

اختصاصی پلتفرم

 مهندسی کنترل

https://controlengineers.ir/
https://t.me/controlengineers
https://www.instagram.com/controlengineers.ir

co
nt

ro
len

gin
ee

rs
.ir

co
nt

ro
len

gin
ee

rs
.ir

Iot Based Projects

Realization with Raspberry Pi,

NodeMCU and Arduino

by
Dr. Rajesh Singh

Professor, Lovely Professional University

Dr. Anita Gehlot
Associate Professor, Lovely Professional University

Dr. Lovi Raj Gupta
Executive Dean, Lovely Professional University

Navjot Rathour
Assistant Professor, Lovely Professional University

Mahendra Swain
Assistant Professor, Quantum University

Bhupendra Singh
Managing Director, Schematics Microelectronics

co
nt

ro
len

gin
ee

rs
.ir

FIRST EDITION 2020
Copyright © BPB Publications, India
ISBN: 978-93-89328-523

All Rights Reserved. No part of this publication may be reproduced or distributed in any form or by
any means or stored in a database or retrieval system, without the prior written permission of the
publisher with the exception to the program listings which may be entered, stored and executed in a
computer system, but they can not be reproduced by the means of publication.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true to correct and the best of author’s & publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but cannot
be held responsible for any loss or damage arising from any information in this book.
All trademarks referred to in the book are acknowledged as properties of their respective owners.

Distributors:
BPB PUBLICATIONS
20, Ansari Road, Darya Ganj
New Delhi-110002
Ph: 23254990/23254991

MICRO MEDIA
Shop No. 5, Mahendra Chambers,
150 DN Rd. Next to Capital Cinema,
V.T. (C.S.T.) Station, MUMBAI-400 001
Ph: 22078296/22078297

DECCAN AGENCIES
4-3-329, Bank Street,
Hyderabad-500195
Ph: 24756967/24756400

BPB BOOK CENTRE
376 Old Lajpat Rai Market,
Delhi-110006
Ph: 23861747
co

nt
ro

len
gin

ee
rs

.ir

Published by Manish Jain for BPB Publications, 20 Ansari Road, Darya Ganj, New Delhi-110002
and Printed by him at Repro India Ltd, Mumbai

co
nt

ro
len

gin
ee

rs
.ir

About the Authors
Dr. Rajesh Singh is currently associated with Lovely
Professional University as a Professor with more than
16years of experience in academics. He has been
awarded a gold medal in M.Tech from RGPV, Bhopal
(M.P) India and honors in his B.E from Dr B.R.
Ambedkar University, Agra (U.P) India. His area of
expertise includes embedded systems, robotics, wireless

sensor networks and IoTs. He has organized and conducted many
workshops, summer internships, and expert lectures for students as well as
faculty. He has been honored as a keynote speaker and session chair to
international/national conferences, faculty development programs, and
workshops. He has 27 patents in his account. He has published more than
100 research papers in referred journals/conferences and 18 books in the
area of Embedded Systems and Internet of Things with reputed publishers
like CRC/Taylor & Francis, Narosa, GBS, IRP, NIPA, River Publishers,
Bentham Science, and RI publication. He is an editor to a special issue
published by AISC book series, Springer in 2017 and 2018 and IGI global
in 2019.
Under his mentorship, students have participated in national/international
competitions, including Innovative Design Challenge competition by Texas
and DST and Laureate award of excellence in robotics engineering in
Madrid, Spain in 2014 and 2015. His team has been the winner of Smart
India Hackathon-2019 hardware version conducted by MHRD,
Government of India for the problem statement of Mahindra & Mahindra.
Under his mentorship, the student team got the InSc award 2019 under the
students’ projects program. He has been awarded the Gandhian Young
Technological Innovation (GYTI) Award as a mentor to On-Board
Diagnostic Data Analysis System-OBDAS, appreciated under Cutting Edge
Innovation during the Festival of Innovation and Entrepreneurship at the
Rashtrapati Bhavan, India in 2018.
He has been awarded the Best Researcher award at MANTHAN (Awards of
Excellence), organized by University of Petroleum and Energy Studies,
co

nt
ro

len
gin

ee
rs

.ir

2017 and Research appreciation award-2019 for his contribution in
research from Lovely Professional University. Twice in four years, he has
been awarded the Certificate of Appreciation from University of Petroleum
and Energy Studies for his exemplary work for conducting multi-
disciplinary workshops for the students. He got the Certificate of
Appreciation for mentoring the projects submitted to the Texas Instruments
Innovation challenge India design contest, from Texas Instruments in 2015
and 2018. He has been honored with the Certificate of Excellence from
third faculty branding awards15, organized by the EET CRS research wing
for excellence in professional education and Industry for the category
Award for Excellence in Research, 2015 and young investigator award at
the International Conference on Science and Information in 2012.

Dr. Anita Gehlot is currently associated with Lovely
Professional University as an Associate Professor with
more than 12 years of experience in academics. Her area
of expertise includes embedded systems, wireless sensor
networks and IoT. She has organized and conducted
many workshops, summer internships and expert
lectures for students as well as faculty. She has been

honored as a keynote speaker and session chair to international/national
conferences, faculty development programs and workshops. She has 24
patents in her account. She has published more than 70 research papers in
referred journals/conferences and 18 books in the area of Embedded
Systems and Internet of Things with reputed publishers like CRC/Taylor &
Francis, Narosa, GBS, IRP, NIPA, River Publishers, Bentham Science, and
RI publication. She is the editor to a special issue published by AISC book
series, Springer in 2018, and IGI global in 2019.
She hasbeen awarded Certificate of Appreciation from University of
Petroleum and Energy Studies for her exemplary work. Under her
mentorship, the student team got the InSc award 2019 under the students’
projects program. She has been awarded Gandhian Young Technological
Innovation (GYTI) Award as a mentor to On Board Diagnostic Data
Analysis System-OBDAS, appreciated under Cutting Edge Innovation
during the Festival of Innovation and Entrepreneurship at Rashtrapati
Bhavan, India in 2018.

co
nt

ro
len

gin
ee

rs
.ir

Dr. Lovi Raj Gupta is the Executive Dean, Faculty of
Technology and Sciences, Lovely Professional
University. He is a leading light in the field of technical
and higher education in the country. His research-
focused approach and an insightful innovative
intervention of technology in education have won him
much accolades and laurels.

He holds a PhD degree in Bioinformatics. He did his M.Tech. in Computer
aided Design and Interactive Graphics from IIT, Kanpur and B.E. (Hons.)
from MITS, Gwalior. Having a flair for endless learning, he has done more
than 20 plus certifications and specializations online on the Internet of
Things (IoT), Augmented Reality, and Gamification, from University of
California at Irvine, Yonsei University, South Korea, Wharton School,
University of Pennsylvania, and Google Machine Learning Group. His
research interests are in the areas of Robotics, Mechatronics,
Bioinformatics, IoT, AI and ML using Tensor Flow (CMLE), and
Gamification.
In 2001, he was appointed as an Assistant Controller (Technology),
Ministry of IT, Govt. of India by the Honorable President of India in the
Office of the Controller of Certifying Authorities (CCA). In 2013, he was
accorded the role in the National Advisory Board for What Can I Give
Mission - Kalam Foundation of Dr APJ Abdul Kalam. In 2011, he received
the MIT Technology Review Grand Challenge Award followed by the
coveted Infosys InfyMakers Award in the year 2016. He has 10 patents to
his account.

Ms Navjot Rathour is associated with Lovely
Professional University as an Assistant Professor with
more than eight years of experience in academics. She is
pursuing her PhD in Electronics and Communication
Engineering from Lovely Professional University. She
has one patent in her account. She has published seven
research papers in referred journals and conference. She

has organized many summer internship and expert lectures for students. Sheco
nt

ro
len

gin
ee

rs
.ir

was awarded Academic Honor from Lovely Professional University in her
Masters for being the University Topper.

Mahendra Swain is a PhD scholar at Lovely
Professional University, Jalandhar, Punjab. He has
completed his B.Tech in ECE from Centurion
University of Technology and Management,
Bhubaneswar, M.Tech from Lovely professional
University. He has published various research articles
and attended National and international conferences in

the field of Embedded System and IoTs.

Bhupendra Singh is the Managing Director of
Schematics Microelectronics and provides Product
design and R&D support to industries and Universities.
He has completed BCA, PGDCA, M.Sc. (CS), M.Tech
and has more than 11 years of experience in the field of
Computer Networking and Embedded systems. He has
published 18 books in the area of Embedded Systems

and IoT with reputed publishers like CRC/Taylor & Francis, Bentham
Science, Narosa, GBS, IRP, NIPA, River Publisher, and RI publication.

co
nt

ro
len

gin
ee

rs
.ir

Acknowledgements
We acknowledge the support from nuttyengineer.com, which provided its
products in order to demonstrate and explain how the systems worked. We
would like to thank the publisher for encouraging our ideas in this book and
their support in helping us to manage this project efficiently.
We are grateful to the honorable Chancellor (Lovely Professional
University) Ashok Mittal, Mrs. Rashmi Mittal (Pro Chancellor, LPU), and
Dr. Ramesh Kanwar (Vice Chancellor, LPU) for their support and constant
encouragement. We are also thankful to our family, friends, relatives,
colleagues, and students for their moral support and blessings.

Dr. Rajesh Singh

Dr. Anita Gehlot

Dr. Lovi Raj Gupta

Navjot Rathour

Mahendra Swain

Bhupendra Singh

co
nt

ro
len

gin
ee

rs
.ir

http://nuttyengineer.com/

Preface
The objective of this book is to discuss the various projects based on
Internet of Things (IoTs). This book comprises a total of fourteen
chapters. This text is beneficial for people who want to get started with
hardware-based projects using IoT.
This book is entirely based on the practical experience of the authors while
undergoing projects with students and industries.

co
nt

ro
len

gin
ee

rs
.ir

Errata
We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors if any, occurred
during the publishing processes involved. To let us maintain the quality and
help us reach out to any readers who might be having difficulties due to any
unforeseen errors, please write to us at :
errata@bpbonline.com
Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

co
nt

ro
len

gin
ee

rs
.ir

mailto:errata@bpbonline.com

Table of Contents
1. ESP8266-based Wireless Web Server

Introduction
Circuit diagram
Program
Local server/web display
Conclusion

2. Air Pollution Meter Using Raspberry Pi
Introduction
System description
Circuit diagram and connection
Application/data logger
Conclusion

3. Smart Garage Door
Introduction
Circuit diagram
Blynkapp
Programs
Conclusion

4. Baggage Tracker
Introduction
System description
Circuit diagram and connection
Application/data logger
Conclusion

5. Smart Trash Collector
Introduction
System description
Circuit diagram and connection

co
nt

ro
len

gin
ee

rs
.ir

Application/data logger
Conclusion

6. Car Parking System
Introduction
System description
Circuit diagram and connection
Application/data logger
Conclusion

7. Home Automation
Introduction
Circuit diagram
Program
Blynk app
Conclusion

8. Environmental Parameter Monitoring
IoT-based greenhouse effect monitoring system
Circuit diagram
Program

Arduino Mini program for the local server
NodeMCU program for the greenhouse receiver

ThingViewapp
Conclusion

9. Intelligent System for the Blind
Introduction
Circuit diagram and connection

Program
Conclusion

10. Sign-in to Speech Using the IoTs
Introduction
Installing dependencies on the controller platform

Creating a gesture
Conclusion

co
nt

ro
len

gin
ee

rs
.ir

11. Windows 10 on Raspberry
Introduction
Raspberry Pi
Linux kernel architecture
Windows 10 on Raspberry Pi

SD card formatter
Performance testing and evaluation
Conclusion

12. Wireless Video Surveillance Robot Using Raspberry Pi
Introduction
Circuit diagram and connection
Application/data logger
Raspberry Pi and its installation
Writing an SD card with NOOBS
Blynkapp
Conclusion

13. IoT-based Smart Camera
Introduction
Circuit diagram and connection
Application/data logger
Conclusion

14. IoT-based Air Quality Monitoring System Using NodeMCU
Introduction
Circuit diagram
Program
Virtuino app
Conclusion

co
nt

ro
len

gin
ee

rs
.ir

T

CHAPTER 1
ESP8266-based Wireless Web Server

he ESP8266 is a low-cost Wi-Fi microchip with full TCP/IP stack
manufactured in 2014. This chapter discusses the open source platform,

NodeMCU with ESP8299 WiFi SoC. The circuit diagram and interfacing
steps are discussed to understand the working of NodeMCU to control the
home appliances with the web server.

Introduction
To understand the interfacing of NodeMCU, a system is designed to control
the home appliances with the local server. NodeMCU is an open source IoT
platform. It includes firmware which runs on the ESP8266 Wi-Fi SoC.
NodeMCU, as shown in Figure 1.1, provides access to the GPIO (General
Purpose Input/Output):

Figure 1.1: NodeMCU

For developing purposes, the pin description is shown in following Table
1.1:
co

nt
ro

len
gin

ee
rs

.ir

Table 1.1: ESP8266 pin description

The home appliances can be controlled with NODEMCU through relays.
Figure 1.2 shows the detailed block diagram of the system and Table 1.2
shows the component list required for the system. It shows the block
diagram of the system. It comprises NodeMCU, LCD, power supply, and
electrical appliances:

Figure 1.2: Block Diagram

Table 1.2 shows the list of components required to design the system:

Component/Specification Quantity

Power supply 12V/1Amp 1

Node MCU 1

Solid state relay board 4

Extension board for four appliances 4

Power supply extension 1
co

nt
ro

len
gin

ee
rs

.ir

ISP programmer 1

LCD16*2 1

LCD patch 1

+5V power supply 1

Table 1.2: Components List

Circuit diagram
The circuit diagram of the system is shown in Figure 1.3 and the description
of the system is as follows:

NodeMCU D0 pin is attached to RS pin of LCD
RW pin of LCD is connected to Ground
NodeMCU D1 pin is attached with E pin of LCD
NodeMCU D2 pin is attached with D4 pin of LCD
NodeMCU D3 is attached with D5pin of LCD
NodeMCU D4 pin is attached with D6 pin of LCD
NodeMCU D5 pin is attached with D7 pin of LCD
Pin 1 and pin 16 of LCD is connected with Ground
Pin 2 and pin 15 of LCD is connected with +Vcc

co
nt

ro
len

gin
ee

rs
.ir

Figure 1.3: Circuit diagram

Program
Let’s see the following program:

//for hot spot

#include <ESP8266WiFi.h>

#include <WiFiClient.h>

#include <ESP8266WebServer.h>

#include <ESP8266mDNS.h>

int Analog = A0;

#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins

LiquidCrystal lcd(D0, D1, D2, D3, D4, D5);

//for hotspot

MDNSResponder mdns;

const char* ssid = “ESPServer_RAJ”; // add your credentials here

const char* password = “RAJ@12345”;

String webString=””;

co
nt

ro
len

gin
ee

rs
.ir

ESP8266WebServer server(80);

String webPage = “”;

String web=””;

int pin1 = D6; // assign integer to pin D6

int pin2 = D7; // assign integer to pin D7

int pin3 = D8; // assign integer to pin D8

int pin4 = D0; // assign integer to pin D0

int TEMP_level=0; // assume variable

void setup()

{

lcd.begin(20, 4); // initialize LCD

lcd.print(“robot Monitoring”); // print string on LCD

webPage +=”<h2>ESP8266 Web Server new</h2><p>TEMP METER <button> TEMPERATURE (oC)</button></p>”;//

for temperature

webPage += “<p>BULB-STATUS

<button>ON</button>

<button>OFF</button></p>”;

webPage += “<p>FAN-STATUS <button>ON</button>

 <button>OFF</button></p>”;

webPage += “<p>EXHAUST FAN-STATUS

<button>ON</button>

<button>OFF</button></p>”;

webPage += “<p>GYSER-STATUS

<button>ON</button>

<button>OFF</button></p>”;

webPage += “<p>ALLOFF-STATUS

<button>ON</button>

<button>OFF</button></p>”;

// preparing GPIOs

pinMode(pin1, OUTPUT);// assign pin as an OUTPUT

digitalWrite(pin1, LOW); // make pin to LOW

pinMode(pin2, OUTPUT); // assign pin as an OUTPUT

digitalWrite(pin2, LOW); // make pin to LOW

pinMode(pin3, OUTPUT); // assign pin as an OUTPUT

digitalWrite(pin3, LOW); // make pin to LOW

pinMode(pin4, OUTPUT); //assign pin as an OUTPUT

co
nt

ro
len

gin
ee

rs
.ir

digitalWrite(pin4, LOW); // make pin to LOW

delay(1000); // delay of 1000 mSec

Serial.begin(115200); // Initialize serial communication

WiFi.begin(ssid, password); // initialize Wi-Fi

Serial.println(“”); // print string on serial

// Wait for connection

while (WiFi.status() != WL_CONNECTED)

{

delay(500); // delay of 500mSec

Serial.print(“.”); // print string on Serial

}

Serial.println(“”);// print string on Serial

Serial.print(“Connected to “); // print string on Serial

Serial.println(ssid);// print ssid on serial

Serial.print(“IP address: “); // print string on Serial

Serial.println(WiFi.localIP()); // print IP on serial

if (mdns.begin(“esp8266”, WiFi.localIP()))

{

Serial.println(“MDNS responder started”); // print string on

Serial

}

server.on(“/”, []()

{

server.send(200, “text/html”, webPage);

}

/**

************************/

server.on(“/TEMP”, []()

{

get_TEMP();

webString=”TEMPERATURE: “+String((float)TEMP_level)+”oC”;

server.send(200, “text/plain”, webString); // send to

someone’s browser when asked

}

server.on(“/BULBON”, []()

{

co
nt

ro
len

gin
ee

rs
.ir

server.send(200, “text/html”, webPage);

digitalWrite(pin1, HIGH); // make pin to HIGH

digitalWrite(pin2, LOW); // make pin to LOW

digitalWrite(pin3, LOW); // make pin to LOW

digitalWrite(pin4, LOW); // make pin to LOW

lcd.clear(); // clear the contents of LCD

lcd.setCursor(0, 1); // set cursor on LCD

lcd.print(“BULB ON “); // print string on LCD

delay(1000); // delay of 1000mSec

}

server.on(“/BULBOFF”, []()

{

server.send(200, “text/html”, webPage);

digitalWrite(pin1, LOW); // make pin to LOW

digitalWrite(pin2, LOW); // make pin to LOW

digitalWrite(pin3,LOW); // make pin to LOW

digitalWrite(pin4, LOW); // make pin to LOW

lcd.clear(); // clear contents of LCD

lcd.setCursor(0, 1); // set cursor on LCD

lcd.print(“BULB OFF”); // print string on LCD

delay(1000); // delay of 1000 mSec

}

server.on(“/FANON”, []()

