful and useful parts of system theory.

The misfit issue leads to an in-depth discussion of matrix, operator, and system norms.
Two important system norms emerge: the £2-induced, or Hoc-norm, and the Hankel-norm.
There are numerous inequalities relating matrix norms, and some of these extend to system
norms. Perhaps the most remarkable of these relations is the inequality that bounds the
"Hoc-norm of a system by twice the sum (without repetition) of its Hankel singular values.

xvii
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xviii Foreword

The issue of system approximation centers around the singular values of the associated
Hankel operator. Two effective approximation algorithms, both related to these Hankel
singular values, are the following:

(i) Approximation by balancing,

(ii) AAK model reduction.

Model reduction by balancing is based on a very elegant method of finding a state space
representation of a system with state components that are, so to speak, equally controllable
as observable. This reduction method is heuristic, but it is shown that the resulting reduced
system has very good properties. AAK model reduction is based on a remarkable result of
Arov, Adamjan, and Krein, three Russian mathematicians who proved that a Hankel operator
can be approximated equally well within the class of Hankel operators as in the class of
general linear operators. While neither balancing nor AAK offers optimal reductions in the
all-important "Hoc-norm, very nice inequalities bounding the "Hoc approximation error can
be derived.

Unfortunately, these singular value oriented methods are, computationally, rather
complex, requiring of the order of n3 operations, where n denotes the dimension of the state
space of the system to be approximated. Together with accuracy considerations, this makes
these methods applicable to systems of only modest dimension (a few hundred variables).

This book also introduces a second set of approximation methods based on moment
matching. In system theory language, this moment matching is a generalization of the well-
known partial realization problem. These methods can be iteratively implemented using
standard algorithms from numerical linear algebra, namely, the Krylov iterative methods.
These schemes were originally developed for computing eigenvalues and eigenvectors, but
can be applied to model reduction via moment matching. Typically, these methods require
only of the order of n2 operations. Their disadvantage, however, is that stability of the
reduced model is not guaranteed, and there is no known global error bound.

This brings us to the last part of the book, which aims at combining the singular
value decomposition (SVD) based methods and the Krylov methods into what are called
SVD-Krylov methods.

The S VD-based approach can be extended to nonlinear systems. The resulting method
is known as POD (proper orthogonal decomposition) and is widely used by the PDE com-
munity.

The scope of this book is the complete theory of primarily linear system approxi-
mation. Special attention is paid to numerical aspects, simulation questions, and practical
applications. It is hard to overestimate the importance of the theory presented in this book.
I believe that its impact (for example, for numerical simulation of PDEs) has not yet been
fully achieved. The mathematical ideas underlying the interplay of the SVD and linear
system theory are of the most refined mathematical ideas in the field of system theory.

The book in front of you is unique in its coverage and promises to be a stimulating
experience to everyone interested in mathematics and its relevance to practical problems.

Jan C. Willems
Leuven, May 3, 2003
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Preface

In today's technological world, physical and artificial processes are mainly described by
mathematical models, which can be used for simulation or control. These processes are
dynamical systems, as their future behavior depends on their past evolution. The weather
and very large scale integration (VLSI) circuits are examples, the former physical and the
latter artificial. In simulation (control) one seeks to predict (modify) the system behavior;
however, simulation of the full model is often not feasible, necessitating simplification of it.
Due to limited computational, accuracy, and storage capabilities, system approximation—
the development of simplified models that capture the main features of the original dynamical
systems—evolved. Simplified models are used in place of original complex models and
result in simulation (control) with reduced computational complexity. This book deals with
what may be called the curse of complexity, by addressing the approximation of dynamical
systems described by a finite set of differential or difference equations together with a
finite set of algebraic equations. Our goal is to present approximation methods related to
the singular value decomposition (SVD), to Krylov or moment matching methods, and to
combinations thereof, referred to as SVD-Krylov methods.

Part I addresses the above in more detail. Part II is devoted to a review of the necessary
mathematical and system theoretic prerequisites. In particular, norms of vectors and (finite)
matrices are introduced in Chapter 3, together with a detailed discussion of the SVD of
matrices. The approximation problem in the induced 2-norm and its solution given by
the Schmidt-Eckart-Young-Mirsky theorem are tackled next. This result is generalized to
linear dynamical systems in Chapter 8, which covers Hankel-norm approximation. Elements
of numerical linear algebra are also presented in Chapter 3. Chapter 4 presents some basic
concepts from linear system theory. Its first section discusses the external description of
linear systems in terms of convolution integrals or convolution sums. The section following
treats the internal description of linear systems. This is a representation in terms of first-
order ordinary differential or difference equations, depending on whether we are dealing with
continuous- or discrete-time systems. The associated structural concepts of reachability and
observability are analyzed. Gramians, which are important tools for system approximation,
are introduced in this chapter and their properties are explored. The last section of Chapter 4
is concerned with the relationship between internal and external descriptions, which is
known as the realization problem. Finally, aspects of the more general problem of rational
interpolation are displayed.

Chapter 5 introduces various norms of linear systems that are essential for system
approximation and for the quantification of approximation errors. The Hankel operator is
introduced, and its eigenvalues and singular values, together with those of the convolution

xix
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xx Preface

operator, are computed. This leads to the concept of Hankel singular values and of the 8-
norm of a system. After a more general discussion on induced norms of linear systems, we
turn our attention to a brief review of system stability, followed by a discussion of 2-sy stems
and all-pass 2-systems, which play an important role in Hankel-norm system approximation.
The concept of dissipativity, which generalizes that of stability from autonomous systems
to systems with external influences, is introduced; the special cases of bounded real and
positive real systems are briefly explored. Chapter 6 is devoted to the study of two linear
matrix equations, the Sylvester equation and the closely related Lyapunov equation. These
equations are central to SVD-based methods, and various solution methods (from complex
integration to the Cayley-Hamilton theorem to the sign function method) are discussed.
Next, the inertia theorem for the Lyapunov equation is investigated. The chapter concludes
with numerically reliable algorithms for the solution of these equations.

Following this presentation of the preparatory material, Part III commences with the
exposition of the first class of approximation methods, namely, SVD-based approximation
methods. Chapter 7 is devoted to approximation by balanced truncation. The ingredients
are Lyapunov equations and the Hankel singular values. The main result is followed by
a canonical form that can be applied to balanced systems. The last part of the chapter is
involved with special types of balancing, including bounded real, positive real, frequency
weighted balancing, which lead to methods for approximating unstable systems.

Chapter 8 presents the theory of optimal and suboptimal approximation in the induced
2-norm of the Hankel operator, which can be viewed as a refinement of approximation
by balanced truncation. The final section of this chapter is devoted to the exposition of
a polynomial approach that offers new insights into and connections between balancing
and Hankel-norm approximation. Part III concludes with a chapter dedicated to special
topics in SVD-based approximation methods. In this context, a brief description of the
proper orthogonal decomposition method is given in section 9.1; its relation with balanced
truncation is also mentioned. Approximation by modal truncation is discussed next. The
latter part of the chapter is dedicated to a study of the decay rates of the Hankel singular
values, which is of importance in predicting how well a given system can be approximated
by a low-order system.

Part IV is concerned with Krylov-based approximation methods. These methods have
their roots in numerical linear algebra and address the problem of providing good estimates
for a few eigenvalues of a big matrix. Consequently, Chapter 10 gives an account of Lanc-
zos and Arnoldi methods as they apply to eigenvalue problems. Chapter 11 discusses the
application of these methods to system approximation. Krylov methods lead to approxi-
mants by matching moments. These methods turn out to be numerically efficient, although
they lack other important properties, such as quantification of the approximation error. The
connection with rational interpolation is discussed in some detail.

The final section, Part V, is concerned with the connections between SVD-based and
Krylov-based approximation methods. In particular, a method that involves least squares
combines attributes of both approaches. Furthermore, two iterative methods are presented
that provide approximate solutions to Lyapunov equations and therefore can be used to
obtain reduced-order systems that are approximately balanced. In Chapter 13, aspects of
the approximation methods presented earlier are illustrated by means of numerical exper-
iments, by applying them to various systems. Algorithms are compared in terms of both
approximation error and computational effort. The book concludes with a chapter on pro-
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Preface xxi

jections, computational complexity, software, and open problems, followed by a collection
of exercises (Chapter 15) appropriate for classroom use.

At this stage we would like to point to several related books: Obinata and Ander-
son [252] (model reduction for control system design, in particular, controller reduction);
Gawronski [136] (model reduction of flexible structures); Fortuna, Nunnari, and Gallo [115]
(model reduction with applications in electrical engineering); Datta [91] (comprehensive
treatment of numerical issues in systems and control); Berkooz, Holmes, and Lumley [63]
(dynamical systems described by partial differential equations); Banks [42] (control and
estimation for distributed parameter systems); and Zhou et al. [370], [371] (comprehensive
treatment of systems and control with emphasis on robustness issues). See also the special
issue of Control Systems Magazine [347] on numerical awareness in control as well the
collection of reprints [262] on numerical linear algebra and control. Insights into aspects
mentioned earlier but not discussed further in this book can be found in the book by Skel-
ton, Grigoriadis, and Iwasaki [299] (controller complexity) and in the surveys by Tempo
and Dabbene [323] (randomized algorithms) and Blondel and Tsitsiklis [66] (complexity
of algorithms in system theory).

There are numerous individuals without whose help this book would not have been
completed. First, I would like to thank Jan Willems for his friendship and inspiration for
more than a quarter-century. I would also like to thank Paul van Dooren for his advice
on the book while I was visiting Louvain-la-Neuve—but I am even more thankful to him
for introducing me to Dan Sorensen. Dan took it on himself to teach me numerical linear
algebra, and not some watered-down version but the real deal. Meeting Dan was an event
that added a new dimension to my research. Dan is also acknowledged for contributing
part of the section on the decay rates. Many thanks go to Mark Embree for numerous
discussions on pseudospectra and for his very careful reading and substantial comments on
several chapters. The next recipient of my gratitude is Paolo Rapisarda, who was always
willing to read critically and provide invaluable advice over extensive portions of the book.
I would also like to thank Angelika Bunse-Gerstner, Peter Benner, and Caroline Boss for
their comments. Next, my acknowledgements go to Yutaka Yamamoto, longtime friend and
colleague from our years as graduate students under R. E. Kalman. Thanks also go to Brian
Anderson, Alessandro Astolfi, Siep Weiland, Roberto Tempo, Matthias Heinkenschloss,
Yunkai Zhou, Michael Hinze, and Stefan Volkwein for reading and commenting on various
parts of the book. I would also like to thank the anonymous referees and several students
who commented on the book at various stages. Special thanks go to Serkan Gugercin, who
contributed in many ways over the last 3 years and to whom most numerical experiments
and figures, as well as part of the last two chapters, are due. Finally, I would like to thank
the editors at SIAM for their professional and efficient handling of this project.

Athanasios C. Antoulasco
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How to Use This Book

A first course in model reduction would consist of the following sections:

- Chapter 3, sections 3.1, 3.2.1-3.2.5, 3.3

- Chapter 4, sections 4.1,4.2,4.3

- Chapter 5, sections 5.1, 5.2, 5.3, 5.4, 5.5, 5.8.1, 5.8.2

- Chapter 6

- Chapter 7, sections 7.1, 7.2, 7.3

- Chapter 10, sections 10.1,10.3,10.4

- Chapter 11, sections 11.1, 11.2

Prerequisites

The most important prerequisite is familiarity with linear algebra. Knowledge of
elementary system theory and numerical analysis is desirable.

The target readership consists of graduate students and researchers in the fields of
system and control theory, numerical analysis, theory of partial differential equations
and computational fluid dynamics and anyone interested in model reduction.

Sections omitted at first reading

Sections marked with an asterisk contain material that can be omitted at first reading.

XXIII
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XXIV How to Use This Book

Notation

R (R+, R_)
C (C+, C_)

real numbers (positive, negative)
complex numbers (with positive, negative real part)
integers (positive, negative)

adjM

XM(S)
rankM

AC(M)

M*

Mtf,:)

spec (M)
spece (M)
in (A)

largest (in magnitude) eigenvalue of M 6 R"
largest (in magnitude) diagonal entry of M e
adjoint (matrix of cofactors) of M e Wxn

characteristic polynomial of M 6 R"x"
rank of M e R"xm

ith singular value of M 6 R"xm

condition number of M e R"xm

transpose if M € R" m

complex conjugate transpose if M e C"xm

y'th column of M € Rnxm

i th rowofMeR n x m

spectrum (set of eigenvalues) of M e R"x"
e-pseudo-spectrum of M e R"x"
inertia of A € R"x" (6.14)

Hfr)
H+(5)

//(*)

general dynamical system
input, state, output spaces

linear system matrices

linear system with missing D

linear system with missing C and D

linear system with missing B and D

stable subsystem of Z
dual or adjoint of X
projection
reduced-order dynamical system

system matrices of linear reduced-order system

convolution operator (discrete and continuous time)
adjoint of convolution operator
Markov parameters
impulse response discrete-time systems
impulse response continuous-time systems
transfer function discrete and continuous time
transfer function of stable subsystem of E
p-norm of x € R"
(p, q)-induced norm of A
floating point representation of x € R
matrix exponential

(1.1)
(1.2)

(1.4), (4.13)

(4.15)

section 4.2.1

section 4.2.2

section 5.8.3, Chapter 8
section 4.2.3, (5.15)
(1.6)
(1-7)

(1-8)

(5.14)
(4.7), (4.23)
(4.3) and (4.21)
(4.5) and (4.20)
(4.8), (4.22)
section 5.8.3, Chapter 8
(3.2)
(3.4)
(3.21)
(4.16)
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How to Use This Book xxv

tt(A, B)
ftn(A,B)
P(t)
O(C, A)
Ofl(C,A)
Q(0
•P

Q

X
H

P
L
l(s)
nr
OP
D
0
s

{ • , • >
i"p(T>, £*(!)
hq*r,Uq*r

IIFIUo,, ||F||<Hoo
IIFII^, IIFH^
IIHI2

l|5||2-ind
l|H||Woo

U
u*
a, (I)
Pll/f
ll^lb-ind

Pll*2

I I I ' IH(P.«)

Hir ing
Pi
Qo
P(fO)

G(«)
S(<w)
•P(T)
Q(T)

C(x,y)
d(x,y)
I / I ^M C T

Vp
%,^t(*o)

reachability matrix
finite reachability matrix
(finite) reachability gramian continuous, discrete time
observability matrix
finite observability matrix
(finite) observability gramian continuous, discrete time
infinite reachability gramian continuous, discrete time
in the frequency domain
infinite reachability gramian continuous, discrete time
in the frequency domain
cross gramian, continuous-time case
Hankel matrix

array of pairs of points for rational interpolation
Lowner matrix
Lagrange interpolating polynomial
generalized reachability matrix
generalized observability matrix
time series associated with an array
generating system/Lyapunov function/storage function
supply function

inner product
Lebesgue spaces of functions
Hardy spaces of functions
/loo-norm, 'Woo -norm
^oo-, Coo-norm
2-norm of the system £
2-induced norm of the convolution operator S
Hoc-norm of the transfer function
Hankel operator of Z: discrete, continous time
adjoint of continuous-time Hankel operator
Hankel singular values
Hankel-norm of Z
2-induced norm of Hankel operator
'Hi-norm of Z
mixed norm of vector- valued functions of time
mixed induced operator norm

reachability input- weighted gramian
observability output-weighted gramian
frequency-limited reachability gramian
frequency-limited observability gramian
integral of log of resolvent (si — A)"1

time-limited reachability gramian
time-limited observability gramian

Cauchy matrix
diagonal of Cauchy matrix
multiplicative majorization
gradient
moments, generalized moments of h

(4.25)
(4.26)
(4.28), (4.29)
(4.25)
(4.26)
(4.40), (4.41)
(4.43), (4.47)
(4.51)
(4.44), (4.48)
(4.52)
(4.60)
(4.63)

(4.79), (4.80)
(4.84)
(4.81)
(4.85)
(4.86)
(4.93), (4.97)
(4.101), sections 5.8.2 and 5.9
section 5.9

(5.1)
section 5. 1.2
section 5. 1.3
(5.5), (5.7)
(5.10)
(5.16)
(5.16)
(5.16)
(5.19), (5.20)
(5.23)
(5.22), (5.24)
Def. 5.7, formula (5.21)
Def. 5.7, formula (5.21)
(5.27), (5.28), (5.29)
(5.30)
(5.32)

(7.33)
(7.34)
(7.37)
(7.38)
(7.40)
(7.41)
(7.41)

(9.2)
(9.3)
(9.10)
section 10.4.1
(11.2), (11.4)
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Chapter 1

Introduction

In today's technological world, physical as well as artificial processes are described mainly
by mathematical models. These models can be used to simulate the behavior of the processes
in question. Sometimes, they are also used to modify or control the processes' behavior.
The weather, on the one hand, and very large scale integration (VLSI) circuits, on the
other, constitute examples of such processes, the former physical and the latter artificial.
Furthermore, these are dynamical systems, as their future behavior depends on their past
evolution. In this framework of mathematical models, there is an ever-increasing need for
improved accuracy, which leads to models of high complexity.

The basic motivation for system approximation is the need for simplified models of
dynamical systems, which capture the main features of the original complex model. This
need arises from limited computational, accuracy, and storage capabilities. The simplified
model is then used in place of the original complex model, for either simulation or control.

In the former case, simulation, one seeks to predict the system behavior. However,
often simulation of the full model is not feasible. Consequently, an appropriate simplification
of this model is necessary, resulting in simulation with reduced computational complexity.
Prominent examples include weather prediction and air quality simulations. The complexity
of models, measured in terms of the number of coupled first-order differential or difference
equations, may reach the tens or hundreds of thousands. In particular, discretization in
problems that arise from dynamical partial differential equations (PDEs) which evolve in
three spatial dimensions can easily lead to 1 million equations. In such cases, reduced
simulation models are essential for the quality and timeliness of the prediction. Other
methods for accelerating the simulation time exist, like parallelization of the corresponding
algorithm. (These aspects, however, are not addressed in this book.)

In the latter case, control, we seek to modify the system behavior to conform with
certain desired performance specifications (e.g., we seek to control a CD player to decrease
its sensitivity to disturbances (outside shocks)). Such modifications are achieved in the
vast majority of cases by interconnecting the original system with a second dynamical
system, called the controller. Genetically, the complexity of the controller (the number of
first-order differential or difference equations describing its behavior) is approximately the
same as that of the system to be controlled. Hence, if the latter has high complexity, so
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Chapter 1. Introduction

will the controller. This, however, has three potential problems: storage—it may be hard to
implement a high-order controller on a chip; accuracy—due to computational considerations
(ill-conditioning), it may be impossible to compute such a high-order controller with any
degree of accuracy; computational speed—due to limited computational speed, the time
needed to compute the parameters of such a controller may be prohibitively large. The
design of reduced-order controllers is a challenging problem, aspects of which have been
investigated at least for systems of not-too-high complexity (see [252]). This will not be
addressed in what follows. (See section 14.2 on open problems.)

In a broader context, this book deals with what is called the curse of dimensionality
or, paraphrasing, the curse of complexity. In the computer science community, efficient
algorithms are those that can be executed in polynomial time, that is, algorithms whose
execution time grows polynomially with the size of the problem.

Here are examples of problems that can be solved in polynomial time (the complexity
of a generic problem is of the order nY, where n is the size of the problem):

• set of linear equations, y = 3;

• eigenvalue problem, y = 3;

• linear matrix inequalities (LMI), y « 4 • • • 6.

On the other hand, the problems

• factorization of an integer into prime factors, and

• stabilization of a linear system with constant output feedback

can be solved in exponential but not polynomial time.
In our framework there are two additional constraints. First, the algorithm, besides

being efficient in the sense mentioned above, must produce an answer in a given amount of
time. This becomes problematic for sufficiently large complexities even if the underlying
algorithm is polynomial in time. Second, the solution must be accurate enough, which is
a problem given that numbers can be represented in a computer only with finite precision.
We will see later on that a popular method for model reduction of dynamical systems,
balanced truncation, requires of the order n3 operations, where n is the complexity of the
system to be approximated. It will also follow that methods that reduce the number of
operations to k • n2 or k2 • n, where k is the complexity of the reduced model, represent
considerable improvements. The reason is that with order n3 operations one can deal with
system complexities of a few hundred states, while with k2 • n, the complexity of the systems
that can be dealt with climbs into the millions. It should be mentioned at this point that
while the available computing power increases, this turns out to be a mixed blessing, since
with increased computing power, the numerical errors increase as well.

There are numerous remedies against the curse of dimensionality. Randomized algo-
rithms are one instance; the solution obtained, however, may fail to satisfy all constraints for
some specified percentage of the cases. Other kinds of remedies mostly applicable to prob-
lems with polynomial time solution algorithms but very large complexity are parallelization
methods, as mentioned earlier.

4
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1.1. Problem set-up

This book addresses the approximation of dynamical systems that are described by
a finite set of differential or difference equations, together with a finite set of algebraic
equations. Our goal is to present approximation methods related to the singular value de-
composition (SVD), on one hand, and approximation methods related to Krylov or moment
matching concepts, on the other. Roughly speaking, the former family preserves important
properties of the original system, like stability, and in addition provides an explicit quan-
tization of the approximation error. The latter family lacks these properties but leads to
methods that can be implemented in a numerically much more efficient way. Thus, while
the former family of methods can be applied to relatively low-dimensional systems (a few
hundred states), the latter methods are applicable to problems whose complexity can be
several orders of magnitude higher. The combination of these two basic approximation
methods leads to a third one, which aims at merging their salient features and is referred to
as SVD-Krylov-based approximation.

Finally, we present some thoughts that have guided our choice of topics concerning
the dilemma linear versus nonlinear. The basic argument used is that real systems are
nonlinear, and therefore methods addressing nonlinear system approximation should be
primarily considered. However, we espouse the following arguments:

• All physical systems are locally linear; in applications, typically one linearizes around
an operating point of interest. If the operating point cannot be fixed, linear time-
varying models or piecewise linear models can be considered.

• Many physical laws, e.g., Newton's second law, Maxwell's equations, Kirchhoff's
voltage laws (KVL), Kirchhoff's current laws (KCL), the diffusion equation, the
wave equation, Schrodinger's equation, and probability laws (Markov equations), are
linear, and this linearity holds for large ranges of the operating conditions.

• Linear theory is rich and extensive and offers a coherent picture.

• Artificial systems are sometimes designed to be linear.

• There are attempts in developing a nonlinear approximation theory, but they remain
mostly ad hoc.

This book is dedicated to the presentation of primarily linear theory.

1.1 Problem set-up
The broader framework of the problems to be investigated is shown in Figure 1.1. The
starting point is a physical or artificial system together with measured data. The modeling
phase consists of deriving a set of ordinary differential equations (ODEs) or partial differ-
ential equations (PDEs). In the latter case, the equations are typically discretized in the
space variables leading to a system of ODEs. This system will be denoted by Z. The model
reduction step consists in developing a dynamical system I) by appropriately reducing the
number of ODEs describing the system. Z is now used to simulate and possibly control
Z. Sometimes the ODEs are discretized in time as well, yielding discrete-time dynamical
systems.
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Chapter 1. Introduction

Figure 1.1. The broad set-up.

Figure 1.2. Explicit finite-dimensional dynamical system.

Next, we will formalize the notion of a dynamical system E (see Figure 1.2). First,
the time axis T is needed; we will assume for simplicity that T = M, the real numbers;
other choices are R+ (R_), the positive (negative) real numbers, or Z+, Z_, Z, the positive,
negative, and all integers. In what follows we will assume that 2 consists of first-order
ODEs together with the set of algebraic equations

where

6
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1.1. Problem set-up

(1.2)

are the input (excitation), an internal variable (usually the state), and the output (observation),
respectively, while f , g are vector-valued maps of appropriate dimensions. The complexity
n of such systems is measured by the number of internal variables involved (assumed finite);
that is, n is the size of x = (jci • • •*„)*. ! Thus we will be dealing with dynamical systems that
are finite-dimensional and described by a set of explicit first-order differential equations; the
description is completed with a set of measurement or observation variables y . Also, within
the same framework, systems whose behavior is discrete in time can be treated equally well.
In this case T = Z, the set of integers (or Z+, or Z_), and the first equation in (1.1) is
replaced by the difference equation \(t + 1) = f (x(0, «(?))• In what follows, however, we
concentrate primarily on continuous-time systems. Often in practice, this explicit nonlinear
system is linearized around some equilibrium trajectory (fixed point), with the resulting sys-
tem being linear, parameter time- varying, and denoted by ZLPTV- Finally, if this trajectory
happens to be stationary (independent of time), we obtain a linear, time-invariant, system,
denoted by XLTI:

A more general class of systems is obtained if we assume that the first equation in (1.1) is
implicit in the derivative of x, that is, F(^x, x, u) = 0, for an appropriate vector-valued
function F. Such systems are known as differential algebraic equation (DAE) systems.
Besides its occasional mention (see, e.g., Remark 11.3.1), this more general class of systems
will not be addressed. See the book by Brenan, Campbell, and Petzold [74] for an account
of this class of systems.

such that (some of or all) the following conditions are satisfied:

c}, where k < n,

(COND)

Special case: linear dynamical systems. If we consider linear, time-invariant dynamical
systems ZLTI as in (1.3), denoted by

'Given a vector or matrix with real entries, the superscript * denotes its transpose. If the entries are complex,
the same superscript denotes complex conjugation with transposition.

7

(1) The approximation error is small– existence of global error bound

(2) Stability and passivity are preserved

(3) The procedure is computaionally stable and efficient
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Chapter 1. Introduction

the problem consists in approximating Z with

so that the above conditions are satisfied. Pictorially, we have the following:

That is, only the size of A is reduced, while the number of columns of B and the number of
rows of C remain unchanged.

One possible measure for judging how well Z approximates E consists of comparing
the outputs y and y obtained by using the same excitation function u on Z and £, respectively.
We require, namely, that the size (norm) of the worst output error y — y be kept small or even
minimized for all normalized inputs u. Assuming that Z is stable (that is, all eigenvalues
of A are in the left half of the complex plane), this measure of fit is known as the "Hoc-norm
of the error. We will also make use of another norm for measuring approximation errors,
the so-called 7^2 -norm. This turns out to be the norm of the impulse response of the error
system. For details on norms of linear systems, see Chapter 5.

1.1.1 Approximation by projection

Projections constitute a unifying feature of the approximation methods discussed in what
follows. This feature is equivalent to simple truncation in an appropriate basis. Consider
the change of basis T e R"xn in the state space x = Tx. We define the following quantities
by partitioning x, T, and T"1:

Since W*V = lk, it follows that

is an oblique projection onto the fc-dimensional subspace spanned by the columns V along
the kernel of W*.

Substituting for x in (1.1) we obtain ^x = TfCMx, u) and y = gOT^x, u). Re-
taining the first k differential equations leads to

These equations describe the evolution of the ̂ -dimensional trajectory x in terms of x; notice
that they are exact. The approximation occurs by neglecting the term TIX. What results is a

8
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1.1. Problem set-up

Figure 1.3. Flowchart of approximation methods and their interconnections.

dynamical system that evolves in a fc-dimensional subspace obtained by restricting the full
state as follows: x = W*x. The resulting approximant 2 of E is

Consequently, if II is to be a "good" approximation of £, the influence of the neglected
term TIX must be "small" in some appropriate sense. In the linear time-invariant case the
resulting approximant is

9

co
nt

ro
len

gin
ee

rs
.ir



10 Chapter 1. Introduction

A flowchart of the contents of this book is given in Figure 1.3. Proper orthogonal
decomposition (POD) and SVD are concepts that will be explained later.

1.2 Summary of contents

The purpose of this book is to describe certain families of approximation methods by pro-
jection. Three different methods are discussed for choosing the projection n (that is, the
matrices V and W) so that some or all conditions (COND) are satisfied: (I) SVD-based
methods, which are well known in the systems and control community and have good sys-
tem theoretic properties; (II) Krylov-based methods, which are well known in the numerical
analysis community and, to a lesser degree, in the system theory community and have good
numerical properties; and (III) SVD-Krylov-based methods, which seek to merge the best
attributes of (I) and (II). Furthermore, the class of weighted SVD methods, which establishes
a link between (I) and (II), will also be discussed. We refer to the Preface for a description
of the book contents.
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Chapter 2

Motivating Examples

In this section we describe various applications in which large-scale dynamical systems
arise. There are two categories of examples: those in which simulation and/or prediction
of future behavior is of interest (examples 1,2,3,4,5,6 in Figure 2.1), and those in which
simulation and control are of primary interest (examples 7,8,9,10).

The examples given in Figure 2.1 are described briefly.

2.1 Passive devices
High-frequency, submicron VLSI circuits. The integrated circuit (1C) was introduced in the
1960s. Since then, the scaling trends in VLSI design are that (i) the decrease in feature
size is greater than 10% per year; (ii) the increase in chip size is greater than 10% per year;
and (iii) there is an increase in operating frequency which now reaches the gigahertz range.
As a consequence, the chip complexity has been increasing by at least 50% each year. A
comparison between the Intel® 4004 processor, released in 1971, and the Intel Pentium® IV
processor, released in 2001, shows that the feature size has decreased from lO/i to 0.18/u,, the
number of components has increased from 2300 to 42 million, and the speed has increased
from 64 KHz to 2 GHz; in addition, the length of all interconnections in the Pentium IV
totals approximately 2 km, and the components are arranged in seven layers.

These trends impact physical parameters due to the increase of interconnect length
and interconnect resistance. Furthermore, capacitance and inductance effects influence the
chip, and there is a decrease of metal width and dielectric thickness. The resulting chips are
multilayered, and the passive parts thus correspond to three-dimensional resistor-inductor-
capacitor (RLC) circuits.

The design phase of a VLSI circuit is followed by the physical verification phase,
where potential design flaws are discovered. Simulations are thus required to verify that in-
ternal electromagnetic fields do not significantly delay or distort circuit signals. This requires
the solution of Maxwell's equations for three-dimensional circuits with interconnections
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12 Chapter 2. Motivating Examples

Figure 2.1. Applications leading to large-scale dynamical systems.

of the order of several kilometers, and submicron scale geometric resolution. One method
for deriving a model in this case is known as the partial element equivalent circuit (PEEC),
which works by spatial discretization of Maxwell's equations for three-dimensional geome-
tries. The complexity of the resulting model reaches unmanageable proportions and can be
anywhere from n ^ 105 to 106. Therefore, reduced-order modeling is of great importance.
We thus seek to generate models that are as simple as possible but are nevertheless capable
of generating the actual chip behavior. For details, see van der Meijs [330]. See also [279]
and [202].

There is a general-purpose simulation program for electric circuits known as SPICE
(Simulation Program with Integrated Circuit Emphasis), which was developed in the 1970s
at the University of California at Berkeley. This allows the following components: resistors,
capacitors, inductors, independent sources, dependent sources, transmission lines, diodes,
and transistors. SPICE can handle complexities of a few hundred such elements. It thus
becomes inadequate for complexities of the order mentioned above.

1. Passive devices

2. Weather predication–data assimilation

3. Air quality–data assimilation

4. Biological systems

5. Molecular systems

6. Vibration/acoustic systems

7. Interbnational Space Station

8. Chemical vapor depostion reactors

9. Microelectromechanical systems

10. Optimal cooling
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Electrical interconnect

and packaging
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Honeycomb vibrations

Dynamics simulations
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Stabilization
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2.2. Weather prediction—data assimilation 13

The first attempts to use model reduction to simplify such circuits were made by
Pillage and Rohrer [269], who proposed the method of asymptotic waveform evaluation
(AWE). This consists of computing some of the moments of the corresponding circuits
(see section 11.1 for the definition of moments and details on moment matching methods);
the AWE method is described in [87]. It turns out, however, that computing moments is
numerically ill-conditioned, and the fact that such problems can be solved efficiently using
Krylov methods was soon proposed for solving AWE problems [125]. The next step along
this line of approach to circuit simulation came with the work of Feldmann and Freund, who
proposed the Pade via Lanczos approach. There are numerous references on this topic; we
give just a few: [90], [194], [114], [33], [34], [31], [117], and more recently [27].

A more general problem is the electromagnetic modeling of packages and intercon-
nects; see [316] for an overview. Again, the starting point is Maxwell's equations, and the
PEEC method is used to obtain a finite-dimensional approximation. A related problem was
described in [80].

2.2 Weather prediction—data assimilation

2.2.1 North Sea wave surge forecast

Because part of The Netherlands is below sea level, it is important to monitor wave surges at
river openings. In the case of such a surge, water barriers can be closed to prevent flooding.
Since these rivers are in many cases important waterways, the barriers must stay closed only
while the surge lasts. Furthermore, the warning has to come about 6 hours in advance.

The equations governing the evolution of the wave surge are in this case the shallow
water equations, which are PDEs. In Figure 2.2, the horizontal and vertical axes indicate the
number of discretization points, while the color bar on the right-hand side indicates the depth
of the sea at various locations of interest (justifying the use of shallow water equations).

Figure 2.2. Wave surge prediction problem: depth of the North Sea.
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14 Chapter 2. Motivating Examples

Figure 2.3. Wave surge prediction problem: discretization grid close to the coast.

Figure 2.4. Wave surge prediction problem: measurement locations.

The discretization grid used in this case is shown in Figure 2.3. The problem in this case
is not just prediction of the wave surge based on initial conditions. There are several
locations where the wave surge is measured (see Figure 2.4). There are also locations
where the movement of the sea currents is measured. The problem thus becomes data
assimilation, as one wishes to predict the wave surge based on both the model and the
provided measurements. This is achieved by means of a Kalman filter.

The finite element (FE) discretization of the shallow water equations yields approxi-
mately 60,000 equations, and the resulting computational time is several times the allowed
limit of 6 hours. Therefore, reduced-order models are necessary. Figure 2.5 shows the
error covariance of water level prediction in two cases: first, with wind disturbance and
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2.2. Weather prediction—data assimilation 15

Figure 2.5. Wave surge prediction problem: error covariance of the estimated
water level without measurements (top) and with assimilation of eight water level measure-
ments (bottom). The bar on the right shows the color-coding of the error.

no additional measurements, and second, by assimilating the measurements from the eight
locations. This problem has been studied by Verlaan and Heemink at Delft University of
Technology in The Netherlands; for details see [348], [168].

2.2.2 Pacific storm tracking

The issue here is to determine the sensitivity of atmospheric equilibria to perturbations. In
particular, we wish to determine the initial perturbation that produces the greatest pertur-
bation growth over some specified interval of time. In [109], perturbations to the vorticity
equation of a Couette flow are studied. These are governed by the Orr-Sommerfeld equation;
assuming harmonic perturbations in the wind velocity of the form 4>(jc, y, f) = 0(y, t)elkx,
we have
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16 Chapter 2. Motivating Examples

where Re denotes the Reynolds number. Discretization in y yields the set of ODEs:

We assume that this system is influenced by perturbations; in particular, we assume that
(i) random inputs are affecting all variables 0,, and (ii) all these variables are measured
(observed). The discretized system is thus a linear system having the same number of
inputs m, state variables n, and outputs p:

Such models are used for storm tracking in the midlatitude Pacific. For data assimilation in
this context, see [1 10].

2.2.3 America's Cup

The America's Cup is a race of sailing boats that takes place every 4 years. The 31st
competition since 1848 took place in 2003 in New Zealand between Team NZ and the
Swiss team Alinghi. Much technological know-how goes into the construction of the boats.
Less well known, however, is that the contestants set up weather teams. These are meant to
advise on the weather (in particular, the wind direction and speed) that will prevail during
the approximately 8 hours of the race. It is important to be able to predict wind shifts. The
goal is to choose the right sails and develop appropriate strategies for the race. The 2003
winner, the Alinghi team, set up a strong weather forecasting group, lead by Dr. J. Katzfey,
an expert in weather forecasting at the Commonwealth Scientific and Industrial Research
Organization in Australia. Furthermore, the Alinghi team set up eight weather stations,
which provided data for the data assimilation part of the model. At 7:00 a.m. before each
race, the weather team presented a weather prediction for the next 6 to 8 hours of sailing.
This strategy turned out to be an important factor for the Alinghi team; in the third regatta,
for instance, last-minute updates brought Alinghi 200 m ahead of the New Zealand boat,
which proved decisive for the winners.

2.3 Air quality simulations — data assimilation
Air pollution was thought to be a local phenomenon until the 1970s and a regional one during
the 1980s. At present it is recognized that air pollution extends from urban to regional and
global scales. Emissions from fossil fuel combustion and biomass burning and the resulting
photochemical production of tropospheric ozone and climate warming are considered global
problems.

A current challenge to the atmospheric science community is to quantify the impact
of human activities on global atmospheric photochemistry. This is achieved by means of
air quality models (AQMs), which provide a mechanism for elucidating the underlying
physical and chemical processes responsible for the formation, accumulation, transport,
and removal of air pollutants. AQMs are designed to calculate concentrations of ozone and

co
nt

ro
len

gin
ee

rs
.ir



2.4. Biological systems: Honeycomb vibrations 17

other pollutants and their variations in space and time in response to particular emission
inputs and for specified meteorological scenarios. The AQM is the only prognostic tool
available to the policy-making community, i.e., a tool capable of quantitatively estimating
future air quality outcomes for conditions or emissions different from those that have existed
in the past. Because of this unique capability, AQMs have come to play a central role in
determining how pollutant emissions should be managed to achieve air quality goals.

A variety of AQMs are being applied on urban, regional, and global scales. Many
models share common features. In particular, AQMs are based on solving the same species
conservation equations which describe the formation, transport, and fate of air pollutants:

Here, c, is the (averaged) concentration of species i; u(x, t) is the wind velocity vector
at location x and time t; K(x, t) is the turbulence diffusivity tensor; /?, is the rate of
concentration change of species/ by chemical reactions; 5,(x, 0 is the source/sink of species
i; and s is the number of predicted species. /?, can also be a function of meteorological
variables (e.g., temperature). The source/sink term 5e can include emissions of a species
as well as its loss due to various processes, such as dry deposition and rainout. Ensemble
averaging is used to dispense with the need to capture the extremely small-scale fluctuations
due to turbulence. With appropriate initial and boundary conditions, the system described
by the above equation represents the continuum chemistry transport model (CTM). A CTM
system is composed of four basic components: a chemical kinetic mechanism, a source
emissions inventory, a description of pollutant transport and removal, and a set of numerical
algorithms for integrating the governing equations. Differences between various AQMs
stem from alternative choices made by their developers in characterizing these physical and
chemical processes, procedures for their numerical solution, and the approach taken to adapt
the model to the computational domain of interest.

After spatial discretization of the CTM, we obtain

The grid in the jc and y directions is 1 km = 100 points; in the z direction it is 10 km = 30
points. This results in 300,000 equations.

Many measurements of pollutants exist. In the past few years, the MOPITT satellite
was launched by NASA to take pictures of pollutant concentrations. Thus, measurements
consist mainly of satellite images, and the problem becomes, once more, one of data as-
similation.

For details, see [103], [246], [292], [293]. An important recent development in three-
dimensional chemistry transport modeling is MOZART (Model of Ozone and Related Trac-
ers); it has been developed in the framework of National Center for Atmospheric Research
community climate model (CCM) [179].

2.4 Biological systems: Honeycomb vibrations
The honeybee dance language, in which foragers perform dances containing information
about the distance and direction to a food source, is an example of symbolic communication
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18 Chapter 2. Motivating Examples

in nonprimates. Honeybees and human beings possess an abstract system of communica-
tion. It was noted by Aristotle that honeybees recruit nestmates and lead them to a food
source. In the 1960s, K. von Frisch (1973 Nobel Prize winner in pysiology and medicine)
postulated that this recruitment takes place by means of the so-called waggle dance per-
formed on the honeycomb. This dance consists of a looping figure eight movement with a
central straight waggle run. During this dance, distance and direction information about the
food source are transmitted. The possible mechanisms involved in this unique communica-
tion are mechanical and chemical; there are no optical signals involved given the darkness
of the hive. The mechanical mechanism results from the vibration of the honeycomb, while
the chemical one results by transmission of pollen or nectar.

During the waggle dance, the dancer bee waggles her body at 15 Hz and vibrates her
wings intermittently at 200-300 Hz. The transmitted vibrations have an amplitude of about
1.4 /xm. The question thus arises as to the ability of the bees to detect weak vibrations in a
noisy environment (the hive).

Experimental measurements have shown that the vibrations occur only in the horizon-
tal direction to the plane of the combs; furthermore, the comb seems to amplify vibrations
in frequencies around 250 Hz. It has also been experimentally observed that the combs
exhibit an impedance minimum to horizontal vibrations at 230-270 Hz. Most of the experi-
mental investigations of this problem have been performed by Dr. J. Tautz at the Universitat
Wiirzburg.

The goal is therefore to find a model of the honeycomb that explains the phenomena
observed and measured and that provides new insights into these phenomena. In particular,
we would like to know to what extent a honeycomb is appropriate as a medium for the
transmission of information through vibrations. For more details, see [102] and the more
recent article [321].

2.5 Molecular dynamics
This example involves simulation in molecular dynamics, and in particular protein substate
modeling and identification. The main tool used for this example is the SVD. For details
see [275],

Proteins are dynamic entities primarily due to the thermal motion of their atoms. They
have different states which are attained by thermal motion and determine their biological
properties. Proteins can exist in a number of different conformational substates, a confor-
mational substate being a collection of structures that are energetically degenerate. The
thermal motion of the atoms drives the transitions between the different substates accessible
to a protein. The distribution of these substates and their transitions are major factors in
determining the biological properties of proteins. The equations describing the motion of
proteins are of the type ^ix(^) = — V0(x(0), where 0 is a potential function, and x € M3w,
where n is the number of atoms in the protein.

To find the most important protein configurations, an SVD of snapshots of x is used.
This method is known as POD and is described in section 9.1. This SVD provides a
way of decomposing a molecular dynamics trajectory into fundamental modes of atomic
motion. The left singular vectors describe the direction in which each atom prefers to
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2.5. Molecular dynamics 19

Figure 2.6. Molecular dynamics: myoglobin (protein); heme: active site; histi-
dine: part that opens and closes, catching oxygen molecules.

move. The right singular vectors provide temporal information; they are projections of
the protein conformations onto these modes showing the protein motion in a generalized
low-dimensional basis.

If an atom were constrained to move along only one of the left singular vectors, then
its motion in Cartesian space can be projected onto this vector, giving a curve. The elements
of the right singular vector can be thought of as scaling the size of the left singular vector
to describe where the atom is at each time point or in each conformation.

Figure 2.6 depicts a protein called myoglobin (more precisely, F46V mutant bioglobin).
The active site that catches oxygen molecules is called the heme (this is shown in a yellow
closing and a white closed state); finally, oxygen molecules (shown in green) are captured
by means of the active site, which is called histidine.

The first left singular vector of the (distal) histidine in this F46V mutant bioglobin
describes more than 90% of the total motion of the histidine. This histidine also ranked
second on the list of residues. Thus, (i) incorporating conformational substate information
improves the refinement model; (ii) multiconformer refinement appears to be the better
method for overall improvement of the model; and (iii) the SVD provides a powerful tool
for visualizing complex high-dimensional systems in a low-dimensional space.

Heat capacity of molecular systems

The next application is concerned with the determination of the heat capacity of a molecular
system. This involves the calculation of the following integral:

where g((o)dco gives the number of vibrational frequencies in the interval (o>, a)+dco). Since
the molecular system is discrete we have a(co) = f^ g(r)dr = £)"=i I(<0 ~ ^i)> where n is
the number of particles in the molecular system and I is the Heaviside step function. This
requires all the fundamental frequencies of the system to be computed in advance. Instead,
Gauss quadrature is used; this involves the Lanczos algorithm, where A is the Hessian of
0 and b is arbitrary. For details, see [364].
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20 Chapter 2. Motivating Examples

Figure 2.7. Frequency response of the ISS as complexity increases. Figure courtesy
of Draper Laboratories, Houston.

2.6 International Space Station
The International Space Station (ISS) is a complex structure composed of many modules;
these modules are contributed by NASA and other space agencies. The flex modes of each
module are described in terms of n « 103 state variables. The goal is to develop controllers
that are implemented onboard the space station. Consequently, controllers of low complexity
are needed because of hardware, radiation, throughput, and testing issues. In Chapter 13,
model reduction of the flex models for two specific modules, namely, the 1R (Russian
service module) and the 12A (second left-side truss segment), are discussed. Figure 2.7
shows the frequency response (amplitude Bode plot) as more components are added to the
space station. The complexity of the resulting model is reflected in the number of spikes
present in the frequency response. These models were provided by Draper Laboratories in
Houston. For details on the ISS and its assembly see http://spaceflight.nasa.gov/station/.

2.7 Vibration/acoustic systems
Consider a car windscreen subject to an acceleration load. The problem consists of com-
puting the noise generated at points away from the window. The first step in solving this
problem is the PDE which describes the deformation of the windscreen of a specific ma-
terial. The finite element discretization gives, in a specific case, 7564 nodes (three layers
of 60-by-30 elements); the material is glass with Young modulus 7 • 1010N/m2, density
2490 kg/m3, and Poisson ratio 0.23. These parameters help determine the coefficients of
the resulting FE model experimentally. Finally, the windscreen is subjected to a point force
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2.8. CVD reactors _ 21_

at some given point (node 1891), and the goal is to compute the displacement at the same
point. The discretized problem in this particular case has a dimension of 22,692. Notice
that the last two problems (the windscreen and the ISS) yield second-order equations:

where x is position, ~x is velocity of the windscreen at the grid points chosen, and M, C,
K are the mass, damping, and stiffness matrices. Since this is a second-order system, its
complexity is twice as high (45,384 states). For details on eigenvalue problems for second-
order systems, see [325]. This problem was provided by Karl Meerbergen of Free Field
Technologies, Leuven, Belgium. See also [235].

2.8 CVD reactors
An important problem in semiconductor manufacturing is the control of chemical reactors,
for instance, CVD reactors. This problem is addressed in the literature using POD methods.
For details, see the work of Banks and coworkers [199], [200], [49]. The dimension of the
resulting linear systems is on the order of a few thousand state variables.

Another issue concerning CVD reactors is the determination of the stability of steady
states. To address this problem, the transient behavior is linearized around a steady state.
This leads to a generalized eigenvalue problem. The eigenvalues with largest real part are
calculated using the Arnoldi iteration. A model problem of three-dimensional incompress-
ible flow and heat transfer in a rotating disk CVD reactor is used to analyze the effect of
parameter change on the performance of the eigenvalue algorithm. The description of this
system requires a full three-dimensional Navier-Stokes model. The calculation of leading
eigenvalues for matrix systems of order 4 million to 16 million is required. These calcula-
tions lead to the critical Grashof, Rayleigh, and Reynolds numbers for a Hopf bifurcation.
For details, see [226].

2.9 Microelectromechanical devices
Microelectromechanical systems (MEMS) are integrated systems combining electrical and
mechanical components. They are usually fabricated using 1C techniques and can range
in size from micrometers to millimeters. In their most general form, MEMS consist of
mechanical microstructures, microsensors, microactuators, and electronics, all integrated
onto the same chip.

Finite element model (FEM) simulation is often used in MEMs and results in complex
systems. System-level models with reduced order and accuracy have to be generated as a
basis of system simulation [291].

SUGAR is a simulation tool for MEMS devices based on nodal analysis techniques
of integrated circuit simulation. Beams, electrostatic gaps, circuit elements, etc., are mod-
eled by small, coupled systems of differential equations. For a description, see [89] and
http://www-bsac.eecs.berkeley.edu/cadtools/sugar/sugar/.

co
nt

ro
len

gin
ee

rs
.ir

http://www-bsac.eecs.berkeley.edu/cadtools/sugar/sugar/


22 Chapter 2. Motivating Examples

Figure 2.8. MEMS angular velocity sensor used in car navigation systems and for
rollover detection in passenger restraint systems. Picture courtesy of Robert Bosch Co.

2.9.1 Micromirrors

Two such MEMS devices are the micromirror and micromirror arrays. They are used for
precision light manipulation, e.g., as an optical switch in fiberoptics. A mirror tilts to reflect
light from one fiber to another. Large arrays, up to 1000 by 1000 mirrors, will be needed for
telecommunication applications. As the fiber-to-mirror distance increases, strict precision
of mirror tilt control is necessary. For a distance of 500 microns, at least 0.10 degree of
precision is required. A second application of micromirrors is maskless lithography (virtual
masks). Feedback control is needed to achieve precision positioning of a mirror of 2 degrees
of freedom. Advantages of feedback control as an optical switch are that it is faster, smaller,
and cheaper than electrical switches.

2.9.2 Elk sensor

A few years ago, production of the Mercedes-Benz A Class cars had to be stopped just after
their launch because they failed the elk test. This test consists of forcing the car to take a sharp
turn to avoid an obstacle that suddenly appears on the road. To remedy this situation, the
company incorporated a rollover (elk) sensor that could detect turning movement and apply
the brakes to slow the rotational movement. The first rollover sensors were mechanical.
Subsequently, Bosch AG developed a microelectromechanical sensor at reduced cost and
reduced size. Now, the elk sensor is standard equipment in many cars. A similar angular
velocity sensor is shown in Figure 2.8.

Once such a device has been designed, the next issue consists in testing its performance
by simulation. One method is a physically oriented modeling (see, e.g., Schwarz [290] and
Teegarden, Lorenz, and Neul [322]), using appropriate simulation packages, as described
in [291]. The more detailed the modeling, the higher the complexity (i.e., the number of
differential equations) of the resulting model. As the available simulation packages are
built to handle low complexities, there is a need for simplification of the model through
model reduction.
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2.9. Microelectromechanical devices 23

Figure 2.9. Optimal cooling: discretization grid.

Figure 2.10. Progression of the cooling of a steel profile (from left to right and
from top to bottom); the bars are cooled from 1000°C to 500° C.
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24 Chapter 2. Motivating Examples

2.10 Optimal cooling of steel profile
Many problems in control are both structured and computationally intensive. An application
arising in tractor steering can be found in [61]. For an overview, see Fassbender [112]. Here
we will describe an application worked out by Benner [60]. In rolling mills, steel bars have
to be heated and cooled quickly and uniformly to achieve a fast production rate. Cooling
takes place by spraying the bars with cooling fluids. The problem consists of devising and
applying an optimal cooling strategy.

The heat equation is used to model the cooling process. The steel bar is assumed to
have infinite length, thus reducing the problem to two dimensions. The domain is obtained
by cutting the steel bar vertically; this domain can be further halved due to symmetry. It is
assumed that there are eight nozzles spraying cooling liquid uniformly on the boundary of
the bar. Thus a two-dimensional boundary control problem results.

The heat-diffusion equation with Neumann boundary conditions is discretized in the
spatial variables using the FEM described in the package ALBERT. The initial mesh leads to
a system of order n = 106. Subsequently, the mesh is refined, leading to systems of orders
n = 371, 1357, and 5177 (see Figure 2.9). The resulting mass and stiffness matrices are
sparse (with approximately 3 • 105 and 3 • 104 nonzero elements, respectively). The control
law is obtained by means of linear quadratic regulator (LQR) design.

Finally, the model uses water at 20°C and has the spraying intensity as control pa-
rameter. Figure 2.10 shows the progression of the cooling.
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Chapter 3

Tools from Matrix Theory

The broad topic of this book is approximation. To be able to discuss approximation problems,
we need to be able to measure the sizes of various objects, such as the size of the elements
belonging to certain linear function spaces, as well as the size of operators acting between
these spaces. The most commonly used norm for this purpose is the 2-norm for elements
of function spaces and the associated 2-induced norm for measuring the size of operators
between these spaces.

The 2-norm of the n-vector x = (x\ • - •*„)* e R" is the usual Euclidean norm:
|| x ||2 = Vjcf + ---- h xl . The 2-induced norm of A : R" — > R" is defined as

Furthermore, the complexity of A is defined as its rank.
In this simple case, one approximation problem is as follows. Given a matrix (operator)

A of complexity ft, find a matrix (operator) X* of lower complexity (say, k < «) so that the
2-induced norm of the error is minimized:

The problem just defined is a nonconvex optimization problem. Despite the lack of convexity,
however, it can be solved explicitly by means of the singular value decomposition (SVD);
this is a decomposition of A in terms of two unitary matrices U, V and a diagonal matrix
with nonnegative entries a\,...,an on the diagonal, such that A = USV*, where £ =
diag (a\ , . . . , <?„). The a/ are the singular values of A, which are the square roots of the
largest n eigenvalues of A*A or AA*. Furthermore, o\ = || A \\2-iad-

This decomposition is one of the most useful tools in applied linear algebra. It
can be efficiently computed and is an important tool for both theoretical and computa-
tional considerations. For an overview of the role of matrix decompositions in computing,

27
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28 Chapter 3. Tools from Matrix Theory

see [315], which lists the big six matrix decompositions that form the foundations of matrix
computations: (i) the Cholesky decomposition, (ii) the pivoted LU (lower-upper) decompo-
sition, (iii) the QR (orthogonal-upper triangular) algorithm, (iv) the spectral decomposition,
(v) the Schur decomposition, and (vi) the SVD.

The solution of the approximation problem introduced above can now be obtained as
follows. First, one notices that the minimum value of the error is

Next, it is easy to be convinced that this lower bound is achieved by simple truncation of
the SVD of A and that

is an optimal solution. This is a powerful result relating the complexity k of the approximant
with the (k + l)st largest eigenvalue of AA* (or A*A). Details will be discussed.

This chapter contains some fundamental results from linear algebra and numerical
linear algebra. The first section lists various norms of vectors and matrices. The second
discusses an important decomposition of matrices and operators, the SVD. Then we briefly
review two concepts from numerical analysis that are essential in assessing the accuracy of
computations: the condition number of a given problem and the stability of an algorithm to
solve the problem.

More material from linear algebra is presented in Chapter 10. This material concerns
the Krylov Iteration, which turns out to be important in both linear algebra and approximation
of linear dynamical systems. Also in Chapter 10, related issues dealing with eigenvalue
computations and pseudospectra are briefly discussed.

Most of the material presented in this chapter is standard and can be found in many
textbooks. For the material of the first three sections, see, for example, Golub and Van Loan
[144], Horn and Johnson [181], Stewart and Sun [314], Higham [171], Trefethen and Bau
[328], Meyer [238], and Thompson [324]. For a treatment with more functional analytic
flavor, see Bhatia [65] and Lax [225]. For the material in section 3.3, see the notes by
Sorensen [308].

3.1 Norms of finite-dimensional vectors and matrices
Let X be a linear space over the field of reals R or complex numbers C. A norm on X is a
function

such that the following three properties are satisfied:
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3.1. Norms of finite-dimensional vectors and matrices 29

For vectors x e C1 the Holder or p-norms are defined as follows:

These norms satisfy Holder's inequality:

For p = q = 2 this becomes the Cauchy-Schwarz inequality,

with equality holding if and only if y = ex, c e C. An important property of the 2-norm is
that it is invariant under unitary (orthogonal) transformations. Let U be n x n and U*U = In ,
where In is the n x n identity matrix. It follows that HUxll2, = x*U*Ux = x*x = HxH2 , .
This holds also if U has size n x m, where m < n; in this case U is sometimes called
suborthogonal (subunitary).

The following relationship between the Holder norms for p = 1, 2, oo holds:

The unit balls in the l-,2-, and oo-norms are shown in Figure 3.1 (diamond, circle, and
outer square). Notice that the unit ball for the /?-norm, 1 < p < 2, is a circular figure lying
between the diamond and the circle, and for p > 2 it is also a circular figure lying between
the circle and the outer square.

Figure 3.1. Unit balls in R2: l-norm (inner square), 2-norm (circle), oo-norm
(outer square).
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30 Chapter 3. Tools from Matrix Theory

An important class of matrix norms are those that are induced by the vector p-norms
defined above. More precisely, for A = (A//) e Cwxm,

 A\

is me induced p, q-norm of A. In particular, for equi-induced norms, i.e., p = q = 1, 2, oo,
the following expressions hold:

More generally, the following expressions hold for mixed induced norms [86]:

for p e [1, oo], where Aw, A/,: denote the y'th column, and ith row of A, respectively. In
particular, the following special cases hold:

where 5max(M) denotes the largest diagonal entry of the matrix M.
There exist other norms besides the induced matrix norms. An example is the Schatten

p-norms. These noninduced norms are unitarily invariant. To define them, we introduce
the singular values of A, denoted by o/(A), / = !,..., min(n, m). In the next section we
describe the singular values hi greater detail, but for now, it suffices to say that a/ (A) is the
square root of the ith largest eigenvalue of AA*. Then for m < n,

It follows that the Schatten norm for p = oo is

which is the same as the 2-induced norm of A. For p = 1 we obtain the trace norm
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3.2. TheSVD 31

For p = 2 the resulting norm is also known as the Frobenius norm, the Schatten 2-norm, or
the Hilbert-Schmidt norm of A:

where tr (•) denotes the trace of a matrix.
All the matrix norms discussed above satisfy the submultiplicativity property:

Notice that mere exist matrix norms that do not satisfy this relationship. As an example,
consider the matrix norm || A || — max|Ay|.

3.2 TheSVD
The SVD is one of the most useful tools in applied linear algebra. It can be efficiently
computed and is an important tool for both theoretical and computational considerations.
For an overview of the role of matrix decompositions hi computing, see Stewart [315], which
lists the big six matrix decompositions that form the foundations of matrix computations:

1. the Cholesky decomposition,

2. the pivoted LU decomposition,

3. the QR algorithm,

4. the spectral decomposition,

5. the Schur decomposition, and

6. the SVD.

It is safe to say that if we were to keep only one of these decompositions, it would be the SVD.
Given a matrix A e Cn*m, n < m, let the ordered nonnegative numbers a\ > 02 >

• • - > <*n > 0 be the positive square roots of the eigenvalues of AA*; let also I* denote the
k x k identity matrix. There exist unitary matrices U e C"*", UU* = !„, and V € Cmxm,
W* = lm, such that

where £ is an nxm matrix with £„• =a,-,i = 1,...,«, and zero elsewhere. Thusif« = m,
E is a square diagonal matrix with the ordered a/ on the diagonal. The decomposition (3.9)
is called the SVD of the matrix A; <r, are the singular values of A, while the columns of U
andV,

are called the left and right singular vectors of A, respectively. These singular vectors are
the eigenvectors of AA* and A*A, respectively. It readily follows that
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32 Chapter 3. Tools from Matrix Theory

Figure 3.2. Quantities describing the SVD in R2.

Example 3.1. Consider the matrix A = ( 1
Q \^ J. It readily follows that the eigenvalue

decomposition of the matrices AA* = ( J- v2 ) an^ A* A — ( \ 3 ) are

AA* = UE2U* and A* A = VE2V*, where

Notice that A maps YI H-> <j\u\ and ¥2 i-> 0-2*12 (see Figure 3.2). Since A = tfiUiV* +
o"2U2V2, it follows from Theorem 3.6 that X = 021*2Vj is a perturbation of smallest 2-norm
(equal to 02) such that A — X is singular:

In other words, the distance of A to singularity is 02-

The singular values of A are unique. The left and right singular vectors corresponding
to singular values of multiplicity one are also uniquely determined up to simultaneous sign
change. Thus the SVD is unique when the matrix A is square and the singular values have
multiplicity one.

Lemma 3.2. The largest singular value of a matrix A is equal to its induced 2-norm:
<*\ = HA||2.
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3.2. The SVD 33

Proof. By definition,

Let y be defined as y = V*x, where V is the matrix containing the eigenvectors of A* A,
i.e., A*A = VE*EV*. Substituting in the above expression, we obtain

This latter expression is maximized and equals of for y = ei (the first canonical unit vector
[1 0 • • • 0]*), that is, x = YI, where YI is the first column of V. D

We are now ready to state the existence of the SVD for all matrices.

3.2.1 Three proofs

Given the importance of the SVD, we provide three proofs.

First proof. This proof is based on the lemma above. Let a\ be the 2-norm of A; there exist
unit length vectors Xi e Cm, \*x\ = 1, and yi e C", y*yi = 1, such that Axi = o-iyi.
Define the unitary matrices Vi, Ui so that their first column is Xj , y\, respectively: Vi =
[xi Vi],Ui = [yi Ui]. It follows that

and consequently,

Since the 2-norm of every matrix is greater than or equal to the norm of any of its submatrices,
we conclude that

This implies that w must be the zero vector, w = 0. Thus

Theorem 3.3. Every martix A with entries in C has an SVD.
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34 Chapter 3. Tools from Matrix Theory

The procedure is now repeated for B, which has size (n — l ) x ( m — 1). Again,
since the norm of any submatrix is no greater than the norm of the whole matrix,
<?2 = I|B|| < ai. U

Second proof. The second proof is based on the eigenvalue decomposition of the positive
semidefmite Hermitian matrix A A*:

where X/ > X/+i. Set E = A*. Since n < m, for the rest of the proof we assume for
simplicity mat Xn £ 0. If n > m, follow the same procedure with A*A. The above
relationship implies

n, where 

Therefore KI can be extended to a unitary matrix, say, V = (K* Kp of size m x m;
consequently

which completes the proof. D

Third proof (see [357]). First recall that the SVD of A e Rnxm corresponds to the existence
of orthonormal bases (ui, 112,..., un) of R" and (vi, \2 vm) of Rm such that Av* =
0*11*, k = 1,2,..., n, assuming n < w, where a* are nonnegative real numbers.

(i) If A = 0, take for U and V any orthogonal (unitary) matrices, and put E = 0.
(ii) Assume that A ^ 0 and n < m (otherwise consider A*). The proof goes by

induction on n,
(11.1) For n = l ,A = aisa row vector; take U = 1, V any orthogonal matrix with

first column |j|, and E = (||a|| 0 • • • 0).
(11.2) Assume that the result holds for matrices having n — I rows. We show that it

holds for matrices having n rows. Let w ̂  0 be an eigenvector of A* A corresponding to
the eigenvalue X > 0. Define the spaces

Since x e V$ implies (Ax, Aw) = {x, A* Aw) = X{x, w) = 0, we conclude that AV^ C Vj^,.
By the induction hypothesis, since these spaces have dimension m — 1, n — 1, respectively,
there are orthonormal bases 112,113,..., urt and \2, vj , . . . , \n for (a subspace of) V£ and
V^w, respectively, such that AU* = <r*v*, k = 2,...,n. Now define

Since A^ = lj£sf- u^, we have Aui = ¥^vi = ^1^1. Therefore, Uk, v* for k =
" " J' 'L I' , H . ii ii

1,2,..., n satisfy the desired requirements.
(11.3) If the resulting o\,..., an are not ordered in decreasing order, apply a suitable

permutation to the bases to achieve this, and the third proof is complete. D
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3.2. The SVD _ 35

3.2.2 Properties of the SVD

The SVD has important properties, which are stated next. Assume that in (3.9) ar > 0,
while crr+i = 0; the matrices U, E, V are partitioned compatibly in two blocks, the first
having r columns:

where Ui, U2 have r,n — r columns and Vi, V2 have r,m — r columns, respectively.

Corollary 3.4. Given (3.9) and (3.10), the following statements hold:

1. RankA = r.

2. The four fundamental spaces associated with A are

3. Dyadic decomposition. A can be decomposed as a sum of r outer products of rank
one:

4. The orthogonal projection onto the span of the columns of A is

5. The orthogonal projection onto the kernel of A* is In — UiU* = U2U|.

6. The orthogonal projection onto the span of the columns of A* is ViV*.

7. The orthogonal projection onto the kernel of A is Im — ViV* = V2V2-

8. The Frobenius norm of A is \\A\\p = A/of H ----- h cr^.

Remark 3.2.1. The short form of the SVD in (3.10) is

where r is the rank of A. It follows that the outer products in (3.1 1) are unique, and thus,
given a pair of left and right singular vectors (u,, v,), / = 1, . . . , r, the only other option
for this pair is (— u, , — v,). On the other hand, the columns of U2 are arbitrary subject to the
constraint that they be linearly independent, normalized, and orthogonal to the columns of
Ui . Similarly, the columns of V2 are arbitrary, subject to linear independence, normalization,
and orthogonality with the columns of Vi . Thus U2 , V2 are not necessary for the computation
of the SVD of A.

In MATLAB® the command svd (A) computes the full SVD of A, while the com-
mand svds (A, k) computes a short SVD containing k terms, that is, the first k singular
values and singular vectors. The use of the short SVD is recommended for min(n, m) 3> 1.
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36 Chapter 3. Tools from Matrix Theory

3.2.3 Comparison with the eigenvalue decomposition

We will now point out some similarities and differences between the eigenvalue decompo-
sition (EVD) and the SVD. More about the EVD, in particular as it relates to the Krylov
methods, will be discussed in Chapter 10; for instance, its sensitivity to perturbations, as
formalized by means of the concept of pseudospectra, will be briefly discussed there.

Given a square matrix A e C"x", there exist matrices X and A, with det X ̂  0, such
that

A is in Jordan form, i.e., it is a direct sum of Jordan blocks A^ of size m^'.

where Jmt is a nilpotent matrix with ones on the superdiagonal and zeros everywhere else.
Every square matrix has an EVD as above, where the Xk are the eigenvalues of A and the
columns of X are the eigenvectors and generalized eigenvectors of A. Symmetric matrices
are diagonalizable, i.e., A is a diagonal matrix (each Jordan block is scalar); in addition,
the set of eigenvectors can be chosen to form an orthonormal set in C", i.e., X is unitary:

If we require that X be unitary even if A is not Hermitian, we obtain the Schur decomposition:

where U is unitary and T is upper triangular with the eigenvalues on the diagonal. Thus
the EVD, the SVD, and the Schur decomposition are decompositions of the general form
AY = ZO, where <t> is either diagonal or close to diagonal (i.e., Jordan) or upper triangular:

By forcing Y = Z = X, it sometimes happens that <I> is not diagonal and X is not orthogonal.
In the SVD, the constraint Y = Z is relaxed and replaced by the requirement that Y and
Z be unitary. This leads to a <$> = £ matrix which is always diagonal and furthermore its
elements are nonnegative. By not requiring that Y = Z, the condition that A be square is
also relaxed. Hence, in contrast to the EVD, even rectangular matrices have an SVD. In
the Schur decomposition, the unitarity of X forces the matrix U* AU to be upper triangular
with the eigenvalues on the diagonal. A further difference between the EVD and the SVD
is illustrated by the following example.

Example 3.5. Consider the 2 x 2 matrix
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3.2. The SVD 37

The eigenvalues of this matrix are 1 and 0 irrespective of the value of e. The SVD of A is

Hence the largest singular value, i.e., the 2-norm of A, is equal to Vl + e2 and depends on
the value of e. This example shows that big changes in the entries of a matrix may have no
effect on the eigenvalues. This is not true, however, with the singular values. This matrix is
revisited in section 10.2 from the point of view of pseudospectra.

SVD for symmetric matrices

For symmetric matrices, the SVD can be directly obtained from the EVD. Let the EVD of
ag ivenAeR n x n be

Define by S = diag (sgnAi,.. . , sgnAn), where sgnA. is the signum function; it equals +1 if
A. > 0, -1 if A. < 0. Then the SVD of A is

A = UEV*, where U = VS and £ = diag (1^1, . . . , |A.B|).

3.2.4 Optimal approximation in the 2-induced norm

The SVD is the tool that leads to the solution of the problem of approximating a matrix by
one of lower rank, optimally in the 2-induced norm.

Problem. Given A e Cnxm, rank A = r < n < m, find X e Cnxm, rankX = k < r,
such that the 2-norm of the error matrix E = A — X is minimized.

The solution of this problem is given in the following result, due to four researchers.
Schmidt derived a version of it in the early 1900s in connection with integral equations [289].
Then two researchers from the quantitative social sciences, Eckart and Young, published
another version of this result in the mid 1930s [101]. Finally, Mirsky in the 1960s derived
a general version that is valid for all unitarily invariant norms [240]. A detailed account of
this result can be found in the book by Stewart and Sun [314].

Theorem 3.6 Schmidt–Eckart–Young–Mirrsky. With the notation intro duced above,

Provided that A (nonunique) minimizer X, is obtained by truncating the
dyndic decompostion (3.11) to contain the first k terms:
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38 Chapter 3. Tools from Matrix Theory

The proof of this result is based on the next lemma.

Lemma 3.7. Given A of rank rfor all X of rank less than or equal to k, there holds

Proof of lemma. Let y, e Cm, / = 1, . . . , m — k, be a basis for the kernel of X

From a dimension argument follows that the intersection of the two spans is nontrivial:

Let z € Cm, z*z = 1, belong to this intersection. It follows that (A — X)z = Az; thus

This completes the proof. D

Proof of the theorem. There remains to show that the lower bound obtained in the above
lemma is attained. The minimizer (3.14) does precisely this. D

Remark 3.2.2. (a) Optimal approximation in the Frobenius norm. As it turns out, the
Schmidt-Mirsky-Eckart- Young theorem provides the solution to the optimal approximation
problem in the Frobenius norm as well. The minimum value of the error (3.13) becomes in
this case

Furthermore, provided that ak > ak+\, there is a unique minimizer given by (3.14).
(b) The importance of the Schmidt-Mirsky result is the relationship between the rank

k of the approximant and the (k + l)st singular value of A.
(c) The minimizer (3.14) given in the Schmidt-Eckart-Young-Mirsky theorem is not

unique in the 2-induced norm. A class of minimizers is given as follows:

This property is important in the Hankel-norm approximation problem. See, e.g., formula
(8.23) in Example 8.9.

(d) It is easy to see that the rank of the sum (or the linear combination) of two matrices
is in general not equal to the sum of their ranks. This is also true if the linear combination
is convex, that is, the coefficients are nonnegative and their sum is equal to one. As a
consequence, the problem of minimizing the 2-induced norm of A — X over all matrices X
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3.2. TheSVD 39

of rank (at most) k is a nonconvex problem, and there is little hope of solving it by applying
general optimization algorithms.

(e) To obtain a larger set of solutions to the problem of optimal approximation in the
2-induced norm, one may relax the optimality condition (3.13). Instead, one may wish to
obtain all matrices X of rank k satisfying

where 0^+1 (A) < e < ^(A). This is the suboptimal approximation problem in the 2-
induced norm, which was solved in [331]. •

Example 3.8. Here we consider the 4 x 3 matrix

which has rank 3. We will compute optimal approximations of rank 1 and 2.
The singular values of T are a\ = 3 + \/7 = 2.38, a2 = 1, or3 = 3 - «Jl = 0.59.

The approximants TI, T2, of rank 1, 2, respectively, obtained by means of the dyadic
decomposition, turn out to be

The approximants shown in Figure 3.3 should be interpreted as follows. A pixel with value
0/1 represents black/white; in-between values represent levels of gray. All pixels with value
bigger than 1 and smaller than 0 are approximated by 1 (white) and 0 (black), respectively.

Figure 3.3. Approximation of an image using the SVD. Left: original. Middle:
rank 2. Right: rank 1 approximants.
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40 Chapter 3. Tools from Matrix Theory

Notice that the norm of the errors, i.e., the largest singular value of E2 = T — T2, is
02 = 1 and that of EI = T — TI is 03 = .59. It also follows that no entry of E2 can exceed
03, while no entry of EI can exceed Vaj~+~aj = 1.16.

We notice that, to be able to represent the results graphically, T must be considered as
a 12-pixel image of the number one. In MATLAB each pixel is depicted as a gray square;
there are 128 levels of gray, with 1 being white and 0 being black; numbers that are not
integer multiples of -^ are approximated by the nearest integer multiple of -^ ; finally,
numbers less than zero are depicted by black pixels, while numbers bigger than one are
depicted by white pixels. Figure 3.3 shows a pictorial representation in MATLAB of the
original figure and its approximants.

3.2.5 Further applications of the SVD

The SVD can be used to tackle a number of other problems, some of which we mention here.
First is the determination of the rank of a matrix. Because the SVD is well-conditioned, it
can be used to determine both the numerical and the actual rank of a matrix. This is done
by counting the number of singular values that are above a certain threshold. The threshold
is zero for the actual rank and some small number determined by the user according to the
application at hand for the numerical rank.

The second application of the SVD is the calculation of the Moore-Penrose pseudoin-
verse. Given a not necessarily invertible or even square matrix A e C"xm, a pseudoinverse
or generalized inverse is defined as a matrix X e Cmx" that satisfies the relationships

The problem can also be formulated equivalently as follows. Given A as above, find X that
solves

The solution can now be given using the SVD of A. Let S = diag (Ei, 0), where EI > 0.
It follows that

Often the pseudoinverse of A is denoted by A+.
The least squares problem is closely related to the pseudoinverse of a matrix. Given

are A e Cnxm, n > m, and a vector b e Cn. We wish to find x e Cm, which solves

We denote the norm of this residual by pL$. The solution is

The final problem discussed here is that of the stability radius in robust control. Given
M, the complex stability radius is the inverse of the smallest 2-norm of a complex A such
that
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3.3. Basic numerical analysis 41

is singular. Applying the Schmidt-Eckart-Young-Mirsky theorem, it can be shown that the
(complex) stability radius is equal to <ri(M). It was recently shown that the real stability
radius (i.e., A e R" xn ) can be computed as the second singular value of a real matrix derived
from the complex matrix M.

3.2.6 The semidiscrete decomposition

A variant of the SVD is the semidiscrete decomposition (SDD) of a matrix. This decom-
position was introduced in [255]. Recall the dyadic decomposition (3.11). The rank k
approximation of a matrix A e Rnxm by means of the SDD is given by a different dyadic
decomposition:

In this expression the entries of the vectors x,- and y,- are restricted to belong to the set
(—1,0, 1}, while 81 e R are real numbers. The first remark is that this decomposition does
not reproduce A even for k = n or k = m. The advantage obtained comes from the fact that
the rank k approximation requires storage of only 2k(n + m) bits plus k scalars as opposed
to (n + m + l)k scalars for the rank k approximation of A using the SVD.

The computation of this decomposition proceeds iteratively. Given A^_ t we seek
x, y, 8 such that the Frobenius norm of the error matrix Ek_i is minimized:

This problem is solved iteratively by fixing y and solving for x e {—1,0, 1}" and 8 e R
and, subsequently, by fixing x and solving for y e {— 1, 0, 1}™ and 8 e R. The iteration is
stopped when the difference in two successive iterates of 8 drops below a specified tolerance.

Example 3.9. Applying the iterative SDD approximation to Example 3.8, we obtain ap-
proximants TI and T2 of rank one and two, respectively:

The corresponding largest singular value of the error matrices T — TI, T — T2 is 1.188,
1.0877.

3.3 Basic numerical analysis
In this section, we present a brief introduction to issues of accuracy in numerical compu-
tations. Two concepts are involved. First, the condition of the problem is a measure of
the sensitivity of the solution to perturbations in the data. The condition of a problem does
not depend on the algorithm used to compute an answer. Second, error analysis, for a
given solution algorithm, quantifies the error due to floating point arithmetic. A forward
error analysis is concerned with how close the computed solution is to the exact solution,

co
nt

ro
len

gin
ee

rs
.ir



42 Chapter 3. Tools from Matrix Theory

while a backward error analysis is concerned with whether the computed inexact solution
can be interpreted as the exact solution of the same problem with perturbed initial data. For
problems of linear algebra, it is often advantageous to perform a backward error analysis.
A knowledge of the backward error, if it exists, together with a knowledge of the sensitivity
of the problem allow us to measure the forward error.

Besides references listed at the beginning of this chapter, we also recommend the
lecture notes by Sorensen [308] and Van Dooren [334], [335], [337], [338] and the papers
by Higham et al. [172] and Smale [301]. See also [206].

3.3.1 Condition numbers

First we examine the problem of estimating the effect of perturbations on input data. This
leads to the concept of condition number of the problem at hand. A problem is ill-conditioned
if small changes in the data cause relatively large changes in the solution. Otherwise a
problem is well-conditioned.

First, let us look at the problem of the sensitivity of evaluating a given function
/ at a point XQ. Assume that / : R -> R is twice differentiable in a neighborhood
of XQ. If XQ is perturbed to XQ + S, a Taylor series expansion of f ( x ) around XQ gives
f(xo + 5) = /(JCQ) + f'(xo)8 + O(\8\2), where prime denotes the derivative with respect to
jc. The absolute condition number is precisely this derivative /'(XQ). It tells us the amount
by which infinitesimal perturbations in XQ will be amplified to produce the perturbation in
the evaluation. For the relative condition number, notice that

This condition number is defined as the absolute value of the ratio of the relative change of
f ( x ) over the relative change in x:

The interpretation of the condition number is that given a small relative error in JCQ, the
resulting relative error in /(XQ) will be amplified by Kf(xo).

Next we will examine the condition number of evaluating the vector- valued function
f : E" -> Rm at a point XQ € R". The Taylor series expansion becomes in this case

where 8 e R" is a vector perturbation and J(XQ) is the Jacobian of f evaluated at XQ:
flf.

Ji.y (XQ) = g^ lx=xo- In this case, a perturbation 8 in XQ will result in a perturbation J(xo)<5
in f (XQ), which depends on the direction of 8. Thus assuming that 2-norms are used, the
amplification factor for the perturbations lies between the largest and the smallest singular
values of the Jacobian J(XQ). The absolute condition number is defined as the largest
singular value, i.e., the (2-induced) norm of the Jacobian || J(XQ) |b; more generally, it is the
norm ||J(xo)|| induced by the vector norms in the domain and the range off. The relative
condition number is defined as
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3.3. Basic numerical analysis 43

where the matrix norm in the above expression is induced by the vector norm used. Again,
given a relative error in XQ, the largest resulting relative error in f (XQ) will be amplified by

In the next section we will make use of the condition number of the inner product. For
a, x e Rn, we wish to compute the condition number of the inner product a* • x at x = XQ.
Since the Jacobian in this case is J = a e M", the earlier formula yields

The condition number of a matrix-vector product Ab can be determined as follows.
Starting from the equality b = AA-1b, we derive the inequality ||b|| < || A"1 1| || Ab|| and
hence jj^ < ||Ab||. Using this last inequality together with the relative error we obtain
the following upper bound:

Thus the condition number, i.e., the largest amplification of perturbations in b, is K =
|| A || || A"11|. This is called the condition number of the matrix A. This formula implies that
the condition number of A is the same as that of its inverse A"1; therefore, the condition
number for solving the set of linear equation Ax = b, x = A^b, due to perturbations in b,
is the same as that for Ab.

Finally, we turn our attention to the condition number of the linear system of equations
.̂ *

Ax = b, where both b and A are perturbed. The system actually solved is Ax = b, where
^ ^

the norms of A — A and b — b are small. It can be shown (see, e.g., [171, p. 145]) that the
relative error in the solution has the upper bound

Hence the relative error in the solution can be amplified up to K times with respect to the
relative error in the data. Again, if the 2-induced norm is used, it follows from the SVD of
A that ||A||2 = (?i, HA"1 \\2 = • - , and thus the condition number

is the ratio of the largest to the smallest singular values of A.

Condition number of EVD and SVD

A problem of considerable importance is that of computing the eigenvalue or the singular
value decompositions of a given matrix. The sensitivity of these calculations to uncertainty
in the data must therefore be studied. Given the square matrix A, let x, y be the right, left
eigenvector of A corresponding to the eigenvalue A:

co
nt

ro
len

gin
ee

rs
.ir



44 Chapter 3. Tools from Matrix Theory

If A is perturbed to A+AA, where || AA|| is small, the other quantities in the above equation
will be perturbed too:

Our goal is to describe the change 8X for infinitesimal perturbations in A. Expanding and
neglecting second-order terms in the perturbations, followed by left multiplication by y*,
we obtain 8X — y*^x. This implies that -^j-r, < ^fr^p The maximum of this expression,
namely,

is called the absolute condition number of the eigenvalue X. For details, see Chapter 2 of
the book by Wilkinson [355].

When there is a nontrivial Jordan block associated with X, then x _L y, so their inner
product is zero, and hence the conditioning is the worst possible. For this reason, the
numerical computation of the Jordan canonical form is an ill-posed problem. In this case,
the linearization is invalid, and the eigenvalues associated with the Jordan block split as
|| AA||1/!, where i is the index of X.

In the special case where the matrix is Hermitian, A = A*, we have that x = y, and
therefore the condition number of computing eigenvalues of symmetric matrices is perfect
KX = 1. Consequently, since the singular values of a matrix are the square roots of the
eigenvalues of symmetric (and positive semidefinite) matrices, namely, AA* and A* A, the
conditioning of the singular values is also perfect: Ka = 1.

To study the condition number of the eigenvectors, we need to study the sensitivity of
the corresponding eigenspaces. These results will not be discussed here; see, e.g., Golub and
Van Loan [144] for details. We quote one simple case that gives the type of results obtained.
Suppose that X is an eigenvalue of algebraic multiplicity one. Let X denote the eigenvalue of
the matrix under consideration that is closest to X. Then a small perturbation in A will result
in a perturbation of the eigenvector that is inversely proportional to the difference |A — A,|.
Thus the smaller the gap between the eigenvalue of interest and the remaining ones is, the
more sensitive the calculation of the corresponding eigenvector becomes. A similar result
holds for eigenvectors of symmetric matrices and hence of singular vectors of matrices.

3.3.2 Stability of solution algorithms

The stability of a method for solving a problem (algorithm) is concerned with the sensitivity
of the method to rounding errors in the solution process. A method that guarantees as
accurate a solution as the data warrants is said to be stable; otherwise the method is unstable.

Error analysis is concerned with establishing whether an algorithm is stable for the
problem at hand. A forward error analysis is concerned with how close the computed
solution is to the exact solution. A backward error analysis is concerned with how well the
computed solution satisfies the problem to be solved. The purpose of error analysis is the
discovery of the factors determining the stability of an algorithm.

Numbers in a computer are represented by means of finitely many bits. Therefore
the precision is also finite. There exist many varieties of floating point arithmetic. By
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3.3. Basic numerical analysis 45

far, the most commonly used is the ANSI/IEEE 745-1985 standard for binary floating
point arithmetic [186], [171], [256]. In this arithmetic, double precision corresponds to a
quantization error,

which is also referred to as machine precision. Moreover, only real numbers x in the
interval between [— A^max, Nmax] can be represented, where for double precision arithmetic
AUax = 21024 « 1.79 • 10308. Given a real number x in the above interval, we will denote
by //CO its representation in floating point arithmetic, where \x — fl(x)\ < €\x\, that is,

The operations of floating point addition and multiplication in IEEE arithmetic yield a result
that is up to € close to the true result, namely,

//Ct±y) = Ct±v).(l+5), f l ( x - y ) = (x - y ) - (1+5), and f l ( x / y ) = (*/y)- (1+5).

There are two ways to interpret the error due to floating point arithmetic. Let our goal be
to compute f (x), i.e., evaluate the function f at the point x. Using our favorite algorithm
denoted by A, due to floating point errors during its execution, the result obtained will be
fA(x) ^ f(x). It is now assumed that there is a point XA such that f(x^) = iU(x); this
means that there exists a point that is mapped to the actual result under the function f . In
the evaluation of the function above at the given point, four quantities are involved, namely,
f, FA, x, XA. Forward stability is defined using the first two, while backward stability is
defined using the latter two.

Forward error is defined as ||fA (x) — f (x) || . In other words, the forward error aims at
estimating how close the final result is to the exact result.

Backward error is defined as ||XA — x|| , that is, it interprets this same result as an exact
calculation on perturbed data XA and seeks to determine how close XA is to x.

x
x
XA

f (x), exact arithmetic on given input data,
fA(x) = //(f (x)), floating point arithmetic on given input data,
f (XA) = f (//(x)), exact arithmetic on different input data,

||fA(x) — f(xA)|| : forward error,
||XA — x|| : backward error.

We are now ready to define stability of an algorithm.

The algoricthm fA (x) for computing f(x) is forward stable if

The same algorithm is called backward stable if

where O(E) is interpreted as a poynomial of modest degree in the size n of the problem
times e.
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46 Chapter 3. Tools from Matrix Theory

The two types of error introduced above are related through a Taylor series expansion,

Thus if the norm of the difference XA — x is small (say, on the order of machine precision),
the forward error can be upper bounded as follows:

| | f

Therefore, if the backward error is small, the forward error is bounded from above by the
product of the backward error and the condition number (see [171, p. 10]). We thus obtain
the following important rule of thumb.

The inner product in floating point arithmetic

As an illustration of numerical stability, we will now compute the floating point inner
product of two vectors x = (jt,-), y = (y,-) e R"; with s, = xf • y,-, the desired inner product
is obtained by summing these quantities, x* • y = Y%=i •*» ' yi-

In floating point arithmetic the order of summation plays a role. Here is a simple
example.

Example 3.10. The following experiment is conducted in MATLAB. Let a = ^, b = — |,
c = — £. In exact arithmetic the sum of these three fractions is zero, and that holds
for summation in any order. However, in floating point arithmetic we get (a + c) + b =

a = 0. The above differences are due to the fact that f l ( a ) = 5.000000000000000 • 10"1,
fl(b) = -3.333333333333333 • ICT1, //(c) = -1.666666666666667 • KT1; thus a is
represented without error, while the sum b+c happens to be exactly representable in floating
point arithmetic, as well.

Therefore our algorithm for computing the inner product will consist of choosing a
particular order of summation, namely, Sk = $k + &-i> 2 < k < n, Si = s\, which implies
that Sn is the desired result (or more precisely, an approximation thereof). In floating point
arithmetic, the following sums and products are computed:

Rule of Thumb: Forward Error   Contdi t ion Number   Backward Error
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3.3. Basic numerical analysis 47

Let //* = 7ik — 1 • Then we can write

where ex is the backward error and Cf is the forward error. We will now estimate /.
Since e, and 8{ are bounded in absolute value by machine precision, \nk\ < (1 + e)n

1 + n€ + n(n — l)y + • • • • Assuming that ne < 1, it can be shown that the largest L
denoted by /z, is:

The assumption we < 1 implies that the number of terms in the inner product cannot be
too big.

As indicated in the previous section, the error can be interpreted in two different
ways—one resulting from perturbation of the data and another resulting from perturbation
of the final result. We will estimate both of these errors. In the former case, we assume
that there is no perturbation in x, while there is perturbation in y: y = O-t/y,-) and y = (y,).
Thus ||y — y || < /z||y||, and the relative error in y has the upper bound /i:

This is the backward error. Since /x & ne, the algorithm used is backward stable. The
forward error £"=1 jr/yf/i,- can be bounded as | £"=1 Xiytm I < M E?=i 1 '̂ Il?i I. ̂  thus

the relative error has the upper bound

Recall from the previous section that K is the condition number of the inner product. Thus,
as expected, the forward error is bounded from above by the product of the backward error
times the condition number of the problem at hand.

Example 3.11. Backward and forward stable inner product calculation. A simple ex-
ample in MATLAB illustrates the issues discussed above. Consider the column vector of
length 1 million: b=ones (1000000,1) ; let a be the row vector of the same length:
a=exp ( 1 ) *b ' . We compute the inner product a*b. The exact result gives a • b = e • 106.
The result in MATLAB gives

while exp(l) = 2.718281828459054. Therefore, we have lost five significant digits
of accuracy. This can be explained as follows. According to the considerations above, the
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48 Chapter 3. Tools from Matrix Theory

backward error is of the order n€ « 106 • 10~16 = 10~10. The condition number for this
problem, given by (3.18), is 1. Therefore according to the rule of thumb given above, the
forward error is at most equal to the backward error. Indeed, the backward error implies a
loss of precision of six digits, while the actual forward error shows a loss of precision of
five digits.

Example 3.12. Ill-conditioned inner product gives large forward error. We will investigate
the computation of the exponentials E« = exp(ort), for t > 0, and a = ±1, using the
truncated power series expansion:

where the /th entries of these vectors are (x),- = a'"1 and (y)/ = 7rrn7> i = !,...,«.
As shown earlier in this section, the inner product is backward stable since ||ex|| < we;
to determine forward stability, we need the condition number of the inner product, which
was computed in (3.18), namely, K = ^Hyp- Thus for a = 1, it follows that K < *Jn.
For a, = — 1, however, this is approximately K % ^/n • e2t. Thus while for positive
exponent the computation is forward stable (i.e., the result will be accurate to within n 2 • e),
for negative exponent, the forward error is n* • € • exp(2t), which for t > 1 will lose
exp(2 1) digits of precision and thus may become unstable. For example, with n = 100,
exp(— 20) £z 2.0 • 10~9, the forward error is of the same order of magnitude, namely,
-2.1 • 10-9.

Conclusion. Taken as an algorithm for computing e~z, z > 0, this series expansion is
an unstable algorithm. On the other hand, computing ez and inverting ^ gives an algorithm
for computing e~z, which is both forward and backward stable.

Remark 3.3.1. When is a numerical result accurate? The answer to this question depends
on two issues: the problem has to have a good condition number (i.e., not be too sensitive to
perturbations in the data), and the algorithm used must be backward stable; this means that
the errors due to floating point arithmetic (round-off errors) must be attributable to execution
of the algorithm chosen on data that are close to the initial data. Thus,

Backward stability fay itself does not imply accurate answers.

We conclude this section with the forward error for a collection of important expres-
sions. For this purpose we need to introduce notation. Given the matrix A = (a,y), its
absolute value is equal to the matrix of absolute values | A |= (|a,71). Furthermore, given a
second matrix B, the notation | A |<| B | means |a,7| < \b{j\ for all i, j. Finally, note that
| AB|<| A | | B |.

The following are forward errors for various vector-matrix operations:

• //(Ax) = Ax + z, where | z |< At|A||x|, A € Rmxn, x e R", n « ne;

• //(AB) = AB + Z, where | Z |< /z|A||B|, A e ITxn, B € Rnxfe, fi « we;

• //(llx||2) = l|x||2 • (1 + 5), where |1 + 8\ < vT+~/T(l + e), x e R", n « nc.
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3.3. Basic numerical analysis 49

3.3.3 Two consequences

We will now briefly discuss two consequences of the above considerations: the stability
of the SVD and the ill-posedness of the rank of a matrix. Both are at the foundations of
subsequent developments.

Stability of the SVD

An important property of the SVD is that it can be computed in a backward stable way.
That is, in MATLAB notation, let [U, E, V] = svd(A.) be the exact decomposition, and let
[U, E, V] =fl(svd(A)) be the one obtained by taking into account floating point errors. It
can be shown (see, e.g., [144]) that the following holds:

As before, O(e) is a polynomial of modest degree in the size of the problem, times machine
precision €. In other words, (3.24) says that the SVD can be computed using a backward
stable algorithm.

Furthermore, it follows from the Fan inequalities (3.27) that given any E,

Thus |<T, — CT,-| < ||E|| = 0(e)||A||, which implies that the computation of the singular
values can be accomplished in a. forward stable manner as well. The above discussion is
summarized in the following result.

This property does not hold for the EVD. There exist matrices in which a small change
in the parameters causes a large change in the eigenvalues. Consider, for instance, a 10 x 10
matrix A in companion form with all 10 eigenvalues equal to 1. A small change of the
order of 10~3 in one of the entries of A causes the eigenvalues to change drastically. The
reason is that the condition number of the eigenvalues of this matrix is of the order of 1013.
Furthermore, the condition number of A (which is the distance to singularity) is of the order
of 105. Such phenomena motivate the use of pseudospectra (see Chapter 10.2).

Ill-posedness of rank computation

The rank of a matrix A € M n x m ,n < m, can be considered as a map p between the space
of all n x m matrices and the set of natural numbers I = {0, 1, ...,«},

We will show that for rank deficient matrices, this map is not differentiable. The Frechet
derivative of p denoted by Dp is defined by means of the equation

where DP(H) is linear in H. We distinguish two cases.

Lemma 3.13. The SVD of a matrix is well-conditioned with respect to perturbations
of its entries.
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50 Chapter 3. Tools from Matrix Theory

If A has full rank, /o(A) = n for H of sufficiently small norm (less than the smallest
singular value of A) p(A + H) = /o(A). Thus Dp can be chosen as the zero function.

If p(A) = k < n for almost all H of infinitesimally small norm, the rank of the
perturbed matrix becomes full /o(A + H) = n. Therefore, there exists no Frechet derivative
Dp (the defining equation cannot be satisfied). Therefore, we have the following.

The numerical rank

According to Corollary 3.4 on page 35, the rank of a matrix is equal to the number of
nonzero singular values. To define the numerical rank, we need to define a tolerance 8 > 0
(e.g., 8 = € || A||2 = €a\, where e is machine precision). The numerical rank of a matrix is
now defined as the number of singular values that are bigger than 8:

Although this is still an ill-posed problem, the tolerance is user specified. Therefore, it can
be adapted to the problem at hand so that the determination of the numerical rank becomes
well-posed. For instance, if there is a sufficient gap between, say, o> and o>+i, the tolerance
may be set as 8 = ak+°k+l, in which case the numerical rank will be k, and this remains
constant for sufficiently small perturbations.

Remark 3.3.2. A basic problem in numerical analysis is trying to decide when a small
floating point number should be considered as zero—or trying to decide when a cluster
of eigenvalues should be regarded as one multiple eigenvalue or as nearby but distinct
eigenvalues. In terms of backward error analysis, the computed singular values of A are the
exact singular values of the perturbed matrix A + E.

3.3.4 Distance to singularity

The remedy to the ill-posedness of the rank determination problem is to consider instead
the distance to singularity. For a given A e Rnxm, n < m, the distance to singularity in a
given norm is defined as the smallest norm of a matrix H e Rwxm such that the rank of the
perturbed matrix A — H is less than n. In a similar fashion, the distance to matrices of rank
k can be defined as the smallest norm of H such that A — H has rank at most k.

These distance problems in the 2-norm can be solved explicitly by means of the
SVD and are therefore well-conditioned. From the dyadic decomposition (3.11) of A, the
perturbation H = ]C/=*+i aiu>iv? *s sucn tnat A — H has k nonzero singular values and
hence rank k. The minimality follows from Lemma 3.7. We thus have the following result.

Lemma 3.15. Let A e M"xm, n < m, have singular values cr,(A), i = 1 , . . . , n. The
distance of A. to the set of rank k matrices in the 2-norm is Ok+\ (A), the (k + l)st singular
value of A.. Therefore the distance to singularity is an (A), the smallest singular value of A..

Lemma 3.14. The determination of the rank of a m atrix is an ill -posed problem.
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3.3. Basic numerical analysis 51

Often, the relative distance to singularity is of importance. It is the distance to
singularity scaled by the norm of A. Thus this distance in the 2-norm is the quotient of
the smallest to the largest singular values which, according to (3.19), is the inverse of the
2-condition number

relative distance to singularity =

We can say in general that the reciprocal of the relative distance to ill-posed problems is
equal to the 2-condition number, see Demmel [94] for an analysis of this issue.

Example 3.16. The SVD of A = ( J M is UEV*, where <n = &± = 1.618,

o-2 = ̂ ~ = .618, while

It follows that

, and tan0 = a2 ^9 = 31.72°.

is a matrix of least 2-norm (i.e., <r2) such that the perturbed A — H is singular. For an
account of other matrix distances to singularity, see Rump [282] and references therein.
For matrix nearness problems, see Higham [169]. This issue can be understood in terms of
pseudo spectra.

Example 3.17. Consider the square matrix of size n, with positive ones on the diagonal and
negative ones in all entries above the diagonal and zeros elsewhere. The absolute and the
relative distances to singularity decrease with increasing n:

Thus for n = 50 the matrix is singular, for machine precision tolerance. We also notice that
the distance of the above matrix to matrices of rank n — 2 is practically independent of n.
Such phenomena (small an but bounded an-\) are typical of Toeplitz matrices. For details,
see [70].

3.3.5 LAPACK software

LAPACK [7] is a state-of-the-art software package for the numerical solution of problems in
dense and banded linear algebra. It allows users to assess the accuracy of their solutions.
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52 Chapter 3. Tools from Matrix Theory

It provides, namely, error bounds for most quantities computed by LAPACK (see [7, Chap-
ter 4]. Here is a list of its salient features:

• solution of systems of linear equations,

• solution of linear least squares problems.

• solution of eigenvalue and singular value problems, including generalized problems,

• matrix factorizations,

• condition and error estimates,

• BLAS (basic linear algebra subprograms) as a portability layer,

• linear algebra package for high-performance computers, and

• dense and banded linear algebra for shared memory.

Starting with Version 6, MATLAB has incorporated LAPACK. Therefore, calls to dense
linear algebra algorithms (e.g., LU, QR, SVD, EVD) use LAPACK.

3.4 General rank additive matrix decompositions*
In this section we investigate matrix decompositions

that satisfy the property that the rank of the sum is equal to the sum of the ranks. From our
earlier discussion it follows that the SVD provides such a decomposition. Below, a general
characterization of such decompositions is given, following the developments in [88]; see
also [185].

Lemma 3.18. Let A e Rnxn, B e Rnxk, C e Rkxn, D e Rkxk with rankB = rankC =
rankD = k. Then

if and only if there exist matrices X e Rnxk and Y e Rkxn such that

Proof. First recall the identity

Therefore, rank ( £ ? ^ = rank (A - BD~l C) + rank D; A - BD~l C is called the Schur
\ *- " J

complement of the block matrix in question. If conditions (3.26) hold, then
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3.5. Majorization and interlacing* 53

Therefore, the rank of this matrix is equal to the rank of A; this implies rank A = rank (A —
BD"1 C) + rank D, and since rank D = rank (BD"1 C), this proves the sufficiency of (3.26).
Conversely, let (3.25) be satisfied. From the above analysis it follows that

Then the fact that the rank of the first block row and the first block column of this matrix
both equal the rank of A implies the existence of X, Y, such that the first two conditions
in (3.26) are satisfied; the third condition follows then from the fact that the whole matrix
should have rank equal to that of A. D

The following result for the rank-one case was discovered by Wedderburn in the early
1930s [353].

Corollary 3.19. Rank-one reduction. The rank of the difference A — ̂ vw*, v, w e R",
is one less than the rank of PL e Rnxn if and only if\ = Ax, w* = y*A, and n = y* Ax for
some vectors x, y of appropriate dimension.

Least squares

Given is the set of data (measurements) x* = ( 7
z
k ) e R w , f c = l , 2 , . . . , N > n , where

yjt e RWl , Z£ e R"~ni . These data are arranged in matrix form:

The least squares problem consists of finding A 6 M(w""l)xni such that ||AY - Z||£ is
minimized, where the subscript F denotes the Frobenius norm defined in (3.7). This latter
expression can also be written in the more familiar form Y^Li II Ay; — Zi ; 111- The least squares
solution leads to the following rank additive decomposition of the data matrix X = X + X,
where

where Y+ denotes a generalized inverse of Y (see (3.17)). Notice also that the decomposition
is orthogonal since (X, X) = X*X = 0. It follows from the above considerations that in
least squares, the first n\ components of each measurement vector are assumed to be error
free, an assumption that may not always be justified.

3.5 Majorization and interlacing11

In this section we review some relationships between the eigenvalues, the singular val-
ues, and the diagonal entries of a matrix. These relationships are known as majorization
inequalities. For details, see Marshall and Olkin [233], Horn and Johnson [182], and
Thompson [324]. Majorization inequalities will be used in section 9.4 to express an average
rate of decay of the so-called Hankel singular values.
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54 Chapter 3. Tools from Matrix Theory

Definition 3.20. Given two vectors x, y e R", with entries arranged in decreasing order,
*i > *i+i> yi > yi+i> we say that y majorizes x additively, or multiplicatively, and write
x -<j, y, x -<n y, respectively, if the following inequalities hold:

say 
y weakly majorizes x and write x -<E ilu y, x -<n,

=1 - " - "
y, 1/f/ie last relationship

above is an inequality: ]T)"=1 *,- < 5Z"=1 ;y,-, n"=1Jtj < n"=1y,-, respectively.

Given the above definitions, the following holds.

Proposition 3.21. Given two real vectors x, y € Rn with ordered entries as above, let
x = Sy, for some S e R"x". Then y majorizes x additively if and only ifS is a doubly
stochastic matrix, i.e., it has nonnegative entries and the sum of its rows and columns are
equal to one.

Next, consider matrices A and B such that B = UAV* (all matrices are square); let
fi = [B\i • • • Bnn]*, a = [An • • • Ann]* denote the vectors containing the diagonal entries
of each matrix. A straightforward computation shows that

The matrix U Q V is the Hadamard product of U and V and is defined as the elementwise
multiplication of these two matrices: (U O V),-y = C/,y V,,.

Consider the symmetric matrix A = A* e Rnxra. Let its eigenvalue decomposition be
A = UAU*; finally, let a denote the vector of diagonal entries of A, and A, = (X\ • • • A,,,)*,
the vector composed of the eigenvalues of A. We assume without loss of generality that the
entries of a and X are arranged in decreasing order. Simple algebra reveals that

and since U is unitary, U O U is doubly stochastic (actually, it is called orthostochastic},
and therefore a. x£ A.

Proposition 3.22. The ordered vector of eigenvalues of a symmetric matrix majorizes the
ordered vector of diagonal entries a. -<E X. Conversely, given any set of vectors satisfying
this majorization relationship, there exists a symmetric matrix with the prescribed diagonal
entries and eigenvalues.
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3.5. Majorization and interlacing* 55

A similar result holds for the singular values and the absolute values of the diagonal
entries of an arbitrary matrix A e R"xw.

Proposition 3.23. Let a e R" be such that a, = AH and |a, | > |a,+i |. Furthermore, let
a € R" be such that a? = A(AA*) is the ith singular value of A. Then a weakly majorizes
| a | and in addition satisfies the inequality

These conditions are also sufficient. In other words, given vectors a and a satisfying the
above inequalities, there exists a matrix A with the prescribed diagonal entries and singular
values.

We now turn our attention to the relationship between eigenvalues and singular values.
For a symmetric (Hermitian) matrix, cr, = |X/|, i.e., the singular values are equal to the
absolute values of the eigenvalues. For arbitrary matrices, both additive and multiplicative
versions of the majorization inequalities hold.

Proposition 3.24. Given a matrix A. e R"xn, letXi, a, denote the ith eigenvalue and singular
value, respectively. Let also fa = A.,- [^-^-], i = !,...,«. These quantities are ordered
as follows: |A/| > |A,-+i|, |o/| > |cr,+i|, and fa > fa+\. The following majorizations hold:

The next result is concerned with sums of matrices.

Proposition 3.25. Consider the matrices A, B e Rnx". Let a( • ) denote the vector of
ordered singular values. Then

Furthermore, in the opposite direction, wehaveY%=\ cr,(A+B) > Y^i=i [ai(&) + orn_,-+i(B)],
k = !,...,«. For Hermitian matrices, letX( • ) denote the vector of ordered eigenvalues.
Then the symmetry A = A*, B = B* implies

Finally, the following inequality is due to Fan:

where r, s > 0, r + s + 1 < n.

Remark 3.5.1. Inequality (3.27) can be used to derive the lower bound given by (3.15).
For r = 0 and s = k, we obtain o-k+i(\ + B) < <ri(A) + Ojt+i(B). Thus by relabeling
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56 Chapter 3. Tools from Matrix Theory

the quantities involved, we get o~k+i(A) < <7i(A — X) + a>+i(X), where X is a rank-fc
approximation of A. Since the rank of X is at most k, 0£+i(X) = 0, and the desired
inequality (3.15), <7&+i(A) < crj(A — X) follows; namely, provided that the approximant
has rank at most k, the norm of the error is lower-bounded by the (k + l)st singular value of A.

We conclude with a discussion of the relationship between the spectral properties of
matrices and some submatrices. The classical result in this area is known as the Cauchy
interlacing property. It states that if A,-, / = ! , . . . ,«, are the eigenvalues of a given
symmetric matrix A, arranged in decreasing order, and A, , / = I , ... ,n — I , are the
eigenvalues of the principal submatrix A^j of A obtained by deleting column k and row k
from A, then

A more general result states the following.

Proposition 3.26. Given A = A* e Rnxn and U e Rnxk such that U*U = It, let
E = U*AU e Rkxk. Denote the ordered eigenvalues of A, B by aif $. The following
interlacing inequalities hold:

Conversely, given A an d k real numbers A satisfying the above inequalities, there exists a
matrix U composed ofk orthonormal columns such that the eigenvalues ofE = U*AU are
precisely the desired ft.

The above result has an analogue for arbitrary matrices, where the singular values
take the place of the eigenvalues. However, no interlacing holds.

Proposition 3.27. Given A € W xn, let B be obtained by deleting column k and row kfrom
A. The singular values a, and ft of A, B, respectively, satisfy the inequalities

Combining the above results, we obtain a result concerning the singular values of the
product of two matrices.

Corollary 3.28. Given two matrices A e Rnxk andE e Rkxm, k < n, m, there hold

together with a multiplicative majorization:

nf=1orI-(AB) < nf^orfCAK-CB), * = 1,. . . , n - 1,
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3.6 Chapter summary
The focus of this chapter is on tools from matrix analysis, which will be used subsequently.
The first section introduces norms of vectors and matrices, an important ingredient for
carrying out an analysis of the quality of approximations and of the numerical accuracy
of computations. The second section introduces the SVD which, as mentioned, is one of
the most important factorizations in matrix analysis, if not the most important. Associated
with the SVD is the Schmidt-Eckart-Young-Mirsky theorem, which provides the solution
of the problem of approximating matrices (operators) by ones that are of lower rank and are
optimal in the 2-induced norm. This is a prototype of the kind of approximation result one
would like to obtain, with the singular values of the original matrix providing a trade-off
between achievable accuracy and desired complexity. The third section's goal is to briefly
discuss the issue of accuracy of computations by providing an analysis of the various sources
of error. Backward stability and forward stability are important concepts in this regard. The
dyadic decomposition (3.11) leads to rank additive decompositions of matrices. The fourth
section, which can be omitted on a first reading, gives a general account of rank additive
matrix decompositions; it is also shown that the popular least squares data fitting method
induces a rank additive decomposition of the data matrix. The final section (which can also
be omitted at first reading) lists a collection of results on majorization inequalities.
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Chapter 4

Linear Dynamical Systems:
Parti

In this chapter we review some basic results concerning linear dynamical systems, which are
geared toward the main topic of this book, namely, approximation of large-scale systems.
General references for the material in this chapter are [280], [304], [370], [371], [76]. For
an introduction to linear systems from basic principles, see the book by Polderman and
Willems [270]. Here it is assumed that the external variables have been partitioned into
input variables u and output variables y, and we consider convolution systems, i.e., systems
where the relation between u and y is given by a convolution sum or integral

where h is an appropriate weighting pattern. This is called the external description. We
are also concerned with systems in which in addition to the input and output variables, the
state x has been defined as well. Furthermore, the relationship between x and u is given by
means of a set of first-order difference or differential equations with constant coefficients,
while that of y with x and u is given by a set of linear algebraic equations. It is assumed
that x lives in a finite-dimensional space:

where a is the derivative operator or shift operator and A, B, C, D are linear constant maps.
This is called the internal description.

The first section is devoted to the discussion of systems governed by (4.1), while the
next section investigates some structural properties of systems described by (4.2), namely,
reachability and observability. Closely related is the concept of gramians for linear systems,
which is central in subsequent developments. The third section discusses the equivalence
of the external and internal descriptions. As it turns out, going from the latter to the former
involves the elimination of x and is thus straightforward. The converse, however, is far from
trivial as it involves the construction of state. It is called the realization problem.

59
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60 Chapter 4. Linear Dynamical Systems: Part 1

4.1 External description
Let U = {u : Z -> Rm}, Y = {y : Z -» Rp}. A discrete-time linear system £ with m
input and p output channels can be viewed as an operator between the input space U and
the output space Y, S : U — > Y, which is linear. There exists a sequence of matrices
h(i, ./) e Rpxm such that

This relationship can be written in matrix form as follows:

The system Z described by S is called causal if

and time-invariant if

For a time-invariant system E we can define the sequence of p x m constant matrices,

This sequence is called the impulse response of Z. In the single-input, single-output (SISO)
case m = p = 1, it is the output obtained in response to a unit pulse,

In the multi-input, multi-output (MIMO) case, the subsequence of h composed of the kth
column of each entry h, is produced by applying the input e^5(0, where e* is the kth
canonical unit vector (all entries are zero except the kth, which is 1). The operation of S
can now be represented as a convolution sum:

The convolution sum is also known as a Laurent operator in the theory of Toeplitz matrices
(see, e.g., [70]). Moreover, the matrix representation of S in this case is a (doubly infinite)
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4.1. External description 61

block Toeplitz matrix,

In what follows we will restrict our attention to causal and time-invariant linear systems.
The matrix representation of S in this case is lower triangular and Toeplitz. In this case

The first term, hou(f), denotes the instantaneous action of the system. The remaining terms
denote the delayed or dynamic action of E.

In analogy to the discrete-time case, let U = {u : E ->• R"1}, Y = {y : R -* Rp}. A
continuous-time linear system E with m input and p output channels can be viewed as an
operator <S mapping the input space U to the output space Y, which is linear. In particular,
we will be concerned with systems for which S can be expressed by means of an integral

where h(t, T) is a matrix-valued function called the kernel or weighting pattern of D. The
system just defined is causal if

and time-invariant if h depends on the difference of the two arguments,

In this case S is a convolution operator

It is assumed from now on that <S is both causal and time-invariant, which means that the
upper limit of integration can be replaced by t. In addition, as in the discrete-time case, we
will distinguish between instantaneous and purely dynamic action, that is, we will express
the output as a sum of two terms, the first being the instantaneous and the second the dynamic
action:

where ho € Rpx/" and ha is a smooth kernel. In particular, this requirement implies that h
can be expressed as
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62 Chapter 4. Linear Dynamical Systems: Part 1

where 8 denotes the ^-distribution. It readily follows that h is the response of the system to
the impulse 8 and is therefore termed the impulse response of Z .

In what follows we will assume that ha is an analytic function. This assumption
implies that ha is uniquely determined by the coefficients of its Taylor series expansion at

It follows that if (4.6) is satisfied, the output y is at least as smooth as the input u, and 2 is
consequently called a smooth system. Hence, just like in the case of discrete-time systems,
smooth continuous-time linear systems can be described by means of the infinite sequence
of p x m matrices h,, / > 0. We formalize this conclusion next.

Definition 4.1. The external description of a time-invariant, causal, and smooth continuous-
time system and that of a time-invariant, causal, discrete-time linear system with m inputs
and p outputs is given by an infinite sequence of p x m matrices,

The matrices h^ are often referred to as the Markov parameters of the system E.

Notice that by abuse of notation, we use Z to denote both the system operator and the
underlying sequence of Markov parameters. It should be clear from the context which of
the two cases applies.

The (continuous- or discrete-time) Laplace transform of the impulse response yields
the transfer function of the system

The Laplace variable is denoted by £ for both continuous- and discrete-time systems. It
readily follows that H can be expanded in a formal power series in £:

This can also be regarded as a Laurent expansion of H around infinity. Consequently, (4.3)
and (4.5) can be written as

Remark 4.1.1. The behavioral framework. In the classical framework (see, e.g., Kalman,
Falb, and Arbib [192, Chapter 1]), a dynamical system is viewed as a mapping which trans-
forms inputs u into outputs y. Two basic considerations express the need for a framework
at a more fundamental level. First, in many cases (think, for example, of electrical circuits),
the distinction between inputs and outputs is not a priori clear; instead, it should follow as
a consequence of the modeling. Second, it is desirable to be able to treat the different rep-
resentations of a given system (for example, input-output and state-space representations)
in a unified way.
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4.2. Internal description 63

In the behavioral setting, the basic variables considered are the external or manifest
variables w, which consist of u and y, without distinguishing between them. The collection
of trajectories describing the evolution of w over time defines a dynamical system. It turns
out that this definition provides the right level of abstraction, necessary for accommodating
the two considerations laid out above. This establishes the foundations of a parameter-free
theory of dynamical systems, the advantages of representation-independent results—or,
vice versa, the disadvantages of representation-dependent results—being well recognized.
The resulting central object is the most powerful unfalsified model (MPUM) derived from
the data, which, again, is a space of trajectories. Subsequently, inputs and outputs can
be introduced and the corresponding input-output operator recovered. For details on the
behavioral framework, see [270]; see also [272]. •

4.2 Internal description
Alternatively, we can characterize a linear system via its internal description, which in
addition to the input u and the output y uses the state x. Again, for a first-principles
treatment of the concept of state, see the book by Willems and Poldeman [270]. For our
purposes, three linear spaces are given: the state space X, the input space U, and the output
space Y, containing functions taking values in Ew, Rm, and Rp, respectively. The state
equations describing a linear system are a set of first-order linear differential or difference
equations, according to whether we are dealing with a continuous- or a discrete-time system:

In both cases, x € X is the state of the system, while u e U is the input function. Moreover,

are (constant) linear maps; the first is called the input map, while the second describes the
dynamics or internal evolution of the system. Equations (4.9) and (4.10) can be written in
a unified way,

where a denotes the derivative operator for continuous-time systems and the (backward)
shift operator for discrete-time systems.

The output equations, for both discrete- and continuous-time linear systems, are com-
posed of a set of linear algebraic equations,

where y is the output function (response) and

are (constant) linear maps; C is called the output map. It describes how the system interacts
with the outside world.
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64 Chapter 4. Linear Dynamical Systems: Part 1

In what follows, the term linear system in the internal description is used to denote
a linear, time-invariant, continuous- or discrete-time system which is finite-dimensional.
Linear means that U, X, Y are linear spaces, and A, B, C, D are linear maps; finite-
dimensional means that m, n, p are all finite positive integers; time-invariant means that A,
B, C, D do not depend on time; their matrix representations are constant n x n, n x m,
p x n, p x m matrices. By a slight abuse of notation, the linear maps A, B, C, D as well as
their matrix representations (in some appropriate basis) are denoted with the same symbols.
We are now ready to give a definition.

Definition 4.2. (a) A linear system in internal or state space description is a quadruple of
linear maps (matrices)

The dimension of the system is defined as the dimension of the associated state space:

(b) Z is called stable if the eigenvalues of A. have negative real parts (for continuous-time
systems) or lie inside the unit disk (for discrete-time systems).

The concept of stability is introduced formally in the above definition. For a more
detailed discussion, see section 5.8. We will also use the notation

It denotes a linear system where either D = 0 or D is irrelevant for the argument pursued.

Example 4.3. We consider the dynamical system X shown in Figure 4.1. The external
variables are the voltage applied at the terminals denoted by u and the voltage across the
resistor denoted by y. The former is the input or excitation Junction and the latter the output
or measured variable of Z. One choice for the internal or state variables is to pick the
current through the inductor, denoted by xi, and the voltage across the capacitor, denoted
by X2- The state equations are thus u = Rx\ + L\\ + x2 and Cx2 = xi, while the output
equation is y = Rx\. Consequently, in (4.9), x = (xi, X2)*,

The system has dimension n = 2, and assuming that /?, L, C are positive, it is stable since
the characteristic polynomial x\(s) = s2 + j^s + -^ of A has roots with negative real parts.

Solution of the state equations

We will now give the solution of (4.11). For this we will need the matrix exponential;
given M e R"xn and t e R, we define the matrix exponential by means of the same series
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4.2. Internal description 65

Figure 4.1. An RLC circuit.

representation as the scalar exponential, namely,

Let 0(u; XQ; t) denote the solution of the state equations (4.11), i.e., the state of the system
at time t attained from the initial state XQ at time to, under the influence of the input u. In
particular, for the continuous-time state equations (4.9),

while for the discrete-time state equations (4.10),

For both discrete- and continuous-time systems, it follows that the output is given by

If we compare the above expressions for to = — oo and XQ = 0 with (4.3) and (4.5), it
follows that the impulse response h has the form below. For continuous-time systems,

where 8 denotes the 8 -distribution. For discrete-time systems,

Finally, by (4.8) the Laplace transform of the impulse response, which is called the transfer
function of Z, is

where £ = s (continuous-time Laplace transform) and £ = z (discrete-time Laplace or
Z-transform). Expanding the transfer function in a Laurent series for large f , i.e., in the
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66 Chapter 4. Linear Dynamical Systems: Part 1

neighborhood of infinity, we get

and the corresponding external description given by the Markov parameters (4.7) is

Sometimes it is advantageous to describe the system from a point of view different
from the original one. In our case, since the external variables (i.e., the input and the output)
are fixed, only the state variables can be transformed. In particular, if the new state is

the corresponding matrices describing the system will change. More precisely, given the
state transformation T, (4.11) and (4.12) become

where D remains unchanged. The corresponding system triples are called equivalent. Put
differently, £ and Z are equivalent if

for some invertible matrix T. If Z and Z are equivalent with equivalence transformation T,
it readily follows that

This immediately implies that h* = h^, k = 1, 2, ____ We have thus proved the following.

Proposition 4.4. Equivalent triples have the same transfer function and consequently the
same Markov parameters.

Example 4.5. Continuation of Example 4.3. The first five Markov parameters of Z are

Assuming that /? = l,L = l,C = l,the matrix exponential is
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4.2. Internal description 67

Thus, the impulse response is
while the transfer function (in terms of R, L, C) is

Finally, if the state is changed to x = Tx, where T = ( j _| ), the new state space

representation of Z is

4.2.1 The concept of reachability

In this subsection we introduce and discuss the fundamental concept of reachability of a
linear system Z. This concept allows us to identify the extent to which the state of the
system x can be manipulated through the input u. The related concept of controllability
is discussed subsequently. Both concepts involve only the state equations. Consequently,
for this subsection and the next, C and D will be ignored: £ = ( A I B \ A € R"x",

B e Enxm. For a survey of reachability and observability (which is introduced later),
see [16].

Definition 4.6. Given is Z = ( A I B \ A € M"x", B € Ertxm. A state x 6 X is reachable

from the zero state if there exist an input function u(t), of finite energy, and a time T < oo,
such that

The reachable subspace X"53** C X o/Z is the set containing all reachable states <?/£. The
system Z is (completely) reachable {fX"*"* = X. Furthermore,

is the reachability matrix ofT,.

By the Cayley-Hamilton theorem, the rank of the reachability matrix and the span of
its columns are determined (at most) by the first n terms, i.e., AfB, f = 0 , !,...,« — 1.
Thus for computational purposes the following (finite) reachability matrix is of importance:

The image of a linear map L is denoted by im L. The fundamental result concerning
reachability is the following.
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68 Chapter 4. Linear Dynamical Systems: Part 1

for both the continuous- and the discrete-time case,

Breach -g Q nnear subspace oyx, given by the formula

As mentioned in section 10.4, expression (10.7) is referred to as the Krylov subspace
in the numerical linear algebra community, while it is known as the reachability space in
the systems community.

Corollary 4.8. (a) AXreach C Xreach. (b) £ is (completely) reachable if and only if
rankft(A, B) = n. (c) Reachability is basis independent.

Proof. We will first prove Corollary 4.8. (a) A Xreach = A im ft(A, B) = im Aft(A, B) =
im (AB A2B • • • ) C im (B AB • • • ) = Xreach. (b) The result follows by noticing that
Z is (completely) reachable if and only if im7£(A, B) = R". (c) Let T be a nonsingular
transformation in X, i.e., det T /: 0. It follows from (4.24) that the pair A, B is transformed
into the pair TAT"1, TB. It is readily checked that

which shows that the ranks of the original and the transformed reachability matrices are the
same. D

Before proceeding with the proof of the theorem, some remarks are in order. In
general, reachability is an analytic concept. The above theorem, however, shows that
for linear, finite-dimensional, time-invariant systems, reachability reduces to an algebraic
concept depending only on properties of A and B and, in particular, on the rank of the
reachability matrix ft(A, B) but independent of time and the input function. It is also
worthwhile to notice that formula (4.27) is valid for both continuous- and discrete-time
systems. This, together with a similar result on observability (4.39), has as a consequence the
fact that many tools for studying linear systems are algebraic. It should be noticed, however,
that the physical significance of A and B is different for the discrete- and continuous-time
cases; if we discretize, for instance, the continuous-time system x(t) = Acontx(f) +Bcontu(0
to \(t + 1) = Adiscrx(0 + Bdiscru(f), then Adiscr = eAcont.

A very useful concept is that of the reachability gramian. It is used in the proof of
the theorem above and extensively in later chapters.

Definition 4.9. The finite reachability gramians at time t < oo are defined for continuous-
time systems as

and for discrete-time systems as

Theorem 4.7 Given
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4.2. Internal description 69

A Hermitian matrix X = X* is called positive semidefinite (positive definite) if its
eigenvalues are nonnegative (positive). The difference of two Hermitian matrices X, Y
satisfies X > Y, (X > Y) if the eigenvalues of the difference X — Y are nonnegative
(positive).

Proposition 4.10. The reachability gramians have the following properties: (a) P(t) =
P*(t) > 0 and (b) their columns span the reachability subspace, i.e.,

This relationship holds for continuous -time systems for all t > 0 and for discrete-time
systems (at least) for t > n.

/ A I R \
Corollary 4.11. Z = f - - J is reachable if and only if P(t) is positive definite for some

Proof. Next we will prove Proposition 4.10. (a) The symmetry and semidefiniteness of the
reachability gramian follows by definition, (b) To prove the second property, it is enough to
show that q _L P(t) if and only if q ± 7£(A, B). Since P(t) is symmetric and semidefinite,
q _L P(t) if and only if q*P(t)q = 0. Moreover,

is equivalent to B*eA*fq = 0 for all / > 0. Since the exponential is an analytic function,
this condition is equivalent to the function and all its derivatives being zero at t = 0, i.e.,
B*(A*)I'~1q = 0, i > 0. This in turn is equivalent to qJ-A'^B, / > 0, i.e., q_L?e(A, B).
The proof for discrete-time systems is similar. D

Proof. We now turn our attention to Theorem 4.7. First we show that Xreach is a linear
space, i.e.,

if x, = 0(u,-; 0; 7-) e Xreach, i = 1, 2, then «

for all oci,a2 e R. Let T\ > T2- Define the input function

It is readily checked that for both continuous- and discrete-time systems,

Next we prove (4.27) for discrete-time systems. Consider

Clearly, x 6 imT^f (A, B) c im7£(A, B). Conversely, consider an element x e im7?.(A, B).
By the Cayley-Hamilton theorem, this implies x e im 7£n(A, B); thus, there exist elements
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70 Chapter 4. Linear Dynamical Systems: Part 1

e Rm, j = 0 ,1, . . . , n - 1, such that x = 0(u; 0; n - 1). To prove (4.27) for
continuous-time systems, we make use of the expansion (4.16), i.e., e^f = ]T^>o a-iM^'"1'
Let x e Xreach. Then, for some u, f we have

which shows that x e im 7£(A, B).
For the converse inclusion, we use the proposition given above, which asserts that for

every x € im 7£(A, B), there exists f such that

where P is the reachability gramian and f is any positive real number for the continuous-
time case and at least n for the discrete-time case. Choose

for the continuous-time case and

for the discrete-time case. (Recall that * denotes transposition if the matrix or vector is real
and denotes complex conjugation and transposition if the matrix or vector is complex.) It
follows that x = 0(u; 0; f) e Xreach. This concludes the proof of the theorem. D

Remark 4.2.1. A formula for the matrix exponential. Consider the square matrix A e Rv x v ,
with eigenvalues A,-, i = 1, . . . , v. One way to compute the matrix exponential of A given
by (4. 16) is

If the eigenvalues of A are distinct, the functions 0, are 0,-(f) = ekit, i = 1, . . . , v, and V is
the Vandermonde matrix,

If the eigenvalues are not distinct, the functions 0, are a fundamental set of solutions of the
autonomous differential equation q(D)f — 0, where D = Jj and q is the characteristic
polynomial of A. In this case the Vandermonde matrix has to be modified accordingly.

From a numerical viewpoint, the computation of the matrix exponential is a challeng-
ing proposition. A method known as scaling and squaring yields the best results for a wide
variety of matrices A. A survey on this topic can be found in Moler and Van Loan [241].
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4.2. Internal description 71

The definition of the inner product for vector- valued sequences and functions is given
in (5.12). The energy or norm of the sequence or function f denoted by || f || is thus defined
as its 2-norm, i.e.,

o
The input function u defined by (4.30) and (4.31) is a minimal energy input which steers
the system to the desired state at a given time.

Proposition 4.12. Consider u defined by (4.30) and (4.3 1), and let u be any input function
which reaches the state x at time T, i.e., 0(u; 0; T) = x. Then

Furthermore, the minimal energy required to reach the state x at time f is equal to the
energy of the input function u, which is equal to f *"P(f)f ; if the system is reachable, this
formula becomes

Proof. The proof is based on the fact that the inner product of u with u — u is zero. D

From the above considerations, we can quantify the time needed to arrive at a given
reachable state.

/ A I R \Proposition 4.13. Given is *E = ( - - J. (a) For discrete-time systems, every reachable

state can be reached in at most n time steps, (b) For continuous-time systems, every
reachable state can be reached arbitrarily fast.

The second part of the proposition implies that the delay in reaching a given state can
be attributed to the nonlinearities present in the system.

Proof. Part (a) follows immediately from the Cayley-Hamilton theorem together with
(4.27). In the latter part of the proof of Theorem 4.7, we showed that for any x € Xreach

we have x = 0(u; 0; 71), where u is defined by (4.30) and (4.31), while f is an arbitrary
positive real number. This establishes claim (b). D

Next we show that a nonreachable system can be decomposed in a canonical way
into two subsystems: one whose states are all reachable and a second whose states are all
unreachable.

J . There

exists a basis in X such that A, B have the following matrix representations:

where the subsystem Z is reachable.

Lemma 4.14. Reachable canonical decomposmposition Given isco
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72 Chapter 4. Linear Dynamical Systems: Part 1

Proof. Let X' c X be such that X = Xreach + X' and dim X' = n - q. Choose a basis
x i , . . . , xn of X so that X i , . . . , xq is a basis of Xreach and x ^ + i , . . . , xn is a basis for X'.
Since Xreach is A-invariant, the matrix representation of A in the above basis has the form
given by formula (4.35). Moreover, since imB c Xreach, the matrix representation of B in
the above basis has the form given by the same formula. Finally, to prove that Ar e R^x<?,
Br € M.qxm is a reachable pair, it suffices to notice that

This concludes the proof of the lemma. D

Thus every system £ = ( — j can be decomposed in a subsystem !£r =

( A [ Br )» which is reachable, and in a subsystem T,f = ( Ap ° ), which is completely

unreachable, i.e., it cannot be influenced by outside forces. The interaction between Zr and
T,f is given by Ar^. Since A.fr = 0> it follows that the unreachable subsystem T,f influences
the reachable subsystem Zr but not vice versa. It should be noticed that although X' in the
proof above is not unique, the form (block structure) of the reachable decomposition (4.35)
is unique.

We conclude this subsection by stating various equivalent conditions for reachability.

The fourth and fifth conditions in the theorem are known as the Popov-Belevich-
Hautus (PBH) tests for reachability. The last condition of the theorem is given for com-
pleteness; the concept of left coprimeness of polynomial matrices is not used further in this
book; for a definition, see [123].

Proof. The equivalence of the first three statements has already been proved. The equiva-
lence between conditions 4 and 5 is straightforward, and 6 can be considered as a different
way of stating 5. We will prove the equivalence between conditions 1 and 4.

If there exists some nonzero v for which v* A = A.v*andv*B = 0, clearly v*K(A., B) =
0; this implies the lack of reachability of (A, B). Conversely, let (A, B) be unreachable;
there exists a basis in the state space such that A and B have the form given by (4.35).

Theorem 4.15. Reachability conditions. The following are equivalent:

1. The pair (A, B), A is reachable.

2. The rank of the reacabilty matrix is full: rank R(A, B) = n

3. The reachability gramian is positive definite P(t) > 0 for some t > 0.

4. No left eigenvector v of A is in the left kernel of B: 

5. rank = n for all

6. The polynomial matrices sI – A and B are left coprime.
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4.2. Internal description 73

Let v2 ^ 0 be a left eigenvector of A?. Then v = (0 vp* (where 0 is the zero vector of
appropriate dimension) is a left eigenvector of A that is also in the left kernel of B. This
concludes the proof. D

After introducing the reachability property, we introduce a weaker concept, which is
sufficient for many problems of interest. Recall the canonical decomposition (4.35) of a
pair (A, B).

is stabilizable if A.? is stable, i.e., all its eigen-

values either have negative real parts or are inside the unit disk, depending on whether we
are dealing with continuous- or discrete-time systems.

Remark 4.2.2. Reachability is a generic property. This means, intuitively, that almost every
n x n, n x m pair of matrices A, B satisfies

Put differently, in the space of all n x «, n x m pairs of matrices, the unreachable pairs form
a hypersurface (of "measure" zero).

A concept that is closely related to reachability is that of controllability. Here, instead
of driving the zero state to a desired state, a given nonzero state is steered to the zero state.
More precisely, we have the next definition.

Definition 4.17. Given £ = ( A B \ a (nonzero) state x € X is controllable to the zero

state if there exist an input function u(f) and a time f < oo, such that

The controllable subspace Xcontr o/E is the set of all controllable states. The system E is
(completely) controllable /f Xcontr = X.

The next theorem shows that for continuous-time systems the concepts of reachability
and controllability are equivalent, while for discrete-time systems the latter is weaker. For
this reason, only the notion of reachability is used in what follows.

Theorem 4.18. Given is £ = ( A I B ). (a) For continuous-time systems, Xcontr = Xreach.

(b) For discrete-time systems, Xreach c Xcontr; in particular, Xcontr = X1^ + ker A".

Proof, (a) By definition, x e Xcontr implies 0(u; x; 7) = 0 for some u; this implies

Thus, x € <?-ArXreach c Xreach; the latter inclusion follows because by Corollary 4.8, X™"*
isA-invariant. Thus,Xcontr c X1****. Conversely, let x € XKacb; there exist u and T such that

Definition 4.16. The pair
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74 Chapter 4. Linear Dynamical Systems: Part 1

-x = 0(u; 0; T). It follows that -eATx e Xreach, which in turn implies 0(u; x; T) = 0.
Thus, x e Xcontr, i.e., Xreach c Xcontr. This completes the proof of (a).

(b)Letx e Xreach. Then, -x = 0(u; 0; T). Since Xreach is A-invariant, Arx e Xreach.
But x satisfies 0 (u, x, T) = 0. Thus, x e Xcontr. The converse does not hold true in general,
as A may be singular. D

Remark 4.2.3. From the above results it follows that for any two states Xi , x2 € Xreach there
exist Ui2, T\2 such that Xj = 0(iii2; x2; T\i). To see this, note that since x2 is reachable it is
also controllable; thus there exist u2, TZ such that 0 (u2; x2; T2) = 0. Finally, the reachability
of Xi implies the existence of ui, T\ such that Xi = 0(ui; 0; 7\). The function Ui2 is then
the concatenation of u2 with Ui , while T\2 = T\ + Ti. In general, if Xi , x2 are not reachable,
there is a trajectory passing through the two points if and only if

x

where f (A, T) = eXT for continuous-time systems and f (A, T) = Ar for discrete-time
systems. This shows that if we start from a reachable state Xi / 0, the states that can be
attained are also within the reachable subspace.

Distance to reachability/controllability

Following the considerations in section 3.3.3, the numerical computation of rank is an ill-
posed problem. Therefore, the same holds for the numerical determination of reachability
(controllability) of a given pair (A, B). One could consider instead the numerical rank of
the reachability matrix 7£(A, B) or of the reachability gramian P(T) or, if the system is
stable, of the infinite gramian P.

A measure of reachability that is well-posed is the distance of the pair to the set of
unreachable/uncontrollable ones, denoted by 8r (A, B). Following part 5 of Theorem 4.15,
this distance is defined as follows:

In other words, this is the infimum over all complex (JL of the smallest singular value of
-A, B].

4.2.2 The state observation problem

To be able to modify the dynamical behavior of a system, very often the state x needs to
be available. Typically, however, the state variables are inaccessible and only certain linear
combinations y thereof, given by the output equations (4.12), are known. Thus we need to
discuss the problem of reconstructing the state x(T) from observations y(r), where r is in
some appropriate interval. If T e [T, T + 1], we have the state observation problem, while
if T € [T — t, T], we have the state reconstruction problem.

The observation problem is discussed first. Without loss of generality, we assume that
T = 0. Recall (4.17), (4.18), and (4.19). Since the input u is known, the latter two terms
in (4.19) are also known for t > 0. Therefore, in determining x(0) we may assume without
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4.2. Internal description 75

loss of generality that u(-) = 0. Thus, the observation problem reduces to the following:
given C0(0; x(0); t) for t > 0, find x(0). Since B and D are irrelevant, for this subsection,

Definition 4.19. A state x e X is unobservable ify(t) = C0(0; x; t) = 0 for all t > 0, i.e.,
ifx is indistinguishable from the zero state for all t > 0. The unobservable subspace Xunobs

o/X is the set of all unobservable states o/E. E is (completely) observable i/Xunobs = {0}.
The observability matrix of E is

Again by the Cay ley-Hamilton theorem, the kernel of O(C, A) is determined by the
first n terms, i.e., CA'"1, i = !,...,«. Therefore, for computational purposes, the finite
version

of the observability matrix is used. We are now ready to state the main theorem.

Theorem 4.20. Given E = f-~\ — \ for both t e 1 and t € E, Xunobs is a linear subspace

ofH given by

An immediate consequence of the above formula is the following corollary.

Corollary 4.21. (a) The unobservable subspace Xunobs is ̂ -invariant, (b) E is observable
if and only i/rank O(C, A) = n. (c) Observability is basis independent.

Remark 4.2.4. Given y(f), t > 0, let YQ denote the following np x 1 vector:

Y0 = (y*(0) £>y*(0) ••• Dn~ly*(Q))* for continuous-time systems,

Y0 = (y*(0) y*(l) ••• y*(w — 1))* for discrete-time systems,

where D = Jj. The observation problem reduces to the solution of the set of linear equations,

This set of equations is solvable for all initial conditions x(0), i.e., it has a unique solution
if and only if 21 is observable. Otherwise, x(0) can be determined only modulo xunobs, i.e.,
up to an arbitrary linear combination of unobservable states.

Proof. Next, we give the proof of Theorem 4.20. Let Xi, x2 be unobservable states. Then

C0(0; aixi + a2x2; 0 = «iC0(0; \i;t) + «2C0(0; x2; r) = «iyi(0 + «2y2(0 = 0

for all constants a\, a2 and t > 0. This proves the linearity of the unobservable subspace.
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76 Chapter 4. Linear Dynamical Systems: Part 1

For continuous-time systems, by definition, x is unobservable if y(t) = CeAtx = 0,
t > 0. Since CeAt is analytic, it is completely determined by all its derivatives at t = 0.
This implies (4.39). For discrete-time systems, formula (4.39) follows from the fact that
the unobservability of x is equivalent to y(/) = CA'x = 0, i > 0. D

Definition 4.22. Let Z = (-p-j—)• The finite observability gramians at time t < oo are

It readily follows that ker Q(t) = ker O(C, A). As in the case of reachability, this
relationship holds for continuous-time systems for t > 0 and for discrete-time systems, at
least for t > n. The energy of the output function y at time T caused by the initial state x
is denoted by || y \\. In terms of the observability gramian, this energy can be expressed as

Remark 4.2.5. For completeness, we now briefly turn our attention to tfiy*econstructibility
problem. A state x e X is unreconstructible if y(t) = C0(0; x; t) =*mjf>^ all t < 0, i.e.,
if x is indistinguishable from the zero state for all t < 0. The unreconstructible subspace
Xunrecon of X is the set of all unreconstructible states of Z. Z is (completely) reconstructive
ifXunrec = {0}.

Given is the pair (C, A). For continuous-time systems Xunrec = Xunobs. For discrete-
time systems, Xunrec D Xunobs, in particular, Xunobs = Xunrec D imA". This shows that
while for continuous-time systems the concepts of observability and reconstructibility are
equivalent, for discrete-time systems the latter is weaker. For this reason, only the concept
of observability is used here.

4.2.3 The duality principle in linear systems

Let A*, B*, C*, D*, be the dual maps of A, B, C, D, respectively. The dual system Z* of

( 

A I R \
) is formally defined asC D /

i.e., the input map is given by — C*, the output map by B*, and the dynamics by —A*.
The matrix representations of A*, C*, B*, D* are the complex conjugate transposes of
A, C, B, D, respectively, computed in appropriate dual bases. One may think of the dual
system E* as the system Z but with the role of the inputs and outputs interchanged, or with
the flow of causality reversed and time running backward. In section 5.2, it is shown that
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4.2. Internal description 77

the dual system is also the adjoint system defined by (5.15), with respect to the standard
inner product. The main result is the duality principle.

Theorem 4.23. The orthogonal complement of the reachable subspace ofL is equal to the
unobservable subspace of its dual Z*: (X£acV = X£lobs. The system E is reachable if
and only if its dual E* is observable.

Proof. The result follows immediately from formulas (4.25) and (4.37), on recalling that
for a linear map M there holds (im M)1- = ker M*. D

In a similar way, one can prove that controllability and reconstructibility are dual con-
cepts. Since (A, B) is reachable if and only if (B*, A*) is observable, we obtain the following
results. Their proof follows by duality from the corresponding results for reachability and
is omitted.

Lemma 4.24. Observable canonical decomposition. Given is Z = (—^-\—)• There

exists a basis in X such that A, C have the following matrix representations:

where E = ( -~-\ — ) i
\ t-o I /

is observable.

The reachable and observable canonical decompositions given in Lemmas 4.14 and
4.24 can be combined to obtain the following decomposition of the triple (C, A, B).

There exists a basis in X such that A, B, and C have the following matrix representations:

/ A B \where the triple T,ro = (-—^ r-2—} is both reachable and observable.\ cro /

The dual of stabilizability is detectability. Z = (-^-1—) is detectable if A^ in the

observable canonical decomposition is stable, i.e., has eigenvalues either in the left half
of the complex plane or inside the unit disk, depending on whether we are dealing with a
continuous- or a discrete-time system.

Lemma 4.25. Reachable-observable canonical decomposition. Given is
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78 Chapter 4. Linear Dynamical Systems: Part 1

We conclude this subsection by stating the dual to Theorem 4.15.

Again, by section 3.3.3, the numerical determination of the observability of agiven pair
(C, A) is an ill-posed problem. Therefore, as in the reachability case the distance of the pair
to the set of unobservables, denoted by 80(C, A), will be used instead. This distance is de-
fined by means of the distance to reachability of the dual pair (A*, C*), which from (4.36) is

4.3 The infinite gramians

Consider a continuous-time linear system Zc = ( ^ " ) that is stable, i.e., all eigenvalues
\ C I D j

of A have negative real part. In this case, both (4.28) and (4.40) are defined for t = oo:

P and Q are the infinite reachability and infinite observability gramians associated with Zc.
These gramians satisfy the following linear matrix equations, called Lyapunov equations.

Theorem 4.26 Observability conditions. The following are equivalent:

1. The pair (C,A), C  is observable.

2. The rank of the obserabilty matrix is full: rank O (C,A) = n

3. The observabilty gramian is positive definite: Q(t) > 0 for some t > 0.

4. No right eigenvector V of A is in the right kernel of C: Av = lv = Cv = 0.

5. rank = n for all

6. The polynominal matrices sI – A and C are right coprime.

Proposition 4.27. Given the stable, continuous-time system as above, the associated
infinite reachability graminan P satisfies the continuous-time Lyapunov equation

while the associated infinite observability gramian satisfies
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4.3. The infinite gramians 79

Proof. It is readily checked that due to stability,

This proves (4.45); (4.46) is proved similarly. D

The matrices P and Q are indeed gramians in the following sense. Recall that the
impulse response of a continuous-time system Zc is h(f) = CeA/B, t > 0. Now, consider
the following two maps:

input-to-state map %(t) = eA'B and

state-to-output map rj(t) = CeAf.

If the input to the system is the impulse S(t), the resulting state is t-(t); moreover, if the
initial condition of the system is x(0), in the absence of a forcing function u, the resulting
output is y(f) = /7(/)x(0). The gramians corresponding to £(0 and *?(0 f°r time running
from 0 to T are

and

These are the expressions that we have encountered earlier as (finite) gramians.

( 

A I B \j is stable, i.e., all eigenvalues

of A are inside the unit disk, the gramians (4.29) as well as (4.41) are defined for t = oo:

Notice that P can be written as P = BB* + APA*; moreover, Q = C*C + A* QA. These
are the so-called discrete-time Lyapunov or Stein equations.

Similar ly, if the dis crete -time  system

Proposition 4.28. Given the stable, discrete-time system as above, the associated
infinited reachabilithy graminan P satisfies the discrete-time Lyapunov equation

while the associated infinited obserability graminan Q satisfies
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80 Chapter 4. Linear Dynamical Systems: Part 1

The infinite gramians in the frequency domain

The infinite gramians can also be expressed in the frequency domain. In particular, applying
PlanchereFs theorem2 to (4.43) we obtain

similarly, (4.44) yields

In the discrete-time case the infinite gramians defined by (4.47) and (4.48) can be expressed
as

These expressions will be useful in model reduction methods involving frequency
weighting (section 7.6).

4.3.1 The energy associated with reaching/observing a state

An important consideration in model reduction is the ability to classify states according to
their degree of reachability or their degree of observability. Recall (4.33), (4.34), and (4.42),
valid for both discrete- and continuous-time systems. From the definition of the gramians,
it follows that

irrespective of whether we are dealing with discrete- or continuous-time systems. Hence
from (4.34) it follows that the minimal energy for the transfer from state 0 to xr is obtained
as f ->• oo; hence, assuming stability and (complete) reachability, the gramian is positive
definite, and this minimal energy is

Similarly, the largest observation energy produced by the state \0 is also obtained for an
infinite observation interval and is equal to

2In the theory of Fourier transform, Plancherel's theorem states that the inner product of two (matrix-valued)
functions in the time domain and in the frequency domain is (up to a constant) the same. In continuous time we
have 2n f™x g*(t)f(t) dt = f^ ¥*(-ia))G(i(a) dca, while in discrete-time there holds 2jt £~oo g*(0*(0 =
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4.3. The infinite gramians 81

We summarize these results as follows.

Lemma 4.29. Let P and Q denote the infinite gramians of a stable linear system T,.
(a) The minimal energy required to steer the state of the system from 0 to xr is given

by (4.55).
(b) The maximal energy produced by observing the output of the system whose initial

state is x0 is given by (4.56).

This lemma provides a way to determine the degree of reachability or the degree of
observability of the states of S. The states that are the most difficult, i.e., require the most
energy to reach, are (have a significant component) in the span of those eigenvectors of P
which correspond to small eigenvalues. Furthermore, the states that are difficult to observe,
i.e., produce small observation energy, are (have a significant component) in the span of
those eigenvectors of Q which correspond to small eigenvalues.

The above conclusion is at the heart of the concept of balancing, discussed in Chapter
7. Recall the definition of equivalent systems (4.24). Under equivalence, the gramians are
transformed as follows:

Therefore, the product of the two gramians of equivalent systems is related by similarity
transformation, and hence has the same eigenvalues. Quantities that are invariant under
state-space transformation are called input-output invariants of the associated system E.

Proposition 4.30. The eigenvalues of the product of the reachability and of the observability
gramians are input-output invariants.

Remark 4.3.1. As discussed in Lemma 5.8 and (5.24), the eigenvalues of PQ are important
invariants called Hankel singular values of the system. They turn out to be equal to the
singular values of the Hankel operator introduced in section 5.1.

Remark 4.3.2. A formula for the reachability gramian. Given a continuous-time system
described by the pair A e Rnxn, B e Rnxm, the reachability gramian is defined by (4.28).
If the eigenvalues of A are assumed to be distinct, A is diagonalizable. Let the EVD be

v, denotes the eigenvector corresponding to the eigenvalue A,-. Notice that if the ith eigen-
value is complex, the corresponding eigenvector is also complex. Let W = V-1B e C"xm,
and denote by W, e C lxm the ith row of W. With the notation introduced above, the
following formula holds:

Furthermore, if A; + AJ = 0, [ft(r)]0 = (W,-Wp T. If in addition A is stable, the infinite
— w-w*

gramian (4.43) is given by P = VRV*, where 7£|;- = x,+Ay . This formula accomplishes
both the computation of the exponential and the integration implicitly, in terms of the
EVD of A.
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82 Chapter 4. Linear Dynamical Systems: Part 1

Figure 4.2. Parallel connection of a capacitor and an inductor.

Example 4.31. Consider the electric circuit consisting of the parallel connection of two
branches, as shown in Figure 4.2. The input is the voltage u applied to this parallel connec-
tion, while the output is the current y; we choose as states the current through the inductor
xi, and the voltage across the capacitor \2-

The state equations are Lxi = —Rix\ + u, CRc*2 = —*2 + u, while the output
equation is Rcy = RC*I — *2 + u. Thus

(4.58)

where r

are the time constants of the two branches of the circuit. Therefore, the impulse response is

It readily follows that this system is reachable and observable if the two time constants are
different (rL ^ rc).

Assuming that the values of these elements are L = 1, RI = 1, C = 1, RC = \'.

Reachability in this case inquires about the existence of an input voltage u which will steer
the state of the system to some desired x, at a given time T > 0. In this case, since the
system is reachable (for positive values of the parameters), any state can be reached. We
choose x1 = [1 0]*, x2 = [0 1]*. The gramian P(T) and the infinite gramian P are
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4.3. The infinite gramians 83

The corresponding inputs valid for F between 0 and T are

In the above expressions, i = T — t, where t is the time; in the upper plot of Figure 4.3,
the time axis is t, i.e., time runs backward from T to 0; in the lower plot, the time axis is
t, running from 0 to T. Both plots show the minimum energy inputs required to steer the
system to Xi for T = 1, 2, 10 units of time. Notice that for T = 10 the input function is zero
for most of the interval, starting with t = 0; consequently, for T ->• oo, the activity occurs
close to T = oo and the input function can thus be plotted only in the F axis. If the system is
stable, i.e., 7£e(A,,-(A)) < 0, the reachability gramian is defined for T = oo, and it satisfies
(4.45). Hence, the infinite gramian can be computed as the solution to this linear matrix
equation; explicit calculation of the matrix exponentials, multiplication, and subsequent
integration are not required. In MATLAB, if in addition the pair (A, B) is reachable, we
have

For the matrices defined earlier, using the lyap command in the format short e, we get

We conclude this example with the computation of the reachability gramian in the frequency
domain:
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84 Chapter 4. Linear Dynamical Systems: Part 1

Figure 4.3. Electric circuit example. Minimum energy inputs steering the system
to Xi = [1 0]* for T = 1, 2, 10. Top plot: time axis running backward; bottom plot: time
axis running forward.

Example 4.32. A second simple example is the following:

This implies

And finally, the infinite gramian is
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4.3. The infinite gramians 85

In the frequency domain

Example 4.33. We will now compute the gramian of a simple discrete-time, second-order
system,

To compute the reachability gramian in the time domain, we make use of (4.47):

For the frequency domain computation, we make use of formula (4.53):

4.3.2 The cross gramian

In addition to the reachability and observability gramians, a third one, the cross gramian,

( A I R \
-£-| — J . Given the

(infinite) reachability matrix K(A, B) (4.25) and the observability matrix O(C, A) (4.37),
the cross gramian is the n x n matrix defined by X = HO. Thus, summarizing, the three
(infinite) gramians of E are

Notice that these gramians are the three finite matrices that can be formed from the reacha-
bility matrix (which has infinitely many columns) and the observability matrix (which has
infinitely many rows).

i s  used.  Th iss  concept  is  f i rs t  def ined for  d iscre te- t ime systemsco
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86 Chapter 4. Linear Dynamical Systems: Part 1

These first two gramians satisfy the Stein equations (4.49) and (4.50). The cross
gramian satisfies a Stein equation as well, but its form depends on the number of inputs and
outputs ra, p of E. If m = p, a moment's reflection shows that X satisfies the following
Sylvester equation:

2], B; e Rnxp, i = 1, 2; it can be verified that

X = Xi+ X2, where Xi = ft(Bi, A)O(C, A2) and X2 = K(E2, A)0(CA, A2).

Combining these expressions we obtain the Stein equation satisfied by X:

For general m and p, the Stein equation involves Ar, where r is the least common multiple
of w, p.

As in the discrete-time case, if the number of inputs of the stable continuous-time
system £ is equal to the number of outputs m = p, the cross gramian X is defined as the
solution to the Sylvester equation

Similarly to (4.43) and (4.44) in Proposition 4.27, it can readily be shown that X can be
expressed as

All three gramians are related to the eigenvalues and singular values of the Hankel
operator, which will be introduced later. Under a state-space transformation T, the three
gramians are transformed to TPT*. T~*QT-1, TOT"1, respectively. Therefore, while the
eigenvalues of the reachability and observability gramians are not input-output invariants,
both the product PQ and X are transformed by similarity. Their eigenvalues are input-
output invariants for the associated Z, both for discrete- and continuous-time systems. As
will be shown in section 5.4, the eigenvalues and the singular values of the Hankel operator
T-L associated with E are given by these eigenvalues, namely,

The cross gramian for SISO systems was introduced in [113].

Example 4.34. Consider the circuit shown in Figure 4.2. The system matrices are given by
(4.58). Thus the reachability, observability, and cross gramians are:co
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4.3. The infinite gramians 87

Notice that P and Q become semidefinite if the two time constants are equal, TL = TR', if
in addition RL = RC, the product PQ = 0, which is reflected in the fact that X in this case
has two zero eigenvalues.

4.3.3 A transformation between continuous- and discrete-time
systems

Often it is advantageous to transform a given problem in a way that its solution becomes
easier, either theoretically or computationally. A transformation that is of interest in the
present context is the bilinear transformation. We will mention here some cases in which
this transformation is important.

The theory of optimal approximation in the Hankel-norm discussed in Chapter 8 is
easier to formulate for discrete-time systems, while it is easier to solve for continuous-time
systems. Thus given a discrete-time system, the bilinear transformation is used to obtain the
solution in continuous time and then transform back. (See Example 8.9.) Second, as stated
in the next proposition, the gramians remain invariant under the bilinear transformation. In
section 12.2, this fact is used to iteratively solve a continuous-time Lyapunov equation in
discrete time, that is, by solving the corresponding Stein equation.

The bilinear transformation is defined by z = ̂  and maps the open left half of the
complex plane onto the inside of the unit disc and the imaginary axis onto the unit circle.
In particular, the transfer function Hc(.s) of a continuous-time system is obtained from that
of the discrete-time transfer function H</(z) as follows:

Consequently, the matrices

of these two systems are related as given in the following table:
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/ A I n \

Proposition 4.35. Given the stable continuous-time system T,c = ( j with infinite

gramiansPc, Qc, letT,j = ( I ), with infinite gramians Pd, Qd, be the stable discrete-
V ** I J /

time system obtained by means of the bilinear transformation given above. It follows that
this bilinear transformation preserves the gramians:

Consequently, the Hankel-norm ofY,c and E</, defined by (5.7), is the same. Furthermore,
the transformation preserves the infinity norms as defined by (5.8) and (5.9).

The above result implies that the bilinear transformation between discrete- and continuous-
time systems preserves balancing; this concept is discussed in section 7.

4.4 The realization problem
In the preceding sections, we presented two ways of describing linear systems: the internal
and the external. The former makes use of the inputs u, states x, and outputs y. The
latter makes use only of the inputs u and the outputs y. The question thus arises as to the
relationship between these two descriptions.

( 

• A I R \
)

C I D J

of a system, the external description is readily derived. The transfer function of the system
is given by (4.22)

while from (4.23), the Markov parameters are given by

The converse problem, i.e., given the external description, derive the internal one, is
far from trivial. This is the realization problem: given the external description of a linear
system, construct an internal or state variable description. In other words, given the impulse
response h or, equivalently, the transfer function H, or the Markov parameters h* of a
system, construct ( c D ) sucn that (4.61) holds. It readily follows without computation
that D = h0. Hence the following problem results.

Definition 4.36. Given the sequence ofpxm matrices hjt, k > 0, the realization problem
consists of finding a positive integer n and constant matrices (C, A, B) such that

The triple (C, A, B) is then called a realization of the sequence h^, and the latter is called
a realizable sequence. (C, A, B) is a minimal realization if among all realizations of the
sequence, its dimension is the smallest possible.
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4.4. The realization problem 89

The realization problem is sometimes referred to as the problem of construction of
state for linear systems described by convolution relationships.

Remark 4.4.1. Realization was formally introduced in the 1960s (see Kalman, Falb, and
Arbib [192]), and eventually two approaches crystallized: the state-space and the polyno-
mial. (See Fuhrmann [121] for an overview of the interplay between these two approaches
in linear system theory.) The state-space method uses the Hankel matrix as a main tool and
will be presented next. The polynomial approach has the Euclidean division algorithm as
a focal point; see, e.g., Kalman [193], Fuhrmann [123], Antoulas [9], and van Barel and
Bultheel [329]. Actually, Antoulas [9] presents the complete theory of recursive realization
for multi-input, multi-output systems.

Example 4.37. Consider the following (scalar) sequences:

Zi = {1,1,1,1, 1,1,1,1,1,...},

£2 = {1, 2, 3,4,5,6, 7, 8, 9,...} natural numbers,

Z3 = {1, 2, 3, 5, 8,13, 21, 34,55,...} Fibonacci numbers,

Z4 = {1, 2, 3, 5,7,11,13,17,19,...} primes,

f 1 1 1 1 1 1 1
Z5 = \l!'2!'3!'^5!'6!"-7 inverse factonals-

It is assumed that for all sequences, ho = D = 0. Which sequences are realizable? This
question will be answered in the example of section 4.43.

Problems. The following problems arise:

(a) Existence: given a sequence h^, k > 0, determine whether there exist a positive
integer n and a triple of matrices C, A, B such that (4.62) holds.

(b) Uniqueness: in case such an integer and triple exist, are they unique in some sense?

(c) Construction: in case of existence, find n and give an algorithm to construct such a
triple.

The main tool for answering the above questions is the matrix T-L of Markov parameters:

(4.63)
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This is the Hankel matrix; it has infinitely many rows, infinitely many columns, and
block Hankel structure, i.e., (H)i,j = h (+7_i, for /, j > 0. We start by listing conditions
related to the realization problem.

Lemma 438. The following statements are equivalent:

(a) The sequence hjt, k > 0, is realizable.

(b) The formal power series Xjt>o hkS~k is rational.

(c) The sequence h^, k > 0, satisfies a recursion with constant coefficients, i.e., there
exist a positive integer r and constants a/, 0 < i < r, such that

(d) The rank ofU is finite.

Proof, (a) =>• (b). Readability implies (4.62). Hence

This proves (b). Notice that the quantity in parentheses is a formal power series and con-
vergence is not an issue.

(b) =>• (c). Let det(sl - A) = a0 + ai* + • • • + <*r-\sr~l + sr = XA(S). The
previous relationship implies

where adj (M) denotes the matrix adjoint of the M, i.e., the matrix of cofactors. (For the
definition and properties of the cofactors and of the adjoint, see Chapter 6 of Meyer's book
[238].) On the left-hand side are terms having both positive and negative powers of 5, while
on the right-hand side are only terms having positive powers of s. Hence the coefficients
of the negative powers of s on the left-hand side must be identically zero; this implies
precisely (4.64).

(c) =£• (d). Relationships (4.64) imply that the (r + l)st block column of H is a linear
combination of the previous r block columns. Furthermore, because of the block Hankel
structure, every block column of H is a subcolumn of the previous one; this implies that all
block columns after the rth are linearly dependent on the first r, which in turn implies the
finiteness of the rank of H . D

The following lemma describes a fundamental property of H; it also provides a direct
proof of the implication (a) =>• (d).
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4.4. The realization problem 91

Lemma 4.39. Factorization ofH. If the sequence of Markov parameters is realizable by
means of the triple (C, A, B), "H can be factored,

Consequently, if the sequence of Markov parameters is realizable, the rank ofH is finite.

Proof. If the sequence {hn, n = 1,2,...} is realizable, the relationships hn = CAn-1B
hold. Hence,

It follows that rank H < maxjrank O, rank 11} < dim (A). D

To discuss the uniqueness issue of realizations, we need to recall the concept of
equivalent systems defined by (4.24). In particular, Proposition 4.4 asserts that equivalent
triples (C, A, B) have the same Markov parameters. Hence the best one can hope for the
uniqueness question is that realizations be equivalent. Indeed, as shown in the next section,
this holds for realizations with the smallest possible dimension.

4.4.1 The solution of the realization problem

We are now ready to answer the three questions posed at the beginning of this section. In
the process we prove the implication (d) =>• (a) and hence the equivalence of the statements
in Lemma 4.38.

Lemma 4.39 proves part (1) of the main theorem in one direction. To prove (1) in the other
direction we will actually construct a realization assuming that the rank of H is finite. For
this we need to define the shift a. It acts on the columns on the Hankel matrix; if (H)k
denotes the fcth column of %, o-(H)k = (H)k+m\ in other words, a is a shift by m columns.
The shift applied to a submatrix of H consisting of several columns is applied to each column
separately.

Theorem 4.40. Main Result.

(1) The sequence hk, k>0, is realizable if and only if rank H = n <  

(2) The state-space dimension of any solution is at least n.  All relaizations that re min-
imal are both reachable and observable.  Conversely, every realization that is reachable

and observable is minimal.

(3) All minimal realizations are equivalent.co
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92 Chapter 4. Linear Dynamical Systems: Part 1

Proof. By assumption there exist n = rank"H columns of H that span its column space.
Denote these columns by O^; note that the columns making up <J>oo need not be consecutive
columns of H. We denote by a the column right-shift operator. Let aOoo denote the n
columns of H obtained by shifting those of 4>oo by one block column, i.e., by m individual
columns; let POO denote the first m columns of 1-L. Since the columns of 4>oo form a basis
for the space spanned by the columns of H, there exist unique matrices A 6 Rnxn and
BeR" x m such that

Finally, define C as the first block row, i.e., the first p individual rows, of <t>oo:

For this proof (M)*, k > 0, denotes the &th block row of the matrix M. Recall that the first
block element of TOO is hi, i.e., using our notation (1^00)1 = hi. Thus (4.67), together with
(4.68), implies

For the next Markov parameter, notice that

Thus making use of (4.66), we have

For the fcth Markov parameter, combining (4.67), (4.66), and (4.68), we obtain

Thus (C, A, B) is indeed a realization of dimension n. D

Lemma 4.41. Silverman relaization algorithm.  Let rank H = n. Find and n x n
submatrix f of H that has full rank. Construct the following matrices:

(i) is the submartix of H having the rows with the same index as those of
and the columns obtained by shifting each individual column of f by one block column
(i.e., m columns).

(ii) is composed of the same rows as f; its columns are the first m columns
of H

(iii) is composed of the same columns as its rows are the first p rows of H.
The triple (C,A,B), where C= A, A _ is a trealization of
dimenstion n of the given sequence of Markov parameters.
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4.4. The realization problem 93

The state dimension of a realization cannot be less than n\ indeed, if such a realization
exists, the rank of "H will be less than n, which is a contradiction to the assumption that the
rank of H is equal to n. Thus a realization of E whose dimension equals rank H is called
a minimal realization; notice that the Silverman algorithm constructs minimal realizations.
In this context the following holds true.

Lemma 4.42. A realization ofT, is minimal if and only if it is reachable and observable.

Proof. Let (C, A, B) be some realization of hw, n > 0. Since H = Ofl,

Let (C, A, B) be a reachable and observable realization. Since H = OK, and each of the
matrices 0, 72. contains a nonsingular matrix of size A, we conclude that dim (A) < rank"H,
which concludes the proof. D

We are now left with the proof of part (3) of the main theorem, namely, that minimal
realizations are equivalent. We provide the proof only for a special case; the proof of the
general case follows along similar lines.

Outline of proof. SISO case (i.e., p = m = 1). Let (C,, A,, B,), / = 1, 2, be minimal
realizations of E. We will show the existence of a transformation T, del T ^ 0 such that
(4.24) holds. From Lemma 4.39 we conclude that

where the superscript is used to distinguish between the two different realizations. Further-
more, the same lemma also implies

which in turn yields

Because of minimality, the following determinants are nonzero: det O'n ^ 0, det 1Vn ^ 0,
i = 1,2. We now define

Equation (4.69) implies Ct = C2T~1 and BI = TB2, while (4.70) implies AI =
TA2T-1. D

Example 4.43. We now investigate the realization problem for the Fibonacci sequence
given in Example 4.37,

which is constructed according to the rule hi = 1, h2 = 2, and
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94 Chapter 4. Linear Dynamical Systems: Part 1

The Hankel matrix (4.63) becomes

It readily follows from the law of construction of the sequence that the rank of the Hankel
matrix is two. O is chosen so that it contains rows 2 and 4 and columns 2 and 5 of H:

The remaining matrices are now

It follows that

and A = (2 8).

, and C = (2 8).

Furthermore,

Concerning the remaining four sequences of Example 4.37, £ i and £2 are realizable, while
the last two, namely, £4 and I!5, are not realizable. In particular,

In the last case, HS(S) = es — I , which is not rational and hence has no finite-dimensional
realization. The fact that £5 is not realizable follows also from the fact that the determinant of
the associated Hankel matrix Hitj = i+

l_l, of size n, also known as the Hankel determinant,
is nonzero; it has been shown in [5], namely, that

which implies that the Hankel determinant for n = 4, 5, 6 is of the order 10~7, 10~17, and
10~43, respectively.
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4.4. The realization problem 95

4.4.2 Realization of proper rational matrix functions

Given is a p x w matrix HO) with proper rational entries, i.e., entries whose numerator
degree is no larger than the denominator degree. Consider first the scalar case, i.e., p =
m = I . We can write

where D is a constant in R and p, q are polynomials in s,

In terms of these coefficients /?, and #,, we can write down a realization of HO) as follows:

It can be shown that EH is indeed a realization of H, i.e.,

This realization is reachable but not necessarily observable; this means that the rank of
the associated Hankel matrix is at most v. The realization is in addition observable if the
polynomials p and q are coprime. Thus (4.71) is minimal if p and q are coprime. In this
case the rank of the associated Hankel matrix H is precisely v.

In the general case, we can write

where q is a scalar polynomial that is the least common multiple of the denominators of the
entries of H and P is a polynomial matrix of size p x m:

The construction given above provides a realization:co
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96 Chapter 4. Linear Dynamical Systems: Part 1

where 0TO is a square zero matrix of size m, lm is the identity matrix of the same size, and,
consequently, the state of this realization has size vm. Unlike the scalar case, however, the
realization EH need not be minimal. One way to obtain a minimal realization is by applying
the reachable observable-canonical decomposition given in Lemma 4.25. An alternative
way is to apply the Silverman algorithm; in this case, H has to be expanded into a formal
power series,

The Markov parameters can be computed using the following relationship. Given the
polynomial q as above, let

denote its v pseudo-derivative polynomials. It follows that the numerator polynomial P(s)
is related to the Markov parameters h^ and the denominator polynomial q as follows:

This can be verified by direct calculation. Alternatively, assume that H(s) = C(sl — A)-1B,
and let q(s) denote the characteristic polynomial of A. Then

The result (4.73) follows by noting that P(j) = C adj (5! - A) B.

Since H is rational, the rank of the ensuing Hankel matrix associated with the sequence
of Markov parameters hfc,fc > 0, is guaranteed to have finite rank. In particular, the following
upper bound holds:

An important attribute of a rational matrix function is its McMillan degree. For proper
rational matrix functions H, the McMillan degree turns out to equal the rank of the associated
Hankel matrix 'H; in other words, the McMillan degree in this case is equal to the dimension
of any minimal realization of H.

4.4.3 Symmetric systems and symmetric realizations

A system £ is called symmetric if its Markov parameters are symmetric, h^ = h£, k > O.3

In other words, £ is symmetric if ho = h*, and the associated Hankel matrix (4.63) is
symmetric, H = 1-L*.

Definition 4.44. A realization is called symmetric ifD = D* and there exists a symmetric
matrix ty = ty* such that

3Recall that if a matrix is real, the superscript (•)* denotes simple transposition.
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4.4. The realization problem 97

It follows that every symmetric system has a symmetric realization.

Lemma 4.45. A reachable and observable system £ is symmetric if and only if it possesses
a symmetric realization.

Proof. A moment's reflection shows that if T, has a symmetric realization, it is symmet-
ric. Conversely, let the system be symmetric; this together with the factorization (4.65)
implies

Thus, since the column span of H and H* are the same, there exists a matrix W € Rnxn

such that O(C, A)* = ft*(B*,A*); hence C* = B*. Furthermore, O(C, A)A* =
7e*(B*, A*)A* = O(C, A)*A*. Since O has full column rank, the equality A* = <I>A*
follows. It remains to show that * is symmetric. Notice that O(C, A)*(b*(A*, C*) =
7£*(B*, A*)(9*(A*, C*) = 1-L is symmetric. Again, since O has full column rank, it has an
n x n nonsingular submatrix, composed of the rows with index / = {/i, . . . , /„}, which we
denote by 0/; thus Oj^OJ = %/,/, where the latter is the submatrix of the Hankel matrix

composed of those rows and columns indexed by /. Thus 4> = [O/]"1 HIJ [O*] . Since
HI, i is symmetric, this proves the symmetry of *I>. The proof is thus complete. D

4.4.4 The partial realization problem

This problem was studied in [193]. Recursive solutions were provided in [12] and [11].
Recall section 4.4 and in particular Definition 4.36. The realization problem with partial
data is defined as follows.

Definition 4.46. Given the finite sequence of p x m matrices h*, k = 1, . . . , r, the partial
realization problem consists of finding a positive integer n and constant matrices (C, A, B)
such that

15 then called a partial realization of the sequence h*.

Because of Lemma 4.38, a finite sequence of matrices is always realizable. As a
consequence, the set of problems arising consists of

(a) minimality: given the sequence h/t, k = 1, . . . , r, find the smallest positive integer n
for which the partial realization problem is solvable.

(b) parametrization of solutions: parametrize all minimal and other solutions.

(c) recursive construction: recursive construction of solutions.

The triple
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98 Chapter 4. Linear Dynamical Systems: Part 1

Similarly to the realization problem, the partial realization problem can be studied by
means of the partially defined Hankel matrix:

where ? denote unknown matrices defining the continuation of the given finite sequence h^,
*= l,...,N.

The rank of the partially defined Hankel matrix T-lk is defined as the size of the largest
nonsingular submatrix ofHk, independently of the unknown parameters "?". It then follows
that the dimension of any partial realization £ satisfies

Furthermore, there always exists a partial realization of dimension n, which is a minimal
partial realization. Once the rank of "H* is determined, Silverman's algorithm (see Lemma
4.41) can be used to construct such a realization. We illustrate this procedure by means of
a simple example.

Example 4.47. Consider the scalar (i.e., m = p = 1) sequence £ = (1, 1,1, 2); the
corresponding Hankel matrix T-i^ and its first three submatrices are

where a, b, c denote the unknown continuation of the original sequence. The determinants
of these matrices are

= -«3 + 4a2 - 80 + 8 + lab -3b-c, = -1, detH2 = 0, = 1.

It follows that

By Lemma 4.41, we choose 4> = Hi, F = A* = (1 1 1)*, which implies

Hence, there are multiple minimal partial realizations of Z. Indeed, the above expressions
provide a parametrization of all minimal solutions; the parameters are a, b € JR. Finally,
we note that the value of c is uniquely determined by a, b. In this case, for realizations of
minimal degree 3, we must have c = —a3 + 5a2 — 12a + 2ab — 4& + 16.
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4.5. The rational interpolation problem* 99

4.5 The rational interpolation problem*
The realization problem aims at constructing a linear system in internal (state-space) form,
from some or all Markov parameters h^. As already noted, the Markov parameters constitute
information about the transfer function H(s) obtained by expanding it around infinity H(s) =
£*>oh**~*-

In this section we will address the problem of constructing an external or internal
description of a system based on finitely many samples of the transfer function taken at
finite points in the complex plane. This problem is known as rational interpolation. For
simplicity we will assume that the systems in question have a single input and a single output
and thus their transfer function is scalar rational. We distinguish between two approaches.

The first approach, presented in subsection 4.5.2, has as a main tool the so-called
Lowner matrix. The Lowner matrix encodes the information about the admissible com-
plexity of the solutions as a simple function of its rank. The computation of the solutions
can be carried out both in the external (transfer function) and in the internal (state-space)
frameworks. This approach to rational interpolation leads to a generalization of the classical,
system theoretic, concept of realization of linear dynamical systems.

The second approach, presented in subsection 4.5.3, is known as the generating system
approach and involves the construction of a polynomial or rational matrix, such that any
polynomial or rational combination of its rows yields a solution of the problem at hand.
This construction has a system theoretic interpretation as a cascade interconnection of two
systems, one of which can be chosen freely. This method leads to recursive solutions in
a natural way by expanding, namely, the cascade interconnection just mentioned. The
solutions can be classified according to properties like complexity, norm boundedness, or
positive realness.

4.5.1 Problem formulation*

Consider the array of pairs of points

P = {(*;0,v): .7=0,1, . . . ,4-1; i = l , . . . ,*, s,^Sj, i £ j ] , (4.76)

where we will assume that there are N given pieces of data, that is, J2i=i ^» = N. We are
looking for all rational functions,

where n(s), d(s) are coprime polynomials, that is, their greatest common divisor is a
(nonzero) constant, which interpolate the points of the array P, i.e.,

In other words, the jth derivative of 4>(s) evaluated at s = s, is equal to $,y. We distinguish
two special cases: (a) the distinct point interpolation problem,
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100 Chapter 4. Linear Dynamical Systems: Part 1

and (b) the single multiple point interpolation problem,

where the value of the function and derivatives thereof are provided only at s = SQ.

Solution of the unconstrained problem

The Lagrange interpolating polynomial associated with P is the unique polynomial of degree
less than N which interpolates the points of this array. In the distinct point case (4.79), it is

A similar formula holds for the general case. A parametrization of all solutions to (4.77),
(4.78) can be given in terms of £(s) as follows:

where the parameter r(s) is an arbitrary rational function with no poles at the s,. Most
often, however, one is interested in parametrizing all solutions to the interpolation problem
(4.78) which satisfy additional constraints. In such cases, this formula, although general,
provides little insight.

Constrained interpolation problems

The first parameter of interest is the complexity or degree of rational interpolants (4.77). It
is defined as

deg0 = max{degn, degd}

and is sometimes referred to as \heMcMillan degree of the rational function 0. The following
problems arise.

Another constraint of interest is bounded realness, that is, finding interpolants which have
poles in the left half of the complex plane (called stable) and whose magnitude on the
imaginary axis is less than some given positive number n>.

Problem (A): Parametrization of interpolants by complexity.

(a) Find the admissible degrees of complexity, i.e., those positive integers p for which
there exist solutions f (s) to the interpolation problem (4.77), (4.78), with deg f = p.

(b) Given an admissible degree p, construct all corresponding solutions.

Proble (B): Navanlinna–Pick. Parametrization of interpolants by norm.

(a) Do there exist bounded real interpolating functions?

(b) If so, what is the minimum norm and how can such interpolating functions be con-
structed?
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4.5. The rational interpolation problem" 101

A third constraint of interest is positive realness of interpolants. A function 0 : C — >• C is
positive real (p.r.) if it maps the closed right half of the complex plane onto itself:

Thus given the array of points P, the following problem arises.

In sections 4.5.2 and 4.5.3, we will investigate the constrained interpolation Problem
(A) for the special case of distinct interpolating points. At the end of section 4.5.3, a short
summary of the solution of the other two, that is, Problems (B) and (C), will be provided.

4.5.2 The Lowner matrix approach to rational interpolation*

The idea behind this approach to rational interpolation is to use a formula similar to (4.81)
which would be valid for rational functions. Before introducing this formula, we partition
the array P given by (4.79) into two disjoint subarrays J and I as follows:

where for simplicity of notation some of the points have being redefined as follows: £, =
sr+i, 0, = 0H-,-, i = 1, . . . , /? , p+r = N. Consider 0(5) defined by the following equation:

Solving for 0(s) we obtain

Clearly, the above formula, which can be regarded as the rational equivalent of the Lagrange
formula, interpolates the first r points of the array P, i.e., the points of the array J. For 0 (s) to
interpolate the points of the array I, the coefficients yi have to satisfy the following equation:

where

(4.84)
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102 Chapter 4. Linear Dynamical Systems: Part 1

L is called the Lowner matrix, defined by means of the row array I and the column array
J. As it turns out, L is the main tool of this approach to the rational interpolation problem.

Remark 4.5.1. As shown by Antoulas and Anderson [25], the (generalized) Lowner matrix
associated with the array P consisting of one multiple point (4.80) has Hankel structure. In
particular,

This shows that the Lowner matrix is the right tool for generalizing realization theory to
rational interpolation.

From rational function to Lowner matrix

The key result in connection with the Lowner matrix is the following.

Lemma 4.48. Consider the array of points P defined by (4.76), consisting of samples taken
from a given rational function (f>(s), together with a partition into subarrays JJ, I as defined
in the beginning of the subsection. Let L be any p x r Lowner matrix with p, r > deg0.
It follows that rank L = deg 0.

Corollary 4.49. Under the assumptions of the lemma, any square Lowner submatrix of L
of size deg0 is nonsingular.

In what follows, given A e R7rx7r, b, c* e E", the following matrices will be of
interest:

As will be shown subsequently in (4.87), the Lowner matrix factors in a product of Op

times 7?.r. Therefore, in analogy with the realization problem (where the Hankel matrix
factors in a product of an observability times a reachability matrix), we will call Op the
generalized observability matrix and 7£r the generalized reachability matrix associated with
the underlying interpolation problem.

Proposition 4.50. Let (A, b) be a reachable pair, where A is a square matrix and b is a
vector; in addition, let si, i = 1,. . . , r, be scalars that are not eigenvalues of A. It follows
that the generalized reachability matrix defined by (4.85) has rank equal to the size of A,
provided that r > size (A).

co
nt

ro
len

gin
ee

rs
.ir



4.5. The rational interpolation problem* 103

For a proof of this proposition see Antoulas and Anderson [24]. Based on this proof,
we can now provide a proof of Lemma 4.48.

Proof. We distinguish two cases, (a) </>($) is proper rational. According to the results in
section 4.4.2, there exists a minimal quadruple (A, b, c, d) of dimension n such that

This expression implies

and hence

Consequently, L can be factorized as follows:

where 72.r and Op are the generalized reachability, observability matrices defined by (4.85),
(4.86), respectively. Because of the proposition given above, the rank of both Op and Tlr is
n. This implies that the rank of their product L is also n. This completes the proof when

is proper.
(b) 0(5) is not proper rational. In this case, by means of a bilinear transformation

for almost all a, ft, y, the rational function

will be proper. The Lowner matrices L, L attached to 0, 0, respectively, are related as
follows:

The parameter a can be chosen so that diag(a — £,) and diag(a — Sj) are nonsmgular, which
implies the desired result. This concludes the proof of the lemma. D

From Lowner matrix to rational function

Given the array of points P defined by (4.76), we are now ready to tackle the interpolation
problem (4.77), (4.78) and, in particular, solve the two problems (a) and (b) of Problem (A).
The following definition is needed first.
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104 Chapter 4. Linear Dynamical Systems: Part 1

Definition 4.51. (a) The rank of the array P is

where the maximum is taken over all possible Lowner matrices which can be formed from P.
(b) We will call a Lowner matrix almost square if it has at most one more row than

column or vice versa, with the sum of the number of rows and columns being equal to N.

The following is a consequence of Lemma 4.48.

Proposition 4.52. The rank of all Lowner matrices having at least q rows and q columns
is equal to q. Consequently, almost square Lowner matrices have rank q.

Let q = rank P, and assume that 2q < N. For any Lowner matrix with rank L = q,
there exists a column vector y ^ 0 of appropriate dimension, say, r + 1, satisfying

In this case, we can attach to L a rational function denoted by

(4.89)

using formula (4.83), i.e.,

The rational function 0£,(s) just defined has the following properties.

Lemma 4.53. (a) deg $L < r < q < N. (b) There is a unique 0^ attached to all L and
Y satisfying (4.88) as long as rankL = q. (c) The numerator, denominator polynomials
UL, AL have q — deg$£ common factors of the form (s — sz). (d) 4>L interpolates exactly
N — q + deg <J>L points of the array P.

The proof of this result can be found in Antoulas and Anderson [25]. As a consequence
of the above lemma and Lemma 4.48, we obtain the next corollary.

Corollary 4.54. <J)L interpolates all given points if and only if deg 0£ = q if and only if all
q x q Lowner matrices which can be formed from the data array P are nonsingular.

We are now ready to state, from Antoulas and Anderson [25], the main result.

Theorem 4.55. Given the array of N points P, let rank P = q.
(a) If 2q < N, and all square Lowner matrices of size q which can be formed from

P are nonsingular, there is a unique interpolating function of minimal degree denoted by
<t>min(s\ and deg<(>min = q.

(b) Otherwise, 0"""(s) is not unique and deg0min = N — q.
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4.5. The rational interpolation problem* 105

The first part of the theorem follows from the previous corollary. The second part can
be justified as follows. Part (b) of the proposition above says that as long as L has rank q,
there is a unique rational function <fo, attached to it. Consequently, for L to yield a different
rational function 0/, defined by (4.89), (4.90), it will have to lose rank. This occurs when
L has at most q — 1 rows. In this case, its rank is q — 1 and there exists a column vector
y such that Ly = 0. Since L has N — q + 1 columns, the degree of the attached </>£, will
genetically (i.e., for almost all y) be N — q. It readily follows that for almost all y, <$>L
will interpolate all the points of the array P. This argument shows that there can never exist
interpolating functions of degree between q and N — q. The admissible degree problem
can now be solved in terms of the rank of the array P.

Corollary 4.56. Under the assumptions of the main theorem, ifdeg(j)min = q, the admissible
degrees are q, and all integers greater than or equal to N — q, while if deg <$>mm = N — q,
the admissible degrees are all integers greater than or equal to N — q.

Remark 4.5.2. (i) If 2q = N, the only solution y of (4.88) is y = 0. Hence, (j)L, defined
by (4.89), (4.90) does not exist, and part (b) of the above theorem applies.

(ii) To distinguish between case (a) and case (b) of this theorem, we need only to
check the nonsingularity of 2q + 1 Lowner matrices. Construct from P any Lowner matrix
of size q x (q + 1), with row, column sets denoted by I9, Jf9, and call it Lq. The Lowner
matrix L* of size (q + 1) x q is now constructed. Its row set 1q contains the points of the
row set \q together with the last point of the column set Jg; moreover, its column set J*
contains the points of the column set J? with the exception of the last one. The 2q + 1
Lowner matrices which need to be checked are the q x q submatrices of Lq and L*.

The construction of interpolating functions

Given an admissible degree, we will discuss in this section the construction of all corre-
sponding interpolating functions. Two construction methods will be presented: the first is
based on an external (input-output) framework, while the second is based on a state-space
framework.

Given the array P, let n be an admissible degree. For the polynomial construction we
need to form from P any Lowner matrix having n + 1 columns,

and determine a parametrization of all y such that

A parametrization of all interpolating functions of degree n is then

where the numerator and denominator polynomials are defined by (4.90). If n > N — q,
we have to make sure that there are no common factors between the numerator and the
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106 Chapter 4. Linear Dynamical Systems: Part 1

denominator of 0^; this is the case for almost all y. More precisely, the 2n +1 — N (scalar)
parameters which parametrize all y have to avoid the hypersurfaces defined by the equations

Since we can always make sure that y depends affinely on these parameters, we are actually
dealing with hyperplanes. For details and examples, see Antoulas and Anderson [25].

For use below, notice that ̂ >L will be proper rational if and only if the leading coefficient
of AL is different from zero; i.e., from the second formula (4.90), we must have

For the state-space construction of interpolating functions of admissible degree TT, we need
a Lowner matrix of size TT x (JT + 1):

c IK.

Thus, in case n > N — q, we need an array P which contains besides the original N points
of the array P, another 2n +1 — N points, chosen arbitrarily but subject to the nonsingularity
condition given in part (a) of the main theorem (see also the remark at the end of the previous
section). Let y e Rn+l be such that

If Yni + • • • + Yxn+\ 7^ 0, the underlying interpolating function is proper. Otherwise, we need
to perform a bilinear transformation which will ensure the properness of the function under
construction. (See the proof of Lemma 4.48.) Once the properness condition is guaranteed,
the state-space construction proceeds by defining the following two n x n matrices:

where s,-, i = 1,. . . , TT + 1, are the points which define the column array of L. Let the
quadruple of constant matrices (A, b, c, d) be defined as follows:

for any s,-, where [M](:>i) denotes the first column of M, while [M](i>:) denotes the first row.
It can be shown that the above quadruple is a minimal realization of the desired interpolating
function 0 (5) of degree n:

co
nt

ro
len

gin
ee

rs
.ir



4.5. The rational interpolation problem* 107

The steps involved in proving the above result are as follows. First, because of the properness
of the underlying function, the matrix Q is nonsingular. Next, we need to show that none of
the s^s are an eigenvalue of A, that is, (5,-1 — A) is invertible. Finally, we need to show that
the rational function given by (4.92) is indeed an interpolating function of the prescribed
degree n. These steps can be found in Anderson and Antoulas [24].