{

server.send(200, “text/html”, webPage);

digitalWrite(pin1, LOW); // make pin to LOW

digitalWrite(pin2, HIGH); // make pin to HIGH

digitalWrite(pin3,LOW); // make pin to LOW

digitalWrite(pin4, LOW); // make pin to LOW

lcd.clear(); // clear the contents of LCD

lcd.setCursor(0, 1); // set cursor on LCD

lcd.print(“FAN ON “); // print string on LCD

delay(1000); //delay of 1000 mSec

}

server.on(“/FANOFF”, []()

{

server.send(200, “text/html”, webPage);

co
nt

ro
len

gin
ee

rs
.ir

digitalWrite(pin1, LOW); // make pin to LOW

digitalWrite(pin2, LOW); // make pin to LOW

digitalWrite(pin3,LOW); // make pin to LOW

digitalWrite(pin4, LOW); // make pin to LOW

lcd.clear();// clear the contents of LCD

lcd.setCursor(0, 1); // set cursor on LCD

lcd.print(“FAN OFF “); // print string on LCD

delay(1000); //delay of 1000 mSec

}

server.on(“/EXHAUSTFANON”, []()

{

server.send(200, “text/html”, webPage);

digitalWrite(pin1, LOW); // make pin to LOW

digitalWrite(pin2, LOW); // make pin to LOW

digitalWrite(pin3,HIGH); // make pin to HIGH

digitalWrite(pin4, LOW); // make pin to LOW

lcd.clear(); // clear the contents of LCD

lcd.setCursor(0, 1); // set cursor on LCD

lcd.print(“EXHAUST FAN ON “); // print string on LCD

delay(1000); // delay of 1000 mSec

}

server.on(“/EXHAUSTFANOFF”, []()

{

server.send(200, “text/html”, webPage);

digitalWrite(pin1, LOW); // make pin to LOW

digitalWrite(pin2, LOW); // make pin to LOW

digitalWrite(pin3,LOW); // make pin to LOW

digitalWrite(pin4, LOW); // make pin to LOW

lcd.clear();// clear the contents of LCD

lcd.setCursor(0, 1); // set cursor on LCD

lcd.print(“EXHAUST FAN OFF “); // print string on LCD

delay(1000); // delay of 1000 mSec

}

server.on(“/GYSERON”, []()

{

server.send(200, “text/html”, webPage);

digitalWrite(pin1, LOW); // make pin to LOW

co
nt

ro
len

gin
ee

rs
.ir

digitalWrite(pin2, LOW); // make pin to LOW

digitalWrite(pin3,LOW); // make pin to LOW

digitalWrite(pin4, HIGH); // make pin to HIGH

lcd.clear(); // clear the contents of LCD

lcd.setCursor(0, 1); // set cursor on LCD

lcd.print(“GYSER ON “); // print string on LCD

delay(1000); // delay 1000 mSec

}

server.on(“/GYSEROFF”, []()

{

server.send(200, “text/html”, webPage);

digitalWrite(pin1, LOW); // make pin to LOW

digitalWrite(pin2, LOW); // make pin to LOW

digitalWrite(pin3,LOW); // make pin to LOW

digitalWrite(pin4, LOW); // make pin to LOW

lcd.clear();// clear the contents of LCD

lcd.setCursor(0, 1); // set cursor on LCD

lcd.print(“GYSER OFF”); // print string on LCD

delay(1000); // delay 1000 mSec

}

server.begin(); // initialize server

Serial.println(“Congrats Boss, Your HTTP server started”); //

print string on Serial

}

void loop()

{

server.handleClient();

get_TEMP(); // call function

lcd.clear(); // clear the contents of LCD

lcd.setCursor(0, 0); // set cursor on LCD

lcd.print(TEMP_level); // print the value on LCD

delay(500); // delay of 500 mSec

}

void get_TEMP()

{

int TEMP_level1= analogRead(Analog); // read analog value

co
nt

ro
len

gin
ee

rs
.ir

TEMP_level=TEMP_level1/2; // scale factor to get temperature

}

Local server/web display
Upload the program mentioned in the preceding section and check the serial
port for its IP address. Open the IP address and it will show the webpage, as
shown in Figure 1.4:

Figure 1.4: Application view

Conclusion
This chapter concludes the basics of NodeMCU and explains the circuit
diagram and program to control home appliances.co

nt
ro

len
gin

ee
rs

.ir

A

CHAPTER 2
Air Pollution Meter Using Raspberry Pi

ir quality is a global challenge for governments, regulators, city
administrators, and citizens. Multi-billion dollar sums are invested by

governments in policies and solutions all around the world to improve the air
quality and they are empowering cities to tackle air pollution. In order to
implement effective policies and interventions, there is an increasing focus on
understanding the levels and causes of air pollution.
As of today, air quality monitoring is performed by large, expensive scientific
instruments, installed and maintained professionally, at a relatively small number
of fixed locations. For example, in India, there are around 570 monitoring
stations, which boils down to 5766.67 square km per station on average, and this
distribution is not even uniform [1].
According to the Indian government report, cities that share similar air quality as
Delhi are Faridabad, Jodhpur, Lucknow, Moradabad, Muzaffarnagar, Pali, and
Varanasi; out of which Lucknow has four air quality monitoring stations and rest
all have only one station [3].
For air quality monitoring, the Air Quality Index (AQI) is important. It is an
index prepared by government institutions to categories risk of air pollution.
Lower AQI value represents pleasant air quality [10]. The various algorithms and
hardware descriptionsare used to read the various gas sensors to monitor and
control air quality [11-14].
Alison J. Greig did an extensive study on the relationship between the count and
mass of air born particles. He successfully pointed out that on an average
composition of particles, fine particles (particle size 2.5 µm or less) amount to a
large count but their total mass is very low; however, coarse particles (particle
size 2.5µm to 10µm) have very less count but amount to a very large total mass
[4]. The extent to which a person is exposed to pollutants and what kind of
pollutants depends a lot on the activity one does and the ventilation system of the
building. A person who spends more time in an indoor environment is less likely
to be affected by outside pollutants, as it’s difficult to penetrate through the closed
setup and these pollutants end up decaying and deposit well in time. People who
spend more time indoors are exposed to a different set of pollutants which pose a
similar threat to health like CO and smoke from the improper cooking stove,

co
nt

ro
len

gin
ee

rs
.ir

alcohol vapors from perfumes and toiletries and more [5]. Alexandra Schieweck
and Erik Uhde proposed a way to create smart homes which can help control air
quality inside it. Their idea is to install sensors outside and inside the house, and
using the data from both sources, home ventilation is controlled [6]. Another take
on this to use a random forest approach for predicting air quality using
meteorology data, real-time traffic information, road information [7].
Development of boards such as AIRQino, which is essentially an Arduino shield
fully equipped with air quality sensors which can monitor parameters such as
temperature, relative humidity, CO, CO2, NO2, O3, VOC, PM2.5 and PM10 [8].
Akira Tiele et al. discussed a very efficient and low-cost indoor environment
quality management unit which is portable and displays the recorded Indoor
Environment Quality (IEQ) parameters on an OLED display present on the
device. Table1 shows the IEQ index scoring system for various sensor like a light
sensor, CO2 and CO sensor, temperature and humidity sensor, sound level sensor,
and dust sensor [9].

IEQ Parameter Good Average Poor Bad

Humidity 40-50% 50-60% 60-70% >70%

Temperature 20-24°C 16-20°C 24-26°C >26°C

PM2.5 (0-10)10-6g/m3 (10-15)10-
6g/m3

(15-35)10-
6g/m3

(35)10-6g/m3

PM10 (0-50)10-6g/m3 (50-80)10-
6g/m3

(80-150)10-
6g/m3

(150)10-6g/m3

VOC 0-200 ppb 200-350 ppb 350-500 ppb >500 ppb

CO2 350-500 ppm 500-1000 ppm 1000-5000 ppm >5000 ppm

CO 0-3 ppm 3-8 ppm 8-10 ppm >10 ppm

Table 2.1: IEQ index scoring chart

Introduction
In today’s fast-paced and industrialized society, air quality is becoming a topic of
prominent concern. In India, about 12 million people are affected by Chronic
Obstructive Pulmonary Disease (COPD) and about 1.5 million people in India
die each year due to diseases caused or fostered by air pollution, that is, one-sixth
of all Indian deaths. Even now, when the numbers are so high, there is no cheap
and simple solution to monitor the indoor air quality and this idea is also not
popular. This section proposes a simple Raspberry Pi controlled device which
records quality of air present indoor. These similar devices can be distributed all
co

nt
ro

len
gin

ee
rs

.ir

across the house and we can upload the data to an online server. Such a network
of smart devices will result in complete control of air quality present inside the
house for the user to analyze and enable him to take appropriate action when any
parameter reaches an alarming level.

System description
Figure 2.1 shows the Raspberry Pi 3 Model B that serves well to implement the
air quality sensor node with its quad. It has core 900Mhz process with Broadcom
BCM2836:

CPU: 4× Cortex-A53900 MHz
USB port: 4
On-Board Network: Ethernet, 802.11n wireless
Bluetooth 4.1
GPIO: 17

Figure 2.1: Raspberry Pi

The characteristics of Raspberry Pi are as follows and its comparison with other
SBCs is shown in Table 2.2:

Parameters/Boar
d

Raspberry Pi 3 Arduino Intel Galileo Beagle Bone

CPU 900 MHz quad
core Boradcom
BCM2836

ATMEGA 8,
ATMEGA 1280

400 MHz single
core Intel Quark
X1000

AM3359 1GHz
ARM Cortex -A8

RAM 1 GB 16 to 32 KB SRAM: 512 KB
DRAM: 256 MB

512MB DDR3
RAM

POWER 10W 5W 15W 15W

co
nt

ro
len

gin
ee

rs
.ir

Operating System Raspbian, Pidora,
ARCH Linux
ARM, Ubuntu
MATE

NA Arduino Linux
Distribution for
Galileo

Android, Debian,
Fedora, Ubuntu,
Yocto

Table 2.2: Comparison of Raspberry Pi with other SBCs

The preceding table shows the comparison among various boards with respect to
parameters like CPU, RAM, power, and OS. The brief description of the
components used in the system is as follows:

Arduino: The Raspberry Pi doesn’t come with any analogue pins. To read
analogue sensors, we need to integrate Arduino UNO with Raspberry Pi
using Pyfirmata. It is an ATMEGA 328P run microcontroller with 16MHz
clock speed.
MQ7 sensor: It is a simple Carbon Monoxide (CO) sensor, which is
capable of detecting COgas concentrations anywhere from 10 to 10000ppm.
It is an analogue sensor with the operating temperature range of -10 to 50°C.
MQ3: This sensor is useful in sensing gas leakages. It works well for
detecting Alcohol vapors, Benzine, Methane, and Hexane. Its sensitivity can
be easily adjusted using the potentiometer present on board.
MQ2: This is a common smoke sensor, and is also used for gas detection for
gases such as LPG. Like MQ3, its sensitivity can also be adjusted using the
onboard potentiometer.
DHT11 sensor: It is a very basic and cheap digital sensor that measures
temperature and humidity in the air around it. It houses a capacitive
humidity sensor and thermistor to measure temperature around it.
GP2Y1030AU0F sensor: It is a dust sensor. It utilizes an optical sensing
technique, that is, it detects the light reflected off the dust in the air and due
to its high sensitivity, it calculates the amount of dust present in the air. The
operating temperature ranges from -10° to +65° and the operating voltage
ranges from 4.5V to 5.5V. It is also capable of distinguishing PM2.5 from
PM10.

co
nt

ro
len

gin
ee

rs
.ir

Figure 2.2: Block diagram of air quality monitoring Node

The Figure 2.2 shows the air quality monitoring node which has Arduino and
Raspberry Pi used as computing platforms using the Pyfirmata protocol and
access the sensors using Arduino because the analogue data obtained from
different sensors can easily be interpreted by Arduino. MQ2 will sense the
amount of smoke present in the air and MQ3 will record the amount of alcohol
vapor while MQ7 will sense the amount of CO present in the air and send it to
Arduino. Similarly, DHT11 will measure the temperature and humidity present in
the air and the dust sensor will measure the amount of dust present in the air and
send it to Arduino. Raspberry Pi will request and collect data from Arduino. Pi
will also take pictures of the room when the dust level crosses a threshold level.
All the data collected by Pi using Arduino is transferred to the cloud from where
the status can be accessed via any mobile device [15].

Circuit diagram and connection
Figure 2.3 shows the circuit diagram of the air quality monitoring sensor node
and which comprises AC supply which is converted to 12V DC. Further, 12V DC
is converted to 5V DC to supply power to Raspberry Pi and other peripherals.
One camera module is connected to Pi through the designated camera port on
Raspberry Pi that will take pictures of the room if the dust amount sensed by the
co

nt
ro

len
gin

ee
rs

.ir

dust sensor crosses the threshold. The Arduino UNO microcontroller is connected
to Pi via one USB port available on Pi to facilitate the analogue input for Pi:

Figure 2.3: Circuit diagram of the air quality monitoring sensor node

Application/data logger
import sys#import Library

import urllib2# import Library

import pyfirmata# import Library

import Adafruit_DHT# import Library

from time import sleep# import Library

import RPi.GPIO as GPIO# import Library

from picamera import PiCamera# import Library

board = pyfirmata.Arduino(‘/dev/ttyUSB0’)#recognize the serial

communication port

ledPower = board.get_pin(‘d:12:o’)# assign digital pin 12 to an

output

measurePin = board.get_pin(‘a:5:i’)#assign digital pin A5 to an

input

coPin = board.get_pin(‘a:0:i’)# assign digital pin A0 to an input

it = pyfirmata.util.Iterator(board)# use iterator

co
nt

ro
len

gin
ee

rs
.ir

it.start()# start iterator

measurePin.enable_reporting()#enable pin

coPin.enable_reporting() # enable pin

camera = PiCamera()# call camera

photoCount = 0 # assume variable

timer = 5 #assume variable

previousDustValue = 0 #assume variable

samplingTime = 0.000280

deltaTime = 0.000040

sleepTime = 0.009680

coMeasured = 0

voMeasured = 0

calcVoltage = 0

dustDensity = 0

RelativeHumidity = 0

Temperature = 0

myAPI = ‘SRWU0GUE90JLEOP2’ # write API key from thingspeak.com

baseURL = ‘https://api.thingspeak.com/update?api_key=%s’ % myAPI #

URL of thingspeak

def getTempHum(): # function for DHT11

RelativeHumidity, Temperature =

Adafruit_DHT.read_retry(Adafruit_DHT.DHT11,17)

def getDustData(): # function for dust sampler

ledPower.write(0) # make pin to LOW

sleep(samplingTime) # delay

voMeasured = measurePin.read()

sleep(deltaTime) # make pin to LOW

ledPower.write(1) # make pin to HIGH

sleep(sleepTime) # make pin to LOW

calcVoltage = voMeasured * (5.0) # scaling

dustDensity = (0.17) * calcVoltage - (0.1)

if (dustDensity < 0):

dustDensity = 0.00

def takePicture(): # function to take picture

if (dustDensity != previousDustValue):

camera.start_preview() # start camera preview

sleep(2) # delay

co
nt

ro
len

gin
ee

rs
.ir

http://thingspeak.com/

camera.capture(‘/home/pi/Desktop/image%s.jpg’ % photoCount) #

capture image

camera.stop_preview() # stop camera preview

photoCount += 1

previousDustValue = dustDensity

timer = 5

else:

if(timer == 0):

camera.capture(‘/home/pi/Desktop/image%s.jpg’ % photoCount) #

capture image

photoCount += 1

timer = 5

else:

timer -= 1

def getCo():

coMeasured = coPin.read() # read sensor pin

coMeasured = coMeasured * 1000

def getStringFormat(): # call function

return(str(Temperature), str(RelativeHumidity), str(dustDensity),

str(coMeasured)))

while True:

getTempHum() # call function

getCo() # call function

getDustData() # call function

if (dustDensity >= 0.5):

takePicture() # call function to take picture

T,RH,D,CO = getStringFormat()

f=urllib2.urlopen(baseURL+’&field1=%s&field2=%s&field3=%s&field4=%s

’ % (T,RH,D,CO))

print f.read() # read function

f.close() # close function

sleep(15) # delay of 15 sec

The main server is ThingSpeak.com. Follow the given steps to create an account
and check the data on cloud. Figure 2.4 shows the window of ThingSpeak and
Figure 2.5 shows the channel created inside ThingSpeak.
Steps to create a channel:
co

nt
ro

len
gin

ee
rs

.ir

http://thingspeak.com/

1. Sign in to ThingSpeak by creating a new MathWorks account.
2. Click on Channels| My Channels.

Figure 2.4: Window for ThingSpeak

3. Click on New Channel.

Figure 2.5: New channel in my channels

4. Check the boxes next to Fields 1–1. Enter the channel setting and click on
Save Channel at the bottom of the settings.

5. Check the API write key (this key needs to be written in the program for the
local server).

The system is able to measure temperature, humidity, CO, VOC (volatile organic
compounds) and also dust particles in the air, PM2.5, PM10 as shown in Figure
2.6 and Figure 2.7. The data from sensors will be displayed on the screen with
real-time updating and the results will be uploaded to the cloud through the
internet using Raspberry Pi 3 model B+:

co
nt

ro
len

gin
ee

rs
.ir

Figure 2.6: Humidity and temperature sensors data on the cloud server

Figure 2.7: View of CO and PM10 sensors data on the cloud server

co
nt

ro
len

gin
ee

rs
.ir

Figure 2.8: View of the setup of the air quality sensor node

Note-remove one figure. No lead is required. All figures are our own figures.
Figure 2.8 shows the hardware setup of the air quality sensor node. The stored
data is very useful for comparing statistics with the ideal AQI and IEQ index set
forth by the government. It also helps inhabitants to realize what actions or
activities escalated the level of harmful gases and how it varies with temp and
humidity. Nowadays, many companies are producing air purifiers for indoor
systems to make them efficient and cost effective. For these products, this system
helps a lot to identify how much purification is needed and how much energy
needs to be consumed to purify the air.

Conclusion
This chapter concludes the discussion on the air quality monitoring system with
the help of sensors. The system is designed with the help of Raspberry Pi and
Arduino. It helps to understand the interfacing of Raspberry Pi and Arduino to
design an application.

co
nt

ro
len

gin
ee

rs
.ir

T

CHAPTER 3
Smart Garage Door

he Garage doors are used more like main doors of the house. The poor
layout of the house tracks enough amount of dirt via the main entrance.

The scenario gets worse in the western coastal regions of Canada when it
comes to the rainy season. It would be better to have a remote control that is
connected with Wi-Fi. Such remote controls can be used remotely if
connected with the server. An Android app can be used that communicates
with the ESP8266-based customized board.