Remark 4.5.3. (i) In the realization problem the shift is defined in terms of the associated
Hankel matrix, as the operation that assigns to the z'th column the (i + l)st column. It
follows that A is determined by this shift. For the more general interpolation problem,
formula (4.91) shows that

If we define the shift operation in this case as assigning to the j'th column of the Lowner
matrix, si times itself, then crQ is indeed the shifted version of Q, and, consequently, A is
again determined by the shift.

(ii) The theory, presented above, has been worked out for the multiple-point as well
as for more general interpolation problems; see [25] and [24].

(iii) It is readily checked that the classical system theoretic problem of realization can
be interpreted as a rational interpolation problem where all the data are provided at a single
point. Our theory has generalized the theory of realization to the theory of interpolation.

All missing proofs, as well as other details and examples, can be found in [25] and
[24]. Some of the results discussed can also be found in [50].

4.5.3 Generating system approach to rational interpolation*

This method for dealing with the rational interpolation problem is based on the factorization
of a rational matrix expressed in terms of the data (4.76). It leads to a parametrization of
all interpolants that solve Problems (A), (B), and (C) in section 4.5.1. Through the years,
solutions to various special cases of the general rational interpolation problem have been
worked out in what amounts to a generating system approach. For example, more than
three-quarters of a century ago, Problem (B) was solved using this approach. Actually, the
generating system was constructed recursively.

This section will make use of certain elementary concepts and results concerning
polynomial and rational matrices, for example, invariant factors of polynomial matrices,
left coprime polynomial matrices, row-reduced polynomial matrices, unimodular polyno-
mial matrices, and Bezout equations. See section 6.3 of the book by Kailath [191] for an
exposition of these concepts and the underlying theory.

To keep the exposition simple, only the distinct point and the single multiple point
interpolation problems will be considered. The tools presented, however, are applicable in
the general case.

The data in terms of time series

The interpolation array P defined by (4.76) can be interpreted in terms of time functions. To
the distinct point array P defined by (4.79) we associate the following exponential time series
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108 Chapter 4. Linear Dynamical Systems: Part 1

(i.e., functions of time):

We will also consider the (unilateral) Laplace transform of these time series; in particular,
we will consider the 2 x N matrix of rational entries whose kth column is the transform of

It is easy to see that W(s) has a realization,

where

Since the interpolation points are distinct, i.e., si ^ Sj, i ^ j, the pair (C, A) is observable.
For the single multiple-point interpolation array P defined by (4.80), a similar con-

struction holds. Let p# be the vector-valued polynomial function

The time series in this case are polynomial-exponential:

(4.97)

A straightforward calculation yields the following realization for the (unilateral) Laplace
transform of this set of time series W(j) = [Wi(s) • • • WN(S)] = C(S!N — A)"1, where

Again by construction, the pair (C, A) is observable.

co
nt

ro
len

gin
ee

rs
.ir



4.5. The rational interpolation problem" 109

The realization problem discussed in section 4.4 can be expressed in terms of the
rational interpolation problem. Given the scalar Markov parameters /IQ, hi,..., /z#-i» we
seek to determine all rational functions 0(s) whose behavior at infinity (i.e., formal power
series) is

By introducing s l as the new variable, the behavior at infinity is transformed into the
behavior at zero and the Markov parameters become moments:

Consequently, hk = £f^jf L=o» i-e-> me realization problem is equivalent to a rational
interpolation problem where all the data are provided at zero. From the above considerations,
the corresponding time series W = [Wi • • • W#] can be expressed in terms of (4.95), where

Interpolation in terms of the time series data

Given the polynomial r(,s) = Y^i=oris'> r< e ^» we w^ denote by r(^) the constant
coefficient differential operator

The following is a characterization of rational interpolants in terms of the time series in both
the time and the frequency domains.

Proposition 4.57. With the notation introduced above, consider the rational function (f>(s) =
|£y, where n, d are coprime. This rational function interpolates the points of the array P
defined by (4.79) if and only if one of the following equivalent conditions holds:

for k = 1,. . . , N, where rjt(s) is a polynomial.

Equation (4.99) provides a time domain characterization, while (4.100) provides a
frequency domain characterization of rational interpolants.
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110 Chapter 4. Linear Dynamical Systems: Part 1

Proof. We will give the proof only for the distinct point interpolation problem. From
(4.99), given the definition of the time series w*, follows (n(^) — 0^d(^)) eSkt = 0; since
this must hold for all t > 0, the necessity and sufficiency of the interpolation conditions
jjM = (f)k follow for all k. If we take the unilateral Laplace transform of (4.99), we obtain

(4.100), and in particular n^~^d^ = ^(5), where r^Cs) is a polynomial resulting from
initial conditions of y* at t = 0~. Thus the expression on the left-hand side is a polynomial
if and only if </> ($*) = 0/t for all k. D

The solution of Problem (A)

From the frequency domain representation (4.95) of the data, we construct the pair of
polynomial matrices 3 (s), 0(s) of size 2 x N, 2 x 2, respectively, such that del @(s) ^ 0,
and

The above operation consists of computing a left polynomial denominator ©(,s) for the
data W(s). Moreover, the polynomial matrices ©fa), 3 (5) must be left coprime, that is,
every nonsingular polynomial matrix L(s) such that P = LP and Q = LQ, for appropriate
polynomial matrices P, Q, is unimodular, that is, its determinant is a nonzero constant. A
consequence of left coprimeness is the existence of polynomial matrices P(s), Q(s) of size
2 x 2, N x 2, respectively, such that the so-called Bezout equation is satisfied:

A 0 constructed this way has the following properties.

Proposition 4.58. The matrix 0(s) constructed above satisfies the following: (a) its in-
variant factors are 1 and xC?) = n,(s — *,-); (b) its (1,2), (2, 2) entries Ou(s), #22(*) are
coprime.

Proof. Because of the observability of the pair C, A and the coprimeness of 3, 0, the
polynomial matrices si — A and 0(s) have a single nonunity invariant factor that is the
same, namely, the characteristic polynomial of A: x(.s) = FI^Cs — 5,-). (See, e.g., [8] or
Chapter 6 of [191].) Therefore, after a possible normalization by a (nonzero) constant,

Let Oij denote the (i, y')th entry of 0. The /th column of (4.101) yields the equation

Evaluating this expression at s = s,, we obtain flnCs,) = 0,^i2(*j), ^21 (^i) =
i = 1, . . . , N. Because of (4.102), if 6\2, #22 were not coprime, their greatest common
divisor would have to be a product of terms (s — $,-), where the s, are the interpolation
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4.5. The rational interpolation problem11 111

points. Therefore, by the latter equation, all four entries of 0 would have the same common
factor. This, however, contradicts the fact that one of the two invariant factors of 0 is equal
to 1. The desired coprimeness is thus established. D

Lemma 4.59. The rational function 0(s) = jj^, with n, d coprime, is an interpolant for
the array P if and only if there exist coprime polynomials 3(5), b(s) such that

and

Proof. If the numerator and the denominator of 0 satisfy (4.103), there holds

The latter expression is polynomial, and hence by Proposition 4.57 0 is an interpolant. Also,
a, b are coprime; otherwise n, d would not be coprime, which is a contradiction. Finally,
we notice that d = a#i2 + b#22» which implies that conditions (4.104) must be satisfied.
This is possible due to part (b) of the proposition above.

Conversely, let 0 be an interpolant. According to Proposition 4.57, [n(s) d(s)]W(.s)
is a polynomial row vector. From the Bezout equation, it follows that P(s) + W(,s)Q(s) =
[©(s)]"1. Multiplying this relationship on the left by the row vector [0(5) d(s)], we con-
clude that [n(s) d(s)][0 (s)]"1 must be a polynomial row vector, i.e., there exist polynomials
a, b such that (4.103) holds. Furthermore, the coprimeness of n, d implies the coprimeness
of a, b. D

As shown above, all interpolants 0 = jj can be parametrized by means of (4.103),
where the parameter F = | is an arbitrary rational function subject to constraints (4.104).
We can interpret 0 as a two-port with inputs u, u, and outputs y, y (see Figure 4.4):

F can be seen as relating u and y in the following manner: b(^)u = a(^)y. Then the
parametrization of all solutions 0 can be interpreted as a linear system described by the
linear, constant coefficient, differential equation d(Jj)y = n(^)u. This system, in turn,
can be represented by means of a feedback interconnection between 0 and F, where 0 is

Figure 4.4. Feedback interpretation of the parametrization of all solutions of the
rational interpolation problem.
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1 12 Chapter 4. Linear Dynamical Systems: Part 1

fixed and F is arbitrary, subject to (4.104). As a consequence of the above interpretation, &
is called the generating system or generating matrix of the rational interpolation problem
at hand. Furthermore, (4.103) shows that every interpolant can be expressed in terms of the
linear fractional representation,

Remark 4.5.4. The coprimeness constraint on n, d has been expressed equivalently as a
coprimeness constraint on the parameter polynomials a, b together with constraints (4. 104).
The former is a nonlinear constraint in the space of coefficients of a, b; it is automatically
satisfied in the case of minimal interpolants discussed below. Constraints (4.104) are linear
in the coefficients of a, b. Examples will be worked out later.

To tackle Problem (A), the concept of a row reduced generating matrix is needed. Let
V{ be the degree of the ith row of 0. The row-wise highest coefficient matrix [0]hr is a
2 x 2 constant matrix, whose (z, y )th entry is the coefficient of the term sVi of the polynomial
Otj(s). We will call 0 row reduced if [0]hr is nonsingular. Notice that the row degrees
of 0 and the degree of its determinant, which by (4.102) is N, satisfy vi + v2 > N, in
general. An equivalent characterization of row reducedness is that the row degrees of 0
satisfy vi + v2 = N.

The matrix © in (4.101) is unique, up to left multiplication with a unimodular matrix
(which is a polynomial matrix with constant nonzero determinant). We use this freedom to
transform 0 into row reduced form. For simplicity we will use the same symbol, namely,
0, to denote the row reduced version of this matrix. Let the corresponding row degrees be

The row degrees of row reduced polynomial matrices have two important properties. First,
although the row reduced version of any polynomial matrix is nonunique, the corresponding
row degrees are unique. Second, because of the so-called predictable-degree property of
row reduced polynomial matrices (see, e.g., Chapter 6 of [191]), the degree of r(s)0(s),
with 0 row reduced and r some polynomial row vector with coprime entries, either can be
KI or be greater than or equal to K2.

Construction of a row reduced ® using O(C, A). We will now show how a row re-
duced generating matrix can be constructed directly from the observability matrix O(C, A).
The procedure involves the determination of two linear dependencies among the rows of
this observability matrix, which leads to the two observability indices KI, i = 1 , 2, of the
pair (C, A). (For details, see [8] or [191].)

Let c, denote the /th row of C, i = 1 , 2. For simplicity, we will assume that working
from top to bottom of the observability matrix, c2 A*1 is the first row of O that is linearly
dependent on the preceding ones, i.e., c,AJ, z = 1,2, j < K\. Then, because of observability,
the next row to be linearly dependent on the previous ones will be CiA*2, where K\ < /c2,
and K\ + K2 = N:
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4.5. The rational interpolation problem" 113

It follows that 0 can be read off of the above relationships:

Clearly, det [0]hr = — 1, which implies that 0 is row reduced.
Combining the preceding lemma with the above considerations, we obtain the main

result, which provides the solution of Problem (A). This result was proved in Antoulas and
Willems [15] as well as Antoulas et al. [22].

Corollary 4.61. Proper rational and polynomial interpolants. The interpolants above are
proper rational provided that a, b satisfy [b(s)022(s) + ^(s}0u(s}}h 7^ 0> vv/iere [r]^ w Mi'eJ
to denote the coefficient of the highest power of the polynomial r. All polynomial interpolants
(f>(s) = n(s) are given by — n(s) = b(s)02iCs) + %(s)&i\(s)> where the polynomials a, b
satisfy the Bezout equation b(5)022(s) + a(s)^i2(*) = 1-

One polynomial interpolant is the Lagrange interpolating polynomial l(s) given in
the distinct point case by (4.81). It is also worth mentioning that a generating matrix (which
is not row reduced) can be written in terms of i(s) and / (s) given by (4.102):

Theorem 4.60. Consider f defined by (4.101), which is row reduced, with row degrees
k1 < k2.

(i) If k1 < k2 and f11, f21 are coprime,

is the unique minimal interpolant, Furthermore, there are no interpolants of complexity
between k1 and k2.

(ii) Otherwise, thre is a family of interpolating functions of minimal complexity which
can be parametrized as follows:

where the polynomial  a(s)  sat isf ies

(iii) In both cases (i) and (ii), there are families of interpolants f = of every degree
satisfying (4.103), where deg a = k – k1, deg b = k – k2, and a, b are coprime.
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114 Chapter 4. Linear Dynamical Systems: Part 1

Figure 4.5. Feedback interpretation of recursive rational interpolation.

Figure 4.6. A general cascade decomposition of systems.

The solution of the unconstrained interpolation problem (4.82) can be obtained in this frame-
work by means of polynomial linear combinations of the rows of this particular generating
matrix.

Recursive interpolation

The fact that in the parametrization of all interpolants via the generating system, F is
arbitrary — except for the avoidance conditions (4.104) — yields, at least conceptually, the
solution to the recursive interpolation problem with no additional effort. In particular,
if D = PI U B2, we define 9i as a generating system for the data set BI and 02 as a
generating system for the modified data set 0i ( Jy)B2. Then the cascade 0 = 020i of the
two generating systems 0i and ©2 provides a generating system for B. More generally,
Figures 4.5 and 4.6 give a pictorial representation of the solution to the recursive interpolation
problem. The cascade interconnection is associated with the Euclidean algorithm, the
Schur algorithm, the Nevanlinna algorithm, the Berlekamp-Massey algorithm, Darlington
synthesis, continued fractions, and Hankel-norm approximation.

Problem (A) was solved recursively in [12]. Earlier, the recursive realization problem
with a degree constraint was solved in [9]. The main result of these two papers, which is
shown in Figures 4.6 and 4.7, is that a recursive update of the solution of the realization or
interpolation problems corresponds to attaching an appropriately defined component to a
cascade interconnection of systems.

The scalar case. We conclude this account on recursiveness by making this cascade
interconnection explicit for SISO systems. Let the transfer function be H(s) = j|̂ , assumed
for simplicity, strictly proper. As shown by Kalman [193], recursive realization corresponds
to the decomposition of H(,s) is a continued fraction:co
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4.5. The rational interpolation problem" 115

where d, are polynomials of degree K: and £),- *:, = degd = n. In the generating system
framework, we have

This cascade decomposition can be simplified in this case, as shown in Figure 4.7.
Furthermore, a state-space realization follows from this decomposition. For details,

see [ 146] and [10]. Here we will illustrate the generic case only, that is, the case where K, = 1
for all /, and hence N = n. By appropriate scaling, we will assume that the polynomials
are monic (coefficient of highest degree is one); (4.106) becomes

The following triple is a minimal realization of H(s), whenever it has a generic decompo-
sition of the form (4.107):

Notice that A is in tridiagonal form, while B and C* are multiples of the first canonical unit
vector in R". To summarize, we have seen important connections between the following
topics:

Thus partial realization consists of truncating the tail of the continued fraction or, equiva-
lently, of the cascade decomposition of the system or of the tridiagonal state space realization.
These issues will play a role in Chapter 10, where an iterative method, the so-called Lanczos
procedure, of constructing this tridiagonal realization will be of central importance.

(a) realization/interpolation,

(b) cascade/feedback interconnection,

(c) linear fractions,

(d) continued fractions,

(e) tridiagonal state space realizations.
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116 Chapter 4. Linear Dynamical Systems: Part 1

Figure 4.7. Cascade (feedback) decomposition of scalar systems.

The solution of Problems (B) and (C)

Given the array P defined by (4.79)—again we restrict our attention to the distinct point
case—together with /z > 0, we wish to find out whether there exist interpolants that are
stable (poles in the left half of the complex plane) with magnitude bounded by ^ on the
imaginary axis. The tool for investigating the existence issue is the Nevanlinna-Pick matrix

where (•) denotes complex conjugation. A solution exists if and only if this matrix is positive
(semi-) definite FI^ > 0. Write FI^ = /z2I~Ii - O2, where HI > 0, n2 > 0. Let //,? be
the eigenvalues of Flf1!^, with /Xj the largest. As long as /z > /zi, FIM > 0, for /z = /xi
it becomes semidefinite and for //, < IJL\ it is indefinite. Thus the smallest norm for which
there exist solutions to Problem (B) is the square root of the largest eigenvalue of FI^1 Fl2.

In [26] it was shown that the Nevanlinna-Pick interpolation problem can be trans-
formed into an interpolation problem without norm constraint. This is achieved by adding
the so-called mirror image interpolation points to the original data. In terms of trajectories,
the mirror image set D of D, defined by (4.93), is
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4.5. The rational interpolation problem* 1 1 7

The augmented data set is thus DflMg = D U D, and the corresponding pair of matrices is

and (•) applied to a matrix denotes complex conjugation (without transposition). We now
construct left coprime polynomial matrices &aug, 3flMg such that Caug(sl — A.aug)~

l =
[®aug(s)]~l SflMg(.s). The main result is that the generating system for the data set DaMg

is the generating system that solves Problem (B), provided that the parameters a, b are
appropriately restricted. For simplicity of notation, let the entries of &aug be denoted by
Oij. The following result can be proved using the results in [26].

Theorem 4.62. Classification by norm. Let ®aug be as defined above. The interpolants
0 = 5 o/D with norm of(f) less than or equal to ̂  on the imaginary axis are given, if they
exist, by(j> = ̂ '^{ffi1, where the magnitude of | on the imaginary axis must be at most ̂ .

The above result achieves an algebraization of the Nevanlinna-Pick interpolation
problem. For related treatments of Problem (B), see [271] and [195]. See also the book by
Ball, Gohberg, and Rodman [38]. We conclude this part by mentioning that Problem (C),
that is, the problem of positive real interpolation, can also be turned into an unconstrained
interpolation problem by adding an appropriately defined mirror-image set of points. For
details, see [27], [234], [309].

Concluding remarks and generalizations

The problem of rational interpolation has a long history. It was only recently recognized,
however, as a problem that generalizes the realization problem. One can distinguish two
approaches: state-space and polynomial. The generalization of the state-space framework
from the realization to the rational interpolation problem is due to Antoulas and Anderson
[25], [23], [26] and Anderson and Antoulas [24]. Therein, the Lowner matrix replaces
and generalizes the Hankel matrix as the main tool. The generating system or polynomial
approach to rational interpolation with the complexity (McMillan degree) as constraint was
put forward in Antoulas and Willems [15] and Antoulas et al. [22].

The above results can be generalized considerably. Consider the array consisting
of the distinct interpolation data s/, Vj, F, of size 1 x 1, r, x /?, r, x m, respectively,
satisfying s{ ^ Sj, i ^ j, and rank V, = r, < p, of i = 1, . . . , N. The left tangential
or left directional interpolation problem consists of finding all p x m rational matrices
O(s) satisfying V^O(s,) = Yf, i = 1, . . . , N, keeping track of their complexity, norm
boundedness, or positive realness at the same time. In this case, the generating matrix 0 is
a square of size p + m, and there are p + m (observability) indices that enter the picture.
The right tangential or right directional interpolation problem, as well as the bitangential or
bidirectional interpolation problem, can be defined similarly. The solution of Problem (A)
in all its matrix and tangential versions has been given in the generating system framework
in [22]. For a general account on the generating system approach to rational interpolation,
see [38].
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118 Chapter 4. Linear Dynamical Systems: Part 1

Examples

Example 4.63. Consider the data array containing four pairs:

P={(0,0), (1,3), (2,4), (1/2,2)}.

According to (4.96),

Following the construction leading to (4.105), we need the observability matrix of the (C, A)
pair,

Examining the rows from top to bottom, the first linear dependence occurring in O$ is that
of the fourth row on the previous ones:

It follows that KI = 1. Therefore, K2 = N — K\ = 3. This means that the next linear
dependence is that of the seventh row on the previous ones:

According to formula (4.105), a row reduced generating matrix 0 is therefore

By (i) of the theorem, since 65 and s +1 are coprime polynomials, there is a unique minimal
interpolant with McMillan degree 1, namely,
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4.5. The rational interpolation problem* 1 1 9

Furthermore, there are no interpolants of degree 2. The next family of interpolants has
McMillan degree 3. It can be parametrized in terms of the second-degree polynomial
p(,s) = po + pis + P2S2, as follows:

The coefficients of p must satisfy the constraints (4.104) in R3, which in this case turn out
to be

By letting p2 = p\ = 0 and PQ = 2 in the above family of interpolants, we obtain the
Lagrange interpolating polynomial for the data array P:

The next family of interpolants has McMillan degree 4. It can be parametrized in terms of
a third-degree polynomial p and a first-degree polynomial q, as follows:

Fkstly, p, q must be coprime, i.e.,

Then, constraints (4.104) must also be satisfied, that is, the free parameters must avoid the
following hyperplanes in R6:

Example 4.64. Continuation of Example 4.63: Recursive construction of interpolants. The
time series associated with P are

Following Figure 4.6, we will now construct the generating systems ©,-, i = 1, 2, 3, 4,
satisfying 0 = ®4®i@2®i; according to (4.102), since detnf=10(s) = nj=1(j - s/),
there must hold det 0, = s — si,i = 1, 2, 3, 4. The generating system that annihilates Wi
is thus
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120 Chapter 4. Linear Dynamical Systems: Part 1

since the first error time series, defined as ei = @i(^)wi, is zero: ej = 0. The second
error time series is defined similarly, namely, 62 = ©i (-£)W2, and we have 62 = W2; thus

The first error time series remains zero, ©2©i (^)wj = 0, and ©2(^7)62 = @2@i (Jp)w2 =
0; the third error time series is ©2© 1(^7^3 = ( _^ je2t, which implies

Finally

Although this generating matrix is not the same as the one obtained in the previous example,
it differs only by left multiplication with a unimodular matrix. In particular, U@4@3@2@i,
where U(5) = ( ? i-L ) is equal to the generating matrix obtained in the previous

V 3 3 /
example.

Example 4.65. Realization Example 4.47 revisited. Following the construction leading to
(4.105), we need the observability matrix of the (C, A) pair defined by (4.98):

The associated observability matrix is
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4.6. Chapter summary 121

The first row that is linearly dependent on the preceding ones is the sixth; the next is the
seventh:

The corresponding generating system is

According to the theory, the minimal interpolant has degree 3, and all minimal interpolants
form a two-parameter family obtained by multiplying 0 on the left by [as + ft 1]:

According to (4.104), the parameters a, ft must be such that the denominator of the above
expression is nonzero for 5 = 0 ; therefore, since the value of the denominator for s = 0
is 1, these two parameters are free. And to obtain matching of the Markov parameters, we
replaces by s"1:

It is readily checked that the power series expansion of 0 around infinity is

4.6 Chapter summary
The purpose of this chapter was to familiarize the reader with fundamental concepts from
system theory. Three topics were discussed, namely, the external description, the internal
description, and the realization/interpolation problem. The last section on the rational
interpolation problem can be omitted on first reading. It forms a natural extension and
generalization of the realization problem, which is interesting in its own right. Many aspects
discussed in this section, however, will turn out to be important in what follows.

The section on the external description states that a linear time-invariant system is an
operator (map) which assigns inputs to outputs. In particular, it is the convolution operator
defined in terms of its kernel, which is the impulse response of the system. In the frequency
domain, the external description is given in terms of the transfer function, whose series
expansion around infinity yields the Markov parameters.

The internal description introduces, besides the external variables (that is, the input
and the output), an internal variable called the state. The internal description thus consists
of a set of equations describing how the input affects the state and another set describing
how the output is obtained from the input and the state. The former set contains differential
or difference equations, which are first order in the state (only the first derivative or shift of
the state is involved), and it describes the dynamics of the system. The latter set contains
algebraic equations (no derivatives or shifts of the state are allowed). The internal description

co
nt

ro
len

gin
ee

rs
.ir



122 Chapter 4. Linear Dynamical Systems: Part 1

, defined

by (4.13).
To get a better understanding of a dynamical system, two structural concepts are

introduced, namely, those of reachability and observability. The former is used to investigate
the extent to which the states can be influenced by manipulating the input. The latter is
used to assess the influence of the state on the output. The reachability and observability
matrices are used to quantitatively answer these questions. Besides these matrices, the so-
called gramians can be used as well. Their advantage lies in the fact that they are square
symmetric and semidefinite. Furthermore, if the assumption of stability is made, the infinite
gramians arise, which can be computed by solving appropriately defined linear matrix
equations, the so-called Lyapunov equations. These equations play a fundamental role in
the computation of approximants to a given system. They will be the subject of detailed
study in Chapter 6.

Eliminating the state from the internal description is straightforward and leads to the
external description. The converse, however, that is deducing an internal description from
the external description is nontrivial. It involves the construction of state, and if the data
consist of all Markov parameters, it is known as the realization problem. Conditions for
solvability and ways of constructing solutions (if they exist) are discussed in section 4.4.
If the data consist of a partial set of Markov parameters, the existence of solutions being
no longer an issue, the parametrization of all (minimal complexity) solutions becomes
important; this is discussed briefly.

The final section on rational interpolation provides a generalization of the realization
results in several ways. First, the input-output data need not be confined to Markov param-
eters; instead, samples of the transfer function at arbitrary points in the complex plane are
allowed. Second, both state-space and polynomial ways of constructing all solutions of a
given complexity are discussed. Finally it is pointed out that the machinery which was set up
(generating system method) can be used to solve the problems of constructing systems with
special properties, like bounded real or positive real transfer function.

is thus completely determined by means of the quadruple of matrices

co
nt

ro
len

gin
ee

rs
.ir



Chapter 5

Linear Dynamical Systems:
Part 2

To assess the quality of a given approximation, we must be able to measure "sizes" of
dynamical systems as well as the distance between two of them. In the first part of this
chapter, we discuss various notions of norms of linear dynamical systems. The second part
offers a brief review of system stability and an introduction to the related concept of system
dissipativity. The chapter concludes with the discussion of £2-systems, which play a role in
Hankel-norm approximation. For more details on the material in the sections that follow, see
[96], [116], [71], [149], [370], [360], [361], [288], and, in addition, [119], [177], and [197].

5.1 Time and frequency domain spaces and norms
Consider a linear space X over R, not necessarily finite-dimensional. Let a norm v be
defined on X, satisfying the three axioms (3.1). X is then called a normed space. In such
spaces the concept of convergence can be defined as follows. We say that a sequence x^,
k = 1,2,. . . , converges to x* if the sequence of real numbers v(xt — x*) =|| x^ — x* ||
converges to zero. A sequence x*, k = 1, 2 , . . . , is a Cauchy sequence if for all 6 > 0
there exists an integer m such that || x, — xy \\< € for all indices i, j > m. If every Cauchy
sequence converges, then X is called complete.

5.1.1 Banach and Hilbert spaces

A Banach space is a normed linear space X that is complete. A subspace Y of X is closed if
every sequence in Y that converges in X has its limit in Y. If X is finite-dimensional, every
subspace is closed. This does not hold if X is infinite-dimensional.

We now turn our attention to Hilbert spaces. These spaces have more structure than
Banach spaces. The additional structure results from the existence of an inner product. The
inner product is a function from the Cartesian product X x X to R:

123
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124 Chapters. Linear Dynamical Systems: Part 2

This map must satisfy the following four properties:

This inner product induces a norm on X, namely,

Linear spaces X that are endowed with an inner product and are complete are called Hilbert
spaces. We close this introductory section by defining the space Y1 of a subspace Y c X:

The space Y1 is always closed; if Y is also closed, then Y1- is called its orthogonal com-
plement', in this case, X can be decomposed in a direct sum,

5.1.2 The Lebesgue spaces ip and Cp
In this section, we define the p-norms of infinite sequences and functions. Consider the
vector- valued sequences f : J -> R", where J = Z, J = Z+, or X = Z_. The Holder
/7-norms of these sequences are defined as

The corresponding £p spaces are

where, for instance, X = Z, X = Z+, or J = Z_. Consider now continuous-time vector-
valued functions f : X -» R", where J = R, T = R+, X = R_, or T = [a, £>]; the
/?-norms are defined as

The corresponding £p spaces are

where, for instance, X = E, X = R+, J = R_, or the finite interval I — [a, &].
The spaces defined above are sometimes referred to as time domain tp, £p spaces

since their elements are functions of a real variable, which is mostly time. In what follows,
frequency domain tp, £,p spaces will also be introduced.
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5.1. Time and frequency domain spaces and norms 125

5.1.3 The Hardy spaces hp and Hp

We now turn our attention to spaces of functions of a complex variable. Since this variable
can be interpreted as complex frequency, we will refer to these spaces as frequency domain
spaces.

hp spaces

Let D, 8V, f> cC denote the (open) unit disc, the unit circle, and the complement of the
closed unit disc, respectively. Consider the matrix-valued function F : C -> Cqxr, which
is analytic in T>. Its /?-norm is defined as follows:

We choose || F(ZO) lip to be the Schatten p-norm of F evaluated at z = zo; the Schatten
norms are defined in (3.5). However, there are other possible choices (see section 5.6). The
resulting hp spaces are defined as follows:

In a similar way, one can define the spaces hq
p

xr(D). The following special cases are worth
noting:

where (•)* denotes complex conjugation and transposition; furthermore

(5.5)

'Hp spaces

Let C+ c C denote the (open) right half of the complex plane: s = x + iy e C, x > 0.
Consider the q x r complex-valued functions F, which are analytic in C+. Then

Again, || F(SO) \\P is chosen to be the Schatten p-norm (see (3.5)) of F evaluated at s = SQ.
The resulting Hp spaces are defined analogously to the hp spaces:
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126 Chapter 5. Linear Dynamical Systems: Part 2

The Hardy spaces "H^xr(C_) can be defined in a similar way. Two special cases are worth
noting:

where (•)* denotes complex conjugation and transposition, and

The search for the suprema in the formulas above can be simplified by making use of
the maximum modulus theorem, which states that a function f continuous inside a domain
D c C as well as on its boundary 3D and analytic inside D attains its maximum on the
boundary 3D of D. Thus (5.4), (5.5), (5.6), (5.7) become

and

Frequency domain £p spaces

If the function F : C -> Cqxr has no singularities (poles) on the imaginary axis but is not
necessarily analytic in either the left or the right half of the complex plane, Hp norms are
not defined. Instead, the frequency domain C,p norms of F are defined as follows:

The corresponding frequency domain Cp spaces are

In a similar way, one may define the frequency domain tp spaces.

5.1 .4 The Hilbert spaces 12 and £2

The (real) spaces ip(T) and CP(T) are Banach spaces; ti(T) and £2(2), however, can be
given the structure of Hilbert spaces, where the inner product is defined as follows:
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5.1 . Time and frequency domain spaces and norms 1 27

For X = Z and X = R, respectively, elements (vectors or matrices) with entries in
and £2(R) have a transform defined as follows:

for discrete-time functions,

 for continuous-time functions.

Thus if the domain of f is discrete, ¥(e'e) = F(f)(6) is the Fourier transform of f and
belongs to £2$, 2n]; analogously, if the domain of f is continuous, ¥(ico) = .F(f)(<w) is
the Fourier transform of f belonging to the space £2(/R) defined by (5.11). Furthermore,
the following bijective correspondences hold:

For simplicity, the above relationships are shown for spaces containing scalar- valued func-
tions. They are, however, equally valid for the corresponding spaces containing matrix-
valued functions.

Two results connect the spaces introduced above. We state only the continuous-time
versions. The first has the names ofParseval, Plancherel, and Paley- Wiener attached to it.

Proposition 5.1. The Fourier transform F is a Hilbert space isomorphism between £2(R)
and £2(iR). In addition, it is an isometry, that is, it preserves distances. The Fourier
transform maps £2(R+), £2(R-) onto Hi (C+), 7/2 (<C_), respectively.

The second result asserts that the product of an £00 function and a frequency domain
£2 function is a frequency domain £2 function. It also asserts that the £00 and H<x> norms
can be viewed as induced norms. Recall that if (X, a) and (Y, ft} are two normed spaces
with norms a, ft, respectively, just as in the finite-dimensional case, the a, ft-induced norm
of an operator T with domain X and codomain Y is || T \\a,p= supx?to || Tx \\p/\\ x ||a.

Proposition 5.2. Let F e £<» and G e £2(/M). The product FG e £2(i'M). In addition,
the £00 norm can be viewed as an induced norm in the frequency domain space £2(iR):

Iff e T/oo and G € ft2(C+), then FG 6 ft2(C+). Furthermore, the U^ norm can be
viewed as an induced norm in the frequency domain space 7/2. as well as in the time domain
space LI'-

where x e £
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128 Chapters. Linear Dynamical Systems: Part 2

5.2 The spectrum and singular values of the convolution
operator

Given a linear system Z, recall the definition of the convolution operator S given by (4.4)
and (4.5) for the discrete-time and the continuous-time case, respectively.

Spectrum and singular values of <S

Consider first the case of SISO (ra = p = 1) discrete-time systems. The convolution
operator S is also known as the Laurent operator. To this operator we associate the transfer
function H(z) — X^-oo n'z ~'» a^so known as the symbol of S. A classical result, which
can be found, e.g., in [70], asserts that S is a bounded operator in ti(J^) if and only if H
belongs to the (frequency domain) space £00 (3D), that is, HHJI^ < oo. The spectrum of
this operator is composed of all complex numbers A. such that the resolvent S — AI is not
invertible; furthermore, if there exists v e ^z(^) such that (S — AI)v = 0, (A., v) is an
eigenvalue, eigenvector pair of S.

Denoting the convolution operator by <S(H), to stress the connection with H, we have
in this case

Furthermore, it follows that [<S(H)]* = <S(H*) and <S(H!)<S(H2) = «S(HiH2). Thus

which shows that S is a normal operator. This implies that if A belongs to the spectrum of
<S, | A. | is a singular value of S. Otto Toeplitz in 1911 showed that the spectrum of S is

If we plot the elements of this set in the complex plane, we obtain a closed curve, which is
sometimes referred to as the Nyquistplot of the underlying system. Due to the normality of
«S, the set of singular values of S is given by absolute values of the elements of its spectrum:

Therefore, the largest entry of this set is the £00 norm of H. Notice that S is not invertible
whenever 0 e A(<S); if H is rational, this means that S is not invertible whenever H has a
zero on the unit circle.

Closely related to S is the Toeplitz operator T : €2(Z+) -> l2(1>+), y = T(u), where
y(0 = E£o ht-kU(k), t > 0. It can be shown (see [70]) that \\T\\i = HHH^ and that the
spectrum A (T) contains A(«S), together with all points enclosed by this curve which have
nonzero winding number.

The spectrum A («S) can be approximated by considering a finite portion of the impulse
response, namely, h^, where k runs over any consecutive set of Af integers. For simplicity,
let k = 0, 1, . . . , W — 1. The corresponding input and output sequences are finite: u*, y*,
& = 0, 1 , . . . , Af — 1 . In this case, y = h <8) u, where ® denotes periodic convolution, which
is the usual convolution but with the sum taken over W consecutive values of u, and outside
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5.2. The spectrum and singular values of the convolution operator 129

the interval [0, N — 1], the functions are assumed to be periodic: y(Y)
t = 0 ,1 , . . . , N — 1. In matrix form we havei matrix form we have

The N x N matrix <S# is called a circulant; it is a special Toeplitz matrix constructed by
means of cyclic permutation of its first column or row. Circulant matrices are normal; they
are diagonalized by means of the discrete Fourier transform (DFT) matrix (®N\,I=\,...,N =

1^"1*, where WN = e~l~& is the principal Nth root of unity. The eigenvalues of-= v

SN are H(wfc), k = Q, I , ..., N — 1, where H(z) =
approximant of H. Some examples will illustrate these issues.

can be considered an

Example 5.3. We will first compute the singular values of the convolution operator
associated with the discrete-time system:

The impulse response of this system is ho = 0,
discussion it follows that

= bak~l, k > 0. Hence from the above

The error between the eigenvalues of SN and the corresponding elements of the spectrum of
<S are of the order of 10~2,10~3 for N = 6,N = 10, respectively; a similar property holds
for the singular values of <S and SN. The spectrum (Nyquist plot) of this system consists of
a circle centered at (yi^i, 0) of radius -$p- Thus the largest singular value of S is JIT^T,

while the smallest is 7^7, which implies that S is invertible.
As a second example, we consider a discrete-time third-order system known as the

Butterworth filter. Its transfer function is

The first few Markov parameters are ho = \, hi = ^, Ii2 = |, ha = 0,114 = :
2y, hs = 0,

he = 57,1*7 = 0,hg = ^. The Nyquist plot (i.e., the spectrum of S} is shown in Figure 5.1,
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130 Chapter 5. Linear Dynamical Systems: Part 2

Figure 5.1. Spectrum of the convolution operator S compared with the eigenvalues
of the finite approximants SN, N = 4 (circles), N = 6 (crossed circles), N = 10 (dots).

together with the eigenvalues of SN, forN = 4 (circles) N = 6 (crossed circles) and N = 10
(dots); the error in the latter case is of the order 10~3.

The singular values of S are £(<S) = [0, 1], which implies that S is not invertible.
Finally, the spectrum of the associated Toeplitz operator A(T) is composed of A(<5>) and
all points in the interior of this curve.

Generalization to continuous-time systems

For SISO continuous-time systems, similar results hold. Without proof, we state the follow-
ing facts. The convolution operator defined by (4.5) is bounded in £2(R), provided that the
associated transfer function H(s) belongs to (the frequency domain space) £ooO'R), that is,
H is bounded on the imaginary axis. Again, the spectrum of <S is composed of all complex
numbers such that the resolvent S — AI is not invertible. If the associated H is rational, this
condition is equivalent to the absence of zeros of H on the imaginary axis.

Just as in the discrete-time case, denoting the convolution operator by <S(H), to stress
its connection with H, we have ||«S(H)||2 = IIHJI^. Furthermore, similar arguments show
that S is normal. The parallel of the Toeplitz result in the continuous-time case is that the
spectrum of S is

This set in the complex plane yields a closed curve known as the Nyquist plot. Therefore,
the set of singular values of <S is given by

The largest entry of this set is the Coo norm of H.

Generalization to MIMO systems

The spectrum of the convolution operator associated with a MIMO system is defined for
m = p (same number of input and output channels). In this case, it is composed of the
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5.2. The spectrum and singular values of the convolution operator 131

union of the ra curves which constitute the m eigenvalues of the transfer function H(ia>).
For continuous-time systems, for instance, this gives

The convolution operator for MIMO systems is in general not normal. Its singular values
(which are defined even ifm^p) are those of H (/&>):

Therefore,

where, as before, a\ denotes the largest singular value. Similar statements can be made for
discrete-time MIMO systems.

The adjoint of the convolution operator

A detailed study of the singular values of the convolution operator S requires the use of the
adjoint operator. For completeness, this issue is briefly addressed next, although it will not
be used in the sequel.

By definition, given the inner product ( - , - } , the adjoint of 5, denoted by <S*, is the
unique operator satisfying

for all y, u in the appropriate spaces.
By (4.5), S is an integral operator with kernel h(-), which by means of state-space

data can be expressed as follows: h(-) = D5(-) + CeA(-)B, t > 0. The former part, namely,
D, is an instantaneous and not dynamical action; therefore, its adjoint is given by D*. The
adjoint due to the latter part ha(-) = OA( -)B, t > 0, which denotes dynamical action, can
be computed as follows:

Thus from (5.13), it follows that

(5.14)

with time t running backward, that is, from +00 to — oo. It follows that given E =
/ A I B \( j , its adjoint with respect to the usual inner product in £2 0&) can be defined as
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132 Chapters. Linear Dynamical Systems: Part 2

Furthermore, if Hj (5) = D + C(sl — A)-1B, the transfer function of the adjoint system E*
is

Remark 5.2.1. (a) According to the computations above, the adjoint can also be defined
by replacing — C*, B* with C*, —B*, respectively.

(b) Given the state space representation of the original system x = Ax + Bu, y =
Cu -f Du and one for the adjoint p = —A*p — C*y, u = B*y + D*y, notice that u, u and
y, y are, respectively, elements of the same space. A straightforward calculation shows that
the following relationship holds:

In other words, for fixed t, the derivative of the usual inner product of the state of the original
system and that of the adjoint system is equal to the difference of the inner products between
u, ii and y, y. The following general result can be shown. Two systems with input u, y and
output y, u, respectively, are adjoints of each other if and only if they admit minimal state
space representations such that the states x, p satisfy the above instantaneous condition. For
details, see [287], [120].

(c) According to the above considerations, the adjoint of the autonomous system
Jjx(0 = Ax(0 is ̂ p(0 = -A*p(0- It follows that £ [p*(/)x(?)j = 0, which means that
p*(0x(0 = p*(f0)x(fo) for all t > t0.

(d) One way to define the adjoint E* of a discrete-time system £ is by means of the
transfer function. Given H(z) = D + C(zl — A)~]B, the transfer function of the adjoint
system is

A simple calculation shows that if A is invertible, the adjoint system has the following
realization:

5.3 Computation of the 2-induced or 'H00-norm
According to (5.9), if T, is stable, i.e., the eigenvalues of A have negative real parts, its
2-norm is

The last equality follows from Proposition 5.2, which asserts that the 2-induced norm and
the T^oo -norm of a stable £ are the same. Consider the rational function

If the ?^oo-norm of T, is less than y > 0, there is no real &>, such that OK(/&>) is zero. Thus
the T^oo-norm of £ is less than y if and only if 4>~! (s) has no pure imaginary poles.
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5.3. Computation of the 2-induced or "Hoc-norm 133

O"1. TTze Hoc-norm ofT, is less than y if and only if A(y) /las no eigenvalues on the

Proposition 5.4. Given Y, =

O"1. The Hoo-norm of 3
imaginary axis. If D = 0,

If D ^Q and y2! — DD* w nonsingular,

J &e a realization of_

F = A + xBD*(y2! - DD*)-*C, G = yB(y2! - H = yC*(y2! -
DD*)~1C.

The proof of this proposition is left as an exercise (see Problem 30). Notice that A
satisfies

Such matrices are called Hamiltonian matrices. Therefore, the computation of the 'H0o-
norm requires the (repeated) computation of the eigenvalues of structured—in this case,
Hamiltonian—matrices.

Using Proposition 5.4 to compute the Koo-norm

The above fact can be used to compute the 7/oo-norm of Z to any given accuracy by means of
the bisection algorithm. We proceed as follows. For a sufficiently large y, the Hamiltonian
defined by (5.17) or (5.18) has no pure imaginary eigenvalues, while for a sufficiently small
y_, it does. The algorithm used to find an approximation of the "Hoc-norm consists in bisecting

the interval [y, y]: let y = (y + y)/2. If A(y) has imaginary eigenvalues, then the interval
above is substituted by the interval, where y = y; otherwise by y = y. Both of these
intervals now have half the length of the previous interval. The procedure continues until
the difference y — y is sufficiently small.

Example 5.5. Consider the continuous-time third-order Butterworth filter. The state-space
matrices are

which implies that Ox (s) = 1 -I- -\ ̂ rj and the Hamiltonianco
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134 Chapter 5. Linear Dynamical Systems: Part 2

Figure 5.2. Locus of the eigenvalues of the Hamiltonian as a function ofy.

The locus of the eigenvalues of the Hamiltonian as a function of the parameter y > 0 is
shown in Figure 5.2. For y = oo, the six eigenvalues lie on the unit circle at the locations
indicated. As y decreases, the eigenvalues move in straight lines toward the origin; they
meet at the origin for y = 1. For smaller values of y, the eigenvalues move again in straight
lines away from the origin, with two of them traversing the imaginary axis in the positive,
negative, direction, respectively. As y approaches 0, the six eigenvalues go to infinity.
Therefore, the Woo-norm (which is the 2-norm of the associated convolution operator S) is
equal to 1. It is worth examining the sensitivity of the eigenvalues as a function of y, es-
pecially close to the "Hoc-norm. For y = 1, the Hamiltonian A(l) has six zero eigenvalues,
while the dimension of its null space is one. Therefore, A(l) is similar to a Jordan block
of size six. Therefore, as detailed in Example 10.5, a perturbation in y of the order 10~8

will result in a perturbation of the eigenvalues of the order 10~3. Thus at the bifurcation
point of the locus, we have very high sensitivity. To remedy this situation, a procedure
for computing the infinity norm which bypasses this problem has been proposed in [75].

5.4 The Hankel operator and its spectra
Recall section 4.1 and in particular the definition of the convolution operator S (4.5). In
this section, we first define the Hankel operator H which is obtained from S by restricting
its domain and codomain. Then both the eigenvalues and the singular values of H are
determined. A general reference on Hankel operators is [261].

Given a linear, time invariant, not necessarily causal, discrete-time system, the convo-
lution operator S induces an operator of interest in the theory of linear systems—the Hankel
operator T-L, defined as follows:

(5-19)
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5.4. The Hankel operator and its spectra 135

The matrix representation of W is given by the lower-left block of the matrix representation
(4.4) of S\

Thus 'H turns out to be the same matrix as the Hankel matrix defined by (4.63). Since the
Hankel operator of Z maps past inputs into future outputs, we have

which implies

Briefly, the properties of this operator are that, because of (4.65), it has finite rank (at most
ri) and that the rank equals n if and only if Z is reachable and observable. Finally, as shown
in the next section, H has a finite set of nonzero singular values. Thus, because H has finite
rank, its eigenvalues and singular values can be computed by means of finite-dimensional
quantities, namely, the three gramians.

If H has domain ̂ (Z-) and codomain €£ (Z+), its ̂ -induced norm is

The quantity || T, \\ H is called the Hankel-norm of the system Z. If in addition the system is
stable, by combining the discrete-time versions of Propositions 5.1 and 5.2, it follows that
the ^2-induced norm of S is equal to the /Zoo-Schatten norm (3.6) of its transform, which
is the transfer function H£. In this case HZU^ above can be replaced by HZIU^, and we
often refer to this quantity as the Aoo-norm of Z.

Given a linear, time invariant, continuous-time, not necessarily causal system, sim-
ilarly to the discrete-time case, the convolution operator S induces a Hankel operator H,
defined as follows:

where y

Sometimes this integral is written in the form y+(f) = J)°° h(r)u_(/ — x)dx. If 'H has
domain C% (R_) and codomain £2 (R+), its £2-induced norm is

(5.21)

The quantity || Z \\H is called the Hankel-norm of the system Z. As in the discrete-time
case, if the system is stable, by combining Propositions 5.1 and 5.2 it follows that the
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136 Chapter 5. Linear Dynamical Systems: Part 2

Figure 5.3. The action of the Hankel operator: past inputs are mapped into future
outputs. Top: square pulse input applied between t = — 1 and t = 0. Bottom: resulting
output considered for t > 0.

^2-induced norm of the system defined by the kernel h is equal to the T^oo-Schatten norm
of its transform, which is the transfer function Hj, and we often refer to this quantity as
the Hoo-norm of Z. Figure 5.3 illustrates the action of the Hankel operator. A square pulse
of unit amplitude is applied from t = — 1 until t = 0 (upper plot), to the second-order
system with transfer function H(s) =
(lower plot).

; the resulting response for t > 0 is depicted

Remark 5.4.1. The Hankel operator and the Hankel matrix. We have defined three objects
that carry the name Hankel and are denoted, by abuse of notation, with the same symbol
T-L. The first is the Hankel matrix defined by (4.63) for both discrete- and continuous-time
systems; the second is the Hankel operator (5.19), defined for discrete-time systems; and the
third is the Hankel operator for continuous-time systems defined by (5.20). It turns out that
the Hankel matrix is the matrix representation (in the canonical basis) of the Hankel operator
for discrete-time systems. Furthermore, the Hankel matrix and the continuous-time Hankel
operator are not related; for instance, whenever defined, the eigenvalues of the former are
not the same as those of the latter.

5.4.1 Computation of the eigenvalues of %

We begin by computing the eigenvalues of the Hankel operator; this problem makes sense
only for square systems m = p. The first result, Lemma 5.6, asserts that, in this case,
the (nonzero) eigenvalues of the Hankel operator are equal to the eigenvalues of the cross
gramian. Recall that this concept was defined in section 4.3.2 for discrete-time systems,
in which case the statement about the equality of eigenvalues follows in a straightforward
way provided Z is stable. Here we prove this result for continuous-time systems. The cross
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5.4. The Hankel operator and its spectra 137

gramian X for continuous-time square systems £ (w = p) is defined as the solution X of
the Sylvester equation

If A is stable, it is well known that the solution of this equation can be written as

The next lemma states the desired property of the cross gramian.

Lemma 5.6. For square minimal stable systems Z, the nonzero eigenvalues of the Hankel
operator H are equal to the eigenvalues of the cross gramian X.

Proof. Recall that the Hankel operator maps past inputs into future outputs, namely,

where h(f) = OA'B, t > 0, is the impulse response of Z. The eigenvalue problem of "H
for square systems is %(u_) = Ay+, where y+(0 = u_(— t). Let the function u_ be an
eigenfunction of 'H. Then

The first integral is equal to the cross gramian X, and the second and the third are equal
to the same constant vector, say, v € Rw. We thus have X\ = Av, which shows that if A
is a nonzero eigenvalue of H, it is also an eigenvalue of X. Conversely, let (A, v) be an
eigenpair of X, i.e., X\ = Av:

Therefore u is an eigenfunction of H. The proof is thus complete. D

5.4.2 Computation of the singular values of %

Next, it is shown (Lemma 5.8) that the (nonzero) singular values of the Hankel operator
are equal to the square roots of the eigenvalues of the product of the reachability and
observability gramians. First, wje need a definition.
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1 38 Chapter 5. Linear Dynamical Systems: Part 2

Definition 5.7. The Hankel singular values of the stable system £, denoted by

Ti(E) > • • • > o^(Z) each with multiplicity m,,

are the singular values ofH-z defined by (5.19), (5.20). The Hankel-norm ofT, isthe largest
Hankel singular value:

The Hankel operator of a not necessarily stable system Z is defined as the Hankel operator
of its stable and causal part Z+: Hj = %E+.

The discrete-time case

We start by computing the singular values of the Hankel operator H defined by (5.19).
Because of the factorization of H given in Lemma 4.39, we have H = O71, where O, K
are the infinite observability, reachability, matrices, respectively. Thus WH. — K*O*OK.
Let v be an eigenvector of 1-1*11 corresponding to the eigenvalue a2; then

Recall that by (4.47), (4.48), UK* = Pis the reachability and O*O = Q is the observability
gramian of the system. This implies that if v is an eigenvector of WH, then 7£v is an
eigenvector of the product of the two gramians PQ. Conversely, let PQw = a2w; this
implies

and therefore a2 is an eigenvalue atl-iH* with corresponding eigenvector Ovr. We conclude
that a is a singular value of the Hankel operator 1-L if and only if a2 is an eigenvalue of the
product of gramians PQ.

The continuous-time case

To compute the singular values of H, we need its adjoint H* . Recall (5.20). For continuous-
time systems, the adjoint is defined as follows:

In what follows, it is assumed that the underlying system is finite-dimensional, i.e., the rank
of the Hankel matrix derived from the corresponding Markov parameters h, of Z is finite.
Consequently, by subsection 4.4, there exists a triple (C, A, B) such that (4.20) holds:
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5.4. The Hankel operator and its spectra 139

It follows that

Moreover,

where the expression in parentheses is Q, the infinite observability gramian defined by
(4.44). The requirement for u to be an eigenfunction of WH is that this last expression be
equal to afu(i). This implies

Substituting u in the expression for x,, we obtain

Recall the definition (4.43) of the infinite reachability gramian; this equation becomes

Conversely, let PQ%f = a/x,-. We will show that the function y+(f) = CeArx,, t > 0, is an
eigenfunction of HH*. To this end we multiply the above expression by y+ on both sides.
Making use of the definition of the gramians P and Q, the resulting expression is

which immediately implies the desired HH*y+ = af y+.
We conclude that the (nonzero) singular values of the Hankel operator H are the

eigenvalues of the product of the infinite gramians P and Q of the system. Therefore H,
in contrast to S, has a discrete set of singular values. It can be shown that (4.43) holds for
discrete-time systems, where P, Q are the infinite gramians obtained by solving the discrete
Lyapunov equations (4.49), (4.50), respectively. In summary we have the following lemma.

Lemma 5.8. Given a reachable, observable, and stable discrete- or continuous-time
system S of dimension  n, the Hankel sigular values of S are equal to the positive
square toots of the eigenvalues of the product of gramians PQ,
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Remark 5.4.2. (a) For discrete-time systems, <7fc(Z) = crk(H); i.e., the singular values
of the system are the singular values of the (block) Hankel matrix defined by (4.63). For
continuous-time systems, however, crjt(X) are the singular values of a continuous-time Han-
kel operator. They are not equal to the singular values of the associated matrix of Markov
parameters.

(b) It should be noticed that following Proposition 4.35, the Hankel singular values of
a continuous-time stable system and those of a discrete-time stable system related by means
of the bilinear transformation s = ^j- are the same.

(c) If the system is not symmetric, the Hankel singular values cr, and the singular
values TT, of X satisfy the following majorization inequalities: £)i=i a, > £);=i TT/ and
£)f=1 7in-i+\ > Y^!i=i an-i+i, * = ! , . . . ,«. If the Hankel operator is symmetric, the
following majorization inequalities hold: £)f=1 nit X)?=i <*i < Zf=i A"'(7?)+Mg). Thus in
the balanced basis (see Chapter 7)

The Hankel singular values and the cross gramian

If we are dealing with a symmetric and stable system Z, its Hankel singular values can be
computed using only one gramian, namely, the cross gramian X defined in (4.59), (4.60).

Recall that according to Lemma 4.45, a symmetric system always possesses a real-
ization that satisfies (4.75). Substituting these relations in equation (4.59), we obtain

A^+^A+BC = O =» A;r*i>+;rA^+BC^ = o =» A [#*] + [**] A* +BB* = O.

Since the Lyapunov equation (4.45) has a unique solution, this implies that the reachability
and the cross gramians are related in this case: P = XV. Using a similar argument
involving (4.46), we obtain Q = V~l X; we conclude that

We have thus proved the following result, which also follows as a corollary of Lemma 5.6.

\ 

^e

reachability, observability, and cross gramians satisfy (5.25). It follows that the eigenvalues
of X are the eigenvalues of the associated Hankel operator H, and the absolute values of
these eigenvalues are the Hankel singular values ofH.

Remark 5.4.3. Consider a square system H = ( ^ B j, that is, m = p, and the associated
cross gramian X. Since the eigenvalues of X are the same as the eigenvalues of the Hankel
operator H, it follows that trace H = trace X. Furthermore, according to [250] there holds
2 trace 'H = —trace (CA~!B). We conclude, therefore, that twice the trace of the cross
gramian is equal to minus the trace of the transfer function of Z evaluated as s = 0. This
fact can be seen directly by taking the trace of X + A"1 XA. = — A-1BC; the trace of the
left-hand side is namely equal to 2 trace X, while that of the right-hand side is equal to the
desired -trace CA^B.

Propostion 5.9. Given a sysmmetric minimal and stable system
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5.4. The Hankel operator and its spectra _ 141

5.4.3 The Hilbert-Schmidt norm

An operator T : X ->• Y, where X, Y are Hilbert spaces, is a Hilbert-Schmidt operator if
there exists a complete orthonormal sequence {wn} G X such that £]n>0 HT(wn)l! < oo.
This property can be readily checked for integral operators T. The integral operator

is a Hilbert-Schmidt operator if its kernel k is square integrable in both variables, if the
expression

is finite. In this case, K is the Hilbert-Schmidt norm of J. Following [365] , such operators are
compact and hence have a discrete spectrum, where each eigenvalue has finite multiplicity,
and the only possible accumulation point is zero.

It readily follows that the convolution operator <S defined above is not Hilbert-Schmidt,
while the Hankel operator 1-L is. In particular,

Assuming that the system is stable, this expression is equal to

where CT, are the Hankel singular values of the system Z.
The Hilbert-Schmidt norm for SISO linear systems was given an interpretation in

[165]. The result asserts the following.

Proposition 5.10. Given a SISO stable system, nic2 is equal to the area of the Nyquistplot
of the associated transfer function, multiplicities included.

An illustration of this result is given in Example 5.5.2. See also Problem 58.

Example 5.11. For the discrete-time system y(k + 1) — ay (k) = bu(k), \a\ < 1, discussed
earlier, the Hankel operator is
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142 Chapters. Linear Dynamical Systems: Part 2

This operator has a single nonzero singular value, which turns out to be

In this case, since H is symmetric, AI(%) = ±a\(H). Furthermore, the Hilbert-Schmidt
norm (which is equal to the trace of H) is -^ •

5.4.4 The Hankel singular values of two related operators

The singular values of this operator can be determined as follows. Recall the definition of
the Hamiltonian A(y) defined by (5.17). It is known (e.g., [368], [363]) that y > 0 is a
singular value of /C if and only if the determinant of the (2, 2) block of the matrix exponential
of A(y)r is zero:

This problem arises as the computation of the optimal sensitivity for a pure delay:

This was first solved in the above form in [368], with conjecture for the general case

where m is a general (real) inner function. The conjecture amounts to replacing exp(A(y ) T)
by m(— A(y)). The conjecture was resolved first by [232] and later streamlined by [302],
[122], [363] in a more generalized context; in particular, [363] gave a completely basis-free
proof. For the generalization to the case D / 0, see [302]. We also note that the result
played a crucial role in the solution of the sampled-data HOO control problem [39].

A second instance of the existence of an exact formula for the Hankel singular values
is given in [253]. This paper shows that the Hankel singular values of a system whose
transfer function is given by the product of a scalar inner (stable and all-pass) function and
of a rational MIMO function can be determined using an appropriately defined Hamiltonian.

/ A I It \Here are some details. Let Z = f J be given with transfer function Hs(.s),
together with 0(s), which is scalar and inner. The Hankel singular values of the system
whose transfer function is 0(s)Hj;Cs) are the solutions of the following transcendental
equation A(y) = 0, where

P, Q are the gramians of E, and A(y) is the associated Hamiltonian defined by (5.17).
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5.4. The Hankel operator and its spectra 143

Example 5.12 (see [254]). The transfer function from u to y for the delay differential
equation

The singular values of the associated Hankel operator are characterized by A(y) =0, where

,-1
For this example 0(—F) = (eF — cl) (I — ceF) . The bisection search on the interval
(0.07,1) is employed for c = 0.75, which yields the Hankel singular values shown in
Figure 5.4. The same figure shows also the determinant as a function of y.

Figure 5.4. The first six Hankel singular values (left). Plot of the determinant
versus 0 < y < 1 (right). The zero crossings are the Hankel singular values.

Since A(y) is 2 x 2, it is possible to compute the determinant in terms of y. By
straightforward calculation, 0(A(x)) is equal to

where £2 = 1 — 2ccosft> + c2 and CD = ^-——; thus

The Newton iteration can be applied, which confirms the singular values in the table in
Figure 5.4.
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5.5 The

5.5.1 A formula based on the gramians
/ A I R \

The 'H.i-norm of the continuous-time system Z = ( ) is defined as the £2-norm of
V *" I " J

the impulse response (in the time domain):

This is similar for discrete-time systems. Therefore, this norm is bounded only if D = 0
and Z is stable, i.e., the eigenvalues of A are in the open left half of the complex plane; in
this case, there holds (5.9):

where the second equality is a consequence of ParsevaFs theorem. Thus using (4.44) we
obtain

Furthermore, since trace [h*(f)h(0] = trace [h(?)h*(f)], using (4.43), this last expression
is also equal to trace [C"PC*]; therefore

A question that arises is whether the T^-norm is induced. The question reduces to
whether the Frobenius norm is induced. In [85] it is shown that the Frobenius norm is
not induced (see also [99]). Furthermore, in [86] it is shown that the largest eigenvalue
V^max(CPC*) is an induced norm. For details on the definition of this (nonequi-) induced
norm, see section 5.6. Consequently, the T^-norm is an induced norm in only the single-
input or the single-output (m = 1 or p = 1) case. This norm can be interpreted as the
maximum amplitude of the output which results from finite energy input signals.

5.5.2 A formula based on the EVD of A

Continuous-time SISO

Given is a stable SISO system Z with transfer function H(.y). We first assume that all
poles A, are distinct: A, ^ Xy-, / = 1 , . . . , n. Let c, be the corresponding residues: c, =
H(s)(s - A,-)|J=V / = !,...,«. Thus H(s) = £"=1 ̂ . We will use the notation
H(J)* = H*(-J); if the coefficients of H are real, H(s)* = H(-s). The following result
holds:
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Proof. The following realization for H holds:

Therefore, the reachability gramian is

Thus the square of the HI -norm is CPC*, and the desired result follows. D

We now consider the case where H has a single real pole A of multiplicity n:

In this case, a minimal realization of H is given by A = A.IB + J«, where In is the n x n
identity matrix and Jn is the matrix with ones on the superdiagonal and zeros elsewhere,
B = [0 • • • 0 1]* and C = [cn • • • d]. Then

Continuous-time MIMO

Assume that the matrix A is diagonalizable (i.e., multiplicities are allowed but the algebraic
and geometric multiplicity of eigenvalues is the same). Thus let in the eigenvector basis:

where I; is the identity matrix, and H(s) = C(sl — A)"^. Then the K2-norm is given by
the expression

Discrete-time SISO

In this case, we will consider systems whose transfer functions are strictly proper. The
constant or nonproper part can be easily taken care of. Thus, let H(z) = C(zl - A)-1B =

%2-norm of this system is

We now consider the case where H has a single real pole X. of multiplicity n:
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In this case (as before), a minimal realization of H is A = AIn + Jrt, where In is the n x n
identity matrix and Jn is the matrix with ones on the superdiagonal and zeros elsewhere,
B = [0 • • • 0 1]* and C = [CB • • • c\}. Then

An example

We consider a 16th-order, continuous-time, low-pass Butterworth filter. This is a linear dy-
namical system with low-pass frequency characteristics; in MATLAB it can be generated by
using the command butter(16,l, 's' ), where 16 is the order, 1 is the cutoff frequency,
and ' s' indicates that it is a continuous-time filter. Figure 5.5 shows the Hankel singular
values, the impulse response, the step response, and the Nyquist diagram of this system.

Figure 5.5. Sixteenth-order Butterworth filter. Top left: Hankel singular values.
Top right: Nyquist plot. Bottom left: impulse response and step response. Bottom right:
total variation of step response.
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5.6. Further induced norms of <S and H* 1 47

The various norms are as follows. The 7/oo-norm is equal to 1 ; the %2-norm is 0.5646;
since the system is SISO, this norm is equal to the 2, oo-induced norm of the convolution
operator. In other words, it is the maximum amplitude obtained by using unit energy (2-
norm) input signals. The oo, oo-induced norm, also known as the peak-to-peak gain, is
2.1314; this is equal to the peak amplitude of the output obtained for some input signal of
unit amplitude. This number is also equal to the total variation of the step response, i.e.,
the sum of all peak-to-valley variations of the step response. In this case, the 2-induced
norm of the convolution and the Hankel operators is the same. The Frobenius norm of the
Hankel operator (also known as the Hilbert-Schmidt norm) is equal to 4. Notice that the
Nyquist diagram winds three times around 0, drawing almost perfect circles; this gives an
area of 3n for the Nyquist diagram. The remaining area is actually equal to one circle; thus
the total area is estimated to 4n, which verifies the result mentioned earlier.

5.6 Further induced norms of <S and 1-1*

Consider a vector- valued function of time f : X -> R", where X = (a, b) C R. For a
fixed t = to, f (fo) is a vector in En, and we can define its norm in one of the different ways
indicated in (3.2):

0 in turn is a scalar (and nonnegative) function of time t , and we can define its p norm as
follows:

Combining these two formulas, we get the (p, q) norm off, where p is the temporal norm,
while q is the spatial norm. To distinguish this from the cases discussed, we will use a
different notation:

Recall the Holder inequality (3.3), valid for constant vectors. The generalized Holder
inequality valid for vector- valued time signals becomes

For a proof, see [86]. The (p, q) norm of a discrete-time vector- valued function can be
defined similarly; if, namely, X c Z, the time integrals in the above expressions are replaced
by (discrete) time sums. With these generalized definitions, (5.2) and (5.3) are (p, p) norms,
that is, the spatial and temporal norms are taken to be p-norms. We can now define the
corresponding (p,q) Lebesgue spaces:

Consider the map T : Ap.g) -> AM>; me associated induced operator norm is
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These induced operator norms are called equi-induced i f p = q = r = s. Otherwise,
they are called mixed-induced norms. Such norms are used extensively in control theory.
Roughly speaking, given a system with control and disturbance inputs v, u, to-be-controlled
and measured outputs w, y, the problem consists of finding a feedback control law mapping
y to u such that the (convolution operator of the) closed-loop system Sc\ from v to w is
minimized in some appropriate sense. In the HOO control problem, p = q=r = s=2,
and the largest system energy gain from the disturbance to the to-be-controlled outputs is
minimized. If instead of energy, one is interested in maximum amplitude minimization,
p — q = r = s = oo, and the resulting problem is the C\ optimal control problem. If
p = q = 2 and r = 2, oo and s = oo, we obtain the generalized 'Hi control problem. See
[86] for a more complete description of such problems and appropriate references.

We conclude this section by quoting some results from [86] on induced norms of the
convolution operator. The following notation is used. Given a matrix M > 0, A.max(M)
denotes the largest eigenvalue of M, while 5max(M) denotes the largest diagonal entry of M.

Proposition 5.13. LetS : jC(p,q)(R+, Em) -+ £(r)5)(R+, Rp), and let U : £(p,q)(R-, Rm) -
£(r^)(]R+, Rp). The following four items are equi-induced norms in time and in space, in
the domain and the range, p = q = r = s:

The following are mixed-induced norms; they are equi-induced in time and in space, in the
domain p = q, and separately in time and in space in the range, r = s:

The following are further mixed induced norms:co
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5.7. Summary of norms 149

More generally, \\\ S l l l f o r q,s e [1, oo] are Ci operator norms. Finally, the induced

norms \\\ • l l l ( i^ ) , III • 111(22) » H I • HKI^V #, •? € [1, oo], of the convolution operator
S and of the Hankel operator H are equal.

Notice that for SISO systems, the C,\ -induced and the £00 -induced norms of the
convolution operator S are the same and are equal to /0°° | h | dt.

5.7 Summary of norms
Time-domain Lebesgue norms. Consider a vector valued function of time: w : R — >• R".
The £]-, £2-, and £00 -norms of w are defined as follows. It is assumed that both the spatial
and the temporal norms are the same:

Frequency-domain Lebesgue norms. Consider a matrix valued function of s = ico:
H : iR -> Cpxm with p < m. The £1-, £2-, and £00 -norms of H are defined as above.
Notice that the spatial and the frequency norms are the same:

Frequency-domain Hardy norms. Consider a matrix valued function H : C -» Cpxm,
with /? < m, of the complex variable s = a + /o> € C, that is, of the two real variables a
and a). We assume that H is analytic in the closed right-half plane (RHP) (i.e., analytic for
He(s) > 0). The H\-, %2-, and H^-norms of H are defined as follows:

As a consequence of the maximum modulus theorem, the Hardy norms are equal to the
corresponding frequency domain Lebesgue norms:
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150 Chapter 5. Linear Dynamical Systems: Part 2

Induced and noninduced norms of Z. The expressions for the most common induced
and noninduced norms of £ are summarized. They involve the norms of the convolution
operator S: u H-» y = <S(u) = h * u and of the Hankel operator H: u_ !->- y+ = %(u_).
We note that in case of induced norms, the spatial and the temporal norms are taken to be
the same.

Let cr,-, i = 1,. . . , q be the distinct Hankel singular values of Z (see (5.22)). The var-
ious induced norms of S and the Hankel singular values satisfy the following relationships:

5.8 System stability
Having introduced norms for dynamical systems, we are now in a position to discuss the
important concept of stability, followed by a brief account on the more general concept of
dissipativity.

5.8.1 Review of system stability

Consider the autonomous or closed system (i.e., system having no external influences):

This system is called stable if all solution trajectories x are bounded for positive time: x(t)
for t > 0 are bounded. The system is called asymptotically stable if all solution trajectories
go to zero as time tends to infinity: x(0 -> 0 for t —^ oo. Furthermore, the matrix A
is called Hurwitz if its eigenvalues have negative real parts (belong to the left half of the
complex plane (LHP)). The following holds.
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5.8. System stability 151

Theorem 5.14. The autonomous system (5.33) is

• asymptotically stable if and only if all eigenvalues of A. have negative real parts,
that is, A i5 Hurwitz.

• stable if and only if all eigenvalues of\ have nonpositive real pans, and, in addition,
all pure imaginary eigenvalues have multiplicity one.

In what follows we identify stability with asymptotic stability. The discrete-time ana-
logue of (5.33) is

This system is (asymptotically) stable if the eigenvalues of A have norm at most one:
(| A (A) | < 1) | A. (A) | < 1; in the latter case any eigenvalues on the unit circle must have
multiplicity one. Here A is called a Schur matrix. The eigenvalues of A are often referred
to as the poles of (5.33), (5.34), respectively. Thus we have the well-known statement:

that is, to systems with

inputs and outputs:

where A e R"xw, B e Rnxm, C e RpXB, D e Rpxm. This system is called internally stable
if u(0 = 0, for t > 0, implies x(t) —> 0, for t -> oo. In other words, internal stability of a
forced system is equivalent to zero-input stability.

Let us now consider the input-output (i.e., the convolution) representation of forced
systems: y = h*u, where h is the impulse response of the system, assumed causal (h(0 = 0,
t < 0). We want to address the question of what is meant by stability of such a system, in
particular, what properties of h guarantee stability of the system; moreover, we also want
to ask the following question: if the system with impulse response h is realizable, what is
the relation between the stability of the external representation and that of the realization?

The system Z described by the convolution integral y(t) = /^ h(t — r)u(r)dr is
bounded-input, bounded-output (BIBO) stable if any bounded input u results in a bounded
output y:

To avoid ambiguity, we stress that both the spatial and the temporal norms are the infinity
norms (in the domain and the codomain). The following result holds.

Theorem 5.15. The system described by the convolution integral given above is BIBO stable
if and only if the Coo-induced norm of the convolution operator is finite.

According to the previous section, this means that the (/, j)ih entry hiy of the p x m
impulse response h must be absolutely integrable,

stability        poles in LHP/unit disc.

We now turn our attention to forced systems
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Closely related to BIBO stability is £2 stability. The convolution system Z mentioned
above is said to be £2 input-output stable if all square integrable inputs u e C,™ (R) produce
square integrable outputs y € £f W-

Theorem 5.16. TTie convolution system Z w £2 input-output stable if and only if the Li-
induced norm 0/E is finite, which is, in turn, equivalent to the finiteness of the 'H00-norm
of the associated transfer function H.

In a similar way, one can define Cp input-output stability. In this respect, the following
holds.

Proposition 5.17. The finiteness of the C\-norm of the impulse response h implies the Cp

input-output stability of £ for 1 < p < oo.

We conclude this section with a result that relates internal and input-output stability.
For this it is assumed that h is realizable, that is, there exist A e Rnx",B e R"X/",C € Rpx",
with n finite, such that h(?) = CeAfB. The following holds.

the following statements are equivalent:

3. There exists a realization of Z, with A Hurwitz.

4. Every minimal realization of Z has A Hurwitz.

This theorem asserts that internal stability implies external stability and that, con-
versely, external stability together with minimality implies internal stability. For instance,
the system

with impulse response h(f ) = e~', f > 0, while BIBO stable, is not asymptotically stable.

5.8.2 Lyapunov stability

Consider the (autonomous) system described by

The function & : Rn —> R is said to be a Lyapunov function for the above system if for all
solutions x : R -» R", there holds

Theorem 5.18. Given a system    and a finite-dimensional realization thereof,
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5.8. System stability 153

Let V0(x) be the gradient of 0, which is a row vector whose ith entry is |̂ . With this
notation ^&(x(t)) = V0(x(?)) -f (x(0), and hence the above inequality can also be written
as

In the case of linear systems (5.33) and quadratic Lyapunov functions

it follows that

Usually Q = Q* is given. Thus the problem of constructing a Lyapunov function amounts
to solving for P the Lyapunov equation:

The discrete-time analogue of this equation is

known as the discrete-time Lyapunov or Stein equation. The next result summarizes some
properties that are discussed in section 6.

Theorem 5.19. If A is Hurwitz, then for all Q e Rnx" there exists a unique P e Rwxn

that satisfies (5.36). Moreover, ifQ = Q*, then P = P*; and ifQ = Q* < 0 and (A, Q)
is observable, then P = P* > 0. Conversely, ifQ = Q* < 0 and P = P* > 0 satisfy
(5.36), then (5.33) is stable. If in addition the pair (A, Q) is observable, then (5.33) is
asymptotically stable.

Example 5.20. (a) Consider a mass-spring-damper system attached to a wall. Let x, x be
the position and velocity of the mass. The following equation holds: mx + ex + kx = 0.
This can be written as a first-order system,

We postulate the quadratic Lyapunov function V = |w*Pw, where P = ( * ^ j; that

is, V = ^kx2 + ^mx2 is the sum of the potential energy stored in the spring plus the
kinetic energy of the mass, and hence always positive, whenever the system is not at rest.
According to the above considerations, to prove stability we have to compute A*P+PA = Q.
It turns out that Q = — ( Q ° ) < 0. The negative semidefiniteness of Q proves stability;
asymptotic stability follows from the additional fact that the pair (A, Q) is observable.

(b) We now consider the system in Example 4.3 with u = 0 (i.e., the input terminal
is short-circuited). The differential equation describing this system is x = Ax, where
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1 54 Chapter 5. Linear Dynamical Systems: Part 2

x* = [XL x2], Xi is the current through the inductor, and x2 is the voltage across the
capacitor. Eliminating x2, we get Lx\ + Rxi + £xi = 0. As the Lyapunov function,
we will take the energy stored in this circuit, namely, in the inductor and the capacitor
V = |Lx? + ±Cx^, that is, V = x*Px, P = \( L

Q £ Y Thus V = x*Qx, where

Q = A*P + PA = — ( * o )0- Stability follows from the negative semidefiniteness of

Q and asymptotic stability from the additional fact that (A, Q) is an observable pair.

5.8.3 £2- systems and norms of unstable systems

We conclude this section with a brief account on £2 -systems defined on the whole real line
R. These are systems that produce £2 trajectories on R when fed with trajectories that are
£2 on R. When all poles of the system are in the left half of the complex plane, this property
is automatic. However, if the poles are in both the left as well as the right half of the complex
plane, but not on the imaginary axis, by giving up causality we can define an £2 -system.
Then, all-pass £2-systems are defined and characterized in terms of the transfer function
and a state representation. Here are the details.

t e R; it is assumed that £ is at rest in the distant past: x(— oo) = 0. Its impulse response
and transfer function are h?(t) = CeA'B + D<5(f), t > 0 hj = 0, t < 0, Hr(s) =
D -(- C(sl — A)-1B. The impulse response hj; as defined above is not square integrable on R
unless the eigenvalues of A lie in the left half of the complex plane. Therefore, the associated
convolution operator $•% defined by (4.5) with hj as defined above does not map £2 inputs
u into £2 outputs y unless A is stable. The system can nevertheless be interpreted as an
£2-system on the whole real line. The formulas below hold for continuous-time systems;
the corresponding ones for discrete-time systems follow in a similar way and are omitted.

Let A have no eigenvalues on the imaginary axis, that is, 7£eA.( (A) ^ 0. After basis
change, A can be written in block diagonal form:

where 7£eA,(A+) < 0 and 7^^A.,(A_) > 0. We now redefine the impulse response h as
follows:

The associated system operator Sc2 defines a map from L™ (R) to £2 (R), and the associated
Hankel operator %£2 defines a map from £%(R-) to £2 (R+); they are defined as follows:

An important property of the £2-system is that it has the same transfer function as the
original system: H£2(s) = H(s).

Given is the l inear,  cont inuous-t ime system                           def ined for al l  t ime
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5.8. System stability 155

The above considerations allow the definition of the 2-norm and of the Hankel-norm of
unstable systems. The former is done by means of h£2 and the latter by means of h+. Norms
of unstable systems play an important role in the theory of Hankel-norm approximation
presented in Chapter 8. Here is the precise statement.

Remark 5.8.1. The steps presented in Proposition 5.4 for the computation of the 7^-norm
of a stable system by means of the Hamiltonian matrix A(y) can also be applied if the
eigenvalues of A are not necessarily in the left half of the complex plane. In this case, the
result of the computation provides the £<x,-norm of the transfer function H, i.e., according
to (5.38), the 2-norm of the unstable system Z.

Example 5.21. We will consider a simple second-order discrete-time system with one stable
and one unstable pole:

E : y(k + 2)-(a + b)y(k + l)+aby(k) = (a-b)u(k+l), \a\ < 1, \b\>l.

The transfer function of Z is

The impulse response of this system is h(0) = 0, h(fc) = ak — bk, k > 0. The %2-norm of
the system is the ^2-norm of h which, since \b\ > 1, is infinite. The 2-induced norm of the
convolution operator is the largest singular value of

Norms of unstable systems.  Given an unstable system with no poles on the imaginary
axis (unit circle), its 2-norm is defined as the 2-induced norm of the convolution operator
of the associated  L2-(l2) system. This is equal to the supremum of the largest  singular
value of the transfer function  on the imaginary  axis  (the unit circle)  and is know  as its

norm.

The Hankel-norm of an unstable E  is equal to the Hankel-norm of its stable subsystem

and there holds
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156 Chapter 5. Linear Dynamical Systems: Part 2

which is also infinite. As indicated above, these norms are defined as the corresponding
norms of the associated ti -system,

In this case, the T^-norm is the square root of the quantity 1 + Y^jLi(a2j + b~2j) =

(i-a2Kfe2-ir ^et ^e circuit matrix associated with the convolution operator, defined
earlier, be

As n —*• oo, its eigenvalues approach those of the convolution operator S. Moreover, the
singular values of Sin+\ lie between

Thus the ^-induced norm of 3^2 is (1_ '" \L_{y This is also the maximum of the transfer
function on the unit circle, that is, the €00-norm of H. Finally, by definition, the Hankel-
norm of £ is the Hankel-norm of its stable part S+, i.e., y(k + 1) — ay(k) = au(k + 1),
which is readily computed to be a/(l — a2).

All-pass £2-systems

We are now ready to characterize (square) /Vsystems (i.e., /^-systems having the same
number of inputs and outputs) which are all-pass, i.e., their transfer functions are unitary on
the /w-axis. The results are presented only for continuous-time systems which need not be
stable.

Definition 5.22. An C^-systemis all-pass or unitary if \\ u ||2=|| y \\2for all (u, y) satisfying
the system equations.

As before, the transfer function of E is denoted by H(s) = D + C(sl — A)-1B. The
basic statement given below is that a system is all-pass if and only if all its Hankel singular
values are equal to one for some appropriate D.

Theorem 5.23. The following statements are equivalent:

1. The Ci-system Z is square p = m and all-pass.
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5.8. System stability 157

4. 77ie solutions P, Q of the Lyapunov equations (4.45) and (4.46) satisfy PQ = In

Remark 5.8.2. The third condition of the above theorem can be expressed by means of the
following single equation:

which is a structured Sylvester equation.

Corollary 5.24. (a) The transfer function of an all-pass system can be written as follows:

(b) Given A, B, C, there exists D such that the system is all-pass if and only if the
solutions P, Q of the Lyapunov equations (4.45) and (4.46) satisfy PQ = /.

(c) The 2-norm of the system, which is the Leo-norm of II, is 1.

Example 5.25. Consider the second-order all-pass system described by the transfer function:

We first assume that a > 0 and b < 0. In this case, a minimal realization of H is given as
follows:

It follows that the solutions of the two Lyapunov equations are equal:

Notice that the eigenvalues of P are A i = 1, A.2 = —1, irrespective of the parameters a
andfr.

Next, we assume that a > b > 0. In this case, a minimal realization of H differs from
the one above by a sign:

and D*D= Im.
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158 Chapter 5. Linear Dynamical Systems: Part 2

In this case, P and Q are no longer equal:

Clearly, the product of P and Q is the identity matrix. Furthermore, these two matrices

have the same set of eigenvalues, namely, k\ = a_b , fa = •£-, whose product is equal
to one.

Proof, 1 <&• 2. First we notice that y = <S(u) is equivalent to Y = HU in the frequency
domain. Thus, the following string of equivalences holds:

2 => 3. for m = p. We make use of the following auxiliary result:

Hence, from [H(s)]"1 = H*(— s), s = ico, we obtain that

and there exists Q, det Q / 0, such that (a) B*Q = -D~1C, (b) -Q~1C* = BD"1, and
(c) -Q-l\*Q = Ax = A - BD-!C.

Thus (a) and (b) imply QB + C*D = 0, while (c) implies A* Q + QA - QBD"1 C = 0.
Combining the last two equations, we obtain A* Q + QA + C*C = 0. Since Ke A., (A) ̂  0,
the above equation has a unique solution Q, which is symmetric since it also satisfies A* Q*
+ Q*A + C*C = 0.

3 =>• 2. By direct computation we obtain

which implies the desired result forw = ia) = —v.
3 => 4. Let P satisfy AP + P\* + BB* = 0. It follows that Q(AP + P\* + BB*) Q

= 0, and hence QA(PQ) + (Q'P)A*Q + QBB*Q = 0. Substituting QB = -CD and
subtracting from AQ + A*Q + C*C = 0, we obtain

Since Tie A., (A) / 0, the unique solution is X = 0, which implies the desired PQ = I.
4 =>• 3. This follows similarly. D
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5.9. System dissipativity 159

5.9 System dissipativity*

We now wish to generalize the concept of Lyapunov stability to open systems, that is,
systems with inputs and outputs:

We define a function s called the supply function to the system

which represents something like the power delivered to the system by the environment
through the external variables, namely, the input u and output y. Dissipativeness now
means that the system absorbs supply (energy). More precisely, the system defined above
is said to be dissipative, with respect to the supply function s, if there exists a nonnegative
function 0 : X ->• R such that the dissipation inequality

holds for all /o < t\ and all trajectories (u, x, y) which satisfy the system equations. There-
fore, if f'1 sdt > 0, we will say that work is done on the system, while if this integral
is negative, we will say that work is done by the system. The nonnegative function 0 is
called a storage function. It is a generalized energy function for the dissipative system
in question. Thus the above definition says that the change in internal storage, namely,
0(x(fO) — 0(x(fo)), can never exceed what is supplied to the system. Finally, if 0(x)
is differentiable with respect to time, along trajectories x of the system, the dissipation
inequality can be written as

Thus the storage Junction generalizes the concept of Lyapunov function given in (5.35)
from autonomous or closed systems to open systems, that is, systems with inputs and
outputs. Consequently the concept of dissipativity generalizes to open systems the concept
of stability.

Two universal storage Junctions can be constructed, namely, the available storage
and the required supply. The former is defined as

where (u, x, y) satisfy the system equations, and in addition x(0) = XQ, x(oo) = 0. There-
fore, ©avail (XQ) is obtained by seeking to maximize the supply extracted from the system
starting at a fixed initial condition. The latter is
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160 Chapter 5. Linear Dynamical Systems: Part 2

where (u, x, y) satisfy the system equations, and in addition x(—oo) = 0, x(0) = XQ. In
this case, 0req(xo)ls obtained by seeking to minimize the supply needed to achieve a fixed
initial state.

A result due to Willems [360], [361] states that a system is dissipative if and only if
0req(xo) is finite for all XQ; in this case, storage functions form a convex set and, in addition,
the following inequality holds:

Thus the available storage and the required supply are extremal storage functions.
Some commonly used quadratic supply functions s = (y*, u*)Q(y*, u*)* are

Notice that if s = 0, the storage function 0 becomes a Lyapunov function and dissipativity
is equivalent to stability.

Remark 5.9.1. Electrical and mechanical systems. For electrical circuits consisting of
passive components, that is, resistors, capacitors, inductors, and ideal transformers, the sum
of the product of the voltage and current at the external ports, which is the power supplied,
constitutes a supply function: ̂  \kh electrical power. In mechanical systems, the sum
of the product of the force and velocity as well as angle and torque of the various particles
is a possible supply function: ]C/fc((Jjx*) F* + (J^/t) Tfc) mechanical power.

Linear systems and quadratic supply functions

with the supply rate s. The central issue now

is, given s, to determine whether Z is dissipative with respect to s. This amounts to the
construction of a storage function 0 such that the dissipation inequality holds.

Consider the general quadratic supply function which is a function of the external
variables, namely, the input u and the output y:

where no definiteness assumptions on Q are necessary at this stage. Given that y = Cx+Du,
the supply function can also be expressed in terms of the state x and the input u: s =
x*Qnx + x*Qi2U + u*Q2ix + u*Q22U, where

Consider the linear system
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5.9. System dissipativity* 161

inherits the symmetry property from Q. We are now ready to state the following theorem,
due to Willems.

observable, together with the quadratic supply function s. The following statements are
equivalent:

(1) E is dissipative with respect to s.

(2) Z admits a quadratic storage function @ = x*Xx with X = X* > 0.

(3) There exists a positive semidefinite solution X to the following set of linear matrix
inequalities (LMIs):

(4) There exist X = X* > 0, K, and L such that

(5) There exists X_ = X* > 0 such that ©avail = x*X_x.

(6) There exists X+ = X;f. > 0 such that 0req = x*X+x.

(7) The transfer function H(s) = D + C(sl — A)-1B satisfies

for all CD e R, such that ia) is not an eigenvalue of A.

Corollary 5.27. Let Q22 be nonsingular and define the quantities

Two further conditions are equivalent to the seven listed in the theorem:

(8) There exists a solution X = X* > 0 to the algebraic Riccati equation

(ARE)

(9) There exists a solution X = X* > 0 to the Riccati inequality F*X + XF + XGX +
J<0.

Theorem 5.26.  Consider the system which is assumed reachable and
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162 Chapter 5. Linear Dynamical Systems: Part 2

In case of dissipativity, the quadratic form

is positive semidefinite, where the second equality follows from part (3) of the theorem.
Thus

d is a dissipativity function for the system T, with the supply rate s. This relationship says
that what gets dissipated at time t, which is always nonnegative, is equal to the supply at
time t minus the rate of change of the storage function.

Remark 5.9.2. There are two refinements, (a) If the dissipation inequality (5.40) (and
consequently (5.41)) is satisfied with equality, the system Z is called conservative with
respect to s. In this case, the inequality in part (3) of Theorem 5.26 is satisfied with equality:
3>(X) = 0. Consequently, in part (4) of the same theorem K = 0 and L = 0. Thus
conditions (5.48) become

It readily follows that a stable system is unitary or all-pass if it is conservative with respect
to the supply function (5.45). In particular, the conditions in part 3 of Theorem 5.23 coincide
with (5.49), where Qn = -C*C, Qi2 = -C*D, and Q22 = I - D*D. Furthermore, the
inequality in part (6) of Theorem 5.26 becomes an equality and, in the all-pass case, becomes
identical with part 3 of Theorem 5.23. As a consequence, the Riccati equation is replaced
by a Lyapunov equation which has a unique solution. Therefore, in the case of conservative
systems, there is a unique storage function ®avail = 0 = 0req-

(b) If the dissipation inequality (5.40) (and consequently (5.41)) is strict, the system Z
is called strictly dissipative with respect to s; as a consequence, all inequalities in Theorem
5.26 are strict.

Example 5.28. We consider a simplified model of a car suspen-
sion. It is composed of a mass m \, which models the wheel, to-
gether with a spring with constant k\ and a damper with constant
b\, which model the interaction of the wheel and the road. The car
chassis has a mass ni2, and its connection to the wheel is modeled
by means of a second spring and damper with constants k2,b2, re-
spectively. There is a (control) force / applied to the axle (i.e., to
the wheel) which acts on m\ vertically. The wheel follows the
road, which has a profile described by its distance q§ from a fixed
position. Furthermore, the distance of the masses m\, m2 from
the same fixed position are q\, q2, respectively. The equations of
motion are as follows. For simplicity time derivatives are denoted
by dots:
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5.9. System dissipativity* 163

Notice that b\ (q\ — qo) + k\ (q\ — qo) is the force exerted by the road on the wheel. The
inputs to this system are therefore the road profile qo and the control force /. The output
may be chosen as q2.

This is a dissipative system, as there are no active components. To formalize this, we
introduce the supply function, which consists of the sum of products offeree times velocity,

From physical considerations, if follows that a storage function is

which is the sum of the kinetic energies of the two masses and the sum of the energy stored
in the two springs. The dissipation function

is the energy dissipated in the two dashpots. Indeed, a straightforward computation shows
that d = s — @. Notice that if the dashpots are absent, i.e., b\ = b2 = 0, the system is
conservative, which means that the energy supplied is stored and no part of it is dissipated
as heat. The above storage function is not unique. To characterize all of them, we can apply
Theorem 5.26. This is left as an exercise for the reader (see Problem 31).

We will not provide a proof of the above theorem and corollary. We refer instead to
the original source, namely, the work of Willems [360], [361]. See also the lecture notes of
Scherer and Weiland [288].

Instead, in the sections that follow, we will attempt to clarify two special cases. The
first uses the supply function (5.46) and is used to discuss issues related to passivity of a
given system. The equalities (5.48) provide in this case a state-space characterization of
passivity and are known as the positive real lemma or as the Kalman-Yakubovich-Popov
(KYP) lemma. The second case uses the supply function (5.45) and investigates contractivity
of the system, that is, whether the system has "Hoo-norm less than unity. Equations (5.48)
provide a characterization of contractivity and are known as the bounded real lemma.