Introduction
The project comprises the breakout board for NodeMCU, NodeMCU, power
supply adaptor, motion sensor, relays, and display devices. The main
objective is to provide the switching for the door locks and control the
switching also. There are two door locks which are being controlled by
machine 1 and machine 2 of the garage remotely. Figure 3.1 shows the block
diagram of the entire system that will help to monitor the locks via the smart
Android app and shows the communication also:

co
nt

ro
len

gin
ee

rs
.ir

Figure 3.1: Block diagram of the system

The list of components required to build the system is shown in Table 3.1:

Component Quantity

Power supply 12V/1Amp 1

NodeMCU 1

Jumper wire M-M 20

Jumper wire M-F 20

Jumper wire F-F 20

Power supply extension (To get more +5V and GND) 1

Level converter to 12V to 5V,3.3V 1

Motion sensor 1

Two relay board 1

LCD20*4 1

LCD breakout board/patch 1

Table 3.1: Components list

Note: All components are available at www.nuttyengineer.com.co
nt

ro
len

gin
ee

rs
.ir

http://www.nuttyengineer.com/

Circuit diagram
To develop the hardware design, the components need to be connected as per
the given description:

1. +5V and GND pins of NodeMCU are connected to +5V and GND pins
of the power supply.

2. Pin 1 and pin 16 of LCD are connected to GND of the power supply.
3. Pin 2 and pin 15 of LCD are connected to +5V of the power supply.
4. Fixed terminals of 10K POT are connected to +5V and GND of the

power supply and the variable terminal to pin3 of LCD.
5. Pin D1, GND, and pin D2 of NodeMCU are connected to pin 4 (RS),

pin 5(RW), and pin 6(E) of LCD, respectively.
6. Pin D3, pin D4, pin D5, and pin D6 of NodeMCU are connected to pin

11 (D4), pin 12(D5), pin 13 (D6), and pin 14(D7) of LCD, respectively.
7. +Vcc, GND, and OUT pins of the motion sensor are connected to +5V,

GND, and D7 pins of NodeMCU.
8. D7 and D8 pins of NodeMCU are connected to provide input to the

solid-state relay.

Figure 3.2 shows the circuit diagram of the system:

co
nt

ro
len

gin
ee

rs
.ir

Figure 3.2: Circuit diagram of the system

Figure 3.3 shows the circuit diagram of the solid state relay connections:

Figure 3.3: Circuit diagram of the solid state relay (SSR)
co

nt
ro

len
gin

ee
rs

.ir

Blynk App
Blynk is an iOS and Android platform used to design a mobile app. The
following steps are used to design the Blynk app:

1. Download and install the Blynk app for your mobile Android or iPhone
from http://www.blynk.cc/getting-started/.

2. Create a Blynk account.
3. Create a new project. Click on +to createa new project and choose the

theme dark (black background) or light (white background) and click
on create.

4. Auth token is a unique identifier which will be received on the email
address of the user, provided at the time of making the account. Save
this token as this is required to be copied in the main program of the
receiver section.

5. Select the device to which the smartphone needs to communicate, for
example, ESP8266 (NodeMCU).

6. Open the widget box and select the components required for the
project.

7. Tap on the widget to get its settings, and select virtual terminals as V1,
V2, V3, V4, etc. for each buttons, which need to be defined later in the
program.

8. After completing the widget settings, run the project.Front end of
app for the system, as shown in Figure 3.4:

co
nt

ro
len

gin
ee

rs
.ir

http://www.blynk.cc/getting-started/

Figure 3.4: Blynk application

Programs
The following is the program for NodeMCU:

#define BLYNK_PRINT Serial

#include <ESP8266WiFi.h>

#include <BlynkSimpleEsp8266.h>

#include <LiquidCrystal.h>

const int rs = D1, en = D2, d4 =D3, d5 = D4, d6 = D5, d7 = D6;

LiquidCrystal lcd(rs, en, d4, d5, d6, d7);

BlynkTimer timer;

char auth[] = “5c8e33bf09a04b03b2fa153928b075c5”; // add auth.

token

char ssid[] = “ESPServer_RAJ”; // add user name

char pass[] = “RAJ@12345”; // add password

int RELAY1=D7; // assign integer to pin D7

int RELAY2=D8; // assign integer to pin D8

WidgetLCD blynkDISPLAY(V1); # connect blynk LCD on virtual pin

V1

BLYNK_WRITE (V2) # connect button to virtual pin V2 of blynk APP

co
nt

ro
len

gin
ee

rs
.ir

{

int MACHINE1_VAL = param.asInt(); // assigning incoming value

from pin V1 to a variable

if(MACHINE1_VAL==HIGH)

{

blynkDISPLAY.clear(); // clear the contents of blynk LCD

Serial.write(10); // write data on serial

digitalWrite(RELAY1,HIGH); # make relay pin to HIGH

blynkDISPLAY.print(0,1,”MACHINE1 ON”); // print string on

Blynk LCD

lcd.setCursor(0,2); // set cursor on hardware connected LCD

lcd.print(“MACHINE1 ONN “); # print string on LCD

delay(20); // delay of 20 mSec

}

}

BLYNK_WRITE(V3) // connect button to virtual pin V3 of blynk APP

{

int MACHINE2_VAL = param.asInt();

if(MACHINE2_VAL==HIGH)

{

blynkDISPLAY.clear(); // clear the contents of blynk LCD

Serial.write(10); // print data on serial

digitalWrite(RELAY2,HIGH); # make relay pin to HIGH

blynkDISPLAY.print(0,1,”MACHINE2 ON”);

lcd.setCursor(0,2); // set cursor on LCD

lcd.print(“MACHINE2 ONN “); // print string on LCD

delay(20); // delay of 20 mSec

}

}

BLYNK_WRITE(V4) // connect button to virtual pin V4 of blynk APP

{

int ALL_OFF_VAL = param.asInt(); // assigning incoming value

from pin V1 to a variable

if(ALL_OFF_VAL ==HIGH)

{

blynkDISPLAY.clear(); // clear the contents of Blynk LCD

co
nt

ro
len

gin
ee

rs
.ir

Serial.write(30); // send data on serial

digitalWrite(RELAY1,LOW); // make relay1 pin to LOW

digitalWrite(RELAY2,LOW); // make relay2 pin to LOW

blynkDISPLAY.print(0,1,”ALL OFF “); // print string blynk LCD

lcd.setCursor(0,2); // set cursor on Hardware connected LCD

lcd.print(“ALL MACHINE OFF”); // print string on LCD

delay(20); // delay of 20 mSec

}

}

BLYNK_WRITE(V5) // connect button to virtual pin V5 of blynk APP

{

int ALL_ONN_VAL = param.asInt(); // assigning incoming value

from pin V1 to a variable

if(ALL_ONN_VAL ==HIGH)

{

blynkDISPLAY.clear(); // clear the contents of blynk LCD

Serial.write(40); // write data on serial

digitalWrite(RELAY1,HIGH); // Make relay1 pin to HIGH

digitalWrite(RELAY2,HIGH); // Make relay2 pin to HIGH

blynkDISPLAY.print(0,1,”ALL ON “); // print string on blynk

LCD

lcd.setCursor(0,2); // set cursor on LCD

lcd.print(“ALL MACHINE ONN”); // print string on LCD

delay(20); // delay of 20 msec

}

}

void READ_SENSOR()

{

int X =digitalRead(D0); // read digital pin

if(X==HIGH)

{

Blynk.virtualWrite(V6, X); // print data on blynk virtual pin

V6

blynkDISPLAY.print(0,1,”MOTION DETECTED “); // print string

on blynk LCD

lcd.setCursor(0,1); // set cursor on LCD

co
nt

ro
len

gin
ee

rs
.ir

lcd.print(“MOTION DETECTED “); // print string on LCD

}

else

{

Blynk.virtualWrite(V6, X); // print data on blynk virtual pin

V6

blynkDISPLAY.print(0,1,”MOTION NOT DETECTED”); // print

string on blynk LCD

lcd.setCursor(0,1); // set cursor on LCD

lcd.print(“MOTION NOT DETECTED”); // print string on LCD

}

}

void setup()

{

Serial.begin(9600); // initialize serial communication

Blynk.begin(auth, ssid, pass); // initialize blynk app

lcd.begin(20,4); // initialize LCD

pinMode(RELAY1,OUTPUT); // assign relay1 as an OUTPUT

pinMode(RELAY2,OUTPUT); // assign relay2 as an OUTPUT

timer.setInterval(5000L, READ_SENSOR); // read function after

5000 mSec

}

void loop()

{

Blynk.run(); // start bynk app

timer.run(); // Initiates BlynkTimer

}

Conclusion
This chapter concludes the garage door mechanism and its control with the
Blynk app. The complete description is discussed with the help of the circuit
diagram and program in detail.co

nt
ro

len
gin

ee
rs

.ir

T

CHAPTER 4
Baggage Tracker

he theft of luggage from public places and other areas is a troublesome
situation for anyone. Majority of the work that has been done in the

recent years is mainly based on the video surveillance. In such systems, the
monitoring is done with the help of human beings for the detection of
suspicious bags or activities. Few techniques of monitoring the bags for
checking the things inside the bags are also developed. Some of them are
discussed here.

Konas Bags Konas: It developed the bag packs and luggage that can be
tracked with the help of a smartphone. The tracking device made these
bag packs and luggage trackable with the help of smartphone apps that
is installed in your cell phones [16].
The following are the disadvantages:

Such systems are not able to provide the safety and security
because this system can only track the bag packs and luggage after
being lost rather than being stolen.
Such systems are not reliable because the owner is hardly aware
of the things being lost or stolen and by the time, the owner comes
to know the possibility that the bag and the belongings may have
travelled a long distance.

Trackable Bag Tags: A number of trackable tags are available in
market which can be tied with the bag. Such tags have inbuilt GPS in
them that will help to track your bag. Various features are available in
such tags like Robot Check, LugLoc and dynotag, and more [17].
The following are the disadvantages:

Firstly, such tags will notify the owner once the bag is stolen or
lost. The tracking is only possible after it is lost or stolen only.co
nt

ro
len

gin
ee

rs
.ir

Secondly, such tags are not able to provide the visualization
interface on a laptop, mobile, or computer to see the actual
location of the bag. The owner is dependent on the tag that
ownsthe company to track the actual location of the bag and
belongings.

Trackdot Luggage Tracker: Another device called Trackdot is a
ground-based cellular technology-enabled microelectronics device
which can be kept inside the luggage for tracking purpose. This device
automatically enters into the airplane mode when kept inside the
airplane duringtakeoff and automatically enters into the normal mode
when landing brakes are applied [18].
The following are the disadvantages:

The cost of this system is very high and approximately $56.
Availability is in the western countries only.
An instant notification system to inform stolen or lost is not
available in the system.
This device is not available in India.

Introduction
In order to tackle theft of a luggage, a tracking system is designed. This
system has an alarm that is connected to the Arduino Uno board and to track
the location, a GPS module is also used. As soon as the bag goes beyond the
predefined range, the alarm will start ringing. Moreover, for tracking
purpose, a map has been created that will track the location of the bag as it
moves. The markers created on the mobile app will give the actual location
of the bag as it goes away from the owner.

System description
The system uses IoTs (Internet of Things) in order to track the luggage and
bag packs. This system is designed with the help of the Arduino board and
GPS module, as shown in Figure 4.1. An alarm has been connected to the
system in order to generate an alert. As soon as the bag getsstolen or is lost,
the alarm starts alerting the owner. This system is provided with the map that
is synchronized with the system in order to track the actual location of the
co

nt
ro

len
gin

ee
rs

.ir

bag and belongings with the help of markers. In addition to this, the bag
moves out of a particular range like 10m, 20m, or 30 m and the owner gets a
notification in the form of a message also.

Figure 4.1: Block diagram of the system

Circuit diagram and connection
The following is the description of the connections:

1. +5V pin and GND of the power supply are connected to Vcc pin and
GND pin of the customized Atmega328 board with NuttyFi.

2. +5V, GND, RX and TX pins of the GPRS modem connected to +5V,
GND, PD7 and PD6 pins of the Atmega328 board.

3. +5V, GND, RX and TX pins of the GPS connected to +5V, GND, PD9
and PD8 pins of the Atmega328 board.

The circuit diagram of the proposed system is shown in Figure 4.2:

co
nt

ro
len

gin
ee

rs
.ir

Figure 4.2: Connections of the circuit

Application/data logger
Let’s take a look at the following program:

#include <SoftwareSerial.h>

#include <String.h>

#include <TinyGPS.h>

SoftwareSerial MyGPRS(6, 7); // use soft serial to make RX, TX

for GPRS

SoftwareSerial MyGPS(8, 9); // use soft serial to make RX, TX

for GPS

TinyGPS gps;

void getgps(TinyGPS &gps);

char thingSpeakAddress[] = “api.thingspeak.com”;

int8_t answer;

float latitude, longitude;

void getgps(TinyGPS &gps)

{

co
nt

ro
len

gin
ee

rs
.ir

//float latitude, longitude;

gps.f_get_position(&latitude, &longitude);

Serial.print(latitude); // print data on serial

Serial.print(“ “); // print data on serial

Serial.print(longitude); print data on serial

Serial.println(“ “); print data on serial

delay(3000); // delay of 3000msec

}

void CallGPRS()

{

byte a;

if (MyGPS.available() > 0) // if there is data coming into

the serial line

{

a = MyGPS.read(); // get the byte of data

if(gps.encode(a)) // if there is valid GPS data…

{

getgps(gps); // grab the data and display it on the LCD

}

}

gprspwr_on();

answer = sendATcommand(“AT+CGATT?”,”OK”,5,2000);

answer = sendATcommand(“AT+CSTT=\”CMNET\””,”OK”,3,2000);

answer = sendATcommand(“AT+CIICR”,”OK”,3,2000);

answer = sendATcommand(“AT+CIFSR”,”OK”,3,2000);

answer = sendATcommand(“AT+CIPSPRT=0”,”OK”,3,2000);

//connect gprs to thingspeak

answer =

sendATcommand(“AT+CIPSTART=\”tcp\”,\”api.thingspeak.com\”,\”80\

””,”CONNECT OK”,5,2000);

answer = senddata1(latitude,longitude);

delay(3000); // delay 3000 mSec

gprspwr_off(); // make gps power off

//put arduino to sleep?

for (int i=0; i<60; i++)

{

co
nt

ro
len

gin
ee

rs
.ir

delay(150); // delay of 150 mSec

}

}

void setup()

{

// put your setup code here, to run once:

MyGPRS.begin(9600); // initialize soft serial communication

Serial.begin(9600); // initialize serial communication

MyGPS.begin(9600); // initialize soft serial communication

delay(1000); // delay 1000 mSec

}

void loop()

{

byte l;

CallGPRS(); // call GPRS function

delay(500);// delay of 500 mSec

}

/***

***********/

//int8_t senddata1(int data,int data1,int data2,int data3,int

data4,int data5,int data6,int data7)

float senddata1(float data,float data1)

{

MyGPRS.println(“AT+CIPSEND”);

while(MyGPRS.available() > 0) MyGPRS.read(); // Clean the

input buffer

delay(500);

MyGPRS.println(“POST /update HTTP/1.1”); // Send the AT command

while(MyGPRS.available() > 0) MyGPRS.read(); // Clean the

input buffer

delay(500);

MyGPRS.println(“Host: api.thingspeak.com”); // Send the AT

command

while(MyGPRS.available() > 0) MyGPRS.read(); // Clean the

input buffer

delay(500);

co
nt

ro
len

gin
ee

rs
.ir

MyGPRS.println(“Connection: close”); // Send the AT command

while(MyGPRS.available() > 0)MyGPRS.read(); // Clean the input

buffer

delay(500);

MyGPRS.println(“X-THINGSPEAKAPIKEY:MUCGLRMVDNCNPJGH”);

//T1GIUPBKKRDPMWRX”);

while(Serial2.available() > 0) Serial2.read(); // Clean the

input buffer

delay(500);

MyGPRS.println(“Content-Type: application/x-www-form-

urlencoded”); // Send the AT command

while(MyGPRS.available() > 0) MyGPRS.read(); // Clean the

input buffer

delay(500);

MyGPRS.println(“Content-Length:92”); // Send the AT command

while(MyGPRS.available() > 0) MyGPRS.read(); // Clean the

input buffer

delay(500);

MyGPRS.println(“”); // Send the AT command

while(MyGPRS.available() > 0) MyGPRS.read(); // Clean the

input buffer

delay(500); // delay of 500 mSec

MyGPRS.print(“&field1=”); // Send the AT command

MyGPRS.print(data);

MyGPRS.print(“&field2=”); // Send the AT command

MyGPRS.print(data1);

while(MyGPRS.available() > 0) MyGPRS.read(); // Clean the

input buffer

delay(500); // delay of 500 mSec

MyGPRS.println((char)26);

delay(500); // delay of 500 mSec

while(MyGPRS.available() > 0) MyGPRS.read(); // Clean the

input buffer

delay(500); // delay of 500 mSec

MyGPRS.print(“&field1=”); // Send the AT command

co
nt

ro
len

gin
ee

rs
.ir

Serial.print(data); // print data on serial

Serial.print(“&field2=”); // Send the AT command

Serial.print(data1); // print data on serial

answer = 0;

return answer;

}

void gprspwr_on()

{

pinMode(5, OUTPUT); // assign pin as an output

digitalWrite(5,LOW); // make pin to LOW

delay(1000); // delay of 1000 mSec

digitalWrite(5,HIGH); // make pin to HIGH

delay(2000); // delay of 1000 mSec

digitalWrite(5,LOW); // make pin to LOW

readATcommand(“Call Ready”,6,10000);

if (answer == 1)

{

}

}

void gprspwr_off()

{

pinMode(5, OUTPUT); // assign pin as OUTPUT

digitalWrite(5,LOW); // make pin to LOW

delay(1000); // delay 1000 mSec

digitalWrite(5,HIGH); // make pin to HIGH

delay(2000); // delay 2000 mSec

digitalWrite(5,LOW); // make pin to LOW

answer = readATcommand(“NORMAL POWER DOWN”,2,2000);

if (answer == 1)

{

}

}

boolean gprspwr_status()

{

answer = sendATcommand(“AT”, “OK”, 2, 2000);

if (answer == 0)

co
nt

ro
len

gin
ee

rs
.ir

{

}

else if (answer == 1)

{

}

return answer;

}

int8_t readATcommand(char* expected_answer1, unsigned int

expected_answers, unsigned int timeout)

{

uint8_t x=0, answer=0;

boolean complete = 0;

char a;

char response[100];

unsigned long previous;

String incomingdata;

boolean first;

previous = millis();

for(int i = 0; i < expected_answers; i++)

{

x = 0;

complete = 0;

a = 0;

first = 0;

memset(response, ‘\0’, 100); // Initialize the string

do

{

if(MyGPRS.available() != 0)

{

a = MyGPRS.read(); // Read GPRS

if (a == 13)

{

a = MyGPRS.read(); // read GPRS

if (a == 10)

{

if (first == 0)

co
nt

ro
len

gin
ee

rs
.ir

{

//keep going, just ignore it

}

else

{

complete = 1;

}

}

}

else if(a == 0)

{

}

else

{

response[x] = a;

x++;

first = 1;

}

if(strstr(response, expected_answer1) != NULL)

{

answer = 1;

complete = 1;

return answer;

}

else if(strstr(response, “ERROR”) != NULL)

{

answer = 2;

}

}

}

while((complete == 0) && ((millis() - previous) < timeout));

}

return answer;

}

int8_t sendATcommand(char* ATcommand, char* expected_answer1,

unsigned int expected_answers, unsigned int timeout)

{

co
nt

ro
len

gin
ee

rs
.ir

uint8_t x=0, answer=0;

boolean complete = 0, first = 0;

char a;

char response[100];

unsigned long previous;

String incomingdata;

delay(100); // delay of 100 mSec

while(MyGPRS.available() > 0) MyGPRS.read(); // Clean the

input buffer

MyGPRS.println(ATcommand); // Send the AT command

previous = millis();

for(int i = 0; i < expected_answers; i++){

x = 0;

complete = 0;

a = 0;

first = 0;

memset(response, ‘\0’, 100); // Initialize the string

do{

if(MyGPRS.available() != 0)

{

a = MyGPRS.read(); // read GPRS

if (a == 13)

{

a = MyGPRS.read();// read GPRS

if (a == 10){

if (first == 0)

{

//keep going, just ignore it

}

else

{

complete = 1;

}

}

}

else if(a == 0)

{

co
nt

ro
len

gin
ee

rs
.ir

}

else

{

response[x] = a;

x++;

first = 1;

}

if (strstr(response, expected_answer1) != NULL)

{

answer = 1;

complete = 1;

}

else if(strstr(response, “ERROR”) != NULL)

{

answer = 2;

complete = 1;

}

}

}

while((complete == 0) && ((millis() - previous) < timeout));

}

return answer

}

Conclusion
This chapter discusses the language tracking system with the help of circuit
diagram and program.

co
nt

ro
len

gin
ee

rs
.ir

O

CHAPTER 5
Smart Trash Collector

ne of the major problems of the developing countries is Trash in the
current scenario. Countries like India are facing this serious problem.

The main reason behind this problem is the lack of standards for the
management of trash. Majority of the people don’t care about the trash and
the associated impact that causes big problems. Researchers identified the
problems and developed a system known as Smart Garbage Based on IoTs.
The main reason behind this system is management of trash in a proper and
efficient way.

Introduction
The system consists of an ultrasonic sensor and NodeMCU with IoT to
identify the garbage. The system is designed with a graphical user interface
for a desktop and a mobile phone can also be used for the continuous
monitoring of garbage. Figure 5.1 presents the waste management
architecture which functions on the nRF module and LoRa network:

co
nt

ro
len

gin
ee

rs
.ir

Figure 5.1: Waste management architecture

Here, the RF module transmits the sensory data from the bins to the local
server unit, and the local server unit communicates the data to the cloud
server. Through the nRF module, the data regarding the quantity and the
level of waste in the bin is transmitted to the local server unit. A cloud-based
mobile application is developed for the user to monitor the container and
transfer the money to the municipal authority. With regards to the quantity of
waste, the user of the container will pay charges to the municipal wallet for
collection of garbage.

System description
Figure 5.2 presents the RF module-based sensor mote, and this is the main
component of the architecture because the functioning of the whole
architecture is initiated from the sensor mote end. With regards to level
measurement and load cell, the microcontroller processes the information of
the quantity of waste and level of waste through the nRF module. The nRF
co

nt
ro

len
gin

ee
rs

.ir

module is useful for bi-directional communication within a range of 100
meters. A level sensor helps to measure the threshold level of garbage in the
garbage bin. The load cell will help to measure the weight of the garbage in
the container:

Figure 5.2: Architecture of the nRF module-based sensor mote

Figure 5.3 depicts the architecture of the local server unit. The local server
unit is implemented in this architecture to promote both short and longrange
communication. The RF module is useful for short communication, and
LoRA is helpful for longdistance communication. Initially, the RF module
transmits the information from the garbage bins and trucks to the local
server. From the local server, the LoRA module sends the information to the
central server which it receives from the RF module through the NodeMCU
gateway. As usual, the microcontroller helps to control the devices that are
connecting to it, and storage is also a part of this architecture for backing up
the data:

co
nt

ro
len

gin
ee

rs
.ir

Figure 5.3: Local server architecture

Circuit diagram and connection
To design the system, connect the components as follows:

1. +5V pin and GND of the power supply are connected to Vcc pin and
GND pin of the customized atmega328 board with NuttyFi.

2. Pins 1 and 16 of the LCD are connected to GND of the power supply.
3. Pins 2 and 15 of the LCD are connected to +5V of the power supply.
4. Two fixed terminals of the POT are connected to +5V and GND of the

LCD and the variable terminal of the POT is connected to pin 3 of the
LCD.

5. RS, RW, and E pins of the LCD are connected to pins 13, GND and 12
of the customized atmega328 board.

6. D4, D5, D6, and D7 pins of the LCD are connected to pins 11, 10, 9
and 8 of the customized atmega328 board.

7. +5V and GND pin of the fire sensor are connected to +5V and GND
pins of the power supply.

8. OUT pin of the fire sensor is connected to pin 5 of the customized
atmega328 board.co
nt

ro
len

gin
ee

rs
.ir

9. +5V, GND, Trigger and echo pins of the ultrasonic sensor are
connected to +5V, GND, 2 and 3 pins of the Atmega328 board.

10. +5V, GND, RX and TX pins of the RF modem are connected to +5V,
GND, D7, and D6 pins of the Atmega328 board.

The connection of a smart bin is shown in Figure 5.4:

Figure 5.4: Circuit diagram of a smart bin

The connection of the local server is shown in Figure 5.5 and the details are
as follows:

1. +5V pin and GND of the power supply are connected to Vcc pin and
GND pin of the customized atmega328 board with NuttyFi.

2. +5V, GND, RX and TX pins of the RF modem are connected to +5V,
GND, PD0 and PD1 pins of the Atmega328 board.

3. +5V, GND, RX, and TX pins of NuttyFi are connected to +5V, GND,
PD7, and PD6 pins of the Atmega328 board.

co
nt

ro
len

gin
ee

rs
.ir

Figure 5.5: Circuit diagram of a local server

Application/data logger
The following code snippet is for a smart bin:

#include<SoftwareSerial.h>

SoftwareSerial rajSerial(6, 7);

#include <LiquidCrystal.h>// add library of LCD

LiquidCrystal lcd(13,12, 11, 10, 9, 8); // connect LCD pins with

Atmega328co
nt

ro
len

gin
ee

rs
.ir

const int trigger_Pin = 2; //assign integer to pin 2 (Trigger

Pin of Ultrasonic Sensor)

const int echo_Pin = 3; // assign integer to pin 3 (Echo Pin of

Ultrasonic Sensor)

long duration, inches, cm;

void setup()

{

Serial.begin(9600); // initialize serial communication

rajSerial.begin(9600); // initialize soft serial communication

lcd.begin(16,2); // initialize LCD

pinMode(trigger_Pin, OUTPUT); // set pin 10 as an output

pinMode(echo_Pin, INPUT); // set pin 9 as an input

delay(1000); // wait for 1 Sec

}

void loop()

{

digitalWrite(trigger_Pin, LOW); // make Pin 10 pin to LOW

delayMicroseconds(2); // wait for 2 uSec

digitalWrite(trigger_Pin, HIGH); // make Pin 10 to HIGH

delayMicroseconds(10); // wait for 10 uSec

digitalWrite(trigger_Pin, LOW); // make Pin 10 pin to LOW

duration = pulseIn(echo_Pin, HIGH); // make Pin 9 to HIGH

inches = microsecondsToInches(duration); // record inches

cm = microsecondsToCentimeters(duration); // record cm

Serial.print(“Distance:”); // print string on serial

Serial.print(cm); // print value on serial

Serial.print(“cm”); // print string on serial

Serial.println(); // print ‘\r\n’

Serial.print(“Distance:”); // print string on serial

Serial.print(inches); // print value on serial

Serial.print(“inches”); // print string on serial

Serial.println();// print ‘\r\n’

delay(2000); // wait for 2 Sec

rajSerial.print(‘\r’); // print char on LCD

rajSerial.print(cm); // print data on LCD

rajSerial.print(‘|’); // print char on LCD

co
nt

ro
len

gin
ee

rs
.ir

rajSerial.print(cm); // print data on LCD

rajSerial.print(‘\n’); // print char on LCD

}

long microsecondsToInches(long microseconds)

{

return microseconds / 74 / 2;

}

long microsecondsToCentimeters(long microseconds)

{

return microseconds / 29 / 2;

}

The following code snippet is for the local server:

#include<SoftwareSerial.h>

#define BLYNK_PRINT Serial

#include <ESP8266WiFi.h>

#include <BlynkSimpleEsp8266.h>

SoftwareSerial rajSerial(6, 7);

// WiFi credentials

//char auth[] = “5c8e33bf09a04b03b2fa153928b075c5”;// MY rsingh

char auth[] = “xxxxxxxxxxxxxxxxxxx”;// add KEY here

char ssid[] = “ESPServer”;

char pass[] = “RAJ@123”;

WidgetLCD LCD_BLYNK(V0);

BlynkTimer timer;

void send_data()

{

if (rajSerial.available()<1)

return; // check serial and return if value is less than 1

char g=rajSerial.read(); // record serial data on RX line

if (g!=’\r’)

return; // return if value is not equal to ‘\r’

int cm=rajSerial.parseInt(); // use function to record first

byte as fire sensor state data

co
nt

ro
len

gin
ee

rs
.ir

LCD_BLYNK.clear(); // clear the contents of blynk LCD

Blynk.virtualWrite(V4, cm); // write data on V4 pin of blynk

LCD_BLYNK.print(0,0,”DIS:”); // write string on of blynk LCD

LCD_BLYNK.print(5,0,cm); // write data on of blynk LCD

}

void setup()

{

Serial.begin(9600); // initialize serial communication

rajSerial.begin(9600); // initialize soft serial communication

Blynk.begin(auth, ssid, pass); // initialize blynk

timer.setInterval(5000L, send_data); // call function sfter

5000 msec

}

void loop()

{

Blynk.run(); // run blynk APP

timer.run(); // run blynk timer

}

Blynk is a platform with iOS and Android apps used to control Arduino,
Raspberry Pi and the likes over the Internet. It can easily build graphic
interfaces for all your projects by simply dragging and dropping widgets.
You can download the latest Blynk library from
https://github.com/blynkkk/blynk-library/releases/latest.
Design the Blynk app and upload the program and check for the availability
of data:

co
nt

ro
len

gin
ee

rs
.ir

https://github.com/blynkkk/blynk-library/releases/latest

co
nt

ro
len

gin
ee

rs
.ir

Figure 5.6: Snapshot of the Blynk app for a system

Conclusion
This chapter concludes the architecture of a smart garbage monitoring
system with the Blynk app. The complete system is described with the help
of a circuit diagram and program.

co
nt

ro
len

gin
ee

rs
.ir

W

CHAPTER 6
Car Parking System

ith the advancement of technology, millions and billions of devices can
communicate with each other. One of the problems that most of the

developing nations are facing is about parking of cars. Majority of cities
have enormous cars but do not have enough space to park those cars. There
are so many issues that are still challenges like finding the nearest
unoccupied space for parking and the nearest road traffic congestion for
parking.

Introduction
The industry of smart parking has witnessed majority of innovations in terms
of smart cameras, automation, smart management, smart payment, smart
energy, and ANPR (Automatic Number Plate Recognition). A similar
approach is used with anultrasonic sensor to detect the vehicle and to open
the gate automatically. NodeMCU is also used that acts as a main controller
to control the peripherals.

System description
The system comprises n number of nodes and one server node. Each local
node comprises the customized Atmega328 board, RF modem, IR sensor
and the battery. server node comprises the customized Atmega238 board,
Wi-Fi modem, RF modem, display, and battery. Local nodes communicate
data through the RF modem and then communicate to the cloud server
through the Wi-Fi modem. The RF modem is used to communicate in the
black zone (where no internet connection is available). When the internet
signal is available, the sensory data is communicated to the cloud. Figure 6.1
shows the block diagram of the system:co

nt
ro

len
gin

ee
rs

.ir

Figure 6.1: Block diagram of the system

Table 6.1 and Table 6.2 show the detailed component list for the greenhouse
effect monitoring system and list for the local server:

Component/Specification Quantity

Power supply 12V/1Amp 1

Jumper wire M-M 20

Jumper wire M-F 20

Jumper wire F-F 20

Power supply extension (To get more +5V and GND) 1

+12V to +5V converter 1

IR sensor 1

Atmega328 board 1

RF Modem 1

breakout board for RF Modem 1

Table 6.1: Component list for the greenhouse effect monitoring system in the black zone

co
nt

ro
len

gin
ee

rs
.ir

Component/Specification Quantity

Power supply 12V/1Amp 1

Jumper wire M-M 20

Jumper wire M-F 20

Jumper wire F-F 20

Power supply extension (To get more +5V and GND) 1

+12V to +5V converter 1

NuttyFi breakout board 1

NuttyFi 1

Atmega328 board 1

RF Modem 1

RF modem breakout board 1

Table 6.2: Components list for local Server

Note: All components are available at www.nuttyengineer.com.

Circuit diagram and connection
The circuit diagram of the parking space detector with the pin description is
shown in Figure 6.2 and for the local server is shown in Figure 6.3. The
details are explained as follows:

1. Connect +12V/1A power supply DC jack to DC jack of the Atmega328
board.

2. Connect the IR sensor output pin to pin 5 of the Atmega328 board.
3. Connect TX, RX, +Vcc, and GND pins of the RF Modem to pins 0, 1,

+5V, and GND of the Atmega328 board.

co
nt

ro
len

gin
ee

rs
.ir

Figure 6.2: Circuit diagram of the parking space detector

The circuit connections for the local server are as follows:

1. Connect +12V/1A power supply DC jack to DC jack of the Atmega328
board.

2. Connect TX, RX, +Vcc, and GND pins of the RF modem to pins 0, 1,
+5V, and GND of the Atmega328 board.

3. Connect TX(7), RX(6), +Vcc, and GND pins of NuttyFi to pins PD6,
PD7, +5V, and GND of the Atmega328 board.co
nt

ro
len

gin
ee

rs
.ir

co
nt

ro
len

gin
ee

rs
.ir

Figure 6.3: Circuit diagram of the local server

Application/data logger
The following code snippetis forthe parking space detector:

int IR_sensor_pin=5; // give integer to the pin

int IR_sensor_state=0; // give integer

void setup()

{

Serial.begin(9600); // initialize serial communication

pinMode(IR_sensor_pin, INPUT); // define sensor pin as an input

}

void loop()

{

int IR_sensor_state=digitalRead(IR_sensor_pin); // read sensor

if (IR_sensor_state== HIGH)

{

Serial.write(10); // send data on serial

delay(100); // delay 100 mSec

}

else

{

Serial.write(20); // send data on serial

delay(100); // delay 100 mSec

}

}

The following code snippets are for the local servers. First, we will see the
code snippet for the Atmega328 board:

void setup()

{

lcd.begin(16,2); // initialize serial communication

Serial.begin(9600); // initialize serial communication

}co
nt

ro
len

gin
ee

rs
.ir

void loop()

{

int IR_sensor_state=Serial.read(); // read derail data on RX

pin

if (IR_sensor_state==10)

{

Serial.print(‘\r’); // write char on serial

Serial.print(10);// send data on serial

Serial.print(“|”);// send data on serial

Serial.print(10);// send data on serial

Serial.print(‘\n’);// send data on serial

delay(20);// delay 20 mSec

}

else

{

Serial.print(‘\r’);// send data on serial

Serial.print(20);// send data on serial

Serial.print(“|”);// send data on serial

Serial.print(20);// send data on serial

Serial.print(‘\n’); // send data on serial

delay(20);// delay 20 mSec

}

}

Next, we will see the code snippet for NuttyFi:

#define CAYENNE_PRINT Serial

#include <CayenneMQTTESP8266.h>

#include<SoftwareSerial.h>

SoftwareSerial rajSerial(D6, D7);

char ssid[] = “ESPServer”; // add id of hotspot ID

char wifiPassword[] = “RAJ@12”; // add password here

char username[] = “b51fe780-ef06-11e9-ba7c-716e7f5ba423”;

char password[] = “3b2c472fb996e4f1a12b8a1686e4538eb4b7a4f5”;

char clientID[] = “f4079290-ef06-11e9-8221-599f77add412”;

unsigned long lastMillis = 0;

co
nt

ro
len

gin
ee

rs
.ir

void send_data()

{

if (rajSerial.available()<1)

return; // check serial and return if value is less than 1

char g=rajSerial.read(); // record serial data on RX line

if (g!=’\r’)

return; // return if valur is not equal to ‘\r’

int IR1_data=rajSerial.parseInt(); // use function to record

first byte as fire sensor state data

}

void setup()

{

Serial.begin(9600); // initialize serial communication

rajSerial.begin(9600); // add initialize soft serial

communication

Cayenne.begin(username, password, clientID, ssid,

wifiPassword);

}

void loop()

{

Cayenne.loop();

//Publish data every 10 seconds (10000 milliseconds). Change

this value to publish at a different interval.

if (millis() - lastMillis > 10000)

{

lastMillis = millis();

//Write data to Cayenne here. This example just sends the

current uptime in milliseconds.

send_data(); // call function here

Cayenne.virtualWrite(0, IR1_data); // write data on channel 0

of cayenne APP

}

}

CAYENNE_IN_DEFAULT()

{
co

nt
ro

len
gin

ee
rs

.ir

CAYENNE_LOG(“CAYENNE_IN_DEFAULT(%u) - %s, %s”, request.channel,

getValue.getId(), getValue.asString());

//Process message here. If there is an error set an error

message using getValue.setError(), e.g getValue.setError(“Error

message”);

}

Cayenne APP for Data logging
The following are the steps to add NodeMCU in the cayenne cloud:

1. Install the Arduino IDE and add Cayenne MQTT Library to the
Arduino IDE.

2. Install the ESP8266 board package inthe Arduino IDE.
3. Install the required USB driver on the computer to program ESP8266.
4. Connect ESP8266 to PC/Mac via the data-capable USB cable.
5. In the Arduino IDE, go to the tools menu; select the board, and now the

port ESP8266 is connected to.
6. Use the MQTT username, MQTT password, client ID as well as

ssid[] and wifiPassord[] in the Arduino IDE to write the code:

Figure 6.4: Snapshot showing username, password to MQTT

7. Burn the code in Arduino and NodeMCU. Then, a window will open;
Figure 6.4 shows the snapshots for the developed mobile app after
burning the program.co
nt

ro
len

gin
ee

rs
.ir

Conclusion
This chapter concludes the car parking system with the help of sensors and
RF communication. The RF module is used for the black zone
communication where no internet signal is available. The detailsare also
communicated to the cloud with the Wi-Fi module, from the location, where
the internet signal is available. The detailed steps to develop the Cayenne
server are also discussed in this chapter.

co
nt

ro
len

gin
ee

rs
.ir

A

CHAPTER 7
Home Automation

home automation system is a solution which enables automating the
electronic and electrical devices within a home. It uses a combination of

hardware and software technologies which control the appliances and
devices within a home.