5.9.1 Passivity and the positive real lemma*

In this section, we will consider a special class of systems, namely, passive systems. Roughly
speaking, these are systems that do not generate energy, that is, the energy dissipated is never
greater than the energy generated. This turns out to be closely related to the concept of
positive realness, which is important in electric networks composed of passive components
(resistors R, capacitors C, and inductors L). We will show that such systems are dissipative
with respect to the supply rate s = y*u + u*y defined in (5.46). For simplicity, we consider
only SISO systems. This section follows the notes of [359].

The real rational function H(s) is positive real if it maps the right hah0 of the complex
plane C onto itself:
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164 Chapter 5. Linear Dynamical Systems: Part 2

Henceforth, let H = j| with n, d coprime polynomials and deg (d) = n, deg (n) = ra < n.
Recall first the partial fraction expansion of this rational function. Let AI , A , 2 , . . . , A.* be the
distinct zeros of d (the poles of H) and n\, n^,... , rc/b their multiplicities (X]f=i ni = ")•
We can now express H as follows:

where ao and an are complex numbers that are uniquely determined by H, ain. ^ 0, for
/ = 1, 2 , . . . , k. If a pole, X^ is simple, that is, n^ = 1, an is the residue of H at the pole A ( ;
in fact, ak\ = (s — Xk)U.(s)\s=^k. The following result follows from the definition.

Proposition 5.29. H(s) ^ 0 is positive real if and only if H(s-1) is positive real if and
only if H"1^) is positive real.

Proof. Observe (using continuity) the obvious fact that H is positive real if and only if
lZe(H(s)) > 0 for all but a finite number of points s in the right half plane He(s) > 0. The
map s t-> 1/5 is a bijection for 5^0, *Re(s) > 0. Hence 7£e(H(5)) > 0 for all but a finite
number of points in 1^e(s} > 0 if and only if 'Re(H(s~1)) > 0 for all but a finite number of
points in Ke(s) > 0. Hence the first equivalence is proved. For the second, we notice that
a ^ 0 satisfies Ue(a) > 0 if and only if Ke(a~1} > 0. Hence Ke(H(s)) > 0 for all but a
finite number of points 5 with Ke(s) > 0 if and only if 'Re (H"1 (5)) > 0 for all but a finite
number of points 5, /Re(s) > 0, and the proof is complete. D

The next result provides the characterization of positive realness in terms of the ex-
ternal representation of *L.

Theorem 5.30. The following statements are equivalent:

(a) H is positive real.

(b) H satisfies the following conditions:

(i) "Re (H(/<w)) > Of or all co e R such that ia> is not a pole ofH.

(ii) The system is stable, that is, all poles X o f Y l lie in the left half of the complex
plane: Ue(k) < 0.

(iii) The poles o/H on the imaginary axis are simple, and the associated residues are
real and positive.

(iv) The difference between the degree of the numerator and that of the denominator
is at most one: deg (n) — deg (d) < 1. Furthermore, if there is a pole at infinity,
it is, as those on the imaginary axis, simple, and the associated residue is positive:
lim|jKoo ̂  > 0.
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5.9. System dissipativity* 165

(c) All input-output pairs (u, y) of compact support, which are compatible with the system
equations,

satisfy the dissipation inequality

Proof, (a) => (b). (b)(i) is trivial. To prove (b)(ii) and (iii), examine the partial fraction
expansion of H in a small circle around a right half plane or an imaginary axis pole. To prove
(b)(iv), examine the real part of H(s) in a large circle, centered at 0, where the polynomial
part of H dominates.

(b) =>• (c). Consider the partial fraction expansion of H. Part (b) shows that H may
be written as

with GO > 0, bo > 0, ak > 0, 0 ^ o>jt € R, HO is proper, and all its poles are in the open
left half of the complex plane. Note that TCe(Ho(i'a>» = TCe(H(ia>» for all u> e R, and
i ft) is not a pole of H. Let HO = no/do, with no, do coprime polynomials. Note that do is
Hurwitz. Now consider the systems

Clearly the pair of input-output functions (u, y) satisfies (5.50) if and only if yo, yi, yz/,
i = 1, 2 , . . . , *, ys satisfy the above equations.

It is easy to see (using observability) that if (u, y) have compact support, where y =
yi + y2 + E?=i y2i + ys, the summands yo, yi, yzi. ya must have compact support. Hence,
to prove that (5.51) holds for Z, it suffices to prove it for DO, Zi, Zz,/. * = 1, 2, ...,*,
and £3.

We now prove that for each of these systems, the inequality analogous to (5.51) holds.
Consider compact support trajectories satisfying the equations of each of these systems.
For I0»

For EI, assuming b$ > 0,

co
nt

ro
len

gin
ee

rs
.ir



166 Chapter 5. Linear Dynamical Systems: Part 2

For T,2t we introduce the auxiliary variable £: u = f a)f + j^ J £, yii = «; 37 f • Hence

Finally, consider £3. Using Parseval's theorem, it follows that for £2 signals, there holds

where u is the Fourier transform of u. This shows the inequality for integrals over the real line
R, but we need it for integrals on the negative real line R_ only. To show that Jl^u^ )ys(0
dt > 0, consider the input u' which is defined as u'(t) = u(t), t < 0, u'(0 = 0, t > 0. Let
the corresponding output be y3. Since u' e £2(1^, R), and since do is Hurwitz, it follows
that y3 e £2(R, R). Hence

Note that u' may not be in C°°, and therefore a smoothness argument is, strictly speaking,
required to complete the proof of nonnegativity.

The desired inequality thus follows Jl^ u(0y(0 dt > 0, where y = y0 + yi +

]Cf=i y2« + ys f°r all (u> y) °f compact support.
(c) =$• (a). We show that by considering exponential trajectories, (c) implies He (H (s ) ) >

0 forall s with 1le(s) > 0, and s is not a pole of H. Consider u(t ) = est and y(0 = H(*)esr.
Obviously, (u, y) is an admissible input-output pair for the system. Now by (c),

Hence 1le(H(s)) > 0. Note that such input-output pairs do not have compact support, and
therefore an approximation argument is, strictly speaking, required to deduce the nonnega-
tivity of ̂ (/^ u*(0y(0 dt) from (c). D

Assume without loss of generality that H = jj is proper; otherwise, exchange the

roles of the input and the output, and consider H"1 . Let S = ( 1 !! ) be a minimal (i.e.,
\ C | v )

reachable and observable) state-space representation system of H, with state-space R". We
now discuss what constraints are imposed by positive realness on state representations.

Theorem 531. The following conditions are equivalent:

1. H is positive real.

2. E is dissipative with respect to the supply rate s = n*y + y*u.

3. There exists X e Rnxfl, X = X* > 0, such that the LMI

holds.
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5.9. System dissipativity* 167

Proof. (1) =>• (2). From the previous result, it follows that /^ u(f )y(t) dt > Q for all
(u, y) having compact support. Define 0req : Rn ->• R by (5.43), namely,

where the infimum is taken over all (u, x, y) of compact support that satisfy the system
equations and in addition satisfying x(0) = XQ. Further, for all such (u, x, y), there holds

where the infima are taken over all elements (u', x', y') of compact support, constrained by
x'(fi) = x(fi) for the first and x'(fo) = x(*o) f°r me second infimum. This proves that since
the dissipation inequality (5.40) is satisfied, Z defines a dissipative system with storage
function 0req.

(2) =>• (3). We first prove that (2) implies /^ u(f )y(f) dt > 0 for all (u, y) of compact
support. Let 0 be the storage function. Then for all (u, x, y) of compact support, there
holds

Since 0 is bounded from below, this implies that J^ u(t)y(f) dt is bounded from below
for all (u, y). We claim that 0 is a lower bound. This is easily proven by contradiction:
assume that there exists (u, y) of compact support, such that J^ u(t)y(t) dt < 0. Now
use the input KU and let K -> oo to obtain a contradiction.

We now prove that /^ u(f )y(0 dt > 0 for all (u, y) of compact support implies (3).
Note that the LMI implies

for all (u, x, y), or, equivalency, that x*Xx is a storage function.
It hence suffices to prove that 0req(x) is a quadratic function of x. Here is the idea.

We will need the convolution operator S which maps the space of C°°(R_, R"1) functions
of compact support into itself by <S(u)(f) = Dn(f) + /^ OA(r~T)Bu(r)rfr. We will also
need the operator T which maps the space of C°°(R_, Rm) functions of compact support
into R" by T(u) = /^ e'^Eu^dt. ©,«, can be defined as

where the infimum is taken over all u e C°°(R_, Rm) of compact support subject to the
constraint T(u) = XQ. By assumption, (u, «Su>£2(R_iR«) > 0. The fact that the infimum
is hence a quadratic function of XQ readily follows from first principles: 0rcq(xo) is the
infimum of a quadratic functional with a linear constraint

(3) =» (1) is trivial. D
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168 Chapter 5. Linear Dynamical Systems: Part 2

From Theorem 5.26, and in particular (5.48) and (ARE), we obtain the following
result.

Corollary 5.32. (a) Positive Real Lemma. The minimal system Y, = ( ^ ° ) is dissi-
\ C | D J

pative with respect to the supply rate s = y*u + u*y if and only if there exist X = X* > 0,
K, and L such that

(b) Let D + D* be nonsingular, and A = (D + D*) l. The system £ is positive real if
and only if there exists a positive semidefinite solution X = X* > 0 to the algebraic Riccati
equation

We conclude this section with a result concerning positive real rational functions with
real or pure imaginary poles.

Corollary 5.33. Assume that all the roots of both d and n are real. Then H is positive real
if the roots of A and n are nonpositive and interlacing and the leading coefficients of A and
n have the same sign. If all the roots of both d and n are purely imaginary, H is positive
real if and only if the roots ofd and n interlace, and the leading coefficients ofd and n have
the same sign.

Proof. Assume, without loss of generality, that H is proper (otherwise, consider H"1).
The first assumption on the poles and zeros implies that H can be written as H(s) =
a0 + Z^=i ^jrjT' witn 0 < bo < b\ < • • • < bn. The assumptions of the zeros (examine the
behavior of H on the real axis) and on the leading coefficients imply further that ao < 0,
and al > 0 for i = 1, 2, . . . , n. Obviously, now, H is positive real, since each term of the
sum is. This can also been seen from the state representation with

The LMI is satisfied with X = ln.
Using part (b) of Theorem 5.30, we conclude that H positive real implies that its

partial fraction expansion looks like

with GO > 0, fl« > 0 for i = 1,2, ... ,n and 0 < u>\ < a>2 < • • • < con. By investigating the
behavior of the imaginary part of H on the imaginary axis, we conclude that between any
two poles there must be at least one zero. Since H is strictly proper, it follows that there is
exactly one zero between any two poles.

co
nt

ro
len

gin
ee

rs
.ir



5.9. System dissipativity* 1 69

To prove the converse, use the interlacing property to conclude that H admits a partial
fraction expansion as above. This implies that H is positive real, since it is the sum of
positive real functions. This can also be seen from the state representation with

If ao = 0, delete the first element. Observe that the LMI is satisfied with X = !„. D

Some remarks on network synthesis

Theorem 5.34. H is the driving point impedance of an electric circuit that consists of an
interconnection of a finite number of positive R, positive L, positive C, and transformers if
and only if H is positive real.

The only i/part of the above theorem is analysis. The J/part is synthesis. This result,
undoubtedly the most spectacular in electric circuit theory, was proved by Otto Brune in his
dissertation [77].

It turns out that the required number of reactances (that is, the number of L and C
combined) is equal to max{deg(d), deg(n)} (the McMillan degree of H). Brune's synthesis,
however, requires ideal transformers. In 1949, Bott and Duffin proved in a half-page (!)
paper, which appeared in the Letters to the Editor section of the Journal of Applied Physics
[69], that transformers are not needed. This problem was a well-known open problem at
that time, and Bott solved it as a graduate student working under the direction of Richard
Duffin at the Carnegie Institute of Technology.

Transformerless synthesis requires a number of reactances that is larger than
max{deg(d), deg(n)}. In terms of state representations, this means that we will end up
with a state dimension that is larger than the McMillan degree of H. The Bott-Duffin syn-
thesis is a strong case for the importance of nonminimal state representations. However,
the price one has to pay to avoid transformers is the exponential increase in the number of
reactances.

Problem. When does d(^)V = n(^)I describe an electric circuit that consists of an
interconnection of a finite number of positive R, positive L, positive C, and transformers?

The above is an open problem. The answer is more involved than if and only if the
transfer function is positive real and the common factors are stable.

An important advance came in the 1960s with the positive real lemma, which intro-
duced the state description in network analysis and synthesis. A detailed treatment of these
issues can be found in the book by Anderson and Vongpanitlerd [6].

5.9.2 Contractivity and the bounded real lemma*

Consider a stable system Z (eigenvalues of A have negative real part) with the quadratic
supply rate s = ||u||2 — ||y||2 defined by (5.45). We will now see that the dissipativity of £
with respect to s is equivalent to, among other things, the HOQ norm of Z being no greater
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170 Chapter 5. Linear Dynamical Systems: Part 2

than one. Systems satisfying this relationship are, for instance, passive electric circuits with
input a voltage V and output some current I, where u = \(V +1) and y = \ (V — I). The
following is a special case of Theorem 5.26.

/ A I U \

Lemma 5.35. Given is a stable and reachable system £ = ( ) with initial condition\ c | o j
x(0) = 0. The following statements are equivalent:

(1) The 2-induced norm of Z is at most equal to one: ||Z||2 < 1-

(2) There exists a positive semidefinite X e Rnxn and a matrix K e Rmxn such that

(3) There exists a positive semidefinite solution X > 0 of the Riccati equation

The solution is positive definite X > 0 if the pair (C, A) is observable.

(4) Bounded Real Lemma. There exists X > 0 such that

Proof. (2) ->• (1). Integrating (5.53) from t — 0 to t = T, and keeping in mind that
x(0) = 0, we obtain

where the last inequality follows from the fact that X is positive semidefinite. Therefore,

Therefore, this property holds as T -> oo; in other words, the £2(0, oo)-norm of y is always
less than that of u and hence the 2-induced norm of the convolution operator is less than or
equal to 1.

(1) -»• (2). The proof of this part requires the construction of a positive semidefinite
X satisfying (5.53). This is done as follows. Consider the available storage,

subject to the system equations and x(0) = 0. We will show that it is a quadratic storage
function. First notice that 0avaii(x(0)) > 0 (take u = 0 and y(0 = Q?A'x(0), t > 0).
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5.10. Chapter summary 171

Now with 11 > 0, we have

Taking the supremum over all trajectories with x(t\) fixed, the second term on the right-
hand side of the above inequality becomes 0avaii(x(?i)). Therefore, ©avail is a storage
function since it satisfies ©avail (x(fo)) > — /Q sdt + 0avaii(x(?i)). Furthermore, since the
supply function is quadratic, by optimal control the storage function 0avaii (which is the
optimal cost) is also quadratic: @ = x*Xx, where X > 0. Statement (2) states furthermore
that if a storage function exists, there exists K such that (5.53) is satisfied. Computing
^ (x*Xx) — u*u+y*y + (u* +x*K*)(u+Kx) and collecting terms, we obtain the expression

By requiring that e = 0 for all x, u we obtain K = — XB, where X satisfies the Riccati
equation (5.54).

(2) -* (3). The left-hand side of (5.53) can be rewritten as (^x*)Xx + x*X(^x) =
(Ax + Bu)*Xx + x*X(Ax + Bu). Thus, expanding the right-hand side of this equation and
collecting terms on the left-hand side, we obtain e = 0. As above, this implies K = — B*X,
and substituting in the term which is quadratic in x we obtain (5.54). The implication
(3) ->• (2) follows by reversing the above steps.

Finally, the equivalence (3) -o- (4) is straightforward. D

Remark 5.93. If D ̂  0, the bounded real lemma states that the T^oo-norm of £ is at most
one if and only if there exists X > 0, K, L such that

This follows from (5.48) with Qn = -C*C, Qi2= ~C*D,andQ22=I - D*D.

5.10 Chapter summary
In the first part of this chapter we discussed various norms for vector- and matrix-valued
functions of time and frequency. As in the case of constant vectors and matrices, the
most useful are the p norms, where p = 1, 2, oo. Norms of linear systems E are introduced
next; of importance are the 2-induced norm of the convolution operator S and the 2-induced
norm of the associated Hankel operator tl. The former is also known as the oo-norm of
the system because it is the co-norm of the transfer function of E. The latter is known as
the Hankel-norm of X. Important invariants are the singular values of H, known as Hankel
singular values of E. Lemma 5.8 shows that they are the square roots of the eigenvalues
of the product of the (infinite) reachability and observability gramians. Consequently,
their computation involves the solution of two Lyapunov equations. As we will see, these
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172 Chapter 5. Linear Dynamical Systems: Part 2

invariants provide a trade-off between desired accuracy and required complexity for a certain
type of approximation. Another important norm is the % -norm of Z; two different ways
of computing it are given.

For vector- or matrix-valued time/frequency signals, one needs to choose a norm for
both the spatial dimension and the time/frequency. Although these are usually taken to be
the same, this is not necessary. Various so-called mixed-induced norms are discussed in
section 5.6. For a summary of this part, see section 5.7. The system norms discussed above
assume the stability of £. Following formulas (5.38) and (5.39), these definitions can be
extended to unstable Z.

The second part of the chapter is devoted to stability and dissipativity. The former is a
property of the trajectories of an autonomous or free system (they must all remain bounded
or decay to zero). The concept of Lyapunov function was also discussed. For open systems,
that is, systems with inputs and outputs, the proper generalization of stability is provided
by the concept of dissipativity. The idea is that given a supply function (e.g., the power
supplied to an electric circuit), only part of the supplied energy can be stored, while the rest
is dissipated. Besides the supply function s, also important are the storage function 0 and
the dissipation function d, which are related by means of the equation d = s — ̂ &. The
important special cases of passive and contractive systems are discussed in some detail.
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Chapter 6

Sylvester and Lyapunov
Equations

This chapter is dedicated to the investigation of the Sylvester equation, which is a linear
matrix equation. A special case is the Lyapunov equation. These equations underlie many
of the considerations for model reduction. In particular, the Lyapunov equation has a
remarkable property, described by the inertia result, which is a powerful way of checking
stability of approximants. Lyapunov was interested in studying the distribution of the roots
of a polynomial equation with respect to the imaginary axis in the complex plane. Of course,
one can do this by defining a matrix whose characteristic polynomial is equal to the given
one. But Lyapunov wanted to accomplish this using quadratic forms. He observed that
under mild assumptions, the solution to an appropriate Lyapunov equation is symmetric—
and thus defines a quadratic form—and its eigenvalues are distributed in the same way as
the roots of the original polynomial. The distribution of the eigenvalues of a symmetric
matrix can be determined, using a classical result of Jacobi, by checking the signs of the
principal minors of the matrix; for details, see, e.g., Chapter X of [134].

We begin by listing several ways of solving the Sylvester and Lyapunov equations
(section 6.1). In section 6.2, the inertia result is stated and proved using two different meth-
ods. Next, various algorithms for the numerical solution of such equations are presented.
For the semidefinite Lyapunov equation, the most reliable is the square root method, which
computes a Cholesky factor of the solution directly, without computing the solution first.
The chapter concludes with remarks on the numerical stability of solution algorithms for
the Sylvester and Lyapunov equations.

6.1 The Sylvester equation
Given the matrices A e R"x", B e Rkxk, and C e M"xk, the matrix equation
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174 Chapter 6. Sylvester and Lyapunov Equations

in the unknown X e Rnxk is the Sylvester equation. In the case in which B = A* and
C = Q = Q*, the resulting equation,

in the unknown P € Rnx" is referred to as the Lyapunov equation.
Before discussing methods for solving this equation, we state a condition for the

existence of a solution. First we need to define the matrices

both being square with size (n + k). Roth [276] proved the following result.

Proposition 6.1. Equation (6.1) has a solution if and only if the matrices M1 and M2 are
similar.

Proof. Let X be a solution of (6.1). Then M3 = ( J * ) is nonsingular and satisfies
M1 M3 = M3M2. Conversely, if MI and M2 are similar, there exists a nonsingular matrix
M3 = ( X

0" *J* ) such that MiM3 = M3M2. It follows that X = X^X^1 is a solution
of (6.1). D

Several methods for solving this equation have been developed and will be discussed.
We will also derive conditions (6.7) and (6.8), which guarantee the existence of a unique
solution. The methods are as follows:

1. The Kronecker product method,

2. The eigenvalue/complex integration method,

3. The eigenvalue/eigenvector method,

4. The characteristic polynomial method,

5. The invariant subspace method,

6. The sign function method,

7. The infinite sum method, and

8. The square root method (section 6.3.3).

Note that reachability and observability are intimately related with properties of the Sylvester
equation; see, e.g., [97].
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6.1. The Sylvester equation 175

6.1.1 The Kronecker product method

The Sylvester equation (6.1) can be analyzed using the Kronecker product. For details, see,
among others, [219], [220], [181].

Given P = (/?,;) e Rpxq andR e Rrxs, their Kronecker product is defined as follows:

We can also write

where /?,, r,, denotes the ith column of P, R, respectively. The vector associated with a
matrix T G Rgxr is

It follows that

Therefore, if C* = (ci • • • c^) e Rnxk, we can write C = eic* H ----- h e^c^, which impliesHt»

Using the Kronecker product, the left-hand side of (6.1) can be rewritten as vec (AX + XB)
= .An vec (X), and thus

Let the EVD of A and B be

respectively. We assume for simplicity that these matrices are diagonalizable:

Given the eigenvectors of A and B, the eigenvectors of AB are

It will be shown in section 6.1.3 that the eigenvalues of AB are

As a consequence, we obtain the following proposition.
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1 76 Chapter 6. Sylvester and Lyapunov Equations

Proposition 6.2. The Sylvester equation (6.1) has a unique solution X if and only if

In this case, (6.4) y/e/ds

Corollary 6.3. The Lyapunov equation (6.2) has a unique solution P if and only if

Furthermore, if the solution is unique, it is Hermitian P = P*.

6.1 .2 The eigenvalue/complex integration method

Consider the Sylvester equation, where the term zX, z e C, is added and subtracted on both
sides:

Assuming that the sets of eigenvalues of A and — B are disjoint, let F be a Cauchy contour4

that contains all the eigenvalues of A but none of the eigenvalues of — B. There holds

The earlier expression, together with these integrals, yields the solution of the Lyapunov
equation as a complex integral:

Remark 6.1.1. This method can also be used to obtain a solution of the equation AiXA2 +
81X62 = C. Provided that the spectra of the associated pencils zB\ — AI and zA2 + B2

are disjoint, the solution can be expressed as follows:

where F is a Cauchy contour that includes the spectrum of the pencil zBi — AI and excludes
that of the pencil zA2 + B2.

The special case of Lyapunov equations

If we consider the Lyapunov equation, in other words, B = A*, C = Q, and A has
eigenvalues in C_, we can choose the contour F above as the imaginary axis, z = ico,

*See (almost) any book on complex analysis for details on complex integration and Cauchy contours.
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6.1. The Sylvester equation 177

and formula (6.9) becomes

It readily follows by Parseval's theorem of Fourier transforms that P can be expressed in
the time domain as

which is the same as (4.43) and (4.51) with Q in place of BB*.
We now examine the case where A has eigenvalues both in C_ and in C+ but not on

the imaginary axis. Furthermore, we assume that the contour F is the imaginary axis. The
question we wish to address is, What equation does the quantity P satisfy^

First notice that under the assumptions above, this expression is well denned. The question
posed is of interest when dealing with Lyapunov equations where A is neither stable (eigen-
values in <C_) nor antistable (eigenvalues in C+) but has eigenvalues in both half planes,
except on the imaginary axis. In such a case, the solution of the Lyapunov equation does
not admit an integral representation in the time domain (such as / eAtQeA*' dt).

To address this issue, we define the projection FI onto the stable eigenspace of A in
Rn; then I — FI is the projection onto the antistable eigenspace of A in RM. This projection
can be computed as follows. Let T be a transformation such that T"1 AT = diag {A_, A+},
where all the eigenvalues of A_ are in C_ and all the eigenvalues of A+ in C+. Then
T\ = T( J J )T-!. Notice that

The main result of this section is due to Godunov [142, Chapter 10].
A

Lemma 6.4. P defined by (6.11) solves the following Lyapunov equation:

With the notation Q_ = FIQFl and Q+ = (I - FI)Q(I - FI), this Lyapunov equation
can be considered as the sum of the Lyapunov equations:

Thus P = P-.— P+ has an integral representation in the time domain, namely,

where
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1 78 Chapter 6. Sylvester and Lyapunov Equations

6.1 .3 The eigenvalue/eigenvector method

Define the linear operator

One way to analyze the operator C is to use the EVD of A and B.
Recall the EVDs given in (6.5) and (6.6); it follows that v/, w* are right, left, eigen-

vectors of A, B, corresponding to the eigenvalues A.,-, IJLJ, respectively. Then, since

we conclude that A., + /x; is an eigenvalue of C corresponding to the eigenvector v, w*. Let
also the left eigenvectors of A be

and the right eigenvectors of B be W = W * = [wi • • • w^]; it readily follows that
Y^"=i v,-v* = In and £)?=i w/w* = Ik. Given these eigenvalue decompositions, the so-
lution of the Sylvester equation can be explicitly written.

Theorem 6.5. With the notation established above, the solution of the Sylvester equation
(6. 1) can be expressed as a sum of rank-one matrices:

These expressions can also be written as

Proof. From (6.1) follows (A — X/In)X + X(B + A,/Ifc) = C, where X,- is an eigenvalue of
A, with corresponding left/right eigenvectors v/, v,-; hence v(*(A — A.,IW) = 0, which leads
to vfX = vfCCX/Ijfc + B)-1; hence v/vfX = v,-vfCCX/I* + B)-1. Due to Y!i=i v,-vf = In,
we have X)i=i v/v*X = X. The first formula follows; the second formula can be shown
similarly. D

Note that the formulas above contain a number of ingredients which are the same as
those in [151].

Remark 6.1.2. The Sylvester equation and the Lowner matrix. We will now present a con-
nection between the solution of the Sylvester equation and the Lowner matrix; consequently
a connection is established between the Sylvester equation and rational interpolation.
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6.1. The Sylvester equation 179

Let us assume for argument's sake that C is rank one; it can then be written as C =
G R", c2 € R*. Then (6.15) can be written as follows:

Thus V is the matrix of scaled right eigenvectors of A while W is the matrix of scaled
left eigenvectors of B. It is interesting to notice that the remaining matrices O and 7£ are
directly related with rational interpolation. Recall (4.85) and (4.86) as well as (4.87), which
show that the Lowner matrix can be factorized as a product of generalized reachability
and observability matrices. The matrices defined above, namely, 7£(A, Ci) and O(c.2, B),
are precisely these generalized matrices, X = V0(c2, B) = 7£(A, Ci)W*, and if B = A,
X2 = — VLW*. Thus X2 and L are the same up to congruence.

6.1.4 Characteristic polynomial methods

Two methods make use of characteristic polynomials. The first uses the characteristic
polynomial of the operator C and the second the characteristic polynomial of either A or B.
We begin with the former.

Given a matrix F e E"xn, with characteristic polynomial xr(,s) = sn + yn-\s
n~l +

h Y\s + Xo» me Cayley-Hamilton theorem implies that Xr(H =0. If F is invertible,
that is, detF = y0 ^ 0, the inverse is given by

Consequently, the solution of Fx = b can be expressed as

Therefore, if the coefficients of the characteristic polynomial of F are known, an expression
for the solution of Fx = b can be written, involving powers of F.

Next we will apply this method to the Sylvester equation (6.1). Recall the Sylvester
operator £ defined by (6. 1 3). Its characteristic polynomial X£ has degree nk, and its roots are
Xi+/jLj,i = 1, . . . , n, j = 1, . . . , fc, where A,,-, iij are the eigenvalues of A, B, respectively.
Therefore, the characteristic polynomial of £ is the same as that of AB defined in (6.4). Let
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180 Chapter 6. Sylvester and Lyapunov Equations

Notice that the Sylvester equation can be written as £(X) = C; therefore, X = £~l(C)
(provided that the inverse exists). Cayley-Hamilton implies

In analogy to (6. 16), this yields an expression for the solution of the Sylvester equation (6. 1)
of the following form:

The quantities £j(C) can be obtained recursively as follows:

This procedure has been adapted from Peelers and Rapisarda [264], who, using (6.17) and
(6.18) as a basis, propose a general recursive method for solving polynomial Lyapunov
equations. A similar method for solving Sylvester and Lyapunov equations was proposed
by Hanzon and Peeters [166].

The second method that falls under the characteristic polynomial approach makes use
of the characteristic polynomial of either A or B. Let these be

We also consider the pseudoderivative polynomials a( /), i = !,. . . ,«, and /?(;), j =
1, . . . , k, defined as in (4.72). Then from AX + XB = C follow the relationships

We now form a linear combination of the above equations; this linear combination is given
by the coefficients of the characteristic polynomial of A. We thus obtain

By the Cayley-Hamilton method, the first term is zero, and therefore we obtain the solution

where a(—B) is invertible because A and —B are assumed to have no common eigenvalues.
In a similar way, making use of the characteristic polynomial of B, we obtain the dual
formula to (6.19),
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6.1. The Sylvester equation 181

We can go one step further and compute the inverse of the quantity in the second bracket. For
this purpose, we need to solve the following polynomial Bezout equation for the coefficients
of polynomials p(—5) and q(s):

Then, since a(—B)p(B) = Ik and ft(—A)q(A) = IM, we obtain the formulas

Example 6.6. We now consider the above methods for solving the Sylvester equation (6.1).
It is assumed that

(a) The first method uses the Kronecker product:

(b) We will now use the Cayley-Hamilton method applied to the characteristic poly-
nomial of £. We have

co
nt

ro
len

gin
ee

rs
.ir



182 Chapter 6. Sylvester and Lyapunov Equations

Using formulas (6.18), we successively apply the Sylvester operator defined by (6.13) to C
for j = 1,..., 7. Then X = 36

2
3
5
8
6
25X

7 is equal to the expression obtained above, where

(c) The next method uses complex integration. The expression F(s) = (A — 514) l

C(B + s!2r
l is

where d(^) = (s + 4)(5 + 3)(s + 2)(s + l)(2.y + l)(2s — 3). A partial fraction expansion
can be obtained in MATLAB by using the command dif f (int (F) ) :

To evaluate the integral (6.9), we need the residues of F(5) at 5 = —4, 5 = —3, 5
and 5 = — 1; these are

= -2,

It follows that X = Xi + X2 + X3 + X4. We can also obtain this solution by using
the dual expression of (6.9). This involves the complex integration of G(s) = (A +
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6.1. The Sylvester equation 183

— s\2) l. In this case, the Cauchy contour must contain the eigenvalues of
B but not those of A. Therefore, the residues of G(s) at s = ̂  and s = — | are needed:

In this case X = YI + Y2, where

(d) The eigenvector method is applied to B; we have

Therefore, according to the right-hand-side formula (6.14), the solution is

yields
(e) Finally, the characteristic polynomial method, and in particular formula (6.20),

Using the Bezout equation we can express the inverse in the above expression as a polynomial
in A. This is done as follows. We solve the polynomial equation, which is always possible,
since p(^), q(—s) are coprime. It turns out that
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1 84 Chapter 6. Sylvester and Lyapunov Equations

This implies that b(A) is the inverse of q(— A); the four polynomials are

6.1 .5 The invariant subspace method

Recall the definition (6.3) of MI . The method proposed here stems from Roth's condition
stated in Proposition 6. 1 . Suppose that a relationship of the form

has been obtained. If \2 is nonsingular, the solution of the Sylvester equation can be
obtained as X = Vi VJ1. Indeed, we obtain from (6.21)

Moreover, it turns out that V2 is nonsingular if and only if R and — B are similar (see
Problem [7] in Chapter 15). In this case, the columns of V form a basis for the eigenspace
of MI, which corresponds to the eigenvalues of — B. We summarize this discussion in the
next lemma.

Lemma 6.7. Let (6.21) holdwhereV = [Vp V^] is the eigenspace of MI corresponding to
the eigenvalues of—H. The solution of the Sylvester equation (6.1) is given by X = Vi V^1 .

The desired invariant subspace can be obtained by computing a real partial Schur de-
composition of MI , where R is quasi-upper triangular with the eigenvalues of — B appearing
on the diagonal.

6.1 .6 The sign function method

Consider the matrix Z e R"xn with eigenvalue decomposition Z = VAV"1, A =
diag(A+, A_), where A+, A_ contain Jordan blocks corresponding to the r, n — r eigen-
values with positive, negative, real parts, respectively. The sign function of this matrix is
defined as ZCT = Vdiag(Ir, — In_r)V

-1. The purpose of this section is to show that under
certain conditions, it can be used to solve the Sylvester and the Lyapunov equations.
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6.1. The Sylvester equation 185

Given a complex number z € C with Ke(z) ^ 0, we perform the following iteration,
known as the sign iteration:

It readily follows that the fixed points of this iterations are ±1. Therefore, if He(z) > 0,
limw_>oo zn = 1, and if Ke(z) < 0, lim,,-*,*, zn = —1- This iteration can also be defined for
matrices Z e Crxr: Zn+i = (Zn + Z"1)/!, ZQ = Z. Fixed points in this case are matrices
that satisfy Z2 = Ir; in other words, matrices that are diagonalizable and their eigenvalues
are ± 1. It can be easily shown that if the matrix has eigenvalues ± 1 but is not diagonalizable,
convergence to a diagonalizable matrix with eigenvalues ±1 is achieved in finitely many
steps (equal to half the size of the largest Jordan block). An important property of the sign
iteration is that it is invariant under similarity, i.e., if the jth iterate of Z is Zy, the y'th iterate
of VZV-1 is VZjV"1. The following holds.

Proposition 6.8. Let J be a Jordan block, i.e., J = XIr + N, where A has positive real pan
and N is the nilpotent matrix with ones above the diagonal and zeros elsewhere. The sign
iteration ofj converges to lr.

Proof. Since the matrix is upper triangular, the elements on the diagonal will converge to 1.
Furthermore, this limit, denoted by J', has Toeplitz structure. Thus each iteration applied
to J' will bring zeros to the successive superdiagonals. Thus J' (which is upper triangular
and Toeplitz with ones on the diagonal) will converge in r steps to the identity matrix. D

Corollary 6.9. IfZeCrxr andKeXi(Z) < 0 (KeX^Z) > 0), the sign iteration converges
to Zn —> —Ir (Zn -* +Ir), respectively.

Proof. Let Z = VAV"1 be the EVD of Z. Since the iteration is not affected by similarity,
we need to consider the iterates of the Jordan blocks J, of A. The proposition implies that
each Jordan block converges to ±1, depending on whether the real part of the corresponding
eigenvalue is positive or negative. 

We will now consider a matrix of the following type:

Proposition 6.10. TTie iteration Zn+i = (Zn + Z~l)/2, ZQ = Z, defined above, converges
to

where AX + XB = C.

Proof. Let ZV = VA with A = diag(Ai, A2) be the eigenvalue decomposition of Z. V is
upper block triangular and
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186 Chapter 6. Sylvester and Lyapunov Equations

This readily implies that the solution of the Sylvester equation is V 12^22 • The block
triangular structure of Z is preserved during the iterations, i.e., Zy is also block upper
triangular. Furthermore, by the proposition above, the limits of the (1,1) and (2, 2) blocks
are — !„, I*, respectively. Thus Z; as j —> oo has the form claimed. It remains to show that X
satisfies the Sylvester equation as stated. This follows since limy
and therefore

This implies X = V^V^1, which is indeed the solution to the Sylvester equation, as
claimed. 

Remark 6.1.3. (a) The above result shows that the solution of the Sylvester equation where
A and B have eigenvalues either in the left or the right half planes can be solved by means
of the sign iteration.

(b) The above result also shows that given a matrix Z = V A V~l e C" xn, with k eigen-
values in the left half plane, the sign iteration yields the matrix Z^ = Vdiag(—I*, In_/t)V~1.
Therefore, n± = |(In ± Z^) yields the spectral projectors of Z onto its antistable/stable
eigenspaces, respectively.

(c) For Lyapunov equations \P + PA* = Q, the starting matrix is

The iterations can also be written as follows:

The limits of these iterations are AQO = —In and Qoo = 2P, where P is the solution of the
Lyapunov equation.

(d) The convergence of the sign iteration is ultimately quadratic. To accelerate
convergence in the beginning, one can introduce a scaling constant as follows: Zn+i =
Y~ (Zn + y%Z~l). It has been proposed in [64] that for the solution of the Lyapunov equa-
tion this constant be chosen as 

(e) Often, in the solution of the Lyapunov equation the constant term is provided in
factored form Q = RR*. As a consequence, we can obtain the (j + l)st iterate in factored
form,

Thus the solution is obtained in factored form. However, RQO has infinitely many columns,
although its rank cannot exceed n. To avoid this, we need to perform at each step a rank
revealing RQ factorization Ry = T,-U/, where Ty = [A*, 0]*, where A; is upper triangular
and UyU* = lj. Thus at the jth step Rj can be replaced by T,, which has exactly as many
columns as the rank of Ry.
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6.1. The Sylvester equation 187

(f) The sign function was first used for solving the Lyapunov equation by Roberts
[274]. For a recent overview of the sign function, see Kenney and Laub [198],

Benner and coworkers have contributed to the solution of Lyapunov equations by
computing full-rank (triangular) factors [52], as well as by computing low-rank factors of
rank k, by means of an 0(£3) SVD (k is the maximum numerical rank of the solution)
[55]. The use of the sign function in Newton's method for algebraic Riccati equations
(AREs) and its application to stochastic truncation are described in [54], In [52], the
sign function is used for the first time to solve Lyapunov equations arising in generalized
linear systems (i.e., systems containing both differential and algebraic equations). The
computation of (triangular) Cholesky factors with the sign function was also introduced
independently in [223]. In [56], [57], the sign function method is used for solving discrete
Lyapunov equations; balancing related model reduction techniques for discrete-time systems
are also developed. Benner, Quintana-Orti, and Quintana-Orti [58] give a survey of all
model reduction algorithms together with detailed performance studies. Portable software
for large-scale model reduction on parallel computers based on the sign function has been
developed in the references cited above.

Example 6.11. Consider the number z = 2. We perform the iteration zn+\ — ^(zn +
^-), ZQ = 2. The iterates converge to 1. The error en = zn — 1 is as follows: e\ =
2.50001CT1, e2 = 2.500010~2, e3 = 3.0488 10~4, e4 = 3.646110~8, e5 = 1.0793 10~15,
e6 = 5.824610~31, e-, = 1.6963 10"61, e% = 1.4388 10~122. This shows that convergence
is fast (the exponent of the error doubles at each iteration).

Example 6.12. Let

We form the matrix

Since both A and B are composed of one Jordan block with eigenvalues — 1, the iteration
will converge in finitely many steps. Indeed, in two iterations we get

Therefore, the solution of the Sylvester equation AX + XB + C = 0 is
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188 ChapterG. Sylvester and Lyapunov Equations

6.1 .7 Solution as an infinite sum

Equations of the type AXB + C = X, for the unknown matrix X, are known as discrete-
time Sylvester or Stein equations. They are closely related to continuous-time Sylvester
equations.

Proposition 6.13. Given K e Rnxn, L e Rmxm, M e Rnxm, where the first two have no
eigenvalues equal to 1, we define the matrices:

It follows that X e Rwxm satisfies the Sylvester equation,

if and only if it satisfies the Stein equation,

Furthermore, 7£e(A,(- (K)) < Q is equivalent to\ki(K)\ < l,am/7£e(A.j(L)) < 0 is equivalent
to |A./(L)| < 1. If these conditions are satisfied, there holds

Thus, according to the above formula, provided that K and L have eigenvalues in the
left half plane, the solution of the Sylvester equation can be expressed as an infinite sum.

6.2 The Lyapunov equation and inertia

In this section, a remarkable property of the Lyapunov equation (6.2), AP + PA* = Q, for
which Q is semidefinite, Q > 0 or Q < 0, is analyzed. This property allows for the count of
the location of the eigenvalues of A given the count of the location of the eigenvalues of the
solution, and vice versa. This is the inertia result associated with the Lyapunov equation.
We begin with a definition.

Definition 6.14. Given a square matrix A e Rnxw, let the number of eigenvalues in the left
half plane, on the imaginary axis, in the right half plane, be denoted by v(A), 8 (A), n(A),
respectively. The triple

is called the inertia of A.

Matrices with inertia (n, 0,0) are referred to as stable, while matrices with inertia
(0, 0, n) are antistable. The following result is a consequence of the Courant-Fischer max-
min characterization of eigenvalues.

co
nt

ro
len

gin
ee

rs
.ir



6.2. The Lyapunov equation and inertia 1 89

Proposition 6.15. Sylvester's law of inertia. Let A = A* and X be real with det X ̂  0.
Then in (A) = in (X*AX).

The first fundamental relationship between inertia and the Lyapunov equation is the
following.

Lemma 6.16. Given Q > 0, the Lyapunov equation has a unique positive definite solution
P > 0 if and only if\ is an antistable matrix, i.e., in (A) = (0, 0, n).

Proof, (a) We first show that if P > 0, then A has inertia equal to (0, 0, n). LetA*y, = A,y,,
1 < / < n. If we multiply (6.2) by y* on the left and by y, on the right, we obtain

By assumption, y*Py, > 0 and yfQy/ > 0 for 1 < / < n. We conclude that (A.* + A,) > 0,
which proves the assertion, (b) Conversely, if A is antistable, we define

which exists because of the antistability of A. Furthermore, it is positive definite P > 0.
Finally, it is a solution of (6.2), since AP + P\* = /°00[AeATQcA*T + £?ArQeA*r A*]</r =

The following generalization holds [257].

Theorem 6.17. Let A, P, Q satisfy (6.2) with Q > 0. It follows that in (A) = in (P).

Proof. Assume that S (A) ^ 0; this implies the existence of x 7^ 0 such that x*A = ia)\*.
Multiplying both sides of (6.2) by x*, x, respectively, we obtain x*Qx = 0, which is a
contradiction to the positive definiteness of Q. It follows that 8 (A) = 0, i.e., in (A) =
(k, 0, r) for r + k = n and k > 0. We may thus assume without loss of generality that A
has the form

If we partition P conformally to A, (6.2) implies

Using the previous lemma, we conclude that P\\ > 0 while "P22 < 0.
There remains to show that the matrix P has the same number of positive eigenvalues

as PH and the same number of negative eigenvalues as 7?
22, i.e., that in("P) = (k, 0, r).

Toward this goal, notice that we can write
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190 Chapter 6. Sylvester and Lyapunov Equations

Hence

Finally, assuming that r < k, let Y!2 = U£W*, where UU* = I, WW* = /, and £ =
(I) 0), where 0 is the zero matrix with r rows and k columns, and E = diagjcrj, . . . , ar},

0. Then

Clearly the matrix 4> has eigenvalues ±v/l + cr/2, / = 1, . . . , r, and —1 with multiplicity
k — r, i.e., 3> has r positive and & negative eigenvalues. Hence by the Sylvester law of
inertia, both Y and P have the same number of positive and negative eigenvalues as O. This
completes the proof. 

If we relax the positive definiteness of Q we obtain the following result.

Lemma 6.18. Let A, P, Q satisfy (6.2) with Q > 0. Then 5 (A) = 0 implies ?r(A) > x(P)
and v(A) > v(P). Furthermore, 8(P) = 0 /m/?/z'i5 ;r(P) > 7r(A) and v(P) > v(A).

Proof. The proof follows by using continuity arguments. First, assume that the quantities
A, P, Q satisfy (6.2) with Q > 0 and 5 (A) = 0. Let P' be the solution of AT7' + P'\* = I;
thus in(P') = in(A). Define

the solution of A"P€ + P€A* = Q + el. This implies that

Since the above holds for all € > 0 and due to the continuity of eigenvalues as a function of
€, the result follows by letting € -> 0. Similarly, if 8(P) = 0, define

Substituting this into (6.2) we obtain

This implies in(P) = in(A6) for € > 0. Since this expression is positive definite for all
€ > 0, and again due to the continuity of the eigenvalues as a function of e, the desired
result follows by letting € -> 0. 
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6.3. Sylvester and Lyapunov equations with triangular coefficients 191

Proof. We will show that reachability implies (a) 8 (A) = 0 and (b) 8(P) = 0. Hence the
result follows by applying the lemma above. There remains to show (a) and (b).

Assume that 8(A) ^ 0; there exists co and v such that A*v = ico\. Thus v*(AP +
PA*)v = v*Qv. The left-hand side is equal to (-ia> + /o>)vTv = 0. Hence the left-hand
side is zero; we conclude that v*Q = 0. This is a contradiction to the fourth condition of
Lemma 4.15; that is, if 8(A) ̂  0, the pair (A, Q) is not reachable. This proves (a).

If we assume now that S(P) ^ 0, there exists a vector v ^ 0 such that P\ = 0.
Hence \*(AP + PA*)v = v*Qv. The left-hand side is zero and therefore v*Qv = 0,
which implies v*Q = 0. This in turn implies \*(AP + "PA*) = v*A"P = v*Q = 0, i.e.,
v*A"P = 0. Repeating the above procedure for the equation A(A"P + PA*)A* = AQA*,
we conclude that v*AQ = 0. Consequently S(P) ^0 implies v*A*~1Q = 0 for k > 0,
which means that the pair (A, Q) is not reachable. This proves (b). 

Remark 6.2.1. An inertia result with respect to the unit circle can also be formulated.
Consider the discrete-time Lyapunov or Stein equation,

If the inertia of F with respect to the unit circle dT> is defined as the number of eigenvalues
which are outside, on, or inside the unit circle, and denoted by in9£>, and the inertia of
X = X* is defined as before, we conclude from Proposition 6.13 that if the pair (F, R) is
reachable,

6.3 Sylvester and Lyapunov equations with triangular
coefficients

Consider the Sylvester equation (6.1). There exist orthogonal matrices U, V such that UAU*
and VBV* are in Schur form, that is, upper triangular. Thus if we multiply (6.1) on the left
by U and on the right by V*, we obtain (UAU*)(UXV*) + (UXV*)(VBV*) = (UCV*).
For simplicity we will denote the transformed quantities by the same symbol,

where A, B are in Schur (upper triangular) form. In this case we will refer to the Sylvester
and Lyapunov equations in Schur basis.

6.3.1 The Bartels-Stewart algorithm

With the coefficient matrices triangular, the solution can be obtained columnwise as follows.
Let the columns of X, C be denoted by x*, c* and the entries of A, B by a//, &,-_,-, respectively.

Thorem 6.19. Let A, P,Q  satisfy (6.2) with Q > 0. If the pair (A,Q) is reachable,
then
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192 ChapterG. Sylvester and Lyapunov Equations

The first column of X satisfies Axi + \\b\\ = c\. Thus xi = (A -+- b\il)~lc\. The second
column satisfies Ax2 + xib\2 + x2&22 = £2- Thus x2 = (A + ̂ I)"1^ — £12*1), which
can be computed once Xi is known. Similarly,

Thus the fact that B is in Schur form allows the calculation of the columns of the solution
recursively. In addition, the fact that A is in Schur form implies that A + bu\ is also in
Schur form and therefore the inverse is also in Schur form and can be computed explicitly.

Remark 6.3.1. Recall that given the upper triangular M = On,-y), ̂  = 0, for i > j,
i, j = ! , . . . ,«, its inverse N = (vi;) is also upper triangular, that is, viy = 0, i > j,
i, j = 1, . . . , n, and its nonzero elements are defined recursively as vnn = — , and, the
entries of all rows from i = k + 1, . . . , n having been computed, the entries of the kth
row are

The above procedure is the Bartels-Stewart algorithm [43] in complex arithmetic,
because if A or B has complex eigenvalues, the solution of the Sylvester equation X in the
(complex) Schur basis will be complex. On the other hand, for the Lyapunov equation, even
if A has complex eigenvalues, X will be real.

The Bartels-Stewart algorithm in real arithmetic

To avoid complex arithmetic, the real Schur form can be used. In this case, if A or B has
complex eigenvalues, it can be transformed by (real) orthogonal transformation to quasi-
upper-triangular form, where the blocks on the diagonal are 1 x 1 for real and 2 x 2 for
complex eigenvalues. In the latter case, let bi+\ti ^ 0, that is, there is a 2 x 2 block on the
diagonal between rows/columns t and i + I . In this case, we must solve simultaneously
for \t and x^+i ; (6.23) becomes

where the entries of the right-hand side of this expression are denoted by ct, ty+i, respec-
tively, for simplicity. The above system of equations can be solved using different methods.
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6.3. Sylvester and Lyapunov equations with triangular coefficients 1 93

Following [31 1], the above system of equations is equivalent to

where c/ = Ac/ + fc/+i,/+ic/ - £/+i,/c/+i, and c/+i = AC/+I + fr/,/c/+i - &/,/+iC/. This
can be solved using the block version system solve routine in LAPACK [7]. We refer to [3 1 1]
for a comparison between different methods for solving (6.24). Recursive algorithms for
the solution of linear matrix equations with triangular coefficients are also treated in [189].

6.3.2 The Lyapunov equation in the Schur basis

For this purpose we assume that in (6.2) the solution P is symmetric; we also assume that
Q = — BB*. Thus we consider the Lyapunov equation,

where A e R"xn, B € Rnxm, P = P* e Rnxn. Throughout this section we assume that

Recall the PBH condition for reachability stated in part 4 of Theorem 4.15. As a conse-
quence, both 8 (A) = 0 and 8(P) = 0, i.e., A has no eigenvalues on the imaginary axis and
both matrices are nonsingular.

To continue our discussion, it will be convenient to assume that A is in Schur form, i.e.,
A is upper triangular. As shown earlier, there is no loss in generality with this assumption
as it amounts to a transformation of the Lyapunov equation into an equivalent system using
the Schur form basis vectors. Once the system is in Schur form, partition A, B, and P
compatibly is as follows:

where AH and A22 are upper triangular.

Proposition 6.20. Assume A, B, P satisfy the Lyapunov equation, with (A, B) reachable,
where partitioning (6.26) holds. The following statements hold: (a) The pair A.22, 82 is
reachable, (b) 8(Pi2} = 0, i.e., ^22 is nonsingular. (c) The pair (An, BI) is reachable,
where BI = BI - Pi2'P2"2

1B2.

Proof, (a) Let z2 be any left eigenvector of A22- Then z = [0, z^]* is a left eigenvector of
A and the PBH condition implies 0 ̂  z*B = z|B2. This is true for any left eigenvector of
A22, and therefore the PBH condition also implies the reachability of (A22, 82). (b) Since
A22^22 + ^22A^2 + B2B^ = 0, part (b) follows from the fact that S (A) = S(P) = 0, stated
earlier, (c) As a consequence of (b), the Lyapunov equation can be transformed into
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1 94 Chapter 6. Sylvester and Lyapunov Equations

where A = TAT"1, B = TB, P = TFT*, and

with

From (6.27) and (6.28) follow three equations:

Suppose that there is a left eigenvector Zi of An such that z*Bi = 0. Then z*Ai2 = 0
and it follows that z = [z*, 0]* is a left eigenvector of A such that z*B = Z*B! = 0 in
contradiction to the PBH condition. 

Now, we are ready to prove the main theorem, Theorem 6.23, of this section. It is
based on Lemma 6.22.

Definition 6.21. A diagonal matrix is called a signature if its diagonal entries consist only
of I or-I.

Lemma 6.22. Let A, B, and P satisfy the Lyapunov equation with (A, B) reachable. If A
is in Schurform, then P can be expressed in factored form, P = USU*, where U is upper
triangular and S is a signature matrix.

Proof. The proof is given by induction on n, the order of A. The required property clearly
holds for n = 1. Assume that it holds for Lyapunov equations of order k < n, where (6.25)
is satisfied. We show that the same property must also hold for Lyapunov equations of order
n, satisfying (6.25).

To prove this, we can assume without loss of generality that the matrices A, B, P
(where A has dimension n) are partitioned as in (6.26), where the (1,1) block has dimension
k < n and the (2, 2) block has dimension n—k < n. Due to reachability, we may also assume
that these matrices are in the form (6.28) and satisfy the transformed Lyapunov equation
(6.27). By Proposition 6.20, both of the pairs (An, BI) and (A22, B2) are reachable and the
induction hypothesis can be applied to each of the two reduced-order Lyapunov equations,
giving Ai = UnSiU*! and P22 = U22S2U22. Transforming back from (6.27) gives
P = USU* with

and S =       The induction is thus complete.
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6.3. Sylvester and Lyapunov equations with triangular coefficients 1 95

An iterative proof of the inertia result

A consequence of the above lemma is a self-contained proof by induction of the inertia
result associated with the Lyapunov equation. It first appeared in [19].

Theorem 6.23. Assume that A, B, and P satisfy the Lyapunov equation (4.45) with (A, B)
reachable. Then

Proof. Again, the proof is given by induction on n, the order of A. First, assume that A is in
Schurform. The properties stated in the above theorem clearly hold for n = 1. Assume they
hold for Lyapunov equations of order k < n, satisfying (6.25). We show as a consequence
that these properties must also hold for Lyapunov equations of order «, satisfying (6.25).

If we partition the matrices as in the proof of Lemma 6.22, it follows that the Lyapunov
equations (6.29) are satisfied. Each one of these has size less than n and hence the induction
hypothesis applies:

Since A is in Schur form, there holds v(A) = v(An) + v(A22), and 7r(A) =
?r(A22); due to the structure of P, we have v(P) = v(Pn) + v(7>22), and n(P) = n(Pu}
+ x(P22), completing the induction.

If A is not in Schur form, the upper triangular U in the considerations above is replaced
by QU, where A = Q*AQ is the original matrix (not in Schur form). The solution of the
corresponding Lyapunov equation is P = (QU)S(QU)*. 

Remark 6.3.2. The considerations laid out in the proof of the theorem above lead to a
UL factorization of the solution P to the Lyapunov equation. If A is in Schur form, the
factorization P = USU* holds, where U is upper triangular and S is a signature matrix.
The question is, When does the solution P in the original coordinate system possess such
a factorization?

If the principal minors det P(k : n, k : n), k = 1, . . . , n, are different from zero, the
UL factorization of Pexists; let P = UL, where the diagonal entries of U can be chosen to be
positive and those of L can be chosen to have the same magnitude as the corresponding entries
of U. Since P is symmetric, there exists a signature matrix S such that (S)~!L = U*, and
the required factorization follows. It should be noted that the nonsingularity of the minors
defined above is basis dependent and cannot always be satisfied. This is the case whenever
A has eigenvalues with both positive and negative real parts. Actually, it is easy to show
in this case that there always exists a basis such that P does not have an LU factorization.
For example if n = 2, let the solution P\ be diagonal; by basis change the transformed
solution p2,

does not have an LU factorization. Of course, if P is positive or negative definite, the result
is the Cholesky factorization, which always exists.
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196 Chapters. Sylvester and Lyapunov Equations

The theorem we have just established determines the inertia of A if a symmetric
solution to a Lyapunov equation is available (as it is in our special case). No a priori
assumptions on the spectrum of A are required.

Remark 6.3.3. (a) Consider the Lyapunov equation (6.2). If the condition A + A* < 0 is
satisfied, the following relationship holds:

This follows from the fact that if P\t = A./X/, then X,-xf(A +A*)x,- = x?B*Bx,-. By
assumption we can write — (A + A*) = R*R for some R € R"x". Thus with y,- = Rx,
we have A,-y*y,- = y?R~*B*BR~1y,, and thus

The desired result follows by summing the above equations for / = 1 , . . . , n and using the
fact that ]T. y,-y* = In and trace P = J], A,,-.

(b) If A is stable, the condition A + A* < 0 can always be satisfied for some A
which is similar to A. By assumption, there exists Q > 0 such that AQ + QA* < 0; then
A + A* < 0, where A = Q-!/2AQ1/2.

6.3.3 The square root method for the Lyapunov equation

If A is stable (that is, all eigenvalues are in the left half plane), the solution of the Lyapunov
equation is positive definite P > 0. In this case, in the Schur basis, the solution according
to Lemma 6.22 can be written as P = UU*, where U is upper triangular. It was observed
by Hammarling [164] that this square root factor U can be computed without explicitly
computing P first. This is a consequence of the discussion of the preceding section.

Let us assume that A is in Schur form, that is, (quasi) upper triangular, and partition
A, B, P as in (6.26). The Lyapunov equation can be further transformed into (6.27) using
the transformation T given in (6.28). Thus (assuming stability of A) P can be expressed in
factored form:

The problem is now to successively compute the smaller pieces of P, namely, 7^2

we have the three equations (6.29), which we rewrite as follows:
where k < n. To that effect,and finallyco
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6.3. Sylvester and Lyapunov equations with triangular coefficients 197

We can thus solve the first (Lyapunov) equation for Pn\ this is an equation of small size,
or at least of smaller size than the original one. Then, we solve the second equation, which
is a Sylvester equation for P\I. Then, given the fact that the pair (An, Bt) is reachable
according to Proposition 6.20, the problem of solving a Lyapunov equation of size n is
reduced to that of solving a Lyapunov equation of smaller size k < n. At the same time,
we have computed the last n — k rows and columns of the factor U and, because of triangu-
larity, of the solution P.

If we wish to apply this method in practice, we choose k = n — 1; in other words, we
compute successively the last row/column of the square root factors. From the first equation
(6.31), we obtain

Then, from the middle equation follows [An + A^I/i-i] PU — Ai2
implies

 which

Thus, we have determined the last column of the upper triangular square root factor U
"1/2in (6.30). There remains to determine the upper triangular square root factor "Pu which

satisfies the Lyapunov equation given by the third equation (6.31). Recall that BI = BI —
PnP^i^i and, by Proposition 6.20, the pair (An, BI) is reachable. Consequently, the
problem is reduced to one of dimension one less.

Example 6.24. Let

The Schur decomposition of A is A = UAU*, whereco
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198 Chapter 6. Sylvester and Lyapunov Equations

and A, B =

where

= U*B are

Examplei.25. We wish to solve ¥P + P¥* + GG* = 0, using Hammarling's algorithm,

First, F is transformed into Schur form; the orthogonal matrix that achieves this is

Thus
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6.3. Sylvester and Lyapunov equations with triangular coefficients 199

• Step 1. A <— A, B <— B, n •<— n, fc «-« — !. Equation (6.32) is solved for 7^22;
then (6.33) is solved for the n - 1 vector P12. We ge
According to (6.30), the last column of U is 
V2/2. We also have

• Step 2. A «- A(l : 3,1 : 3), B «- B3, n <- n - 1, fc «- n - 1. Equation
(6.32) is solved for P22\ then (6.33) is solved for the n - 2 vector Pi2. P22 = 1/2, P12 =
[31/4 9/4]*. According to (6.30), the third column of U is 

. We also hav

• Step 3. A «- A(l : 2, 1 : 2), B «- B2, n «- n - 1, k «- n - 1. Equation (6.32) is
solved for ̂ 22; then (6.33) is solved for the n - 3 vector P
According to (6.30), the second column of U is
We also have 

• Step 4. A «- A(l : 1, 1 : 1), B <- B3, /i «- n - 1, fc «- n - 1. Equation
(6.32) is solved for ^22; there is no equation (6.33) in this case: "p22 = 1/2, and hence
U(l, 1) = V2/2.

Putting together the columns computed above, we obtain the upper triangular factor
of the solution to the Lyapunov equation in the Schur basis:

To obtain the square root factor in the original coordinates we have to multiply by W*

Thus the solution P in the original quantities is

Finally, MATLAB gives the following solution:

lyap(F,G*G') =
2.87506+001 6.96506+001 5.83366+000
6.96506+001 1.72506+002 1.62506+001
5.83366+000 1.62506+001 2.50006+000
2.40006+001 5.72766+001 4.41946+000

40006+001
72766+001
41946+000
02506+001,

which up to machine precision is the same as the P obtained above.
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200 Chapter 6. Sylvester and Lyapunov Equations

6.3.4 Algorithms for Sylvester and Lyapunov equations

We will now quote two algorithms given in [311]. The first computes the solution of the
Sylvester equation in real arithmetic, and the second computes the square root factors of a
Lyapunov equation in complex arithmetic.

The algorithm, up to part (c) of "else," is the Bartels-Stewart algorithm, which is
coded in MATLAB as lyap. m. Thereby, all quantities obtained are real. If A or B has
complex eigenvalues, this is achieved at the expense of introducing 2 x 2 blocks on the
diagonal in the Schur form, which makes a step like the block solve necessary.

The following is essentially Hammarling's algorithm for computation of the square
root factor of the solution to the Lyapunov equation (in case the latter is positive definite). It
is implemented in complex arithmetic. In other words, if A has complex eigenvalues and R is

Algorithm: Solution of the Sylvester Equation AA + XB = C in real arithmetic

Input data:
Output data:

1.  Compute the real Schur decomposition A = QRD* with R: quasi-upper triangulat.

2. If B = A, set U = Q, T + R; else if A = A*, get U, T from Q, R as follows:

else compute the real Schur decomposition B = UTU* with T quasi-upper trian-
gular.

3. C - Q*CQ - R * R, I - eye(n), j - l.

4. While (j < k = 1)

else

block solve the linear equations

end if

5. The solution X in the original basis is X - QXD*.co
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6.4. Numerical issues: Forward and backward stability* 201

the complex Schur form, the resulting square root factor in the Schur basis will in general
be complex. Of course, in the original basis it will be real. A version of this algorithm
in real arithmetic can be derived in a way similar to that employed for the Bartels-Stewart
algorithm. For details, see [311]. This algorithm is also implemented in SLICOT.

6.4 Numerical issues: Forward and backward stability*
In applications, due to finite precision and various errors, the Sylvester and the Lyapunov
equations can be solved only approximately. The question of how good these solutions are
arises therefore. As discussed in section 3.3.2, there are two ways to assess the quality of a
solution: forward and backward stability. The former is explained as follows. Let X be an

Algorithm: Computation of the square root factor of the solution to the Lyapunov
quuation

in complex arithmetic.

co
nt

ro
len

gin
ee

rs
.ir



202 Chapter 6. Sylvester and Lyapunov Equations

approximate solution of the Sylvester equation (6.1). This means that the residual,

is different from zero. A small relative residual,

indicates forward stability. It was shown in [43] that

where O(e) is a polynomial in e (machine precision) of modest degree. Therefore, the
solution of the Sylvester equation is forward stable.

To address the issue of backward stability, we need to define the backward error of
an approximate solution X. Following [170], the normwise backward error is

77(X) = min{€ : (A + E)X + X(B + F) = C + G, ||E||F < €a, \\¥\\F < eft, \\G\\ F < ey}.

The positive constants a, ft, y provide freedom in measuring the perturbations. A frequent
choice is

Before stating a general result, we discuss an example.

Example 6.26. Given the positive numbers o\, ai, let

The exact solution of the Sylvester equation (6.1) is X = diag(<7i, a2). Assume now that
the following approximate solution has been obtained instead: X = diag(<7i, <72), where
°2 ~~ &2 is small. The residual in this case is

Assuming that C is known exactly (i.e., G = 0), to determine the backward error we
need to solve EX + XF = —R for the perturbations E and F. To preserve the structure,

CTj—(Towe will assume that E = F* = ( a b, V It turns out that a = 0 and d = , - .
\ C d J 2(7202

Furthermore, the least squares (smallest norm) solution of a\c + a2d = ^^ is c =

a\(d2 - a-i)l(a\ + or2)\/ori2 +<72
2, d = a2(02 - cr2)/(cri + cf2)Vai +<*2- Thus' assuming

that a\ = 1 ^> 02, &2, the 2-norm of the relative residual is approximately 0 = l<T2~°r21,

while that of the perturbation E is approximately equal to |-. This shows that the backward
error in this case is equal to the forward error divided by the smallest singular value of
the approximate solution. Depending on the value of a2, the backward error can therefore
be big.
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6.4. Numerical issues: Forward and backward stability* 203

The fact that the conclusion reached in the example holds in general was shown by
Higham in [170]. We will give the formula here, assuming that the right-hand side of the
equation is known exactly (i.e., G = 0), n = k, and the approximate solution X has full
rank n. Let the smallest singular value of X be an. The following upper bound holds for
the backward error:

Here, JJL is an amplification factor that indicates by how much the backward error can exceed
the relative residual. Indeed, if the approximate solution is badly conditioned (near rank
deficient), the backward error may become arbitrarily large.

Remark 6.4.1. To put the issue of backward error in perspective, we mention that the
solution of the linear set of equations Ax = b is backward stable. In fact, the following can
be proved:

In this case the backward error is directly linked to the relative residual, namely, |||f.
In contrast, the solution of the system of equations AX = B, where B is a matrix and

not just a vector, is not backward stable. If we choose B = I, this amounts to the computation
of the inverse of the matrix A, which, in turn, is the special case of the Sylvester equation
where B = 0. Thus even without knowledge of the above formula, we would not expect
the solution of the Sylvester equation to be backward stable.

The condition number of the solutions

Another question that comes up when solving Sylvester or Lyapunov equations concerns the
properties that the coefficient matrices must satisfy so that the solution is well-conditioned.

Before addressing this question, we define the condition number of the Sylvester
equation around a solution X. Consider

where again we assume for simplicity that the right-hand side is known exactly. After
retaining only first-order terms, we get

where £ = I* <S> A + B* <8> !„ is the Lyapunov operator. Following [170], we will call the
quantity

the condition number of the Sylvester equation. Again, we shall attempt to clarify this
formula by considering an example.
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204 Chapter 6. Sylvester and Lyapunov Equations

Example 6.27. Let A = ( ~| ~M = B*, b > 0, and C = ( J ° V The solution

of the Sylvester equation (6.1)—which is a Lyapunov equation—is the identity matrix
X = ( * *? j , which is perfectly conditioned. We will show that depending on b, the

associated condition number (6.34) can be arbitrarily large. In fact, for/? = lO"1,^ = 27.8;
b = 1(T2, K = 2.5 103; b = 1(T3, K = 2.5 105; b = 1(T8, K = 2.5 1015.

The conclusion from this example is that there does not seem to be any connection
between the condition number of the Sylvester and the Lyapunov equations and their so-
lutions. In other words, the derivative of the Lyapunov function can be big even around
solutions that are perfectly conditioned.

6.5 Chapter summary
The Sylvester equation is a linear matrix equation. The Lyapunov equation is also a linear
matrix equation where the coefficient matrices satisfy symmetry constraints. The solution
of these equations is a prominent part of many model reduction schemes. Therefore, in the
preceding chapter these equations were studied in some detail.

First we notice the multitude of methods for solving the Sylvester and Lyapunov equa-
tions. The Kronecker method reduces their solution to that of a linear system of equations
of the form Ax = b, where x, b are vectors. The complex integration method uses the
properties of Cauchy integrals to compute solutions. Then come the eigenvalue/eigenvector
method, followed by two characteristic polynomial methods, an invariant subspace method,
and one method using the sign function.

The second section discusses an important property of the Lyapunov equation, known
as inertia. The inertia of a matrix (with respect to some domain V in the complex plane)
is composed of three nonnegative numbers, namely, the number of eigenvalues inside the
domain, on its boundary, and outside the domain. Depending on the application, T> can be
taken as the open left half plane, or the open unit disc. The inertia result then asserts that if
the right-hand side of (6.2) is (semi) definite, the inertia on the coefficient matrix A and of
the solution P are related.

In the third section, consequences of transforming the coefficient matrices to trian-
gular form are discussed. The Bartels-Stewart algorithm was the first numerically reliable
method for solving the Sylvester equation. The Lyapunov equation with triangular coeffi-
cient matrices is studied next. Following a proof of the inertia result which is iterative in the
size of the equation, an algorithm is derived that if the solution to the Lyapunov equation is
positive (semi) definite, computes a square root (i.e., Cholesky) factor of the solution. This
is the algorithm first derived by Hammarling. It has the advantage of increased precision
and will prove essential for the computation of the Hankel singular values.

The last section addresses the numerical issue of accuracy of a computed solution.
As discussed in section 3.3.2, the stability of the corresponding algorithm is important. It
is thus shown that although the solution of the Sylvester equation is forward stable, it is, in
general, not backward stable. This is a property shared with the computation of the inverse
of a matrix (which can be obtained by solving a special Sylvester equation). Moreover, the
conditioning of the Sylvester equation and of its solution have in general no connection.
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Chapter 7

Balancing and Balanced
Approximations

A central concept in system theory with application to model reduction is that of balanced
representation of a system Z. Roughly speaking, the states in such a representation are such
that the degree of reachability and the degree of observability of each state are the same.

Model reduction requires the elimination of some of the state variables from the
original or a transformed system representation, a task which can be accomplished easily.
Difficulties arise, however, when one wishes (i) to determine whether the reduced system
has inherited properties from the original one, for instance, stability, and (ii) to have some
idea of what has been eliminated, for instance, when one seeks an estimate of the norm of
the error system.

Indeed, if we first transform the system to a balanced representation and then eliminate
(truncate) some of the state variables, stability is preserved and there is an a priori computable
error bound for the error system.

From a mathematical viewpoint, balancing methods consist of the simultaneous diago-
nalization of appropriate reachability and observability gramians, which are positive definite
matrices. In system theory, however, other instances of positive definite matrices are at-
tached to a linear system, notably, solutions to various Riccati equations. Correspondingly,
there exist several other types of balancing. Section 7.5 lists some of these methods and
examines in some detail weighted balancing, which provides a link with moment matching
reduction methods.

The concept of balancing is first encountered in the work of Mullis and Roberts
[245] on the design of digital filters. The system theoretic significance of this concept was
recognized a few years later by Moore [243].

Technical description

Given a stable linear system E with impulse response h(0 = CeAfB, t > 0 (D is irrelevant
in this case and is omitted), let hr(0 = eA'B, h0(t) = OAf be the input-to-state and the
state-to-output responses of the system, respectively; clearly, h(f) = Chr(f) = h0(?)B.

207
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208 Chapter 7. Balancing and Balanced Approximations

The reachability gramian is then defined as P = J0°° hr(t)h*(t)dt, while the observability
gramian is defined as Q = J0°° h*(t)h0(t)dt . The significance of these quantities stems
from the fact that given a state x, the smallest amount of energy needed to steer the system
from 0 to x is given by (4.55)

while the energy obtained by observing the output of the system with initial condition x and
no excitation function is given by (4.56)

Thus, one way to reduce the number of states is to eliminate those which require a large
amount of energy £r to be reached and/or yield small amounts of observation energy £0.
However, these concepts are basis dependent, and therefore for such a scheme to work, one
would have to look for a basis in which these two concepts are equivalent. Such a basis
exists. It is called a balanced basis, and in this basis there holds

where the <r, are the Hankel singular values of X . Approximation in this basis takes place
by truncating the state x = (xi • • • xn)* to x = (xi • • • x^)*, k < n. Although balanced
truncation does not seem to be optimal in any norm, it has nevertheless a variational in-
terpretation. The balanced basis is determined, namely, by a nonsingular transformation T
which solves the following minimization problem:

The minimum of this expression is twice the sum of the Hankel singular values, 2 $^"=1 cr(,
and minimizing T are balancing transformations (see Proposition 7.7).

Approximation by balanced truncation preserves stability, and the T^oo-norm (the
maximum of the frequency response) of the error system is bounded above by twice the
sum of the neglected singular values 1(ak+\ + • • • + an).

This chapter is concerned with balancing and approximation by balanced truncation.
Approximation by truncation is defined, and its two main properties, preservation of stability
and error bound, are discussed in detail. Subsequently, a canonical form for continuous-time
balanced systems is derived, followed by numerical considerations in computing balanced
representations. The latter part of the chapter, which can be omitted on first reading, dis-
cusses various generalizations of the concept of balancing. In particular, stochastic, bounded
real, and positive real balancing are presented, followed by frequency selective balancing.
This leads to balancing and balanced truncation for unstable systems.

7.1 The concept of balancing
From Lemma 4.29 it follows that the states that are difficult to reach, i.e., those that require
a large amount of energy to reach, are (have a significant component) in the span of the
eigenvectors of the reachability gramian P corresponding to small eigenvalues. Similarly,
the states that are difficult to observe, i.e., those that yield small amounts of observation
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7.1 . The concept of balancing 209

energy, are those that lie (have a significant component) in the span of the eigenvectors of
the observability gramian Q corresponding to small eigenvalues as well. This observation
suggests that reduced-order models may be obtained by eliminating those states that are
difficult to reach or difficult to observe. However, states that are difficult to reach may not
be difficult to observe and vice versa. Here is a simple example illustrating this point.

Example 7.1. Consider the following continuous-time, stable, and minimal system:

The reachability gramian P and the observability gramian Q can be obtained by solving the
Lyapunov equations (4.45) and (4.46), respectively:

The set of eigenvalues A and the corresponding eigenvectors V are

To find how difficult to observe the states are, we compute

where a = 0.16018 and ft = 0.98709. This means that the eigenvector of P that corresponds
to the smallest eigenvalue, i.e., the state that is the most difficult state to reach, gives almost
maximum observation energy; conversely, the eigenvector of P that corresponds to the
largest eigenvalue, i.e., the state that is the easiest state to reach, gives almost minimum
observation energy.

The above example suggests that if we wish to base a model reduction procedure to
the degree to which states are difficult to reach, or difficult to observe, we need to search
for a basis in which states that are difficult to reach are simultaneously difficult to observe,
and vice versa. From these considerations, the following question arises:

Given a continuous- or discrete-time, stable system Z = ( r | )»^oes mere

exist a basis in the state space in which states that are difficult to reach are also
difficult to observe!

The answer to this question is affirmative. The transformation that achieves this goal is
called a balancing transformation. Recall that under an equivalence transformation, the
gramians are transformed as shown in (4.57):
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210 Chapter 7. Balancing and Balanced Approximations

The problem is to find T, det T / 0, such that the transformed Gramians P, Q are equal:

This ensures that the states that are difficult to reach are precisely those that are difficult to
observe.

Definition 7.2. The reachable, observable, and stable system Z is balanced ifP = Q. Z is
principal-axis balanced if P = Q = E = diag (a\,..., an).

Furthermore, Lemma 5.8 implies that the quantities a,-, i = 1,. . . , n, are the Hankel
singular values of the system Z.

We can now state the main lemma of this section. For this we need the Cholesky
factor U of P and the eigenvalue decomposition of U*QU:

Lemma 7.3. Balancing transformation. Given the reachable, observable, and stable

( 

A I R \
—H j and the corresponding gramians P and Q, a (principal axis) balancing

transformation is given as follows:

Proof. It is readily verified that 

If the Hankel singular values are distinct (i.e., have multiplicity one), balancing trans-
formations T are uniquely determined from T given above, up to multiplication by a sign
matrix S, i.e., a diagonal matrix with ±1 on the diagonal: T = ST. In the general case we
have the next corollary.

Corollary 7.4. Let there be k distinct singular values CT, , with multiplicities m/, respectively.
Every principal-axis balancing transformation T has the form T = ST, where T is defined
by (7.2), and S is a block diagonal unitary matrix with an arbitrary mi x m, unitary matrix
as ith block, i = !,...,&.

Proposition 7.5. Balanced systems have the following property. In continuous time || eAt \\2
< 1, / > 0. In discrete time || A ||2< 1 with strict inequality holding if the Hankel singular
values are distinct.
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7.2. Model reduction by balanced truncation 211

Example 7.6 (continuation). Using (5.24), we obtain the Hankel singular values a\ =
0.8090,02 = 0.3090. Define the quantity y = 0.6687. Using (7.2), we obtain the (principal-
axis) balancing transformation:

Thus we have

Finally, notice that the above form matches the canonical form (7.24) with y, a\, cr2 as
above, and si = — 1, s2 = 1.

Variational interpretation

Balancing transformations can be obtained by minimization of an appropriate expression.
First recall that the product of the gramians is similar to a positive definite matrix: PQ ~
- * The f0nowing holds true.

Proposition 7.7. Given that trace PQ = trace E2, we have

Therefore, the lower bound is attained in the balanced case: P = Q = E.

Proof. The following equalities hold:

Notice that M = (P1/2U - P~1/2UE)(U*P1/2 - EU*P~1/2) is a positive (semi) definite
expression and hence its trace is positive. Thus we obtain

It readily follows that the lower bound is attained in the balanced case. 

7.2 Model reduction by balanced truncation

 be balanced with gramians equal to Z; partition the corresponding

matrices as follows:
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212 Chapter 7. Balancing and Balanced Approximations

Definition 7.8. The systems

are reduced-order systems obtained from Z by balanced truncation.

Reduced-order models obtained by balanced truncation hav& certain guaranteed prop-
erties. However these properties are slightly different for discrete- and continuous-time
systems, and hence we state two theorems. Recall Definition 5.1 of the Hankel singular
values and notation (5.22).

Theorem 7.9. Balanced truncation: Continuous-time systems. Given the reachable,
observable, and stable (poles in the open left half plane) continuous-time system Z, the
reduced-order systems Z,-, i = 1,2, obtained by balanced truncation have the following
properties:

1 . Z,- is balanced and has no poles in the open right half plane.

2. IfXpCZ\) 7^ Xq(E<2) Vp, q, Z, for both i = 1 and i = 2 are in addition reachable,
and observable, with no poles on the imaginary axis.

3. Let the distinct singular values ofE be a, -with multiplicities TO,-, i = 1, . . . , q. Let
Zi have singular values or,-, / = ! , . . . ,&, with the multiplicity TO,-, i = !,...,£,
k < q. The H^-norm of the difference between the full-order system Z and the
reduced-order system Z i is upper bounded by twice the sum of the neglected Hankel
singular values, multiplicities not included:

Furthermore, equality holds if ^2 = 0qlmq> i-&> ^2 is equal to the smallest Hankel
singular value 0/Z.

Theorem 7.10. Balanced truncation: Discrete-time systems. Given the reachable, ob-
servable, and stable (poles in open unit disc) discrete-time system Z, the reduced-order
systems Z,-, i = 1, 2, obtained by balanced truncation have the following properties:

1. Z/, i = 1,2, have poles in the closed unit disc; these systems are in general not
balanced.

2. I f k m i n ( E i ) > Amfl^(E2), Zi is in addition reachable and observable.

3.IfLi has singular values a,, i = ! , . . . ,&, with the multiplicity m,, i = !,...,£,
k < q, the hoc-norm of the difference between full and reduced-order models is upper
bounded by twice the sum of the neglected Hankel singular values multiplicities not
included:
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7.2. Model reduction by balanced truncation 213

The last part of the above theorems says that if the neglected singular values are small,
the amplitude Bode plots of S and S i are guaranteed to be close. Below is an outline of the
proof of parts 1 and 2. Notice that in part 3 for both continuous- and discrete-time systems,
the multiplicities of the neglected singular values do not enter the upper bound. These error
bounds are due to Glover [139] and Enns [107].

Remark 7.2.1. C\-error bound. In addition to (7.5) for the Hoo-norm of the error system,
bounds for the £i-norm of the impulse response of the error system can be derived. One
such bound was obtained in [141]. It is valid for infinite-dimensional systems and involves
a minimization. An a priori computable bound involving the Hankel singular values and
their multiplicities was derived in [218]. When the Hankel singular values have multiplicity
one, this bound is as follows:

where h is the impulse response of the original system and h* is the impulse response of
the fcth-order approximant obtained by balanced truncation.

Example 7.11 (continuation). If we reduce the system discussed earlier by balanced trun-
cation, the T^oo -norm of the error between S and S i is equal to the theoretical upper bound,
namely, 2o2 = 0.6180. Furthermore, the "Hoc-norm of the error between S and S2 is also
equal to the theoretical upper bound, which in this case is 2a\ = 1.618033.

7.2.1 Proof of the two theorems

Balanced truncation: Continuous-time

Proof. Pan 1. We work with the subsystem Si = (Ci, AH,BI). By construction, the
following equations hold:

Clearly, the system Si is balanced. To prove stability, since Si is positive definite, by
Lemma 6.18 we conclude that the eigenvalues of AH are in the left half plane or on the
imaginary axis.

Pan 2. There remains to show that if Si and S2 have no diagonal entries in common,
then AH has no eigenvalues on the imaginary axis.

Assume on the contrary that AI i has eigenvalues on the imaginary axis. For simplicity,
we assume that A! i has only one complex eigenvalue on the imaginary axis; we also assume
that a\ = 1 with multiplicity one. Let AHV = vv for v = ja); it follows that v*A*1 =
v*v*. Multiplying the second equation above on the left, right, by v*, v, respectively, we
obtain Civ = 0. By multiplying the same equation only on the right by v, we obtain
(Ajj + vI)SiV = 0. Similarly, by multiplying the first equation on the left, right, by v*Si,
Si v, respectively, we conclude that B*Si v = 0; on multiplication of the same equation on
the right by Siv, we obtain the relationship (An — vI)S^v = 0. The consequence of this is
that S^v must be a multiple of v. Due to the assumptions above, we can take v to be equal
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214 Chapter 7. Balancing and Balanced Approximations

to the first unit vector v = ei . Next we need to consider the equations

Denote the first column of A2i, A*2 by a, b, respectively. Multiplying these latter equations
on the right by v we have a + £2b = 0 and E2a + b = 0. The eigenvalues of E2 are
different from those of EI and hence different from 1. Therefore, the first column of A2i is
zero: a = 0. Therefore, the column vector (v*, 0)* is an eigenvector of the whole matrix A
corresponding to the eigenvalue v. This, however, is a contradiction to the reachability of
the pair (A, B). The conclusion is that AH cannot have eigenvalues on the imaginary axis,
which completes the proof. D

Alternative proof of part 2. It is assumed that AH has eigenvalues both on the imagi-
nary axis and in the LHP. Thus, there exists a block-diagonal transformation 

such that , where all eigenvalues of FI i are (strictly) in the LHP

(i.e., have negative real parts) and the eigenvalues of ¥22 are on the imaginary axis. Let the
quantities B, C, and £ be transformed as follows:

where F22 has eigenvalues on the imaginary axis, F33 = A22, G3 = B2, H3 = C2, P33 =
Q33 = E2. The proof now proceeds in three steps:

(a) First, we show that G2 = 0 and H2 = 0.

(b) Next, we show that Pi2 = 0, Qi2 = 0, that is, in the above basis, the gramians are
block diagonal.

(c) Finally, provided that &k ^ &k+i, or equivalently A.,-(P22Q22) / A;(P33Q33), for all
i,j, it follows that F23 = 0 and F32 — 0.

The consequence of these three relationships is that (A, B) is not reachable; this implication,
however, contradicts the original assumption of reachability.

The proof of the above three facts is based on_the Lyapunov equations of the trans-
formed triple, namely, A*Q + QA + C*C = 0 and AP + PA* + BB* = 0,

and the associated observability Lyapunov equation.
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7.2. Model reduction by balanced truncation 215

The (2,2) equation is F22P22 + PaF-b + G2G2 = °- Because F22 has imaginary
eigenvalues exclusively, it follows that G2 = 0. (This is left as an exercise; see Problem 5.)
Similarly, H2 = 0. This proves (a). The (1,2) equation is FnPi2 + Pi2F22 = 0. Since FH
and F22 have disjoint sets of eigenvalues, we conclude that Pi2 = 0; similarly, Qt2 = 0,
which proves (b). Finally, the (2,3) equation is F23P33 + P22F32 = 0; the observability
Lyapunov equation yields F32Q33 + Q22F23 = 0. These two equations yield

Recall that P33 = Q33 = E2 and the eigenvalues of P22Q22 are a subset of the eigenvalues
of E2. Because the singular values are ordered in decreasing order and because of the
assumption a* ^ crk+i, the spectra of P33Q33 and P22Q22 are disjoint. Therefore, F23 = 0;
consequently, F32 = 0. This proves part (c). As noted earlier, these three parts imply the
lack of reachability and observability of the original triple, which is a contradiction to the
assumption of minimality. Hence the reduced system is asymptotically stable.

Balanced truncation: Discrete time

Proof. From the Lyapunov equations follows

This shows that the truncated subsystem need not be balanced. LetAuv = vv. Multiplying
this equation by v*, v we obtain

Since EI > 0, this immediately implies |v| < 1. There remains to show that the inequality
is strict. Assume the contrary, i.e., that |v| = 1. Then v*Ai2 = 0. Hence (v* 0) is a left
eigenvector of A and at the same time it is in the left kernel of B, which means that (A, B)
is not reachable. This is, however, a contradiction, and part 1 of the theorem is proved.

The proof of part 2 is also by contradiction. Assume that the subsystem E i is not
reachable. Then there exists a left eigenvector v of unit length, such that A*j v = vv and
B*v = 0. The equation given at the beginning of the proof implies

Moreover, v*EiV > ffm,-n(£i) and the right-hand side is no bigger than ||A2iv||2orw,flJC(E2).
Furthermore, since ||A|| < 1 andA*tv = vv, it follows that ||A2iv||2 < 1 — |v|2. Combining
all these relationships together, we get

since the system is stable by part 1. This last inequality yields the desired contradiction
which proves part 2.

For the proof of part 3, see [173] .
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216 Chapter 7. Balancing and Balanced Approximations

A proof of the Hoo error bound (7.5)

Recall the partitioning of the balanced system (7.3). The accordingly partitioned state is
x = (x* xp*. The reduced system is assumed to be EI defined by (7.4), and its state will be
denoted by £. The resulting error system is Ze = Z — Z i; it has input u, state [x* x£ £*]*,
and output e = y — y. Ee has the following state-space realization:

Recall that the Lyapunov equations corresponding to the balanced system Z are

The next step is to make a basis change T in the state-space:

Therefore, Ee = where the transformed quantities are

The following is the crucial result.

Lemma 7.12 (see [358]). With the set-up as above, assume that the part that is eliminated
is all-pass, that is, E2 = a I, a € R, I e Rrxr. It follows that the Hoo-norm of the error
system is

Proof. We show instead that || j-! < 1. The resulting state space realization is
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7.2. Model reduction by balanced truncation 217

The matrix

is clearly positive definite. It can readily be verified that it satisfies the Riccati equation,5

The claim follows from Lemma 5.35, part 3. 

It should be mentioned that (7.7) holds with equality. The above proof leads to a proof
of the inequality. The results in section 8.6.4 lead to a proof of the relationship with equality
(at least in the SISO case). For the proof of the general case, we proceed as follows. Let Z
have r distinct Hankel singular values a\,..., ar, with multiplicity m i , . . . , mr, such that
Y^i nii =n. The following notation is used:

Notice that with the above notation, £ = Zi,r and Z 1,0 is the zero system. We can thus
write

5The following string of equalities holds where for simplicity a = 1:

F*X + XF + H*H + |XGG*X = 0,

From the Lyapunov equations given earlier, and keeping in mind that S2 = I, it follows that each one of the (block)
entries of the above matrix is zero.
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218 Chapter 7. Balancing and Balanced Approximations

The first inequality follows from the triangle inequality and the second from Lemma 7.12,
which asserts that ||£i,jt — Zi,fc-i|| < 2a^ for all k = 1, . . . , r. Thus, clearly, the error
bound (7.5) holds.

7.2.2 ^2-norm of the error system for balanced truncation

In this section we compute the %2-norm of the error system. Then using the expression for
the solution of the Sylvester equation (6.1) given in (6.14), we obtain a computable upper
bound for this 7-^-norm (7.10).

Again recall that E is the balanced partitioned system (7.3), Z i is the reduced system
obtained by balanced truncation 7.4, and Ze is the resulting error system (7.6). Let Y be
such that

which in partitioned form is

From (5.28), the "H2-norm of the error system £e is the square root of the following expres-
sion:

Lemma 7.13. With the notation established above, the H2-norm of the error system Ze =
Z — EI is

The first term in the above expression is the "H2-norm of the neglected subsystem of
the original system, while the second term is the inner product of the second block row of
the gramian with Y. It is this second term that we try to express by means of the original
system data below. Next, we derive an upper bound for the "H2 of the error in terms of the
'Wee-norm of the auxiliary system,

Notice that the transfer function of Zaux can be written as

It is worth noting that this expression is quadratic in the neglected part E2 of the gramian.

Corollary 7.14. With the notation established above, there holds
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7.2. Model reduction by balanced truncation 219

Remark 7.2.2. The first term in (7.10) is linear in the neglected singular values £2, while
the second is quadratic in £2-

Proof of the lemma. The following equalities hold:

From the (1,2) entry of the Lyapunov equation for the balanced reachability gramian follows
Ai2E2 + EiA^ + BiB| = 0 and, consequently, - (BiB|) Y2 = (A12£2 + £iA|,) Y2.
This implies that trace (o) is

Substituting yields

We show that (<) = 0. The (1,1) entry of (7.8) implies Af , YI + AJ, Y2 + YI AH + C|Ci =
Oand, consequently, EiA^Y2 = -(SiA|,Yi + SiYiAn + SiCfCi). Thus the expression
trace [B^EiB! - ^\\^ + ViP^Jli ] equals

This concludes the proof of (7.9). 

Proof of the corollary. First we notice that Y — ( '̂ J satisfies the Sylvester equation:

Thus, using the expression (6.14) derived for the solution of the Sylvester equation, and
multiplying on the left by [0 Ai2E2], we obtain

where /x/, w,, w(, respectively, are the eigenvalues, right, left eigenvectors of the A-matrix
of the reduced-order system: AH. Thus we can derive an upper bound for the %2 of the
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220 Chapter 7. Balancing and Balanced Approximations

error in terms of the T^oo-norm of the auxiliary system Zaux defined earlier. In particular,
each term in the above sum is bounded from above by the "Hoc -norm of this auxiliary system.
Hence the sum is bounded by k times the same norm. We thus obtain an upper bound for
the "H2-norm. 

Remark 7.2.3. If we assume that the gramian Q is not diagonal, instead of formula (7.9)
we get the following expression for the %2 -error:

where A^ Q + QAn + C*Ci = 0. Using manipulations similar to those above, it can be
shown that the error reduces to the following expression:

Interpretation. The first term in the above expression is the "H2-norm of the neglected
subsystem of the original system. The second term is the difference between the 7^-norrns
of the reduced-order system and the dominant subsystem of the original system. The third
term is twice the trace of the inner product of the second block row of the observability
gramian Q with Y weighted by the block off-diagonal entry of A. Finally, Q — Qn satisfies
the Sylvester equation:

This implies that if either the gramian Q or A has small (zero) off-diagonal elements, then
Q — Qn will be small (zero). Clearly, formula (7.11) reduces to (7.9) when the gramian is
block diagonal, i.e., Qi2 = 0 and Q2i = 0.