Introduction
The complete working of the system can be understood with the help of a
system, which can control home appliances with the mobile App. Figure 7.1
shows the block diagram of the system. The system comprises DC
12V/1Amp adaptor, 12V to 5V, 3.3V converter, liquid crystal display, relay
control unit, and AC loads. The objective of the system is to display the
information of ON/OFF of respective appliances on the LCD. The ON/OFF
home appliances which are connected to NodeMCU/ESP8266/Wi-Fi modem
from the cloud server using APP are shown in the following diagram:

Figure 7.1: Block diagram of the systemco
nt

ro
len

gin
ee

rs
.ir

Table 7.1 shows the list of components required to fabricate the system:

Component/Specification Quantity

Power supply 12V/1Amp 1

Node MCU 1

Solid state relay board 4

Extension board for four appliances 4

Power supply extension 1

ISP programmer 1

LCD16*2 1

LCD patch 1

+5V power supply 1

Table 7.1: Component list

Circuit diagram
The connections of the external devices with NodeMCU areas follows:

1. +5V pin of the power supply is connected to Vcc pin of NodeMCU.
2. GND pin of the power supply is connected to GND pin of NodeMCU.
3. Pins 1 and16 of LCD are connected to GND of the power supply.
4. Pins 2 and15 of LCD are connected to +Vcc of the power supply.
5. Two fixed lags of POT are connected to +5V and GND of LCD and the

variable lag of POT is connected to pin 3 of LCD.
6. RS, RW, and E pins of LCD are connected to pins D0, GND, and D1 of

NodeMCU.
7. D4, D5, D6, and D7 pins of LCD are connected to pins D2, D3, D4,

and D5 of NodeMCU.
8. Connect the input of the relay board to D6 pin NodeMCU.
9. Connect the input of the relay board to D7 pin NodeMCU.

10. Connect the input of the relay board to D8 pin NodeMCU.
11. Connect the input of the relay board to D9 pin NodeMCU.co
nt

ro
len

gin
ee

rs
.ir

12. Connect the output pin (NOs and COMs) of the relay to the AC load.

Figure 7.2: Circuit diagram

Figure 7.2 shows the circuit diagram of the system with NodeMCU.

Program
This program is developed to control the home appliances with the Blynk
app:

#define BLYNK_PRINT Serial

#include <ESP8266WiFi.h>

#include <BlynkSimpleEsp8266.h>

#include <LiquidCrystal.h>

LiquidCrystal lcd(D0, D1, D2, D3, D4, D5);

char auth[] = “8507cac915f04a1bb4b00987e420afa0”; // add auth.

Token here

char ssid[] = “ESPServer_RAJ”; // add hotspot id here

char pass[] = “RAJ@12345”; // add password here

int BULB=12; // define pin to integer

co
nt

ro
len

gin
ee

rs
.ir

int FAN=13; // define pin to integer

int EX_FAN=15; // define pin to integer

int GYSER=3; // define pin to integer

BLYNK_WRITE(V1)

{

int BULB_VAL = param.asInt(); // assigning incoming value from

pin V1 to a variable

if(BULB_VAL==HIGH)

{

lcd.clear(); // clear the contents of LCD

digitalWrite(BULB,HIGH); // make pin to HIGH

digitalWrite(FAN,LOW); // make pin to LOW

digitalWrite(EX_FAN,LOW); // make pin to LOW

digitalWrite(GYSER,LOW); // make pin to LOW

lcd.setCursor(0,0);// set cursor on LCD

lcd.print(“BULB ON”); // print string on serial

delay(10); // delay 10 mSec

}

}

BLYNK_WRITE(V2)

{

int FAN_VAL = param.asInt(); // assigning incoming value from

pin V1 to a variable

if(FAN_VAL==HIGH)

{

lcd.clear(); // clear the contents of LCD

digitalWrite(BULB,LOW); // make pin to LOW

digitalWrite(FAN,HIGH); // make pin to HIGH

digitalWrite(EX_FAN,LOW); // make pin to LOW

digitalWrite(GYSER,LOW); // make pin to LOW

lcd.setCursor(0,1); // set cursor on LCD

lcd.print(“FAN ON”); // print string on LCD

delay(10); // delay 10 mSec

}

}

BLYNK_WRITE(V3)

co
nt

ro
len

gin
ee

rs
.ir

{

int EX_FAN_VAL = param.asInt(); // assigning incoming value

from pin V1 to a variable

if(EX_FAN_VAL==HIGH)

{

lcd.clear();// clear the contents of LCD

digitalWrite(BULB,LOW); // make pin to LOW

digitalWrite(FAN,LOW); // make pin to LOW

digitalWrite(EX_FAN,HIGH); // make pin to HIGH

digitalWrite(GYSER,LOW); // make pin to LOW

lcd.setCursor(0,2); // set cursor on LCD

lcd.print(“EX FAN ON”);// print string on LCD

delay(10); // delay 10 mSec

}

}

BLYNK_WRITE(V4)

{

int GYSER_VAL = param.asInt(); // assigning incoming value from

pin V1 to a variable

if(GYSER_VAL=HIGH)

{

lcd.clear();

digitalWrite(BULB,LOW); // make pin to LOW

digitalWrite(FAN,LOW); // make pin to LOW

digitalWrite(EX_FAN,LOW); // make pin to LOW

digitalWrite(GYSER,HIGH); // make pin to HIGH

lcd.setCursor(0,3); // set cursor on LCD

lcd.print(“GYSER ON”); // print string on LCD

delay(10); // delay 10 m Sec

}

}

BLYNK_WRITE(V5)

{

int ALLOFF_VAL = param.asInt(); // assigning incoming value

from pin V1 to a variable

if(ALLOFF_VAL =HIGH)

co
nt

ro
len

gin
ee

rs
.ir

{

lcd.clear();

digitalWrite(BULB,LOW); // make pin to LOW

digitalWrite(FAN,LOW); // make pin to LOW

digitalWrite(EX_FAN,LOW); // make pin to LOW

digitalWrite(GYSER,LOW); // make pin to LOW

lcd.setCursor(0,0); // set cursor on LCD

lcd.print(“ALL OFF”); // print string on LCD

delay(10); // delay 10 m Sec

}

}

void setup()

{

Serial.begin(9600); // initialize serial communication

lcd.begin(20,4); // initialize LCD

Blynk.begin(auth, ssid, pass); // initialize blynk

pinMode(BULB,OUTPUT);//D6 pin of NodeMCU

pinMode(FAN,OUTPUT);//D7 pin of NodeMCU

pinMode(EX_FAN,OUTPUT);//D8 pin of NodeMCU

pinMode(GYSER,OUTPUT);//D9 pin of NodeMCU

}

void loop()

{

Blynk.run(); // run blynk APP

}

Blynk app
Follow the steps to design the Blynk app, described in section 3.4.
Figure 7.3 show a snapshot of the application used to control the home
appliances like bulb, heater, fan, and geyser.

co
nt

ro
len

gin
ee

rs
.ir

Figure 7.3: Snapshot of the app

Conclusion
This chapter concludes the concept of home automation. The complete
system is described with the help of circuit connections and programs. The
Blynk app is designed to control the home appliances.co

nt
ro

len
gin

ee
rs

.ir

T

CHAPTER 8
Environmental Parameter Monitoring
his chapter describes an IoT-based environment parameter monitoring
system. Wireless Sensor Network is developed using NodeMCU,

Arduino Uno, and ZigBee. A network is required to deploy sensor nodes and
collect data from various locations.
The major areas of environment monitoring can be identified as follows:

Monitoring air for quality, carbon dioxide and smog-like gases, carbon
monoxide in confined areas, and indoor ozone levels.
Monitoring water for quality, pollutants, thermal contaminants,
chemical leakages, the presence of lead, and flood water levels.
Monitoring soil for moisture and vibration levels in order to detect and
prevent landslides.
Monitoring forests and protected land for forest fires.
Monitoring for natural disasters like earthquakes and tsunami
warnings.
Monitoring fisheries for both animal health and poaching.
Monitoring snowfall levels at ski resorts and in national forests for
weather tracking and avalanche prevention.
Monitoring data centers for air temperature and humidity.

IoT-based greenhouse effect monitoring system
This section discusses the greenhouse monitoring system using Arduino
Mini, XBee, and WiFi modem. Figure 8.1 shows the block diagram
greenhouse effect monitoring system in the environment for the black zone
(without internet connectivity). The communication between nodes placed in
the black zone is through XBee, and then all this information is
communicated to the main server through the local server with internet
connectivity. The system comprises Arduino mini, DHT11, UV index sensor,
co

nt
ro

len
gin

ee
rs

.ir

BMP180 sensor, power supply adaptor 12V/1A and 12V to 5V converter,
LCD as display unit, XBee and shield for XBee. The objective of the system
is to read the sensors like DHT11 (temperature and humidity sensor), UV
index sensor, and BMP180 sensor using Arduino mini and display the
information on LCD. The packet of sensory data is transferred wirelessly
through XBee to the local server:

Figure 8.1: Block diagram for greenhouse effect monitoring system in the black zone

Figure 8.2 shows the block diagram for the local server. The system
comprises Arduino mini, NodeMCU, fire sensor, smoke sensor, temperature
sensor, power supply adaptor 12V/1A, the 12V to 5V convertor, and LCD as
the display unit, XBee and shield for XBee:

Figure 8.2: Block diagram for the local Server

The objective of the system is to read the sensor data packet using Arduino
mini and display the information on the LCD. Then, the packet of sensory
co

nt
ro

len
gin

ee
rs

.ir

data is transferred through the wireless WiFi link using NodeMCU to the
main server or cloud server.
Table 8.1and Table 8.2 show the component list to develop the nodes for the
black zone and local server, respectively:

Component/Specification Quantity

Power supply 12V/1Amp 1

Jumper wire M-M 20

Jumper wire M-F 20

Jumper wire F-F 20

Power supply extension (To get more +5V and GND) 1

+12V to +5V converter 1

LCD20*4 1

LCD patch/explorer board 1

Fire sensor 1

Smoke sensor 1

Temperature sensor 1

Arduino UNO 1

XBee 1

XBee explorer/breakout board 1

Table 8.1: Component list for the greenhouse effect monitoring system in the black zone

Component/Specification Quantity

Power supply 12V/1Amp 1

Jumper wire M-M 20

Jumper wire M-F 20

Jumper wire F-F 20

Power supply extension (To get more +5V and GND) 1

+12V to +5V converter 1

LCD20*4 1

LCD patch/explorer board 1

co
nt

ro
len

gin
ee

rs
.ir

NodeMCU patch 1

NodeMCU 1

Arduino UNO 1

XBee 1

XBee explorer/breakout board 1

Table 8.2: Component list for the local server

Note: All components are available at www.nuttyengineer.com.

Circuit diagram
The following sections describe the diagram of the connections of Arduino
mini and NodeMCU with external devices.
Connection of the greenhouse parameter transmitter for the black zone
The connection transmitter for the greenhouse effect monitoring system is as
follows:

1. Connect DHT11 sensor output pin OUTPUT_SS to pin 2 of Arduino
Mini.

2. Connect +Vcc and GND pins of DHT11 sensor to +5V and GND of the
power supply.

3. Connect UV index sensor output pin to pin A1 of Arduino Mini.
4. Connect +Vcc and GND pins of UV index sensor to +5V and GND of

the power supply.
5. Connect BMP180 sensor output pins SCL and SDA to pin A4 and A5

of Arduino Mini.
6. Connect +Vcc and GND pins of BMP180 sensor to +5V and GND of

the power supply.
7. Connect +12V/1A power supply DC jack to DC jack of NodeMCU.
8. Connect +12V/1A power supply DC jack to DC jack of Arduino Mini.
9. Pins RS, RW, and E of LCD are connected to pins 12, GND, and 11 of

Arduino Mini.co
nt

ro
len

gin
ee

rs
.ir

10. Pins D4, D5, D6, and D7of LCD are connected to pins 10, 9, 8, and 7
of Arduino Mini.

11. Pins 1,3, and 16 of LCD are connected to GND of the power supply
using the power supply patch.

12. Pins 2 and 15 of LCD are connected to +5V of the power supply using
the power supply patch.

13. RX (0), TX (1), Vcc, and GND pin of Arduino mini are connected to
TX, RX, +5V, and GND pin of the XBee breakout board.

Figure 8.3 shows the circuit diagram for the greenhouse effect monitoring
system in the black zone:

Figure 8.3: Circuit diagram for the greenhouse effect monitoring system in the black zone

Connections of the local server
The connections for local server are as follows:

1. Connect +12V/1A power supply DC jack to DC jack of NodeMCU.
2. Connect +12V/1A power supply DC jack to DC jack of Arduino Mini.
3. Pins RS, RW and E of LCD is connected to pins 12, GND, and 11 of

Arduino Mini.
co

nt
ro

len
gin

ee
rs

.ir

4. Pins D4, D5, D6, and D7of LCD are connected to pins 10, 9, 8, and 7
of Arduino Mini.

5. Pins 1,3, and 16 of LCD are connected to GND of the power supply
using the power supply patch.

6. Pins 2 and 15 of LCD are connected to +5V of the power supply using
the power supply patch.

7. RX (0), TX (1), Vcc, and GND pin of Arduino Mini is connected to
RX, TX, +5V, and GND pin of the XBee breakout board.

8. TX, RX, Vcc, and GND pin of NodeMCU are connected to RX(4),
TX(5), +5V, and GND pin of Arduino Mini.

Figure 8.4 shows the circuit diagram of the local server:

Figure 8.4: Circuit diagram of the local serverco
nt

ro
len

gin
ee

rs
.ir

Program
The following sections show the program for the greenhouse effect
transmitter and local server, respectively.
Arduino Mini program for the greenhouse effect transmitter
Refer to the following code:

// library for BMP185

#include <Wire.h>

#include <Adafruit_BMP085.h>

Adafruit_BMP085 bmp;

// library for DHT11

#include <dht.h>

dht DHT;

#define DHT11_PIN 2

// library for LCD

#include <LiquidCrystal.h>

LiquidCrystal lcd(13, 12, 11, 10, 9, 8);

// libray for Softserial

#include <SoftwareSerial.h>

SoftwareSerial mySerial(6,7);// 6 rx /7 tx

void setup()

{

Serial.begin(9600); // initialize serial communication

mySerial.begin(9600); // initialize soft serial communication

lcd.begin(20, 4); // initialize LCD

bmp.begin(); // initialize BMP sensor

}

void loop()

{

lcd.clear(); // clear the contents of LCD

int chk = DHT.read11(DHT11_PIN); // check DHT sensor

float TEMP=DHT.temperature; // read temperature value

float HUM=DHT.humidity; // read humidity value

float PRESS=bmp.readPressure(); // read pressure value

co
nt

ro
len

gin
ee

rs
.ir

float ALT=bmp.readAltitude(); // read altitude

int UV=analogRead(A0); // read analog pin

lcd.setCursor(0,0); // set cursor on LCD

lcd.print(“TEMP:”); // print string on LCD

lcd.print(TEMP); // print value on LCD

lcd.setCursor(0,1); // set cursor on LCD

lcd.print(“HUM:”); // print string on LCD

lcd.print(HUM); // print value on LCD

// read and display BMP185 data

lcd.setCursor(0,2); // set cursor on LCD

lcd.print(“P0:”); // print string on LCD

lcd.print(PRESS); // print value on LCD

lcd.print(“Pa”); // print string on LCD

lcd.setCursor(0,3); // Calculate altitude assuming ‘standard’

barometric & pressure of 1013.25 millibar = 101325 Pascal

lcd.print(“A0:”); // print string on LCD

lcd.print(ALT); // print value on LCD

lcd.print(“m”); // print string on LCD

lcd.setCursor(10,0); // Calculate altitude assuming ‘standard’

barometric & pressure of 1013.25 millibar = 101325 Pascal

lcd.print(“UV_Indx:”); // print string on LCD

lcd.print(UV); // print value on LCD

Serial.print(TEMP); // serial print the value on serial

Serial.print(“,”); // print comma on serial

Serial.print(HUM); // serial print the value on serial

Serial.print(“,”);// print comma on serial

Serial.print(PRESS); // serial print the value on serial

Serial.print(“,”);// print comma on serial

Serial.print(ALT); // serial print the value on serial

Serial.print(“,”);// print comma on serial

Serial.print(UV); // serial print the value on serial

Serial.print(‘\n’); // print char on serial

delay(30); // delay 30 mSec

}

co
nt

ro
len

gin
ee

rs
.ir

Arduino Mini program for the local server
Refer to the following program:

// library for LCD

#include <LiquidCrystal.h>

LiquidCrystal DISPLAY(12,11,10,9, 8, 7);

String TEMP,SMOKE,FIRE_STATUS;

String inputString_NODEMCU = “”; // a string to hold incoming

data

void setup(void)

{

Serial.begin(9600); // initialize serial communication

DISPLAY.begin(20, 4); // initialize LCD

DISPLAY.setCursor(0,0); // set cursor on LCD

DISPLAY.print(“forest fire Det..”); // print string on LCD

delay(4000); // delay of 4000 mSec

lcd.clear(); // clear the contents of LCD

}

void loop(void)

{

serialEvent_NODEMCU(); // call function

delay(50); // delay of 50 mSec

DISPLAY.setCursor(0,0); // set cursor on LCD

DISPLAY.print(“TEMP:”); // print string on LCD

DISPLAY.setCursor(5,0); // set cursor on LCD

DISPLAY.print(TEMP); // print value on LCD

DISPLAY.setCursor(0,1); // set cursor on LCD

DISPLAY.print(“HUM:”); // print string on LCD

DISPLAY.setCursor(5,1); // set cursor on LCD

DISPLAY.print(HUM); // print value on LCD

DISPLAY.setCursor(0,2); // set cursor on LCD

DISPLAY.print(“PRESS:”); // print string on LCD

DISPLAY.setCursor(6,2); // set cursor on LCD

DISPLAY.print(PRESS); // print value on LCD

DISPLAY.setCursor(0,3); // set cursor on LCD

DISPLAY.print(“ALT:”); // print string on LCD

co
nt

ro
len

gin
ee

rs
.ir

DISPLAY.setCursor(5,3); // set cursor on LCD

DISPLAY.print(ALT); // print value on LCD

DISPLAY.setCursor(10,0); // set cursor on LCD

DISPLAY.print(“UV:”); // print string on LCD

DISPLAY.setCursor(15,0); // set cursor on LCD

DISPLAY.print(UV); // print value on LCD

Serial.print(TEMP); // print value on serial

Serial.print(“,”); // print comma on serial

Serial.print(HUM); // print value on serial

Serial.print(“,”); // print comma on serial

Serial.print(PRESS); // print value on serial

Serial.print(“,”); // print comma on serial

Serial.print(ALT); // print value on serial

Serial.print(“,”); // print comma on serial

Serial.print(UV); // print value on serial

Serial.print(‘\n’); // print char on serial

delay(20); // delay 20 mSec

}

void serialEvent_NODEMCU()