7.3 Numerical issues: Four algorithms
Model reduction by balanced truncation, discussed above, requires balancing the whole
system Z, followed by truncation. This approach may turn out to be numerically inefficient
and ill-conditioned, especially for large-scale problems. The reason is that often P and Q
have numerically low rank compared to n. This is due in many cases to the rapid decay
of the eigenvalues of P, Q as well as the singular values cr/(£). (See section 9.4 for
details.) Therefore, it is important to avoid formulas involving matrix inverses, because of
ill-conditioning due to the rapid decay of the eigenvalues of the gramians.

In this section we list several algorithms for balancing and balanced truncation, which
although in theory are identical, in practice yield algorithms with quite different numerical
properties. For a more in-depth account, see [55], [340].

The (infinite) gramians of a reachable, observable, and stable system 

of dimension n are n x n positive definite matrices which we have denoted by P, Q.
Consequently, they have a Cholesky decomposition:
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7.3. Numerical issues: Four algorithms 221

The eigenvalue decomposition of U* QU produces the orthogonal matrix K and the diagonal
matrix E which is composed of the Hankel singular values of Z (this follows from the fact
that U*QU is similar to PQ):

In addition, the Hankel singular values are the singular values of the product of the triangular
matrices U*, L. The SVD of this product produces the orthogonal matrices W and V:

Finally, we need the QR-factorization of the products UW and LV:

where X, Y are orthogonal and $, V are upper triangular.
To summarize, from the gramians P, Q we generate the orthogonal matrices K, W,

V, X, Y; the upper triangular matrices U, L*, <I>, *I>; and the diagonal matrix S.
We are now ready to derive various balancing transformations as well as projections

that produce systems obtained from Z by balanced truncation.

1. The first transformation and its inverse are

2. Square root algorithm. The second transformation follows from (7.13):

It is readily checked that indeed T, = T"1 is the inverse of T, and TPT* =
£-i/2v*L*UU*LVE-1/2 = E, and T;QT,- = £-1/2W*U*LL*UW5r1/2 = E.
Therefore, the system (-

where W t, Vi have k columns and E

is balanced. Furthermore, if we partition

I e kxk , the transformations

satisfy TiT/i = Ijt and applied on Z yield the reduced-order system of dimension k,
obtained from Z by balanced truncation:

3. The third transformation is derived from the previous one by dropping the term E ! /2.
This yields a system that is balanced only up to diagonal scaling. The transforma-
tions are
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222 Chapter 7. Balancing and Balanced Approximations

which again satisfy T3T3, = T3l-T3 = E. Clearly, the system 

j is still balanced but is no longer the same as E. However, if we

scale by E 1/2, that is,

it becomes balanced and is equal to Z. Removing the factor E 1/2 may in some cases
make the transformation better conditioned.

4. Balancing-free square root algorithm. Our goal here is to transform the system by
means of an orthogonal transformation in such a way that it is similar to a balanced
system up to a triangular transformation. This method was introduced by Varga [340].

Toward this goal we compute the QR factorizations of UW and LV, as in
(7.14), where X and Y are unitary matrices and <t>, 4> are upper triangular. The
transformations are

Then is balanced up to an upper triangular matrix. Therefore, the

truncated system is similar to the system obtained by balanced truncation, up to an
upper triangular matrix. This upper triangular transformation is K = E1/2<t>. Clearly,
K can be ill-conditioned due to E1/2.

Next we truncate the QR factorizations of UW and LV:

where X£X;t = I/t and Y|Yjt = I*, while are the k x k leading submatrices of
0, *!>, respectively, and consequently are upper triangular matrices. We thus obtain
the following transformations:

Then the system

is similar to £ i. The similarity transformation is K =

Remark 7.3.1. (a) Summarizing, there are four different ways to compute a balanced
realization and consequently a reduced system obtained by balanced truncation. In general,
the transformations have different condition numbers. In particular, TI has the largest
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7.3. Numerical issues: Four algorithms 223

condition number, followed by T2. The transformations T$ and T4 have almost the same
condition number, which is in general much lower than those of the first two transformations.

(b) As shown in section 6.3.3, the Cholesky factors U and L of the gramians can be
computed directly, that is, without first computing the gramians P, Q and subsequently
computing their Cholesky decompositions. This method for solving the Lyapunov equation
was first proposed by Hammarling [164]. See also the paper of Safonov and Chiang [283].

(c) The number of operations required to obtain a balanced realization is of the order
O(n3), where n is the dimension of the system under investigation, while the storage required
is O(n2} (the storage of n x n matrices is required).

Summary of balancing transformations

The table below summarizes the four balancing transformations discussed earlier. TI is the
original one, T2 the square root balancing transformation, TS the square root transformation
which balances up to scaling, and T4 yields balanced systems up to an upper triangular
transformation. Their inverses are denoted by T/,-, j = 1, 2, 3,4. In the transformed bases,
if we partition E as in (7.3) and K, U, W, X, Y conformally, we obtain the right projectors
denoted by T; and the associated left projectors T//, j = 1,2,3,4. These are the balance
and truncate transformations; the second is the square root balance and truncate, the third
is the up-to-diagonal scaling balance and truncate, and the last is the square root balancing
free transformation.

An example

We conclude this section with numerical experiments performed on continuous-time low-
pass Butterworth filters; these can be obtained in MATLAB as follows:

The order n of the filter varies, n = 1 : 30. The Hankel singular values for n = 30 have
condition number close to 1019, and the first six are nearly equal to 1; these singular values

Factorization Properties Tranformation (Left) Inverse

U upper, L lower

K unitary

W, V unitary

unitary
upper
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224 Chapter 7. Balancing and Balanced Approximations

Figure 7.1. Balancing transformations for Butterworth filters oforder 1-30. Left:
errors of three balancing transformations. Right: errors of three observability Lyapunov
equations. The lower curve in both plots belongs to T2.

were computed by means of the square root algorithm, that is, (7.13). Our first goal is to
compare the first three balancing transformations Ty-, j = 1,2,4, and the corresponding
balanced triples (Cy, Ay, B;). The transformations are TI, the usual balancing transforma-
tion; T2, the square-root balancing transformation; and T4, the square root balancing free
transformation. The errors that we look at are the 2-norms of the differences between the
identity and the product of each transformation and its inverse, and the norm of the left-hand
side of the observability Lyapunov equations for three balancing transformations:

All these quantities are theoretically zero. The actual values of the above errors in floating
point arithmetic are plotted as a function of the order n of the filter. The first set is depicted
in the left side of Figure 7.1, while the second is depicted in the right side of Figure 7.1. A
similar example is explored in Problem 47.

7.4 A canonical form for continuous-time balanced
systems

In what follows, we present a canonical form for systems that are continuous-time, stable,
reachable, observable, and balanced. We will deal with only the SISO case. For the general
case, see the original source [248] and references therein.

Let £ = ( £ I B )» A e R"x", B, C* e M", be stable, reachable, observable, and
balanced with Hankel singular values as given by (5.22):
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7.4. A canonical form for continuous-time balanced systems 225

where a, > ay+i > 0 and my is the multiplicity of <r;. Consequently, the following
Lyapunov equations are satisfied:

Before stating the result valid for the general case, we examine two special cases. The first
is when the multiplicity of all singular values is equal to one, i.e., the singular values are
distinct. Let the entries of B be denoted by y,:

It follows from (7.22) that the entries of A are:

Moreover, from (7.23) it follows that

In other words, the s, are signs associated with the singular values or,. Finally, notice that
due to the reachability of (A, B) and to the observability (C, A), the y, must be different
from zero. Summarizing, from (7.22) and (7.23) the triple (C, A, B) has the following form:

The second special case is that of one singular value of multiplicity n, i.e., m\ = n,
m, = 0, i > 1. For simplicity, we denote this single singular value a . Following Corollary
7.4, the balanced representation is unique up to orthogonal transformation in the state space.
It follows that one solution of (7.22) and (7.23) is
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226 Chapter 7. Balancing and Balanced Approximations

where L is an arbitrary skew symmetric matrix. To further simplify this form, we are allowed
to use orthogonal transformations U of the type U = diag (1,1)2), where U2 is an arbitrary
orthogonal matrix of size n — 1. The final form in this case is

where a > 0, y > 0, at > 0, s = ±1. As we will see later, these systems are precisely
the all-pass systems for an appropriate choice of D.

The general case is a combination of the above two special cases. Let there be q
distinct singular values each of multiplicity m,-; the canonical form is

The following hold true:rue:

The parameters that enter the forms described by (7.26), (7.27), and (7.28) are
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7.4. A canonical form for continuous-time balanced systems 227

We are now ready to state the main result of this section.

Theorem 7.15. There is a one-to-one correspondence between the family of stable, reach-
able, observable, SISO, continuous-time systems with Hankel singular values a, of multi-
plicity nii and the family of systems parametrized by (7.26)-(7.29).

Remark 7.4.1. (a) It is interesting to notice that a class of stable and minimal systems is
parametrized in terms of positive parameters a, , w, , # , «,-_/ and the sign parameters s, . Recall
that the parametrization of minimal (let alone stable) systems in terms of other canonical
forms is complicated.

(b) Using the parametrization of balanced systems derived above, one can obtain an
alternative proof of part 2 of Theorem 7.9. It thus becomes clear under what conditions
the truncated system is minimal, even if the condition given in part 2 of the theorem is not
satisfied.

Example 7.16. A third-order discrete-time FIR (finite impulse response) system described
by the transfer function

is considered. We investigate approximation by balanced truncation, first in discrete time
and then in continuous time, using the bilinear transformation of section 4.3.3, and compare
the results. Hankel-norm approximation for the same system is investigated in Example
8.9.

A balanced realization of this system is given by

where a = 5 *, ft =
gramians are equal and diagonal:

-, and the reachability and observability

The second- and first-order balanced truncated systems are

Notice that Z^;2 is balanced but has singular values that are different from a\, <r2.
also balanced since GI = — H2, but its gramians are not equal to a\.

s
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228 Chapter 7. Balancing and Balanced Approximations

Let Zc denote the continuous-time system obtained from 5^ by means of the bilinear
transformation described in section 4.3.3:

where 8± = <</2(a ± $)• Notice that Zc is balanced. We now compute first and second
reduced order systems Zc,i, Zc>2 by truncating Zc:

Let 1)^,2, IIt/,1 be the discrete-time systems obtained by transforming ZC(2, ZCii back to
discrete time:

The conclusion is that II</,2> ^d, i are balanced and different from Zd,2> ^d, i • It is interesting
to notice that the singular value of T,d,i is ft2 = ^j1, while that of Z^.i is CTI; )82 satisfies

02 < ft2 < o\. Furthermore, the singular values of E</,2 are 5j82/4, V5^62/4, which satisfy
the following interlacing inequalities:

The numerical values of the quantities above are a\ — 1.618034, (73 = 0.618034, a. =
0.66874, ft = 1.08204, y = 0.413304, 8+ = 2.47598, 5_ = .361241.

7.5 Other types of balancing*
In general terms, balancing consists of the simultaneous diagonalization of two appropriately
chosen positive definite matrices. This problem has been studied in linear algebra; see, e.g.,

matrices are solutions either of Lyapunov equations or Riccati equations. Here is a list of
four types of balancing:

[79]. Given a reachable and observable system                            these positive definite
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7.5. Other types of balancing" 229

In the sequel these will be briefly explored.

7.5.1 Lyapunov balancing*

This is the method that was discussed in detail in the preceding sections. In this case, the
solution of the Lyapunov equations AP + PA* + BB* = 0 and A* Q + QA + C*C = 0 are
simultaneously diagonalized. Reduced models, obtained by simple truncation as in (7.4),
preserve stability and satisfy an H^ -error bound (see Theorems 7.9 and 7.10).

7.5.2 Stochastic balancing*
/ A I R \

The starting point is a system £ = I j, which satisfies the following properties:

(i) it is square, i.e., m = p; (ii) it is stable (all eigenvalues of A are in the left half of the
complex plane); and (iii) D is nonsingular. If H(J) = C(sl — A)-1B + D is the transfer
function of Z, we denote by 4> its power spectrum and by W(s) a minimum phase right
spectral factor; furthermore, the phase system whose transfer function is Z(s) is introduced.
These quantities satisfy

Let P be the usual reachability gramian of Z satisfying AP + PA* + BB* = 0; define
B = PC* + BD*, and let Q be a stabilizing solution of the following Riccati equation:

It can be shown that a realization of W and Z is given in terms of the two gramians P and
Q as follows:co
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230 Chapter 7. Balancing and Balanced Approximations

By construction, the eigenvalues of the product PQ are the squares of the Hankel singular
values a/ of the following auxiliary system:

This method proceeds by computing a balancing transformation T for this auxiliary system,
which is then applied to the original system X ; reduction by truncation follows as usual. If
we let the neglected distinct singular values be a, \, the following relative error bound holds:

where only the distinct singular values enter the above formula. Furthermore, the 1-Loo-
norm of the relative error H^s)"1 [HO) — Hfc(s)] satisfies this same error bound. It is
worth noting that a/ < 1 and the number of a, which are equal to one is equal to the number
of right half plane (i.e., unstable) zeros of E.

Remark 7.5.1. The multiplicative error bound. It is pointed out in Chapter 2 of [252]
that the multiplicative error measure above is focusing on Bode diagram errors (errors in
log-magnitudes and phases). The following considerations are relevant in this regard. In
the SISO case, let A = H^H* be the relative error; then ̂  = 1 — A, which in turn implies

By neglecting higher-order terms, we have ln(H^/H) & A; from ln(H^/H) = In |H/k/H| +
/ arg(Hfc/H), it follows that

Thus transforming these relationships to Iog10, we get

and similarly

Thus assuming that A is small, the Bode plot (both amplitude and phase) of the relative
approximant H^/H is bounded up to a constant by the product given above.

It is of interest to discuss the special case when Z is minimum phase. The first
consequence is that with Q the usual observability gramian of Z, the difference 7£ =
Q~l — P is nonsingular, and it satisfies the Lyapunov equation
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7.5. Other types of balancing* 231

Thus 'R, is the observability gramian of the inverse system and no Riccati equation needs to
be solved. As a consequence of these facts, the stochastic singular values v, are related to
the Hankel singular values a, of Z:

Since v, < 1 , we have a, < 2 2 . Thus in this case, the minimum phase property is preserved
by balanced stochastic truncation. Stochastic balancing was introduced by Desai and Pal
[95]; the relative error bound is due to Green [147, 148]. For a recent overview, see the
book by Obinata and Anderson [252], and for numerical algorithms, see [54].

Stochastic balanced truncation can be applied to all asymptotically stable dynamical
systems that are square and nonsingular. For application to singular systems, see [342]
and [140]. In the former reference, it is stated that stochastic balanced truncation yields a
uniformly good approximant over the whole frequency range rather than yielding small ab-
solute errors. Also, Zhou [369] showed that for minimal phase systems, stochastic balanced
truncation is the same as the self- weighted balanced truncation, where only input weighting
exists and is given by H"1 . This issue will be discussed in section 7.6.1 in more detail.

7.5.3 Bounded real balancing*

The asymptotically stable system Z is bounded real if its Hoc-norm is no greater than one,
that is, its transfer function H satisfies I — H*(— /w)H(io>) > 0, CD e E. It is called strictly
bounded real if this inequality is strict. For simplicity, we will be concerned with strictly
bounded real systems only.

Bounded real systems were discussed in detail in section 5.9.2. Recall in particular
the bounded real lemma (5.58), which implies that (strict) bounded realness is equivalent to
the existence of a positive definite solution 3^ = y* > 0 to the Riccati equation,

Any solution y lies between two extremal solutions: 0 < 34iin 5- y < 34iax- 34iin is the
unique solution to (7.30) such that A + B(I - D*D)-1(B*^min + D*C) is asymptotically
stable. Furthermore, bounded realness is also equivalent to the existence of a positive
definite solution Z of the dual Riccati equation

Also in this case, any solution lies between two extremal solutions: 0 < Z^^ < Z < £max.
(7.30) and (7.31) are the bounded real Riccati equations of the system Z. It follows that
y = y* > 0 is a solution to (7.30) if Z = y~l is a solution to (7.31), and conversely.
Hence Z^n = y~^ and Zmax = y^.

Bounded real balancing is obtained by simultaneous diagonalization of 3̂ 1 and y^
or, equivalently, y^n and Z^n . The realization of a bounded real system I! is called bounded
real balanced if
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where 1 > £1 > £2 > • • • > %q > 0, m,-, / = 1 , . . . , q, are the multiplicities of £,-, and
m\ + • • • + mq =n. We will call £,- the bounded real singular values of £.

Truncation now follows as usual after transformation to the balanced basis, by elim-
inating the states that correspond to small singular values. Let the reduced-order model

( 

A R \

—~—^—j be obtained by bounded real balanced truncation. Also let WO) and

V(s) be stable and minimum phase spectral factors, that is, W*(s)W(s) = I — G*(,s)G(£)
and V(s)V*(s) = I - G(s)G*(s). Define WrO) and Vr(s) similarly for Zr. Then Zr is
asymptotically stable, minimal, and bounded real balanced and satisfies

Thus if 2 X)f=*+i & is small, not only are £ and Zr close, but also the reduced spectral
factors Wr and Vr are guaranteed to be close to the full-order spectral factors W and V,
respectively. Bounded real balancing and the above error bounds are due to Opdenacker
and Jonckheere [251].

There is also a canonical form associated with bounded real balancing. In the SISO
case, and assuming the corresponding singular values are distinct £, ^ £,, / ^ j, we have

where y, > 0 and s/ = ±1. For details on the general case of this canonical form, see [249].

7.5.4 Positive real balancing*

An important class of linear dynamical systems is that whose transfer function is positive real.
The definition and properties of such systems are discussed in section 5.9.1. Furthermore,
Corollary 5.32 states that a necessary and sufficient condition for a system Z to have this
property is that the Riccati equation (PRARE) have a positive (semi) definite solution:

The dual Riccati equation in this case is

These are the positive real Riccati equations of the passive system Z. The solutions /C and
£ of these equations lie between two extremal solutions, i.e., 0 < /Cmin < 1C < /Cmax and
0 < £min < £ < £max- If /C = /C* is a solution of the former, £ = /C~* is a solution of
the latter; hence £„„„ = £~^ and /Cmax = £^n. A balancing transformation is obtained by
simultaneous diagonalization of the minimal solutions /Cmin, £min^

where 1 > n\ > n^ > • • • > nq > 0, m,, i = 1,..., q, and m\ + • • • + mq = n, are
the multiplicities of n,;, which are termed the positive real singular values of Z. There is a
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7.5. Other types of balancing* 233

canonical form for the positive real balanced system, which in the SISO case is

where st = ±1, i = 1, . . . , n; for details see [249].
The reduced-order model Er obtained by positive real balanced truncation is asymp-

totically stable, minimal, and positive real balanced. It also satisfies an error bound [159],

Proposition 7.17. The reduced-order model Er, obtained by the positive real balanced
truncation, satisfies

whereR2 =

Proof. We can assume that E is in the positive real balanced basis. Hence the following
two Riccati equations result: AD + OA* + (FIC* - B)(D + D*)-1(nC* - B)* = 0 and
A*FI + FIA + (FIB - C*)(D + D*)-1 (OB - C*)* = 0. These can be written as

It follows that the system S =

gramian FI. Let

is bounded real balanced with the bounded real

where Oi = diag(7Ti!mi,..., nklmk), O2 = diag(nk+ilmk+l,..., nqlmq), and define the

bounded real reduced system Fromm (7.32) we conclude that ||H(s) -

this leads to

A realization for ©(5) and &r(s) can be obtained as
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Thus ||0(5) -
result follows by noting that

where R"2 = D + D*. D

Remark 7.5.2. This error bound is equivalent to

which is a frequency weighted bound for the error system £ — Er, where the input and the
output weightings are (D* -I- HCs))"1 and (D* + Hr(j))

-1, respectively.

A modified positive real balancing method with an absolute error bound

We will now introduce a modified positive real balancing method for a subclass of positive
real systems. Then, based on Proposition 7.17, we will derive an absolute error bound for
this reduction method.

Given the system £ with positive real transfer function H, let Z be defined by means
of its transfer function, as follows:

- J. The assump-A state-space representation of Z is easily computed as (

tion in this section is that H(s) is positive real.6 In this case, the positive real balanced
truncation discussed above is applied to Z. Let the positive real singular values of Z be
n = diag(JriI4l,..., nqlst, 7tk+ilSk+l,..., jfgISg), and let Zr denote the reduced positive
real system obtained by keeping the first k positive real singular values TT, . The resulting Zr

is the intermediate reduced model. The final reduced-order model Zr is obtained from Zr

by means of the equation Dr + Hr(.s) = (R2/2 + H,-^))"1, where Dr = D. The following
bound holds.

Proposition 7.18. Given the positive real system Z, let Zr be obtained by the modified
positive real balancing method discussed above. Then Zr is asymptotically stable and
positive real and satisfies

6This condition is not always satisfied. For example, if 

and the above condition is satisfied for p > \.
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7.6. Frequency weighted balanced truncation1" 235

Proof. Asymptotic stability and positive realness follow by construction. Since Zr is ob-
tained from I by positive real balanced truncation, Proposition 7.17 yields || (D*+H(s))~1 —
(D*+Hr(j))-

1 !!?£«, < 2||R||2 E?=t+i *,, where R2 = (D+D*)-1 = R~2. By construction
we have (D* + H(s))-1 = D* + H(s), and (D* + Hrfc))'1 = D* + Hr(s), which implies
the desired inequality. D

7.6 Frequency weighted balanced truncation*
The balancing methods discussed above aim at approximating the system Z over all frequen-
cies. In many cases, however, a good approximation is required only in a specific frequency
range. This leads to approximation by frequency weighted balanced truncation. Given an
input weighting £,- and an output weighting £0, the problem is to compute a reduced-order
system Zr, such that the weighted error

is small. Several methods have been proposed for frequency weighted model reduction.
They consist of incorporating suitable output and input frequency weights in the compu-
tation of the truncated matrices. Varga and Anderson proposed in [346] the application of
square root and balancing free square root techniques for accuracy enhancement. The next
section gives a brief overview of existing frequency weighted model reduction methods and
discusses how the square root and balancing free square root techniques can be incorporated.

Gramians for weighted systems

Consider the system Z, a system Z,, which is the input weight, and a system Z0, which is
the output weight:

A ^ ^ *.

A realization of the systems £,-, £0 whose transfer functions are H, = HH,, HO = H<,H,
respectively, is

Recall the definition of the system gramians in the frequency domain,

where (si — A)~'B is the input-to-state map, and
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236 Chapter 7. Balancing and Balanced Approximations

where C(sl — A) l is the state-to-output map. Given that the input to the system has to
be weighted, that is, go through the system L0, the weighted input-to-state map becomes
(5! — A^BHjCs), while the weighted state-to-output map becomes H0(s)C(sI — A)"1.
Consequently, the reachability and observability weighted gramians are

We can now find a balancing transformation T which will simultaneously diagonalize these
two gramians

Subsequently, order reduction takes place exactly as for balanced truncation; to that effect,
recall (7.3), (7.4).

The question that arises is whether these weighted gramians can be obtained as solu-
tions of Lyapunov equations. Let "P,, Q0 be the reachability, observability, gramians of E,,
E0, respectively, that is,

The gramians are partitioned in two-by-two blocks, so that the dimension of the (1, 1) block
is the same as that of A, i.e., the order of the to-be-reduced system,

Proposition 7.19. The frequency weighted reachability, observability, gramians defined by
(7.33), (7.34), are equal to the (1,1) block of the gramians Pi, Q0, respectively:

Proof. The proof follows by noticing that
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7.6. Frequency weighted balanced truncation* 237

Therefore, the required gramians are the (1,1) blocks of the gramians obtained by solving
the Lyapunov equations (7.35). 

7.6.1 Frequency weighted balanced truncation*

Once the weighted gramians PI and Q0 have been defined, a balanced realization is obtained
by determining the transformation which simultaneously diagonalizes these two gramians,

where m, are the multiplicities of <r, with m\ -\ \-mq =n. Truncation in the balanced
basis of the states, which correspond to small singular values, yields a system Zr of reduced
order obtained by weighted balanced truncation. The following result holds.

Lemma 7.20. Given the stable and minimal system E, together with input, output, weights
Z,-, E0, respectively, let Y,r be obtained by frequency weighted balanced truncation as
above. If either Hi = I or HO = I, £r is stable. In general, whenever Zr is stable, the
error is bounded by the expression

w/iere ak and fa are the friOQ-norms of transfer functions, depending on the weights and the
reduced system.

For details on the computation of ak and fa, see [201].
The first attempt to deal with weightings in model reduction was by Enns [107].

However, this method does not guarantee stability of the reduced model for the case of
two-sided weighting. The original work of Enns also did not provide an error bound.

Hie method by Lin and Chiu

To add stability for the case of two-sided weighting, Lin and Chiu [229] compute P, Q as
above but replace the gramians (7.36) by their Schur complements:

If the realizations are minimal, these gramians are nonsingular. Furthermore, stability of
the reduced system is guaranteed. The main drawback of this method is that the realizations
of S, and Z0 as given above must be minimal. Finally, the weighted error system satisfies
an error bound of the form

where ak, fa, Xk, and cok denote the T^-norms of transfer functions depending on the data.
For details, see [229].
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Zhou's self-weighted method

Zhou's method [369] is applicable to any stable 2) that has a stable right inverse and D is
full rank. For simplicity, we will discuss only the case where H(s) is square, nonsingular,
det(D) /: 0, and H"1 is asymptotically stable, i.e., the system is minimum phase. This
method is a special case of Enns' method, where

The gramians to be diagonalized are therefore

The self-weighted balanced realization is then obtained by simultaneously diagonalizing
PH and Qn,i.e.,

Lemma 7.21. Let H(.s) be an asymptotically stable, square, nonsingular, and minimum
phase system. Also, let Hr (s) be obtained by the self-weightedfrequency truncation method.
Then Hr(.s) is asymptotically stable and minimum phase and satisfies

It can be shown that if H(^) is square, asymptotically stable, nonsingular, and mini-
mum phase as in the above theorem, this method is equivalent to stochastic balancing. In
this case, the a, and the stochastic singular values /x,- are related by //,, =

The method by Wang, Sreeram, and Liu

A method due to Wang, Sreeram, and Liu [351] provides computation of an a priori com-
putable error bound for the weighted error. This method also guarantees stability for the case
of two-sided weighting. It does so by forcing the gramians to satisfy a definite Lyapunov
equation (i.e., A.P + PA* + Q = 0, where Q > 0). Then stability is a result of the inertia
property for Lyapunov equations discussed in section 6.2. Let

If these two matrices X and Y are positive (semi) definite, the reduced system is guaranteed
to be stable. Otherwise, let the eigenvalue decomposition of the former be X = UAU*,
where U is orthogonal and A is diagonal with real entries A., on the diagonal. Let

Let | X |= U | A | U*, and similarly for | Y |. The gramians are now computed by solving
the Lyapunov equations,

Subsequently, balancing and truncation are applied as earlier.
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7.6. Frequency weighted balanced truncation* 239

Although the computation in this method is more involved, stability of the reduced
system is guaranteed. Furthermore, an error bound can be computed. (See [351 ] for details.)

The combination method by Varga and Anderson

The combination method proposed in [346] is formulated by combining Enns' method with
Lin and Chiu's method. Using this approach, the reduced model retains the features of
both methods. This method introduces two parameters, a, ft, and computes the frequency
weighted gramians as follows:

Since for a = ft = 1, the reduced-order system is stable, while for a = ft = 0 it may
not be, by choosing the parameters in the neighborhood of one, a family of stable weighted
reduced-order models is obtained.

In the same paper, a modification of Wang's method is presented, consisting in gen-
erating a semidefinite | X | from X by setting all its negative eigenvalues to zero (similarly
for |Y | .

Remark 7.6.1. To improve accuracy in all methods mentioned above, square root and
balancing free square root techniques can be used. One issue that needs to be addressed is
the sensitivity of the reduced model to the choice of the input and output weightings.

7.6.2 Frequency weighted balanced reduction without weights*

The goal of the frequency weighted reduction problems is to find a system Er of order less
than E such that the weighted error ||H«,(.s)(H(.s) — Hr(s))Hj (s)!!?^ is small. It should be
mentioned that in many cases the input and output weightings H, (s) and HO (s) are not given.
Instead the problem is to approximate E over a given frequency range [o>i, a>i\. As shown
by Gawronski and Juang [135], this problem can be attacked directly, without constructing
input and output weights. This is achieved by using the frequency domain representation
of the gramians, with the limits of integration appropriately restricted:

Thus if we are interested in the frequency interval [0, co], we simultaneously diagonalize
the two gramians P(aJ) and Q(ft>) defined above and proceed as before. If the frequency
interval [coi, <i>z\ is of interest, the gramians are defined as follows:

It is readily seen that these expressions are positive (semi) definite. Thus simultaneous
diagonalization of these gramians and subsequent truncation provide a reduced-order system
which is expected to yield small errors in the interval [CD\ , a>i\.
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240 Chapter 7. Balancing and Balanced Approximations

The question now is whether these gramians satisfy Lyapunov equations. To answer
this question, we introduce the following notation:

Lemma 7.22. Wfr/i f/ie notation introduced above, the gramians satisfy the following Lya-
punov equations:

Furthermore,

The computations of the various gramians require the evaluation of a matrix logarithm,
in addition to the solution of two Lyapunov equations. For small- to medium-scale problem
for which an exact balancing transformation can be computed, S(o>) can be efficiently
determined as well. However, for large-scale problems, this issue is still under investigation.
But we note that computing an exact solution to a Lyapunov equation in large-scale settings
is an ill-conditioned problem itself.

Balancing involves the simultaneous diagonalization of the gramians P(a>i , a>i) and
Q(o>i,o>2),

where as before m, are the multiplicities of each distinct singular value a,. The reduced
model is obtained as usual, by truncation. However, since Wr and W0 are not guaranteed
to be positive definite, stability of the reduced model cannot be guaranteed. In [159], a
modified reduction method is presented, where the Lyapunov equations are forced to be
definite (much the same way as the method in [35 1]). This also results in error bounds. The
details are omitted here.

Remark 7.6.2. (a) In section 6.1.2, a Lyapunov equation was derived for an expression of
the form (6. 11), where the eigenvalues of A may lie both in the left- and the right-hand side
of the complex plane. We recognize this as the gramian P(oo) discussed above. In that
section, a Lyapunov equation satisfied by this gramian was given. This equation is in terms
of the spectral projector FI onto the stable invariant subspace of A. This projector is related
to S(oo) defined above. It can be shown that FT = |l + S(oo). For an illustration of this
fact, see the example at the end of this section.

(b) The above discussion reveals the connection between Enns' and Gawronski and
Juang's frequency weighted balancing methods. The latter is obtained from the former
by choosing H,-(J) and H0(s) as the perfect bandpass filters over the frequency range of
interest. However, the realizations of the weightings are never computed. We note that an
infinite-dimensional realization will be needed to obtain perfect band-pass filters. Hence,
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7.6. Frequency weighted balanced truncation* 241

in Enns' method, these band-pass filters are approximated by lower-order band-pass filters.
The resulting Lyapunov equations have dimension n + «,-, where n, is the order of H,(s).
It can be shown by means of examples that as the order of the weightings increases, i.e., as
they get closer to a perfect band-pass filter, the two methods produce similar results.

7.6.3 Balanced reduction using time-limited gramians*

Yet another set of gramians is obtained by restricting in time the gramians P, Q given by
(4.43), (4.44). For T = [ t\, ti ], the time-limited gramians are defined as

These quantities are positive (semi) definite and therefore qualify as gramians. Similarly
the frequency-limited gramians, P(T), Q(T) satisfy Lyapunov equations. Let

Lemma 7.23. The gramians P(T) and Q(T) are solutions of the following Lyapunov
equations:

Balancing in this case is obtained by simultaneous diagonalization of the time-limited
gramians P(T} and Q(T):

The reduced model follows by truncation in this basis; the impulse response of the reduced
model is expected to match that of the full-order model in the time interval T = [ t\ , ^ ];
see [135]. However, as in the frequency weighted case, the reduced model is not guaranteed
to be stable; this can be fixed as shown in [159].

7.6.4 Closed-loop gramians and model reduction*

Here, the given system T, is part of a closed loop with controller T,c. In the simplest case, the
overall system is characterized by the transfer function 0(H, HC) = H(s)
A reduced-order system I) is sought such that the error

is kept small or minimized. Alternatively, one may also wish to find a reduced-order
such that

is kept small or minimized.
We now turn our attention to the definition of gramians for closed-loop systems. The

approach follows [362]. A related approach applicable to open-loop prefiltered systems is
described in [133].
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242 Chapter 7. Balancing and Balanced Approximations

Consider the system Z in the usual feedback loop together with the controller Zc; let
the transfer function be 0(H, HC), as defined above. This system with controller Zc, can be
considered as a weighted composite system with input weighting,

The gramians of the system Z with respect to the given closed loop with the controller Zc are
now defined as shown earlier, by means of (7.33), for the input weighting case. Similarly,
the gramians of the controller HC(S) in the same closed loop can be defined by noting that
the transfer function of interest is Hc(.s)H(.s) (I + HcC^HCs))"1. Consequently, this can be
considered as a weighted system with input weighting,

The resulting gramians of HcC?) with respect to the given closed loop can be used to reduce
the order of the controller in the closed loop.

Finally, as expected, the closed-loop gramians defined above in the frequency domain
can be computed by solving Lyapunov equations. Let

be the system quadruples; then a realization (A/, B,, Q) for the compound $(H, HC) is
given by

Thus to get an approximation by balanced truncation of the system Z in the sense that the
closed-loop norm is kept small or minimized, one can again use the (1,1) blocks of the two
gramians of the partitioned system above.

7.6.5 Balancing for unstable systems*

The problem with balancing of unstable systems is that the infinite gramians P, Q given by
(4.43), (4.44) are not defined, and therefore one cannot talk of simultaneous diagonalization.
There are two remedies to this situation.

The first is to use time-limited gramians, which are defined by (7.41) over any finite
interval [t\, t-2\. Balancing P(T) and Q(T) followed by truncation would then provide a
reduced-order system which is expected to approximate well the impulse response over the
chosen interval.

The second approach proposed in [372] consists of using the expression for the grami-
ans in the frequency domain, e.g., (4.51), (4.52). These frequency domain expressions are
indeed defined even if the system is unstable (they are not defined when the system has
poles on the imaginary axis) and are positive definite. Therefore, they can be simultane-
ously diagonalized. Actually, as noticed earlier, these gramians satisfy Lyapunov equations
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7.6. Frequency weighted balanced truncation* 243

given in Lemma 7.22. Furthermore, as noted in [372], balancing based on simultaneous
diagonalization of the infinite gramians consists of separate balancing of the stable and of
the antistable parts of the system.

Example 7.24. We will now illustrate some of the properties of the reduction of unstable
systems by balanced truncation with the following example:

The eigenvalues of A are A. i t2 = ±\/2, ^3,4 = —1/20 ±/\/799/20, and the transfer function
s

We will balance this system for &> = 1, a> = 100, and a) = oo. For a) = 1, the singular
values are .0181, .0129, .0010, .0009. Hence the balanced system is

For a)= 100, the singular values are .9203, .8535, .0299, .0277, and the balanced system
is

Finally, for u> —>• oo, the balanced realization of the system consists of the direct sum of the
balanced realization of the stable part and that of the instable part. The singular values are
.9206, .8538, .0302, .0280. Consequently the balancing transformation is
co
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244 Chapter 7. Balancing and Balanced Approximations

Thus = TAT'1, Bbal = TB, Cbai = CT

This is the direct sum of the balanced realizations of the stable subsystem £ and of the
antistable subsystem T,+:

Finally, we recall that S(oo) defines the spectral projectors related to A, namely, II + =
11 + S(oo), is an (oblique) projection onto the invariant subspace of A corresponding to
the eigenvalues in the right half plane (unstable eigenvalues), and n_ = ^1 — S(oo) is a
projection onto the invariant subspace corresponding to the eigenvalues in the left half plane
(stable eigenvalues). The eigenvalues of S(l) are -.1956, .0159 ± .2797*', .1956; those
of S(100) are -.4955, .4998 ± .0045/ .4955; and the eigenvalues of S(oo) are -\ and \
with multiplicity 3. It follows that FI+ = vw*, where v* = [.2582 .3651 .5164 .7303],

= [.9352 .7080 .5006 .3306]; this implies w*Av = 1.4142. Withw

n_ = VW*, which implies that the projected A is W*AV = diag[-1.4142, - .05 +
1.4133/, - .05 - 1.4133/].

Finally, balanced truncation, leads to reduced-order systems of the unstable system T,.
We will compare the reduced-order systems of orders two and three computed for CD — 1,
ay = 100. The top pane of Figure 7.2, the frequency response of the original system is
plotted together with the frequency responses of the second- and third-order approximants,
which are labeled 2a, 3a for co = 1 and 2b, 3b for co = 100. The frequency responses are
plotted from .3 Hz to 7 Hz. The plots show that the approximants for u> — 1 approximate
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Frequency (ra*sec)

Error plots: approximation of an unstable system

Frequency (rad/sec)

Figure 7.2. Approximation of the unstable system in Example 7.24 by balanced
truncation.

the frequency response well for low frequencies up to 1 Hz, while the approximants for
a) = 100 do a better job in approximating the peak. These results can also be observed in
the frequency response plots of the error systems, which are depicted in the bottom pane of
Figure 7.2.

Example 7.25. We consider a second unstable system defined as follows:co
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Frequency weighted balanced approximation of an unstable system

Figure 7.3. Approximation of the unstable system in Example 7.25 by balanced
truncation.

The poles of the system are 1, —2, —1 ± i, 1 ± i. We compute second- and fourth-order
approximants obtained by frequency weighted balanced truncation with horizon [— 1, 1] and
with infinite horizon. The original system is denoted with the subscript 0, the second-order
approximant obtained with infinite horizon with 1, and the one with horizon [—1, 1] by 2.
Subsequently, 3 is the fourth-order system with horizon [—1, 1] and 4 the infinite horizon
fourth-order model. The resulting frequency responses are shown in Figure 7.3. Notice that
the second-order infinite horizon approximant misses the resonance while the finite horizon
one does not. Both fourth-order approximants reproduce the peak, but the infinite horizon
fourth-order one gives the overall better approximation.

7.7 Chapter summary
A balanced realization of a system is one in which states that are difficult (easy) to reach
are also difficult (easy) to observe. In this case, the minimal energy required to reach a
given state is the inverse of the observation energy generated by the same state. Mathemati-
cally, balancing amounts to the simultaneous diagonalization of two positive (semi) definite
gramians. These facts form the basis for one of the most effective approximation methods,
namely, approximation by balanced truncation. It has the following properties: (i) stability
is preserved and (ii) an a priori computable error bound exists. The latter provides a trade-
off between accuracy of the approximation and complexity of the approximant, just as the
singular values of a (constant) matrix provide a trade-off between accuracy and complexity
of low rank approximants.

The main results and their proofs can be found in section 7.2. The third section
is devoted to numerical issues; the difficulty in applying balanced truncation in large-
scale settings is the fact that O(n3) operations and O(n2) storage are required. The main
method used for computing the gramians is the square root (Hammarling's) method, which,
as discussed in the previous chapter, yields directly the square roots (Cholesky factors)
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7.7. Chapter summary 247

of the gramians, without computing them first. A canonical form for continuous-time bal-
anced systems follows.

Subsequently, two specialized sections are presented, namely, additional types of
balancing and frequency weighted balancing. They can be omitted at first reading. Since
balancing consists of the simultaneous diagonalization of two positive (semi) definite matri-
ces, different kinds of balancing, can be obtained by considering various Riccati equations.
Besides the usual kind of balancing, called Lyapunov balancing, in section 7.5, we discuss
stochastic balancing, bounded real balancing, and positive real balancing. Section 7.6 ex-
plores the issue of balancing which is frequency selective, both with and without the choice
of frequency weights. The section concludes with time-limited balancing and balancing for
unstable systems.
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Chapter 8

Hankel-norm
Approximation

As mentioned in section 7.1, a balanced state-space representation of a linear system £ can
be derived by minimizing an appropriate criterion. Nevertheless, approximation by balanced
truncation does not seem to minimize any norm. A refinement leads to an approximation
method which is optimal with respect to the 2-induced norm of the Hankel operator, known
as, optimal approximation in the Hankel-norm. The resulting theory is the generalization to
dynamical systems of the optimal approximation in the 2-induced norm of finite-dimensional
matrices and operators discussed in section 3.2.4. It provides explicit formulas for optimal
and suboptimal approximants as well as an error bound in the related T^oo-norm (the 2-
induced norm of the convolution operator). The developments in this chapter are due to
Adamjan, Arov, and Krein [1], [2] and especially to Glover [139]. See also [237], [137]
and the books [149] and [370].

The theory of optimal/suboptimal approximation in the Hankel norm is presented
in the first five sections of this chapter. Section 8.6 gives an exposition of a polynomial
approach to Hankel-norm approximations. Although this is limited to SISO systems, it
provides additional insights into the theory presented in the first part of the chapter. It
shows, for instance, that the all-pass dilation system has additional structure, since it can be
constructed using rational interpolation at the poles of £.

8.1 Introduction
To successfully apply the SVD approach to the approximation of dynamical systems, we
need to come up with the SVD of some input-output operator associated with such systems.
For surveys, see [14], [17].

Given a linear system Z, the natural choice for an input-output operator is the convo-
lution operator <S, defined by (4.5):
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250 Chapter 8. Hankel-norm Approximation

where h is the impulse response of the system. If the system is stable (the eigenvalues of A
are in the left half of the complex plane), the 2-induced norm of S turns out to be equal to the
Hoc-norm of the Laplace transform H(s) of h(0, that is, of the transfer function of Z (see
(5.16)). This is referred to as the T^oo-norm of the system. The operator «S is not compact,
however, and it does not have a discrete SVD (see section 5.2). The consequence of this lack
of a discrete SVD is that the problem of approximating <S by an operator of lower complexity
that minimizes the 2-induced norm of the error cannot be solved at present, except in very
special cases.

Searching for an operator associated with £ that has a discrete SVD, we define one
that makes use of the same convolution sum or integral but that has domain and range
different from those of «S:

This is the Hankel operator of X defined by means of (5.20); it maps past inputs u_ into
future outputs y+. If the system is finite-dimensional, H has finite rank (that is, its range
is a finite-dimensional space). Therefore (since it is bounded and compact), it possesses a
discrete SVD, and in principle one could try to solve the optimal approximation problem,
as defined above, in the 2-induced norm of the Hankel operator. As discussed in section
5.4.2, this induced norm is called the Hankel-norm, and the corresponding singular values
are the Hankel singular values of the system.

It is a nontrivial fact that the optimal approximation problem in the 2-induced norm of
H can be solved; the formulas obtained are explicit in the system parameters. This solution
originated in the work of Adamjan, Arov, and Krein [1], [2], with subsequent contributions
by Glover [139].

The main attributes of optimal approximation in the Hankel-norm are (i) preservation
of stability and (ii) the existence of an error bound. The "Hoc-norm of the error system is
bounded by twice the sum of the neglected Hankel singular values 1(ak+\ H h an}; this
bound is the same as the one valid in the balanced truncation case and is reminiscent of
the bound that holds for the optimal of approximation constant matrices in the 2-norm. It
should also be mentioned that in some cases, balanced truncation is superior to Hankel-norm
approximation, in the HOC-norm. The reason is that Hankel-norm approximants are optimal
in the Hankel-norm but not in the 7/oo-norm.

8.1.1 Main ingredients

Hankel-norm approximation theory is based on the following four facts. Although we are
seeking to approximate stable systems, the theory involves unstable systems. Therefore,
formulas (5.38) and (5.39) of the 2-norm (which is equal to the £00-norm of the associated
transfer function) and of the Hankel-norm of such systems should be kept in mind.

Fact I. Given stable systems Z, Z' of McMillan degree «, k, respectively, where n > k,
there holds

See section 8.4.2.
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8.1. Introduction 251

Fact II. The 2-norm of any £2-system £ is no less than the Hankel-norm of its stable part
Z+:

Fact ID. Given a stable system £, there exists a system £, which is in general not stable,
having exactly k stable poles, such that

Furthermore, £ — £ is all-pass. This construction is discussed in section 8.4.5.

Fact IV. Given k e {0, 1, 2, . . . , n — 1}, a stable system £, and a positive real number €
such that

A

with 0*0 (£) = oo, there exists a system £ having k stable poles, such that

Furthermore, £ — £ is all-pass. This construction, depicted in Figure 8. 1 , is discussed
in section 8.4.4.

Conclusion. The solution of the Hankel-norm approximation problem for both the
optimal and the suboptimal cases follows as a consequence of the facts listed above: given £
which is stable, construct £ so that the parallel connection £e is all-pass (having both stable
and unstable poles) and 2-norm equal to e; then the stable part of £ is the optimal/suboptimal
approximant of £, and the associated error system has a Hankel-norm between <T*+I and e.

In the following sections we report the results that are valid for continuous-time
systems. These results can also be used for approximating discrete-time systems by means
of the bilinear transformation of subsection 4.3.3.

Figure 8.1. Construction of apporximants that are
optimal and suboptimal in theHankel-norm.
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252 Chapter 8. Hankel-norm Approximation

8.2 The Adamjan-Arov-Krein theorem
Consider the stable systems Z, Z' of dimensions n, k, respectively. As shown earlier, the
associated Hankel operator HT, has rank n and HV has rank k. Therefore, the Schmidt-
Eckart-Young-Mirsky theorem implies that

The question that arises is to find the infimum of the above norm, given the fact that the
approximant is structured (block Hankel matrix): inf,^^* \\H-z — Wz'lb-ind- A result
due to Adamjan, Arov, and Krein (AAK) asserts that this lower bound is indeed attained for
some £' of dimension k. The original sources for this result are [1] and [2].

Theorem 8.1 (AAK theorem). Given the sequence ofp x m matrices h = (h(^))^>0, such
that the associated Hankel matrix *H has finite rank n, there exists a sequence of p x m
matrices h* = (h*(£))fc>() such that the associated Hankel matrix 'H* has rank k and, in
addition

If p = m = 1, the optimal approximant is unique.

This result says that every stable and causal system E can be optimally approximated
by a stable and causal system E* of lower dimension. Optimal here means

where the first infimum is taken over all Hankel matrices H* and the second over all arbitrary
matrices 1C. The optimality is with respect to the 2-induced norm of the associated Hankel
operator. Notice that the above theorem holds for continuous-time systems as well.

8.3 The main result
In this section we present the main result. As it turns out, one can consider both subop-
timal and optimal approximants within the same framework. Actually, the formulas for
suboptimal approximants are simpler than their optimal counterparts. Both continuous- and
discrete-time systems can also be handled within the same framework.

Problem 8.3.1. Given a stable system Z, we seek stable approximants Z* of dimension k,
satisfying

This is a generalization of the optimal approximation in the Hankel-norm, solved by
the AAK theorem. The concept introduced in the next definition is the key to its solution.

Definition 8.2. Let ^ebe the parallel connection ofE and II: Ze = Z — XI. IfT,eisan
all-pass system with norm €, II is called an € -all-pass dilation ofL.

As a consequence of the inertia result of section 6.2, all-pass dilation systems have
the following crucial property.
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Theorem 8.4. Let E be an e-all-pass dilation of the linear, stable, discrete-, or
continuous-time system E, where

It follows that E+ has exactly k stable poles and consequently

In case ok+1(E) = E,

8.3. The main result 253

Lemma 83.1 (main lemma). Let Z, with dim Z < dim Z, be an e -all-pass dilation o/Z,
A. A

where esatisfies (8.4). TTzen Z Aos exactly k stable poles, i.e., dim Z + = &.

Recall that stability in the continuous-time case means that the eigenvalues of A are
in the left half of the complex plane, while in the discrete-time case, they are inside the
unit disc. The analogue of the Schmidt-Eckart-Young-Mirsky result (8.6) for dynamical
systems is stated next; it is proved in section 8.4.2.

Proposition 83. Given the stable system Z, let Z' have at most k stable poles. There holds

This means that the 2-induced norm of the Hankel operator of the difference between
Z and Z' is no less than the (k + l)st singular value of the Hankel operator of Z. Finally,
recall that if a system has both stable and unstable poles, its Hankel-norm is that of its stable
part. We are now ready for the main result.

Proof. The result is a consequence of the following sequence of equalities and inequalities:

The first inequality on the left side is a consequence of Lemma 8.3.1, the equality follows
by definition, the second inequality follows from (5.21), and the last equality holds by
construction, since Z — Z is e-all-pass. D

Remark 8.3.1. (a) An important special case of the above problem is obtained for k = 0
in (8.4), (8.5) and for e = ori(Z) in (8.8). This is the Nehari problem. It seeks to find the
distance of a stable system from the set of antistable systems (i.e., systems whose poles are
all unstable). The construction mentioned above implies that this distance is equal to the
Hankel-norm of Z :
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254 Chapter 8. Hankel-norm Approximation

where the infimum is taken over all antistable systems Z . The Nehari problem and associated
construction of XI form one of the cornerstones of Hankel-norm approximation theory.

(b) We are given a stable system Z and seek to compute an approximant in the same
class (i.e., stable). To achieve this, the construction given above takes us outside this class
of systems, since the all-pass dilation system Z has poles that are both stable and unstable.
In terms of matrices, we start with a system whose convolution operator S% is a (block)
lower triangular Toeplitz matrix. We then compute a (block) Toeplitz matrix «Sj., which is
no longer lower triangular, such that the difference is unitary. It then follows that the lower
left portion of S% , which is the Hankel matrix H$ , has rank r and approximates the Hankel
matrix H^, so that the 2-norm of the error satisfies (8.8).

(c) The suboptimal and optimal approximants can be constructed using explicit for-
mulas. For continuous-time systems, see sections 8.4.4 and 8.4.5.

(d) It is interesting to notice that while the AAK result settles the problem of optimal
approximation of infinite-dimensional Hankel matrices of finite rank, with Hankel matrices
of lower rank, the problem of optimal approximation concerning finite-dimensional Hankel
matrices is still open. A special case of this problem is treated in [13].

8.4 Construction of approximants
We are ready to give some of the formulas for the construction of suboptimal and optimal
Hankel-norm approximants. As mentioned earlier, all formulas describe the construction
of all-pass dilation systems (see 8.4). We will discuss the following cases:

• An input-output construction applicable to scalar systems. Both optimal and subop-
timal approximants are treated. The advantage of this approach is that the equations
can be set up in a straightforward manner using the numerator and denominator poly-
nomials of the transfer function of the given system (section 8.4.1). The drawback is
that the proof of the main lemma, Lemma 8.3.1, is not easy in this framework.

• A state space based construction method for suboptimal approximants (section 8.4.4)
and for optimal approximants (section 8.4.5) of square systems.

• A state space based parametrization of all suboptimal approximants for general (i.e.,
not necessarily square) systems (section 8.4.6).

• The optimality of the approximants is with respect to the Hankel-norm (2-induced
norm of the Hankel operator). Section 8.5 gives an account of error bounds for the
infinity norm of the approximants (2-induced norm of the convolution operator).

8.4.1 A simple input-output construction method

Given the polynomials a = ]C?=oa«s'' ^ = ]Cf=o^i5l» c = "5^=0 cis' satisfying c = ab,
the coefficients of the product c are a linear combination of those of b:

where c = (CY cy_i • • • c\ c0)* € W+l ,b = (bp • • • bQ)* e Rft+l , and T(a) is a Toeplitz
matrix with first column (a« • • • OQ 0 • • • 0)* e Ry+1 andfirstrow (aa 0 • • • 0) e Rlx(/>+1).
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8.4. Construction of approximants 255

We also define the sign matrix whose last diagonal entry is 1,

of appropriate size. Given a polynomial c with real coefficients, the polynomial c* is defined
as c(s)* = c(— s). This means that

The basic construction given in Theorem 8.4 hinges on the construction of an e-all-pass
dilation t of Z. Let

We require that the difference HE — H^ = HZe be e-all-pass. Therefore, the problem is
given €, and the polynomials p, q, such that deg(p) < deg(q) = re, find polynomials p, q,
of degree at most n such that

This polynomial equation can be rewritten as a matrix equation involving the quantities
defined above:

Collecting terms, we have

The solution of this set of linear equations provides the coefficients of the e-all-pass dilation
system Z. Furthermore, this system can be solved for both the suboptimal e / or, and the
optimal e = a, cases. We illustrate the features of this approach by means of a simple
example. For an alternative approach along similar lines, see [121].

Example 8.5. Let Z be a second-order system, i.e., n = 2. If we normalize the coefficient
of the highest power of q, i.e., ^2 = 1» we obtain the following system of equations:

This can be solved for all e that are not roots of the equation det W(e) = 0. The latter is a
polynomial equation of second degree; there are thus two values of e, €\ and €2, for which
the determinant of W is zero. It can be shown that the roots of this determinant are the
eigenvalues of the Hankel operator H<z\ since in the SISO case HT. is self-adjoint (symmet-
ric), the absolute values of €\, €2 are the singular values of H^.. Thus both suboptimal and
optimal approximants can be computed this way.
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256 Chapter 8. Hankel-norm Approximation

8.4.2 An analogue of Schmidt-Eckart-Young-Mirsky

In this section, we prove Proposition 8.3. Let (H, F, G) and (C, A, B) be realizations of I!
and T,', respectively, where T, has McMillan degree n and £' has McMillan degree k < n.
A realization of the difference T,e = 5) — Z' is given by

By definition,

where Pe, Qe are the reachability, observability, gramians of Ze, satisfying

¥ePe + Pe¥*e + G,G: = 0, ¥*eQe + Qe¥e + H^H, = 0, Pe, Qe e R(»+*>*<»+*>.

Consider the Cholesky factorization of Pe\

The following relationships hold between the Pfj and /?,-_/ :

Notice that

where the subscript ( • )n denotes the block (1,1) element of ( • ). Furthermore,

where

Since rank X < fc, we conclude that

This completes the proof of Proposition 8.3.

8.4.3 Unitary dilation of constant matrices

In this section, we investigate the problem of augmenting a matrix so that it becomes unitary
or augmenting two matrices so that their product becomes the identity. We proceed from
the simple to the more involved cases.
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8.4. Construction of approximants 257

1. Given a e R, \a\ < 1, find M, where

such that MM* = I. Solution:

2. Given a e R, |a| > 1, find M, N, where

such that MN = I. Solution:

3. Given p,q eR, pq ̂  1, find M, N, where

such that MN = I. Solution:

4. Given E = diag (ai, cr2 , . . . , an) , cr/ ^ 1, find

such that MN = I. Solution: Let T = I - E2,

5. Given P, Q e R"xrt, A«(PQ) ^ 1, find

such that PeQe = I. Solution: Let T = I - PQ,

The last dilation, (8.11), is now used to construct suboptimal approximants.
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258 Chapter 8. Hankel-norm Approximation

8.4.4 Unitary system dilation: Suboptimal case

Recall the definition of all-pass or unitary systems given in section 5.8.3.

Problem 8.4.1. Given A, B, C, P, Q, p = m, find A, B, C, D such that

Solution. Assume or* > 1 > ofc+i- Following the dilation (8.11), we define

The conditions for the dilation to be all-pass given in part 3 of Theorem 5.23 are

Solving these relationships for the quantities sought, we obtain

Furthermore, A*Q + QA + C*C = 0, where Q = -(r*)-1^. Hence, if ak+\ < 1 < ak, it
follows that — r has k positive eigenvalues, and consequently — T~1P has k positive eigen-
values. We conclude that A has k eigenvalues in the left half of the complex place C_.

Suboptimal Hankel-norm approximation

Let H(s) = D -I- C(sl — A)~!B. Decompose H in a stable and an antistable part H =
H+ + H_. Then due to Theorem 8.4, the desired

holds true.

8.4.5 Unitary system dilation: Optimal case

We now discuss the construction of solutions in the optimal case, i.e., the case where 1 is
a singular value of multiplicity r of the system to be approximated. Let A, B, C, P, Q,

is unitary (all-pass).
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8.4. Construction of approximants 259

p = m, be partitioned as follows:

where AH e Rrxr, BH, Cn e Rr, and Ir denotes the r x r identity matrix. First, notice
that AH, BH, and Cn satisfy

Consequently, BuBjj = CJ^Cn, which implies the existence of a unitary matrix D such
that

Using formulas (8.14), we construct an all-pass dilation of the subsystem (A22, 621,
namely,

where F2 = I — PiiQii € M(w r)x(w r\ and D is the unitary matrix defined above. Hence,
unlike the suboptimal case, D is not arbitrary. In the SISO case, D is completely determined
by the above relationship (it is either +1 or —1), and hence there is a unique optimal
approximant. This is not true for systems with more than one input and/or more than one
output.

Lemma 8.6. The system Ae, Ee, Ce, De defined by (8.12) where A, B, C, D is defined by
(8.16) is all-pass. Moreover, A has k eigenvalues in the left half plane and n — r — k
eigenvalues in the right half plane.

Example 8.7. Consider a system of McMillan degree 4 with Hankel singular values a\ >
a2 > CTS > 04 > 0. Let 8 denote the McMillan degree of Z and 8+ the McMillan degree of
Z+; i.e., 8 denotes the number of poles of the dilation system, while 8+ denotes the number
of stable poles of the same system. Figure 8.2 shows 8 and 8+ as a function of y.

8.4.6 All suboptimal solutions

Above, we provided a way to construct one suboptimal approximant of a square system. It is,
however, rather straightforward to provide a parametrization of all suboptimal approximants
of an arbitrary system Z. The exposition below follows section 24.3 in the book by Ball,
Gohberg, and Rodman [38].
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260 Chapter 8. Hankel-norm Approximation

Figure 8.2. Hankel-norm approximation: dimension 8, 8+ of all-pass dilation sys-
tems, stable part of all-pass dilation systems; the system to be approximated has dimension
n = 4. The abscissa is y.

Given the system E = ( ^ B j with m inputs and p outputs, let ojt(Z) > e >

. The following rational matrix 0(s) has dimension (p + m) x (p + m):

where

thus

Notice that by construction 0 is J-unitary on the y'w-axis. Define

The following result holds.

Theorem 8.8. II is an approximant ofL with k stable poles satisfying \\ Z — E+ ||//< € if
and only if the associated transfer functions satisfy

where [•]+ denotes the stable part of[-] and A (5) is a p x m antistable contraction, i.e.,
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8.4. Construction of approximants 261

Outline of proof. The proof can be divided into three parts.
(a) Let Z(A) = 4>i(A)O2(A)-1, where O/(A), / = 1, 2, are defined by (8.18) and

the £00 -norm of A is less than 1 . We show that the number of LHP poles of Z is n + k + v,
where v is the number of LHP poles of A. To prove this fact, we write Z as follows:

We examine the poles of each of the above terms. T^I has n + v poles in the LHP. By a
homotopy argument, ifr^1 has no zeros in the LHP and hence fa has no poles there. The
last term can be treated as follows. A realization for i " 1 is

Using an inertia argument, —A* + ^ QF 'BB* has exactly £ eigenvalues in the LHP. This
concludes the proof of (a).

(b) With Z as above and A antistable, we can write Z = H — H for some H having k
stable poles. We show this only for A = 0. In this case,

Thus a realization of Z is given by

Applying the equivalence transformation T = ( €}lp J j (the new state is T times the
old state), we obtain the realization

This proves the desired decomposition for A = 0.
(c) Given H with k stable poles such that H — H is all-pass, there exists an antistable

contractive A such that H - H = Z(A). Let <I>i = H - H, 4>2 = I. Solving (8.18), we
obtain

Since 0 is J-unitary, so is 0. Hence A has the correct £00-norm (i.e., size on the jco-axis).
It remains to show that A is antistable. This follows from part (a) of the proof. D
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262 Chapter 8. Hankel-norm Approximation

8.5 Error bounds for optimal approximants
We now concentrate on error bounds that exist for optimal Hankel-norm approximants. For
details, see section 9.2 of [139].

Given is a square system Z (m = p) which is stable. Let its distinct Hankel singular
values be as defined by (5.22):

q
<7i(X) > • • • > Og(Z) each with multiplicity m,, i = l,...,q, ^Jm,=n. (5.22)

1=1

Furthermore, let £ be an optimal all-pass dilation of X defined by (8.16). This system
is decomposed into its stable and antistable parts,

where the poles of £+ are all in the LHP and those of E_ are in the RHP. It follows that
Z = £+, i.e., the approximant is stable, and, furthermore, H(s) — H(s) is all-pass with
magnitude^, and

This fact implies the following decomposition of the transfer function H:

where H^s), k = 1, 2, . . . , q, are stable, all-pass, with McMillan degree

From the above decomposition, we can derive the following upper bound of the "Hoc -norm
of £. Assume that H(oo) = 0; the following inequality holds:

Furthermore, there exists D0 e Rmxm such that

In addition to H constructed above, which will be denoted by H/j in what follows, consider
the balanced truncated system (A22, B2i, Ci2), whose transfer function will be denoted by
Hfc. It follows that HZ,(S) — H/,(.s) is all-pass with norm aq, and thus both the HOO- and the
Hankel-norms have the same upper bound:

A consequence of the above inequalities is that the error for reduction by balanced truncation
can be upper bounded by means of the singular values of X. Let H^ denote a balanced
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8.5. Error bounds for optimal approximants 263

approximant of McMillan degree m\-\ h w*; then both the Hankel- and the "Hoc-norms
of the error system have the same upper bound, namely,

Below, we assume that each Hankel singular value has multiplicity equal to one: m, = 1.
Let Hh,k denote an optimal Hankel approximant of McMillan degree k. The Hankel singular
values of the error can be explicitly determined:

The final set of inequalities concerning the error of the approximation in the Hankel-norm
follows from (8.20). Since we know explicitly the singular values of the stable part of the
error system ZJ, we conclude

Notice that the above formulas remain valid if we scale the singular values by y, i.e., replace
<* by a.

Example 8.9 (continuation of Example 7.16). Consider the system described by the transfer
function:

As already mentioned, this is a finite impulse response (FIR) system. We investigate the
optimal approximation of this system in the Hankel-norm. It is interesting to notice that
the optimal approximant of order 2 is no longer FIR; it is inifmite impulse response (IIR)
instead. The corresponding Hankel matrix is

The S VD of the 3 x 3 submatrix of U is

where
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264 Chapter 8. Hankel-norm Approximation

It is tempting to conjecture that the optimal second-order approximant is obtained by setting
cr3 = 0 in (8.22). The problem with this procedure is that the resulting approximant does
not have Hankel structure.

To compute the optimal approximant, we proceed as follows. First, transform the
system to a continuous-time system using the transformation of subsection 4.3.3; we obtain
the transfer function

Applying the theory discussed in the preceding subsections, we obtain the following second-
order continuous-time optimal approximant:

Again using the transformation of subsection 4.3.3, we obtain the following discrete-time
optimal approximant:

Notice that the optimal approximant is not a FIR system. It has poles at ±^/5^. Furthermore,
the error Z(z) — 2,2(1) is all-pass with magnitude equal to 03 on the unit circle:

The corresponding optimal Hankel matrix of rank 2 is

In this particular case, the 3 x 3 submatrix of 1-L is also an optimal approximant of the
corresponding submatrix of H,

This decomposition is an application of formula (3.16), which provides a class of minimizers;
it is straightforward to verify that 771 = a\ — of — 1 = \/5 — 2, which implies i]\ < &3,
while 772 = 02 — 0-3 = (3 — V5)/2, which implies 772 5- ^3-
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8.5. Error bounds for optimal approximants 265

Finally, it is readily checked that the Hankel matrix consisting of 1 as the (1,1) entry
and 0 everywhere else is the optimal approximant of H of rank one. The decomposition
(8.19) of Z is

Notice that each Z, is all-pass, and the McMillan degree of Z\ is one, that of <j\L\ + 7^2 is
two, and, finally, that of all three summands is three.

Example 8.10. A continuous-time suboptimal approximation. Consider the system Z given
by (4.13), where n = 2, m = p = 1, and

where cri > 0-2. This system is in balanced canonical form; this means that the gramians are
P = Q = diag (<TI, 0-2) = S. This canonical form is a special case of the forms discussed
in section 8.6.3.

To determine the suboptimal Hankel-norm approximants for a\ > € > 02, we com-
pute the limit of this family for € -> 02 and € -> a\ and show that the system obtained is
indeed the optimal approximant. From(8.13),(8.17),F = e2-E2 = diag^-o-2,*2--^!);
the inertia of F is {1,0,1). Furthermore, from (8.14),

and D = €. Since the inertia of A is equal to the inertia of — f, A has one stable and
A

one unstable pole. (This can be checked directly by noticing that the determinant of A is
negative.) As € -> 02, we obtain

and D = (72. This system is not reachable but observable (i.e., there is a pole-zero cancella-
tion in the transfer function). A state-space representation of the reachable and observable
subsystem is

The formulas (8.14) depend on the choice of D. If we choose it to be — e, the limit still
exists and gives a realization of the optimal system, which is equivalent to A, B, C, D, given
above.
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266 Chapter 8. Hankel-norm Approximation

Finally, if e —>• a\, after a pole-zero cancellation, we obtain the following reachable
and observable approximant:

This is the best antistable approximant of Z, i.e., the Nehari solution (see (8.10)).

Example 8.11. Balancing and Hankel-norm approximation applied to low-pass filters.
Four types of analog filters will be approximated next, by means of balanced truncation and
Hankel-norm approximation. The filters are

BUTTERWORTH

CHEBYSHE v- 1 :
CHEBYSHEV-2:
ELLIPTIC:

1 % ripple in the pass band
1% ripple in the stop band
0.1% ripple both in the pass and stop bands

In each case we consider 20th-order low-pass filters, with pass band gain equal to 1 and cutoff
frequency normalized to 1. Figure 8.3 shows the Hankel singular values of the full-order
models. It follows from these plots that to obtain roughly comparable approximation errors,
SB and Ec2 have to be approximated by systems of lower order than SCi and SE! we thus
choose to approximate SB, £02 by 8th-order models and ECI, SE by Wth-order models.
Observe that for the Chebyshev-2 filter, the difference of the singular values a\^ — 020 is of
the order 10~7. Thus ECZ has an 8th-order (approximately) all-pass subsystem of magnitude
.05. Similarly, the Chebyshev-1 filter has an all-pass subsystem of order 3.

In this example, the subscript bal stands for approximation by balanced truncation; the
subscript hank stands for optimal Hankel-norm approximation; FOM stands for full order
model; ROM stands for reduced order model.

Figure 8.3. Analogue filter approximation: Hankel singular values.
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8.6. Balanced and Hankel-norm approximation: A polynomial approach* 267

Figure 8.4. Analog filter approximation: Bode plots of the error systems for model
reduction by optimal Hankel-norm approximation (continuous curves), balanced truncation
(dash-dot curves), and the upper bound (8.21) (dash-dash curves).

Figure 8.4 gives the amplitude Bode plots of the error systems and tabulates their
HOC-norms and upper bounds. We observe that the lOth-order Hankel-norm approximants
of ECI and EE are not very good in the stop band. One way to improve them is to increase
the approximation order; another is to compute weighted approximants.

The following table compares the peak values of these Bode plots with the lower and
upper bounds predicted by the theory:

8.6 Balanced and Hankel-norm approximation:
A polynomial approach*

In Chapter 7 and in the preceding sections of the current chapter, we presented the theory
of balanced and Hankel-norm approximations by employing state space methods. In the
following, we present an approach based on polynomial methods. This approach provides
new insights and connections between the concepts discussed above. The exposition is
based on the work of Fuhrmann [119].

H Norm of the Error and Bounds

BUTTERWORTH 0.0383 0.0388 0.0779 0.1035
CHEBYSHEV-2 0.0506 | 0.1008 [ 0.0999 | 1.2015

CHEBYSHEV-I 0.3374 0.4113 0.6508 1.9678
ELLIPTIC | 0.2457 | 0.2700 | 0.3595 | 1.5818
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8.6.1 The Hankel operator and its SVD*

In this section, we restrict our attention to the SISO case. Recall that

where ^(C-), 7/2 (C+) contain functions that are analytic in C_, C+, respectively. The
projections onto 7/2(C-), 7/2 (C+) are denoted by P_, P+. Given 0 e £2(/R), we use 0*
to denote

The Hankel operator with symbol 0 € £2 OK) is defined as follows:

The dual Hankel operator is defined as

An immediate consequence of the above definitions is 0, i/r e 7/2 (C_), implies
Hf iff. For the rest of this section we consider Hankel operators with stable, rational symbol:

To state the next result, we need to introduce the space Xd of all strictly proper rational
functions with denominator d:

Xd is a finite-dimensional linear space with dimension deg d. The shift operator in this
space is defined as

where n+, n- are projections onto the polynomials, strictly proper rational functions, re-
spectively. It readily follows that the characteristic polynomial of this shift operator is d.

Proposition 8.12. Consider a Hankel operator H^ satisfying (8.24) and its adjoint H^.

1. The kernel of this Hankel operator is ker HJ, = ^r'H2((C+).

2. The kernel of the adjoint Hankel operator is ker %J = ^n2(C-).

3. The image ofH^ is im 'H<f> — Xd.

4. The image of the adjoint operator is im H^ = Xd*.
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Next, we compute the singular values and corresponding singular vectors of the Hankel
operator, also known as Schmidt pairs. A pair of functions f e K2(C_), g e %2(C+) is
a Schmidt pair of H<j> corresponding to the singular value a, provided that the following
relationships are satisfied:

Since g e im H^> and f e im HZ, we obtain the following equations:

The quantities p, p, TT, £ are polynomials having degree less than the degree of d,

By conjugating the second equation and eliminating n, we obtain

while by conjugating the first and eliminating n*, we obtain

Since d is stable (roots in the left half plane), d* is antistable, and hence d, d* are coprime.
Hence the first equation above implies that d divides pp* — pp*, while the second implies
that d* divides the same quantity; therefore,

The above implication follows because the degree of dd* is 2v, while that of pp* — pp* is
less than 2v. This in turn implies that

Proposition 8.13. The Schmidt pairs ofH^ satisfying (8.24) have the form

where deg p < deg d.

Next, we discuss the issue of the multiplicity of singular values and characterize the
corresponding Schmidt pairs. Using an argument similar to the above, we can show that if
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are Schmidt pairs corresponding to the same singular value a , the quotient of p by p remains
independent of the particular Schmidt pair:

Let (p, p) be a minimal degree solution of (8.25) for some fixed a. Then all other solutions
of this equation for the same a are given by

Thus

This implies that the multiplicity of a singular value is equal to the degree of d minus the
degree of the minimal degree p which satisfies (8.25):

Combining the above results, we can state the main result with regard to the SVD of T-L^.

Theorem 8.14. With the notation above, a is a singular value of the Hankel operator %</,,

0 = 5 G 7/2 (C+), with n, d coprime, and < £, e^- > a corresponding Schmidt pair if and
only if the following equation is satisfied:

where deg n = deg p.

Equation (8.28) is an eigenvalue equation modulo the polynomial d. It can be con-
verted into a matrix equation, and subsequently solved, as follows. Let e,- be a basis of
the space Xd of all polynomials of degree less than deg d, and let Fd be the shift in Xd,
modulo d:

Notice that the characteristic polynomial of Fd is d. p, pj^ denote the vector representations
of p, p*, respectively in the basis e(. Then from (8.28) we obtain the matrix equation

Since d, d* are coprime, there exist polynomials a, b such that

Thus the inverse of d*(Fd) is b(Fd). This implies
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Finally let K be the map such that Kp* = p; the matrix representation of K is a sign matrix.
Hence, with v = deg d, there holds

This is the eigenvalue equation that has to be solved to compute the singular values and
singular vectors of the Hankel operator H^.

Corollary 8.15. LetXi, with multiplicities £/,,, / = 1,... , r, Y^i=i fa = v> be the solutions of
the eigenvalue equation defined by (8.28). Furthermore, let p(, i = 1,. . . , r, be the minimal
degree solutions of this equation. The singular values ofH^ and their multiplicities are

while the Schmidt pairs ofH^ corresponding to a, have the form

Example 8.16. We consider again the system defined by

We chose the basis 1, s in Xd, d = s2 + s + 1. Furthermore, b(^) = ^(s + 1). Thus

Hence M in (8.29) is

The eigenvalues of M are the roots of A.2 — ̂ A — |:

The corresponding (unnormalized) eigenvectors are

Therefore, pi(,s) = 5 — 2Ai, which implies n\ = X\s + AI, and p2(s) = s — 2A2, which
implies 7T2 = A25 + AI.
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272 Chapter 8. Hankel-norm Approximation

8.6.2 The Nehari problem and Hankel-norm approximants*

For simplicity we assume that the Hankel operator is generic in the sense that it has v distinct
singular values of multiplicity one: o\ > 07 > • • • > crv > 0. Thus there are polynomials
Pi,ni,i = 1, . . . , v, of degree equal to v — 1 and signs e, = ±1 such that (8.28) is satisfied,

On dividing by d • p/, this equation becomes

We now have the following main result.

Theorem 8.17. The kth-order stable and optimal Hankel-norm approximant (f)kof^> = jj
is given by

where [ ]+ denotes the stable part of[].

Corollary 8.18. Nehari's theorem. The best antistable approximant of(j> = | is

The Coo-norm of the difference 0 — 0o is equal to the Hankel-norm of<f), namely, a\.

Corollary 8.19. One-step reduction. The best stable approximant 0/0 = | of order v — 1
is

The difference 0 — (j)v-\ is stable and all-pass; its "Hoc- and Hankel-norms are equal to av.

Proof. To prove Corollary 8.18, it suffices to show that the zeros of pi in (8.30) are
all unstable. Let pi have stable zeros; we can factorize pi in its stable/antistable parts:
Pi = [Pi]+ [pi]_. Then

where f, is the inner factor (i.e., stable and all-pass), while f0 is the outer factor (i.e.,
antistable). Let (fi , f*) be a Schmidt pair corresponding to the largest singular value ofH^:
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Hence = a\ \\ fi ||. The following string of equalities and inequalities holds:

The above relationships imply that f0 is a singular vector of the Hankel operator correspond-
ing to the singular value a\ , whose poles are antistable. D

Proof. The proof of Corollary 8.19 is based on the fact that the Hankel operator Hr with
rational symbol r defined by

has singular values, af < o^" < • • • < cr"1, and corresponding Schmidt pairs

By Corollary 8.18, however, we know that p* is antistable. This shows that pv is stable with
degree v — I . Hence the difference between jj and ̂  is all-pass with norm av:

The proof is thus complete. D

Example 8.20 (continuation). Consider again the Hankel operator 7^ with symbol

The best antistable approximant and the best stable first-order approximant are, respectively,

8.6.3 Balanced canonical form*

Recall (8.30). Let the p, be normalized so that

The function 4> can always be decomposed as a linear combination of the singular vectors
of the Hankel operator 11$; namely, there exist y,, i = 1,..., v, such that
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274 Chapter 8. Hankel-norm Approximation

Furthermore, let

Then 0 has a minimal realization (-

by (7.24), namely,

, which has the form given

Remark 8.6.1. The above result shows an additional close connection between the Hankel
operator 'H^ and balancing. (8.31) shows, namely, that the balanced realization is the
realization obtained by using as a basis in Xd (this space can be chosen as a state space for
a realization of 0) the Schmidt vectors of T-L<t>.

Making use of (8.32), we see that the solution to the Nehari problem, namely, ̂  has
a realization which can be written explicitly in terms of the quantities introduced above. We
assume without loss of generality that AI > 0; define

Then ^ has the following realization:

(8.33)

Remark 8.6.2. Another important connection between balancing and the Schmidt pairs
of H^ is that the Nehari extension, that is, the solution of the Hankel-norm approximation
problem for antistable approximants, can be written down explicitly in terms of the balanced
realization of 0.
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Example 8.21. In the example discussed above,

Recalling that XiA.2 = —\, the realization of ̂  according to (8.33) is

which agrees with the expression for ̂  obtained previously.

8.6.4 Error formulas for balanced and Hankel-norm
approximations*

be the reduced-order models of order v — l obtained from 0 by balanced truncation, Hankel-
norm approximation, respectively. The following relations hold:

Furthermore,

These relationships imply that error e^, is the sum of two all-pass functions and its norm is
2crv. Furthermore, the errors e/, and e/^ are all-pass with norm av.

8.7 Chapter summary
Although approximation by balanced truncation enjoys two important properties (namely,
preservation of stability and existence of an error bound), it is not optimal in any norm. The
most natural norm in which to seek optimality is the 2-induced norm of the convolution
operator S associated with the linear system T, in question (in other words, the 'Hoc-norm of
Z). This problem, however (except in very special cases), remains unsolved. If this norm
is replaced by the 2-induced norm of the Hankel operator H associated with Z, the optimal
approximation problem can be solved. Recall that the Hankel-norm is the 2-induced norm
of the map % which assigns past inputs into future outputs and is different from the 'H00-
norm (and less than or equal in value). The preceding chapter was dedicated to a detailed
discussion of optimal and suboptimal system approximation in the Hankel-norm.

Let
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The key construction for solving this problem is the all-pass or unitary dilation of the
system E which is to be approximated. This means that Z is embedded in a larger system
(i.e., a system with more states) which is all-pass (unitary) and denoted by TLe. The beauty
of the theory lies in the fact that the norm of the all-pass system determines the order of
the optimal (or suboptimal) approximants. It should be stressed that as far as the 'Hoc-norm
of the error system is concerned, the optimal approximation in the Hankel-norm need not
provide better approximants than balanced approximation.

In the latter part of the chapter, a polynomial approach to this theory is presented that,
although it uses a framework not discussed in this book, is presented because it yields new
insights; it can be omitted without loss of continuity. For instance, it is interesting to note
that the decomposition of the transfer function in terms of singular (Schmidt) vectors yields
the coefficients of a balanced realization of the underlying system.
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Chapter 9

Special Topics in
SVD-based Approximation
Methods

A model reduction method in wide use is proper orthogonal decomposition (POD). We
describe this method and show its connection with both the SVD and balanced trunca-
tion. Subsequently, another widely used approximation method, modal approximation, is
discussed. This is an EVD-based approximation method and may lead to approximants
that are not close to the original system, if A has Jordan blocks. In section 9.3 we pro-
vide a general view of approximation by truncation and the associated approximation by
residualization.

The chapter concludes with a study of the decay rate of the Hankel singular values
of a system E. This is important because the sum of the neglected Hankel singular values
provides error bounds for balanced and Hankel-norm approximants; thus the faster the decay
of these singular values, the tighter the error bound.

9.1 Proper orthogonal decomposition
This section discusses a model reduction method known as POD (proper orthogonal de-
composition). This can be considered as an application of the SVD to the approximation of
general dynamical systems. A starting point for this method is an input function or an initial
condition. The resulting state trajectory that lives in E", where n is the number of state
variables needed to describe the system, is measured. The issue then becomes whether it is
possible to approximate this state trajectory with one living in a lower-dimensional space
R*, where k is smaller than n. Toward this goal, a projector known as Galerkin or Petrov-
Galerkin is constructed, and the original dynamical system of dimension n is reduced to
one that has dimension k. The problem that arises is to determine how well this reduced
system approximates trajectories other than the measured one.

In the next two sections, we provide a brief exposition of the POD method and the
associated Galerkin projection. Section 9.1.3 examines the similarities between POD and
balancing and proposes a method for obtaining a global error bound; this approach (inspired
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278 Chapter 9. Special Topics in SVD-based Approximation Methods

by balanced truncation) concludes that projection on the dominant eigenspace of the product
of two gramians leads in the linear case to a global error bound, that is, an error bound that
is valid for trajectories other than the ones used to obtain the projector.

9.1.1 POD

Given a function \(t, w) of time t and the vector valued variable w, let x(?, , wy ) be a finite
number of samples of x for t = t \ , . . . , tN and w = wi , . . . , wn . The data are collected in
time-snapshots denoted by

We are looking for a set of orthonormal basis vectors Uj •
x; = Y%=i Yjfuj> * = 1, 2, . . . , W, that is,

n, j = 1 , 2, . . . , N, such that

The u, are sometimes referred to as empirical eigenfunctions or principal directions of the
"cloud" of data {x,}. In addition, it is required that the truncated elements xt = Y?J=I Yjiuj>
i = 1, 2 , . . . , N, that is, the snapshots reconstructed from only k empirical eigenfunctions,

approximate the elements in the family {xr} optimally, in some average sense. Often it is
required that the 2-induced norm of the difference ||X — X||2 be minimized. Equation (9.1)
is known as proper orthogonal decomposition of the family {x/}. The above optimality
condition can also be defined by means of the gramian (or autocorrelation matrix) of the
data, namely,

The optimization problem can now be formulated as a matrix approximation problem,
namely, find

such that the 2-induced norm of the error ||P — P||2 is minimized.
The problem just stated is precisely the one solved by the Schmidt-Mirsky-Eckard-

Young result, Theorem 3.6. Given X, let X = UEV* be its SVD. The columns of U are the

co
nt

ro
len

gin
ee

rs
.ir



9.1. Proper orthogonal decomposition 279

desired empirical eigenfunctions and the coefficients are given by F = EV*. If the number
of spatial samples n is bigger than that of time samples N, assuming that £ e RN*N , the
computation of the SVD of X can be achieved by solving the (small) eigenvalue problem
X*X = V£2V*; then the columns of XV are, up to scaling, the requited eigenvectors, i.e.,

9.1 .2 Galerkin and Petrov-Galerkin projections

The next concept is that of a projection. Recall the dynamical system defined by (1.1):

Using the projection FT = VW*, where W*V = I*, V, W e Rnxk, we obtain the reduced-
order dynamical system

whose trajectories x = W*x evolve in a ̂ -dimensional subspace. If the V = W, that is, the
columns of V form as orthonormal set, FI is orthogonal and is called a Galerkin projection.
Otherwise, if V / W, we speak of a Petrov-Galerkin projection.

Using the considerations developed in the previous section, n is chosen using a POD
method applied on a number of snapshots (i.e., samples of the state computed at given time
instants) of the original system. Let these snapshots x(f;), j = 1, . . . , N, be provided. Given
the matrix of snapshots X = [x(ti) x(t2) • • • x(tN)], we compute the SVD X = UEV*.
Assume that the singular values of X decay rapidly and only k of them are significant for
the application in question. The Galerkin projection consists of the leading k left singular
vectors of the snapshot matrix X, that is,

Thus Vx = VV*x is the projection of x onto span col U^.

9.1.3 POD and balancing

The method just described is POD combined with a Galerkin projection. It is in wide use
for the simulation and control of nonlinear dynamical systems and systems described by
PDEs.

We will now show that the method of approximation of linear systems by balanced
truncation discussed in Chapter 7 is a POD method combined with a Petrov—Galerkin
projection applied to the impulse response of the system.

Consider a linear system of the usual form, namely,

One choice for the input function is the impulse 8(t). If m = 1, the corresponding state
is x(t) = £ArB. If m > 1, each input channel is excited separately, u(f) = <5(0e/, where
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280 Chapter 9. Special Topics in SVD-based Approximation Methods

e, € Rm is the canonical ith unit vector. The resulting state is x, (t ) = '̂B, , where B/ is the
/th column of B. In this case, we collect all such state trajectories X(t ) = [xi (t ) • • • \m (t)]
and compute the gramian:

We recognize this quantity as the reachability gramian of the system discussed in section
4.2. 1 and in particular (4.28). If A happens to have eigenvalues in the left half of the complex
plane (i.e., the system is stable), we can let T approach infinity, in which case we recover
the infinite reachability gramian P introduced in (4.43).

POD now proceeds by computing an eigenvalue decomposition of this gramian:

where it is assumed that A2 contains the small or negligible eigenvalues of P. The Galerkin
projection is thus defined by the leading eigenvectors of this gramian, namely, Ui, and the
reduced system is described by

According to the analysis presented earlier, this is the subsystem of the original system
which retains those states which are easier to reach while discarding the states which are
the most difficult to reach. Recall that by (4.55), the energy required to steer the system to a
given state (starting from the zero state) is related to the inverse of P; therefore, discarding
the small eigenvalues corresponds to discarding the states which are most difficult to reach.
In conclusion, for linear systems, POD approximation using the impulse response is related
to balanced truncation, where in POD approximation only the degree of reachability of the
states is considered.

Balanced truncation, however, suggests that if, in addition to the degree of reachability
of the states, we also consider their degree of observability, a global approximation error
bound can be derived (see (7.5)). Therefore, let Q be the (infinite) observability gramian
which satisfies as usual the Lyapunov equation A*Q + QA + C*C = 0. To obtain error
bounds, according to Theorem 7.9, we need to project onto the dominant eigenspace of
the product of the two gramians PQ. It readily follows from (7.16) that if we partition
£ = ( E|

 S2 ) s° tnat £2 contains the (square root of the) negligible eigenvalues ofPQ,
the projection n = T/jTi, where

leads to the following reduced system:

The projected system is balanced, since PT* = T,i Si and QT/i = T* EI imply
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9.1 . Proper orthogonal decomposition _ 281

and also

0 = If, (A* Q + QA + C*C)Ta = (T^A'TpE! + Ei(T,ATn) + (T^C'XCTa) = 0.

If we denote by y the output of the reduced system, the error bound obtained tells us that
the £2-norm of the difference y - y is upper bounded by twice the sum of the neglected
singular values for all inputs u of unit norm:

It should be stressed at this point that even if the output of the system is the state y = x, in
other words, C = !„, to obtain an error bound on the behavior of the approximate system,
the observability gramian has to be considered. In this case, the corresponding Lyapunov
equation becomes A*Q + QA + 1 = 0. The projected state is x = TI%, and the output or
reconstructed state is x = T/ix = T/iTiX. The error bound then asserts that

for all input functions of unit energy.

Remark 9.1.1. (a) While the projection onto the dominant eigenspace of one gramian (either
P or Q) is orthogonal (Galerkin projection), the projection onto the dominant eigenspace
of their product PQ is an oblique (Petrov-Galerkin) projection.

(b) If the dynamical system in question is autonomous, that is, in the linear case
x(f) = Ax(r), the snapshots result from a preassigned initial condition x(0). In this case,
the snapshots of the state of the autonomous system are the same as the snapshots of the
impulse response of the dynamical system x = Ax + Bu, where B = x(0).

(c) If the snapshots result from an input other than the impulse, weighted gramians
become relevant. (See section 7.6 for details.)

(d) The snapshots needed to construct the observability gramian can be interpreted
using the adjoint system. According to Theorem 4.23, the following holds: the reachability
gramian of the adjoint (dual) system is the same as the observability gramian of the original.
If the system in question is linear, the adjoint system running backward in time (see (5.15))
is

where p is the state of the adjoint system and y, u are the input and output of Z*, respectively.
In numerous optimal fluid control problems, the adjoint equation enters the formu-

lation of the problem in a natural way through the optimization. Consequently, collecting
snapshots of the adjoint system is straightforward. Furthermore, this procedure can be im-
plemented even if the dynamics are not linear. Therefore, we would like to propose instead
of an orthogonal Galerkin projection, the following:

Use an oblique (Petrov-Galerkin)projection onto the dominanteigenspace of the product
of two graminas. These gramians can be constructed from snapshots of the original
system and snapshots of the adjoint system.
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282 Chapter 9. Special Topics in SVD-based Approximation Methods

(e) Some historical remarks on the POD. Given its conceptual simplicity, POD is
in wide use for model reduction of systems described in general by nonlinear PDEs or by
nonlinear ODEs. This method, also known as the method of empirical eigenfunctions for
dynamical systems, was introduced by Lorenz in 1956 for the study of weather prediction
[231]. Subsequently, Lumley, Sirovich, and Holmes made important contributions; see
[298], [63]. POD is also related to the Karhunen-Loeve expansion introduced in the theory
of stochastic processes in the late 1940s.

There is an extensive literature on POD methods. The papers mentioned below are a
few rather randomly chosen contributions. The original work was geared toward capturing
the open-loop dynamics with differential equations having few degrees of freedom (low
dimension); in this regard, we mention the work of Kevrekidis and coworkers as exemplified
in [98]; for more recent work in this direction, see [277] and [247]. The connection between
POD and balancing has also been noted in [356]. POD methods have also been applied
to control problems. We mention here the work of Burns, King and coworkers [81], [29],
[30], [82], [203], [204]; Banks, Tran, and coworkers [49], [199], [200]; Kevrekidis and
coworkers [4], [296]; Kunisch and Volkwein [349], [212], [213]; and Hinze [3], [174].
We would also like to mention [160], [273]. Model reduction of nonlinear systems using
empirical gramians has been studied in [215], [216], [162], [163]. Also worth mentioning is
the work of Fujimoto and Scherpen on balancing for nonlinear systems [124] and the work
of Barnieh [40], [41] on a system theoretic approach to the study of fluids.

9.2 Modal approximation
One widespread application of the truncation approach to model reduction, besides balanced
truncation, is modal truncation. Modal approximation is not derived from balancing. It is
derived by looking at the EVD not of the product of gramians PQ but simply of A. In
particular, the transfer function is decomposed in terms of partial fractions and only those
partial fractions are retained that have their poles closest to the imaginary axis. For details,
see [341].

Assuming that A is diagonalizable, we can transform the state-space representation
of 2! into the basis composed of the eigenvectors of A:

where B/,: e Rlxm denotes the ith row of B and C:J e Rpxl denotes the y'th column of C.
If the system is stable, the eigenvalues of A can be ordered so that 7£e(A.(+1) < Ke(Xi) < 0;
the reduced system Zr obtained by truncation now preserves the k dominant poles (i.e., the
k eigenvalues with largest real part). It can then be shown that

In some cases, e.g., when the poles have physical significance, this can be a meaningful
model reduction method. However, if the eigenvalue decomposition contains Jordan blocks,
this method may fail.
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9.2. Modal approximation 283

The principle of choosing a subsystem, namely, the one consisting of the dominant
poles, may not be appropriate for model reduction. We present a simple example that shows
that the nearness of the poles to the imaginary axis need bear no relationship to the dominant
behavior of the frequency response (i.e., to the location of the resonances of the system).