{

while (Serial.available()>0)

{

inputString_NODEMCU = Serial.readStringUntil(‘\n’);// Get

serial input

StringSplitter *splitter = new

StringSplitter(inputString_NODEMCU, ‘,’,5); // new

StringSplitter(string_to_split, delimiter, limit)

int itemCount = splitter->getItemCount();

for(int i = 0; i < itemCount; i++)

{

String item = splitter->getItemAtIndex(i);

TEMP= splitter->getItemAtIndex(0); // extract sensor value

from main string

HUM= splitter->getItemAtIndex(1); // extract sensor value

from main stringco
nt

ro
len

gin
ee

rs
.ir

PRESS= splitter->getItemAtIndex(2); // extract sensor value

from main string

ALT= splitter->getItemAtIndex(3); // extract sensor value

from main string

UV= splitter->getItemAtIndex(4); // extract sensor value from

main string

}

inputString_NODEMCU = “”; // make string empty

delay(200); // delay 200 msec

}

}

NodeMCU program for the greenhouse receiver
Refer to the following program:

// for Softserial lib and string splitter

#include <SoftwareSerial.h>

#include <ESP8266WiFi.h>

#include “StringSplitter.h”

SoftwareSerial rajSerial(D7,D8,false,256);

String apiKey1 = “R2ACMZBH7IV8B0KH”; // add api key

const char* ssid = “ESPServer_RAJ”; // add ID

const char* password = “12345678”; // add password

const char* server = “api.thingspeak.com”;

WiFiClient client;

String TEMP,HUM,PRESS,ALT,UV;

String inputString_NODEMCU = “”; // a string to hold incoming

data

void setup()

{

Serial.begin(9600); // initialize serial communication

rajSerial.begin(9600); // initialize soft serial communication

inputString_NODEMCU.reserve(200);

delay(10); // delay 10 Msec

WiFi.begin(ssid, password);// initialize Wi-Fi

co
nt

ro
len

gin
ee

rs
.ir

Serial.println(); // serial print nothing

Serial.println();// serial print nothing

Serial.print(“Connecting to “); // print string on serial

Serial.println(ssid); // print ssid on serial

while (WiFi.status() != WL_CONNECTED)

{

delay(500); // delay 500 mSec

Serial.print(“.”); // print serial

}

Serial.println(“”); // print serial nothing

Serial.println(“WiFi connected”); // print string on serial

}

void loop()

{

if (client.connect(server,80))

{

serialEvent_NODEMCU(); // call function

send1_GREENHOUSE_HEALTH_PARA();

}

client.stop(); // make client stop

Serial.println(“Waiting”); // print string on serial

delay(20000);// thingspeak needs minimum 15 sec delay between

updates

}

void send1_GREENHOUSE_HEALTH_PARA()

{

String postStr = apiKey1;

postStr +=”&field1=”;

postStr += String(TEMP);

postStr +=”&field2=”;

postStr += String(HUM);

postStr +=”&field3=”;

postStr += String(PRESS);

postStr +=”&field4=”;

postStr += String(ALT);

postStr +=”&field5=”;

co
nt

ro
len

gin
ee

rs
.ir

postStr += String(UV);

postStr += “\r\n\r\n”;

client.print(“POST /update HTTP/1.1\n”);

client.print(“Host: api.thingspeak.com\n”);

client.print(“Connection: close\n”);

client.print(“X-THINGSPEAKAPIKEY: “+apiKey1+”\n”);

client.print(“Content-Type: application/x-www-form-

urlencoded\n”);

client.print(“Content-Length: “);

client.print(postStr.length());

client.print(“\n\n”);

client.print(postStr);

Serial.print(“Send data to channel-1 “); // print string on

Serial

Serial.print(“Content-Length: “); // print string on Serial

Serial.print(postStr.length());

Serial.print(“Field-1: “); // print string on Serial

Serial.print(TEMP); // print value on Serial

Serial.print(“Field-2: “); // print string on Serial

Serial.print(HUM); // print value on Serial

Serial.print(“Field-3: “); // print string on Serial

Serial.print(PRESS); // print value on Serial

Serial.print(“Field-4: “); // print string on Serial

Serial.print(ALT); // print value on Serial

Serial.print(“Field-5: “); // print string on Serial

Serial.print(UV); // print value on Serial

Serial.println(“ data send”); // print string on Serial

}

void serialEvent_NODEMCU()

{

while (Serial.available()>0)

{

inputString_NODEMCU = Serial.readStringUntil(‘\n’);// Get

serial input

StringSplitter *splitter = new

StringSplitter(inputString_NODEMCU, ‘,’,5); // new

co
nt

ro
len

gin
ee

rs
.ir

StringSplitter(string_to_split, delimiter, limit)

int itemCount = splitter->getItemCount();

for(int i = 0; i < itemCount; i++)

{

String item = splitter->getItemAtIndex(i);

TEMP= splitter->getItemAtIndex(0); // extract sensor value

from main string

HUM= splitter->getItemAtIndex(1); // extract sensor value

from main string

PRESS= splitter->getItemAtIndex(2); // extract sensor value

from main string

ALT= splitter->getItemAtIndex(3); // extract sensor value

from main string

UV= splitter->getItemAtIndex(4); // extract sensor value

from main string

}

inputString_NODEMCU = “”; // make string empty

delay(200); // delay 200 mSec

}

}

ThingViewapp
Follow the steps described in section 3.1.4 and receive the data on
thingspeak.com. The same data can also be checked on the mobile app Thing
View. Figure 8.5 shows the snapshots for the data received on the mobile
app:

co
nt

ro
len

gin
ee

rs
.ir

co
nt

ro
len

gin
ee

rs
.ir

Figure 8.5: Snapshots for the data received on the mobile app

Conclusion
This chapter concludes the green house monitoring system. The system can
be understood with the help of the circuit diagram and mobile app.

co
nt

ro
len

gin
ee

rs
.ir

H

CHAPTER 9
Intelligent System for the Blind

umans are not disabled. A person can never be broken. This chapter
describes the system for blind people.

Introduction
A simple Arduino board and sensors are used for designing a stick for the
blind. This smart stick is equipped with an ultrasonic sensor for sensing the
obstacle, the RF remote that will locate the stick for a blind person and LDR
for sensing the condition of light. All the feedback is given to the person
using this stick with the help of a buzzer. Figure 9.1 shows the block
diagram of the system:

Figure 9.1: Block diagram of the system

Table 9.1 and Table 9.2 gives the details of components of the required stick
finder and complete system:

Component/Specification Quantity

Battery of 9V/200 mA 1

Jumper wire M-M 20
co

nt
ro

len
gin

ee
rs

.ir

Jumper wire M-F 20

Jumper wire F-F 20

+9V to +5V converter 1

Button 1

Atmega328 board 1

RF Modem 1

breakout board for RF Modem 1

Table 9.1: Components for stick finder

Component/Specification Quantity

Battery of 9V/200 mA 1

Jumper wire M-M 20

Jumper wire M-F 20

Jumper wire F-F 20

+9V to +5V converter 1

Atmega328 breakout board 1

Atmega328 board 1

Atmega328 board 1

RF Modem 1

RF modem breakout board 1

Ultrasonic sensor 1

LDR sensor 1

Table 9.2: Components for complete system

Circuit diagram and connection
The circuit diagram of the stick finder is shown in Figure 9.2 and the details
of the device on the blind stick are shown in Figure 9.3:

1. Connect battery to the +5V and GND pin of the Atmega328 board.
2. Connect the button to pin5 of the Atmega328 board.co
nt

ro
len

gin
ee

rs
.ir

3. Connect Vcc, GND, RX, and TX pins of the RF modem to +5V, GND,
1(TX) and 0(RX) pins of the Atmega328 board.

Figure 9.2: Stick finder

The following steps need to be followed to provide connections for the stick:

1. Connect the battery to the +5V and GND pins of the atmega328 board.
2. Connect the buzzer to pin 13 of the atmega328 board.

co
nt

ro
len

gin
ee

rs
.ir

3. Connect Vcc, GND, RX, TX pins of the RF modem to +5V, GND,
1(TX) and 0(RX) pins of the atmega328 board.

4. Connect Vcc, GND, trigger and echo pins of the ultrasonic sensor to
+5V, GND, 2 and 3 pins of the atmega328 board.

5. Connect Vcc, GND, and OUT pins of LDR to +5V, GND, and A0 pins
of the atmega328 board.

Figure 9.3: Device on the blind stick

Program
This section describes the programs to design the system including the
program code for the stick finder and blind stick.
Code for stick finder
Refer to the following code:co

nt
ro

len
gin

ee
rs

.ir

int switch_pin=5;

int switch_state=0;

void setup()

{

Serial.begin(9600); // initialize serial communication

pinMode(switch_pin, INPUT); // assign pin as an input

}

void loop()

{

int switch_state=digitalRead(switch_pin); // read switch

if (switch_state== HIGH)

{

Serial.write(100); // write value serial

delay(20); // delay 20 mSec

}

else

{

Serial.write(200); // write value serial

delay(20); // delay 20 mSec

}

}

Code for blind stick

const int trigger = 3; //Trigger pin of ultrasonic Sesnor

const int echo = 2; //Echo pin of ultrasonic Sesnor

const int Buzz = 13; //attach buzzer to pin 13

const int Light = A0; //attach ligjht sensor to A0 pin

long time_taken;

int dist;

int Signal;

int Intens;

void setup()

{

Serial.begin(9600); // initialize serial communication

pinMode(Buzz,OUTPUT); // assign pin as an OUTPUT

digitalWrite(Buzz,LOW); // make pin to LOW

co
nt

ro
len

gin
ee

rs
.ir

pinMode(trigger, OUTPUT); // assign pin as an OUTPUT

pinMode(echo, INPUT); // assign pin as an INPUT

}

void calculate_distance(int trigger, int echo)

{

digitalWrite(trigger, LOW); // make pin to LOW

delayMicroseconds(2); // delay of 2 uSec

digitalWrite(trigger, HIGH); // make pin to HIGH

delayMicroseconds(10); // delay of 10 uSec

digitalWrite(trigger, LOW); // make pin to LOW

time_taken = pulseIn(echo, HIGH); // calculate time

dist= time_taken*0.034/2;

if (dist>300)

dist=300;

}

void loop()

{

calculate_distance(trigger,echo);

Intens = analogRead(Light); // read analog pin

int check_from_remote=Serial.read(); // read serial data

if (check_from_remote == 100) //If remote pressed

{

Serial.print(similar_count); // print value on serial

Serial.println(“Remote Pressed”); // print string on serial

digitalWrite(Buzz,HIGH); // make pin to HIGH

delay(3000); // delay 3000 m Sec

digitalWrite(Buzz,LOW); // make pin to LOW

}

if (Intens<200)

{

Serial.print(Intens);

Serial.println(“Bright Light”);

digitalWrite(Buzz,HIGH); // make pin to HIGH

delay(200); // delay 200 m Sec

digitalWrite(Buzz,LOW); // make pin to LOW

delay(200); // delay 200 m Sec

co
nt

ro
len

gin
ee

rs
.ir

digitalWrite(Buzz,HIGH); // make pin to HIGH

delay(200); // delay 200 m Sec

digitalWrite(Buzz,LOW); // make pin to LOW

delay(200); // delay 200 m Sec

delay(500); // delay 500 m Sec

}

if (Intens>800)//If very bright

{

Serial.print(Intens);

Serial.println(“Low Light”);

digitalWrite(Buzz,HIGH); // make pin to HIGH

delay(500); // delay 500 mSec

digitalWrite(Buzz,LOW); // make pin to LOW

delay(500); // delay 500 mSec

digitalWrite(Buzz,HIGH); // make pin to HIGH

delay(500); // delay 500 mSec

digitalWrite(Buzz,LOW); // make pin to LOW

delay(500); // delay 500 mSec

}

if (dist<50)

{

Serial.print(dist); // print value on serial

Serial.println(“Object Alert”); // print string on serial

digitalWrite(Buzz,HIGH); // make pin to HIGH

for (int i=dist; i>0; i--)

delay(10); // delay 10 mSec

digitalWrite(Buzz,LOW); // make pin to LOW

for (int i=dist; i>0; i--)

delay(10); // delay 10 mSec

}

}

Conclusion
This chapter concludes an intelligent system for the blind. The system is
described with the help ofa circuit diagram and program.

co
nt

ro
len

gin
ee

rs
.ir

T

CHAPTER 10
Sign-in to Speech Using the IoTs

he main objective is to translate the sign language to text/speech. This
chapter illustrates the sign to text conversion. This step-by-step process

helps the user to configure on the X86 and ARM platform. The
methodology for the sign feature extraction and pre-processing of
information is discussed.sed and implement

Introduction
The framework presents productive and quick procedures for distinguishing
proof of the handmotion speaking to letters in order of the Sign Language.
Figure 10.1 shows the flow diagram to convert sign to speech recognition:

co
nt

ro
len

gin
ee

rs
.ir

Figure 10.1: Flow diagram for sign to speech or text conversionco
nt

ro
len

gin
ee

rs
.ir

Figure 10.2 shows the steps to convert sign to speech which involves pre-
processing, the CNN algorithm and post processing:

Figure 10.2: Steps involved in the process

Installing dependencies on the controller platform
The code is designed and developed with Python 3.5. Before running the
main.py file library, dependencies need to be installed on the IDE:

1. Installation of OpenCV 3.1.0 by writing pip install OpenCV 3.1.0.
2. Installation of Keras 2.0.8.
3. Installation of Tensorflow 1.11 (CPU version); it is also compatible

with GPU version.
4. Installation of numpy 1.15.2 (pip install numpy 1.15.2).
5. Installation of joblib 0.10.3 (pip install joblib 0.10.3).

The sign feature extraction uses the pre-trained models in Keras was run on
an AWS EC2 p2.8xlarge instance with the Bitfusion Ubuntu 14
TensorFlow-2017 AMI. Packages updation from Python 2 to Python 3 has
been done during execution.
Before running the final script, training data needs to be updated:
$ python live_demo.py --help

co
nt

ro
len

gin
ee

rs
.ir

Installing the requirements on X86:

1. Installation of OpenCV 3.1.0 by writing pip install OpenCV 3.1.0.
2. Installation of Keras 2.0.8.
3. Installation of Tensorflow 1.11 (CPU version); it is also compatible

with GPU version.
4. Installation of numpy 1.15.2 (pip install numpy 1.15.2).
5. Installation of joblib 0.10.3 (pip install joblib 0.10.3).
6. Go to terminal of cmd depending on your OS.
7. If you have an NVidia GPU, then make sure you have the

prerequisites for the Tensorflow GPU installation (Refer to the official
site). Then, use this command:
pip install -r requirements_gpu.txt

8. If you do not have a GPU, then use this command:
pip install -r requirements_cpu.txt

Creating a gesture
1. python set_hand_hist.py

A windows Set hand histogram will appear.
Set hand histogram will have 50 squares (5x10).
Put your hand in those squares. Make sure your hand covers all
the squares.
Press c. 1 and the other window will appear Thresh.
On pressing c, only white patches corresponding to the parts of
the image which has your skin color should appear on the Thresh
window.
Make sure all the squares are covered by your hand.
If you are not successful, then move your hand a little bit and
press c again. Repeat this until you get a good histogram.
After you get a good histogram, press s to save the histogram. All
the windows close.co
nt

ro
len

gin
ee

rs
.ir

2. Then, an OpenCV window called Capturing gestures which will
appear. In the webcam feed, you will see a green window (inside
which you will have to do your gesture) and a counter that counts the
number of pictures stored.
python create_gestures.py

3. python flip_images.py
4. Load the images by giving the command: python load_images.py.
5. The following gestures will be shown:

Evaluation parameters Advantages disadvantages

High capacity High Low

Robustness High Low

Perceptual precision High Low

Temper resistance High Low

Computational complexity Low High

Table 10.1: Evaluation parameters

The preceding table illustrates the performance of the sign to speech
conversion in both the X86 and ARM platforms. The evaluation parameters
are mentioned in the table. From the preceding table, it is concluded that the
performance on the ARM platform is better than X86.

Conclusion
This chapter gives a brief idea about the process of sign to speech
conversion. In this chapter, the step-by-step process from installation of
dependency library and execution of the main code has been explained. The
methodology gives the overall idea about the process of execution of sign to
text. The preceding experiment is conducted for ISL andASL. The
performance analysis of both the architectures, that is, X86 and ARM are
illustrated.co
nt

ro
len

gin
ee

rs
.ir

N

CHAPTER 11
Windows 10 on Raspberry

owadays, the Linux operating system is the choice for almost all new
embedded device projects. Linux provides a powerful, flexible kernel, and

open runtime platform which is being improved by the Linux community to
support new processors, buses, devices, and protocols. At the same time,Windows
10 does have its own advantage. It is reliable with the architecture infrastructure,
application prototyping, optimization, and deployment. This chapter demonstrates
the use of Windows 10 OS on.

Introduction
Multi-functional smartphones are being dramatically increased in the wireless
phone market [1]. Mobile communication technology is undoubtedly one of the
most significant developments in the electronic system field in recent years. To
provide mobile data transmission, where people can transmit and receive
information wherever they are and whenever they like to, mobility is at the heart
of these wireless systems. The size and the user interface of mobile devices are
the main concerns in the design of mobile devices.

Raspberry Pi
Raspberry Pi is a little, multifunctional credit size PC working in Linux OS. The
major and most evident contrast between the Pi and PC is that the work area will
have a processor from either Intel or AMD at its center, though Pi has an ARM-
based CPU. The CPU is the part that really runs the project. The following
diagram shows Raspberry Pi and its components:

co
nt

ro
len

gin
ee

rs
.ir

Figure 11.1: Raspberry Pi with components

Before a CPU can run a program, it must be translated into a language that the
CPU can understand. The model B Pi has 512MB of RAM. It supports the
Ethernet cable to access the network and the USB cable to interface with
peripheral devices. RCA video (works with older TVs), 3.5mm audio standard
headphone socket, HDMI audio andvideo (works with modern TVs and DVI
monitors) are the peripheral devices.