It is well known that polynomial-exponential functions of the form tke~Xt, where
k — 0, 1, 2 , . . . , form a basis for £2[0, oo]. If we orthonormalize this family of functions,
we obtain the Laguerre basis. Recall the following Laplace transform pairs:

The (unnormalized) Laguerre functions, expressed in the Laplace domain, are as follows:

It can be shown that the above functions have the same norm, namely, -4=. We now wish
to expand e~^f in terms of the above functions; in the frequency domain we have

Taking inner products in the time domain, we obtain the following values:

Notice that this is the transfer function of the fcth basis function evaluated as s = At. We
thus obtain the following expansion:

As an example, we consider the expansion of the second-order transfer function having a
pair of complex conjugate poles At and ji:

The coefficients of the expansion of H = ^2i>oaiEi in terms of the above orthonormal
basis are
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284 Chapter 9. Special Topics in SVD-based Approximation Methods

Figure 9.1. Top: absolute value of the first 100 coefficients of the expansion ofH
(log scale). Bottom: Bode plots of the original system and three approximants.

In particular, we take // = a + ico, where a = 1/4 and co = 1. The frequency response

has a maximum at frequency ^, which is 2. The expansion of this transfer function in
terms of ̂  1S shown in Figure 9.1. Notice that the magnitude of the coefficients of this
expansion decays exponentially, and the 'Hoo-norm of the error system between the original
and a 4th-order approximation is 1.498, while that with a lOth-order approximation drops
to 1.126.

Conclusion. Let the to-be-approximated system be G# C$0 = X^b=ia*Efc(s); for large
N, its frequency response comes close to that of the second-order system H(s). Following
the above considerations, approximation of G# by modal truncation gives slow convergence,
although the magnitude of the coefficients &k is exponentially decreasing. Therefore, modal
truncation has difficulty capturing the behavior due to multiple poles, and as argued above,
any behavior can be approximated arbitrarily by means of a single pole given high-enough
multiplicity.
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9.3. Truncation and residualization 285

9.3 Truncation and residualization
Given T, = ( p p )»let us consider a partitioning of the state x = ( *J V together with

a conformal partitioning of the state space representation,

As discussed in section 7.2, a reduced-order model can be obtained by eliminating x2, i.e.,
truncating the state. The resulting reduced system is

We showed earlier (see Theorem 7.9) that if Zr is constructed by balanced truncation, it
enjoys stability and an error bound. In general, however, the only property of the reduced
system Er is that its transfer function at infinity is equal to the transfer function of the
original system Z at infinity:

An alternative to state truncation is state residualization. If A22 is nonsingular, we
can define the following reduced-order system:

This reduced-order model is obtained by residualizing x2, that is, by setting x2 = 0. Resid-
ualization is equivalent to singular perturbation approximation; for an overview, see [208],
and for a more recent account, see [51]. An important attribute of this model reduction
method is that it preserves the steady state gain of the system:

This fact is not surprising. In [230] it is shown that reduction by truncation and reduction
by residualization are related through the bilinear transformation j. Thus while the former
provides a reduced-order system which approximates the original well at high frequencies,
the latter provides a good approximation at low frequencies.

It should be mentioned that residualization can be applied to any realization of the
original system Z. In particular, it can be applied to the one obtained by balancing. In the
above-mentioned reference, it was shown that in this case, stability is preserved and the same
error bound exists as for the reduced-order system obtained by truncating the balanced state.

9.4 A study of the decay rates of the Hankel singular
values*

The issue of decay of the Hankel singular values is of interest in model reduction by means,
for instance, of balanced truncation, since the sum of the neglected singular values pro-
vides an upper bound for an appropriate norm of the approximation error. This section
follows [21].
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286 Chapter 9. Special Topics in SVD-based Approximation Methods

The decay rate involves a new set of invariants associated with a linear system, which
are obtained by evaluating a modified transfer function at the poles of the system. These
considerations are equivalent to studying the decay rate of the eigenvalues of the product
of the solutions of two Lyapunov equations. The related problem of determining the decay
rate of the eigenvalues of the solution to one Lyapunov equation is also addressed. Very
often these eigenvalues, like the Hankel singular values, are rapidly decaying. This fact
has motivated the development of several algorithms for computing low rank approximate
solutions to Lyapunov equations. However, until now, conditions ensuring rapid decay
have not been well understood. Such conditions are derived here by relating the solution
to a numerically low rank Cauchy matrix determined by the poles of the system. Bounds
explaining rapid decay rates are obtained under some mild conditions.

9.4.1 Preliminary remarks on decay rates*

In the theory of function approximation by means of truncated Fourier series expansions or
truncated wavelet expansions, there are explicit results relating the approximation error to
the decay rate of the Fourier or wavelet coefficients. For example, the following result can
be found in [100]. Consider functions / defined on the interval [0, 1], which are possibly
discontinuous but have bounded variation. If we approximate / by means of a truncated
n-term Fourier series expansion or by means of a truncated n-term wavelet expansion,
the approximation error decays asymptotically as n ~ 2 , n~l, respectively. Furthermore, if
additional smoothness assumptions on / are made, the decay is faster.

Our purpose here is to explore the issue of decay of the approximation error as applied
to linear dynamical systems. Recall that the Hankel singular values are the square roots
of the eigenvalues of the product of two gramians P, Q which are positive definite. As
mentioned earlier, the error bound is || E — Z ||oo < 2 Y^=k+i a' • Thus> me smaller the sum
of the tail of the Hankel singular values, the better the approximation.

More precisely, our purpose is first to investigate the decay rate of the eigenvalues of
one gramian, and second to investigate the decay rate of the eigenvalues of the product of
the two gramians, that is, the decay rate of the Hankel singular values.

We begin by considering only one of the two Lyapunov equations, namely,

In general and especially when n is large, it is unwise or even impossible to solve for
P directly since this requires O(n3) flops and O(n2) storage. Many have observed that
the eigenvalues of P generally decay very fast [155], [267]. Because of this, P may
be approximated by a low rank matrix (see section 12.4). Several iterative methods for
computing a low rank approximation to P have been proposed [155], [176], [187], [267],
[284]. See [20] for a recent survey of such methods. There are some results on the eigenvalue
bounds for the solution of Lyapunov equations [214], [108], but these do not explain why
Lyapunov equations permit the very low rank approximate solutions observed in practice.
The eigenvalue bounds surveyed in [214] focus mainly on AP+P\*+S = OwithS e M.nxn

positive semidefinite, and the special low rank structure of S = BB* is not fully exploited.
Moreover, the lower bounds for small eigenvalues of P are trivially zeros. Penzl [266]
took into account the low rank structure of BB*. He established upper bounds on the ratios
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9.4. A study of the decay rates of the Hankel singular values* 287

for symmetric A, but this approach depends heavily on symmetry and is not easily
generalized to the nonsymmetric case.

First, decay rates are derived that are direct estimates of the error of the best rank
k approximation to one gramian P. In contrast to the Penzl estimates, our results do not
establish explicit bounds for the eigenvalues of P. Instead, we obtain an outer product
representation of the solution of the form

When A has an eigenvector basis that is not too ill-conditioned, the norms of vectors zy
are uniformly bounded by a modest constant, and hence the ratio 8^+1/81 gives an order of
magnitude relative error estimate for a rank k approximation to P.

These results lead directly to an explanation of why it is often possible to approximate
P with a very low rank matrix. They are closely related to the eigenvalue decay rates of
Penzl [266]; these results are stated in terms of the condition number of A which is assumed
symmetric. Our bounds are functions of the eigenvalues of A and make no symmetry
assumptions. We give some numerical results and compare the two. These results show
that the bounds given here seem to give a significantly better indication of the actual decay
rate of the eigenvalues of P.

Next we turn our attention to the Hankel singular values of Z . Due to their importance
in model reduction, in particular, balanced model reduction of large-scale systems, there
has been some activity recently on the issue of the decay rate of these singular values. It
has been observed that in many cases these quantities decay very fast, and therefore the
corresponding systems are easy to approximate. Two recent approaches are [45] and [48].

Second, the problem of determining the decay rate of the Hankel singular values is
discussed. It is based on a new set of system invariants. If the transfer function of the system
in question is H = E, the invariants are the magnitudes of ̂  evaluated at the poles of H.
The main result states that these invariants and the Hankel singular values are related by
means of multiplicative majorization relations.

9.4.2 Cauchy matrices*

Our results depend heavily on properties of Cauchy matrices, which appear fundamentally
in direct formulas for solutions of Lyapunov equations. Moreover, there are closed form
expressions for elements of Cholesky factors and inverses of Cauchy matrices that lend
themselves to derivation of the decay estimates we seek.

Given two vectors x, y e Cn, let £,-, r\i denote their /th entry, respectively. The
Cauchy matrix C(x, y) e Cnxn is denned as follows:

It readily follows that C(x, y)* = C(y, x), where the superscript * denotes complex conju-
gation followed by transposition. Define the vector d(x, y) e Cn as follows:
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288 Chapter 9. Special Topics in SVD-based Approximation Methods

If the components of x and y are such that no entry of d(x, y) takes a value of 0 or oo, then
C(x, y) is nonsingular and the following result holds.

Lemma 9.1. With the notation established above,

The proof of this result follows from the closed form expression of the inverse of the
Cauchy matrix; see, e.g., section 26.1 of [171]. Actually, this result is quoted for real x and
y, and a slight extension is necessary to obtain the correct formula for complex x and y.

The special case x = y = I = (A-i, A , 2 , . . . , An)* is of interest here. It turns out that
when C is positive definite, there are explicit formulas, due to Gohberg and Koltracht [143],
for the elements of the Cholesky factors.

Lemma 9.2. If Tie (I) < 0, then -C(t,i) is positive definite. Moreover, if-C(l,l) —
LAL* w the Cholesky factorization, then

where A = diag (8\, < 5 2 , . . . , <$„) and L w lower triangular with ones on the diagonal.

Remark 9.4.1. Formula (9.4) implies that if x and y are real, a diagonally scaled version of
C(x, y) is J-unitary. Let the operations | • | and *J~- on vectors or matrices be meant to apply
element-wise. Let also d(x, y),- = pie10' and d(y, x); = pielGi. Also let J i , J2 be diagonal
matrices with (Ji)n = ei0i and (J2)!! = ei§i. There holds

Thus, if x, y € R", Ji, J2 are diagonal matrices of signs (i.e., ±1), and F is Ji, J2-unitary.

9.4.3 Eigenvalue decay rates for system gramians*

A canonical gramian and the Cauchy kernel*

In this section, we establish the main result on the decay rates of the eigenvalues of a single
Lyapunov equation. We consider the SISO case, so B is a column vector which will be
denoted by b, and the Lyapunov equation is

We assume that A is a stable matrix (all eigenvalues in the open left half plane). Let Ac be
the companion matrix for A,

co
nt

ro
len

gin
ee

rs
.ir



9.4. A study of the decay rates of the Hankel singular values* 289

where J is a left shift matrix with ones on the first subdiagonal and zeros elsewhere. The
vector g* = (oro, «i, . . . , an_i) defines the characteristic polynomial of A with q(s) =
del (si — A) = X^=o ais' ' an = 1 • Define G to be the solution of the canonical Lyapunov
equation,

Let b be any vector such that (A, b) is reachable and let K = [b, Ab, A2b, . . . , A^b] be
the Krylov or reachability matrix. Since (A, b) is reachable, 7£ is nonsingular and T^CI = b.
It follows easily from the Cay ley-Hamilton theorem that A.1Z = KA.C. We immediately
have the following lemma.

Lemma 9.3. P solves A7> + PA* + bb* = 0 if and only if P = UGH*.

Proof. This is easily seen by multiplying on the left and right by 72. and 7£* to get

0 = ft(AcG + GA* + eie*)ft* = \KGK* + UGn*\* + bb*.

Since A is stable, this solution is unique and the lemma is proved. D

This result provides a direct relationship with the Krylov or reachability matrix 7£,
but further analysis is needed to derive decay rates. These rates are a function of the
eigenvalues A,; of the matrix A. When A is diagonalizable, one has YAC = AY, where Y is
the Vandermonde matrix of powers of the eigenvalues. The y'th row of Y is

and A = diag (Aj , ̂ 2, . . . , An). We shall define the Cauchy kernel to be the matrix

This kernel provides the decay rates we seek due to the following result.

Lemma 9.4. Let X be a matrix of right eigenvectors for A so that AX = XA and assume
the columns 0/X each have unit norm. Then

is Hermitian positive definite and P = X&CX£, where X^, = Xdiag (b) with b = X-1b.

Proof. First observe that

From Lemma 9.3 we have P = KGU* = Xj,YG(XfrY)* = X^CX*,. Since the pair (A, b)
is reachable, b cannot be orthogonal to any left eigenvector of A. Hence, no component of
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290 Chapter 9. Special Topics in SVD-based Approximation Methods

b = X~Jb is zero and the matrix diag (b) is nonsingular. Moreover, \Xb =
= e, where e* = (1, 1, . . . , 1). Therefore,

and X

By inspection, one finds that C is a Cauchy matrix with dj = ^^r . Since A is stable, A is
stable and C must be positive definite. This concludes the proof. D

We are now prepared to derive a decay rate based on the eigenvalues of A. Since
C is positive definite, it has a Cholesky factorization. Moreover, if diagonal pivoting is
included to bring the maximum diagonal element to the pivot position at each stage of the
factorization, we may assume an ordering of the eigenvalues of A and hence a symmetric
permutation of the rows and columns of C such that

with A = diag (8\ , 82, . . . , <$«) and with L unit lower triangular and such that each column
Ley satisfies ||Ley||oo = 1. Formula (9.5) of Lemma 9.2 gives the 8k in terms of the
eigenvalues of A, and one may think of the diagonal pivoting in the Cholesky factorization
as a means to order (i.e., index) these eigenvalues. Let A, (A) denote the spectrum of A. If
the first k — 1 eigenvalues $k-\ = (Ay • : I < j < k — 1} C A. (A) have been selected and
indexed, then the Ath eigenvalue A* is selected according to

We shall call this selection the Cholesky ordering. Now, given a fixed A in the open left half
plane, the function

is a linear fractional transformation that maps the open left half plane onto the open unit
disk. Thus, |0(Ay)| < lforeveryA,y E A.(A). From this, we may conclude that the sequence,y
[8j •} is decreasing with S\ = 2max{7^(x)) = max

the following theorem.
I - These results may be summarized in

Theorem 9.5. Let P solve the Lyapunov equation AP + P\* + bb* = 0. Let Pk =
&jzjz*j> 

— ^2 > • • • > &n > 0, as given above and where Zy = Then

Proof. The previous discussion has established
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since the 8j are decreasing and ||z;Z*||2 = \\Zj\\\- Due to HLe/Hoo = 1, we have ||Ley||2 <
(n - j + 1)1/2, and thus

Hz;||2 < HX||2||b||2||Le,ll2 = ||X||2||X-b||2(ii-./+l) < K2(X)||b||2(n-*), j > k.

This completes the proof. D

Corollary 9.6. Decay rate estimate. When A has an eigenvector basis that is well-
conditioned, the norms of the vectors z; are uniformly bounded by a modest constant and
hence the following estimate is obtained:

This gives an order of magnitude relative error estimate for a rank k approximation to P.
The eigenvalues X.k(P) are ordered in the Cholesky ordering, defined by (9.6).

Departure from normality increases the condition number of X and renders this bound
useless. One might see the low rank phenomenon accentuated through tiny components of
b. On the other hand, the components of b may be magnified in a way that cancels the
effects of the rapidly decaying 8j.

Generalization to MIMO*

The bounds of the previous section apply only to the case where B = b is a single vector.
However, this result still has implications for the general case. Let B = [bi, b2 , . . . , bOT],
where b, e R", / = 1, 2 , . . . , m. Note that the Lyapunov equation may be written as

Let PI be the solution to

From (9.5) above, we have

Let

where ziy = Xdiag (X~1b/)Ley-. Linearity of the Lyapunov equation yields

With this notation we may establish the following result.
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292 Chapter 9. Special Topics in SVD-based Approximation Methods

Theorem 9.7. Let Pkm = ]£,, fyZyZJ. I f - <€, then Pkm w «« approximation to P of
rank at most km -which satisfies

with 81 « \\P\\2.

Proof. Since Z;ZJ = J^Jli zyZy » il follows that

for j > k, where the estimates of Theorem 9.5 are applied to each ||z,;z*; ||2 and the final
result follows from an argument analogous to that of Theorem 9.5. D

Remark 9.4.2. There is a close connection between these bounds and the Krylov (reach-
ability) sequence A*-1B, k = 1, . . . , n. In particular, with A e R"x" stable, B e Rwxm,
let P be the unique solution to AP + P\* + BB* = 0. Then rank (P) = rank (Kn\
where 1ln = [B, AB, A2B, . . . , A"-1B], is the reachability matrix. This fact is numerically
reflected in the decay rates.

A bound for the decay rate

Formula (9.7) provides an estimate for the decay rate of the eigenvalues of the Lyapunov
equation. In Chapter 4 of [373], an upper bound for the decay rate was derived, which we
state next. The approach used is based on the SVD.

Given the eigenvalues A/ (A), we first define the complex constants v/ € C, / =
1, . . . , n, as the solution of the following min-max problem:

The following result holds.

Lemma 9.8. Let A be stable and diagonalizable with X the right eigenvector matrix.
Furthermore, let B have m columns. There holds

where K (X) denotes the condition number ofX and the v,- solve the min-max problem defined
above.

The min-max problem mentioned above remains in general unsolved. A straightfor-
ward choice of these parameters is v,- = A/(A), where the eigenvalues are ordered in the
Cholesky ordering. In this case, we obtain the following computable upper bound.
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9.4. A study of the decay rates of the Hankel singular values* 293

Corollary 9.9. Computable decay rate bound. With the choice v/ = A/(A), the following
bound holds:

where the eigenvalues A/ (A) are ordered in the Cholesky ordering.

This expression is similar to (9.7), although the method used to obtain it is different.
The proof of the above lemma is given in [373],

9.4.4 Decay rate of the Hankel singular values*

In this section, we present a bound for the decay rate based on a new set of system invariants.
The theory requires us to consider the transfer function of the system H = |j, n = degq.
The invariants we introduce are the magnitudes of £ evaluated at the poles of H. The
main result states that these invariants and the Hankel singular values are related by means
of multiplicative majorization relations.

Once again, we consider the SISO case, and we assume for convenience that the
eigenvalues A/ of A are distinct and that the system is stable. The usual assumption of
minimality (reachability and observability) is also made.

Recall that the Hankel singular values of the system £ are defined as the square roots
of the eigenvalues of the product of the reachability gramian P and the observability gramian
Q: o/(Z) = VA/CPQ), i = !,...,«. These quantities are assumed ordered in decreasing
order af > oi+\. These singular values are invariant under state-space transformations.

We now introduce a new set of system invariants as follows. Let the transfer function
be

Due to the minimality of the above realization, the eigenvalues of A are the same as the poles
of H(.s), that is, the roots of the denominator polynomial q(s), that is, q($) = det (5! — A)
= ]C/*=o a''s'' a/i = 1 • We make use of the standard definition,

We now define the following quantities:

Recall that the Hankel singular values of all-pass systems satisfy the property a\ = • • • = on •
A consequence of the above definition is that the same holds for the x's.

Lemma 9.10. A system is all-pass (unitary) if and only if theyi are all equal: y\ = • • • = yn.
In this case, the Hankel singular values of the system and theyi,i = \,...,n, are all equal.

The proof of this result is given in section 9.4.4.
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294 Chapter 9. Special Topics in SVD-based Approximation Methods

Multiplicative majorization

To state the main result of this section, we need the notion of multiplicative majorization.
This is a partial ordering relation between vectors. Additive and multiplicative majorization
is discussed in section 3.5. For convenience, we repeat next the definition which will be
needed in the sequel. Let y, a e Rn be the vectors whose j'th entry is equal to y,-, cr/,
respectively. According to Definition 3.20, we say that o majorizes y multiplicatively, and
write \y | -<M a, if the following relations hold:

The result quoted next is due to Sherman and Thompson [295].

Lemma 9.11. Let the matrices F, U, P satisfy the relationship F = UP, where P > 0 is
positive definite and U is unitary. If 'y(- = A.,-(F), |y,-| > |y/+i|, and 01 = A.,-(P) > cr(-+i,
i = 1, . . . , n — 1, then multiplicative majorization holds, namely,

The converse is also true. Given P and yt satisfying the above multiplicative majorization
relations, there exist a matrix F, where y(- are its eigenvalues, and a unitary matrix U such
that F = UP. The main result of this section is the next theorem.

Theorem 9.12. Decay rate of the Hankel singular values. The vector ofHankel singular
values a majorizes the absolute value of the vector of new invariants y multiplicatively:

Remark 9.4.3. (a) The last relationship of the main result, namely, that the product the |y, |
is equal to the product of the Hankel singular values, was first reported in the discrete-time
case by Mullis and Roberts [245].

(b) It follows from the majorization inequalities that Flf=1 \yn-i+i I > Flf=1crn_i+i for
i = 1,2, ... ,n — 1 and with equality holding for i = n. This implies

that is, the logarithmic sum of the tail of the Hankel singular values can be bounded above
by the logarithmic sum of the tail of the y,.

Interpretation of Theorem 9.12

The issue in balanced model reduction is how fast the Hankel singular values decay to zero.
In many cases, the poles (natural frequencies) of the system are known together with a

Thus in principle, one can compute the y., with(, with

relatively small computational effort. The main theorem then says that the (discrete) curve

state space realization
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9.4. A study of the decay rates of the Hankel singular values* 295

Figure9.2. Left: Yi=i 1°§ \Yi\ (upper curve) and^i=l logo,- (lowercurve)versus
k = 1,. . . , 5. Right: five pairs ofy/a curves for all-pole systems of order 19.

whose kth value is the product n*=1 |y,- | is of importance. It is best to plot the logarithm of
this curve, namely, ]C?=i log |y/1, because the y, tend to decrease rapidly and their product
even more so. The main result asserts that given this curve, the corresponding curve for
the Hankel singular values £^=1 log a, remains above, and in addition the two curves have
to converge at the last point ^/=i loger, = ]C£=i l°glX;l- Furthermore, the curves are
monotone decreasing. This is depicted for a fifth-order system on the left-hand side of
Figure 9.2. Stated differently, let o> be known. Then the at, t > k, lie in the region
bounded from above by logffjt and ]T log |y*|. This means that X)t=i l°Sai has to lie on
the dotted line, while the last two points coincide.

On the right-hand side of Figure 9.2, five pairs of y/cr curves for all-pole systems of
order 19 are depicted. The y curve is always the lower one. The units on the j-axis are
orders of magnitude. The curves are from upper to lower, as follows. The first system has
poles with real part equal to —1. The next has poles which are on a 45-degree angle with
respect to the negative real axis. The thkd has real poles only. Finally, the last two pairs
have their poles spread apart by a factor of 10 with respect to the previous two pairs.

Remark 9.4.4. A consequence of the main result is that nonminimum phase systems are
harder to approximate than minimum phase ones. Recall that minimum phase systems are
systems with stable zeros, i.e., zeros that lie in the left half of the complex plane. This
follows from the definition (9.9) since, assuming that the poles are the same, each y, for a
minimum phase system is smaller than the y, for a system with all zeros in the right half of
the complex plane.

The proof of Theorem 9.12

Consider again the system £ where the previous assumptions hold. Because the poles are
distinct, the transfer function can be decomposed in a partial fraction expansion of the type
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296 Chapter 9. Special Topics in SVD-based Approximation Methods

It follows that p(s) = Dq(^) + £}"=1 b{ n/¥, (s - A.,). Therefore, p(X/) = bt Uj# (X/ - Xy).
Notice also that

From the partial fraction decomposition follows the state-space realization

Then the reachability gramian is equal to the Cauchy matrix with x = y = I (the vector
of eigenvalues A/), while the observability gramian is a diagonally scaled version of the
Cauchy matrix with x = y = I (the vector of complex conjugate eigenvalues). Let B be
the diagonal matrix whose entries on the diagonal are b\. Then

From the above remarks, it follows that d(£, €)/ = £%\ = bt
 nJ,^'^. Thus from theq w; I\J(A.J+A.J)

previous discussion and in particular Lemma 9.1, we conclude that

This implies

From here we proceed as follows. Let T be a balancing transformation, i.e., TPT* =
T~*QT~! = E, where E = diag (<TI, . . . , crn), are the Hankel singular values of E. Then

where \/E denotes the square root of E, i.e., \/E^\/E = E; then the above equality implies
VE f)-lV^ = U, where U is unitary UU* = U*U = ln. Therefore, VE U*v^E = V.
Then, since, X{(T>) = d(£, €),, and since X/(->/S U*\/E) = X,(UE), Lemma 9.11 together
with (9.9) yields the desired result (9.11).

A sharpening of the main result

Recall (9.2) and (9.3). We associate with the £, and //, the following vectors 8^ e Rn and
8± e R":

co
nt

ro
len

gin
ee

rs
.ir
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It is assumed in the following that the £/ are arranged so that the entries of 8^ turn out to be
in decreasing Cauchy ordering: 8% > 5/+1. From our earlier discussion, it follows that if
the system is given by (9.12), the y, are

Notice that 5^ O 8^ — y O y = \y\2, where O denotes pointwise multiplication. It
should also be noticed that, as mentioned earlier [143], the lower-diagonal-upper (L-D-U)
factorization of the Cauchy matrix can be written explicitly as C = L AU, where L is lower
triangular with ones on the diagonal, U is upper triangular with ones on the diagonal, and
A = diag<5t.

Because of the above-mentioned fact on the L-D-U factorization, we have the follow-
ing result due to Horn [180]; it states that the vector of eigenvalues of a positive definite
matrix majorizes multiplicatively the vector whose /th entry is the quotient of the determi-
nants of the zth over the (i — l)st principal minors of the matrix.

Lemma 9.13. Let P be the solution to the Lyapunov equation with eigenvalues A, (P). Then
the vector 8^ is majorized multiplicatively by the vector of eigenvalues X(P). Furthermore,
the former multiplicatively majorizes the vector y:

Remark 9.4.5. (a) In section 9.5, it was shown that the optimal conditioning of Cauchy
matrices by means of diagonal scaling is given by

This implies that for optimally conditioned Lyapunov equations we must have 8^ 0 8^ =
<?* = [! 1 . - . 1].

(b) The inequalities (9.13) are a refined version of the result concerning the decay rate
of the eigenvalues of a single gramian; see Theorem 9.5.

Connection with Fuhrmann's results

In section 8.6, the signed Hankel singular values //, (i.e., the eigenvalues) of the Hankel
operator, and the corresponding eigenvectors, are characterized by means of the polynomial
equation (8.28); using the notation of this section, it becomes pr = /i,q*r* + qn, where
H = £ is the transfer function of the system, a is a Hankel singular value, /x = €a, € = ±1
is the corresponding signed singular value, (•)* is as defined earlier, and r, n are unknown
polynomials of degree less than n = deg q. Let a, b be polynomials satisfying the Bezout
equation aq + bq* = 1. Then the coefficients of the polynomial r and the eigenvalues n of
the Hankel operator are determined from the eigenvalue decomposition of the matrix

and A has characteristic polynomial equal to q.
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298 Chapter 9. Special Topics in SVD-based Approximation Methods

We notice that this equation can be rewritten as follows:

where —A,, are the roots of q (poles of S). It follows, therefore, that y, is equal to some
singular value times the magnitude of the corresponding all-pass jr, evaluated at 5 = A.,-; to
stress the dependency on the y'th singular value, we write r, instead of r,

Thus the ratio of y/ and a/ is a quantity depending on the all-pass function defined by the
polynomial r, which in turn defines the eigenvectors of the Hankel operator.

We are now ready to prove Lemma 9.10. Necessity: if the system is all-pass, i.e.,
H = K^- for some K e R, by definition (9.9) of the gammas we have y, = K for all i.
Sufficiency: if all the y/, i = 1, . . . , n, are equal, since the degree of r is at most n — 1,
(9.14) implies r = r*. Therefore, p = /cq*, where K = y, • = Oj for all z, j.

9.4.5 Numerical examples and discussion*

In this section, we illustrate the effectiveness of the Cholesky estimates for decay rates of
the eigenvalues of the system gramians derived in section 9.4.3 (see Theorem 9.5). We
have observed essentially the same quality of results for the decay rate estimates for the
Hankel singular values. As the two are intimately related, we report on the results for the
eigenvalues of only one gramian here.

Although the results of section 9.4.3 do not establish direct bounds on the eigenvalues
of P, they seem to predict the behavior of these eigenvalues quite well. We illustrate this
with some computational results and compare our estimates to those derived by Penzl in
[266]. To our knowledge, these were the only eigen-decay estimates available prior to the
results given here. Penzl's results are only valid for symmetric A. When m = 1 (the SISO
case), these bounds are

Our estimates are derived from the diagonal elements of the Cholesky factor of the Cauchy
matrix C defined by (9.2) and do not require symmetry of A. They are of the form

where the Xj have been indexed according to the Cholesky ordering imposed by diagonal
pivoting.

Although these two results are derived in very different ways, they are closely related.
In fact, Penzl derives his bounds from expressions involving the same linear fractional trans-
formations that led to our results. However, in that case, they arose from alternating direction
implicit (ADI) approximations to the solution of the Lyapunov equation (see section 12.4).
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Figure 9.3. Top: comparison of estimates for the discrete Laplacian. Bottom:
comparison of estimates for a nonsymmetric A.

Our computations indicate that a great deal may be lost in replacing estimates involving
all of the eigenvalues Ay of A with a condition number. In Figure 9.3, we show the results of
our estimates versus Penzl's in comparison to the eigenvalues of P, where A is the standard
finite difference approximation to the one-dimensional Laplacian of order 100.

The upper pane of Figure 9.3 gives a semilog graph of the Cholesky estimates 8^/81,
the Penzl estimates, and the actual eigenvalue ratios A.jt(P)Ai(P) for 1 < k < 60. The
horizontal dotted line indicates where these ratios fall below machine precision eps « 10~16.
In the lower pane of Figure 9.3, we show the same comparison for a random nonsymmetric
A of order 200 with a few eigenvalues near the imaginary axis (distance about .01).

In Figure 9.4, we compare Cholesky estimates to actual eigen-decay on LTI examples
that are more closely related to engineering applications. Two of the examples are simple
model problems, a finite element model of heat conduction in a plate with boundary controls
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300 Chapter 9. Special Topics in SVD-based Approximation Methods

Figure 9.4. Eigen-decay rate versus Cholesky estimates for some real LTI systems.
Upper plots: Heat model n = 197. Lower plots: structural model n = 348. Left panes:
system eigenvalues. Right panes: decay rates.

and a finite element model of a clamped beam with a control force applied at the free end.
These are labeled the heat model and the struct model, respectively. A third example, labeled
CD player model, is a simplified simulation of a CD player tracking mechanism that has
been described in detail in [153]. The fourth example, labeled ISS Ir-c04 model, is an
actual finite element discretization of the flex modes of the Zvezda service module of the
ISS. There are three inputs and three outputs, namely, the roll, pitch, yaw jets and the roll,
pitch, yaw rate gyros readings, respectively. This example was provided to us by Draper
Labs. Since A is nonsymmetric in all of these systems, the Penzl estimates do not apply.
However, the Cholesky ratios give very good approximations to the actual eigen-decay rates
for all of these examples.

These results indicate that the condition number AC (A) alone may not be enough to
determine the decay rate effectively. It seems that the decay rate really depends on the full
spectrum of A as indicated by the Cholesky estimates. Moreover, one can easily see that
clustered eigenvalues of A can make the Cauchy kernel have very low numerical rank (hence
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9.4. A study of the decay rates of the Hankel singular values" 301

Figure 9.4. (Continued). Upper plots: CD model Lower plots: ISS module. Left
panes: system eigenvalues. Right panes: decay rates.

P has very low numerical rank), but K (A) can be arbitrarily large at the same time. Hence the
right-hand side in (9.15) fails to predict the rapid eigen-decay rate. In fact, the eigen-decay
rate can be extremely fast even when K(\) is huge. This is illustrated by the example shown
in Figure 9.5, where A has been constructed to have two clustered eigenvalues as follows:

f o r iter = 1 : 4
A = - l(T (6+iter)*eye(n)
A ( n , n ) = -le-5;

end

diag(rand(n, 1) ) *100;

For the nonsymmetric case, Penzl [266] constructed a nice example to show that even
in the SISO case, the eigen-decay rate can be arbitrarily slow. In the extreme case, the
ratios remain almost constant at 1. His example is as follows: putn = 2d+l,m = l,
A = diag (-1, Ai, A2, . . . , Aj) € Rnx", B = [1, . . . , 1]* e R", where
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302 Chapter 9. Special Topics in SVD-based Approximation Methods

Figure 9.5. Fast eigen-decay rate for large cond(\).

Penzl considered d = 50, t = 10, 100, 1000. From the construction of A, /c(A) =
IIA || 2 I I A"11| 2 — t. He observed that the eigenvalue ratios are almost constant 1 for large t.

We tried this example with d = 300, t = 10, 100, 103, 104. As can be seen
from the top of Figure 9.6, the eigen-decay rate of P slows down when A has eigenvalues
with increasingly dominant imaginary parts. In [266], Penzl suggested that the dominant
imaginary parts of the eigenvalues cause the decay rate to slow down. This observation
is relevant, but further analysis seems to indicate that relative dominance of the imaginary
parts to the real parts, together with the absence of clustering in the spectrum of A, are very
important factors.

We illustrate this in the bottom of Figure 9.6 by constructing A with eigenvalues having
huge imaginary parts but with all eigenvalues clustered about three points: (—1, — 1 -f
ti, —I — t i}. Again we construct n = Id + 1, A = diag (—1, AI, Aa , . . . , Arf) e R"xn,
B = [ l , . . . , l ] * e I R n , while we modified A7 as follows:

Again, we take t = 10, 100, 103, 104 for comparison. In this example, despite the presence
of eigenvalues with increasingly dominant imaginary parts, the eigen-decay rate of P does
not deteriorate because of the clustered eigenvalues. For each t in this example, A has only
three clustered eigenvalues, and thus the Cauchy kernel (9.2) has low numerical rank for
each /. Hence, the eigen-decay rate of P continues to be fast regardless of the magnitude of
t as demonstrated in Figure 9.6 (bottom). We also see that K(\) is irrelevant to the decay
rate in this example since here AC: (A) ~ t for each t.

Actually, (9.15) gives an explanation of the nondecay in Penzl's example. In this exam-

ple, Tie (X) remains constant and the increasingly dominant Imag(A.) leads to - fc~ -» 1.
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9.4. A study of the decay rates of the Hankel singular values* 303

Figure 9.6. Top: decay rates for Penzl's example. Bottom: fast eigen-decay rate
for A with clustered eigenvalues having dominant imaginary pans.

Hence, {5*} becomes nearly a constant sequence and there is very little decay of the eigen-
values.

The Cholesky estimates are not shown in Figures 9.5 and 9.6 to avoid the clutter of
many overlaid plots. However, in all these cases, the Cholesky ratios were computed and
again they approximate the actual eigen-decay rates well. All computations were done
in MATLAB 5.3.0 on a Sun™ Spare® Ultra-60 under SunOS 5.6. Machine epsilon is
approximately 10~16.
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304 Chapter 9. Special Topics in SVD-based Approximation Methods

Cases of nondecay or slow decay

Penzl's example is one slow decay case. In fact, the worst case is possible. The Lyapunov
equation may have the solution P = I, where I is the identity matrix. As an example, if
T = — T*, choose A = T — IJL ei e* , b = V%^ei for some IJL > 0. Then

Thus, even in the SISO case, it is possible for the solution to have no eigen-decay; these
cases are related to all-pass systems. We also did extensive numerical studies on these
nondecay cases; the most relevant reasons we found are (i) most eigenvalues of A have
tiny real parts with not-so-tiny imaginary parts; (ii) most eigenvalues of A have dominant
imaginary parts and the spectrum of A is not clustered relative to max; \Re (Ay) I - However,
Figure 9.7 shows that even in the slow decay or nondecay case, (9.16) still approximates

Figure 9.7. Eigen-decay rate and Cholesky estimates for the slow decay cases.
Upper plots: Random A n = 100, with B = rand(n, 1). Lower plots: same A, B =
ones(«, 1). Left panes: eigenvalues of A. Right panes: decay rates.
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9.4. A study of the decay rates of the Hankel singular values* 305

Figure 9.8. MIMO cases: the effect of different p.

the actual decay rate well. In engineering applications, it seems to be uncommon for the
conditions for slow decay to arise.

Remark 9.4.6. (a) The Cholesky ratio (9.16) involves only the eigenvalues of A, while P
depends on both A and b, so there may be considerable discrepancy between the Cholesky
ratio and the actual eigen-decay rate for some b. However, when A has a moderately well-
conditioned eigenvector basis, (9.16) usually gives an accurate prediction of the numerical
rank of P.

(b) On the other hand, b is taken into account in Theorem 9.12 and in the refined
bounds (9.13).

The result of Theorem 9.7 suggests that the rank of P increases with the rank of
B. Figure 9.8 gives one example of the effect of increasing m (the number of columns of
B). Note in this example that the spectrum of A contains relatively clustered points with
dominant real parts, which implies the fast eigen-decay rate.

Further numerical experiments

The plots in this section are due to Embree [105]. The goal in each case is to pick some
region in the complex plane, generate optimal interpolation points, and then compare the
5, obtained from those points to the <5, obtained from the eigenvalues, keeping in mind that
the 8{ are meant to provide an order of magnitude relative error estimate for the numerical
rank of P. Three examples are investigated.

Discrete Laplacian in one dimension, n = 400. In Figure 9.9, we illustrate the values
based on the true eigenvalues of A (middle curve) and compare these values to the values
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306 Chapter 9. Special Topics in SVD-based Approximation Methods

Figure 9.9. Eigenvalue decay for the discrete Laplacian.

Figure 9.10. Eigenvalue decay for shifted random matrices.

generated from 200 points (lower curve) and 2000 points (upper curve) distributed like the
Chebyshev points in [AOT!n, Xmax], that is, filling a sharp eigenvalue inclusion region.

Shifted random matrix, n = 1000 (Figure 9.10). Let A be generated as follows:

A = randn(n)/sqrt(n) — 1.1 * eye(n).

The entries of A are thus normally distributed with mean /z = — 1.1 and variance a2 = n~l.
With this scaling, the spectrum of A will fill the disk of radius 1 centered at 1.1 in the large
n limit. We approximate the spectrum by this disk, as shown in Figure 9.10. Notice that
some of the eigenvalues of A are slightly outside this region. We use 100 uniformly spaced
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9.5. Assignment of eigenvalues and Hankel singular values* 307

Figure 9.11. Eigenvalue decay for V-shaped spectrum.

points on the boundary of the disk to get approximate values. This classic example from
random matrix theory exhibits only mild nonnormality.

The right pane of Figure 9.10 compares the decay of the true 5; values (middle curve)
with the 5, values obtained from the 100 points (lower curve) and 1000 points (upper curve)
on the disk boundary. Notice the good agreement for the first 25 or so values of 8{, at which
point discrete effects begin to take over.

Matrix with a V-shaped spectrum, n = 1000 (Figure 9.11). Here, we let A have
eigenvalues uniformly distributed on two sides of a triangle, with the rightmost eigenvalue
A = 0.01 at the vertex, having multiplicity 2. For our comparison, we use 200 points derived
from a conformal map of the convex hull of the eigenvalues of A, generated using Driscoll's
Schwarz-Christoffel toolbox for MATLAB. The true eigenvalues are shown in the left plot
of Figure 9.11; the approximation points are shown in the middle pane.

Lastly (Figure 9.12), we modify the previous example by supposing that we don't
have such an accurate inclusion region for the eigenvalues. We bound the spectrum with a
pentagon having a vertex at 0.005. The left pane shows the eigenvalues and the set of 200
approximation points. We now see that this new region generally leads to an overestimate
of the decay behavior. If in practice one only requires an order of magnitude estimate
(and, indeed, is more willing to accept an overestimate of the numerical rank rather than an
underestimate), this may still be acceptable.

9.5 Assignment of eigenvalues and Hankel singular
values*

We will now briefly address the issue of conditioning of A and of the Hankel singular values
of a linear system. Two important invariants are associated with a system Z:

• the natural frequencies or poles A.,- (£), of £,

• the Hankel singular values cr,(E), of X.

co
nt

ro
len

gin
ee

rs
.ir



308 Chapter 9. Special Topics in SVD-based Approximation Methods

Figure 9.12. Eigenvalue decay for a spectrum included in a pentagon-shaped region.

The former quantities are defined as the eigenvalues of A: A/(Z) = A/(A), / = !,...,«.
The latter are defined as the singular values of the Hankel operator H-E, associated
with Z. Next, we investigate the relationship between these two quantities. This section
follows [18].

As pointed out in earlier chapters, the nonzero singular values of Z can be computed as
<r/(Z) = v%- (PQ\ i = 1,.. . , n, where P, Q are the reachability, observability gramians,
respectively. As before I! = diag (a\,..., <rn) <E Enxn denotes the Hankel singular values.

The eigenvalues A.,- (Z) describe the dynamics of the system, while the Hankel singular
values a/ (Z), just as the singular values in the case of constant matrices, describe how well Z
can be approximated by a system of lower dimension using balanced truncation or Hankel-
norm approximation. Approximation works in this case by truncating the small Hankel
singular values, and these quantities provide a priori computable information on how well
a dynamical system can be approximated by a system of prespecified order.

A system representation is balanced if the solution of both Lyapunov equations is
equal and diagonal, i.e., P = Q = E. As discussed earlier, every system Z which is stable,
reachable, and observable has a balanced representation. We can thus assume without loss
of generality that such a system Z is in balanced form. In this case, the matrices have a
special form, which is referred to as balanced canonical form; see section 7.4 for details.
In the case that the singular values are distinct, this form is

In other words, the s/ are signs associated with the singular values <r,; the quantities s/a/,
i = !,...,«, turn out to be the eigenvalues of the Hankel operator 'H. Finally, recall that
due to the reachability of (A, B) and to the observability (C, A), the y/ must be different
from zero, and thus without loss of generality they can be chosen positive yi > 0. From the
above relationships, it follows that A can be written as
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9.6. Chapter summary 309

where y/, a\ > 0, and *,- = dbl. The problem that arises is the relationship between A,,(Z)
and<r,(Z).

Numerical experiments. (I) If the eigenvalues A,(Z) of Z are fixed, but A, B, C are
otherwise randomly chosen, the condition number of the singular values turns out to be on
the average of the order of 10", where n is the system dimension. (II) If the singular values
o/(E) of Z are fixed, but the system is otherwise randomly chosen, the condition number
of the resulting A is on the average of the order of 10*.

Ensuing problems. The above numerical experiments suggest two specific problems:
to what extent is it possible to reduce (I) the condition number of the singular values in
the first case above, and (II) the condition number of A in the second case, by appropriate
choice of the quantities which have been chosen randomly!

From the numerical experiments outlined earlier, we conclude that the Hankel singular
values of generic linear systems fall off rapidly, and hence such systems can be approximated
well by systems of low dimension (complexity). The issue raised here is thus concerned
with determining the extent to which nongeneric systems can be approximated well by
low-dimensional systems.

Problem (I) is addressed as follows. Given a pair of matrices (C, A), with A stable,
following Corollary 5.24, one can always find B = — Q~l C* such that f ^ ? ) is all-pass;

\ *•- I * /
in this case, the Hankel singular values are all equal to 1 (i.e., there is no decay). Thus the
condition number of the Hankel singular values can be minimized optimally by appropriate
choice of B.

Problem (II), i.e., the distribution of the eigenvalues of A for preassigned Hankel
singular values, can be addressed using the balanced canonical form. Using results of
Golub and Varah [145], the following result can be proved.

Theorem 9.14. Given n distinct positive real numbers cr,, together with n signs s/, the
condition number of A. defined by (9.17) is minimized, for the following choice of the entries
Yi > 0, of the diagonal scaling matrix B</:

Remark 9.5.1. (a) The improvement of the condition number of A in (9.17) for opti-
mal conditioning, compared with random choice of the y,, is between 103 and 104. This
improvement is not very pronounced, especially for higher n.

(b) Matrices of the type defined by A0 are Cauchy matrices, while for the special case
that all signs si are positive we have Hilbert matrices. Thus the theorem above provides the
optimal diagonal scaling of Cauchy and Hilbert matrices.

9.6 Chapter summary
POD is a popular model reduction method in the PDE community. After a brief overview,
it was argued that if one can afford to consider a second set of snapshots coming from the
adjoint system, then at least in the linear case a global bound for the approximation error
results.
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310 Chapter 9. Special Topics in SVD-based Approximation Methods

The next two sections discussed model reduction by modal approximation and by
residualization. The former works in some cases but may run into trouble if the system has
poles of high multiplicity, while the purpose of approximation by residualization (obtained
by means of the Schur complement) is to preserve the steady state gain.

The latter part of this chapter presents an extensive discussion of the decay rates of
the eigenvalues of a single gramian, which satisfies a Lyapunov equation, as well as the
decay rate of the Hankel singular values (which are the square roots of the eigenvalues of
the product of two gramians). Three results are presented. The first is an order of magnitude
decay rate of the eigenvalues of a single gramian given by (9.7); the key is the Cholesky
ordering of the eigenvalues of A, which in turn is closely related to the Cauchy matrix.
The second is an upper bound on the decay rate given by (9.8). The main ingredient is a
min-max problem which is unsolved; but it turns out that this can be bypassed, leading to
a computable upper bound. Finally, it is shown that a new set of invariants given by (9.9)
and the Hankel singular values satisfy the multiplicative majorization relation (9.11). This
leads to an average decay rate for the Hankel singular values. This approach also provides
an explanation for the fact that nonminimum phase systems (i.e., systems having unstable
zeros) are more difficult to approximate than minimum phase ones. The chapter concludes
with a brief account on the assignment of eigenvalues and Hankel singular values.

co
nt

ro
len

gin
ee

rs
.ir



Part IV

Krylov-based Approximation
Methods
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Chapter 10

Eigenvalue Computations

The 2-norm approach to system approximation outlined above requires dense computations
of order n3 and storage of order n2, where n is the dimension of the original system.
Consequently, it can be used for systems of moderate complexity only. A set of iterative
algorithms known as Krylov methods provides an alternative.

The basic Krylov iteration

Given a real n x n matrix A and an « -vector b, let YI = •£» . At the fcth step we have

where e* is the kth canonical unit vector in R*, V* = [vi • • • v*] consists of k column vectors
which are orthonormal, V£V* = I*, and A projected onto the subspace spanned by the
columns of V* is H* = V£AV*; these conditions imply that v/+i = i^, y = 1, . . . , n — 1.
The computational complexity required for k steps of this iteration is O(n2k) and the storage
is O(nk); often, the iteration is applied to a sparse matrix A, in which case the complexity
reduces further. Two algorithms fall under this umbrella, namely, the Lanczos algorithm
[221], [222] and the Arnoldi algorithm [28]. For an overview of the Krylov iteration, see
[285], [150], [332], and [72].

This iteration has rich structure involving the subspaces AC/ spanned by the sequence
of vectors b, Ab, A2b, . . . , A*~lb, which are known as Krylov subspaces in the numerical
linear algebra community and as reachability or controllability subspaces in the control
systems community. For arbitrary A, (10.1) is known as the Arnoldi iteration; in this case,
Ht is upper Hessenberg. For symmetric A = A*, (10.1) is known as the symmetric or one-
sided Lanczos iteration, in which case H* is tridiagonal and symmetric. A variant of (10. 1)
involving two staring vectors can be applied to nonsymmetric matrices A and is known as
the two-sided or nonsymmetric Lanczos iteration. In this case, the projected matrix H* is
tridiagonal (but not symmetric).

313
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314 Chapter 10. Eigenvalue Computations

Three uses of the Krylov iteration

The iteration described above has three main uses.

(a) Iterative solution 0/Ax = b. In this case, we seek to approximate the solution x in
an iterative fashion. The Krylov methods are based on the fact that successive approximants
belong to the subspaces /C, mentioned above. Both the Arnoldi and the one-sided Lanczos
algorithms construct iteratively orthonormal bases for these subspaces.

(b) Iterative approximation of the eigenvalues of A. In this case, b is not a pri-
ori fixed. The goal is to use the eigenvalues of the projected matrix H* as approximants
of the dominant eigenvalues of A. The most simple-minded approach to the approxi-
mation of eigenvalues is the power method where, given b, successive terms kk~lb are
computed. To overcome the slow convergence of this method, Krylov methods are used,
where at the fcth step one makes use of the information contained in the whole sequence
b, Ab, . . . , A*-1b. An important advance is the implicitly restarted Arnoldi method (^RAM)
developed by Sorensen. This approach was introduced to overcome the often intractable
storage and computational requirements of the original Lanczos/Arnoldi method; this turns
out to be a truncated form of the implicitly shifted QR algorithm. This approach has
been implemented; the software package is called ARPACK. For details, see the ARPACK
manual [227]. For a summary of results on eigenvalue computations, see Sorensen [307]
and [306].

It should be noted that in the case of symmetric matrices, there exists a theory for
the convergence of the eigenvalues of H^ to the eigenvalues of A, which has been worked
out by Saad [285]. In the general case, it is known that convergence of the eigenvalues
on the boundary precedes convergence of the rest of the eigenvalues; a theory, however, is
emerging in [46].

(c) Approximation of linear systems by moment matching. This problem of interest in
the present context will be discussed in Chapter 11.

Krylov methods have their origins in eigenvalue computations and in particular eigen-
value estimations. The present chapter is dedicated to an exposition of Krylov methods as
they apply to eigenvalue computations.

10.1 Introduction
Given a matrix or operator A : X —> X, the eigenvalue problem consists of finding all
complex numbers A and nonzero vectors x e X such that

If (A, x) is a solution of (10.2), A is called an eigenvalue and x is called the corresponding
eigenvector of A; furthermore, (A, x) is called an eigenpair of A. The set of all eigenvalues
of A is called the spectrum of A and is denoted by A (A).
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10.1. Introduction 315

The problem defined by (10.2) is nonlinear in X and the entries of x. Nevertheless, it
can be solved in two steps, as follows. First, notice that for a fixed X, (10.2) has a solution
x if and only if A — XI has a nontrivial null space. If we are working in a finite-dimensional
space X = Rn, this is equivalent to the determinant of A — XI being zero; let

be the characteristic polynomial of A. Then X is an eigenvalue if and only if X is a root
of the characteristic polynomial XA(^) = 0. Consequently, x is an eigenvector provided
that x e ker(A — XI). If X, e A (A), m, is its algebraic multiplicity and the dimension of
ker(A — X,-I) is its geometric multiplicity. The matrix A is diagonalizable if the algebraic
multiplicity of each eigenvalue is equal to its geometric multiplicity. If this condition is not
satisfied, the Jordan canonical form — with nontrivial Jordan blocks — comes into play. (For
details, see, e.g., [181].)

Two square matrices A and B are called similar if there exists a nonsingular matrix T
such that AT = TB or, equivalently, A = TBT"1. It readily follows that two matrices are
similar if and only if they have the same spectrum, i.e., A(A) = A(B), and the same Jordan
structure. A subspace V C X is A-invariant if AV C V. Let the columns of V e Rnxk form
a basis for V; then there exists a matrix H € M.kxk such that

that is, the eigenvalues of H are a subset of the eigenvalues of A.
Our goal in this section is to discuss methods for obtaining approximate invariant

subspaces, say, V, where the residual is orthogonal to some ^-dimensional subspace W =
span col W:

This orthogonality property is also known as a Petrov-Galerkin condition. The resulting
approximate eigenvalues are then obtained by appropriately projecting A:

In this case, the projection is called biorthogonal, and the approximate eigenvalues are the
eigenvalues of H. Often we take W = V, in which case H = V* AV.

10.1.1 Condition numbers and perturbation results

Definition 10.1. Given a matrix A € R"xn, del A ^ 0, and a matrix norm \\ • \\, the quantity

is called the condition number of A.
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316 Chapter 10. Eigenvalue Computations

It is well known that the following relationship holds:

Furthermore, for induced matrix norms, the reciprocal condition number is the normwise
distance to singularity (see, e.g., [314]):

Notice that the condition number is bounded from below by one: AC (A) > 1. Orthogonal
(unitary) matrices U are perfectly conditioned, since U"1 = U*, which implies /c(U) = 1,
in the 2-induced norm. The following result holds for p-norms.

Proposition 10.2 (Bauer-Fike). Let A be diagonalizable and let E be a perturbation. For
every eigenvalue A. of A = A + E, there exists an eigenvalue A. o/A such that

where V is the matrix whose columns are the eigenvectors of A.

Proof (see [144]). Let A = VAV"1. By assumption, the matrix V-1(^I - A - E)V is
singular; the same holds true for the matrices XI — A — V^'EV and I — (AI - A)"1 V~!EV,
assuming A, £ A (A); singularity of this latter expression implies that (AI — A)"1V~1EV
has an eigenvalue equal to one, so its norm must be at least that large. Thus

The result thus follows. D

The distance of the eigenvalues of A and A + E is bounded from above by the norm of
the perturbation and by the condition number of the eigenvector matrix of A; if A has almost
parallel eigenvectors, the condition number becomes very big. In the limit, the existence of
parallel eigenvectors is equivalent to the nondiagonalizability of A, i.e., to the existence of
nontrivial Jordan blocks; this is also equivalent to the condition number of the eigenvector
matrix being infinite K(V) = oo. A consequence of this fact is that the Jordan form is not
stably computable. Instead, what is stably computable is the distance of the given matrix to
various Jordan forms; for details, see [190].

Next, we consider in more detail what happens to A under the influence of a pertur-
bation. We discuss here only a simple case. Consider

It is assumed that A has simple eigenvalues (m, = 1), E is fixed, and e is a varying
parameter, which is small enough so that A€ has simple eigenvalues as well. Let AV = VA;
then V"1 A = AV"1 . Thus if the columns of V are the right eigenvectors of A, the rows of
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10.1. Introduction 317

W* = V l are its left eigenvectors; let v,-, w, denote the ith column of V, W, respectively:

where 8jti is the Kronecker symbol (equal to one if the subscripts are equal and zero
otherwise).

Moreover, let X€, ve, and w€ be an eigenvalue, right, and left eigenvector of A€,
respectively. Since AO = A it follows that A.Q = A,, i.e., the perturbed eigenvalue chosen,
evaluated, for e = 0, is equal to an eigenvalue of A; the same holds true for the right and
left eigenvectors: VQ = v,, WQ = w,-; we also assume that w*v€ = 0 and w*v, = 0 for
all i / j and for all permissible values of the parameter €. For details, see the book by
Wilkinson [355].

Proposition 10.3. Under the above assumptions, the Taylor series expansions ofXe and \f

are

The first and the second derivatives of the quantities above are

Proof. We prove only the formulas for the first derivatives; the corresponding formulas
for the second derivatives follow similarly. For details, see [220], [144]. For a sufficiently
small € > 0, there holds

where A€ = A + eE, ||v*(e)|| = 1, ||wjt(e)ll = 1, (we,ve) = 1. The derivative of the
above expression with respect to € is equal to the following expression; for simplicity, the
derivative of f with respect to 6 is denoted by f :

The first formula in (10.5) is obtained by taking the inner product of the above expression
bywe:

The second summand above vanishes and hence the first one yields the expression for Ae |e=o
given in (10.5).
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318 Chapter 10. Eigenvalue Computations

To prove the formula for v€, we calculate the inner product of the expression above
with a left eigenvector w* of A that corresponds to the eigenvalue A* ^ A,-:

Taking the limit € —>• 0, the expression becomes (A* — A,-)w£v,- = w£Ev,, k ^ i; combining
these equalities with w*ve = 0 yields the desired second part of (10.5). D

Remark 10.1.1. (a) The condition number K^k of the eigenvalue A.* is now defined as
the maximum of lh^*", over all E satisfying ||E|| = 1. First notice that ||wJEvk|| <
I I W f c l l l l V f c H ; furthermore, this upper bound is attained for the choice of the perturbation

The condition number is large if the left and right eigenvectors are close to being orthogonal
(w,, v,) & 0. Notice that if A is in Jordan form and A/ corresponds to a nontrivial Jordan
block with ones above the diagonal, the right eigenvector is v, = ei, while the left one is
w, = ew; therefore {w,-, v/} = 0.

(b) To study the sensitivity of the eigenvectors, we consider the perturbed matrix
A + eE, where e is a small positive parameter and E is arbitrary subject to the norm
constraint ||E|| = 1; the second formula (10.5) gives an expression for the rate of change of
the right eigenvector of A as a function of the perturbation E. Thus, the eigenvector v, is
most sensitive in the direction of eigenvectors corresponding to eigenvalues that are close to
A,. Therefore, eigenvectors corresponding to clustered eigenvalues are difficult to compute.

(c) If A is symmetric (Hermitian), there is an orthonormal set of eigenvectors, and
hence the condition number of every eigenvalue is one. Perturbations of the unitary eigen-
problem are studied in [67].

10.2 Pseudospectra*
An important tool for analyzing matrices whose basis of eigenvectors is not well condi-
tioned is the concept of pseudospectra. For details on this topic, see the work of Trefethen
[326], [327]. See also the paper by Embree and Trefethen [106] and references therein.
Below we just give the definition and present a few illustrative examples. These examples
have been computed using the pseudospectra graphical user interface (GUI), which can be
downloaded from

http://web.comlab.ox.ac.uk/projects/pseudospectra/psagui.

Definition 10.4. The e-pseudospectrum of\ e Rnxn is
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Figure 10.1. 10 3 and 10 pseudospectra of the 2 x 2 matrix of Example 3.5.

With the above definition, the Bauer-Fike result (Proposition 10.2) can be expressed as

where A^(V) is the disk of radius K(\). In our first example, Figure 10.1, we revisit the
matrix discussed in Example 3.5. Here we take € = 100. Next we consider the following
matrices:

A = compan(poly(ones(10, 1))), A = triu(ones(50, 1));

andA= [01-6; 001; 000].

Figure 10.2 shows the e-pseudospectra of these matrices. The two top plots of this figure
are due to Embree, while the two bottom plots are due to Karow [196].

Example 10.5. Pseudospectra. Consider a Jordan block J of size n x n with ones above
the diagonal and zeros everywhere else. Consider a perturbed matrix J€ which differs from
J in that J€(n, 1) = e; a simple calculation shows that the eigenvalues of Je lie on a circle
of radius e». For example, if n = 103ande = 10~18, the radius of this circle is 0.9594 (see
Figure 10.3). It is interesting to note that while the eigenvalues are highly perturbed with
small perturbations of the Jordan block, the singular values are not. The singular values of
the original Jordan block are a* = l,k = !,...,« — !, and an = 0. It readily follows that
whether just one entry or all entries of J are perturbed, the singular values are the same as
those of the unperturbed J to within the norm of the perturbation. The resulting shape in
Figure 10.3 is the pseudospectrum of J for n = 12.

In more detail, Figure 10.3 illustrates the perturbation of a 12 x 12 Jordan block J
with ones above the diagonal and zeros everywhere else. In the left side of the figure, the
(12, 1) element of J is perturbed from zero to € = 10~3, 10~2, 10"1, 1. The corresponding
eigenvalues lie on a circle of radius equal to the 12th root of the perturbation, namely, 0.56,
0.68, 0.82, 1.00, respectively. In the right side of the figure, J is perturbed by adding a
matrix with random entries which are normally distributed, with variance 10~6 and 10~9,
respectively. Five thousand experiments are performed and the resulting eigenvalues plotted.
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320 Chapter 10. Eigenvalue Computations

Figure 10.2. (a) €-pseudospectra of a 10 x 10 companion matrix for € =
10~9, 10~8 , . . . , 10~2. (b) Pseudospectra of a 50 x 50 upper triangular matrix for
€ = 10~14, 10~12,..., 10~2. (c) Complex pseudospectrum of the 3 x 3 matrix above
for e = 0.025. (d) Real pseudospectrum of the same matrix for the same 6.

The superimposed dots are the eigenvalues obtained as in the left figure with the (12, 1)
element being 10~6 and 10~9, respectively. If the perturbations of J are allowed to be
complex, disks covering the star-like figures result.

10.3 Iterative methods for eigenvalue estimation
The following are well-known facts.

Proposition 10.6.
Schur triangular form. Every square matrix is unitarily equivalent to a triangular

matrix: A = QTQ*, where Q is orthogonal (unitary) and T is upper triangular.
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10.3. Iterative methods for eigenvalue estimation 321

Figure 10.3. Perturbation of the eigenvalues of a 12 x 12 Jordan block (left) and
its pseudospectra for real perturbations with € = 10~9, 10~6 (right).

Spectral theorem for Hermitian matrices. Given the n x n matrix A = A*, there
exists an orthogonal (unitary) matrix U = [ui • • • un], and real numbers A.,- such that

The columns/rows of U are the right/left eigenvectors of A. and form an orthonormal basis

The QR factorization. Given a matrix A e Rnxk, k < n, there exists a matrix
Q € R"x* whose columns are orthonormal, i.e., Q*Q = Ik, and an upper triangular matrix
R e Rk*k such that A = QR.

Definition 10.7. The Rayleigh quotient of a square symmetric matrix A = A* e Rwx" at
•V CL TCP" inX fc m. IS

If we order the eigenvalues of A as A i > • • • > An, it readily follows that for all
nonzero x,

Furthermore, the extremal values are attained by choosing x to be the (right) eigenvector
corresponding to the largest, smallest, eigenvalue, respectively.

10.3.1 The Rayleigh-Ritz procedure

Given A = A* e Rnxn, let the columns of V = [YI • • • vr] e Mwxr, r < n, be orthonormal,
i.e., V*V = Ir. Consider the eigenvalue problem projected onto the subspace spanned by
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322 Chapter 1 0. Eigenvalue Computations

the columns of V; let x = Vy :

The matrix A = V*AV is a symmetric matrix; let its eigenvalues be JJL\ > • • • > /zr. By the
Cauchy interlacing theorem (see Proposition 3.26), we have

Let (A., x) be an eigenpair of A. Then A is called a /ttfz va/we and Vx a /?fe vector of A.
There follows the next proposition.

Proposition 10.8. Given a e R and v e R", ||v|| = 1, to ft = ||Av - av||. TTie/i A
eigenvalue in the closed interval [a — ft, a. + /?]. 77*e interval width is minimized if a is the
Rayleigh quotient ofv.

Proof. It readily follows that ft2 = || X^(A.,- — or)Ujii*v||2; the latter expression is equal to
53,- I A/ — or|2|uf v|2, which in turn is greater than or equal to min/ |A; — a\2. D

10.3.2 The simple vector iteration (Power method)

Given is the diagonalizable matrix A e R"xn. Let v(0) be any vector with ||v(0)|| = 1.
Repeat the following steps:

Notice that an approximate eigenvalue can be obtained at each step by means of the Rayleigh
quotient. Let the eigenvalue decomposition of A be A = VAV""1, where the eigenvalues
are ordered in decreasing magnitude |A,- 1 > |A(+i |.

Proposition 10.9. Assume that A has a simple largest eigenvalue A] and let \\ be the corre-
sponding eigenvector. Let v(0) be any vector that has a nonzero component in the direction
ofv\ . The simple iteration described above converges toward the dominant eigenvector and

the angle between the kth iterate \^k\ and v\ is of the order O f ||4f J .

Remark 10.3.1. (a) The smaller the ratio |̂ |, the faster the convergence.
(b) The result holds even if the matrix is not diagonalizable but AI / A2.
(c) If the initial vector v(0) does not have a component in the direction of YI , conver-

gence is toward \2, assuming that |A.2| ^ \^3\.
(d) The algorithm does not converge if |Ai | = |A.2|, but AI ^ A2. A counterexample

is given by ( ° d ).

10.3.3 The inverse vector iteration

Often a good approximation of an eigenvalue is given, A ̂  A*. Then, if A in the simple
vector iteration is replaced by B = (A — AI)"1, the convergence is in general fast, because
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10.3. Iterative methods for eigenvalue estimation 323

the largest eigenvalue ^-f^ of B is (much) bigger than the other eigenvalues j-^, j ^ k.

Again, let v(0) be any vector with ||v(0) || = 1. Formally, the following steps are repeated:

Remark 10.3.2. (a) The solution x of (A — A.I)x = vw can be determined by means of the
LU factorization or iteratively.

(b) A. is called the spectral shift. Since a system of equations has to be solved at each
step, this is also called the shift-and-invert method.

(c) In general, this inverse iteration is more expensive than the simple iteration dis-
cussed earlier. Therefore, in any particular case there is a trade-off between the increased
amount of work versus the increased speed of convergence.

1 0.3.4 Rayleigh quotient iteration

This method is obtained by changing the shift in the inverse iteration method at each step,
to become the Rayleigh quotient of the most recent eigenvector estimate.

As before, let v(0) be any vector with || v(0) || = 1. Repeat the following steps:

In this case, convergence is quadratic and in the symmetric case even cubic. Usually,
factoring a matrix is required at each step. Thus this method is usually applied only to
symmetric tridiagonal matrices [259].

10.3.5 Subspace iteration

Instead of iterating with only one vector, we can iterate with more than one. However, one
has to prevent these vectors from converging to the same eigenvector. This is accomplished
by orthogonalizing them at each step.

Given is V(0) 6 Rnxq, having full column rank. The following steps are repeated:

solve (A - orI)X = Vw and perform a QR factorization V(*+1)R(fe+1) = X. (10.6)

The following result holds.

Proposition 10.10. Consider the partial (block) Schur decomposition of A,

where Q = [qi • • • q*] and the corresponding eigenvalues are

Let V(0) € Rnx* be such that QJV(0) e R*x* is nonsingular. Then the simple subspace
iteration, (10.6), converges and the angle between the subspace s spanned by the columns

of\(k) and Q! at the mth step is of the order O
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324 Chapter 10. Eigenvalue Computations

Remark 103.3. (a) The angle between two subspaces is the maximum over all angles
between two vectors, each lying in one subspace. Given two subspaces spanned by the
columns of A, B, respectively, let A = QARA, B = QeRfi be the QR-factorizations. The
angle between the two subspaces is the largest singular value of QAQB • (The singular values
of this product are the principal angles between the two subspaces.)

(b) To speed up convergence, the Rayleigh-Ritz procedure can be incorporated in
the subspace iteration algorithm. In this procedure, a few p < k vectors are sought that
converge much faster to eigenvectors of the original matrix.

(c) The advantages of subspace iteration are that it is stable, it is simple to implement,
it has low storage requirements, and knowledge of good starting vectors can be exploited.
The disadvantage is it has slow convergence.

10.4 Krylov methods

In the iteration methods described above, a sequence of vectors v(A) is constructed that
converges (under mild assumptions) to the eigenvector corresponding to the largest (in
modulus) eigenvalue. The convergence rate can be slow. However, notice that at each step
only the last vector of the sequence \(K) is used. The approach described in this section
attempts to keep the information provided by the whole sequence and make good use of it.

As stated earlier, our goal is to determine approximate invariant subspaces that satisfy
(10.3); the approximate eigenvalues are eigenvalues of the projected A given by (10.4). We
first discuss the case where W = V and motivate the particular choice of V.

10.4.1 A motivation for Krylov methods

First we attempt to provide a motivation for the use of Krylov methods by concentrating on
symmetric matrices A = A* € Rnxw. Consider the Rayleigh quotient p(\) = *j^. The
partial derivative of p with respect to x, is

Thus, the gradient Vp = \^- • • • ̂ -} is

which shows that the stationary points of the Rayleigh quotient are the eigenvectors of A.
We follow the reasoning of Golub and Van Loan [144]. Consider a matrix V whose

columns are orthonormal, and let V; denote the submatrix of V consisting of its first j
columns. It follows from the Cauchy interlacing theorem that the following set of inequal-
ities holds:
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10.4. Krylov methods

To achieve this goal, let r, e R" be such that /0(r, ) = A,,nax(V*AV,); i.e., the Rayleigh

quotient of r/ is equal to the largest eigenvalue of V* AV/ . Let z e R* be a unit vector such
that VJAVyz = Amtt(VJAV,)z; it follows that z*VJAV?z = AnuxO^AV,). This shows that
TJ = VjZ e span{vi, . . . , v/}. The direction of largest increase of the Rayleigh quotient
evaluated at r, is given by its gradient, namely, V/o(ry) = ^:(Ary- — p(r/)ry-).

Now the condition that has to be imposed on the choice of the (j + l)st column v/+i
is that the span of the columns of the matrix \j+i contains the gradient of the Rayleigh
quotient evaluated at r/:

where r,- = X)/=i a«v«- Solving these constraints successively for j = 1, 2, . . . , k, we
obtain v* = A*~lvi. Furthermore, a similar argument shows that this choice of v/+i
minimizes the smallest eigenvalue of V*+, AV/+i , given the smallest eigenvalue of V*AVy- .
Therefore, since V^V* = I*,

(10.7)

See (4.26) for the definition of Kk (A, YI ) ; it should be mentioned that in the numerical
linear algebra community, the resulting spaces are referred to as Krylov subspaces and
denoted by /C*(A, vi).

Consequently, conditions (10.3) and (10.7) form the basis for Krylov methods.

10.4.2 The Lanczos method

Consider the symmetric n x n matrix A together with a sequence of vectors YI , . . . , v* mat
form an orthonormal basis for the reachability (Krylov) subspace /C*(A, YI). Following
the reasoning of the previous section, we need to orthogonalize Av* with respect to the
v,, / = 1, . . . , k. This can be done by applying the Gram-Schmidt procedure to the new
direction, namely, Av*. The component rk of Av* orthogonal to the span of the columns of

i) is given by

The Lanczos algorithm can be derivedby imposing the requirement that given vi,
i = 1, . . . . , j, the nex vector in the sequence, vj+1, be chosen so as to MAXIMIZE

The quantities at our disposal for achieving this are v1, . . . , vj and

the matrix A.

This leads to the problem of computing orthonormal bases for reachability/Krylov sub-
spaces.
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326 Chapter 10. Eigenvalue Computations

Thus the new vector in the sequence is

Therefore,

Since v/ depends only on v,, i < j, this procedure has the following property.

Proposition 10.11. For any choice of A. e R"xn, the coefficients satisfy aij = 0 for
i > j + 1. Furthermore, since A w symmetric, A = A*, we /zave a,-j = otjj, and the
coefficients are zero for j > i + 1 as well.

The above equations can also be written compactly as follows:

Several conclusions can be drawn from the above relations. First, the matrix H*, which
is the projection of A onto V = /C(A, b), is tridiagonal. For simplicity of notation, let
oti = a,-,,- and fii+i = «,•,,•+!; then

This matrix shows that the vectors in the Lanczos procedure satisfy a three-term recurrence
relationship

If the remainder r^ = 0, r^+i cannot be constructed and the Lanczos procedure terminates,
in which case if (A., x) is an eigenpair of H^, (A,, V*x) is an eigenpair of A (since H^x =
A.X implies AV*x = V*H*x = A.V*x). However, if rk ^ 0, we can apply the Rayleigh-
Ritz procedure, where V^x is the corresponding Ritz vector. Then the Rayleigh quotient

x*V*AVtx
p(Vfcx) = —x^ic ~ ^ imP^es mat A has an eigenvalue in the interval [A + £i, A — //,],
where /u, = ||Ax — A.x||; moreover, by interlacing, we also have A.*(A) < A < A t(A).

10.4.3 Convergence of the Lanczos method

How close is the estimate of the largest eigenvalue after k steps of the Lanczos procedure?
There are several results in this direction. We quote here one of them due to Kaniel and
Paige; for details, see [144].
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10.4. Krylov methods 327

Proposition 10.12. Let (A.,-, w() be the ith eigenpairofthe symmetric matrix A. e Enx"; we
assume thatXi > A./+I and that the eigenvectors are orthonormal. Let IJLJ, j = 1, . . . , k, be
the eigenvalues of the tridiagonal H^ obtained after k steps of the Lanczos algorithm. Let
the starting vector be\\. Then

COS 01 = KWI|, pi =

thermore,

L3^2-, and Cj denotes the Chebyshev polynomial of degree i. Fur-

Recall that the Chebyshev polynomials are generated recursively using the formula
cj(ft = 2£c,_i(£) - c,_2(^), ; = 2, 3 , . . . , where <*>(£) = 1, c,(|) = f. Chebyshev
polynomials (shown in Figure 10.4) lie within the square bounded by ±1 in both axes and
increase rapidly outside the interval [—1, 1]. (Since the denominators of v\ and vn are the
values of such a polynomial outside this interval, they are likely to be large.) Thus if the
angle between the starting vector and the corresponding eigenvectors of A is not large, v\
and vn are small.

Figure 10.5 shows the convergence of the Lanczos procedure. Given is a 20 x 20
symmetric matrix whose eigenvalues lie in the interval [—15,15]. The abscissa shows
the values of the various eigenvalues and their approximants, while the rows show the

Figure 10.4 The first 10 Chebyshev polynoials
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328 Chapter 10. Eigenvalue Computations

Figure 10.5. Plot of the eigenvalues of a symmetric 20 x 20 matrix using the
symmetric Lanczos procedure.

approximants after a certain number of steps. For instance, the row labeled 20 shows the
eigenvalue, obtained after one step of Lanczos, the one labeled 10 shows the eigenvalues
obtained at the llth step, and the one labeled 1, the eigenvalues obtained after 20 steps,
which coincide with the exact eigenvalues shown on the row labeled 0. Notice that the
eigenvalue obtained at the first step is approximately in the middle of the range of values,
while after six steps the two extreme (largest and smallest) eigenvalues are approximated
well, and it takes another five steps for the second largest and second smallest eigenvalues
to be well approximated. The conclusion is that the spectrum is approximated starting with
the extremes. Figure 10.5 was generated by means of a MATLAB GUI due to Sorensen,
which can be downloaded from

http://www.caam.rice.edu/~caam551/MatlabCode/matlabcode.html

10.4.4 The Arnoldi method

The procedure described above can also be applied to nonsymmetric matrices A. The re-
sulting process is known as the Arnoldi method, pictorially depicted in Figure 10.6. The
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10.4. Krylov methods 329

Figure 10.6. The Arnoldi process: given A € Ewxw, construct V e R"x*
orthonormal columns such that H € Rfcx* w an upper Hessenberg matrix and only the last
column of the residual R e Rwx* w nonzero.

difference is that in Proposition 10.11, a,j / a/,,-, and therefore the projected matrix H*
loses its symmetry and becomes a Hessenberg matrix; in this case, we denote the entries by

A key consequence of this lack of tridiagonal structure is that long recurrences are now
needed to construct v*+i. This is in contrast to the Lanczos procedure, where only three-
term recurrences are necessary. The stage is thus set for restarting methods for the Arnoldi
procedure, which is briefly discussed in section 10.4.11.

10.4.5 Properties of the Arnoldi method

Given is A e Rnxn, and b e R". Let fc*(A, b) e Rnx* be the reachability or Krylov matrix
defined by (4.26). It is assumed that 7?* has full column rank equal to k, which is true, if
(A, b) is reachable.

Problem 10.4.1. Devise a process which is iterative and at the kth step gives

These quantities have to satisfy the following conditions at each step:

1. The columns of V* are orthonormal: Vj^Vjt = I/t, k = 1, 2, . . . , n.

2. The residual R* is orthogonal to the columns of V*, that is, it satisfies the Galerkin
condition: V£R* =0, k = 1, 2, . . . , n.

3. span col V* = span col 72.jt(A, b), k = 1, 2, . . . , n.
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330 Chapter 10. Eigenvalue Computations

This problem leads to the Arnoldi procedure. The solution has the following structure.

Theorem 10.13.

1. Hfc is obtained by projecting A onto the span of the columns ofVk-' H& = V|AV^.

2. The remainder R* has rank one and can be written as R^ = r/te£, where e^ is the kth
unit vector; thus r^ _l_ 72*.

3. This further implies that v^+i = -^-r,, where \k+i is the (k + l)st column ofV.
Consequently, H# is an upper Hessenberg matrix.

4. Let pfc(A.) = det(AIfc — H^) be the characteristic polynomial o/H^. This monic
polynomial is the solution of the following minimization problem:

where the minimum is taken over all monic polynomials p of degree k. Since p# (A)b =
A*b + 7£fc • p, where p. is the coefficient ofk1 of the polynomial p^, it also follows
that the coefficients ofpk provide the least squares fit between A*b and the columns
ofUk.

5. There holds

Proof. Given the fact that V^V^ = 1 ,̂ the first item is equivalent to the second item of the
problem formulation. Furthermore, the second item is equivalent to the second condition
of the above problem. The proof of the first three items is similar to the corresponding
properties of the Lanczos procedure (Proposition 10.11). For the remaining items, see
[306]. D

The above theorem is based on the following fundamental lemma of the Arnoldi
procedure. Its proof is left to the reader. (See Problem 42 in Chapter 15.)

Lemma 10.14. Let AV = VH + fe£ with A e Rnxn, H e Rkxk upper Hessenberg,
V € RMXfe, V*V = I*, and Vei = YI. There holds

and in addition, for any polynomial $ of degree less than k,

For j = k we have
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10.4. Krylov methods _ 331

that is, v = e£H*ei is the product of the entries of the subdiagonal o/H. Furthermore, for
any polynomial <j> of degree k, there holds

where otk is the coefficient of the highest power i-k, 0

Remark 10.4.1. FOM, CG, GMRES, MINRES. There are certain iterative methods for
solving the set of linear equations Ax = b, A e Rnxn, b 6 EM, that are closely related
to the Arnoldi method. All these methods seek approximate solutions at the fcth step,
denoted by xw, that belong to the Krylov (reachability) subspace spanned by the columns
of 7£jt(A, b) = [b, Ab, . . . , A*-1b]. Thus according to the preceding analysis, we must
have xw = V*y for some y e R*. (Actually, x(*} e x(0) + ft* (A, b); often x(0) is taken to
be zero.)

The full orthogonalization method (FOM) requires a Ritz-Galerkin condition, namely,
that the residual be orthogonal to 7?* (A, b):

Thus y is obtained by solving H^y = ||b||ei. If A = A* > 0 is positive definite, the
conjugate gradient (CG) method results.

The generalized minimal residual method (GMRES) requires that the residual be minimized,

Since AV* = Vfc+iHjt+i,* and x(fc) = V^y, there holds

Thus y is the least squares solution of the above problem, namely,

Finally, if A = A* is symmetric, the method reduces to the minimal residual method
(MINRES).

The residual in both FOM and GMRES can be expressed in terms of a polynomial of
degree k: ijr(s) = ctkSk H ----- h ot\ s + UQ. In the former case, the polynomial should be such
that the norm of the residual r = ^(A)b is minimized subject to a* = 1; in the latter case,
we seek to minimize the norm of the same residual under the assumption «o = 1.

1 0.4.6 An alternative way to look at Arnoldi

Consider a matrix A e Rnxn, a starting vector b e Rn, and the corresponding reachability
matrix Kn = [b, Ab, . . . , A^b]. The following relationship holds true:co
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332 Chapter 10. Eigenvalue Computations

and XA(S) = sn +an_isn~1 H ----- l-otis +«o is the characteristic polynomial of A. Compute
the QR factorization of Kn:

where V is orthogonal and U is upper triangular. It follows that

Since U is upper triangular, so is U"1; furthermore, F is upper Hessenberg. Therefore, A
being the product of an upper triangular times an upper Hessenberg times an upper triangular
matrix, is upper Hessenberg. The fc-step Arnoldi factorization can now be obtained by
considering the first k columns of the above relationship:

where f is a multiple of the (k + l)st column of V. Notice that A** contains the first
k columns and k rows of A and is therefore still upper Hessenberg; the columns of [V],
provide an orthonormal basis for the space spanned by the first k columns of the reachability
matrix fln.

1 0.4.7 Properties of the Lanczos method

If A is symmetric, we can define an inner product on the space of polynomials as follows:

where the latter is the usual inner product in R" . In the symmetric case, the Arnoldi process
becomes the Lanczos process, and the corresponding characteristic polynomials of H* are the
Lanczos polynomials. The Lanczos process applied to symmetric matrices produces 2n — 1
numbers, namely, a, = H,,,, i = !,...,«, and fij = H.JJ+I = HJ+IJ, j = 1, . . . , n — 1
(see also (10.9)). The following additional results hold.

Corollary 10.15. //A = A* e IT x", then

• H/t is symmetric and tridiagonal.

the polynomials pk, k = 0, 1, . . . , n — \, po = 1, are orthogonal: (p,, p;) = 0, for
i / j, and Pk\\pk-i(A)b\\ = ||pjt(A)b||. Therefore, the normalized polynomials are

• the columns ofV^ and the Lanczos polynomials satisfy the following three-term re-
currences:
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10.4.8 Two-sided Lanczos

If a matrix A has to be transformed to tridiagonal form but is not symmetric, a modified
Lanczos procedure can be applied. This can be seen as an alternative to the Arnoldi method; it
provides short recurrences but no orthogonality versus long recurrences with orthogonality.

Problem 10.4.2. Given A e Ewxn and two vectors b, c* e Rn, devise an iterative process
that gives at the kth step,

• Biorthogonality: W^V* = I*, k = 1, 2, . . . , n.

• span col Vjt = span col 72* (A, b), and span col W* = span col ̂  (A*, c*), k =
l ,2, . . . ,n.

• Galerkin conditions: V*kSk = 0, W£R* =0, k = 1, 2, . . . , n.

This problem is solved by the two-sided Lanczos procedure. Notice that the second
condition of the second item above can also be expressed as

span rows W£ = span rows C\(c, A),

where Ok is the observability matrix of the pair (c, A) defined by (4.38). The assumption for
the solvability of this problem is that det(0*(c, A)ft*(A, b)) / 0 for all k = 1,2 ..... n.
The associated Lanczos polynomials are defined as before, namely, pfc(A.) = det(AJjt — T*).
In this case, however, the inner product is defined in a different way, namely,

Lemma 10.16.

• I* is obtained by projecting A as follows: T* = W£AV*.

• The remainders R*, S* have rank one and can be written as R* = rjte|, S* =

• This further implies that \k+i> w*+i are scaled versions ofr^, q/t, respectively. Con-
sequently, Tjt is a tridiagonal matrix, having 3n — 2 entries: or,, 1 < i < n, fr, yi>
1 < i < n - 1.

• The generalized Lanczos polynomials p*(A.) = det(XI^ — T^), k = 0, 1, . . . , n — 1,
Po = 1, are orthogonal: (p,, p;> = 0/or i ^ j.

• The columns of V*, W* and the Lanczos polynomials satisfy the following three-term
recurrences:
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10.4.9 The Arnold! and Lanczos algorithms

Conceptually, the Arnold! procedure, given A e K"xn and the starting vector b e Rw, first
sets Vi = l|j|. Then HI = VfAVi. This implies fi = AVt - V^ _L Vi. Thus V2 =
[Vi |j£j| ]; this in turn implies that H2 = V^AV2 and F2 = AV2 - V2H2 = [0 f2] = f2e|.
Thus the third vector of V3 is |||: V3 = [V2 -jfa ], H3 = V^AVs, and so on. Thus at the
km step, the km column of the projector V* is constructed and, simultaneously, the entries
of the km row and column of the projected A-matrix, namely, H^, follow. Computationally,
forming the product V£AV/t is expensive. Therefore, the fact that only the last column
changes from step to step, plus the (k + 1, k)m entry of H^+i, is exploited.

The two-sided Lanczos algorithm is executed in a similar way. Now in addition to
A € R"xn, we are given two starting vectors, b e R" and c* e R". First the inner product
y\ = cb is computed. Then Vi = -J= and Wi = ̂  (where the plus/minus sign depends
on whether y\ is positive or negative); it follows that TI = W*AVi. The second step
involves the computation of the remainders: fi = AVi — ViTi and FI = A*Wi — WiTj.
Subsequently, y2 = rjfi, V2 = [\l ^], W2 = [Wi ^], and hence T2 = W*AV2. At
the third step, we compute the remainders F2 = AV2 — V2T2, R2 = A* W2 — W2T| ; it turns
out that they are both rank one: F2 = [0 f2] = f^, R2 = [0 r2] = r^, the third column
of the two projectors is then obtained by appropriate normalization of f2 and r2, and so on.
Again, as mentioned earlier, one would not compute, e.g., AV^ anew at each iteration.

The Lanczos algorithm: Recursive implementation

Given: the triple A e Rnx", b, c* e R"
Find: V*, W* e Rnxk, fk, & e R", and Tfe e Rkxk such that

where e^ denotes the km unit vector in

The following relationships hold true:

Two-sided Lanczos algorithm
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10.4. Krylov methods 335

satisfying

The Arnold! algorithm: Recursive implementation

where H is in upper Hessenberg form (as before, e* denotes the fcth unit vector in RM).

Remark 10.4.2. (a) The residual is f/ = Av; - Vjh/, where hy is chosen so that the
norm || f, || is minimized. It turns out that V*hj = 0, and h; = V*Av^, that is, f) =
(I-VyVpAVy.

(b) If A is symmetric, H_/ is tridiagonal, and the Arnoldi algorithm coincides with the
Lanczos algorithm.

(c) A high-level code for the Arnoldi and Lanczos procedures is summarized in Fig-
ure 10.7.

10.4.10 Rational Krylov methods

To accelerate convergence of the Krylov methods, one can apply a shift-invert strategy as
shown in section 10.3.3 for the single vector iteration. Therein A is replaced by (A — AI)"1,
where X is the shift which is close to the eigenvalue of interest. This leads to the family
of rational Krylov methods. As pointed out by Ruhe [281], a further improvement can be
obtained by using several shifts AI, . . . , A*. The implementation of rational Krylov methods

The Arnoldi algorithm
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336 Chapter 10. Eigenvalue Computations

Figure 10.7. The Arnoldi and two-sided Lanczos algorithms.

requires the computation of (direct) LU factorizations of A — kj\. These methods will be
discussed in more detail in the next chapter.

he goal of restarting the Lanczos and Arnoldi factorizations is to get a better approximation
to some desired set of preferred eigenvalues, for example, those eigenvalues that have

• largest modulus,
• largest real part, or
• positive or negative real part.

The rational Arnoldi algorithm

10.4.11 Implicitly restared Arnoldi and Lanczos methods

Algorithm: The k-step Arnoldi factorization. Algorithm: The k-step two-sided Lanczos process.
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10.4. Krylov methods _ 337

Since the Arnold! recurrence gets increasingly expensive as the number of iterations m
gets large, one hopes to obtain accurate estimates to the eigenvalues of A when m = dimHm

<3C dimA. In this case, we hope for the eigenvalues of the projected matrix to capture some
salient subset of the spectrum of A, for example, the rightmost eigenvalues of A.

One way to encourage such convergence is to enhance the starting vector b in the
direction of the eigenvalues (or invariant subspace) associated with the desired eigenvalues
via a polynomial transformation b «- p(A)b, where p is a polynomial with roots near
unwanted eigenvalues of A. One gets some idea for these roots by performing a basic
Arnoldi iteration and computing the spectrum of the projected matrix Hm. An excellent
choice for the roots of p is the set of those eigenvalues of Hm most unlike the eigenvalues of
A that are sought (if one want the rightmost eigenvalues of A, take as roots of p the leftmost
eigenvalues of HOT). Then one begins the Arnoldi iteration anew with starting vector p(A)b.
This can be accomplished in a numerically stable way via implicit restarting.

Suppose, for example, that while A has eigenvalues in the left half plane, the approx-
imant H obtained through one of the two methods has one eigenvalue which has positive
real part, say, AI, where V£AVmx = ju,x, for some x, and

To eliminate this unwanted eigenvalue, the reduced-order matrix obtained at the mth step
is projected onto an (m — l)st-order system. This is done as follows. First, compute the
QR-factorization of Hm — fjlm = QmRm. It follows that

We now truncate the above relationship to contain m — 1 columns; let Hm_i denote the
principal submatrix of Hm, containing the leading m — 1 rows and columns.

Theorem 10.17. Given the above set-up, Hm_i can be obtained through an (m — \)-step
Arnoldi process with A and starting vector b = (/zln — A)b:

This process can be repeated to eliminate other unwanted eigenvalues from the reduced-
order matrix.

Remark 10.4.3. (a) Implicit restarting was introduced by Sorensen [305]. This paper offers
two new ideas, namely, implicit restarting (i.e., restarting through the QR decomposition,
without explicitly forming the new starting vector) and extra shifts, i.e., using unwanted
eigenvalues of Hm as roots of p. The combination has proved especially effective. This has
been implemented in ARPACK [227]. For additional eigenvalue algorithms, see [35]. For
a recent study on restarted Lanczos algorithms, see [258]. A high-level code for IRAM is
given in Figure 10.8.

(b) Krylov methods and implicit restarting have been worked out for special classes
of matrices. For the Hamiltonian case, see [62], [111].

(c) Convergence of IRAM. The convergence of IRAMs has been studied in some
detail. See [46], [307].
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338 Chapter 10. Eigenvalue Computations

Figure 10.8. The implicitly restarted Arnoldi algorithm.

We now present some examples that illustrate the Krylov methods.

Example 10.18. Consider the following symmetric matrix A and starting vector b:

The symmetric Lanczos or Arnoldi procedure for steps k = 1, 2, 3,4 yields

Algorithm: IRAM.

1. Computer an m-step Arnoldi factorization:

2. Repeat until convergence:

co
nt

ro
len

gin
ee

rs
.ir



10.4. Krylov methods 339

These matrices satisfy AVjt = V^Ht +Rjt, which, due to the orthogonality of the columns of
V,t, and Rfc, implies H* = Vj> AY*, k = 1, 2, 3, 4. The associated orthogonal polynomials
are the characteristic polynomials of H^.

Finally, the characteristic polynomial at the fourth step, p4 (jc) = det(xl4 — RO = jc4 — 6x3 +
4jc2 +8jc + 1 , is the same as the characteristic polynomial of A, and therefore in the associated
inner product, it corresponds to the zero polynomial. To normalize these polynomials, we
compute fa = H4(l, 2), fa = HU(2, 3), fo = HU(3, 4); thus the orthonormal polynomials
are

The weights that define the Lanczos inner product turn out to be y2 = 0.4294, y2
2 = 0.0067,

y3
2 = 0.5560, y4

2 = 0.0079 corresponding to the eigenvalues AI = 4.8154, X2 = 2.0607,
X3 = -0.1362, X4 = -0.7398. It is readily checked that

where 5jt^ is the Kronecker delta symbol. The eigenvalues of successive approximants HI,
H2, H3, HU are

co
nt

ro
len

gin
ee

rs
.ir



340 Chapter 10. Eigenvalue Computations

Example 10.19. Here we consider

The Arnold! procedure AV* = yields the following matrices for k = 1,2,3,4:

The eigenvalues of the successive approximants HI, H2, H3, ftt are

Example 10.20. In this example we will examine the effects of different starting vectors.
To start with, let

In this case, b is actually equal to ei and A can be brought to upper Hessenberg form by a
simple permutation of the columns and rows. Thus
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10.5. Chapter summary 341

Finally, the eigenvalues of H* fork = I , 2, 3,4 are {!}, {2,0}, {2.2056, -0.1028±0.6655/},
{2.3247,0,0.3376 ± 0.5623/}.