Linux kernel architecture
There are three different layers in the Linux kernel. At the top level, SCI (system
call interface), the significance of this layer is to read and write instructions and
socket calls. Then, there are architecture dependent and architecture independent
layers.
The device drivers have the source codes for the Linux kernel. The arch
subdirectory is architecture-dependent and contains subdirectories for various
architectures of the machine.
The cross compiler provides the platform to generate and execute codes for a
target in which the compiler is running. Cross compilation environments support
Application Binary Interface (ABI) and Embedded Application Binary
interface (EABI). The ABI represents higher level language to machine levelco

nt
ro

len
gin

ee
rs

.ir

language. For different targets, the Linux kernel gets updated with tool chains for
different applications.
The process of installing Windows 10 on a Raspberry Pi involves downloading
the installer, drivers, and the OS itself from a variety of unofficial sources.
Everything from the Start menu to the Edge browser operates in slow motion.
Installing it will probably take at least an hour, and some blue screens may be
experienced. After compilation of Windows 10 on Raspberry Pi, and if the
Ethernet connection is available, web can be surfed on it.

Windows 10 on Raspberry Pi
Hardware required:

1. Raspberry Pi 3, 3B or 3B+.
2. High-speed, class 10 microSD card of at least 16GB, preferably A1 speed.
3. A good 2.5-amp power adapter for the Pi.

Software required:

1. SD card formatter.
2. The WoA (Windows on Arm) installer for Raspberry Pi.
3. The latest core package.
4. Windows 10 Arm image (tested with version 17134).
5. Latest Ethernet driver.

SD card formatter
It is used to format the SD card. It will erase all the previous data stored on it. It is
an open source software that can be easily downloaded.

co
nt

ro
len

gin
ee

rs
.ir

Figure 11.2: SD card formatting software

1. Downloading of the Windows image: The link to download the window
image for Raspberry Pi (https://uupdump.ml/) is mentioned. While
downloading, makes sure the image is compatible with the ARM platform
of 64 bit. Both the new and old version can be downloaded. Preference
could be given as per individual. In Figure 11.3, the web link interface is
shown as follows:

co
nt

ro
len

gin
ee

rs
.ir

https://uupdump.ml/

Figure 11.3: Downloading Windows images

2. Extracting the ZIPfile: After downloading the file, extract the file into the
folder. Make sure all the files have been extracted properly. During
extracting the file, you may get a notification or warning not to run the
script.Then, click on run to run it. It may take several minutes from 15 to 20
minutes. Relax and when it is done, it will create the ISO file.

co
nt

ro
len

gin
ee

rs
.ir

Figure 11.4: During extraction of file

3. Now, unzip the core files into the same folder.
4. Download the ZIP file of the Ethernet driver and extract the file to the same

folder.
5. Copy the ndis650 folder from the Ethernet driver into the core package’s

/drivers/Pre-OOBE subfolder.
6. Edit the config.txt file in the core package’s UEFI subfolder, and add

disable_overscan=1 to a line at the end if it’s not already there.
7. Create a new ZIP file from the core package folder (for example,

CorePackage1.4.zip).
8. Rightclick on the ISO file that the script created for you in step 3, and select

Mount. This will assign the ISO file a drive letter (for example, G:), so you
can later browse it from within the WoA app.

co
nt

ro
len

gin
ee

rs
.ir

9. Download, unzip, and run the WoA installer. The Windows smart screen
will warn you not to run it. Click on More Info and then Run Anyway.

Figure 11.5: Generating .exe file

10. Go to the Advanced tab, and click on Import Core package and then
select the Core Package zip file.

11. Under the Windows Deploymenttab, click on Browse and then navigate to
the ISO file youmounted to select install.wim from the /sources

subfolder.
12. Click on Deploy. This may take several minutes.

co
nt

ro
len

gin
ee

rs
.ir

Figure 11.6: Windows deployment

13. Insert the microSD card into your Raspberry Pi and then boot it with a
keyboard and mouse attached.

14. Type exit at the Shell prompt, and hit Enter. This will take you to the BIOS
menu. You need to do this because at the first boot, your Pi goes to this
UEFI shell instead of booting off the Windows 10 partition.

15. Select Device Manager, then Rasperry PI Configuration, and then
HypDxe Configuration.

16. Make sure System Boot Mode is setto Boot in EL1. That may be the
default.

17. Navigate to the Device Manager | Raspberry Pi Configuration | Chipset
Configuration menu, and select Max from the CPU clock menu.

18. Press ESC a couple of times, and select Y to save your changes. Then, hit
ESC a couple of times to return to the home screen.

19. Navigate to the Boot Maintenance Manager| Boot Options | Change Boot
Order menu.

20. Hit Enter and use the - key to move SD/MMC on Broadcom SDHOST to
the top. Hit Enter, then Commit Changes and exit. This will make sure
your computer always boot straight to Windows and not to the UEFI shell.

21. From the home screen, navigate to Boot Manager, and select SD/MMC on
Broadcom SDHOST. You may be asked to hit Enter to reset. Now, your Pi
will boot off of the Windows partition.

22. Wait a really long time while Windows installation may take several
minutes. Wait until the installation gets completed [19].

23. Complete the Windows 10 install process. The installation .process will
navigate with various options. Choose it correctly and proceed. Finally, after
several minutes, the Windows 10 interface will be appear on the screen.

The entire activity of installing Windows 10 on the SD card might take 1:30 hours
to 2 hours. Make sure you have connected the Raspberry Pi to the internet via
Ethernet. After the installation, now Pi is ready to use. It has been seen that it is
slower compared to Raspbian and PiLFS.

Performance testing and evaluation
To check the performance of Windows 10 on Raspberry, three algorithms have
been used. Performance evaluation can be done on the custom kernel for the
following details to identify the execution seed:

co
nt

ro
len

gin
ee

rs
.ir

Figure 11.7: Methodology of evaluation of Windows 10 OS on ARM architecture

The results are shown below in Table 11.1 and Table 11.2:

Evaluation parameters Bubble sort Binary search Merge sort

CPU cycles used 2.2x1018 3.2x1018 2.5x1018

Context switch time in ms 1245 1324 1367

Task clock cycle 3456 3589 3678

Cache hit time in ms 976 976 945

Overall performance in percentage 75 69 79

Table 11.1: Using Python on Raspbian

co
nt

ro
len

gin
ee

rs
.ir

Evaluation parameters Bubble sort Binary search Merge sort

CPU cycles used 2.1x1018 2.9x1018 2.3x1018

Context switch time in ms 1189 1201 1235

Task clock cycle 3879 3987 3794

Cache hit time in ms 1125 1192 1232

Overall performance in percentage 84 73 65

Table 11.2: Using Python on Windows 10

Conclusion
In this chapter, a detailed installation of Windows 10 on the ARM platform is
illustrated. Further, a performance measure is conducted to verify the coding
efficiency and CPU clock cycles uses. A comparative analysis is carried out.

co
nt

ro
len

gin
ee

rs
.ir

CHAPTER 12
Wireless Video Surveillance Robot

Using Raspberry Pi
Live streaming and video surveillance plays an important role in terms of
safety and security. If a compact system is designed, which is capable of
doing video surveillance and live streaming, then it would be a great help in
various fields. A robot is designed and implemented that is capable of
streaming the live video and is very compact in size also. The major role is
being played by RaspberryPi which is a credit card sized motherboard. It
runs on the Raspbian operating system. The camera used in this project is Pi-
cam that can further tilt and rotate. The technology used in this robot is Wi-
Fi 802.11 for controlling the robot and camera module.

Introduction
This section describes the design of a robot with raspberry Pi and cloud with
a live video stream that is obtained over anIP (Internet Protocol) address.
Figure 12.1 shows the detailed block diagram of a surveillance robot. The
complete system has two parts: robot and cloud server. The robot comprises
Raspberry Pi, battery, camera, NuttyFi, motor driver, and motors.

co
nt

ro
len

gin
ee

rs
.ir

Figure 12.1: Block diagram of a video surveillance robot

To begin with, the operating system needs to be uploaded on RaspberryPi. It
can be Raspbian Jessie or NOOBS using an SD card. Once the OS is loaded,
the system needs to be booted by connecting it to the monitor with the help
of the HDMI cable and adding devices like the USB keyboard, Pi-Cam, and
mouse with the system via USB ports that are available on RaspberryPi.
Once the system is booted, it enables the camera module from the terminal.
Now, use the LX terminal to give commands to type the commands and all
the commands carefully give permissions to the files which need to be
downloaded.
The motors are connected with the PWM pins of RaspberryPi. With the help
of this, the quality of video streaming is improved for the robot and the
number of frames is transmitted per second. Table 12.1 gives the detailed list
of components that is required for making this robot:

Component/Specification Quantity

12V/1A adaptor 1

Jumper wire M-M 20

Jumper wire M-F 20

Jumper wire F-F 20

+12V to +5V converter 1

Raspberry Pi 3B+ 1

NuttyFi 1

Breakout board 1

USB camera 1

Table 12.1: Component list

Circuit diagram and connection
1. Connect power supply 12V/1A to Raspberry Pi and NuttyFi.
2. Connect 4,5,12 and 12 pins of L293D to GND.
3. Connect 1,9 and 16 pins to +5V.co
nt

ro
len

gin
ee

rs
.ir

4. Connect 2, 7, 10 and 15 pins of L293D to D1, D2, D3 and D4 pins of
NuttyFi.

5. Connect 3 and 6 pins of L29D to two pins of the first DC motor.
6. Connect 11 and 14 pins of L29D to two pins of the second DC motor.
7. Connect the camera to the port of camera on Raspberry Pi.

Figure 12.2 gives the detailed circuit diagram of the robot:

Figure 12.2: Circuit diagram of a video surveillance robot

Application/data logger
The following program is the code for NuttyFi:

#include <ESP8266WiFi.h> // add ESP library

#include <BlynkSimpleEsp8266.h>// add blynk library

char auth[] = “8507cac915f04a1bb4b00987e420afa0”;//add token

here

char ssid[] = “SchematicsMicroelectronics”; // add hotspot

address

co
nt

ro
len

gin
ee

rs
.ir

char pass[] = “XXXXXXX”; // add hotspot password

BlynkTimer timer; // add timer in blynk

int M1_POSITIVE=D1;//D1 as pin 1 of motor driver

int M1_NEGATIVE=D2;//D2 as pin 2of motor driver

int M2_POSITIVE=D3;//D3 as pin 3 of motor driver

int M2_NEGATIVE=D4;//D4 as pin 4 of motor driver

WidgetLCD LCD_BLYNK(V0); // assign virtual pin V0 to blynk LCD

BLYNK_WRITE(V1)

{

int FORWARD = param.asInt(); // read V1

if(FORWARD==HIGH) // check condition

{

digitalWrite(M1_POSITIVE,HIGH); // make pin1 to HIGH

digitalWrite(M1_NEGATIVE,LOW); // make pin2 to LOW

digitalWrite(M2_POSITIVE,HIGH); // make pin3 to HIGH

digitalWrite(M2_NEGATIVE,LOW); // make pin4 to Low

LCD_BLYNK.print(0,0,”ROBO CNTRL SYS”); // print string on

Blynk LCD

LCD_BLYNK.print(0,1,”FORWARD”); // print string on Blynk LCD

delay(10); // wait for 10 mSec

}

}

BLYNK_WRITE(V2)

{

int REVERSE = param.asInt(); // read virtual pin V2

if(REVERSE==HIGH) // check condition

{

digitalWrite(M1_POSITIVE,LOW); // make pin1 to LOW

digitalWrite(M1_NEGATIVE,HIGH); // make pin2 to HIGH

digitalWrite(M2_POSITIVE,LOW); // make pin3 to LOW

digitalWrite(M2_NEGATIVE,HIGH); // make pin4 to HIGH

LCD_BLYNK.print(0,0,”ROBO CNTRL SYS”); // print string on

Blynk LCD

LCD_BLYNK.print(0,1,”REVERSE”); // print string on Blynk LCD

delay(10); // wait for 10 mSec

}

}

co
nt

ro
len

gin
ee

rs
.ir

BLYNK_WRITE(V3)

{

int LEFT = param.asInt(); // read virtual pin V2

if(LEFT==HIGH) // check state

{

digitalWrite(M1_POSITIVE,HIGH); // make pin1 to HIGH

digitalWrite(M1_NEGATIVE,LOW); // make pin2 to LOW

digitalWrite(M2_POSITIVE,LOW); // make pin3 to LOW

digitalWrite(M2_NEGATIVE,LOW); // make pin4 to LOW

LCD_BLYNK.print(0,0,”ROBO CNTRL SYS”); // print string on

Blynk LCD

LCD_BLYNK.print(0,1,”LEFT “); // print string on Blynk LCD

delay(10); // wait for 10 mSec

}

}

BLYNK_WRITE(V4)

{

int RIGHT = param.asInt(); // read V4 pin

if(RIGHT==HIGH) // check state

{

digitalWrite(M1_POSITIVE,LOW); // make pin1 to LOW

digitalWrite(M1_NEGATIVE,LOW); // make pin2 to LOW

digitalWrite(M2_POSITIVE,HIGH); // make pin3 to HIGH

digitalWrite(M2_NEGATIVE,LOW); // make pin4 to LOW

LCD_BLYNK.print(0,0,”ROBO CNTRL SYS”); // print string on

BLYNK APP

LCD_BLYNK.print(0,1,”RIGHT “); // print string on BLYNK APP

delay(10); // wait for 10 mSec

}

}

BLYNK_WRITE(V5)

{

int STOP = param.asInt();

if(STOP==HIGH)

{

digitalWrite(M1_POSITIVE,LOW); // make pin1 to LOW

co
nt

ro
len

gin
ee

rs
.ir

digitalWrite(M1_NEGATIVE,LOW); // make pin2 to LOW

digitalWrite(M2_POSITIVE,LOW); // make pin3 to LOW

digitalWrite(M2_NEGATIVE,LOW); // make pin4 to LOW

LCD_BLYNK.print(0,0,”ROBO CNTRL SYS”); // print string on

BLYNK APP

LCD_BLYNK.print(0,1,”STOP “); // print string on BLYNK APP

delay(10); // wait for 10 mSec

}

}

void setup()

{

Serial.begin(9600); // initialize serial communication

Blynk.begin(auth, ssid, pass); // begin BLYNK

pinMode(M1_POSITIVE,OUTPUT); // pin1 of motor driver assign as

output

pinMode(M1_NEGATIVE,OUTPUT); // pin2 of motor driver assign as

output

pinMode(M2_POSITIVE,OUTPUT); // pin3 of motor driver assign as

output

pinMode(M2_NEGATIVE,OUTPUT); // pin4 of motor driver assign as

output

}

void loop()

{

Blynk.run(); // run BLYNK app

timer.run(); // Initiates BlynkTimer

}

Raspberry Pi and its installation
Raspberry Pi is a powerful minicomputer which is specifically designed by
the researchers to make work easier. It has got a large number of components
that are extremely useful for computer-based projects like the Ethernet cable,
SD card slot, Wi-Fi antenna ports, USB ports, and many more. Figure 12.3
shows the basic requirement of a Raspberry Pi-based system to keep it
running:

co
nt

ro
len

gin
ee

rs
.ir

Figure 12.3: Raspberry Pi, power supply adaptor, and SD card

Monitor or TV with HDMI or DVI input
Video link from the Pi’s HDMI port to the screen’s information port
USB console and mouse
Ethernet linkPower supply: Raspberry Pi works with a MicroUSB
cable which has the capability of supplying at least 700mA at 5V. In
order to select the power supply, one can see the details mentioned on
the supply.
SD card: The SD card used for the system should always be class 4
and above and minimum 4 GB and above. The good brand of SD cards
also improves the efficiency of the system. Class 10 SD cards with 16
GB and above are always suggested for better performance.
Screen: The screen is also suggested to be connected and this screen
can be any television or monitor connected with the help of HDMI or
DVI input. Further, the laptop can also be connected and the laptop
screen can also be used.
Keyboard and mouse: USB peripherals ought to be lowcontrol under
0.1A each. Most consoles and mice are fine, yet maybe a modest
number (especially those with brilliant LEDs) ought to be connected to
a different controlled USB center point, which is connected to Pi.

Writing an SD card with NOOBSco
nt

ro
len

gin
ee

rs
.ir

1. Download the NOOBS document record from
http://www.raspberrypi.org/downloads, separate it, and spot it on a SD
card.

2. Once you have downloaded the NOOBS document record, separate it
and duplicate the folder contents onto the SD card.

3. Put the SD card containing the separated NOOBS records into your
Raspberry Pi and afterwards power up your Raspberry Pi. When it
boots, a window appears. Figure 12.4 shows the Raspbian window:

Figure 12.4: View of Raspbian window

Few terminal commands for Raspberry Pi are as follows:

Update package lists
sudo apt-get update

Download and install updated packages
sudo apt-get upgrade

Clean old package files:
sudo apt-get clean

The Raspberry Pi configuration tool:
sudo raspi-config

List directory contents:
co

nt
ro

len
gin

ee
rs

.ir

http://www.raspberrypi.org/downloads

ls

Change directories:
cd

Create a directory:
mkdir

Remove a directory:
rmdir

Move a file:
mv

Show a tree of directories:
tree -d

Show the current directory:
pwd

Clearing the terminal window:
clear

Shut down the Raspberry Pi:
sudo halt

The programming of Raspberry-Pi is done with the help of command lines in
the LX terminal of the Raspbian OS. It includes the directions for
downloading the server from the web and making it executable and auto start
during booting to acquire the live stream video through the raspberry
camera.

1. Install Raspbian and update it and make sure the camera is enabled:
sudo apt-get update

sudo apt-get upgrade

2. Install vlc:
sudo apt-get install vlc

3. Create a script to start the stream with the following content, or run the
following command:
sudo nano myscript.sh

co
nt

ro
len

gin
ee

rs
.ir

raspivid -o - -t 0 -hf -w 640 -h 360 -fps 25 | cvlc -vvv

stream:///dev/stdin --sout ‘#rtp{sdp=rtsp://:8554}’

:demux=h264

4. Make the script runnable:
sudo chmod +x myscript.sh

5. If you want to start the stream automatically, then you have to add the
script to crontab. To make this work, I had to make another script run
by cron (OBS! VLC can’t be run as sudo, so make sure you’re in the
right cron). sudo nano myscript2.sh:
#!/bin/bash

/path/to/myscript.sh

Then:

sudo chmod +x myscript2.sh

crontab -e

@reboot /path/to/myscript2.sh

6. To watch the video stream, open VLC on a computer on the same
network as the raspberry pi you are using for streaming. Press
Media|Open Network stream and paste the following in the field:
rtsp://192.168.1.78:8554/

If you don’t care about FPS (frames per second) and don’t want any delay,
you could use MJPEG.

Blynkapp
Follow the steps to design the Blynk app. The front end of the app for the
proposed system is shown in Figure 12.5:

co
nt

ro
len

gin
ee

rs
.ir

Figure 12.5: View of the Blynk app

Conclusion
This chapter concludes the steps to control the robot with RaspberryPi and
the Blynk app. The complete system is described with the help of a circuit
diagram and program.

co
nt

ro
len

gin
ee

rs
.ir

A

CHAPTER 13
IoT-based Smart Camera

camera is an optical instrument which is used to capture the image or to
record the video. The data is stored in a digital system or on a

photographic film. A camera consists of a lens which focuses light from the
scene.

Introduction
A system is designed in such a way that it will activate the camera module
only when the person is detected and will click the photo that is further sent
as an attachment in the email to the registered emailID.
Figure 13.1 shows the block diagram of the IoT-based smart camera system.
It comprises Raspberry Pi, PIR sensor, SD card, Pi camera, and power
supply. A passive infrared or PIR or IR motion sensor is widely used for
sensing the motion. The sensor detects the change in IR levels and senses the
presence of human beings. The range of the PIR sensor is approximately 7
meters and 110° x 70° angle. The PIR sensor is having three pins: Ground,
Digital Out, and 3-5 V DC. When no motion is detected, the digital out pin
remains at low state and will go high when motion is detected and which is
further used by RaspberryPi to sense it:

co
nt

ro
len

gin
ee

rs
.ir

Figure 13.1: Block diagram of the system

One needs an inbuilt Pi-camera library to control the Pi camera:

1. Start the camera.
2. Click the picture when motion is detected with the help of the PIR

sensor.
3. Save all the pictures in the folder that is located on your desktop with a

time stamp.
4. Name and arrange the photos in the order they are clicked with the

timestamp.
5. Exit the camera preview when the push button is pressed in order to

exit the camera.

Anyone can use this PIR motion sensor along with RaspberryPi and Pi-
camera for variousapplications like the home security system and after the
detection of the intruder, the captured images can be sent immediately to the
owner. The list of components required for this project is shown in Table
13.1:

Component/Specification Quantity

12V/1A adaptor 1
co

nt
ro

len
gin

ee
rs

.ir

Jumper wire M-M 20

Jumper wire M-F 20

Jumper wire F-F 20

+12V to +5V converter 1

Raspberry Pi 3B+ 1

NuttyFi 1

Breakout board 1

USB camera 1

Table 13.1: Component list

Circuit diagram and connection
The detailed description of a circuit diagram is as follows:

1. Connect the power supply 12V/1A to Raspberry Pi and NuttyFi.
2. Connect the camera to the port of camera on Raspberry Pi.
3. Connect Vcc, GND, and OUT pin of the PIR sensor to +5V, GND, and

GPIO21 of Raspberry Pi.
4. Connect the LED with the resistor to GPIO 3 of Raspberry Pi.

The detailed circuit diagram is shown in Figure 13.2:

co
nt

ro
len

gin
ee

rs
.ir

Figure 13.2: Circuit diagram of the system

Application/data logger
The following is the program to store the photo on the SD card:

import RPi.GPIO as GPIO // import library

import time // import library

GPIO.setwarnings(False)

GPIO.setmode(GPIO.BCM) // set mode in BCM

GPIO.setup(3,GPIO.OUT) # connect Buzzer on GPIO3

GPIO.setup(21,GPIO.IN) # connect Motion sensor on GPIO21

import picamera // import library

with picamera.PiCamera() as camera:

camera.resolution = (1024, 768) // set camera resolution

try:

while 1:

x=GPIO.input(21) // read GPIO

if(x==1):

print(“object detected”) # print string on terminal

GPIO.output(3,True) # make pin to HIGH

co
nt

ro
len

gin
ee

rs
.ir

camera.start_preview() // starty camera preview

camera.start_recording(‘/home/pi/video.h264’)

sleep(10) // delay 10 Sec

camera.stop_recording() # start recording

camera.stop_preview() # stop camera preview

time.sleep(1) # delay 1 Sec

else:

print(“no object detected”) #print string on terminal

GPIO.output(3,False) #make pin to low

time.sleep(1) // sleep for 1 sec

except KeyboardInterrupt:

print(“user interrupted”) # print string on terminal

GPIO.cleanup() # clean GPIO

The following is the program for capturing and sending the images to email
ID:

import RPi.GPIO as gpio

import picamera

import time

import smtplib

from email.mime.multipart import MIMEMultipart

from email.mime.text import MIMEText

from email.mime.base import MIMEBase

from email import encoders

from email.mime.image import MIMEImage

fromaddr = “rapperpranav@gmail.com” # change the email address

accordingly

toaddr = “96rakeshpandey@gmail.com”

mail = MIMEMultipart()

mail[‘From’] = fromaddr

mail[‘To’] = toaddr

mail[‘Subject’] = “Attachment”

body = “Please find the attachment”

led=17

pir=18

HIGH=1

LOW=0

co
nt

ro
len

gin
ee

rs
.ir

gpio.setwarnings(False)

gpio.setmode(gpio.BCM) # set pin mode as BCM

gpio.setup(led, gpio.OUT) # assign pin as an OUTPUT

gpio.setup(pir, gpio.IN) # assign pin as an INPUT

data=””

def sendMail(data):

mail.attach(MIMEText(body, ‘plain’))

print data # print data on terminal

dat=’%s.jpg’%data

print (data) # print data on terminal

attachment = open(dat, ‘rb’)

image=MIMEImage(attachment.read())

attachment.close()

mail.attach(image)

server = smtplib.SMTP(‘smtp.gmail.com’, 587)

server.starttls()

server.login(fromaddr, “Pra@3lee”)

text = mail.as_string()

server.sendmail(fromaddr, toaddr, text)

server.quit() # quit from server

def capture_image():

data= time.strftime(“%d_%b_%Y|%H:%M:%S”)

camera.start_preview() # start camera preview

time.sleep(5) # delay of 5 Sec

print data # print dat on terminal

camera.capture(‘%s.jpg’%data)

camera.stop_preview()

time.sleep(1) # delay of 1 Sec

sendMail(data)# mail data

gpio.output(led, 0) # make pin tom LOW

camera = picamera.PiCamera()

camera.rotation=180 # set rotation 180

camera.awb_mode= ‘auto’

camera.brightness=55 # set brightness of camera

while 1:

if gpio.input(pir)==1: # read sensor

co
nt

ro
len

gin
ee

rs
.ir

gpio.output(led, HIGH) # make pin to HIGH

capture_image() # capture image

while(gpio.input(pir)==1):

time.sleep(1) # delay 1 Sec

else:

gpio.output(led, LOW) # make pin to LOW

time.sleep(0.01) # delay 0.01 Sec

Conclusion
This chapter concludes the introduction to the camera and its use in the
security application. A system to capture the image and share it on the
authorized email address is discussed in detail with the help of circuit
connections and programs.

co
nt

ro
len

gin
ee

rs
.ir

T

CHAPTER 14
IoT-based Air Quality Monitoring

System Using NodeMCU
his section describes the air quality monitoring system using Arduino
Mini and WiFi modem (NodeMCU). Air quality is one of the important

parameters to be observed for a healthy lifestyle. Even in mines and
underground constructions, it is important to detect the harmful gases on
time to save the human lives.

Introduction
Figure 14.1 shows the block diagram of the system. The system comprises
Arduino mini, DC 12V/1Amp adaptor, 12V to 5V, 3.3V converter, BMP180
sensor, MQ135sensor, dust sampler, liquid crystal display, and NodeMCU.
The objective of the system is to display the information of the BMP180
sensor, air quality using MQ135, and dust sampler of air on the liquid
crystal. The sensors are interfaced to Arduino Mini. The data packet is
formed with Arduino Mini, which contains all sensory information. The data
packet from Arduino Mini is transferred serially to NodeMCU. The
NodeMCU/WiFi modem transfers the packet information to the cloud
APP/cloud server:

Figure 14.1: Circuit diagram of the system

Table 14.1 shows the component list required to develop the system:
co

nt
ro

len
gin

ee
rs

.ir

Components Quantity

LCD20*4 1

LCD20*4 patch 1

DC 12V/1Amp adaptor 1

12V to 5V, 3.3V converter 1

LED with 330 Ohm resistor 1

Jumper wire M to M 20

Jumper wire M to F 20

Jumper wire F to F 20

BMP180 sensor 1

MQ135sensor 1

Dust sampler 1

Arduino mini 1

NodeMCU 1

NodeMCU breakout board/Patch 1

Table 14.1: Components list

Note: All components are available at www.nuttyengineer.com.

Circuit diagram
The following is the detailed description of a circuit diagram which is as
follows:

1. +5V pin of the power supply is connected to Vcc pin of Arduino Mini.
2. GND pin of the power supply is connected to the GND pin of Arduino

Mini.
3. Pins 1 and16 of the LCD are connected to GND of the power supply.
4. Pins 2 and15 of the LCD are connected to +Vcc of the power supply.
5. Two fixed lags of POT are connected to +5V and GND of the LCD and

the variable lag of POT is connected to pin 3 of the LCD.co
nt

ro
len

gin
ee

rs
.ir

6. RS, RW, and E pins of the LCD are connected to pins D1=12, GND
and D2=11 of Ti Launch PAD.

7. D4, D5, D6, and D7 pins of the LCD are connected to pins D3=10,
D4=9, D5=8 and D6=7 of Arduino Mini.

8. +5V and GND pin of the PH sensor and TDS sensor are connected to
+5V and GND pins of the power supply, respectively.

9. OUT pin of the MQ135 sensor is connected to pin A1 of Arduino Mini.
10. SCL and SDA pins of the BMP180 sensor are connected to pin A4 and

A5 pins of Arduino Mini.
11. OUT pin of the dust sampler sensor is connected to pin A2of Arduino

Mini.
12. Connect TX(1), RX(0), +VCC, and GND of Arduino Mini to TX, RX,

+VCC and GND of NodeMCU.

Figure 14.2 shows the detailed circuit diagram of the system:

Figure 14.2: Circuit diagram of the system

Program
The program for Arduino Mini is as follows:
co

nt
ro

len
gin

ee
rs

.ir

// library for BMP185

#include <Wire.h>

#include <Adafruit_BMP085.h>

Adafruit_BMP085 bmp;

// library for LCD

#include <LiquidCrystal.h>

LiquidCrystal lcd(13, 12, 11, 10, 9, 8);

// libray for Softserial

#include <SoftwareSerial.h>

SoftwareSerial mySerial(6,7);// 6 rx /7 tx

void setup()

{

Serial.begin(9600); // initialize serial communication

mySerial.begin(9600); // initialize soft serial communication

lcd.begin(20, 4); // initialize LCD

bmp.begin(); // initialize BMP sensor

}

void loop()

{

lcd.clear(); // clear the contents of LCD

int chk = DHT.read11(DHT11_PIN); // read DHT11

float PRESS=bmp.readPressure(); // record pressure

float ALT=bmp.readAltitude(); // record altitude

int DUST_SAMPLER=analogRead(A0); // read dust sampler

int MQ135=analogRead(A1);// read MQ135 sensor

// read and display BMP185 data

lcd.setCursor(0,0); // set cursor on LCD

lcd.print(“P0:”); // print string on LCD

lcd.print(PRESS); // print value on LCD

lcd.print(“Pa”); // print string on LCD

lcd.setCursor(0,1); // Calculate altitude assuming ‘standard’

barometric & pressure of 1013.25 millibar = 101325 Pascal

lcd.print(“A0:”); // print string on LCD

lcd.print(ALT); // print value on LCD

co
nt

ro
len

gin
ee

rs
.ir

lcd.print(“m”); // print string on LCD

lcd.setCursor(0,2); // set cursor on LCD

lcd.print(“DUST_sample:”); // print string on LCD

lcd.print(DUST_SAMPLER); // print value on LCD

lcd.setCursor(0,3); // set cursor on LCD

lcd.print(“MQ135:”); // print string on LCD

lcd.print(MQ135); // print value on LCD

lcd.setCursor(10,0); // set cursor on LCD

// Calculate altitude assuming ‘standard’ barometric & pressure

of 1013.25 millibar = 101325 Pascal

lcd.print(“UV_Indx:”); // print string on LCD

lcd.print(UV); // print value on LCD

Serial.print(PRESS); // print value on serial

Serial.print(“,”); // print comma on serial

Serial.print(ALT); // print value on serial

Serial.print(“,”);// print comma on serial

Serial.print(DUST_SAMPLER); // print value on serial

Serial.print(“,”);// print comma on serial

Serial.print(MQ135); // print value on serial

Serial.print(‘\n’); // print comma on serial

delay(30); // delay of 30 mSec

}

The program for NodeMCU is as follows:

#include <ESP8266WiFi.h>

#include “Virtuino_ESP_WifiServer.h”

const char* ssid = “ESPServer_RAJ”;

const char* password = “RAJ@12345”;

WiFiServer server(8000); // Server port

Virtuino_ESP_WifiServer virtuino(&server);

int storedValue=0;

int counter =0;

long storedTime=0;

String PRESS,ALT,DUST,MQ135;

String inputString_NODEMCU = “”;

void setup()

co
nt

ro
len

gin
ee

rs
.ir

{

virtuino.DEBUG=true; // set this value TRUE to enable the

serial monitor status

virtuino.password=”1234”; // Set a password to your web server

for more protection

Serial.begin(9600); // Enable this line only if DEBUG=true

delay(10);

pinMode(2, OUTPUT);

digitalWrite(2, 0); // make pin to LOW

Serial.println(“Connecting to “+String(ssid));

WiFi.mode(WIFI_STA); // Config module as station only.

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED)

{

delay(500); // delay 500 msec

Serial.print(“.”); // print serial

}

Serial.println(“”);// print serial

Serial.println(“WiFi connected”);// print string on serial

Serial.println(WiFi.localIP()); // print IP on serial

server.begin(); // initialize server

Serial.println(“Server started”); // print string on serial

}

void loop()

{

virtuino.run(); // run virtuino APP

serialEvent_NODEMCU();

int v1=virtuino.vDigitalMemoryRead(0); // Read virtual memory 0

from Virtuino app

nt v2=virtuino.vDigitalMemoryRead(1); // Read virtual memory 0

from Virtuino app

if (v1!=storedValue)

{

Serial.println(“-------Virtual pin DV0 is changed

to=”+String(v1));

if (v1==1)

digitalWrite(D4,0); // make pin to LOW

co
nt

ro
len

gin
ee

rs
.ir

else

digitalWrite(D4,1); // make pin to HIGH

storedValue=v1;

}

if (v2!=storedValue)

{

Serial.println(“-------Virtual pin DV0 is changed

to=”+String(v2));

if (v2==1)

digitalWrite(D4,0); // make pin to LOW

else

digitalWrite(D4,1); // make pin to HIGH

storedValue=v2;

}

serialEvent_NODEMCU(); // call function for sensor value

virtuino.vMemoryWrite(2,PRESS); // write data on channel to of

virtuino

virtuino.vMemoryWrite(3,ALT); // write data on channel to of

virtuino

virtuino.vMemoryWrite(4,DUST); // write data on channel to of

virtuino

virtuino.vMemoryWrite(5,MQ135); // write data on channel to of

virtuino

long t= millis();

if (t>storedTime+5000)

{

counter++;

if (counter>20) counter=0; // limit = 20

storedTime = t;

virtuino.vMemoryWrite(12,counter); // write counter to

virtual pin V12

}

}

void serialEvent_NODEMCU()

{

while (Serial.available()>0)

{

co
nt

ro
len

gin
ee

rs
.ir

inputString_NODEMCU = Serial.readStringUntil(‘\n’);// Get serial

input

StringSplitter *splitter = new

StringSplitter(inputString_NODEMCU, ‘,’,5); // new

StringSplitter(string_to_split, delimiter, limit)

int itemCount = splitter->getItemCount();

for(int i = 0; i < itemCount; i++)

{

String item = splitter->getItemAtIndex(i);

PRESS= splitter->getItemAtIndex(0); // extract the value of

sensor from main string

ALT= splitter->getItemAtIndex(1); // extract the value of sensor

from main string

DUST= splitter->getItemAtIndex(2); // extract the value of

sensor from main string

MQ135= splitter->getItemAtIndex(3); // extract the value of

sensor from main string

}

inputString_NODEMCU = “”; // make string empty

delay(200); // delay of 200 msec

}

}

Virtuino app
Figure 14.3 shows the Virtuino app for the system. The Virtuino application
is a human machine interface platform on cloud. The Virtuino application
can be controlled through Bluetooth, WiFi, GPRS, and ThingSpeak. It is a
freely published application given by Ilias Lamprou.
The following are the steps to develop the app:

1. Make the connection with Arduino uno, NodeMCU and external
devices.

2. Follow the following step:
1) Click to download the Virtuino Library ver 1.1.
2) Run to add the library via the Arduino IDE.

co
nt

ro
len

gin
ee

rs
.ir

3) Burn the hex code in NodeMCU.
3. Add WiFi settings with the Android device.
4. Make the application in the Virtuino app and run it to interact with

ESP8266/NodeMCU:

Figure 14.3: Virtuino app

Conclusion
This chapter concludes the air quality monitoring system with the help of
sensors. A complete system design and development is discussed along with
the circuit connections and programs. The Virtuino app is also discussed to
display the sensory data.co

nt
ro

len
gin

ee
rs

.ir

	Cover Page
	Title Page
	Copyright Page
	About the Authors
	Acknowledgement
	Preface
	Errata
	Table of Contents
	1. ESP8266-based Wireless Web Server
	Introduction
	Circuit diagram
	Program
	Local server/web display
	Conclusion

	2. Air Pollution Meter Using Raspberry Pi
	Introduction
	System description
	Circuit diagram and connection
	Application/data logger
	Conclusion

	3. Smart Garage Door
	Introduction
	Circuit diagram
	Blynkapp
	Programs
	Conclusion

	4. Baggage Tracker
	Introduction
	System description
	Circuit diagram and connection
	Application/data logger
	Conclusion

	5. Smart Trash Collector
	Introduction
	System description
	Circuit diagram and connection
	Application/data logger
	Conclusion

	6. Car Parking System
	Introduction
	System description
	Circuit diagram and connection
	Application/data logger
	Conclusion

	7. Home Automation
	Introduction
	Circuit diagram
	Program
	Blynk app
	Conclusion

	8. Environmental Parameter Monitoring
	IoT-based greenhouse effect monitoring system
	Circuit diagram
	Program
	Arduino Mini program for the local server
	NodeMCU program for the greenhouse receiver

	ThingViewapp
	Conclusion

	9. Intelligent System for the Blind
	Introduction
	Circuit diagram and connection
	Program

	Conclusion

	10. Sign-in to Speech Using the IoTs
	Introduction
	Installing dependencies on the controller platform
	Creating a gesture

	Conclusion

	11. Windows 10 on Raspberry
	Introduction
	Raspberry Pi
	Linux kernel architecture
	Windows 10 on Raspberry Pi
	SD card formatter

	Performance testing and evaluation
	Conclusion

	12. Wireless Video Surveillance Robot Using Raspberry Pi
	Introduction
	Circuit diagram and connection
	Application/data logger
	Raspberry Pi and its installation
	Writing an SD card with NOOBS
	Blynkapp
	Conclusion

	13. IoT-based Smart Camera
	Introduction
	Circuit diagram and connection
	Application/data logger
	Conclusion

	14. IoT-based Air Quality Monitoring System Using NodeMCU
	Introduction
	Circuit diagram
	Program
	Virtuino app
	Conclusion