If the starting vector is chosen as b = [1 1 0 0]*, the Arnoldi procedure terminates
after three steps, as the starting vector belongs to the eigenspace of A spanned by the
eigenvectors corresponding to the eigenvalues {2.3247,0.3376 ± 0.5623/}. Thus

The eigenvalues of H2 are {2,1}. Finally, for the starting vector b = [0 0 1 1]* we get

The eigenvalues of the projected matrices are {!}; {0.1802, 2.2198}; {2.3580, .1846 ±
.8004i}; {2.3247,0,0.3376 ± 0.5623/}.

10.5 Chapter summary
The SVD-based approximation methods presented in the preceding three chapters require
dense computations of the order 0(n3) and storage of the order O(n2), where n is the dimen-
sion of the system to be approximated. Thus, their compelling properties notwithstanding,
they cannot be applied to large problems. What is needed in such cases are iterative meth-
ods which can be implemented by means of vector-matrix multiplications exclusively. This
leads to a different class of approximation methods, the origin of which lies in eigenvalue
estimation, that is, estimation of a few eigenvalues of a given operator (matrix). The preced-
ing chapter was dedicated to the presentation of these iterative methods, known collectively
as Krylov methods.

Eigenvalue estimation methods are divided into two parts: the single vector iteration
methods and the subspace iteration methods. The latter category includes Krylov subspace
methods, which consist of the Arnoldi and the Lanczos procedures. It is worth noting at
this stage that the Krylov subspaces are, in the system theoretic language, reachability and
observability subspaces. This connection will be exploited in the next chapter, where we
will show that Krylov subspace iterations are intimately connected with model reduction.
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Chapter 11

Model Reduction Using
Krylov Methods

In this chapter, we turn our attention to the third use of the Krylov iteration as described at the
beginning of the previous chapter (page 314), that is, approximation by moment matching.
If the to-be-approximated system Z is described in state space terms (4.13), this problem
can be solved iteratively and in a numerically efficient manner by means of the Arnoldi and
Lanczos factorizations.

There is an extended literature on this topic. First, the paper by Gragg and Lindquist
[146] discusses many connections between system theory and the realization problem on
the one hand and numerical analysis, Fade approximation, and Lanczos methods on the
other. See also the course notes of Van Dooren [333], the work of Gutknecht [161], and the
book of Komzsik [209], as well as [154], [132], [236], [37].

Approximation by moment matching

A linear discrete- or continuous-time system defined by a convolution sum or integral is
uniquely determined by its impulse response h. Equivalently, the Laplace transform of the
impulse response H, called the transfer function of the system, can be used. For the systems
considered here, H is a rational function. In this case, the complexity of the system turns out
to be the rank of the Hankel operator 'H defined in section 5.4, or the McMillan degree of
H (see page 96). Therefore, one way to approximate a system is to approximate its transfer
function H by a rational function of lower degree. This can be done by matching some
terms of the Laurent series expansion of H at various points of the complex plane. Often,
the expansion around infinity is used:

The coefficients h, are known as Markov parameters of the system. We now seek a rational
function,
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344 Chapter 11. Model Reduction Using Krylov Methods

which matches, for instance, the first I < n Markov parameters of the original system,
that is, h, = h, for / = 1,2,... ,1. This is the partial realization problem discussed in
section 4.4.4.

The Lanczos and Arnold! methods

In the case in which the system is given in terms of state space data, the partial realization
problem can be solved in a numerically efficient way. Two approaches fall into this category:

( A I R \
—=-1— J be given, where B and C* are

column vectors. In this case, the starting vectors are not arbitrary (as in the case of eigenvalue
approximation) but are determined by B and C.

The fc-step Arnoldi iteration applied to the pair (A, B) produces a matrix with or-
/ "" I "* \

thonormal columns, V*. A reduced-order system T, = ( ^ B ) can be constructed byj ^ c | j j
applying the Galerkin projection Fl = VV* to Z:

The main property of the reduced system £ is that it matches k Markov parameters of Z,
namely,

Similarly, the two-sided Lanczos iteration uses A together with two starting vectors, namely,
B and C*, to iteratively produce two matrices V* and W* with k columns each, which are
no longer orthonormal but are biorthogonal, that is, W^V^ = !&. A reduced-order system

is now constructed by applying the Petrov-Galerkin projection defined by

This reduced system I) has the property that it matches Ik moments of E:

Put in a different way, both the Lanczos and the Arnoldi methods correspond at the nth step
to the computation of a canonical form of the triple A, B, C. In the generic case, these
two canonical forms are as follows. For the former, A is in upper Hessenberg form, B is a
multiple of the unit vector ei and has C arbitrary entries. The canonical form in the Lanczos
method corresponds to A being in tridiagonalform, while B and C* are multiples of the first
unit vector ei. In both cases, the reduced-order system is obtained by truncating the state
x = (x\ JC2 • • • Jt/i)* to x = (xi X2 • • • Jtjt)*, where k < n. Notice that the resulting A, B,
C retain the same structure as the full-order A, B, C. Furthermore, as already mentioned,
the so-constructed reduced-order models match k, 2k, Markov parameters of the original
system, respectively. Furthermore, by applying rational Krylov methods, reduced-order
systems are obtained that match moments at different points in the complex plane.

Finally, it should be stressed that these methods are useful because they can be im-
plemented iteratively, i.e., A, B, C can be computed without computing the corresponding

the Lanczos and the Arnoldi methods. Let
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11.1. The moments of a function 345

canonical forms of A, B, C first and then truncating. As a consequence, the Lanczos and
Arnoldi procedures have reliable numerical implementations, which involve matrix-vector
multiplications, exclusively. Their range of applicability is for large n; they are competitive
with dense methods for n & 400 (i.e., (9(102)) or higher, depending on the problem.

11.1 The moments of a function
Given a matrix-valued function of time h : R -> Rpxm, its fcth moment is defined as

If this function has a Laplace transform defined by H(s) = £(h) = /0°° h(t)e~stdt, the kth
moment of h is the kth derivative of H evaluated at s = 0:

For our purposes, we also make use of a generalized notion of moments, namely, the moments
ofh around the (arbitrary) point SQ e C:

These generalized moments turn out to be the derivatives of H(s) evaluated at s = SQ:

In our context, h is the impulse response of a linear system T, = ( J , i.e., h(t) =

OArB + 8(t)D, t > 0. Thus, since H(^) = C(sl - A)-1B + D, the moments at SQ = 0 are

and those at SQ are

It should be noted that the moments determine the coefficients of the Laurent series expansion
of the transfer function H(s) in the neighborhood of SQ e C; in particular,

In a similar way, we may expand H(s) in a Laurent series around infinity:

The quantities

are the Markov parameters h* of Z defined in (4.7).
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346 Chapter 11. Model Reduction Using Krylov Methods

11.2 Approximation by moment matching

Given Z = ( e n ) ' exPan(^me transfer function around SQ as in (11.5), where the mo-

ments at SQ are rjj, j > 0. The approximation problem consists of finding

where

such that for appropriate £,

As already mentioned, when the expansion is around infinity, the moments are called
Markov parameters, and the resulting problem is known as partial realization. If the mo-
ments are chosen at zero, the corresponding problem is known as Fade approximation. In
the general case, the problem is known as rational interpolation.

Consider the system where A is stable and the eigenvalue of largest modulus is A. The
Markov parameters of this system grow as |X|* (while other moments grow exponentially
in max^ \SQ — X\~l). Thus in many cases the computation of the moments is numerically
problematic. Given (C, A, B), the following are key properties of the ensuing algorithms:

• moment matching is achieved without computation of moments, and

• the procedure is implemented iteratively.

Their consequence is numerical reliability. The algorithms that achieve this are called
Krylov methods and, in particular, Lanczos and Arnoldi methods. In the general case, they
are known as rational Krylov methods.

11.2.1 Two-sided Lanczos and moment matching

Given is the scalar system £ = ( * I b V where A e R"xw, b, c* e Rn. The goal is to

find i = (-A_L§A where A e Rkxk, b, c* e R*, k < n, so that the first 2k Markov
\ * \ f * A l . _ -

parameters h, = cA'-1b, of E, and h, = cA'-1b, of E, are matched:

We proceed by defining the following four quantities associated with E:
(i) the k x n observability matrix Ok,
(ii) the n x k reachability matrix 7?*,
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11.2. Approximation by moment matching 347

(iii) the k x k Hankel matrix 7^, and
(iv) its shift aUk,

Therefore, %jt = OiJlk and aT^t = C^AT?*. Next comes the key assumption of this
procedure, namely, that det HI ^ 0, i = 1,. . . , k. This allows the computation of the LU
factorization

Furthermore, L and U are chosen so that the absolute values of their diagonal entries are
equal:

Define the maps

It follows trivially that these maps satisfy (a) FlLOu = I, and thus (b) Fl =
oblique projection. We are now ready to define a reduced-order system:

s an

Theorem 11.1. Z as defined above satisfies the equality (1 1.7) of the Markov parameters.
Furthermore, A is tridiagonal, and b, c* are multiples of the unit vector ei.

Proof. First notice that we can write

Therefore

which shows that FluriL is a projection along the rows of Ok onto the span of the columns
of Hk- Using the first projection relationship, we obtainco
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348 Chapter 11. Model Reduction Using Krylov Methods

Similarly, we have Hk =

Furthermore,

Finally, it readily follows that

where

Combining the last two equalities, we get

Since L is lower triangular, Kk = U implies b = U(l, l)ei and A(i, j) = 0 for i > j,
while, because U is upper triangular, Ok = L implies that c = L(l, l)ei and A(/, 7) = 0
for i < j. Thus in the basis formed by the columns of Flu, b, c are multiples of the unit
vector ei and that A is tridiagonal.

This completes the proof of the theorem. D

Corollary 11.2. The maps UL and Fl v defined above are equal to W£, \k, respectively, of
the two-sided Lanczos procedure defined in section 10.4.8.

The Lanczos procedure leads to the following canonical form for SISO linear systems:

11.2.2 Arnoldi and moment matching

The Arnoldi factorization can be used for model reduction as follows. Recall the QR
factorization of the reachability matrix Kk € Rnx* (recall also that l-Lk = Ok7lk); an
orthogonal projection n = W* can then be attached to this factorization, where from
section 10.4.6
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11.2. Approximation by moment matching 349

where V € R"x*, V*V = Ik, and U is upper triangular. We are now ready to define a
reduced-order system:

Theorem 11.3. Z defined above satisfies the equality of the Markov parameters h, = h,,
/ = I , . . . ,k. Furthermore, A is in Hessenberg form, and I) is a multiple of the unit vector

Proof. First notice that since U is upper triangular, YI = -^, and since V*7£* = U,

it follows that b = ui = || b || e^ therefore b = V*b, W*b = Vb = b, and hence
Ab = V*AW*b = V*Ab. In general, since W* is an orthogonal projection the columns
of 72*, we have \V*Kk = Kk; moreover, Uk = \*Hk- Hence

DFinally, the upper triangularity of U implies that A is in Hessenberg form.

Corollary 11.4. The map V defined above is the same as that of the Arnoldi procedure
defined in section 10.4.5.

The Arnoldi procedure leads to a canonical form for the triple (C, A, B). From(lO.lO)
follows

An error expression for the Lanczos model reduction procedure

Making use of formula (5.29), we can derive an exact error expression for approximation
by means of the Lanczos procedure. Let H, H be the transfer functions of the original and
the reduced systems. Assuming diagonalizability of the A, A matrices, let (c,, A.,), (c,, A,/)
be the residues and poles of the original and reduced systems, respectively. There holds

For a local error bound, see [32]. This expression points to the following rule of thumb for
choosing interpolation points for model reduction:
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350 Chapter 11. Model Reduction Using Krylov Methods

Properties of Krylov methods

1. The number of operations needed to compute a reduced system of order k given an
order n system using Lanczos or Arnoldi factorizations is O(kn2) for dense systems,
O(k2n) for sparse systems, versus O(n3) operations needed for the SVD-based meth-
ods. The requirement for memory is O(kn). A more precise operation count can be
found in section 14.1.

2. Only matrix-vector multiplications are required—no matrix factorizations or inver-
sions. There is no need to compute the transformed nth-order model and then truncate.
This reduces the ill-conditioning that arises in SVD methods.

3. Krylov methods can also be applied to MIMO systems, where B e R"xm, C e R /7Xn,
m, and/or p are bigger than one, at the expense of increased bookkeeping. For details,
see [156] and references therein.

4. Krylov methods have simple derivation and algorithms and, when used for eigenvalue
estimation, high convergence rate.

5. Drawbacks:

• Numerical issue: Arnoldi/Lanczos methods lose orthogonality. This comes
from the instability of the classical Gram-Schmidt procedure. The remedy
consists of reorthogonalization. Knowledge of good starting vectors cannot be
exploited in model reduction since in this case they are fixed.

• The reduced-order system may not be stable, even if the original system is
stable. One remedy is implicit restart of Lanczos and Arnoldi, described in
section 10.4.11.

• The Lanczos method breaks down if defH, = 0 for some I < i < n. The
remedy in this case is provided by look-ahead methods. The Arnoldi method
breaks down if 7£, does not have full rank; this is a consequence of the lack of
reachability of the pair (A, b) and happens less frequently than the singularity
of some principal minor of the Hankel matrix (although *Hn is nonsingular).

• The resulting reduced-order system tends to approximate the high frequency
poles of the original system. Hence the steady-state error may be significant.
The remedy is to match the coefficients of the Laurent expansion of the transfer
function at frequencies other than infinity. This leads to the rational Krylov
approach.

• A drawback of nonsymmetric Lanczos is the need to work with A*, which can
be difficult to use, e.g., on a distributed memory parallel computer.

A remark on the stability/instability of reduced models

With regard to the instability of reduced-order models using Krylov methods, a remark is
in order. For this we need to introduce the numerical range of the map A e C"x":
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11.2. Approximation by moment matching 351

If A is normal (AA* = A* A) the numerical range is equal to the convex hull of the spectrum
of A. A consequence of this is that for stable A, the projection V* AV can never be unstable. If
A is nonnormal, F (A) may extend into the right half plane C+, and, consequently, depending
on the starting vector, the projection may turn out to be unstable. This explains the origin
of instability in Krylov methods.

It can also be argued that the lack of stability is not necessarily a bad thing, because
it may help capture, for example, the initial slope of the impulse or step response of the
system; this is based on the fact that the slope of the norm of the matrix exponential \\e^f \\
at the origin is max{x*(A + A*)x}, which is one of the extremal points of the numerical
range of A.

Lanczos and continued fractions

The Lanczos canonical form of a linear system is related to a continued fraction expansion
of its transfer function.

The continued fraction expansion of a rational function, obtained be repeatedly divid-
ing the denominator by the numerator, is always defined. However, the Lanczos canonical
form and the associated tridiagonal form of A does not always exist. It can be shown that
Lanczos breaks down precisely when one or more remainders in the above division process
have degree greater than one. These and more general issues are the subject of the section
on recursive interpolation in Chapter 4.

Example 11.5. A connection between the Lanczos procedure and system theory described
in [146] is that the coefficients of the Lanczos canonical form can be read off from the
continued fraction expansion of the transfer function. For developments related to this
continued fraction expansion and generalizations, see the section on recursive interpolation
mentioned above and [9], [15], and [12]. For a discussion of the connection between
tridiagonalization of A and minimal realizations, see [260].

Consider the system described by the following transfer function in continued fraction
form:

The three approximants obtained by truncating this continued fraction expansion are
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352 Chapter 11. Model Reduction Using Krylov Methods

A realization of H(s) = c(^l4 — A) 'b, with A in companion form is given by

The continued fraction expansion of H induces a different realization, namely,

The latter realization ( v b J is in Lanczos form, since A is tridiagonal, and b, c* are

multiples of ei. Indeed, the biorthogonal Lanczos transformation matrices are

The Arnoldi factorization applied to A with starting vector b yields

Finally, the Arnoldi factorization applied to A* with starting vector c* yields

which shows that although both A* and A are in upper Hessenberg form, they are not the
same; this is because the starting vector is not a multiple of ei.
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11.3. Partial realization and rational interpolation by projection 353

11.3 Partial realization and rational interpolation by
projection

In the preceding sections, we saw that rational Krylov methods achieve model reduction by
moment matching, which leads to realization and interpolation problems. In this section
we will revisit this problem from a more general point of view.

The issue of partial realization and, more generally, rational interpolation by projection
has been treated in the work of Skelton and coworkers; see, e.g., [93], [366], [367]. Grimme
in his thesis [152] showed how to accomplish this by means of Krylov methods. Recently,
Van Dooren, Gallivan, and coworkers have revisited this area and provided connections with
the Sylvester equation [128], [129].

Suppose that we are given a system Z = ( ^ I B ), where A € R" x" and B, C* e Rn.

We wish to find lower-dimensional models Z = ( * I " )»where A e R*x*, B, C* e R*,

k < n, such that Z preserves some properties of the original system, such as stability, norm-
boundedness, passivity, etc. We wish to study this problem through appropriate projection
methods. In other words, we will seek V e Rnx* and W e R"x* such that W*V = I*, and
from the introduction, the reduced system should be given by

Proposition 11.6. Let V = [B, AB, . . . , A^B] = ft* (A, B) and W be any left inverse of
V. Then Z defined by (1.8) is a partial realization o/Z and matches k Markov parameters.

From a numerical point of view, one would not use V as defined above to construct
Z, since usually the columns of V are almost linearly dependent. As it turns out, any matrix
whose column span is the same as that of V can be used.

Proof. We have CB = CVW*B = Cft^A, B)CI = CB; furthermore,

This expression is equal to Cftjt(A, B)W*A'B = Cft*(A, B)e,+i = CA'B, j = 1, . . . ,

Suppose now that we are given k distinct points Sj e C. V is defined as the generalized
reachability matrix (4.85),

and as before, let W be any left inverse of V. The next proposition holds.
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354 Chapter 11. Model Reduction Using Krylov Methods

Proposition 11.7. X defined by (1.8) interpolates the transfer function o/X at the points
Sj, that is,

Proof. The following string of equalities leads to the desired result:

The next result concerns matching the value of the transfer function at a given point
SQ e C, together with k — 1 derivatives. For this we define the generalized reachability
matrix,

together with any left inverse W thereof.

Proposition 11.8. X defined by (1.8) interpolates the transfer function o/X at SQ, together
with k — 1 derivatives at the same point:

Proof. Let V be as defined in (11.11), and let W be such that W*V = Ir. It readily follows
that the projected matrix soir —A is in companion form, and therefore its powers are obtained
by shifting its columns to the right:

Consequently, [W*(soln — A)V]~€W*B = e^, which finally implies

completing the proof. D
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1 1.3. Partial realization and rational interpolation by projection 355

A moment's reflection shows that any V that spans the same column space as V
achieves the same objective. Furthermore, any projector composed of any combination of
the above three cases achieves matching of an appropriate number of Markov parameters
and moments. This is formalized next. For this purpose, we need the partial reachability
matrix ̂ (A, B) = [B AB • • • Afe-1B] , and the partial generalized reachability matrix:

Corollary 11.9. Rational Arnold!, (a) If V as defined in the above three cases is replaced
by V = VR, R e Rkxk, del R ̂  0, and W by W = R"1 W, the same matching results hold
true.

(b) Let V be such that

span col V = span col [ft*(A, B) 7£

Let also W be any left inverse of\. The reduced system (1.8) matches k Markov parameters
and mi moments atai e C, i = !,.. . ,€.

The above corollary can be interpreted as rational Arnoldi. Its numerical imple-
mentation is obtained by combining regular Arnoldi with shift-invert Arnoldi for the shifts
Oj, . . . , 0 f .

1 1 .3.1 Two-sided projections

The results just discussed can be strengthened if the row span of the left matrix W* is chosen
to match the row span of an observability or generalized observability matrix. In such a
case, twice as many moments can be matched with a reduced system of the same dimension
as in the previous section. However, this is not always possible. Certain nonsingularity
conditions have to be satisfied for this to happen.

We will denote by C^(C, A) € R*xn the partial observability matrix consisting of the
first k rows of On(C, A) G E"XM (see (4.38)). The first case is

Proposition 11.10. Assuming that defHjt ^ 0, Z defined by (1.8) is a partial realization
of It and matches Ik Markov parameters.

Notice that the projection used above is more general that the one used for the two-
sided Lanczos procedure and therefore fails less often. (Only one determinant has to be
nonsingular for it not to fail.) The key reason for this is that the two-sided Lanczos process
forces the resulting matrix A to be tridiagonal, which is a rather stringent condition. This
in turn is equivalent to the existence of an LU factorization of Hk-

Given 2k distinct points s\, . . . , s^, we will make use of the following generalized
reachability and observability matrices (recall (4.85) and (4.86)):
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356 Chapter 11. Model Reduction Using Krylov Methods

Proposition 11.11. Assuming that detW*V ^ 0, the transfer function of the projected
system Y, defined by (1.8) where V = V and W = W(V*W)~! interpolates the transfer
function ofY, at the points s/, i = 1, . . . , 2k.

Proof. The string of equalities that follows proves the desired result:

These relationships are valid for i = k + I,..., 2k. D

Remark 11.3.1. (a) The same procedure as above can be used to approximate implicit
systems, i.e., systems that are given in a generalized form Ex(f) = Ax(f) + Bu(0, y(0 =
Cx(0, where E may be singular. The reduced system is given by

where the projection VW* is given by

(b) The general case of model reduction of MIMO systems by means of tangential
interpolation is analyzed in [131].

Remark 11.3.2. The Sylvester equation and projectors. An important connection between
rational interpolation and the Sylvester equation follows from Theorem 6.5 and in particular
formula (6.15). This shows that the solution of an appropriate Sylvester equation AX +
XH + BG = 0 provides a projector that interpolates the original system C, A, B at minus
the eigenvalues of H. Therefore, the projectors discussed in the previous section can be
obtained by solving Sylvester equations. This result was first observed in [128], [129]. See
also [310].
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1 1.3. Partial realization and rational interpolation by projection 357

1 1 .3.2 How general is model reduction by rational Krylov?

( 

A I R \
c D ) °f order n. Its transfer function is a scalar proper

rational function H = n/d (i.e., the degree of the numerator is less than the degree of the

denominator). Assume that the reduced system 'L = is also SISO of order k

and described by the rational transfer function H = n/d. The question is whether there
exists a projection IT = VW* (in general, oblique) where V, W are obtained by means of
the rational Krylov procedure, such that

Since D, D are not involved in the above projection, we will assume that D = D = 0. The
answer to this question is affirmative in the generic case. To see this, consider the difference
of the transfer functions

This difference has n+k zeros (including those at infinity): //,,,/ = 1, . . . , n+k. Therefore,
H can be constructed by interpolating H at 2k + 1 of these zeros. For k = n — 1, all /i,
have to be used, while for k < n — 1 there are several choices of the interpolation points.

In the nongeneric case, that is, when d and d have a common factor of degree, say, I,
there is a restriction on the degree of H which can be obtained by interpolation, namely,

The situation, however, is not as simple for MIMO systems, that is, systems described
by nonscalar proper rational matrix transfer functions. See [138], [130] for details. Here is
a simple example that illustrates the SISO case.

Example 11.12. Let Z be given by

which implies H(s) = * + w\s
+

+^5
 +85+1. The reduced-order system E i's

which implies H(s) = **~\. It readily follows that

Consider a SISo system
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358 Chapter 11. Model Reduction Using Krylov Methods

which shows that this expression has five zeros at 0 and three at infinity. As interpolation
points, we pick all five zeros at 0 and one at infinity. Thus we have

It is readily checked that the triples (C, A, B) and (C, A, B) are equivalent and therefore
H(5) = C(sl - A)-!B.

11.3.3 Model reduction with preservation of stability and passivity

Recall the definitions of passivity and positive realness discussed in section 5.9.1. Given
is a passive system described by D = ( " ) . This means that its transfer function

V *- I u /
H(s) = COI - A)-1B + D is positive real.

The following result is shown in [27]; see also [234]. For a result derived from the
one presented below, see [309]. For different approaches to the problem, see [33], [117],
[205], [118], [352].

Lemma 11.13. Let A/ be such that H*(—A,-) + H(A,-) = 0. If the frequencies (interpolation
points) in Proposition 11.10 are chosen so that Sj, j = 1 , . . . , k, are (stable) spectral zeros,
andsj+k = ~Sj, j = 1, . . . , k, i.e., as zeros of the spectral factors and their mirror images,
the projected system is both stable and passive.

Recall that the zeros of the square system ( r p )' w^ere D is nonsingular, are the

eigenvalues of the matrix A — BD-1C. If D is singular, the zeros are the finite eigenvalues
of a generalized eigenvalue problem, namely, all finite A for which
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11.3. Partial realization and rational interpolation by projection 359

loses rank. Thus when D + D* is nonsingular, the zeros of the spectral factors are the
eigenvalues of the following Hamiltonian matrix:

In particular, if the reduced-order system has dimension k, we need to compute k eigenvalues
A/ € C_ . If the nonsingularity condition is not satisfied, we end up with a generalized
eigenvalue problem of the pair A, £, where

Remark 11.3.3. A further result in passivity preserving model reduction was developed by
Sorensen [309], who showed that the invariant of spaces (A, £} provide the desired passivity
preserving projector VW*. Therefore, the problem of model reduction with preservation of
passivity has been transformed into a structured eigenvalue problem and can thus be solved
using ARPACK software.

Example 11.14. We consider the following Resistor-Inductor-Capacitor (RLC) ladder net-
work. The state variables are as follows: jci, the voltage across C\\ KI, the current through
LI; jca, the voltage across Ci\ £4, the current through L^\ and xs, the voltage across C^.
The input is the voltage u, and the output is the current y, as shown in the figure below. We
assume that all the capacitors and inductors have unit value, while RI = ^Q, /?2 = 5 £2.
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360 Chapter 11. Model Reduction Using Krylov Methods

The zeros of the stable spectral factor are -.1833 ± 1.5430/, -.7943, -1.3018, -1.8355;
these can also be computed as the square roots in the left half plane of the eigenvalues of

According to Lemma 11.13, the interpolation points are therefore s\ = 1.8355, S2
-1.8355,53 = 1.3018,54 = -1.3018:

The reduced system is

C = CV = [1.9905 5.0620], and D = D. It readily follows that the zeros of the spectral
factors are s\, $2,53, and 54, thus showing that the reduced system is passive. Furthermore,
HO/) = HO,), i = 1, 2, 3, 4. In addition,
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11.4. Chapter summary 361

The values of the above elements are R\ = 2.8969 ft, LI = 5.0904 H,
Ci = 0.2430 F, R2 = 1 ft-

= 3.4404 £2,

11.4 Chapter summary
In this chapter we discussed Krylov methods applied to model reduction. First we showed
that the Lanczos and Arnoldi procedures yield reduced-order models that match a certain
number of Markov parameters (i.e., moments at infinity) of the original model. Thus while
Arnoldi matches a number of moments equal to the order of the reduced model, Lanczos
matches twice as many moments.

In the second part, we examined model reduction by moment matching from a more
general point of view. It was shown that rational Krylov methods match moments at pre-
assigned points in the complex plane, that is, they provide an iterative solution of the rational
interpolation problem. Furthermore, the question of the generality of the rational Krylov
procedure has been briefly investigated. Finally, the reduction with preservation of passivity
was shown to be solvable using rational Krylov methods, by choosing the interpolation points
as a subset of the spectral zeros of the system. The solution of this problem can thus be
reduced to the solution of a structured eigenvalue problem.
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Chapter 12

SVD-Krylov Methods

The basic ingredient of SVD-based methods consists of certain gramians P, Q, usually
referred to as reachability, observability gramians, respectively. These are positive (semi)
definite, can be simultaneously diagonalized, and are used to construct a projector onto
the dominant eigenspace of the product PQ. These gramians are solutions to Lyapunov
equations.

Gramians are also involved in Krylov-based methods, but these are given in factored
form P = 7£7£*, Q = O*O, where 7£, O are reachability, observability or generalized
reachability, generalized observability matrices; these matrices are used to project the orig-
inal model so that interpolation (moment matching) conditions are satisfied. Consequently,
there is no need for solving Lyapunov equations in this case. A further aspect of Krylov
methods is that they can be implemented in an iterative way, using well-known procedures.

12.1 Connection between SYD and Krylov methods
This chapter is dedicated to a discussion of various connections between these two approx-
imation methods. There are four such connections:

1. Reachability and generalized reachability matrices can be obtained as solutions of
Sylvester equations, the latter being a general form of Lyapunov equations. The same
holds for observability and generalized observability matrices.

2. By appropriate choice of the weightings, weighted balanced truncation methods can
be reduced to Krylov methods.

3. There are methods that combine attributes of both approaches, for instance, model
reduction by least squares. In this case, instead of two, only one gramian (the ob-
servability gramian <2) is computed, while at the same time, moment matching takes
place. The former is the S VD part while the latter is the Krylov part of this method.

365
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366 Chapter 12. SVD-Krylov Methods

4. The bottleneck in applying SVD-based methods (balanced truncation) to large-scale
systems is the fact that the solution of Lyapunov equations requires O(n3) operations,
where n is the dimension of the original system. One remedy to this situation consists
of using iterative methods for solving these Lyapunov equation approximately. This
leads to approximately balancing transformations and to reduced systems obtained
by approximately balanced truncation.

The first three items will be discussed in the three sections that follow. The fourth
item will be discussed in section 12.2.

12.1.1 Krylov methods and the Sylvester equation

Recall from Chapter 6 that the solution to the Sylvester equation AX + XB = C can be
written according to (6.14) as

where W*B = MW*, M = diag ( / x i , . . . , ̂ ), is the eigenvalue decomposition of B.
We recognize the matrix 7£(A, ci) as a generalized reachability matrix (see (4.85)),

and according to Proposition 11.7, if we chose any left inverse W* thereof, the two matrices
lead to a projected system which interpolates at — /z*, i.e., at the mirror image the eigenvalues
ofB.

Thus, if we want to interpolate at given points A,,, choose a matrix B whose eigenvalues
are //,, = —A.*, choose Ci = b and 02 such that the pair (B, c|) is reachable, and solve the
resulting Sylvester equation. The solution provides one part of the required projector.

12.1.2 From weighted balancing to Krylov

Recall the weighted reachability gramian,

defined by (7.33). Therein, W is the input weight to the system which will be assumed for
simplicity to be a scalar function. Let I denote the unit step function (1(0 = 1, t > 0, and
1(0 = 0, otherwise). We define the weight

As € —>• 0, the above expression tends to the sum of two impulses 8(co — COQ) + 8(—co — CDQ).
In this case the gramian becomes
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12.1. Connection between SVD and Krylov methods 367

Therefore,

Thus projection with VW*, where W* V = \2, yields a reduced system which interpolates the
original system at ±tCOQ. Thus, with appropriate choice of the weights, weighted balanced
truncation reduces to a Krylov method (rational interpolation) and matches the original
transfer function at points on the imaginary axis.

Example 12.1. The purpose of this example is to show yet another way to combine SVD
and Krylov methods. Recall Example 11.5. Given the reachability, observability matrices
ft4(A, B), CMC, A), the gramians P = ft4(A, B)ftJ(A, B) and Q = O|(C, A)£>4(C, A)
can be assigned. The balancing method would now provide transformations which simulta-
neously diagonalize P and Q. In this new basis, model reduction would amount to truncation
of the states which correspond to small eigenvalues of the product PQ. For this choice of
gramians, notice that the square roots of these eigenvalues are the absolute values of the
eigenvalues of the 4 x 4 Hankel matrix associated with the triple (C, A, B).

We will now compute a balancing transformation that diagonalizes the gramians si-
multaneously. For this purpose, let

Then

It follows that

and S = diag (71.7459,64.0506, 2.4129,1.1082). Thus the balancing transformation is

and H = CT 1 = G* diag (1, — 1, 1, — 1). Model reduction now proceeds by retaining the
leading parts of F, G, H.
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368 Chapter 12. SVD-Krylov Methods

Thus given the gramians P = 7£7£* and Q = O*O, depending on how we proceed,
different reduced-order models are obtained. For instance, if we apply an SVD-type method,
the gramians are simultaneously diagonalized. If we choose a Krylov method, on the other
hand, the square root factors 7£ and O are directly used to construct the projector. Notice
that the former methods loose their interpolation properties.

To complete the example, we also quote the result obtained by applying the Arnoldi
method (11.10):

In this case, according to Proposition 11.10, the truncated model of order k matches 2k
Markov parameters.

12.1.3 Approximation by least squares

In this section, we discuss the approximation of a stable discrete-time system in the least
squares sense. It turns out that this model reduction method matches moments, i.e., Markov
parameters, and guarantees stability of the reduced-order system. This section follows
[158]. Other contributions along these lines are [93] and [178].

Consider the discrete-time system H — ( - — j, |A.,-(A)| < 1. Recall the Hankel
matrix (4.63). For this section, we use the notation

We denote by O the infinite observability matrix and by *Rk the reachability matrix containing
k terms. Thus Uk = OKk and h*+i = OAkb. Furthermore, Q = O*O is the observability
gramian of the system.

A reduced system is obtained by computing the least squares fit of the (k + l)st
column hjfc+i of T-L on the preceding k columns of %, i.e., the columns
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12.1. Connection between SVD and Krylov methods 369

where CLS is the least squares error vector. From the standard theory of least squares it
follows that

The characteristic polynomial of the resulting system is

The corresponding matrices are

where the projection FT /ell/, is defined as

If we let x£ 5 = («o • • • afc_i), the reduced triple has the following form:

Lemma 12.2. Stability of the least squares approximant. The least squares approximant
ELS of the stable system 51 is stable.

Before giving the proof of this result, we transform the approximant to a new basis.
Let Q = R*R be the Cholesky factorization of Q, and let

be the Cholesky factorization of K*k

It follows that

. We define

Thus by similarity, A/,5 and \L$ have the same characteristic polynomial. We now show
that ALs has eigenvalues inside the unit circle.

Proposition 12.3. If |A(A)| < 1, it follows that |A(ALS)| < 1.

Proof, Recall that A*QA + c*c = Q. Assuming without loss of generality that Q =
I, it follows that A*A < !„; multiplying this relationship by T* and T on the left and

co
nt

ro
len

gin
ee

rs
.ir



370 _ Chapter 12. SVD-Krylov Methods

right, respectively, we have T*A*AT < lk. Since ( £ Y "j > 0 is equivalent to ln —

L*L > 0 or Im - LL* for L e Rmxn, the latter inequality is equivalent to ATT* A* < !„,
which in turn implies A.£,sA£5 = T*ATT*A*T < I*; this concludes the proof of the
proposition. D

Proof. We will now prove Lemma 12.2. The above proposition implies that the least
squares approximant may have poles on the unit circle. To show that this cannot happen, we
complete the columns of T to obtain a unitary matrix: U = [T S], UU* = U*U = In. Then
!„ — A* A = c*c implies IM — U*A*UU*AU = U*c*cU which, written explicitly, gives

The (1,1) block of this equation is

Assume now that the reduced system has a pole of magnitude one, i.e., there exists x e Ck

such that

Multiplying the above equation with x* on the left and x on the right, we obtain

This implies cTx = 0 and S*ATx = 0, which means that the reduced system is not
observable if it has a pole on the unit circle. Now let y = ATx; then U*y = ( £* jy =

( * j = ^ . y = (T S)( ^ j i = ^ y = Tx; hence Tx is an eigenvector of A with eigenvalue
1, which is in the null space of c; this is a contradiction of the fact that c, A is observable.
This concludes the proof. D

From (12.1) it follows that the least squares approximant matches the first k Markov
parameters of the original system.

The above considerations are summarized next.

Theorem 12.4. Given the discrete-time stable system E, let T,^s be the kth-order approxi-
mant obtained by means of the least squares fit of the (k + l)st column of the Hankel matrix
ofT, to the preceding k columns. 2 LS is given by (12. 1) and enjoys the following properties:

• X/,5 is stable.
• k Markov parameters are matched: cA'-1b = cA'^'b, i = I , .. .,k.

Remark 12.1.1. Connection with Prony's method. The least squares method just presented
is related to Prony's method. For details on this and other issues, e.g., generalization to
continuous-time systems, MIMO systems, and an error bound, see [158]. A different way
to obtain stable reduced-order systems by projection is described in [207].
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12.2. Introduction to iterative methods 371

1 2.2 Introduction to iterative methods
Recently, there has been renewed interest in iterative projection methods for model reduction.
Three leading efforts in this area are Fade via Lanczos (PVL) [114], multipoint rational
interpolation [152], and implicitly restarted dual Arnoldi [188].

The PVL approach exploits the deep connection between the (nonsymmetric) Lanczos
process and classic moment matching techniques; for details see [333], [336]. The multi-
point rational interpolation approach utilizes the rational Krylov method of Ruhe [281]
to provide moment matching of the transfer function at selected frequencies and hence to
obtain enhanced approximation of the transfer function over a broad frequency range. These
techniques have proved to be very effective. PVL has enjoyed considerable success in circuit
simulation applications. Rational interpolation achieves remarkable approximation of the
transfer function with very-low-order models. Nevertheless, there are shortcomings to both
approaches. In particular, since the methods are local, it is difficult to establish rigorous
error bounds. Heuristics have been developed that appear to work, but no global results
exist. Second, the rational interpolation method requires selection of interpolation points.
This is not an automated process and relies on ad hoc specification by the user.

The dual Arnoldi method runs two separate Arnoldi processes, one for the reachability
subspace and one for the observability subspace, and then constructs an oblique projection
from the two orthogonal Arnoldi basis sets. The basis sets and the reduced model are up-
dated using a generalized notion of implicit restarting. The updating process is designed
to iteratively improve the approximation properties of the model. Essentially, the reduced
model is reduced further, keeping the best features, and then expanded via the dual Arnoldi
processes to include new information. The goal is to achieve approximation properties
related to balanced realizations. Other related approaches [68], [228], [194], [267] work
directly with projected forms of the two Lyapunov equations to obtain low rank approxi-
mations to the system gramians. An overview of similar model reduction methods can be
found in [336]. See also [92] and [210].

In the following, we describe two approaches to iterative projection methods. The first
uses the cross gramian introduced in section 4.3.2. The second is based on Smith-related
iterative methods. These two sections closely follow [310] and [157], respectively.

12.3 An iterative method for approximate balanced
reduction

Computational techniques are well known for producing a balancing transformation T for
small- to medium-scale problems [167], [224]. Such methods rely on an initial Schur de-
composition of A followed by additional factorization schemes of dense linear algebra. The
computational complexity involves 0(«3) arithmetic operations and the storage of several
dense matrices of order «, i.e., O(n2} storage. For large state space systems, this approach
for obtaining a reduced model is clearly intractable. Yet, computational experiments in-
dicate that such systems are representable with very-low-order models. This provides the
primary motivation for seeking methods to construct projections of low order.

The cross gramian X of E is defined for square systems (m = p) by (4.59); it is the
solution to the Sylvester equation
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Our approach to model reduction as reported in section 12.3.1 consists of constructing
low rank k approximate solutions to this matrix by setting X = VXW* with W*V = I*
and then projecting using V together with W. An implicit restart mechanism is presented
which allows the computation of an approximation to the best rank k approximation to X.
Furthermore, a reduced basis constructed from this procedure has an error estimate in the
SISO case.

As mentioned earlier, construction of a balancing transformation has typically relied
on solving for the reachability and observability gramians P, Q and developing a balancing
transformation from the EVD of the product P Q. However, it turns out that in the SISO case,
and in the case of symmetric MIMO systems, a balancing transformation can be obtained
directly from the eigenvector basis for the cross gramian.

Recall Lemma 5.6, which states that the eigenvalues of the Hankel operator for square
systems are given by the eigenvalues of the cross gramian. In addition, the following two
results hold.

Lemma 12.5. Let ( ^ B ) be a stable SISO system that is reachable and observable.
V *- I /

There is a nonsingular symmetric matrix J such that AJ = JA*, and CJ = B*. It follows
that the three gramians are related as follows: P = X] and Q = J"1 X.

Proof. Let Tl = [B, AB, . . . , A^'B], O = [C*, A*C*, . . . , (A*)""1^]*, and define Uk =
£>Afc7£. The hypothesis implies that both 71 and O are nonsingular, and it is easily shown
that the Hankel matrix Uk is symmetric. Define J = KO~*. Note J = O^U^O'* so that
J = J*. Moreover,

To complete the proof, we note that AJ = AUO~* = O~{1-LiO~*, and hence AJ =
(AJ)* = JA*. It follows that A(#J) + (#J)A* + BB* = 0, which implies P = XJ.
Similarly, multiplying the cross gramian equation on the left by J"1 we obtain A*J~J X 4-
J-1 X\ + C*C = 0, which in turn implies the desired Q = J"1 X. D

Lemma 12.6. Let (—fA - ) be a stable SISO system that is reachable and observable.
V *- I /

Suppose that (4.59) is satisfied. Then X is diagonalizable with XT, = ZD, where Z is
nonsingular and D is real and diagonal. Moreover, up to a diagonal scaling of its columns,
Z is a balancing transformation for the system.

Proof. Since P = XJ is symmetric positive definite, it has a Cholesky factorization XJ =
LL* with L lower triangular and nonsingular. This implies ~L~1X~L = L*J-1L = QDQ*,
where Q is orthogonal and D is real and diagonal since L*J~!L is symmetric. Thus,

Since |D|1/2D = D|D|1/2, we may replace Z by Z|D|~1/2 to obtain

Chapter 12. SVD-Krylov Methods
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12.3. An iterative method for approximate balanced reduction 373

It follows that X J = Z(DDJ)Z*andJ~1A' = Z~*(DJD)Z-1, since Dj = diag(±l) implies
Dj = DJ1 . If we let S = DDj = |D|, we note S is a diagonal matrix with positive diagonal
elements, and the above discussion together with (4.59) gives

After some straightforward manipulations, we find that (Z~l AZ)*S + S(Z-1 AZ) + Z*C*CZ
= 0. To conclude the proof, we note that CJ = B* implies CZDj = B*Z~*, and hence the
system transformed by Z is indeed balanced. D

A corollary of this result is that if the cross gramian is diagonal, then the sys-
tem is essentially balanced. Since Z can be taken to be a diagonal matrix such that
CZey- = ±B*Z~*e/, a diagonal linear transformation balances the system. This diago-
nal transformation is constructed trivially from the entries of B and C.

As mentioned earlier, in the SISO case the absolute values of the diagonal entries of
D are the Hankel singular values of the system. If we assume that the diagonal entries of D
have been ordered in decreasing order of magnitude, then the n x k matrix Z* consisting of
the leading k columns of Z provides a truncated balanced realization with all of the desired
stability and error properties.

The question, then, is how to compute a reasonable approximation to Z& directly. We
wish to avoid computing all of Z first, followed by truncation, especially in the large-scale
setting.

12.3.1 Approximate balancing through low rank approximation of
the cross gramian

We now consider the problem of computing the best rank k approximation A* to the cross
gramian X. We seek a restarting mechanism analogous to implicit restarting for eigenvalue
computations that enable us to compute X^ directly instead of computing all of X and
truncating.

Motivation. Suppose X = USV* is the SVD of X. Let X = UiSiVf + U2S2V|,
where U = [Ui, 1)2] and V = [Vi, ¥2]. Projecting the cross gramian equation on the right
with Vi we get

where E = -U2SiV*AVi. Observe that ||E||2 = 0(ofc+1)||A||, where 0^+1 is the first
neglected singular value, that is, the (k + l)st singular value of X.

Procedure. This suggests the following type of iteration. First obtain a projection
of A,

where V e R"xm and H e E.mxm with k < m «; n. We require that this projection yield
a stable matrix H. If not, V must be modified. Using the technique of implicit restarting
as developed in [153], we can cast out the unstable eigenvalues. This would result in a V
and an H of smaller dimension. As long as this dimension remains greater than k, we can
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374 Chapter 12. SVD-Krylov Methods

execute the remaining steps described below. Should the dimension fall below k, then some
method must be used to expand the basis set. As an example, one could use a block form
of Arnoldi with the remaining V as a starting block of vectors.

Once V and H have been computed, solve the Sylvester equation

for W e Rnxm. We now compute the SVD of W:

and Si contains the k most significant singular values of W. If we now project (12.2) on the
right with YI, we obtain

At this point the projection has been updated from V e Rnxm to Vt = VYi € Rnxk. We
must now have a mechanism to expand the subspace generated by Vj so that the above
process can be repeated. One possibility is as follows. First notice that the expression
X' = QiSi Y* V* e Rnxn can be considered as an approximate solution of the equation AA"
+ A* A + BC = 0; therefore, we project the expression AA" + A" A + BC on the left with
Q?. We call the result E',

and then solve the equation HZ + ZA + E' = 0 for Z e R*x". This represents a residual
correction to the solution of the Sylvester equation A A + A* A + BC = 0 when projected
on the left. However, instead of adding this correction to the basis set Vi, we simply adjoin
the columns of Z* to the subspace spanned by the columns of Vi and project A onto this
space. Let

Thus the updated projector at this stage is V\, the updated projection of A is H' = Vj* AVj,
and the procedure can go to (12.2).

The latter portion of the iteration is analogous to the Davidson part of the Jacobi-
Davidson algorithm for eigenvalue calculation proposed by Sleijpen and van der Vorst
[300]. These ideas are summarized in the algorithm sketched in Figure 12.1 for the complete
iteration.

There have been many ideas for the numerical solution of Lyapunov and Sylvester
equations [176], [350], [184], [284], [297], [267], [228], [194]. The approach described here
nearly gives the best rank k approximation directly. However, the best rank k approximation
is not a fixed point of this iteration. A slightly modified correction equation is needed to
achieve this. Note that the iteration of Hodel, Poola, and Tenison [176] for the Lyapunov
equation also suffers from this difficulty.
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12.3. An iterative method for approximate balanced reduction 375

Figure 12.1. An implicitly restarted method for the cross gramian.

We make a final remark on this method. The equation AW + WH + BCV = 0
introduces in the projector directions, which lie in the reachability or Krylov space spanned
by the columns of 7£(A, B), while the correction equation HZ + ZA + E' = 0 introduces
directions which are orthogonal to the unobservable space ker O(C, A).

A special Sylvester equation

Efficient solution of a special Sylvester equation provides the key to steps 2.1 and 2.3 in the
algorithm in Figure 12.1. Both steps result in an equation of the form AZ + ZH + M = 0,
where H is a k x k stable matrix and M is an n x k matrix with k <$C n. The special feature
of this Sylvester equation is that A is much larger in dimension than H. The first method
we propose here is the one described in section 6.1.5.

Since the eigenvalues of A are assumed to be in the open left half plane and the
eigenvalues of —H* are in the open right half plane, the k eigenvalues of largest real part
for the block upper triangular matrix in (6.21) are the desired eigenvalues. When k is
small, it is possible to compute the eigenvalues of H in advance of the computation of
the partial Schur decomposition in (6.21). Within this framework, the implicitly restarted
Arnoldi method [305] (implemented in ARPACK [227]) can be used effectively to compute
this partial Schur decomposition. If there is a reasonable gap between the eigenvalues of H
and the imaginary axis, then the implicitly restarted Arnoldi method (IRAM) is successful

(Implicit) Restarting Algorithm

1. AV + VH =  F  with  V*V  =  I  and V*F =  0

2. while  (not_converged),

2.1  Sove Sylvester equation projected in R(A,B) :

2.2  Contract the space (keep largest singular values):

2.3   Correct Sylvester equation projected in  O(C, A)  :

Form

Solve

2.4 Expand the space -  Adjoin  correction and  project:

New projector:
New projected
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 Chapter 12. SVD-Krylov Methods

in computing the k eigenvalues of largest real part using only matrix vector products. In any
case, exact knowledge of the desired eigenvalues provides several opportunities to enhance
convergence. One possibility is to use a single Cayley transformation (costing one sparse
direct factorization) to map the eigenvalues of A to the interior and the eigenvalues of H to
the exterior of the unit disk.

An alternative would be to construct a Schur decomposition H = QRQ* and transform
the equation to A(ZU) -f (ZU)R + (MU) = 0, where R is (quasi) upper triangular, and
then solve for the columns of Z = ZU from left to right via

where p/y- are the elements of the upper triangular matrix R, and zy , riiy are the columns
of Z, M = MU. This would require a separate sparse direct factorization of a large n x n
complex matrix at each step j. That would be k such factorizations, and each of these
would have a potentially different sparsity pattern for L and U due to pivoting for stability.
Staying in real arithmetic would require working with quadratic factors involving A and
hence would destroy sparsity.

Approximate balancing transformation

LettheSVDofthecrossgramianbe X = USV* =UiSiV?+U2S2V£, whereSi contains the
significant singular values. It follows that Ui is an orthonormal basis for a subspace spanned
by the columns of the reachability subspace 7£(A, B), while Vi provides an orthonormal
basis for a subspace orthogonal to the unobservable space ker O(C, A). Our goal in this
section is to obtain an approximate balancing transformation through the eigenvectors of
X\ = UiSiVi corresponding to nonzero eigenvalues.

In the SISO case, we know that X has real eigenvalues. If X\ were obtained as
X\ — ZjDi W*, where the diagonal elements of DI are the eigenvalues of largest magnitude
(i.e., the dominant Hankel singular values) and W*Zi = Ii , then, as discussed previously, Zi
would provide a balancing transformation. Instead, we have the best rank k approximation
to X'vn.X\. Therefore, we shall attempt to approximate the relevant eigenvector basis for X
with an eigenvector basis for X\ . It is easily seen that any eigenvector of X\ corresponding
to a nonzero eigenvalue must be in the range of Ui . In fact, we see that

where G = S[/2V]TJiSi/2. If GZ = ZDi with Dt real and diagonal, then taking

provides Xl = ZityW? with W*Zj = Ij. Note also that XZl = X&i + (X -
ZiDi + O((?k+i), and thus we have an approximate balancing transformation represented
by this Zi . The resulting reduced model is

this projected system is approximately balanced.

376
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12.3. An iterative method for approximate balanced reduction 377

Remark 12.3.1. Stability of the reduced model. Our methods pertain to stable systems and
therefore it is important in many applications that the reduced model be stable as well. We
must have the eigenvalues of the reduced matrix AI in the left half plane. The reduced model
obtained through the algorithm shown in Figure 12.1 is almost always stable in practice, but
occasionally it might be unstable. One approach to achieving a stable reduced model is to
apply the techniques developed in [153] to the projected quantities. That would amount to
applying the implicit restarting mechanism to rid the projected matrix of unstable modes.

The preceding discussion was primarily concerned with the SISO case. For MIMO
systems, we propose the idea of embedding the system in a symmetric system; this is
explored next.

Extension of theory and computation to MIMO systems

In the large-scale setting, there is a clear advantage to working with the cross gramian instead
of with the two gramians related to reachability and observability. In addition to the fact
that only one Sylvester equation need be solved, there is the question of compatibility that
arises when working with the pair of gramians. Since two separate projections must be
computed, one cannot be certain that the two subspaces are the same as the ones that would
have been achieved through computing the full gramians and then truncating.

The crucial property of the three gramians in the SISO case is X2 = PQ. It is easy
to see that this relationship holds true for MIMO systems which are symmetric, i.e., the
transfer function is symmetric. Of course, this is not generally the case. To make use of this
property, we propose to embed the given system into a symmetric system with more inputs
and outputs but the same number of state variables. Given the m-input, p-output system
E = ( M B \, we seek B e R"xp and C € Rmx" such that the augmented system

is square and symmetric, i.e., the Markov parameters CA£B 6 ^(m+p)x(m+p) ^Q symmetric
for all I > 0. That this can be done follows readily from properties of system realizations.
The important aspect of this embedding is that the complexity (McMillan degree or number
of states) of the system has not increased. Therefore, the norm (H2 or HOQ) of the original
system is bounded from above by that of the augmented system.

MIMO systems and the symmetrizer

Let J = J* be a symmetrizer for A, i.e., AJ = JA*. The following quantities are defined:

The augmented system is Z, where A = A and B, C are as defined above. This system has
the property that its Hankel operator is symmetric. Therefore, using the same tools as above,
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378 Chapter 12. SVD-Krylov Methods

we can show that

A straightforward calculation shows that the gramians of the augmented and the original
systems are related as follows:

The choice of symmetrizer

At this stage, the symmetrizer is any symmetric matrix that satisfies AJ = JA*. For
simplicity, let us assume that A is diagonalizable and has been transformed to the basis
where A is diagonal. In this case, the symmetrizer J is an arbitrary diagonal matrix. The
question arises of how to best choose the diagonal entries of J.

The criterion that is chosen is that the Hankel operator of the augmented system be
close to that of the original system. To address this issue, we make use of the variational
characterization of balancing as developed in [268], [244].

Let T be a basis change in the state space. Then, as already mentioned, the gramians
are transformed as follows: P ->> TPT*, Q -> T^TT"1. Consider the following criterion:

For a fixed state space basis, the above quantity is equal to the sum of the eigenvalues of
the reachability and of the observability gramians. The question that arises is to find the
minimum of J7"(T) as a function of all nonsingular transformations T. First notice that J
can be expressed in terms of the positive definite matrix <J> = T*T:

The following result is due to Helmke and Moore.

Proposition 12.7. The minimum of J is J* = min<i»o J = 2 Y^!k=\ ak, and the minimizer
is 

We should remark that the first part of the above proposition can be proved using
elementary means, as in section 7.1. It readily follows that with the eigenvalue decompo-
sition Pl/2Qp1/2 = UE2U*, a resulting balancing transformation is Tfc = E1/2U*P~1/2.
In other words, TbPT*b = 17* QT^1 = P. The transformation Tb is unique up to orthog-
onal similarity (P need not be diagonal). In our case, we wish to compute an appropriate
symmetrizer. The criterion (the sum of the traces of the two gramians) for the augmented
system is as follows:
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12.3. An iterative method for approximate balanced reduction 379

We compute the diagonal J = diag (ji, . . . , jn) so that the above trace is minimized. The
first summand does not depend on J. The second is

The minimum of J\ is achieved for 

This should be compared with twice the sum of the trace of the two gramians, namely,
2 Z)f=i (Pa + <?n )• The difference of the two traces is X)i=i (\/P« ~~ -\/9/7)2-

The above computation was carried through under the assumption that A is diagonal.
Let in particular

In this representation, the diagonal entries of the two gramians are

Furthermore, by applying the state space transformation T, which is diagonal with entries

ta = v/|i|:, we can ensure that /?„ = <?„. Therefore, if A is diagonalizable, there exists a
symmetrizer that guarantees that the sum of the singular values of the augmented system is
twice that of the original.

Computational efficiency

The method we have proposed appears to be computationally expensive. However, it seems
to converge quite rapidly. In fact, our test examples indicate that for medium-scale problems
(n « 400), it is already competitive with existing dense methods. Moreover, it can provide
balanced realizations where most other methods fail.

The proposed implicit restarting approach involves a great deal of work associated
with solving the required special Sylvester equations. However, the iterative method is
based on adjoining residual corrections to the current approximate solutions to the cross
gramian equations. We observe very rapid convergence in practice. Usually three major
iterations are sufficient. Nevertheless, there is no proof of convergence, and this seems to
be a general difficulty with projection approaches of this type (see, e.g., [176]).

Finally, we would like to point to (i) a preconditioned subspace method for solving the
Lyapunov equation [175] and (ii) a recursive way of computing dominant singular subspaces
[83]. Numerical experiments with iterative methods for solving the Lyapunov equation can
be found in [73].
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380 Chapter 12. SVD-Krylov Methods

12.4 Iterative Smith-type methods for model reduction

Let E = ( c I D ) e R(n+p)x("+w) be the model to be reduced. Closely related to this sys-

tem are the continuous-time Lyapunov equations (6.1). Under the assumptions of stability,
reachability, and observability, the above equations have unique symmetric positive definite
solutions P, Q e Rnxn, called the reachability, observability gramians, respectively. The
square roots of the eigenvalues of the product PQ are the so-called Hankel singular values
CT((E) of the system Z which are basis independent. As discussed in section 9.4, in many
cases, the eigenvalues of P, Q as well as the Hankel singular values <7,-(E) decay very
rapidly. This motivates the development of low rank approximate solution schemes and
leads to model reduction by truncation.

Recall from section 7.3 the factorizations P = UU* and Q = LL* where U and L
are the square roots of the gramians, respectively. Given the singular value decomposition
(SVD) U*L = WSV*, according to (7.16) the maps TI and Tn satisfy TnTi = lk and
hence TiT/i is an oblique projector. Then according to (7.17), a reduced model is obtained
by letting AI = TiATn, Bt = TiB, Ci = CTn. The reduced model Zi is balanced and
asymptotically stable, and the T^oo-norm of the error system is bounded from above by twice
the sum of the neglected singular values.

As mentioned, the above formulation for balanced truncation requires the knowledge
of the square roots U and L. The Bartels-Stewart method [43] as modified by Hammarling
[164] is the standard direct method for the solution of Lyapunov equations of small to
moderate size. Since this method requires the computation of a Schur decomposition, it
is not appropriate for large-scale problems. Moreover, as previously explained, P and Q
are often found to have numerically low rank compared to n. This low rank phenomenon
leads to the idea of approximating the gramians with low rank solutions. Next we briefly
summarize some approaches that aim at obtaining low rank approximants for the gramians
P and Q. In section 12.4.1, we mention the alternating direction implicit (ADI), Smith,
and cyclic Smith(/) iterations that lead to an approximate solution to P and hence have the
storage requirement of O(n2). Section 12.4.2 summarizes the low rank versions of ADI
and cyclic Smith(/) iterations which compute low rank approximants to U and L, instead
of P and Q, and hence reduce the memory complexity to O(nk). For a detailed analysis of
these algorithms, see [267], [263], [303] and references therein.

For large n and especially for slowly converging iterations, the number of columns of
the solution of the low rank ADI iteration can easily exceed manageable memory capacity.
Below, we introduce and analyze a modified low rank Smith method that essentially retains
the convergence properties but overcomes the memory requirements. The development
follows [157].

12.4.1 ADI, Smith, and cyclic Smith(l) iterations

In the following discussion, we focus on the approximate solution of a single Lyapunov
equation AP + PA* + BB* = 0, where A e Rnxn is stable and diagonalizable, and
B € Rnxm. This applies equally to the computation of low rank approximants to the
observability gramian. In all of these methods, the idea is to transform, using spectral
mappings of the type w(Pi) = ^-^, where \JL e C_, a continuous-time Lyapunov equation
into a discrete-time Lyapunov or Stein equation, for which the solution is obtained by an
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12.4. Iterative Smith-type methods for model reduction 381

infinite summation. The parameter ^ is the shift. The ADI method uses a different shift
at each step and obtains a series of Stein equations. The Smith method uses a single shift
parameter and hence is a special case of the ADI iteration. The Smith(/) method is also a
special case of the ADI iteration, where / shifts are used in a cyclic manner.

The ADI iteration

The ADI iteration was first introduced by Peaceman and Rachford [263] for solving linear
systems of equations arising from the discretization of elliptic boundary value problems.
In general, the ADI iteration is applied to linear systems My = b, where M is symmetric
positive definite and can be split into the sum of two symmetric positive definite matrices
M = MI + M2 for which the following iteration is efficient:

The ADI shift parameters JJLJ and TJJ are determined from spectral bounds on MI and M2

to increase the convergence rate. Application to the Lyapunov equation is obtained through
the following iteration step:

where PQ = 0, the shift parameters {/zi , ̂ 2, ̂ 3, • • •} are elements of C_, and p, = Ke O/).
The spectral radius pM)l = p(^i=\(A ~~ A^XA + Mil)"1) determines the rate of

convergence where / is the number of shifts used. The minimization of pADl with respect to
shift parameters //.,- is called the ADI min-max problem:

See [104], [313], and [350] for contributions to the solution of the ADI min-max
problem. It can be shown that if A is diagonalizable, the /th iterate satisfies the inequality

where X is the matrix of eigenvectors of A.

Smith's method

For every real scalar ^ < 0, AP + PA* + BB* = 0 is equivalent to the Stein equation

Hence using the bilinear transformation co = ^ , the continuous-time problem has been
transformed into a discrete-time one. Then according to Proposition 4.35, the Stein equation

Where
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(12.4) has the same solution as its continuous-time counterpart. The solution to the Stein
equation is P = -2/xX^lo AiB/*Bj!l(AP;- T*16 low rank Smitn method amounts to
truncating the series at an appropriate step, while the modified low rank Smith method
updates a low rank SVD approximation to P by updating and truncating the SVD as each
term A£BMBJ (A* )' is added in.

Since A is stable, /o(AM) < 1 and the sequence {Pf}^ generated by the iteration
PQ = 0 and Pf+l = BMB* + ^Pf A* converges to the solution P. Thus the Smith iterates
can be written as

Notice that the Smith method is the same as the ADI method, when all the shifts are equal.
Formulas for multiple shifts fjij and for complex shifts are fairly straightforward to

derive [157].

The Smith (/) iteration

Penzl observed in [267] that in many cases the ADI method converges very slowly when
only a single shift (Smith iteration) is used and a moderate increase of the number of shifts
/ accelerates the convergence. But he also observed that the speed of convergence is hardly
improved by a further increase of /. These observations lead to the idea of cyclic Smith(/)
iteration, which is a special case of ADI where / different shifts are used in a cyclic manner,
i.e., ni+ji = IJL, ; for j = 1, 2, ____ It is easy to show that the Smith(/) iterates are generated
as follows:

As in Smith's method, P—\jP\j = T is equivalent to an appropriately defined continuous-
time Lyapunov equation.

12.4.2 Low rank ADI and low rank Smith(/) iterations

Since the ADI, Smith, and Smith(/) iterations outlined in section 12.4.1 compute the solution
P explicitly, the storage requirement is O(n2). But one should notice that in many cases
the storage requirement is the limiting factor rather than the amount of computation. The
remedy is the low rank methods. Instead of explicitly forming the solution P, the low
rank methods compute and store the low rank approximate square root factors reducing the
storage requirement to O(nr), where r is the numerical rank of P.

The key idea in the low rank versions of Smith(/) and ADI methods is to write

The low rank ADI (LR-ADI) is based on (12.3). Combining the above relationships, (12.3)
can be rewritten in terms of 7£ as

382 _

co
nt

ro
len

gin
ee

rs
.ir



12.4. Iterative Smith-type methods for model reduction 383

where Zf = .>/—2/IT(A + //a/)"1!*. When the number of shift parameters is limited, the
cyclic low rank Smith method (LR-Smith(/)) is a more efficient alternative to the LR-ADI.
It consists of two steps. First, the iterate Zf is obtained by an / step low rank ADI iteration;
i.e., the LR-Smith(/) is initialized by

where B^ is defined in (12.5). It then follows that the fcth step LR-Smith(/) iterate is given
by

One should notice that while a fc-step LR-ADI iteration requires k matrix factorizations, a
fc-step LR-Smith(/) iteration computes only / matrix factorization. Moreover, if the shifts
{/zi, . . . , / j , /} are used in a cyclic manner, the cyclic LR-Smith(/) iteration is equivalent to
the LR-ADI iteration.

We note that at the ith step Z-4 and Zf has m x / and m x / x i columns, respectively.
Hence, as discussed in [157], when m is large and/or the convergence is slow, i.e., p(A^)
is close to 1, the number of columns of Zjf and Zf easily reaches an unmanageable level
of memory requirements, and these two methods fail. In section 12.4.3, we introduce a
modified LR-Smith(/) iteration to overcome this problem and to retain the low rank structure.

Next we present some convergence results for the LR-Smith(/) iteration without
proofs. The proofs of these result can be found in [157].

Proposition 12.8. Define Ekp = P - Pk and Ekq = Q - Qk, and let A = X(K)X~l be
the eigenvalue decomposition of A.. The k-step LR-Smith(l) iterates satisfy

where K = ic(X)2, andic(X) denotes the condition number of X.

Let a, and <r, denote the Hankel singular values resulting from the full rank exact
gramians and the low rank approximate gramian, respectively, i.e., a2 = A.,CPQ) and
a2 = ki(PkQk). The following holds true:

Corollary 12.9. Let af and CT, be defined as above. Define n = kl min(m, /?). Then,

where K is the square of the condition number of X.
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12.4.3 The modified LR-Smith(/) iteration

As discussed in section 12.4.2, the LR-Smith(/) iteration has the drawback that when applied
to the usual Lyapunov equation AP + PA* + BB* = 0, the number of columns of the
approximate square root increases by m x I at each step, where m is the number of inputs and /
is the number of cyclic shifts applied. Hence in the case of large m and slow convergence, this
causes storage problems. In what follows, we propose a modified LR-Smith(/) iteration so
that the number of columns in the low rank square root factor does not increase unnecessarily
at each step. The key idea of the proposed method is to compute the SVD of the iterate at
each step and, given a tolerance T, to replace the iterate with its best low rank approximation.
However, we do not recompute the SVD; instead we update it after each step to include the
new information and then truncate given the tolerance r.

The proposed algorithm

As stated in section 12.4.1, the continuous-time Lyapunov equation is equivalent to the Stein
equation

where A^ and B</ are defined in (12.5) and (12.6), respectively. Let Zf be the fcth LR-
Smith(/) iterate as defined in (12.7). Then the approximate low rank gramian at the kth step
is

Let the short SVD(S-SVD) of Zf beZf = V£W*, where V e R"x<m/*>, s e R^*^*),
and W e R«x«. Consequently, the S-SVD of Pf is given by Pf - VE2V*, and it
is enough to store V and S only. In other words, Z^ = VE is also a low rank square root
factor for Pf.

Let r > 0 be a prespecified tolerance value. Assume that until the £th step of the

algorithm all the iterates Zf satisfy aj* y > r for / = 1 , . . . , k. At the (k + l)st step, the

approximants Zf^ and P^+\ are readily computed as

Define B(^) = A^B^ and decompose

where T € ]^mlk^ml\ e e R^OX^ v*y = o, and V*V = lml. In view of the above
decomposition, we define the matrix

384 _
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1 2.4. Iterative Smith-type methods for model reduction 385

Let S have the following SVD: S = TE Y*. We note that since S e ^k+i)mix(k+i)mit taking

the SVD of S is inexpensive. Then it readily follows that Z^+i is given by

and V € R ^ + , e R + » n x + « _ Again one should notice that +1 is simpiy

obtained from Zk, which is already available, and from the SVD of S, which is easy to
compute. Next, we partition E and V conformally:

The (k + l)st low rank square root factor is approximated by

Hence the (k + l)st step low rank gramian is computed as Pk+\ = %k+i (Z^+i)*; this means
that we simply ignore the singular values which are less than the given tolerance. Hence,
from the kth to the (k+ l)st step, the number of columns of Zk+i generally does not increase.
An increase occurs only if more than r singular values of Zk+\ fall above the tolerance ta\ .
In any case, there can be at most ml additional columns added at any step which is the same
as the original LR-Smith(/) iteration discussed in section 12.4.2.

Convergence properties of the modified LR-Smith(/) iteration

In this section, we present some convergence results for the A>step approximate solutions
Pk and Qk which are, respectively, the modified LR-Smith(/) solutions to the two Lyapunov
equations \P + PA* + BB* = 0, A*Q + QA + C*C = 0, where A e M"xw, B e R"xm,
and C 6 Rpxn. For the proofs, see [157]. We introduce the set

In other words, this is the set of indices for which some columns have been eliminated from
the j'th approximant. Then for each / e I-p, we denote by nf the number of neglected
singular values. TQ and np are defined similarly.

Proposition 12.10. Let Z* be the kth step modified LR-Smith(l) iterate corresponding to
(12.8), and let Pk = Zk(Zk)*, Pk be the kth step LR-Smith(l) iterates given by (12.9).
Define Akp = P -Pk- It follows that Pk and Akp satisfy

where r is the tolerance value of the modified LR-Smith(l) algorithm.
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386 Chapter 12. SVD-Krylov Methods

In view of Proposition 12.8, the following result holds.

Proposition 12.11. Let Z* be the kth step modified LR-Smith(l) iterate corresponding to
(12.8), Pk = Z*(Z*)*, Ekp = P - Pk. Let\ = XAX~l be the eigenvalue decomposition
of A. The k-step modified LR-Smith(l) iterates satisfy

where K, as before, is the square of the condition number ofX.

We note that the bounds for the traces of the errors in Propositions 12.8 and 12.11
differ only by an order of <9(T2). The next result introduces a convergence result for the
computed Hankel singular values similar to the one in Corollary 12.9.

Corollary 12.12. Let a\ and a, denote Hankel singular values resulting from the full rank
exact gramians P and Q and from the modified LR-Smith(l) approximants Pk and Qk,
respectively: or,-2 = A.,(PQ) and a2 = ki(PkQk). Define n = kl min(m, p). Then,

, TQ are the given tolerance values, and K = ic(X)2.

Once again the bounds for the error in the computed Hankel singular values in Corol-
laries 12.9 and 12.12 differ by only the summation of terms, which are O(T|>), O(TQ), and

12.4.4 A discussion on the approximately balanced reduced system

Let Z* = ( Q I D ) = ( Wcv? I WD° ) ̂  ̂  jtth-°rder reduced system obtained by

exact balanced truncation. Similarly, let i* = ( ** I BO = ( w*^ I W*B ^ betheA;th-
•" V c* | D ) \ cv* | D )

order reduced system obtained by approximate balanced truncation, where the approximate
low rank square roots Zf ' and Y '̂ are used instead of the exact square roots in computing
W* and V*. The following equation is easily derived:
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12.4. Iterative Smith-type methods for model reduction 387

where A is the error in P, i.e., A = P — Pfl and S^ is the diagonal matrix with the
approximate Hankel singular values as diagonal entries. Stability of the reduced system
is not always guaranteed, but if the approximate singular values are close enough to the
original ones, then it is.

Next we examine how close Z^ is to Z^. Toward this goal, define Ay = V^ — V^
and AW = W* — W* and let || Ay II < r and ||AW|| < T» where r is a small number; in
other words, we assume that V* and W* are close to V* and W*. It can be shown that
AA = A* - A*, AB = Bk - Ek, Ac = C* - C* satisfy

Thus, the closer V^, W^ are to V*, W*, that is, the smaller r, the closer Z* will be to 2^.

12.4.5 Relation of the Smith method to the trapezoidal rule

We consider the system x = Ax + Bu, y = ex and recall that for u(r) = 5(r) and x(0) = 0,
x(f) = eA'E. Moreover, the solution of the Lyapunov equation AP + PA* + BB* = 0 is

The Smith method derives from the equivalence of the Lyapunov equation to a Stein equation
(12.4) where (12.5) holds.

There is a direct relation due to Sorensen between a Smith method and the well-
known trapezoidal rule (Crank-Nicholson) method for integrating the differential equation
x = Ax + Bu. We consider Xy « x(y/i), j = 0, 1,.. . , to be computed by the trapezoidal
rule, and we recall that XQ = 0 and that u(r) = S(T). For any positive step size h,

for each interval [jh, (j + l)/i). A straightforward application of the trapezoidal rule along
with the conditions x(0) = 0 and /0* 5(r)dr = 1 gives \i = (I- | A)"!B and xy+i = (I -

|A)-1(I+|A)xJ for the remaining intervals. Hence, x,+i = [(I - |A)-!(I+ |A)]y (I-
|A)~!B, for j = 0,1, 2, Now, putting l*< = \ gives

whereAM = (A— ̂ "'(A+^andB^ = (A— /LtI)~'B as before, since h(j? = |/x2 = 2^.
This establishes the direct connection between the low rank Smith method (in sim-

plest form) and the technique of constructing an approximate trajectory {xy} via the trape-
zoidal rule and then developing an approximation to P directly by applying the simplest
quadrature rule P = h £]ylo xy+ixy+i- The result is easily generalized to multiple inputs
by linearity and superposition. It is interesting to note that quadrature rules have been
proposed previously [155] in this context for directly approximating the integral formula
p = /0°° e

A'BB*eA*' dr for the gramian.
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388 Chapter 12. SVD-Krylov Methods

12.5 Chapter summary
The two basic families of approximation methods are the S VD-based and the Krylov-based
methods. As mentioned, however, each has its own set of advantages and disadvantages.
The former preserve important properties like stability and have a global error bound; in
return, they can be applied to systems of low to moderate dimension. The latter are moment
matching methods which have iterative implementations. Therefore, they can be applied to
large-scale systems. But since moment matching methods are local in frequency, stability
is in general, not guaranteed.

In the preceding chapter, we established connections between these two families of
approximation methods. First, it was shown that reachability and generalized reachability
matrices can be obtained as solutions of Sylvester equations, which are a general form of
Lyapunov equations. The same holds for observability and generalized observability ma-
trices. Second, it was argued that by appropriate choice of weightings, weighted balanced
truncation methods can be reduced to Krylov methods. Third, the least squares approxi-
mation method was introduced and was shown to combine some of the attributes of each
of the basic approximation methods. Finally, two iterative methods for solving Lyapunov
equations have been presented, leading to approximation methods which combine the best
attributes of SVD-based and Krylov-based methods.
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Chapter 13

Case Studies

The results presented in earlier chapters will now be illustrated by means of several case
studies. The first section deals with the approximation of three images, which can be
considered as static systems, using the SVD. The next three sections deal with dynamical
systems. Section 13.2 examines the reduction of five systems of relatively low order (n = 48
to n = 348); the reduced models obtained using a variety of methods are compared with
each other. Section 13.3 investigates the reduction of models of two modules of the ISS,
namely, module 1R with n = 270 states and module 12A with n = 1412 states. A variety
of model reduction methods are compared with the modal gain factor method, which is
a modified modal approximation method commonly used for the reduction of structural
systems. Finally, in section 13.4, iterative Smith-type methods are applied to the CD player
model used in section 13.2 and to three further models with dimension n = 1006, n = 3468,
and n = 20,736 states.

13.1 Approximation of images
Here we apply the SVD discussed in section 3.2 to the approximation of three black-and-
white images: a clown from MATLAB and the pictures of galaxies NGC6782 and NGC6822
taken by the Hubble telescope.

A picture can be described as a rectangular matrix X € R"x/w, obtained by a two-
dimensional sampling and quantization of the intensity at each of the pixels. Coding of the
picture consists of reducing the number of bits which are necessary for each pixel, without,
however, compromising the quality of the reconstructed picture from the coded data.

The compression is as follows. The original picture of size n x m requires storage of
size n xm. The SVD compressed picture of rank r requires storage of size (n + m + 1) • r.
Thus the compression ratio in storage is ^n+ffl+1)'r; assuming that n & m, this ratio becomes
approximately ^. If k bits of information are required per pixel, then the reduction ratio
is still the same. The SDD, which is an approximate SVD method discussed briefly in
section 3.2.6, achieves a compression ratio r'(3"^"+*) which, for large m & n, yields the
compression ratio |̂ .

389
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390 Chapter 13. Case Studies

Figure 13.1. The normalized singular values of the clown and galaxies NGC6822
andNGC61S2.

First we compute and plot the singular values of the three images (see Figure 13.1).
These plots provide the trade-off between achievable accuracy and desired complexity. For
instance if we wish to approximate the images with an accuracy of 1%, the plots show that
the resulting complexity of the ngc6782 galaxy approximant is about 30, while that of
the approximants of the other two images is about 100; thus the latter two images are more
difficult to approximate than the former. Figure 13.2 shows the original pictures together
with 10% and 5% approximants.

13.2 Model reduction algorithms applied to low-order
systems

In this section, we apply both SVD-based and Krylov-based model reduction algorithms to
five different dynamical systems: a building model, a heat transfer model, a model of a CD
player, a model of a clamped beam, and a low-pass Butterworm filter. The order k of the
reduced models will be determined by a given tolerance, namely, r = 1 x 10~3. Given
the Hankel singular values or/, / = 1, . . . , n, of each system, k will be the smallest positive
integer such that

The following table shows the order of the original system n, the number of inputs m, and
outputs p, as well as the order of the reduced system, k:

n m p k
48 1 1 31

197 2 2 5
120 1 1 12
348 1 1 13
100 1 1 35

Building model
Heat model
CD player model
Clamped beam model
Butterworth filter
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13.2. Model reduction algorithms applied to low-order systems 391

Figure 13.2. The original images together with the 10% and 5% approximants.

The Hankel singular values of each model are depicted in Figure 13.3, top. For com-
parison, the highest Hankel singular values are normalized to 1. The bottom of Figure 13.3
shows the relative degree reduction £ versus the error tolerance T = ^; this shows how
much the order can be reduced for a given tolerance: the lower the curve, the easier it is
to approximate the system. It thus follows that among all models, for any fixed tolerance
smaller than 1.0 x 10"1, the building model is the hardest to approximate.

It should be stressed that the tolerance is a user-specified quantity that determines
the trade-off between accuracy and complexity. Once specified, it determines completely
the reduced-order models for SVD-based methods. The eigenvalues (poles) of the reduced
system, for instance, are placed automatically. On the other hand, to apply the Krylov-based
methods, one has to choose the interpolation points and their multiplicities.

The model reduction approaches used are three SVD-based methods, namely, bal-
anced truncation, optimal Hankel-norm approximation, and singular perturbation approx-
imation; three Krylov-based methods, namely, the Arnoldi procedure, the Lanczos proce-
dure, and the rational Krylov procedure; and two SVD-Krylov-based methods, namely,
the least squares method described in section 12.1.3 and the iterative method described in
section 12.3, which will be referred to as approximate balanced reduction.

In the subsections that follow, each system is briefly described and the amplitude Bode
plots (more precisely, the largest singular value of the frequency responses) of the full- and
reduced-order models as well as of the corresponding error systems are plotted. Moreover,
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392 Chapter 13. Case Studies

Figure 13.3. Top pane: normalized Hankel singular values of the heat model, the
Butterworth filter, the clamped beam model, the building example, the CD player model.
Bottom pane: relative degree reduction | versus error tolerance ̂ .

the relative HOQ- and "Hi-norms of the error systems are tabulated. Since the approximants
obtained by balanced reduction and approximate balanced reduction are (almost) indistin-
guishable for all but the heat model, we plot and tabulate results for one of these approximants.

13.2.1 Building model

The full-order model is that of a building (Los Angeles University Hospital) with 8 floors,
each of which has 3 degrees of freedom, namely, displacements in the jc and y directions,
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13.2. Model reduction algorithms applied to low-order systems 393

Figure 13.4. Building model. Top: Bode plot of original and reduced systems.
Bottom: error Bode plots.

and rotation. The 24 resulting variables q,, / = 1,.. . , 24, and their derivatives q,, i =
1,..., 24, satisfy a vector second-order differential equation of the form Mq(0 + Dq(t) +
Kq(f) = vu(0, where u(0 is the input. This equation can be written in state space form
by defining the state x* = [ q* q* ]* € p48.

We will assume that the input affects the first coordinate qi (0, that is, v = [1 0
and the output is y(0 = qi(0 = X2s(0-

The state space model has order 48 and is SISO. For this example, the pole closest
to the imaginary axis has real part equal to —2.62 x 10"1. We approximate the system
with a model of order 31. The largest singular value amax of the frequency response of the
reduced-order and of the error systems is shown in Figure 13.4, top and bottom, respectively.
Since the expansion of transfer function H(,s) around oo results in unstable reduced systems
for Arnoldi and Lanczos, the shifted version of these two methods with SQ = 1 was used
instead. The effect of choosing SQ as a low frequency point is observed in the right panels
of the figure, as Arnoldi and Lanczos yield good approximants for the low frequency range.
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394 Chapter 13. Case Studies

The same holds for the rational Krylov method, since the interpolation points were cho-
sen in the 1 to 100 rad/sec region. When compared to SVD-based methods, the moments
matching-based methods are better for low frequencies. Among the SVD-based methods,
singular perturbation, balanced reduction methods, are the best for low, high, frequen-
cies, respectively. When we consider the whole frequency range, balancing and singular
perturbation are closer to the original model. But in terms of the relative HOO error norm,
Hankel-norm approximation is the best. As expected, rational Krylov, Arnoldi, and Lanczos
result in high relative errors since they are local. The error norms are displayed next.

13.2.2 Heat diffusion model

The original system is a plate with two heat sources and temperature measurements at two
locations. It is described by the heat equation. A model of order 197 is obtained by spatial
discretization. The real part of the pole closest to the imaginary axis is — 1.52 x 10~2. It is
observed from Figure 13.3 that this system is easy to approximate since its Hankel singular
values decay rapidly. We approximate it with models of order 5. Lanczos and Arnoldi have
not been used in this case. As expected, due to the low tolerance value, all methods generate
satisfactory approximants matching the full-order model through the frequency range (see
Figure 13.5). Only the rational Krylov method is inaccurate around the frequency 1 rad/sec,
due to the nonautomated choice of interpolation points. The error norms are tabulated below.

13.2.3 The CD player

This model describes the dynamics between the lens actuator and the radial arm position of
a portable CD player. The model has 120 states, a single input, and a single output. The
pole closest to the imaginary axis has real part equal to —2.43 x 10~2. Approximants have
order 12. The first Markov parameter of the system is zero. Hence, instead of expanding the
transfer function around oo, we expand it around SQ = 200. This overcomes the breakdown
in the Lanczos procedure. We also use rational Arnoldi with SQ = 200. Figure 13.6, top,
shows the largest singular values of the frequency response of the reduced-order models

Balanced
Hankel

Sing. Pert
Rat. Krylov

Lanczos
Arnoldi

Least Squares

Hx-norm of error H2-norm of error

9.64 x 10-4
5.50 x 10-4
9.65 x 10-4
7.51 x 10-3
7.86 x 10-3
1.93 x 10-2
1.35 x 10-3

2.04 x 10-3
6.25 x 10-3
2,42 x 10-2
1.11 x 10-2
1.26 x 10-2
3.33 x 10-2
1.95 x 10-3

Balanced
Approx. Bal.

Hankel
Sing. Pert.
Rat. Krylov

Hx-norm of error
2.03 x 10-3
4.25 x 10-3
1.93 x 10-3
2.39 x 10-3
1.92 x 10-2

5.26 x 10-2
4.68 x 10-2
6.16 x 10-2
7.39 x 10-2
2.01 x 0-1

h2-norm of error
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13.2. Model reduction algorithms applied to low-order systems 395

Figure 13.5. Top: Bode plot of original and reduced systems for the heat diffusion
model Bottom: error Bode plots'

together with that of the full-order model. It should be noticed that only the rational Krylov
method approximates well the peaks around the frequency range 104 to 105 rad/sec; this
is due to the choice of interpolation points in this frequency region. Among the SVD-
based ones, Hankel-norm approximation is the worst for both low and high frequencies.
The largest singular value of the frequency response of the error systems in Figure 13.6,
bottom, reveals that the SVD-based methods are better when we consider the whole fre-
quency range. Despite doing a good job at low and high frequencies, rational Krylov has the
highest relative HOO and HI error norms, as listed in the table below. But notice that rational
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396 Chapter 13. Case Studies

Figure 13.6. Top: Bode plot of original and reduced systems for the CD player
model. Bottom: error Bode plots.

Krylov is better than Arnoldi and Lanczos except for the frequency range 102 to 103 rad/sec.

 | Hx-norm of error | %2-nonri of error |
Balanced 9.74 x 10-4 = 3.92 x 10-3

Approx. Bal. 9.74 x 10-4 3.92 x 10 3

Hankel 9.01 x 10~4 ~ 4.55 x 10-3
Sing. Pert. 1.22 x 10-3 4.16 x 10-3

Rat. Krylov ~ 5.60 x 10~2 4.06 x 10~2

Arnoldi 1.81 x 10~2 ~ 1.84 x 10-2
Lanczos 1.28 x 10-2 1.28 x 10-2

Least Squares ~ 1.14 x 10-3 3.39 x 10~3

13.2.4 Clamped beam model

This is the model of a clamped beam with proportional (Rayleigh) damping; it has 348 states
and is SISO. It is obtained by spatial discretization of an appropriate partial differential
equation. The input is the force applied to the free end of the beam, while the output is
the resulting displacement. In this case, the real part of the pole closest to the imaginary
axis is —5.05 x 10-3. We approximate the system with models of order 13. The plots of
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13.2. Model reduction algorithms applied to low-order systems 397

Figure 13.7. max of the frequency response of the reduced systems (upper plots)
and of the error systems (lower plots) of the clamped beam.

the largest singular value of the frequency response of the approximants and error systems
is shown in Figure 13.7, left and right, respectively. Since the first Markov parameter is
zero, to circumvent the breakdown of Lanczos, rational Lanczos with S0 = 1 is used; we
also use rational Arnoldi with the same shift, namely, S0 = 1- For rational Krylov, the
interpolation points S0 = 1 and S0 = 3 were used. The ensuing approximant is one of the
best approximants. The Lanczos and Arnoldi procedures lead to good approximants for the
frequency range 0 to 1 rad/sec, due to the choice of the interpolation point. Balanced model
reduction is the best among the SVD methods after 1 rad/sec. In terms of error norms,
SVD-based methods are better than moment matching-based methods, but the differences
are not as pronounced as for the previous examples. The error norms are tabulated next.

| | 'Hop-norm of error | H2-norm of error |
Balanced"" 2.14 x 10~4 7.69 x 10"3

Hankel 2.97 x 10~4 8.10 x 10-"3

Sing. Pert. 3.28 x 10"4 ' 4.88 x I0-^
Rat. Krylov 5.45 x 10~4 8.88 x 10"3

Arnoldi 3.72 x 10"3 1.68 x 10"-*
Lanczos | 9.43 x 10~4 | 1.67 x IP""2
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398 Chapter 13. Case Studies

13.2.5 Low-pass Butterworth filter

The full-order model in this case is a low-pass Butterworth filter of order 100 with cutoff
frequency 1 rad/sec and gain 1 in the pass band. The normalized Hankel singular values are
shown in Figure 13.3. It should be noticed that the first 25 Hankel singular values are (almost)
equal, and, consequently, this system cannot be reduced to order less than 25 using SVD-
based methods. Given the tolerance r = Ixl0~3,the order of the approximants is 35. Since
the transfer function in this case has no finite zeros, the rational Arnoldi and Lanczos are used
with interpolation point so =0.1. Rational Krylov with interpolation points s\ = 1 x 10~5,
S2 — 0.1, s3 — 0.15, and s4 = 0.18 was also used. As Figure 13.8, top, shows, the
approximation around the cutoff frequency provided by the moment matching methods is
not good. On the other hand, SVD-based methods produce good approximates for the whole
frequency range. Among the SVD-based methods, Hankel-norm approximation is the best
in terms of the "H-norm, while balanced reduction is best in terms of the H2-norm of the
error system. Here are the resulting error norms:

[ "Hoo-norm of error | H2-norm of error |
Balanced 6.29 x 10~4 5.19 x 10~4

Approx. Bal. 6.29 x 10"* 5.19 x 10^
Hankel 5.68 x 10~4 1.65 x 10^

Sing. Pert~ 6.33 x 10"4 5.21 x 10-4
Rat. Krylov 1.02 x 10" 4.44 x 10-1

Arnoldi 1.02x10-1 5.38x10^
Lanczos | 1.04 x 10" | 3.68 x 10'1

Conclusions. A comparative study of several algorithms for model reduction was pre-
sented, namely, balanced reduction, approximate balanced reduction, singular perturbation
approximation, Hankel-norm approximation, Arnoldi procedure, Lanczos procedure, ratio-
nal Krylov method, and least squares approximation. The first four make use of Hankel
singular values, three are based on matching the moments, i.e., the coefficients of the Lau-
rent expansion of the transfer function around a given point in the complex plane, and one is
the SVD-Krylov method described in section 12.3.1. These algorithms have been applied
to five dynamical systems.

The results show that balanced reduction and approximate balanced reduction are
the best when we consider the whole frequency range. Between these two, approximate
balancing has the advantage that it computes a reduced system iteratively, and therefore
the need to obtain a balanced realization of the full-order system first and subsequently
truncate is eliminated. Consequently, the computational cost and storage requirements are
reduced. Among the SVD-based methods, Hankel-norm approximation has the lowest Hoo
error norm in most cases but the highest H2 error norm, and for low frequencies it gives
the worst approximation. Since moment matching methods are local, they usually lead to
higher error norms than SVD-based methods; in return, they reduce the computational cost
and storage requirements. Among these methods, rational Krylov may lead to better results
due to the flexibility of choosing the interpolation points. This selection, however, is not an
automated process and has to be specified by the user. In contrast, for SVD-based methods,
the specification of an error tolerance determines the reduced model.
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13.3. Approximation of the ISS 1R and 12A flex models 399

Figure 13.8. Top: Bode plots of original and reduced systems for the Butterworth
filter. Bottom: error Bode plots.

\ 3.3 Approximation of the ISS 1R and 12A flex models
The model reduction problem for two structural systems will be examined next, namely,
modules 1R and 12A of the ISS (International Space Station).

The assembly and operation of the ISS poses unique control challenges due to its
complex, variable, and flexible structure as well as the variety of operational modes and
control systems. It is estimated that more than 40 space shuttle flights will be required
to complete the assembly. For the program to be successful, mission requirements must
be met using a variety of control systems from various international partners. Hence, it is
critically important that an integrated assessment of the robust stability and performance of
the guidance navigation and control (GN&C) system be carried out to certify the vehicle
for flight readiness.

The integrated control system flex structure assessment and flight readiness certifica-
tion process must identify the potential for dynamic interaction between the flexible structure
and the control systems. As the assembly progresses from early, nearly symmetric stages to
late-stage complex configurations, the structural frequency spectrum exhibits progressively
more complex characteristics, such as densely packed modes, lower frequency modes, and
directionally coupled dominant modes. The structural flexibility during assembly is shown
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400 Chapter 13. Case Studies

in Figure 2.7, Chapter 2. The figure shows particular stages in the space station assembly
sequence and a frequency response plot from thruster commands (roll, pitch, yaw) to filtered
rate gyro sensors. It is evident that the complexity and size of the flex models grow as new
structural elements are added. Hence, to perform controller flex structure dynamic interac-
tion assessment, it becomes necessary to reduce the flex models to complete the analysis in
a timely manner that meets the assembly schedule.

We compare the following reduction methods: balanced reduction, approximate bal-
anced reduction, weighted balanced reduction, the Arnoldi and Lanczos procedures, and
the modal gain factor (MGF) method.

The multivariable MGF method is a generalization of the standard SISO modal ap-
proximation method, which weighs the flex modes by frequency. First, it is assumed that
the flex model is in modal form, that is,

where OQ is the mode shape for displacement or position outputs, <I>o is the mode shape for
velocity outputs, <J>i is the mode shape for the inputs, o>, =| A./ (A) | and £/ = 7£e(A./(A)),
where A,+i (A) = [A., (A)]*, is the complex conjugate of A., (A), for i = 1, 3, 5, . . . , n — 1.
The MGF corresponding to &>, is defined as follows:

Note that this expression averages the displacement and velocity outputs. After computing
the modal gain factors, given a tolerance T, reduction is obtained simply by truncating the
modes with MGF, < T. A more general formulation using arbitrary input/output pairs is

where [/,..., m] is the input set and [j, . . . , k] is the output set.
In addition to the MGF method, we use the Smith and cyclic Smith(7) methods to

compute approximate reachability, observability, and cross gramians (see section 12.4).
Approximate balanced truncation is then used to obtain reduced-order models.

13.3.1 Stage 1R

This is the flex model of the Russian Service Module 1R of the ISS. It has 270 states, 3 inputs,
and 3 outputs. Figure 13.9, top, depicts the Hankel singular values of the system, where the
largest has been normalized to one. The system will be approximated with reduced models
of order 26; this corresponds to a tolerance of r = 8.4 x 10~3, i.e., ̂  < T.

We apply balanced, approximate balanced, and weighted balanced reductions, as well
as reductions based on the Smith and Smith(/) iterative methods. For weighted balanced
reduction, the input and output weights are 3-input, 3-output systems which are equal. Three
types of weights are considered. In the first case, the system from the /th input to the y'th
output is a band-pass filter over the frequency range 0.5 to 100 rad/sec. In the second
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13.3. Approximation of the ISS 1R and 12A flex models 401

Figure 13.9. Hankel singular values and poles of the \R ISS model.

case, diagonal weighting is used, i.e., only the system from the ith input to the ith output
is nonzero. The last case is similar to the first case, except that the frequency range is
0.5 to 10 rad/sec. Furthermore, using Smith and Smith(/) methods, we compute low rank
approximations of the reachability (P), observability (Q), and cross (X) gramians of the 1R
model. Smith and Smith(/) methods transform the system into a discrete-time system using
single and multiple shifts; thus the solution is obtained as an infinite sum. The spectral
radius of the resulting discrete-time system matrix A^ determines the convergence rate and
the effectiveness of this method. Due to the large spread of the eigenvalues of A as depicted
in the lower pane of Figure 13.9, Smith and Smith(/) methods have slow convergence rates
(the spectral radius />(Aj) is close to 1) and show poor results as far as the computation
of the approximate gramians is concerned. For the 1R model, Smith's method, using a
single shift, results in a spectral radius of 0.9991, while using / = 20 shifts, the spectral
radius /o(A^) could not be reduced to less than 0.9973. Therefore, only the Smith method
is considered. The iteration was run for 50 steps, and the approximants P, Q, and X were
obtained. Their relative error norms are high due to slow convergence:

After obtaining the low rank approximate gramians, balanced reduction and approximate
balanced reduction are applied using P, Q, and X. These approximants will be referred to
as Smith-balanced and Smith-approximate-balanced reduced models, respectively.

Figure 13.10 shows the Bode plots of the resulting reduced systems as well as of
the error systems. Since balanced and approximately balanced reduction yield almost the
same approximant, only one of them is shown. These figures show that all reduced models
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402 Chapter 13. Case Studies

Figure 13.10. Model reduction plots of the 1RISS model.

approximate the peaks of the frequency response well. The exception is the third weighted
balanced approximant, which deviates after 10 rad/sec. This is expected because the weight-
ing was chosen over the range 0.5 to 10 rad/sec. The same figure also shows that among
the weighted balanced approximants, the second (corresponding to diagonal weighting) is
the best.

It is interesting to see that although the errors in the computed gramians and Hankel
singular values are significant, Smith-balanced and Smith-approximate balanced models
work well. This means that although P, Q, and X are not good approximants of P, Q,
and X, the dominant eigenspaces of PQ, and X are good approximations of the dominant
eigenspaces ofPQ and X, respectively.

The MGF approximant is better for low frequencies, while balanced and approxi-
mate balanced approximants have a smaller error at moderate and high frequencies. The
Smith-balanced and Smith-approximate-balanced models are comparable with the other
approximants, especially at moderate frequencies. Indeed, although they have the highest
error considering the whole frequency range, for high frequencies they are the best approx-
imants. Notice that Smith-balanced and Smith-approximate-balanced models yield almost
the same approximants.
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13.3. Approximation of the ISS 1R and 12A flex models 403

The next table lists the relative Hoo-norm of the error systems (quotient of the error
system norm and the original system norm). Balanced and approximate-balanced reductions
have the lowest error norm, while the modal gain factor method yields a slightly higher error
norm. The error norms of both Smith approximants are high. The worst among all is the
third weighted balanced approximant.

Balancing App. Bal. Smith Bal. Smith App. Bal.
Hoo-norms 5.71 x 103 5.71 x 10-3 2.44 x 10-2 2.42 x 10-2

MGF Weighted-1 Weighted-2 Weighted-3
Hoo-norms 5.75 x 103 2.73 x 10-2 5.71 x l0-3 8.04 x 10-2

Let H(s) and H(s) denote the transfer functions of the FOM and ROMs, respectively.
Furthermore, let wmax be the frequency at which the FOM attains its Hoc-norm, that is,
omaxH(wmax) is the Hoo-norm of the FOM. The pair of left, right, singular vectors of
H(i Wmax) will be denoted by u,, v,, and that of H(io)max) by u,, v,-. The table below lists the
relative errors for the various ROMs. Notice that while all
reduced models match the first pair of singular vectors, this is not the case for the second
and third pairs of singular vectors. The model gain factor method is the best in this respect.

Balancing App. Bal. Smith Bal. Smith App. Bal.
£(ui) 1.03 x 10~5 8.99 x 10~6 8.66 x 10~4 8.67 x 10~4

£(u2) 1.33 x 10° 1.33 x 10° 2.07 x 10'1 1.28 x 10°
£(u3) 5.89 x 10~2 5.69 x 10~2 2.11 x 10"2 2.98 x 10~2

£(vi) 2.11 x 10~5 2.19 x 10~5 4.99 x 10~4 4.76 x 10~4

£(v2) 1.35 x 10° 1.35 x 10° 2.66 x 10"1 1.24 x 10°
5(v3) 2.51 x 10-2 2.46 x 10~2 5.19 x 10~3 1.38 x 10~2

MGF Weighted-1 Weighted-2 Weighted-3
£(uO 2.02 x 10~3 3.54 x lO^ 2.79 x 10~5 5.34 x 10~4

£(u2) 5.15 x 10~2 1.43 x 10° 1.32 x 10° 1.36 x 10°
£(u3) 1.00 x 10~3 2.61 x 10-1 5.89 x 10~2 2.97 x 10"1

€(\i) 2.07 x 10~5 4.85 x 10~5 2.22 x 10~5 1.32 x 10~4

£(\2) 5.34 x lO-2 1.48 x 10° 1.35 x 10° 1.33 x 10°
£(v3) 3.07 x 10~4 2.48 x 10"1 2.49 x 10~2 2.07 x 10~2

13.3.2 Stage 12A

This is the flex model of stage 12A of the ISS. It has 1412 states, one input, and one
output. The leading 200 normalized Hankel singular values of the system are shown in
Figure 13.11, top; we see that their decay is slower than that in the case of model 1R. The
system is approximated with reduced models of order 226, which corresponds to a tolerance
ofr =2.7x HT4.

We apply the following approximation methods: balanced reduction, approximate-
balanced reduction, Amoldi, Lanczos, Smith, and Smith(/). Since the expansion of the
transfer function around SQ = oo results in an unstable reduced system, we use the shifted
versions of the Amoldi and Lanczos procedures with j0 = 6 and SQ = 4, respectively.
Furthermore, using the Smith and Smith(/) methods, we compute P, Q, X, which lead to
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404 Chapter 13. Case Studies

Figure 13.11. The leading Hankel singular values (top) and the poles (bottom) of
the 12AISS model.

Smith-balanced and Smith-approximate-balanced approximants. The eigenvalues (poles)
of model 12A shown in Figure 13.11, bottom, exhibit the same pattern as those of model
1R. Hence, multiple shifts do not help convergence, and consequently only one shift is used.
The resulting spectral radius is /o(Ad) = 0.9989. The iteration is run for 500 steps and the
approximate gramians P, Q, and X have the following error norms:

As for 1R, the relative errors in the approximate gramians are high. But the error in the
approximate Hankel singular values is much lower in this case, and the leading &{ are good
approximants of the corresponding a,.

Figure 13.12 shows the Bode plots of the reduced-order and error systems. As before,
balanced, approximate balanced, reduction, on the one hand, and Smith-balanced, Smith-
approximate-balanced, reduction, on the other yield (almost) the same approximants; hence
only the results for the balanced and Smith-balanced approximants are depicted. As seen
from the same figure, all reduced models work quite well. MGF approximants show some
deviation around 5 rad/sec and around oo. As in the 1R case, although the errors in the
computed gramians are significant, Smith-balanced and Smith-approximate-balanced mod-
els are good approximants. The plots of the largest singular value amax of the frequency
response of the error systems show that Lanczos and Arnoldi outperform the other methods
for low and high frequencies.

For moderate frequencies, except for Lanczos, the remaining methods yield compara-
ble results. Finally, while the MGF method is better for low frequencies, balanced truncation
is better for high frequencies. The relative HOC-norms of the error systems are given in the
following table:
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13.3. Approximation of the ISS 1R and 12A flex models 405

Figure 13.12. Model reduction plots of the 12A ISS model.

Balancing App. Bal. Smith Bal. Smith App. Bal.
ftoo-norms 1.43 x 10~3 1.43 x 1(T3 3.74 x 10~2 3.74 x KT2

MGF Arnoldi Lanczos
Hoc-norms 2.05 x 1(T2 4.11 x KT2 3.49 x KT1

Thus, balanced and approximate balanced reduced models have the lowest error norm.
The error of the MFG method in this case is much higher. The Lanczos and Arnoldi
procedures yield high error norms as well. The Smith method lies between MGF and
Arnoldi.

Conclusions. Several model reduction methods have been applied to the flex models of stage
1R and stage 12A of the ISS. While the MGF method yields better results than balanced
reduction for very low frequencies, the latter is preferable for high frequencies. Furthermore,
balanced and approximate balanced reduction yield the lowest error norms. The Smith
iterative method yields high errors in approximating the gramians, but nevertheless the
reduced models are satisfactory. Finally, Lanczos and Arnoldi yield good approximants
close to the chosen interpolation points, but the resulting overall error norms are high.
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406 Chapter 1 3. Case Studies

1 3.4 Iterative Smith-type methods
Next, the results presented in section 12.4 will be illustrated by means of numerical examples.
In each case, both the LR-Smith(/) iterates P^1, Qf , as well as the modified LR-Smith(/)
iterates Pk, Qk, will be computed, together with the error bounds introduced in section
12.4.3. For comparison purposes, balanced reduction is also applied using the full rank
gramians P, Q, the approximate gramians PJ!1, Qf , and Pk, Qk- The resulting reduced-
order systems and the Hankel singular values are compared.

13.4.1 The CD player

Here we will consider the same model as in section 13.2.3. It turns out (see, e.g., [157])
that the eigenvalues of A have a wide spread, that is, they have both big and small real and
imaginary parts. This makes it hard to obtain a low spectral radius p(A</). A single shift
results in p(Ad) = 0.99985, while with / = 40 shifts /o(Ad) could not be reduced below
0.98. Hence only a single shift is considered. LR-Smith(/) and the modified LR-Smith(/)
iterations are run for k = 70 iterations. The tolerance values are chosen to be r-p = 1 x 10~6

for PI and TQ = 8 x 10~6 for Q*. The resulting low rank LR-Smith(/) square root factors
Zf ' and Yj^ have 70 columns, while the modified version of the algorithm yields low rank
square root factors Z^ and Y* which have only 25 columns. The relative errors between the
computed gramians are

These numbers show the effectiveness of the modified algorithm. The errors between the
exact and the computed gramians are

Figure 13. 13, top, depicts the normalized Hankel singular values of the FOM, or, ; the Hankel
singular values resulting from P£I and Qf l, a, ; and the Hankel singular values resulting from
Pk and Qk, or,. As the figure shows, the leading a,, i = 1, . . . , 14, are well approximated.
Moreover,

The errors and the corresponding error bounds are tabulated below. One should notice that
the error bounds (12.12) for the norm and (12.13) for the trace are tight, as they are of the
order <9(r2). Also, as stated after Corollary 12. 12, the upper bound for the error between <r,
and a, is small. The bounds (12.9) and (12.14) are loose because of the slow convergence
(p(Ad) = 0.99985). (See [157] for more details.)
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3.6. Linear Programs in Nonstandard Form 79

Exercise 3-6-6. Convert the following problem into standard form using Scheme I and
solve using the simplex method:

min x + 2y + 3z

subject to x − y + 3z ≤ 3,

4x + y ≥ 1,

z ≥ 0.

Exercise 3-6-7. Convert the following problem to standard form and solve using the two-
phase simplex method:

max −2x1 − x2 − x3 − 2x4

subject to x1 − x2 + x3 − x4 = −1,

−x1 − x2 − x3 − x4 = −3,

−x1 + x2 − x3 + x4 ≤ 1,

x1 + x2 − x3 − x4 ≤ −1,

−x1 − x2 + x3 + x4 ≤ 1,

−x1 + x2 + x3 − x4 ≤ −2,

x1, x4 ≥ 0.

(Note that the variables x2, x3 are free.)

In Example 3-6-5, we added only one equation and one variable to the problem during
conversion to standard form. When there are multiple free variables and multiple equations,
we end up increasing the size of the problem significantly, as seen in Exercise 3-6-7. By
using a variant on the Scheme I technique, we can generate a standard-form problem by
just adding one extra variable and one extra constraint. The role of the extra variable is to
absorb the maximum negativity of the free variables y. We replace y by a set of nonnegative
variables ŷ and the extra variable η as follows:

y free ⇐⇒ y = ŷ − eη, ŷ ≥ 0, η ≥ 0.

For the equality constraints, we make the following substitution:

Ex + Fy = g ⇐⇒ Ex + Fy ≥ g,

e′(Ex + Fy − g) ≤ 0.

Here e = (1, 1, . . . , 1)′ is a vector of ones of appropriate dimension. By making these
two substitutions into the general form (3.22), we obtain the following standard-form linear
program:

min
x,ŷ,η

p′x + q ′(ŷ − eη)

subject to Bx + C(ŷ − eη) ≥ d,

Ex + F(ŷ − eη) ≥ g,

−e′Ex − e′F(ŷ − eη) ≥ −e′g,

x, ŷ, η ≥ 0.

Exercise 3-6-8. Use the above approach to solve the problem given in Exercise 3-6-7.co
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408 Chapter 13. Case Studies

Xf, and Z* denote the 12th-order reduced systems obtained through balanced reduction
using the exact square root factors Z and Y, the LR-Smith(/) iterates Zjp and Y^7, and the
modified LR-Smith(/) iterates Z,t and Y^, respectively. Also let £ denote the FOM. Figure
13.13, bottom left, depicts the amplitude Bode plots of the FOM £ and the reduced systems
T,k, £jt'' anc* ̂ k', thus although the approximate gramians are not very good approximations
of the exact gramians, Zjp and £# are close to E^. The amplitude Bode plots of the error
systems X -X^,S - £f , and Z - Ilfe are shown in Figure 13.13, bottom right. Thus Zf
and I!jt are almost equal as expected since the errors between Pk and Pf and Q* and Qf
are small; see Figure 13.13, top right.

1 3.4.2 A system of order n = 1 006

This example is from [265]. The FOM is a dynamical system of order 1006. The state space
matrices are given by A = diag [Ai, \2, A3, A4], where

Using / = 10 shifts, the spectral radius of A^ is reduced to p(A^) = 0.7623, which results
in fast convergence. It is easy to see that the spectrum of A is

Thus six of the shifts are chosen so that the six complex eigenvalues of A are eliminated.
We run the LR-Smith(/) and the modified LR-Smith(/) methods for k = 30 iterations. The
tolerance values are rp = TQ = 3 x 10~5. The resulting low rank LR-Smith(/) square root
factors Zif1 and Y|' have 300 columns. On the other hand, the modified low rank Smith
method yields low rank square root factors Zk and Y^ which have only 19 columns. The
relative errors between the computed gramians are small, namely,

The errors between the exact and computed gramians are

The normalized HSVs a,, a, and a(, i = 1, . . . , 19, are depicted in Figure 13.14, top left.
There holds

All the errors and the corresponding error bounds are tabulated below.
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13.4. Iterative Smith-type methods 409

Figure 13.14. Top left: the normalizedHankel singular values at, af, andaf. Top
right: the amplitude Bode plot of error system Ef — Z* for the 1006 example. Bottom left:
amplitude Bode plots of the FOM Z and the reduced systems T,k, Zf, and t,k. Bottom
right: amplitude Bode plots of the error systems £ — Z*, Z — T,f, and Z — Z* for the
n — 1006 example.

upper bound trace upper bound upper bound

1.12 x 10-6 1.35 x l(r6 2.52 x KT6 1.30 x 1CT5 2.99. x 10"8 2.69 x 1(T2

upper bound trace upper bound upper bound

1.20 x 10~6 1.35 x 10-6 3.00 x 10-6 1.30 x 10~5 4.19 x lO"5 2.69 x 10-2 + 1.33 x 10~3

1.47 x 10~4 1.47x 10-" 1.47 x 10~4 2.40 x 10~9 7.25 x 10-" 7.25 x 10-"

The error bounds (12.12) and (12.13) are again tight, while the bounds (12.9) and (12.14)
are tighter compared to the CD example. This is due to the normality of A and to the fast
convergence rate, i.e., the small value of
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410 Chapter 13. Case Studies

Figure 13.15. Frequency response of FOM.

Using balanced reduction, a reduced model of order 11 is obtained. Figure 13.14,
bottom left depicts the amplitude Bode plots of the FOM Z and the reduced systems Z*,
Zj^, and Z/t. The amplitude Bode plots of the error systems Z — Z*, Z — Zj^, and Z — Z*
are shown in the bottom right of this figure. Again, Z£' and Z* are almost identical. The
Bode plots of the error Zf — Z* are shown in the top right of the figure. Recall that Z^' has
been obtained using a square root factor having 300 columns, while Z* has been obtained
using a square root factor having only 19 columns, which indicates that the rank of the
LR-Smith(/) iterate is low.

13.4.3 Aluminum plate n = 3468

This is the structural model of an aluminum plate of 0.5m by 0.5m, Young modulus
7.01010Af/m2, thickness 0.001m, Poisson ratio 0.33, and density 2700kg/m3 and no struc-
tural damping. It was discretized by a grid of 16 x 16 solid shell elements. The plate is
subjected to a unit point force in the coordinate (0.125m, 0.125m). The goal is to com-
pute the amplitude of the vertical displacement in the same position for the frequency
range a) e [10,110] Hz. The dimension of the second-order system is 1734, that is,
n = 3468.

Its frequency response is shown in Figure 13.15. Figure 13.16 shows the frequency
responses of error systems and approximants obtained by rational Krylov methods with
sn = 0 and sn = 100.

13.4.4 Heat distribution on a plate n = 20,736

The FOM describes the two-dimensional heat equation on a square plate with adiabatic
(no heat flux) boundary conditions. The plate consists of nine subplates. The number of
discretization points in the x and y axes is 144; this leads to a FOM of order 20,736. Each
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13.4. Iterative Smith-type methods 411

Figure 13.16. Rational Krylov method: expansion point SQ = 0 (a); expansion
point SQ = 100 (b).

subblock is uniformly heated, which results in m = 9 inputs. As observations, we choose
the middle points of each one of the subblocks. This leads to p — 9 outputs. We ran the
modified low rank Smith algorithm with tolerance values t-p = TQ = 10~6 for k = 40 steps
using 1 = 2 shifts and obtained the low rank square root factors Z/t and Yk with 85 columns.
Note that an exact LR-Smith(/) factor has 720 columns. Using the approximate Cholesky
factors Zjt and Y^, the system was reduced to dimension 9 by means of balanced reduction.
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412 Chapter 13. Case Studies

Figure 13.17. (a) Amplitude Bode plots of the FOM and ROM. (b) Amplitude Bode
plots of the error systems for heat example.

The reduced model is almost balanced, as the following numerical results show:

where Pred-> Qred denote the gramians for the reduced model. The sigma plots of the FOM
and ROM and that of the error model are shown in Figure 13.17. Thus given a FOM of order
20,736, this iterative method produced an approximately balanced approximant of order 9,
based on Cholesky factors having only 85 columns.
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Chapter 14

Epilogue

The goal for this book is to discuss model reduction issues following the diagram in Figure
1.3. After the preparatory material of Part n, SVD-based approximation methods were
investigated in Part HI. In particular, approximation by balanced truncation, weighted bal-
anced truncation, and optimal and suboptimal Hankel-norm approximation were studied.
The closely related POD methods were also briefly discussed. This is the left branch of the
diagram in Figure 1.3. In Part IV, Krylov-based approximation methods were discussed.
Since they are based on eigenvalue estimation methods, some effort was spent discussing
this topic. This was followed by an account of the Krylov or moment matching methods
for model reduction, namely, the Arnoldi and Lanczos procedures, as well as their rational
counterparts. This is the right branch of Figure 1.3. Finally, in Part V, ways of merging
the left and right branches of this diagram were proposed; this leads to the lower part of the
diagram, which is concerned with iterative SVD-based methods. As pointed out, weighted
balanced methods provide a direct link between SVD-based and Krylov-based approxima-
tion methods. Finally, numerical experiments illustrating the features of the various methods
were presented.

14.1 Projectors, computational complexity, and software
The unifying feature of all model reduction methods presented in this book is that they
involve projections. Let n = VW* be a projection, i.e., FI2 = n. The corresponding
reduced-order model XI is obtained by means of formula (1.8):

The quality of the approximant is mostly measured in terms of the frequency response
H(io>) = D + C(/o>I — A)-1B and, in particular, its peak, called the 'H00-norm, or its
2-norm (energy), called the T-i^-norm.

413
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414 Chapter 14. Epilogue

Approximation by balanced truncation emphasizes the energy of the gramians ex-
pressed either in the time domain (4.43), (4.44) or in the frequency domain (4.51), (4.52).
Krylov methods adapt to the frequency response and emphasize relative contributions of H.
The choices of projectors for some basic model reduction methods are as follows:

1. Balanced truncation. The key step involves solving for the gramians P, Q, which
satisfy the Lyapunov equations: AP + PA* + BB* = 0, A*Q + QA + C*C = 0.
The reduced-order system is obtained by projection of the full-order system onto the
dominant eigenspace of PQ.

2. Optimal and suboptimal Hankel-norm approximation. The first step is to solve for the
gramians as above. Subsequently, the given system must be embedded in an all-pass
(unitary) system followed by projection onto its stable eigensystem.

3. Krylov-based approximation: Arnoldi and Lanczos procedures. The key step here
is the iterative computation of the low-order system obtained by projection onto
subspaces of the reachability, observability, as well as generalized reachability, ob-
servability spaces. This leads to moment matching.

The main attributes of the two main model reduction methods are summarized next.

• SVD-based methods:

1. preservation of stability,

2. global error bound,

3. applicability up to n « 1000, depending on computer speed and memory.

• Krylov-based methods:

1. numerical efficiency,

2. applicability: n » 1000.

It is clear from the above list that the two main model reduction methods have disjoint sets
of advantages and disadvantages. Therefore, one tries to develop methods that combine the
best attributes of each approach. This leads to the third class of methods, which we refer to
as SVD-Krylov methods, and should satisfy as many of the following properties as possible.

• SVD-Krylov methods:

1. preservation of stability,

2. global error bound,

3. numerical efficiency,

4. applicability: n » 1000.
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14.1. Projectors, computational complexity, and software 415

Complexity

The complexity of these methods is defined as the number of flops (floating point operations)
required to compute the reduced system. Let n denote the dimension of the original system,
k the dimension of the reduced system, and a the average number of nonzero elements per
row/column of A.

1. Balanced truncation.

• Using dense decompositions and taking into account only the dominant terms of
the total cost, approximately 70n3 flops are required to compute the gramians and
approximately 30n3 flops to perform the balancing (eigen-decomposition).

• Using approximate and/or sparse decompositions, it costs approximately amn,m »
k, flops per iteration to compute the gramians, while balancing costs approximately
k2n flops.

2. Optimal Hankel-norm approximation.

• Using dense decompositions and taking into account only the dominant terms of
the total cost, approximately 70n3 flops are required to compute the gramians and
approximately 60«3 flops to perform the balancing and the embedding.

• The complexity of optimal Hankel-norm approximation using approximate and/or
sparse decompositions is as follows. The computation of gramians costs approxi-
mately ctmn, m » k, flops per iteration, while the embedding costs of the order n3

flops.

3. Krylov approximation requires in general approximately kan flops, if sparse oper-
ations are used. Consequently, for dense operations approximately kn2 flops are
required.

In more detail, at the y'th step, the Arnoldi procedure requires an flops for
matrix-vector multiplication w = Av, plus 2jn flops for orthogonalization. Thus k
steps of Arnoldi require

The Lanczos procedure at the y'th step requires 2an flops for matrix-vector multipli-
cation w = Av, plus 6n flops for the three-term recurrence. Thus k steps of Lanczos
require

Software

The goal with respect to model reduction is to produce software that provides reliable
solutions of large-dimensional numerical problems encountered in complex applications.
Turning numerically reliable algorithms into high performance, portable, and robust nu-
merical software relies on several areas of expertise: numerical linear algebra, computer
science, computer hardware, etc. For an overview of these issues, see [347].
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416 Chapter 14. Epilogue

A number of software packages are available for numerical linear algebra and model
reduction purposes. We list a few (see also [91] for more general purpose software):

1. General purpose software (including model reduction):
MATLAB: http://www.mathworks.com
SCILAB: http://www.scilab.org
MATRIXX: http://www.ni.com/matrixx/

2. Model reduction software: SLICOT. For details, see [59], [345], [339]. This software
package can be downloaded from http://www.win.tue.nl/niconet.

3. Parallel model reduction software: PSLICOT; see [53].

4. Linear algebra package: LAPACK; see section 3.3.5 and [7].

5. For large-scale eigenvalue problems: ARPACK and its parallel implementation p_ ARPACK.
See [227] for details. These software packages are available at http://www.caam.rice.
edu/software/ARPACK.

6. Some specialized software packages:
SUGAR MEMS simulation: http://www-bsac.eecs.berkeley.edu/cadtools/sugar/sugar/
MOZART ozone propagation: http://www.acd.ucar.edu/science/mozart/mozart/index.php
ANSYS® Simulation of systems described by PDEs: http://www.ansys.com/

14.2 Open problems
Numerous open problems exist in the area of model reduction for large-scale systems. We
conclude this book with a partial list. Many more problems, related, for instance, to data
assimilation (which is of importance in model reduction for weather prediction and air
quality simulations as mentioned in section 2.2.1), are omitted.

Decay rate of the Hankel singular values: General case

In section 9.4, upper bounds on the rates of decay as well as approximate rates of decay of the
eigenvalues of a single Lyapunov equation were presented. Numerical examples show the
usefulness of these results. Furthermore, lower bounds for the decay of the Hankel singular
values (which are the squares roots of the eigenvalues of the product of the solutions of
two Lyapunov equations) have also been derived. Computationally, both results requke the
knowledge of all eigenvalues (poles) of the system. At first, one would need to extend the
upper bound to the eigenvalues of the product of two gramians. The next step would be to
develop bounds on the rates of decay when only partial information about the eigenvalues
is available (like an inclusion domain in the complex plane). In this regard, see Figures 9.9,
9.10,9.11, and 9.12.

Choice of expansion points for rational Krylov methods

It section 11.3.2, we showed that given two scalar proper rational functions HI, H2 of
McMillan degree n\ > 112, respectively, the latter can be obtained almost always from
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the former through interpolation, which can be implemented iteratively by means of the
rational Krylov procedure. Therefore, in the generic SISO case, any reduced-order model
is attainable through appropriate choice of interpolation points. The question arises of how
to choose the interpolation points so as to minimize a desirable error criterion. Krylov and
rational Krylov methods provide no guidance in that respect. In our considerations, the
formula for the T^-norm of the system derived in section 5.5.2 suggests that to keep this
norm small, the interpolation points should be chosen as the mirror image of some of the
poles of the original system. (See the considerations in section 11.2.2.) The first problem
that arises in this regard is to determine which poles of the original system to use. In other
words, which choice of mirror images will minimize, for instance, the T^-norm of the error
system? More generally, are there other rules for choosing the interpolation points so that
a desirable norm of the error system is minimized?

Choice of spectral zeros in passive model reduction by interpolation

In section 11.3.3, it is shown that by choosing the interpolation points as spectral zeros of
the original passive system, the reduced system will be automatically passive and stable.
As in the previous problem, the issue that arises is to choose those spectral zeros that will
reduce or minimize some appropriate norm of the error system. For an illustration of this
issue, see Example 11.14.

Weighted SVD and Krylov-based model reduction

Weighted SVD methods have been presented in section 7.6. One unexplored issue is the
influence of frequency weights on the sensitivity of the reduced system; furthermore, ways
of computing the logarithm of the resolvent in large-scale settings are lacking. In contrast to
unweighted methods, stability and error bounds are issues that have not been satisfactorily
resolved and hence require further investigation. Furthermore, the problem of weighted
Krylov methods is less well understood; one approach is given in [133]. Again, stability
and error bounds are important aspects of this problem that need further study.

Iterative SVD model reduction methods

In sections 12.3 and 12.4, iterative methods for computing SVD-type approximants were
proposed. The open problems are convergence of the first algorithm presented as well as
stability. The second algorithm is guaranteed to converge to a reduced system which is
balanced; however, it is not clear how many steps are needed for the reduced system, which
is approximately balanced, to be stable. The balanced canonical form discussed in section
7.4 may turn out to be important in this case. Furthermore, iterative methods for weighted
balanced reduction are missing.

Model reduction of second-order systems

In many cases, e.g., when mechanical systems modeled as mass-spring-damper are involved,
the reduction should respect the second-order structure (the state is composed of positions
and the corresponding velocities). Converting the system to first order and applying existing
methods for model reduction is an option, but it is done at the expense of destroying the
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418 Chapter 14. Epilogue

second-order structure. (The reduced system may no longer be representable as a mass-
spring-damper system.) For an overview of this problem from an eigenvalue viewpoint,
see [325]. From a system theoretic viewpoint, the problem was originally investigated in
[239]. Recently, Chahlaoui et al. [84] have revisited the problem. Issues still remaining
are stability, error bounds, the choice of gramians, and iterative methods. Approaches to
Krylov methods for second-order systems can be found in [44], [36]. Weighted reduction
for this class of systems remains an open problem.

Model reduction of differential algebraic equations or descriptor systems

The solution of dynamical systems described by differential algebraic equations has been
investigated in [78]. Concerning model reduction of linear descriptor system, all rational
Krylov methods can be readily extended to handle such systems; the difference is that in the
shift invert part (5! — A)"1 is replaced by (sE — A)"1, where E is a singular matrix. Many
aspects of balanced methods for descriptor systems have been worked out in [317], [318],
[319], [320]. A descriptor toolbox is also available [343].

Model reduction for linear time-varying systems

The problem of model reduction of linear, discrete-time, periodically time-varying systems
using SVD-type methods has been studied extensively. For an account, see [344] and
references therein. Krylov methods for the same class of systems have been investigated
in [183]; see also [211]. Balanced truncation for continuous-time, time-varying systems
has been worked out in [217] and [286]; the latter reference treats the discrete-time, time-
varying case. What needs further investigation is the numerical implementation of these
approaches to systems of high complexity.

Model reduction of nonlinear systems

The study of model reduction methods for linear time-varying systems is the first step
toward the systematic study of model reduction for nonlinear systems. Currently, the only
systematic and widely used method is model reduction by means of POD; see section 9.1
for some details on the advantages and drawbacks of this method and a brief survey of the
associated literature. Error bounds, stability, and iterative methods are issues that need to
be investigated, perhaps for special classes of nonlinear systems.

Model reduction of structured interconnected systems, with application to MEMS

The difficulty in analyzing and synthesizing MEMS, also known as microsystems, stems
from the complexity of the underlying structure as well as its heterogeneity; such a system
may contain mechanical, electrical, fluidic, thermal, acoustic, and other components. This
leads to multidomain and multiphysics problems.

The development of microsystems begins with modeling. The spatial distribution
leads typically to PDEs describing the various parts (electrical, mechanical, etc.). Sub-
sequently the interactions between the various parts are modeled (e.g., electromechanical,
electrothermal). These equations are then turned into systems of ODEs through discretiza-
tion. In addition, small signal behavior is often not enough to describe the system, due to
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14.2. Open problems 419

nonlinearities, and furthermore there may be several operating points. This leads to long
iteration cycles. The procedure from design to manufacturing to testing is time-consuming.
Hence rapid prototyping is not feasible.

These issues can be addressed by reduction of the order of the microsystem model.
In such a procedure, the various physical systems (electrical, mechanical, etc.) must be
reduced separately and the reduced models put together by means of the interconnections.
Furthermore, the procedure should produce reduced-order systems which have a physical
interpretation as electrical, mechanical, etc. The overall goal is to understand as many
effects occurring in microsystems as possible through simulation. The following references
can be consulted for details on this challenging problem: [294], [278], [290], [291].

Controller design for high-order systems

Very often a given system must be controlled to achieve desired performance objectives.
Roughly speaking, the complexity of the controller is the same as that of the plant. Therefore,
if the latter is high, so will be the former. For implementation purposes, however, the
controller must usually have low complexity, leading to controller complexity reduction.
Another possible approach to the design of low complexity controllers is first to reduce the
order of the system to be controlled and then compute a controller based on the reduced
system. This can be dangerous, however, as the low-order controller may fail to stabilize
the original system. These issues are discussed in detail in [252].

If, however, the order of the given system is very high (in the thousands of state
variables or above), such an approach may not be feasible. In this case, some reduction
of the original system is required in order to get a start on the computation of the con-
troller. Depending on the underlying equations (e.g., Navier-Stokes, Burgers, heat, etc.,
and linearity/nonlinearity), such problems have to be investigated individually. Thus, be-
sides computational aspects, issues concerning robustness need to be addressed, in particular
when the low-order controller is hooked up with the original system (potentially described
by PDEs).

Such problems have been studied (although not exhaustively) in the computational
fluid dynamics community. (See section 9.1 for a few references in this direction.) Further
work is necessary in connection with problems arising, e.g., in microsystems.

Model reduction of uncertain systems

Sometimes at the modeling stage, one ends up with a nominal system which is linear,
together with uncertainties of the modeling parameters involved; these uncertainties can
in numerous cases be expressed in terms of linear fractional transformations. The ensuing
model reduction problem is solvable in principle, using LMIs. For details on the use of
the linear fractional transformation framework and the solution of the associated model
reduction problems in terms of LMIs, see [47] and references therein.

As pointed out in the introduction, problems involving LMIs lead to algorithms whose
computational complexity is usually between n4 • • • n6. Thus they cannot be applied at
present to even moderate-size problems. Work is therefore needed to derive methodolo-
gies for the reduction of uncertain systems which lead to algorithms of low computational
complexity.
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Chapter 15

Problems

Problem 1. Show that the (unilateral) Laplace transform of the formula (4.16) for the matrix
exponential is in agreement with formula (4.74), i.e.,

where q is the characteristic polynomial of F, and q(i) are the pseudoderivative poly-
nomials of q defined by (4.72).

Problem 2. Given is

Let q(s) = qQ + q\5 + • • • + qn-\s
n~l + sn be the characteristic polynomial of F.

Show that

Hence show that (4.74) holds for F in companion form as given above, and conse-
quentlyadj (F) = —q(1)(F), whereq(1)(j)isthefirstpseudoderivativeofq(5),defined
in (4.72). In addition, prove that (4.71) is indeed a realization of .

421
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422 Chapter 1 5. Problems

Problem 3. Given is the 2 x 2 rational matrix:

function of a. For a = 1, compute also a minimal realization using MATLAB
routines, and show that it is equivalent to the realization obtained via the Silverman
algorithm.

Problem 4. Using the Silverman algorithm, find a minimal realization of the sequence of
natural numbers where all multiples of 3 have been replaced by zero:

In the above sequence, assume that HQ = 0. Compute the sum of the series £)n>o hns~n .
Give the minimal recursion polynomial as well as an expression for all recursion poly-
nomials of the sequence S.

Problem 5. Consider the Lyapunov equation

where all matrices are n x n.

(a) Provided that Q > 0 (positive semidefinite and no assumption of reachability is
made), show that 7r(A) = n implies v(X) = 0 and v(A) = n implies ?r(X) = 0.

(b) If 8 (A) = n (all eigenvalues of A are on the imaginary axis), show that Q = 0.

Problem 6. Propose a remedy for the transformation of the continuous-time to the discrete-
time Lyapunov equation discussed in section 6.1.7 of the notes, when the matrix A
has an eigenvalue equal to 1 .

Problem 7. Let AV = VH, where A, V, H are real and square matrices. Prove that V is
nonsingular if and only if A is similar to H.

Problem 8. Find the SVDs and compute the rank one approximations, which are optimal
in the 2-norm, of the matrices listed below. Use paper and pencil.

Using silverman's algorithm, compute a minimal realization of H, as a
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Chapter 15. Problems 423

Problem 9. (a) Let A € Rnx" and det A / 0. What is the relationship between the singular
values of A and A"1 ?

(b) Let X € R be an eigenvalue of A. Show that <rw(A) < |A.| <

(c) Find the singular values of A = ( p ~q j. Explain your answer geometrically.

Find u e R2, ||u||2 = 1, such that ||Au||2 = a\. Explain.

Problem 10. (a) Show by direct computation that the least squares solution of Ax = b is
given by

(b) Using the SVD of A = UE V*, show that

What is the geometrical interpretation of this problem? Do AxLS and b — AxLs lie in
the im(A), ker(A) or in a space perpendicular to im(A)? Justify your results.

(c) Using these formulas, find the least squares solution of Ax = b, where

Problem 11. (a) Show that if A e Rmxn, then ||A||2 <

(b) Suppose u e Rn and v e R". Show that if E = uv* and v*u = 1, then

Problem 12. For any A, let E be a matrix such that ||E||2 < ormin(A), then prove that
rank (A + E) > rank(A).

Problem 13. Let || • || be a vector norm on R1" and assume A e Rmxn. Show that if
rankA = n, then ||x||A = ||Ax|| is a vector norm on R".

Problem 14. Given is a matrix A = (a,-y) e RRXn and a nonsingular upper triangular matrix
T = (tjj) € RBX". The following relationships are to be shown for p = 1, 2, oo:

(*) \\A\\p >\aij\.

(c) Therefore the p-condition number of T satisfies
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424 Chapter 1 5. Problems

Problem 15. Approximation of the clown. mat image using MATLAB: after starting
MATLAB, type

load clown;
Z = ind2gray(X, map) ;
[mz,nz] = size (Z) ;
imshow(Z, 64) ;
mag = 2 ;
truesized, [mz*mag, nz*mag] ) ; \\ [-5mm]

Compute the S VD of Z using the command [U , S , V] = s vd ( Z ) ;

1. Plot the singular values of Z on a logarithmic scale.

2. Compute approximant having error less than 10%, 5%, 2% of the largest sin-
gular value of Z. What is the rank of the corresponding approximants? Also,
for each case compute the compression ratio (compression ratio is defined as
the number of bytes required to store the approximant divided by the original
image size in bytes.)

3. Now tile the image into four equal pieces. For each of the above errors, use
SVD to approximate the subimages and then reconstruct the complete image
from them. Compute the compression ratio for this image. Compute the 2-
norm error of the approximant and then compare the result with the previous
one. Which method is better? Which one requires more computations?

4. Attach to your results the original image, the approximant from the first method
and second method, for the case in which the error is less than 2%.

Problem 16. Prove that the 1-Schatten norm of a matrix, also known as the trace norm,

satisfies the triangle inequality.

Hint. First prove the following lemma. Let A e Rnxn have singular values a, (A),
/ = 1, . . . , n, arranged in decreasing order, and let C € Rnxn be a rank k partial
isometry (that is, C = VW*, V, W e Rnxk, V*V = I*, and W*W = I*). Then for
each k = 1, . . . , n, we have ̂ /=i °"i (A) = maxc | trace (AC) |.

Problem 17. Find the Frobenius norm of the identity I e M"xn. Show that the p, q induced
norm of the identity matrix satisfies \\l\\ p,q > 1. Compute this induced norm as a
function of p, q, n. In particular, show that the (1, 1) induced norm of the identity is
equal to 1 .

Problem 18. (a) Prove that if || • || is a vector norm, so is x II • II for any fixed C > 0.
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Chapter 1 5. Problems _ 425

(b) Prove that if || • || is a matrix norm satisfying the submultiplicativity property (3.8),
then y\\ • \\ is also a matrix norm satisfying (3.8) for any fixed y > 1.

(c) For which y is the scaled norm y\\ • \\(\,2) an induced norm? Answer the same
question for y|| • ||(M).

Problem 19. Prove that the p, q induced norms defined by (3.4) satisfy the submultiplica-
tivity property (3.8), that is,

Problem 20. Prove that a unitarily invariant norm of M e Rnxm (i.e., a norm satisfying
||UMV|| = ||M|| for all unitary U, V) is a convex function of its singular values (a
function is called convex if f(ax + (1 — a)y) < af (x) + (1 - a)f (y) for all x, y, and
scalars a).

Problem 21. Prove the equivalence of the following three statements: (1) P e Rnxw is an
orthogonal projection; (2) the projection is symmetric P = P*; (3) the spectral norm
of Pis one: ||P||2 = 1.

Problem 22. Consider the class M.n of all square matrices of size n with real entries. An
inner product is defined in M.n as follows:

where * denotes complex conjugation and transposition. This inner product induces
a norm on Mn which is the Frobenius norm.

(a) Find the distance <5o between a. fixed X0 € Mn and the set of all multiples of n x n
orthogonal matrices:

where the infimum is taken over all scalars a and orthogonal matrices U.

(b) Find if possible, «o and UQ such that

What is «o and U0 if XQ is a symmetric matrix?

Problem 23. Prove Proposition 7.5.

Problem 24. Given A e Enx", prove that the conditions below are equivalent:

• A + A* < 0,

• II e^ \\2< 1, / > 0,

• 3Q = Q* > 0 such that AQ + QA* < 0 and A*Q + QA < 0.
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426 Chapter 15. Problems

Problem 25. A discrete-time system E is described by its impulse response

(a) Compute the singular values of the associated operator S using the results of
section 5.2.

(b) Compute a matrix representation for S and S*S explicitly. Using your favorite
software package, compute successive approximations of the spectrum of this operator
by computing the eigenvalues of finite symmetric n x n submatrices Mn of S*S for
n = 10, 20, 50, 100, 200, 500, 1000. Plot the eigenvalues. Compare with the result
in the first part of this problem.

Problem 26. Consider the system described by H(s) = ^-j-. Find its £2(0, r)-norm using
(5.26) for T = 1,10, 100. Compare with the £2(0*oo)-norm.

Transform this system in discrete time and compute the same norm using the operator
/C defined following formula (5.26). Compare the results.

Problem 27. Consider the rational functions:

(a) Using MATLAB (or equivalent), compute the Hankel singular values of G. Fur-
thermore, compute a realization of G which is balanced (hi the Lyapunov sense).
Hence determine balanced truncations G^/,*, for k = 2,4.

(b) Using MATLAB (or equivalent), compute the H<x,-norms of the error systems
G — Gbai,k for k = 2,4. Compare them with the theoretical upper bounds. Plot the
amplitude Bode plots of G, G^/^, G — Gbai,k for k = 2,4.

(c) Using MATLAB (or equivalent), compute the reachability and observability grami-
ans of H# for N = 2,4,6. Hence compute die Hankel singular values of H# for
N = 2,4, 6. Compute a balanced truncation of order one, for N = 2,4, 6. What is
the HOQ -error hi each case? How does it compare with the theoretical value? Compute
a balanced truncation of order two for N = 4,6. Again compare the actual error with
the upper bound predicted by the theory. Finally, tabulate the poles and the zeros of
H#, N = 2,4, 6, and compare with poles and zeros of the various approximants.

Problem 28. Finite horizon balancing. Instead of the infinite horizon control and observa-
tion energy windows, use
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Chapter 15. Problems 427

Describe the resulting balancing and reduction algorithms.

• Consider the system with transfer function R* given in the previous problem. Let
H2,r be the second-order system obtained from H by means of length- T finite horizon
balanced truncation.

(a) Plot the impulse response of ftj and H^r for T = ^, 1,10, oo, on the same plot.
Can you describe what happens as T —> 0?

(b) Plot the amplitude Bode plots of the corresponding error systems. What is their

• Discuss finite-horizon balancing for T = 1 of the unstable system

by reducing it to a first-order system.

Problem 29. Balanced and Hankel approximants. Consider the rational function

1. Compute the Hankel singular values of G.

2. Compute a realization of G which is balanced (in the Lyapunov sense). Hence
determine balanced truncations Gbai,k for k = 2,4.

3. Compute the optimal Hankel-norm approximations Gn,k for k = 2,4.

4. Compute the 'H00-norms of the error systems G — Gbait* G — Ga,k for k = 2,4.
Compare these norms with the theoretical upper bounds. Plot the amplitude
Bode diagrams and the Nyquist diagrams of G, the various approximants, and
the various error systems.

5. Compute the dyadic decomposition of the rational function

Compare the amplitude Bode plots of the first-order approximants obtained by
balanced truncation, optimal Hankel-norm approximation, and truncation of the
dyadic decomposition.

Problem 30. Give a proof of Proposition 5.4.

Hint. First, by scaling, that is, substituting D, B, C, for -D, -4=B, 4=C, respectively,
Y -JY +JY

the problem can be reduced to the case y = 1.

Next show that
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428 Chapter 15. Problems

is a realization of 4>, where P is the reachability gramian AP+PA*+BB* = 0. Using
, compute the equivalent realization

A' = T-'AT, B' = T-'B, C = CT-1, D' = D. Finally, provided that D is
nonsingular, use the formula

to prove the desired formula (5.18).

Problem 31. This problem refers to Example 5.28. First derive a state variable representa-
tion of the system where the four states should be chosen as x\ = q\,x2= q\ — ̂ -ui,
*3 — Q2i *4 — #2; the inputs are u\ = q$, u2 = f ; and the output (observation)
is y = q2. Show that the system is observable if Y ^ ||. If this assumption is
satisfied, express the state as a function of the input, output, and derivatives thereof
and consequently the supply function in terms of the input and the output. Finally,
assuming that m\ = m2 = 1, b\ = 0, b2 = 1, k\ = k2 = 1, use Theorem 5.26 to
derive an expression for the available storage and the required supply and compare
each one with the storage function given in the above mentioned example.

Problem 32. Comparison ofHoo-norm bounds [149].

• Consider the systems described by

1. Compute a minimal realization ( c D ) °f H(,s), where A is diagonal

and B = C*. Hence show that the two gramians can be chosen as follows:

2. Deduce that the sum of the Hankel singular values of this system is |.
Moreover, the "Hoc-norm of H is n. Hence in this case the upper bound
given by formula (8.20) is tight.

The system under consideration has the property that its poles and zeros
are on the negative real axis and interlace one another. It can be shown in
general (see [312]) that for such systems the error bound (8.20) is tight.

3. What conclusion can you draw concerning the error (8.21) between H and
a reduced model llbai,k of McMillan degree k < n obtained by balanced
truncation?

Consider a system in balanced canonical form given by formula (7.24), where
n = 5, o\ = 1, a, = <T,_I — 10~3, / = 2 , . . . , n.

1. Compute the T^oo-norm of the system for various choices of the y, and s\\\
compare this norm with the upper bound given by formula (8.20).

the state space transformation
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Chapter 15. Problems 429

2. For a specific choice of the y, and s,, repeat the above exercise, considering
the reduced-order system of order 2, obtained by balanced truncation; again
compare the upper bound given by formula (8.21) with the actual "Hoc-norm
of the error system.

Problem 33. Continuity of suboptimal approximants. Consider the linear system defined
as follows:

Compute the Hankel singular values of this system. Hence give a general expression
for the transfer function of a y -suboptimal Hankel-norm approximation with y be-
tween the two singular values. What is the Hankel-norm of this first-order system?
Examine in detail the case where y approaches the smallest singular value. Is the
corresponding optimal solution obtained?

Problem 34. Consider the pair A = diag (—1, — 2 , . . . , —n), B = ones(n, 1), n = 10,
n = 50. Find the Cholesky ordering of the eigenvalues of A, defined by formula (9.6).
Hence compute the estimate of the decay rate of the eigenvalues of the reachability
gramian P (which satisfies AP + PA* + BB* = 0) according to formula (9.7) and
the decay rate bound given by (9.8). By computing P, compare the estimate and the
bound with the true decay rate of the eigenvalues.

Problem 35. Repeat the previous exercise if A = diag (Ai,... , A#), where A* € R2x2

has eigenvalues —k ± iky, £ = — ! , . . . , — N, where y > 0; B is as before, a matrix
of ones. In other words, the eigenvalues of A consist of complex conjugate pairs that
lie in the left half of the complex plane, on two straight lines with slope ±y. This
situation is common in structural systems with proportional damping.

Problem 36. The diffusion of heat through a perfectly insulated, heat-conducting rod shown
in Figure 15.1, is described by the following linear partial differential equation:

Figure 15.1. Heat-conducting rod.
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430 Chapter 15. Problems

where T(x, t) is the temperature at distance x from the origin and time t. The boundary
conditions are

where u is the input function (supplied heat). Finally, the output (which is measured)
isy(f) = T(0,f).

(i) Show that the transfer function Z(s) = 1 of the above system is given by

Hence conclude that the poles of Z(s) are

(ii) Show that Z(s) has the following partial fraction expansion:

Conclude that the impulse response of the above system is

The objective of this problem is to investigate three different approximations ofz as a
linear combination of three exponentials.

(iii) The first approximation is the modal approximation, which is simply

(iv) Let h be a high-order, finite-dimensional approximation of the infinite-dimensional
system defined by h, obtained as follows:

The next two approximations are now obtained by means of a second-order Lyapunov
balanced truncation h/, and a second-order Hankel-norm approximation h# of h. Let
ZL = 1 + 2hL and ZH - 1 + 2hH.

(v)a. Plot z(f) (50 terms should be enough) together with z(f), zTOO</(0, ZL(/), and

(v)bi. Plot the step responses of the systems corresponding to the above approxima-
tions.
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Chapter 15. Problems 431

(v)c. Plot the Bode amplitude diagrams of the approximants in (v)a as well as those
for the error systems. Compare the "Hoc-norms of the error systems h—hL and h — h#
with the upper bounds of these differences, predicted by the theory.

Problem 37. Heat conducting rod with convection. Assume now that in the previous ex-
ample convection is taking place as well. The equation describing the evolution of
the temperature T(f, x) along the rod is

The boundary conditions, and hence the input and the output of the system, are the
same as before.

Show that the transfer function Z = ^ in this case is

Thus, Z has poles at s = 0 and s = —rj2 — k2n2, k = 1,2, This in turn implies
that the partial fraction expansion of Z is

It follows that the impulse response is

For the convection-diffusion case rj ^ 0, answer questions (iv) and (v)a-c as in the
preceding problem.

Problem 38. The preceding two problems are to be solved now by discretizing the corre-
sponding PDEs. In particular, assume that the heat conducting rod has been divided
in N + 1 intervals of length h; the resulting variables are T(kh), k = 0,1, ..., N + 1.
Given the initial conditions, namely, (T(0) - T(h))/h = 0, y = T(0), u = (T((Af +
l)/i) - T(NK))/h, the state x becomes x = (T(l/z), . . . , T(Nh))*, € RN, where
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432 Chapter 15. Problems

Thus deduce that the resulting system has the form x(r) = Ax(f) + Bu(0, y(0
Cx(t), where A is tridiagonal, while B, C are multiples of canonical unit vectors:

while C = [1,0,0,.. . , 0]. Compare the approximants obtained by reducing this
Nth-order system with those based on the transfer function approach.

Problem 39. Consider a cascade of low-pass filters:

The purpose of this problem is to study the approximation of this cascade by means
of fcth-order systems, k = 1, 3, 5, 7, in particular, by

(2) balanced truncation,

(3) unweighted Hankel-norm approximation,

(4) weighted Hankel-norm approximation with weights,

where

Plot the magnitude of the approximation errors on one plot for each different type of
approximation. Compare with the upper bounds of the error magnitudes whenever
possible.

(1) Gk(s),
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Problem 40. Consider the following sixth-order system:

This system is doubly resonant with poles close to the imaginary axis. Find third-order
approximants using the methods below:

(1) modal approximation keeping the dominant poles,

(2) balanced truncation,

(3) unweighted Hankel-norm approximation,

(4) weighted Hankel-norm approximation with weight

Plot the magnitude of the approximation errors on one plot for each different type of
approximation. Compare with the upper bounds of the error magnitudes whenever
possible.

Problem 41. A property of the Arnoldi procedure. Given the reachable pair of matrices A e
R"x" andB € Rn, let P be the reachability gramian: A'P+PA*+BB* = 0. Consider
the fc-step Arnoldi procedure, AY* = V^H* + /z^+i^v^+ie^, and let Pk e Rkxk be the
reachability gramian of the pair H*, pek, where ft = ||B||: HkPk+PkHl+ft2^ = 0.
The gramian Pk is embedded in the bigger space as follows: P = V/t'PfcV*. e R"xn.

(i) Show that the nonzero eigenvalues of P and H* are the same.

(ii) Let A = A — A, where A = /i/t+i,jtv/fc+i v£ (A is a rank one correction of A). Show
also that P satisfies the Lyapunov equation: AP + 'PA* + BB* = 0,

Problem 42. Prove the fundamental lemma, Lemma 10.14, of the Arnoldi procedure.

Problem 43. (a) Given are the matrices A and B:

Compute the Arnoldi (Lanczos) factorization. Notice that it stops prematurely. What
can one conclude concerning the eigenvalues and corresponding eigenvectors of A?

(b) Prove that for the symmetric Lanczos (Arnoldi) process, the projected matrices
V*.AVfc have eigenvalues that lie in the interval [Amin(A), A.max(A)]. Therefore, if A is
stable, so are the resulting reduced systems.

co
nt

ro
len

gin
ee

rs
.ir



434 Chapter 15. Problems

Problem 44. Consider elliptic continuous-time low-pass filters which can be obtained in
MATLAB as follows: [A,B, C,D] =ellip (n, 1,100,1, 's' ). Theorderofthe
filter should be taken n = 25. The reduced order is k = 10,15, 20.

Hint. The realization obtained from MATLAB is not well-conditioned. It is advisable
to multiply C by 104 and divide B by the same number.

Problem 45. Given is the system described by

1. Using the square root method and the sign function method, compute the reacha-
bility and observability gramians and hence compute and plot the Hankel singular
values.

2. Compute reduced-order systems of order k = 3, 5 by means of balanced trun-
cation, the Arnoldi method, the Lanczos method, and modal truncation.

3. Compute the 'Hoc-norm of the resulting error systems in each case.

4. Tabulate the poles and the zeros of the approximants.

5. Plot the frequency response of the original system and the error systems (on the
same plot for each k).

Figure 15.2. A section of an RLC cascade circuit: R = .IQ, C = I p F , R
100ft, L = IQpH.

Problem 46. Consider a circuit consisting of 25 sections interconnected in cascade; each
section is as shown in Figure 15.2. The input to this system is the voltage V applied
to the first section; the output is the current I of the first section, as shown.

• Derive a state space representation of this circuit.

• Approximate this system by means of k = 10, 20, 30 states.

Problem 47. Consider Chebyshev I continuous-time low-pass filters which can be obtained
in MATLAB as follows: [A, B, C, D] =chebyl ( n , r , l , ' s ' ) , where r denotes
the admissible ripple in the passband and should be taken as r = \db and corresponds

co
nt

ro
len

gin
ee

rs
.ir
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approximately to a 10% ripple. The order of the filter should be taken n = 1 : 25.
The first goal of this problem is to compare the three balancing transformations T,,
i = 1, 2, 3, and the corresponding balanced triples:

Plot the above errors as a function of the order n of the filter. Plot also the Hankel
singular values for n = 5,10,15, 20,25 on the same plot. The y-axis should be
logarithmic (loglO). Notice that one should transform the original triple C, A, B to
the Schur basis first.

The transformations are TI, the usual balancing transformation; T2, the square-root
balancing transformation; TS, the square root algorithm, where the balanced matrices
are obtained up to diagonal scaling with S~1/2.

Balance and truncate. Each filter above should be reduced approximately to one-
quarter of its original dimension; more precisely, the reduced order should be k =
round (n/4) + 1. Let T,-fc = [/* 0]7} and f ik = Tr1 [I*; 0] for i = 1,2, 3. Compute
and plot the corresponding errors E,-^, E-^, E^. Plot also the condition number of
the three transformations T,*, i = 1,2, 3, for the above k.

Finally, given the Hankel singular values of the 25th-order filter, what are the possible
dimensions of a reduced system obtained by balanced truncation so as to avoid (almost)
marginally stable poles (i.e., poles on the imaginary axis)?

Problem 48. Application of the POD method to a linear system. Consider the following
system:

The poles of this system a re—1±^ , — 2 ± j ^ , — 1 , —2. Obtain the system repre-
sentation of £ in MATLAB using the command sys = ss (A,B,C,D) .

Part (a)

1. Using the MATLAB command [y, t, X] = impulse (sys, T) , obtain the
impulse response of the system, where T is the time interval, y is the output, X
are the states. Choose T = 0 : 0.1 : 10. Notice that the matrix of snapshots
X' = [x(ti) ••• x(tN)] in the POD method is simply given by X*.
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2. Compute the SVD of X' = t/E V* and plot the normalized singular values on
a logarithmic scale. Choose k = 2,3,4,5 and obtain the reduced-order system
for x = U£x, where U* is a matrix composed by the leading k columns of U.

3. Apply the impulse response to the reduced-order system for the same time in-
terval T as above and obtain A^.

4. Plot the states for both the full-order and the reduced-order model on the same
plot (one state per plot). You can have more than one figure on the same page
using the subplot command. Compute both the error norm \\X — Xk\\2 and
the relative error norm ^"f*112. How do these numbers relate to the neglected

||A||2 °

singular values?

Part (b)

1. Obtain the impulse response of the full-order model for the time interval Tl =
10. Construct X, compute the SVD, and again obtain the reduced-order system
of order 2, 3,4, 5 for the reduced states x = U|x.

2. Continue the simulation for time interval T2 = 1 : 5 using the reduced system.
Notice that you should use the command initial rather than impulse.

3. After obtaining data X^, transform the states back into original space and append
the data to what you had for Tl = 0 : 0.02 : 10. Compare the whole data you
obtained with the data obtained for the full-order model for T = 0 : 0.02 : 20
in step 1 of Part (a) above.

4. Again plot the data and compute the error norms.

Problem 49. If we apply the sign function method to the Sylvester equation (6.1) AX +
XB = C, where the eigenvalues of A are in the (open) left half of the complex plane,
the uniqueness condition is satisfied, and the eigenvalues of B are both in the (open)
left half and (open) right half of the complex plane, we will obtain a projected form
of the X. Derive an expression for this projected X.

Problem 50. Consider the unstable system given by

Reduce this system following the steps outlined in Examples 7.24 and 7.25.
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Figure 15.3. The kth-section of an RLC circuit.

Problem 51. This problem is concerned with an RLC circuit which consists of several
sections, as shown in Figure 15.3; Ujt, y# are the input, output voltage of the fcth
section. N sections are cascaded by letting y* = u*+i» k = I , ...,N — l;the input
of the system is Ui and the output is y#.

Write state equations by taking as state variables for the fcth section the current through
the inductor L^ and the voltage across the capacitor C*.

Reduce the cascade system composed of N = 50 sections to a system of order 10
by means of the following methods: (a) balanced truncation, (b) Arnoldi method, (c)
Lanczos method. In the last two cases, choose as interpolation (projection) points the
mirror image of the poles of the system with the largest real part.

The values of the components should be chosen as follows: R{ = Ifi, L, = IH,
Ci = W~6F.

Problem 52. Use the same set-up as for Problem 51. In this case, weighted approximations
are to be compared, in particular, by taking a low-pass Butterworth filter of order 4 as
weight and applying the method without weights as described in section 7.6.2. The
cutoff frequency of the low-pass filter and the upper limit of integration in the second
method are to be chosen to lie (a) between the first and the second resonances and (b)
between the fourth and fifth resonances.

Problem 53. Use the same set-up as for Problem 51. In this case, compare the approxima-
tions by means of the three passive approximation methods described in this book.
In particular, two methods have to do with positive real balanced truncation and are
described in section 7.5.4, and the third is described in section 11.3.3.

Problem 54. Consider the SISO system £ of order n, where A is diagonal with —t, as ith
entry, while B* = C with ^th entry equal to 1. For n = 10 write the solution of the
Lyapunov equations explicitly. Then use the sign iteration method; how many itera-
tions are needed for the 2-error between the two expressions to drop below machine
precision?

Then, reduce the system to order k = 2 and compare balanced truncation and Lanczos
approximation by taking as projection points the mirror image of the largest poles.

Estimate the decay rate of the Hankel singular values for this example, using the decay
estimate (9.7) and the decay bounds (9.8) and (9.11).
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Problem 55. Given is the pair (A, b) as in (4.71), with A stable (eigenvalues in the left half
plane). Furthermore, let

Show that the associated reachability gramian P e Rvxv, that is, the solution of the
Lyapunov equation AP + PA* + bb* = 0, can be expressed as follows:

With the notation as in (4.71), verify using the above formula that for v = 2, the
gramian isgramian

while for v = 3, the gramian is

Notice that the conditions for positive definiteness of the gramian are equivalent with
the Routh conditions for stability of the polynomial XA-

Problem 56. (See [354].) Let the triple (C, A, B) be minimal with A stable. Let Xf satisfy
the Riccati equation

where € is a positive number. Denote by X+ > 0, X~ < 0, the two extremal solutions
of this equation. Show that

where P, Q are the reachability, observability, gramians of the give triple, respectively.

Problem 57. This problem has to do with condition (11.12). Show that H(s) = £ can be
obtained by the rational Krylov procedure from H(s) = pr for n = 3 but not for
n = 2. Furthermore, prove (11.12) in the general case.

Problem 58. Consider a closed curve in the plane described parametrically as x = f ( t ) ,
j = g(f), where t is a real parameter belonging to the interval [a, b]. It can be shown
that the area A enclosed by this curve is given by

Chapter 15. Problems438
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First show that the area A enclosed by the Nyquist plot of a SISO system with transfer
function H(J) is given by half the integral of the imaginary part of the expression

Consequently, verify Proposition 5.10 for the Butterworth filter given in Example 5.5.

Problem 59. Show that the square root algorithm for solving the Lyapunov equation de-
scribed in section 6.3.3 holds in the case when the solution P is semidefinite, i.e., it
has zero eigenvalues.

Problem 60. Show that if the pair of matrices (A, B) with A e Knx/!, B e Rnxm, is
reachable, the geometric multiplicity of the eigenvalues of A is at most m. Therefore,
if this pair is reachable, m = 1, and A has a multiple eigenvalue, it corresponds to a
Jordan block. Another way of saying this is that the smallest number of input channels
m needed to ensure reachability given A is equal to the largest geometric multiplicity
of the eigenvalues of A.
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Index

AAK (Adamjan-Arov-Krein) theorem,
252

algorithms
approximate balancing algorithm,

375
MEMO case, 377

case studies, 389
aluminum plate, 410
building model, 392
Butterworth filter, 398
CD player, 394
CD player-Smith algorithms,

406
clamped beam model, 396
heat diffusion model, 394
heat distribution n = 20,736,410
image approximation, 389
ISS stage 12A, 403
ISS stage 1R, 400
system of order n = 1000,408

complexity of, 415
Lanczos and Arnoldi, 334
parallelization, 4
polynomial time, 4
randomized, 4
Smith methods, 380, 381

ADI iteration, 381
cyclic Smith(/), 382
low rank ADI and cyclic Smith,

382
modified low rank Smith(/), 384
trapezoidal rule, and, 387

software, 415
alternating direction implicit (ADI), 380

approximation
algorithms

complexity of, 415
software, 415

Arnoldi and moment matching,
348

Hessenberg form, 349
by balanced truncation, 207

additive error bound, 213, 215
bounded real balancing, 231
canonical form, 224
continuous-time, 213
continuous/discrete systems, 211
discrete-time, 215
four algorithms, 220
frequency weighted balancing,

235, 237
frequency weighted balancing

(gramians), 236, 239
%2 error norm, 218
Lyapunov balancing, 229
positive real balancing, 232
positive real balancing, error

bound, 234
proof of error bound, 216
stochastic balancing, 229
stochastic balancing,

multiplicative error bound,
230

time-limited balancing, 241
types of balancing, 228
unstable systems, 242
weighted balancing and Krylov,

366
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approximation (continued)
by Hankel-norm approximation,

249
case studies, 389
eigenvalues of gramians

decay rate bound, 293
decay rate estimate, 291

exercises, 421
Hankel singular values

Cauchy kernel, 288
Cauchy matrices, 287
decay rate, 285, 294

numerical examples, 298
Hankel-norm approximation

AAK theorem, 252
all suboptimal solutions, 259
construction of approximants,

254
error bounds, 262
input-output construction of

approximants, 254
main ingredients, 250
main result, 252
polynomial approach, 267
unitary dilation, 256
unitary dilation, optimal case,

258
unitary dilation, suboptimal case,

258
Krylov methods, 343

generality of rational Krylov, 357
preservation of passivity, 358
properties, 350

Lanczos and moment matching,
346

error, 349
tridiagonal form, 347

methods, 10
modal approximation, 282
moment matching, 346
moments of a function, 345
open problems, 416
projection, by, 8
projectors

summary, 413

approximation (continued)
proper orthogonal decomposition

(POD), 277
adjoint system, 281
empirical eigenfunctions, 278
Galerkin projection, 279
Petrov-Galerkin projection, 279
POD and balancing, 279
snapshots, 278, 279, 281

special topics, 277
SVD-Krylov methods, 365

approximation balancing
algorithm, 375, 377

cross gramian, 373
iterative approximation balanced

reduction, 371
iterative methods, 371
Krylov and Sylvester equations,

366
least squares approximation,

368, 370
Smith methods, 380
weighted balancing and Krylov,

366
truncation and residualization, 285

Arnoldi and FOM, CG, GMRES,
MINRES, 331

Arnoldi method
algorithm, 334
alternative way of looking at, 331
eigenvalue estimation, 328

fundamental lemma, 331
implicitly restarted Arnoldi, 336

convergence, 337
moment matching, 348

Hessenberg form, 349
rational Arnoldi, 336

Banach space, 123
behavioral framework, 62
bilinear transformation discrete

continuous systems, 87
bisection algorithm for induced 2- or

T^oo-norm, 133
bounded real lemma, 169
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bounded-input, bounded-output (BffiO),
151

case studies, 389
aluminum plate, 410
building model, 392
Butterworth filter, 398
CD player, 394

Smith algorithms, 406
clamped beam model, 396
heat diffusion model, 394
heat distribution n = 20,736, 410
image approximation, 389.
ISS stage 12A, 403
ISS stage 1R, 400
system of order n = 1000,408

Cauchy kernel, 288
Cauchy matrices, 287
Cholesky decomposition, 28

factors, 411
Cholesky ordering, 290
circulant Toeplitz matrix, 129
condition number, 42

eigenvalues, 44
eigenvectors, 44
EVD and SVD, 43
linear system of equations, 43
matrix-vector product, 43

conjugate gradient (CG), 331
continued fraction decomposition, 114
controllability, 73

distance to, 74
convolution, 59

periodic (discrete-time), 128
sum (discrete-sum), 60

convolution operator, 128
ftoo-norm, 132
2-induced norm, 132
2-induced or HOC-norm

Hamiltonian, 133
adjoint of, 131
convolution sum, 60
resolvent, 128
singular values, 128
singular values (continuous-time),

130

convolution operator (continued)
singular values MIMO systems,

130
spectrum, 128

MIMO systems, 130
spectrum (continuous-time), 130

cross gramian, 85
approximate balanced reduction,

373
approximate balancing algorithm,

375
MIMO case, 377

eigenvalues of Hankel operator,
137

decay rates of Hankel singular values,
285, 294

Cauchy kernel, 288
Cauchy matrices, 287
Cholesky ordering, 290
multiplicative majorization, 294
numerical examples, 298

decompositions
rank additive, 52

derivative operator, 59
detectability, 77
dissipative systems, 159

available storage, 159
bounded real lemma, 169
dissipation inequality, 159
linear system, quadratic supply,

160
LMI, 161
positive real lemma, 163
required supply, 159
Riccati equation, 161
storage and Lyapunov functions,

159
storage function, 159
supply function, 159

distance
to singularity, 50
to unobservability, 78
to unreachability, 74

duality of linear systems, 76
dynamical systems, 63
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eigenvalue computations, 313
basic Krylov iteration, 313

eigenvalue decomposition (EVD), 36,
314

Bauer-Fike result, 316
characteristic polynomial, 315
condition numbers, 315
eigenvalue estimation

Arnoldi method, 328
iterative methods, 320
iterative methods, inverse vector

iteration, 322
iterative methods, Rayleigh

quotient, 323
iterative methods, Rayleigh-Ritz

procedure, 321
iterative methods, subspace

iteration, 323
iterative methods, vector

iteration, 322
Krylov methods, 324
Lanczos method, 325

eigenvalues
algebraic/geometric multiplicity,

315
condition number, 318

eigenvalues/eigenvectors, 314
Jordan blocks, 315
perturbation of eigenvalues/

eigenvectors, 317
pseudospectra, 318

eigenvalue estimation
iterative methods, 320

Arnoldi method, 328
inverse vector iteration, 322
Krylov methods, 324
Lanczos method, 325
Rayleigh quotient, 323
Rayleigh-Ritz procedure,

321
subspace iteration, 323
vector iteration, 322

exercises, 421
external description, 59

Markov parameters, 66

feedback interpretation
recursive interpolation, 114

finite gramian, 79
floating point arithmetic, 44

ANSI/IEEE arithmetic, 45
Fourier transform, 127

Parseval, Plancherel, Paley-Wiener
relationships, 127

full orthogonalization method (FOM),
331

Galerkin projection, 277, 279-281
generalized minimal residual method

(GMRES), 331
generalized observability matrix, 102
generalized reachability matrix, 102
gramians

Cholesky ordering, 290
closed-loop gramians, 241
cross, 85

approximate balanced reduction,
373

approximate balancing
algorithm, 375

approximate balancing algorithm
(MIMO case), 377

eigenvalues of Hankel operator,
137

decay rate bound of eigenvalues,
293

decay rate estimate of eigenvalues,
291

for weighted systems, 236
frequency weighted

without weights, 239
Hankel singular values

(continuous-time), 139
Hankel singular values

(discrete-time), 138
infinite, 78
infinite, in frequency, 80
time-limited gramians, 241

/i2-norm, 126
/ioo -norm, 126
hp -norms, 125
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hp spaces, 125
'Hi, is this norm induced?, 144
%2-norm, 126

discrete-time systems, 146
H2-norm and EVD, 144
%2-norm and gramians, 144
%2-norm of system, 144
HP -norms, 125
Hoo-norm, 126
%oo -norm bisection algorithm, 133
^oo-norm of convolution operator, 132
Up spaces, 126
Hamiltonian

for 2-induced or 'Hoc-norm, 133
for passive model reduction, 359

Hankel matrix, 90
factorization, 91
Hankel operator and, 136
partially defined, 98

Hankel operator
continuous-time, 135
discrete-time, 135
eigenvalues of, 137

cross gramian, 137
Hankel matrix and, 136
Hilbert-Schmidt norm, 141
norm, 135
singular values, 138

continuous-time, 139
discrete-time case, 138

Hankel singular values (HSV), 138
assignment of, 307
continuous-time, 139
cross gramian and, 140
decay rates, 285, 294

Cauchy kernel, 288
Cauchy matrices, 287
multiplicative majorization, 294
numerical examples, 298

discrete-time case, 138
lemma, 139

Hankel-norm approximation, 249
AAK theorem, 252
all suboptimal solutions, 259
construction of approximants, 254
error bounds, 262

Hankel-norm approximation (continued)
Hankel operator

eigenvalue equation, 270
Schmidt pairs, 269

input-output construction of
approximants, 254

main ingredients, 250
main result, 252
polynomial approach, 267

balanced canonical form, 273
error formulae, 275
Hankel operator and SVD, 268
Nehari problem, 272

unitary dilation, 256
unitary dilation, optimal case, 258
unitary dilation, suboptimal case,

258
Hardy norms

frequency domain, 149
Hilbert space, 123
Hilbert-Schmidt

norm, 141
operator, 141

homework assignments, 421-439

implicitly restarted Arnoldi method
(IRAM), 336

convergence, 337
impulse 8, 62
impulse response, 65
induced 2-norm

bisection algorithm, 133
induced 2-norm of convolution operator,

132
induced norms

and noninduced norms of
convolution operator, 150

convolution, Hankel operators, 147
(/?, q) Lebesgue spaces, 147
(p, q) norms, 148
equi-induced norms, 148
mixed-induced norms, 148
spatial norm, 147
temporal norm, 147

inertia
definition, 188

co
nt

ro
len

gin
ee

rs
.ir



472 Index

inertia (continued)
iterative proof of, 195
Lyapunov equations, and, 188
Sylvester law of, 189

input, 59
input energy, 71
interlacing, 53
internal description, 59, 63
International Space Station (ISS), 20
iterative approximation

approximate balanced reduction,
371

algorithm, 375, 377
cross gramian and, 373

Smith methods, 380, 381
ADI iteration, 381
cyclic Smith(/), 382
low rank ADI and cyclic Smith,

382
modified low rank Smith(/), 384
trapezoidal rule, and, 387

SVD-Krylov methods, 371

kernel (weighting pattern), 61
Krylov methods

eigenvalue estimation, 324
Arnoldi method, 328
convergence of Lanczos method,

326
Lanczos method, 325
motivation, 324

generality of rational Krylov, 357
implicitly restarted Arnoldi

method, 336
preservation of passivity, 358
rational Arnoldi method, 336
rational Krylov methods, 335

Krylov subspace, 68
Krylov, basic iteration, 313

f.2 spaces
inner product, 127
time domain, 126

IP spaces, 124
ip-norms, 124

LI spaces
inner product, 127
time domain, 126

£2-norm of impulse response, 144
Cp spaces, 124

frequency domain, 126
Cp -norms, 124

frequency domain, 126
Lagrange polynomial, 100
Lanczos method

algorithm, 334
eigenvalue estimation, 325

convergence of, 326
moment matching, 346

continued fractions, 351
error, 349
tridiagonal form, 347

properties, 332
three-term recurrence, 332
two-sided Lanczos, 333

LAPACK software, 51
Laplace transform, 62
Laurent operator, 60, 128
least squares problem, 40, 53
least squares system approximation, 368

moment matching, 370
Prony's method, 370

Lebesgue
norms, frequency domain, 149
spaces, time domain, 124

Linear matrix inequality (LMI)
dissipative systems, 161

Lowner matrix, 99, 102
LU decomposition, 28, 323, 336, 347,

355
Lyapunov and Sylvester equations, 173

algorithms, 200
Bartels-Stewart algorithm, 191
characteristic polynomial methods,

179
complex integration method, 176
eigenvalue/eigenvector method,

178
generalized

reachability/observability
matrices, 179
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Lyapunov and Sylvester equations
(continued)

Hammarling algorithm, 196
in Schur basis, 191
inertia, 188
invariant subspace method, 184
Kronecker product method, 175
numerical issues

condition number of solutions,
203

forward/backward stability, 201
sign function method, 184
square root method, 196
triangular coefficients, 191

Lyapunov equation
continuous-time, 78
discrete-time (Stein), 79
Schur basis, 193

iterative proof of inertia, 195
sign function, and the, 184

majorization and interlacing, 53
Markov parameters, 62, 66
matrix exponential, 64

formula, 70
matrix theory, 27

big six matrix decompositions, 28
Cholesky decomposition, 28
eigenvalue computations, 313
Jordan blocks, 315
LU decomposition, 28, 323, 336,

347, 355
norms of vectors and matrices, 28
QR decomposition, 28, 314, 321,

324, 332, 337, 348
Schur decomposition, 28, 320, 323

McMillan degree, 96,100
minimal residual method (MINRES),

331
modal approximation, 282
model reduction

algorithms
complexity of, 415
software, 415

Arnoldi and moment matching, 348
Hessenberg form, 349

model reduction (continued)
by balanced truncation, 207

additive error bound, 213, 215
bounded real balancing, 231
canonical form, 224
continuous-time, 213
continuous/discrete systems, 211
discrete-time, 215
four algorithms, 220
frequency weighted balancing,

235, 237
frequency weighted balancing

(gramians), 236, 239
'H.i error norm, 218
Lyapunov balancing, 229
positive real balancing, 232
positive real balancing, error

bound, 234
proof of error bound, 216
stochastic balancing, 229
stochastic balancing,

multiplicative error bound,
230

time-limited balancing, 241
types of balancing, 228
unstable systems, 242
weighted balancing and Krylov,

366
by Hankel-norm approximation,

249
case studies, 389
eigenvalues of gramians

decay rate bound, 293
decay rate estimate, 291

exercises, 421
Hankel singular values

Cauchy kernel, 288
Cauchy matrices, 287
decay rate, 285, 294

numerical examples, 298
Hankel-norm approximation

AAK theorem, 252
all suboptimal solutions, 259
construction of approximants,

254
error bounds, 262
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model reduction (continued)
Hankel-norm approximation

(continued)
input-output construction of

approximants, 254
main ingredients, 250
main result, 252
polynomial approach, 267
unitary dilation, 256
unitary dilation, optimal case,

258
unitary dilation, suboptimal case,

258
Krylov methods, 343

generality of rational Krylov, 357
preservation of passivity, 358
properties, 350

Lanczos and moment matching,
346

error, 349
tridiagonal form, 347

modal approximation, 282
moment matching, 346
moments of a function, 345
open problems, 416
projectors

summary, 413
proper orthogonal decomposition

(POD), 277
adjoint system, 281
empirical eigenfunctions, 278
Galerkin projection, 279
Petrov-Galerkin projection, 279
POD and balancing, 279
snapshots, 278, 279, 281

special topics, 277
SVD-Krylov methods, 365

approximation balancing
algorithm, 375, 377

cross gramian, 373
iterative approximate balanced

reduction, 371
iterative methods, 371
Krylov and Sylvester equations,

366

model reduction (continued)
SVD-Krylov methods (continued)

least squares approximation,
368, 370

Smith methods, 380
weighted balancing and Krylov,

366
truncation and residualization,

285
moment matching, 346
moments of a function, 345
Moore-Penrose pseudoinverse, 40
multi-input, multi-output (MIMO), 60

network synthesis, 169
Nevanlinna-Pick problem, 100

algebraization of, 117
normed spaces, 123

Banach space, 123
Cauchy sequence, 123
convergence, 123
Hilbert space, 123
inner prduct, 124
maximum modulus theorem, 126
orthogonal complement, 124

norms
/?-norms of vectors, 29
Cauchy-Schwarz inequality, 29
definition of, 28
equi-induced, 148
equi-induced norms, 30
Holder inequality, 29
Hilbert-Schmidt, 141
matrix induced norms, 30
mixed-induced, 148
noninduced and induced of

convolution operator, 150
Schatten matrix norms, 30
spatial, 147
submultiplicativity of matrix

norms, 31
temporal, 147
unit balls, 29
unstable system, 154
vectors and matrices, 28

notation, xxiv
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numerical analysis, 41
accuracy of numerical result, 48
condition numbers, 42
distance to singularity, 50
floating point arithmetic, 44
ill-posedness of rank, 49
LAPACK software, 51
Lyapunov equation

condition number of solutions,
203

forward/backward stability, 201
numerical rank, 50
stability of algorithms, 44

backward error, 44
forward error, 44

stability of SVD, 49
numerical rank, 50
Nyquist plot

Hilbert-Schmidt norm, 141
spectrum of convolution operator,

128, 130

observability, 75
degree of, 80
distance to unobservability, 78
generalized observability matrix,

102,179
gramian (finite), 76
infinite gramians, 78
observability conditions, 78
observability gramian, 76
observability matrix, 75
observable decomposition, 77
observable subsystem, 77
reachable-observable

decomposition, 77
unobservable state, 75
unobservable subspace, 75

open problems in model reduction, 416
output, 59
output equations, 63

partial realization, 97
periodic convolution, 128
Petrov-Galerkin condition, 315

Petrov-Galerkin projection, 277, 279,
281

polynomial time algorithms, 4
Popov-Belevich-Hautus (PHB) test, 72
positive real lemma, 163
problems, open in model reduction, 416
Prony's method and least squares system

approximation, 370
proper orthogonal decomposition

(POD), 277
adjoint system, 281
autocorrelation, 278
empirical eigenfunctions, 278
Galerkin projection, 279
gramian, 278
Petrov-Galerkin projection, 279
POD and balancing, 279
snapshots, 278, 279, 281

pseudospectra, 318

QR decomposition, 28, 314, 321, 324,
332, 337, 348

quadrature and Smith methods, 387

rational Arnoldi method, 336
rational interpolation, 99

bounded real solutions, 100
complexity, 100
constrained problems, 100
construction of interpolants by

complexity, 105
feedback interpretation, 111
generalizations, 117
generating system approach, 99,

107
bounded real interpolation, 116
interpolation by complexity, 110
positive real interpolation, 116
recursive solution, 114
recursive solution, feedback

interpretation, 114
row reduced matrices, 112

Lowner matrix, 99,102
Lowner matrix approach, 101
Lagrange polynomial, 100
multiple points, 107
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rational interpolation (continued)
Nevanlinna-Pick problem, 100

algebraization of, 117
polynomial exponential time series,

108
positive real solutions, 101
rational interpolation by projection,

353
Sylvester equation, 356
two-sided projections, 354

realization and interpolation, 107
realization and rational

interpolation, 109
recursive solution, 114
shift, 107
time series, 107
unconstrained problem, 100

rational Krylov methods, 335
reachability, 67

degree of, 80
distance to, 74
distance to unreachability, 74
equivalent conditions, 72
generalized reachability matrix,

102, 179
gramian (finite), 68
infinite gramians, 78
input energy, 71
input norm, 71
matrix, 67
minimal energy input, 71
PHB test, 72
reachability gramian, 68
reachable subspace, 67
reachable subsystem, 72
reachable-observable

decomposition, 77
subspace, 68
unreachable subsystem, 72

reachable canonical decomposition, 71
reachable-observable decomposition, 77
realization, 88

minimal, 93
partial Hankel matrix, 98
partial realization, 97

realization (continued)
partial realization by projection,

353
two-sided projections, 353

problem,solution of, 91
proper rational matrices, 95
realizable sequence, 88
realization and interpolation, 107
realization and rational

interpolation, 109
Silverman algorithm, 92
symmetric systems, 96
tridiagonal form, 115

reconstructibility problem, 76
recursive rational interpolation, 114

cascade interconnection, 114
continued fractions, 114
scalar systems, 114
tridiagonal realization, 115

Riccati equations, 161, 207, 217, 228,
229,231-233

bounded real case, 231
dissipative systems, 161
positive real case, 232

row reduced matrices, 112
row degrees, 112

Schmidt-Eckart-Young-Mirsky
theorem, 37

Schur decomposition, 28, 320, 323
semidiscrete decomposition, 41
shift

rational interpolation, 107
shift operator, 59
sign function and Lyapunov equations,

184
Silverman realization algorithm, 92
single-input, single-output (SISO), 60
singular value decomposition (SVD), 5,

31
2-norm and SVD, 32
least squares, 40
Moore-Penrose pseudoinverse, 40
optimal approximation, 37

uniqueness of minimizer, 38
properties of, 35

co
nt

ro
len

gin
ee

rs
.ir



Index 477

singular value decomposition (SVD)
(continued)

Schmidt-Eckart-Young-Mirsky
theorem, 37

semidiscrete decomposition, 41
short form of, 35
singular value and eigenvalue

decompositions, 36
pseudospectra, 37

singular values, 31
singular vectors, 31
symmetric matrices, 37

singular values
convolution operator

continuous time, 130
discrete-time, 128

Hankel operator, 138
continuous-time, 139
cross gramian, 140
discrete-time, 138
lemma, 139

software for model reduction, 415
spectrum

convolution operator, 128
stability, 150

asymptotic stability, 151
BffiO stability, 151
external stability, 152
internal stability, 152
£2 stability, 152
Lyapunov equation, 153
Lyapunov function, 152
Lyapunov stability, 152

stability of algorithms, 44
stabilizability, 73
state, 59

construction, 89
equations, 63
observation, 74
transformation, 66

Stein (discrete-Lyapunov) equation, 79
Sylvester and Lyapunov equations, 173

algorithms, 200
Bartels-Stewart algorithm, 191
characteristic polynomial methods,

179

Sylvester and Lyapunov equations
(continued)

complex integration method, 176
eigenvalue/eigenvector method,

178
generalized

reachability/observability
matrices, 179

in Schur basis, 191
invariant subspace method, 184
Kronecker product method, 175
numerical issues

condition number of solutions,
203

forward/backward stability, 201
sign function method, 184
triangular coefficients, 191

Sylvester equations
approximate balancing, 375
connection with projectors, 356
Krylov, connection with, 366

symbol
transfer function, 128

symmetric realizations, 96
systems

all-pass (unitary), 156
approximation

air quality simulations, 16
cooling of steel, 24
elk sensor, 22
honeycomb vibrations, 17
international space station, 20
linear systems, 8
methods, 10
micromirrors, 22
molecular dynamics, 18
motivating examples, 11
passive devices, 11
problem definition, 7
projection, by, 8
properties, 7
vibration/acoustic systems, 20
vibration/CVD reactors, 21
weather prediction, 13

balanced representation, 207
balanced truncation, 211
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systems (continued)
balanced representation (continued)

bounded real balancing, 231
canonical form, 224
definition, 210
frequency weighted balancing,

235, 237
frequency weighted balancing

(gramians), 236, 239
Lyapunov balancing, 229
positive real balancing, 232
positive real balancing, error

bound, 234
simultaneous diagonalization,

210
stochastic balancing, 229
stochastic balancing,

multiplicative error bound,
230

time-limited balancing, 241
types of balancing, 228
unstable systems, 242
variational interpretation, 211

behavioral framework, 62
bilinear transformation discrete,

continuous, 87
causal, 60, 61
classical framework, 62
complexity, 7
construction of state, 89
continuous-time, 7, 61
contractive, 169
control, 3
controllability, 73
convolution operator, 61
definition, 6
detectability, 77
dimension, 64
discrete-time, 7, 60
dissipative, 159

available storage, 159
bounded real lemma, 169
dissipation inequality, 159
linear system, quadratic supply,

160
LMI, 161

systems (continued)
dissipative (continued)

network synthesis, 169
positive real lemma, 163
required supply, 159
Riccati equation, 161
storage function, 159
supply function, 159

duality, 76
dynamics, 63
equivalent system triples, 66
external description, 60

definition, 62
Hankel matrix, 90
implicit, 7
impulse response, 60, 62, 65
inputs and outputs, 7
internal description, 63, 64
£2 unstable, 154
linear versus nonlinear, 5
Markov parameters, 62
McMillan degree, 96, 100
MIMO, 60
minimal realization, 93
observability, 75
output equations, 63
passive, 163
reachability, 67

distance to, 74
reachability matrix, 67
reachable canonical decomposition,

71
realization, 88
reconstructibility, 76
simulation, 3
SISO, 60
stability, 150

asymptotic stability, 151
BIBO stability, 151
external stability, 152
internal stability, 152
£2 stability, 152
Lyapunov equation, 153
Lyapunov function, 152
Lyapunov stability, 152

stabilizability, 73
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systems (continued) transfer function, 62, 65
stable, 64 symbol, 128
state, 7 transformation
state equations, 63 bilinear discrete, continuous
state transformation, 66 systems, 87
time invariant, 61 trapezoidal rule and Smith methods, 387
time-invariant, 60
transfer function, 62, 65 unitary dilation in Hankel-norm
unstable approximation, 256

£2-norm of, 154 optimal case, 258
suboptimal case, 258

Toeplitz matrix, 60
circulant, 129 weighting pattern, 59

Toeplitz operator, 128 kernel, 61

co
nt

ro
len

gin
ee

rs
.ir



This page intentionally left blank 

co
nt

ro
len

gin
ee

rs
.ir



Always open, always vigilant, the eyes of my soul|

The Free Besieged
Second Draft

Dionysios Solomos

co
nt

ro
len

gin
ee

rs
.ir


	Approximation of Large-Scale Dynamical Systems
	Advances in Design and Control
	ISBN 0-89871-529-6
	Contents
	List of Figures
	Foreword
	Preface
	How to Use This Book
	Part I Introduction
	Chapter 1 Introduction
	Chapter 2 Motivating Examples

	Part II Preliminaries
	Chapter 3 Tools from Matrix Theory
	Chapter 4 Linear Dynamical Systems: Parti
	Chapter 5 Linear Dynamical Systems: Part 2
	Chapter 6 Sylvester and Lyapunov Equations

	Part III SVD-based Approximation Methods
	Chapter 7 Balancing and Balanced Approximations
	Chapter 8 Hankel-norm Approximation
	Chapter 9 Special Topics in SVD-based Approximation Methods

	Part IV Krylov-based Approximation Methods
	Chapter 10 Eigenvalue Computations
	Chapter 11 Model Reduction Using Krylov Methods

	Part V SVD-Krylov Methods and Case Studies
	Chapter 12 SVD-Krylov Methods
	Chapter 13 Case Studies
	Chapter 14 Epilogue
	Chapter 15 Problems

	Bibliography
	Index


